-
Notifications
You must be signed in to change notification settings - Fork 37
/
start_training.py
42 lines (32 loc) · 1.12 KB
/
start_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 30 00:24:26 2018
@author: himanshu
"""
import numpy as np
import sys
import os
def main():
sys.path.append(os.path.dirname(__file__))
from dl_parser import ResumeParser
random_state = 430
np.random.seed(random_state)
current_dir = os.path.dirname(__file__)
current_dir = current_dir if current_dir is not '' else '.'
output_dir_path = current_dir + '/models'
training_data_dir_path = current_dir + '/data/training_data'
classifier = ResumeParser()
batch_size = 64
epochs = 100
history = classifier.fit(training_data_dir_path=training_data_dir_path,
model_dir_path=output_dir_path,
batch_size=batch_size,
epochs=epochs,
train_test_split_ratio=0.3,
random_state=random_state,
dropout_rate = None,
use_pretrained_embedd = True,
embedding_size = 50)
if __name__ == '__main__':
main()