-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfunctions.py
100 lines (86 loc) · 3.74 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
import torch.nn.functional as F
import torchvision.utils as utils
from sklearn.metrics import accuracy_score
import cv2
def train_epoch(model, criterion, optimizer, dataloader, device, epoch, log_interval, writer):
model.train()
losses = []
all_label = []
all_pred = []
for batch_idx, (inputs, labels) in enumerate(dataloader):
# get the inputs and labels
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
# forward
outputs = model(inputs)
if isinstance(outputs, list):
outputs = outputs[0]
# compute the loss
loss = criterion(outputs, labels.squeeze())
losses.append(loss.item())
# compute the accuracy
prediction = torch.max(outputs, 1)[1]
all_label.extend(labels.squeeze())
all_pred.extend(prediction)
score = accuracy_score(labels.squeeze().cpu().data.squeeze().numpy(), prediction.cpu().data.squeeze().numpy())
# backward & optimize
loss.backward()
optimizer.step()
if (batch_idx + 1) % log_interval == 0:
print("epoch {:3d} | iteration {:5d} | Loss {:.6f} | Acc {:.2f}%".format(epoch+1, batch_idx+1, loss.item(), score*100))
# Compute the average loss & accuracy
training_loss = sum(losses)/len(losses)
all_label = torch.stack(all_label, dim=0)
all_pred = torch.stack(all_pred, dim=0)
training_acc = accuracy_score(all_label.squeeze().cpu().data.squeeze().numpy(), all_pred.cpu().data.squeeze().numpy())
# Log
writer.add_scalars('Loss', {'train': training_loss}, epoch+1)
writer.add_scalars('Accuracy', {'train': training_acc}, epoch+1)
print("Average Training Loss of Epoch {}: {:.6f} | Acc: {:.2f}%".format(epoch+1, training_loss, training_acc*100))
def val_epoch(model, criterion, dataloader, device, epoch, writer):
model.eval()
losses = []
all_label = []
all_pred = []
with torch.no_grad():
for batch_idx, (inputs, labels) in enumerate(dataloader):
# get the inputs and labels
inputs, labels = inputs.to(device), labels.to(device)
# forward
outputs = model(inputs)
if isinstance(outputs, list):
outputs = outputs[0]
# compute the loss
loss = criterion(outputs, labels.squeeze())
losses.append(loss.item())
# collect labels & prediction
prediction = torch.max(outputs, 1)[1]
all_label.extend(labels.squeeze())
all_pred.extend(prediction)
# Compute the average loss & accuracy
val_loss = sum(losses)/len(losses)
all_label = torch.stack(all_label, dim=0)
all_pred = torch.stack(all_pred, dim=0)
val_acc = accuracy_score(all_label.squeeze().cpu().data.squeeze().numpy(), all_pred.cpu().data.squeeze().numpy())
# Log
writer.add_scalars('Loss', {'val': val_loss}, epoch+1)
writer.add_scalars('Accuracy', {'val': val_acc}, epoch+1)
print("Average Validation Loss: {:.6f} | Acc: {:.2f}%".format(val_loss, val_acc*100))
def visualize_attn(I, c):
# Image
img = I.permute((1,2,0)).cpu().numpy()
# Heatmap
N, C, H, W = c.size()
a = F.softmax(c.view(N,C,-1), dim=2).view(N,C,H,W)
up_factor = 32/H
# print(up_factor, I.size(), c.size())
if up_factor > 1:
a = F.interpolate(a, scale_factor=up_factor, mode='bilinear', align_corners=False)
attn = utils.make_grid(a, nrow=4, normalize=True, scale_each=True)
attn = attn.permute((1,2,0)).mul(255).byte().cpu().numpy()
attn = cv2.applyColorMap(attn, cv2.COLORMAP_JET)
attn = cv2.cvtColor(attn, cv2.COLOR_BGR2RGB)
# Add the heatmap to the image
vis = 0.6 * img + 0.4 * attn
return torch.from_numpy(vis).permute(2,0,1)