-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodels.py
110 lines (103 loc) · 4.22 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
import torch.nn as nn
import torch.nn.functional as F
from attention import ProjectorBlock, SpatialAttn, TemporalAttn
import math
"""
VGG-16 with attention
"""
class AttnVGG(nn.Module):
def __init__(self, sample_size, num_classes, attention=True, normalize_attn=True, init_weights=True):
super(AttnVGG, self).__init__()
# conv blocks
self.conv1 = self._make_layer(3, 64, 2)
self.conv2 = self._make_layer(64, 128, 2)
self.conv3 = self._make_layer(128, 256, 3)
self.conv4 = self._make_layer(256, 512, 3)
self.conv5 = self._make_layer(512, 512, 3)
self.conv6 = self._make_layer(512, 512, 2, pool=True)
self.dense = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=int(sample_size/32), padding=0, bias=True)
# attention blocks
self.attention = attention
if self.attention:
self.projector = ProjectorBlock(256, 512)
self.attn1 = SpatialAttn(in_features=512, normalize_attn=normalize_attn)
self.attn2 = SpatialAttn(in_features=512, normalize_attn=normalize_attn)
self.attn3 = SpatialAttn(in_features=512, normalize_attn=normalize_attn)
# final classification layer
if self.attention:
self.classify = nn.Linear(in_features=512*3, out_features=num_classes, bias=True)
else:
self.classify = nn.Linear(in_features=512, out_features=num_classes, bias=True)
# if init_weights:
# self._initialize_weights()
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
l1 = self.conv3(x)
x = F.max_pool2d(l1, kernel_size=2, stride=2, padding=0)
l2 = self.conv4(x)
x = F.max_pool2d(l2, kernel_size=2, stride=2, padding=0)
l3 = self.conv5(x)
x = F.max_pool2d(l3, kernel_size=2, stride=2, padding=0)
x = self.conv6(x)
g = self.dense(x) # batch_sizex512x1x1
# attention
if self.attention:
c1, g1 = self.attn1(self.projector(l1), g)
c2, g2 = self.attn2(l2, g)
c3, g3 = self.attn3(l3, g)
g = torch.cat((g1,g2,g3), dim=1) # batch_sizex3C
# classification layer
x = self.classify(g) # batch_sizexnum_classes
else:
c1, c2, c3 = None, None, None
x = self.classify(torch.squeeze(g))
return [x, c1, c2, c3]
def _make_layer(self, in_features, out_features, blocks, pool=False):
layers = []
for i in range(blocks):
conv2d = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=3, padding=1, bias=False)
layers += [conv2d, nn.BatchNorm2d(out_features), nn.ReLU(inplace=True)]
in_features = out_features
if pool:
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
return nn.Sequential(*layers)
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
"""
LSTM with attention
"""
class AttnLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(AttnLSTM, self).__init__()
self.lstm = nn.LSTM(
input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True)
self.attn = TemporalAttn(hidden_size=hidden_size)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, x):
x, (h_n, c_n) = self.lstm(x)
x, weights = self.attn(x)
x = self.fc(x)
return x, weights
# Test
if __name__ == '__main__':
model = AttnVGG(sample_size=128, num_classes=10)
x = torch.randn(16,3,128,128)
print(model(x))
model = AttnLSTM(input_size=1, hidden_size=128, num_layers=1)
x = torch.randn(16, 20, 1)
print(model(x))