-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathmain.py
64 lines (47 loc) · 3.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""main.py"""
import argparse
import numpy as np
import torch
from solver import Solver
from utils import str2bool
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
init_seed = 1
torch.manual_seed(init_seed)
torch.cuda.manual_seed(init_seed)
np.random.seed(init_seed)
def main(args):
net = Solver(args)
net.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Factor-VAE')
parser.add_argument('--name', default='main', type=str, help='name of the experiment')
parser.add_argument('--cuda', default=True, type=str2bool, help='enable cuda')
parser.add_argument('--max_iter', default=1e6, type=float, help='maximum training iteration')
parser.add_argument('--batch_size', default=64, type=int, help='batch size')
parser.add_argument('--z_dim', default=10, type=int, help='dimension of the representation z')
parser.add_argument('--gamma', default=6.4, type=float, help='gamma hyperparameter')
parser.add_argument('--lr_VAE', default=1e-4, type=float, help='learning rate of the VAE')
parser.add_argument('--beta1_VAE', default=0.9, type=float, help='beta1 parameter of the Adam optimizer for the VAE')
parser.add_argument('--beta2_VAE', default=0.999, type=float, help='beta2 parameter of the Adam optimizer for the VAE')
parser.add_argument('--lr_D', default=1e-4, type=float, help='learning rate of the discriminator')
parser.add_argument('--beta1_D', default=0.5, type=float, help='beta1 parameter of the Adam optimizer for the discriminator')
parser.add_argument('--beta2_D', default=0.9, type=float, help='beta2 parameter of the Adam optimizer for the discriminator')
parser.add_argument('--dset_dir', default='data', type=str, help='dataset directory')
parser.add_argument('--dataset', default='CelebA', type=str, help='dataset name')
parser.add_argument('--image_size', default=64, type=int, help='image size. now only (64,64) is supported')
parser.add_argument('--num_workers', default=2, type=int, help='dataloader num_workers')
parser.add_argument('--viz_on', default=True, type=str2bool, help='enable visdom visualization')
parser.add_argument('--viz_port', default=8097, type=int, help='visdom port number')
parser.add_argument('--viz_ll_iter', default=1000, type=int, help='visdom line data logging iter')
parser.add_argument('--viz_la_iter', default=5000, type=int, help='visdom line data applying iter')
parser.add_argument('--viz_ra_iter', default=10000, type=int, help='visdom recon image applying iter')
parser.add_argument('--viz_ta_iter', default=10000, type=int, help='visdom traverse applying iter')
parser.add_argument('--print_iter', default=500, type=int, help='print losses iter')
parser.add_argument('--ckpt_dir', default='checkpoints', type=str, help='checkpoint directory')
parser.add_argument('--ckpt_load', default=None, type=str, help='checkpoint name to load')
parser.add_argument('--ckpt_save_iter', default=10000, type=int, help='checkpoint save iter')
parser.add_argument('--output_dir', default='outputs', type=str, help='output directory')
parser.add_argument('--output_save', default=True, type=str2bool, help='whether to save traverse results')
args = parser.parse_args()
main(args)