-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEMSA.py
100 lines (76 loc) · 3.58 KB
/
EMSA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
import torch
from torch import nn
from torch.nn import init
class EMSA(nn.Module):
def __init__(self, d_model, d_k, d_v, h,dropout=.1,H=7,W=7,ratio=3,apply_transform=True):
super(EMSA, self).__init__()
self.H=H
self.W=W
self.fc_q = nn.Linear(d_model, h * d_k)
self.fc_k = nn.Linear(d_model, h * d_k)
self.fc_v = nn.Linear(d_model, h * d_v)
self.fc_o = nn.Linear(h * d_v, d_model)
self.dropout=nn.Dropout(dropout)
self.ratio=ratio
if(self.ratio>1):
self.sr=nn.Sequential()
self.sr_conv=nn.Conv2d(d_model,d_model,kernel_size=ratio+1,stride=ratio,padding=ratio//2,groups=d_model)
self.sr_ln=nn.LayerNorm(d_model)
self.apply_transform=apply_transform and h>1
if(self.apply_transform):
self.transform=nn.Sequential()
self.transform.add_module('conv',nn.Conv2d(h,h,kernel_size=1,stride=1))
self.transform.add_module('softmax',nn.Softmax(-1))
self.transform.add_module('in',nn.InstanceNorm2d(h))
self.d_model = d_model
self.d_k = d_k
self.d_v = d_v
self.h = h
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values, attention_mask=None, attention_weights=None):
b_s, nq ,c = queries.shape
nk = keys.shape[1]
q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) # (b_s, h, nq, d_k)
if(self.ratio>1):
x=queries.permute(0,2,1).view(b_s,c,self.H,self.W) #bs,c,H,W
x=self.sr_conv(x) #bs,c,h,w
x=x.contiguous().view(b_s,c,-1).permute(0,2,1) #bs,n',c
x=self.sr_ln(x)
k = self.fc_k(x).view(b_s, -1, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, n')
v = self.fc_v(x).view(b_s, -1, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, n', d_v)
else:
k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, nk)
v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, nk, d_v)
if(self.apply_transform):
att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, n')
att = self.transform(att) # (b_s, h, nq, n')
else:
att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, n')
att = torch.softmax(att, -1) # (b_s, h, nq, n')
if attention_weights is not None:
att = att * attention_weights
if attention_mask is not None:
att = att.masked_fill(attention_mask, -np.inf)
att=self.dropout(att)
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) # (b_s, nq, h*d_v)
out = self.fc_o(out) # (b_s, nq, d_model)
return out
if __name__ == '__main__':
input=torch.randn(1609,13,2000)
emsa = EMSA(d_model=2000, d_k=512, d_v=512, h=13,H=13,W=1,ratio=2,apply_transform=True)
output=emsa(input,input,input)
print(output.shape)