-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironment.py
169 lines (143 loc) · 6.94 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
from env_snake_sensors import *
class Environment():
############################### Initalize parameters ###############################
def __init__(self, n_row):
# row * row = board
self.row = n_row
# map of board
self.blocks = {"empty": 0, "snake": 1, "apple": 2}
# (y, x)
self.moves_dir = {"up": np.array([-1, 0]), "right": np.array([0, 1]), \
"down": np.array([1, 0]), "left": np.array([0, -1])}
# List of all rewards
self.reward_dict = {"hit self": -100, "hit boundary": -100, "eat apple": 30, \
"step": -1, "a lot of steps": -100, "win game": 1000}
# Number of possible actions
self.action_space = 4
# Set up sensors for getting state
self.Sensors = SnakeSensors(self.row, self.moves_dir)
# Prepare game
self.reset()
def second_init(self):
self.done = False # If game is over (death)
self.direction = None # Direction of head (for computing state)
self.steps = 0 # count of steps until it reache apple
self.eaten_apples = 0 # count of eaten apples
self.info = "Unfinished" # If player win the game
############################### GENERATING ###############################
def generate_grid(self):
# generate board (grid) of zeros (always square)
self.board = np.zeros((self.row, self.row))
def generate_snake(self):
# Randomly choose spot to generate snake
indices = np.random.randint(0, high=self.row, size=2)
y, x = indices[0], indices[1]
self.board[y, x] = self.blocks["snake"]
self.snake_body = np.array([[y, x]])
self.beginning_lenght = 1
def generate_apple(self):
# Randomly generate apple (if there isn't already body of snake)
while True:
indices = np.random.randint(0, high=self.row, size=2)
y, x = indices[0], indices[1]
if self.board[y, x] == self.blocks["empty"]:
self.board[y, x] = self.blocks["apple"]
self.apple_pos = np.array([y, x])
break
############################### CHECK LOGIC ###############################
def check_n_steps(self):
# If count of steps is bigger than treshold; game over
if self.steps > (self.row**2//2):
self.done = True
self.reward = self.reward_dict["a lot of steps"]
def check_hit_self(self):
# Check if set of body isn't long as it had eaten apples
self.body = set([(i[0], i[1]) for i in self.snake_body.tolist()])
self.len_body = len(self.body)
if len(self.body) != self.eaten_apples+self.beginning_lenght:
self.done = True
self.reward = self.reward_dict["hit self"]
def check_boundaries(self, new_head):
# Check if (y, x) go beyond boundary
y, x = new_head
if y < 0 or x < 0 or y > self.row-1 or x > self.row-1:
self.done = True
self.reward = self.reward_dict["hit boundary"]
def check_end_of_game(self):
# If whole board is filled with snake; player won
if np.all(self.board.all(self.blocks["snake"])):
self.done = True
self.reward = self.reward_dict["win game"]
self.info = "Finished"
def check_eaten_apple(self, head):
# If head is on position of apple; restart steps and update other components...
if np.array_equal(head, self.apple_pos):
self.steps = 0
self.eaten_apples += 1
self.generate_apple()
self.reward = self.reward_dict["eat apple"] # + len(self.snake_body)**2
return True
return False
def snake_algorithm(self, new_head):
# Set new head of snake before current head in corresponding direction
self.snake_body = np.vstack((self.snake_body, new_head))
# if eaten apple == False; tail is deleted
if not self.check_eaten_apple(self.snake_body[-1]):
self.snake_body = np.delete(self.snake_body, 0, 0)
def move(self, action):
# handling whole logic
# snake can kill himself by going opposite
if action == 0: direction = self.moves_dir["up"]
elif action == 1: direction = self.moves_dir["right"]
elif action == 2: direction = self.moves_dir["down"]
elif action == 3: direction = self.moves_dir["left"]
self.direction = direction
head_pos = self.snake_body[-1]
new_head_pos = (head_pos[0]+direction[0], head_pos[1]+direction[1])
self.check_n_steps()
self.check_hit_self()
self.check_boundaries(new_head_pos)
if not self.done:
self.snake_algorithm(new_head_pos)
def compute_state(self):
# Compute state of snake sensors from SnakeSensors; get passed to Agent
self.Sensors.update_sensor_board(self.board, self.snake_body[-1])
#next_to_head = self.Sensors.next_to_head(self.blocks["empty"]) # instead of distance
distance = self.Sensors.distance_to_walls()
see_apple = self.Sensors.all_eight_directions(self.blocks["apple"])
for i in range(len(see_apple)):
if see_apple[i] > 0: see_apple[i] = see_apple[i] ** 0 # convert any number bigger than 0 to 1
see_self = (self.Sensors.all_eight_directions(self.blocks["snake"]) / self.row-1) * -1 # can also be (+ 1)
head_dir = self.Sensors.get_head_direction(self.direction)
tail_dir = self.Sensors.get_tail_direction(self.snake_body)
self.state = np.concatenate((distance, see_apple, see_self, head_dir, tail_dir), axis=0)
############################### PERFORM FUNCTIONS FOR ENV ###############################
def sample_action(self):
# return random action
return np.random.choice(np.array([0, 1, 2, 3]), size=1)[0]
def refresh_board(self):
# refresh board; write on board snake and apple
self.generate_grid()
for body in self.snake_body:
self.board[body[0], body[1]] = self.blocks["snake"]
self.board[self.apple_pos[0], self.apple_pos[1]] = self.blocks["apple"]
def reset(self):
# Reset/set up game parameters
self.second_init()
# Generate and refresh board
self.generate_grid()
self.generate_snake()
self.generate_apple()
self.compute_state()
return self.state
def step(self, action):
# Perform action, whole back up logic and return results of action
self.reward = self.reward_dict["step"]
self.steps += 1
if self.done:
self.reset()
self.move(action)
self.refresh_board()
self.compute_state()
return self.state, self.reward, self.done, self.info