Skip to content

Latest commit

 

History

History
31 lines (28 loc) · 754 Bytes

README.md

File metadata and controls

31 lines (28 loc) · 754 Bytes

DSHCNet

A dual-scale fused hypergraph convolution-based hyperedge prediction model for predicting missing reactions in genome-scale metabolic networks

Install

To use DSHCNet you must make sure that your python version is greater than 3.7. If you don’t know the version of python you can check it by:

python
>>> import platform
>>> platform.python_version()
'3.7.13'

Environment Requirement

The required packages are as follows:

  • scikit-learn==0.21.3
  • cobra==0.22.1
  • joblib==1.1.0
  • numpy==1.21.6
  • optlang==1.5.2
  • pandas==1.3.5
  • torch==1.9.0
  • torch_geometric==1.7.2
  • torch_scatter==2.0.8
  • torch_sparse==0.6.11
  • tqdm==4.65.0

Quick start

We use the dataset BiGG to illustrate an example.

python main.py