-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathQuaternion.hpp
633 lines (563 loc) · 20.1 KB
/
Quaternion.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
#pragma once
#define _USE_MATH_DEFINES
#include <math.h>
#include <iostream>
#define SMALL_float 0.0000000001
/**
* Attempt to include a header file if the file exists.
* If the file does not exist, create a dummy data structure for that type.
* If it cannot be determined if it exists, just attempt to include it.
*/
#include "Vector3.hpp"
struct Quaternion
{
union
{
struct
{
float X;
float Y;
float Z;
float W;
};
float data[4];
};
/**
* Constructors.
*/
inline Quaternion();
inline Quaternion(float data[]);
inline Quaternion(Vector3 vector, float scalar);
inline Quaternion(float x, float y, float z, float w);
/**
* Constants for common quaternions.
*/
static inline Quaternion Identity();
/**
* Returns the angle between two quaternions.
* The quaternions must be normalized.
* @param a: The first quaternion.
* @param b: The second quaternion.
* @return: A scalar value.
*/
static inline float Angle(Quaternion a, Quaternion b);
/**
* Returns the conjugate of a quaternion.
* @param rotation: The quaternion in question.
* @return: A new quaternion.
*/
static inline Quaternion Conjugate(Quaternion rotation);
/**
* Returns the dot product of two quaternions.
* @param lhs: The left side of the multiplication.
* @param rhs: The right side of the multiplication.
* @return: A scalar value.
*/
static inline float Dot(Quaternion lhs, Quaternion rhs);
/**
* Creates a new quaternion from the angle-axis representation of
* a rotation.
* @param angle: The rotation angle in radians.
* @param axis: The vector about which the rotation occurs.
* @return: A new quaternion.
*/
static inline Quaternion FromAngleAxis(float angle, Vector3 axis);
/**
* Create a new quaternion from the euler angle representation of
* a rotation. The z, x and y values represent rotations about those
* axis in that respective order.
* @param rotation: The x, y and z rotations.
* @return: A new quaternion.
*/
static inline Quaternion FromEuler(Vector3 rotation);
/**
* Create a new quaternion from the euler angle representation of
* a rotation. The z, x and y values represent rotations about those
* axis in that respective order.
* @param x: The rotation about the x-axis in radians.
* @param y: The rotation about the y-axis in radians.
* @param z: The rotation about the z-axis in radians.
* @return: A new quaternion.
*/
static inline Quaternion FromEuler(float x, float y, float z);
/**
* Create a quaternion rotation which rotates "fromVector" to "toVector".
* @param fromVector: The vector from which to start the rotation.
* @param toVector: The vector at which to end the rotation.
* @return: A new quaternion.
*/
static inline Quaternion FromToRotation(Vector3 fromVector,
Vector3 toVector);
/**
* Returns the inverse of a rotation.
* @param rotation: The quaternion in question.
* @return: A new quaternion.
*/
static inline Quaternion Inverse(Quaternion rotation);
/**
* Interpolates between a and b by t, which is clamped to the range [0-1].
* The result is normalized before being returned.
* @param a: The starting rotation.
* @param b: The ending rotation.
* @return: A new quaternion.
*/
static inline Quaternion Lerp(Quaternion a, Quaternion b, float t);
/**
* Interpolates between a and b by t. This normalizes the result when
* complete.
* @param a: The starting rotation.
* @param b: The ending rotation.
* @param t: The interpolation value.
* @return: A new quaternion.
*/
static inline Quaternion LerpUnclamped(Quaternion a, Quaternion b,
float t);
/**
* Creates a rotation with the specified forward direction. This is the
* same as calling LookRotation with (0, 1, 0) as the upwards vector.
* The output is undefined for parallel vectors.
* @param forward: The forward direction to look toward.
* @return: A new quaternion.
*/
static inline Quaternion LookRotation(Vector3 forward);
/**
* Creates a rotation with the specified forward and upwards directions.
* The output is undefined for parallel vectors.
* @param forward: The forward direction to look toward.
* @param upwards: The direction to treat as up.
* @return: A new quaternion.
*/
static inline Quaternion LookRotation(Vector3 forward, Vector3 upwards);
/**
* Returns the norm of a quaternion.
* @param rotation: The quaternion in question.
* @return: A scalar value.
*/
static inline float Norm(Quaternion rotation);
/**
* Returns a quaternion with identical rotation and a norm of one.
* @param rotation: The quaternion in question.
* @return: A new quaternion.
*/
static inline Quaternion Normalized(Quaternion rotation);
/**
* Returns a new Quaternion created by rotating "from" towards "to" by
* "maxRadiansDelta". This will not overshoot, and if a negative delta is
* applied, it will rotate till completely opposite "to" and then stop.
* @param from: The rotation at which to start.
* @param to: The rotation at which to end.
# @param maxRadiansDelta: The maximum number of radians to rotate.
* @return: A new Quaternion.
*/
static inline Quaternion RotateTowards(Quaternion from, Quaternion to,
float maxRadiansDelta);
/**
* Returns a new quaternion interpolated between a and b, using spherical
* linear interpolation. The variable t is clamped to the range [0-1]. The
* resulting quaternion will be normalized.
* @param a: The starting rotation.
* @param b: The ending rotation.
* @param t: The interpolation value.
* @return: A new quaternion.
*/
static inline Quaternion Slerp(Quaternion a, Quaternion b, float t);
/**
* Returns a new quaternion interpolated between a and b, using spherical
* linear interpolation. The resulting quaternion will be normalized.
* @param a: The starting rotation.
* @param b: The ending rotation.
* @param t: The interpolation value.
* @return: A new quaternion.
*/
static inline Quaternion SlerpUnclamped(Quaternion a, Quaternion b,
float t);
/**
* Outputs the angle axis representation of the provided quaternion.
* @param rotation: The input quaternion.
* @param angle: The output angle.
* @param axis: The output axis.
*/
static inline void ToAngleAxis(Quaternion rotation, float &angle,
Vector3 &axis);
/**
* Returns the Euler angle representation of a rotation. The resulting
* vector contains the rotations about the z, x and y axis, in that order.
* @param rotation: The quaternion to convert.
* @return: A new vector.
*/
static inline Vector3 ToEuler(Quaternion rotation);
/**
* Operator overloading.
*/
inline struct Quaternion& operator+=(const float rhs);
inline struct Quaternion& operator-=(const float rhs);
inline struct Quaternion& operator*=(const float rhs);
inline struct Quaternion& operator/=(const float rhs);
inline struct Quaternion& operator+=(const Quaternion rhs);
inline struct Quaternion& operator-=(const Quaternion rhs);
inline struct Quaternion& operator*=(const Quaternion rhs);
};
inline Quaternion operator-(Quaternion rhs);
inline Quaternion operator+(Quaternion lhs, const float rhs);
inline Quaternion operator-(Quaternion lhs, const float rhs);
inline Quaternion operator*(Quaternion lhs, const float rhs);
inline Quaternion operator/(Quaternion lhs, const float rhs);
inline Quaternion operator+(const float lhs, Quaternion rhs);
inline Quaternion operator-(const float lhs, Quaternion rhs);
inline Quaternion operator*(const float lhs, Quaternion rhs);
inline Quaternion operator/(const float lhs, Quaternion rhs);
inline Quaternion operator+(Quaternion lhs, const Quaternion rhs);
inline Quaternion operator-(Quaternion lhs, const Quaternion rhs);
inline Quaternion operator*(Quaternion lhs, const Quaternion rhs);
inline Vector3 operator*(Quaternion lhs, const Vector3 rhs);
inline bool operator==(const Quaternion lhs, const Quaternion rhs);
inline bool operator!=(const Quaternion lhs, const Quaternion rhs);
/*******************************************************************************
* Implementation
*/
Quaternion::Quaternion() : X(0), Y(0), Z(0), W(1) {}
Quaternion::Quaternion(float data[]) : X(data[0]), Y(data[1]), Z(data[2]),
W(data[3]) {}
Quaternion::Quaternion(Vector3 vector, float scalar) : X(vector.X),
Y(vector.Y), Z(vector.Z), W(scalar) {}
Quaternion::Quaternion(float x, float y, float z, float w) : X(x), Y(y),
Z(z), W(w) {}
Quaternion Quaternion::Identity() { return Quaternion(0, 0, 0, 1); }
float Quaternion::Angle(Quaternion a, Quaternion b)
{
float dot = Dot(a, b);
return acos(fmin(fabs(dot), 1)) * 2;
}
Quaternion Quaternion::Conjugate(Quaternion rotation)
{
return Quaternion(-rotation.X, -rotation.Y, -rotation.Z, rotation.W);
}
float Quaternion::Dot(Quaternion lhs, Quaternion rhs)
{
return lhs.X * rhs.X + lhs.Y * rhs.Y + lhs.Z * rhs.Z + lhs.W * rhs.W;
}
Quaternion Quaternion::FromAngleAxis(float angle, Vector3 axis)
{
Quaternion q;
float m = sqrt(axis.X * axis.X + axis.Y * axis.Y + axis.Z * axis.Z);
float s = sin(angle / 2) / m;
q.X = axis.X * s;
q.Y = axis.Y * s;
q.Z = axis.Z * s;
q.W = cos(angle / 2);
return q;
}
Quaternion Quaternion::FromEuler(Vector3 rotation)
{
return FromEuler(rotation.X, rotation.Y, rotation.Z);
}
Quaternion Quaternion::FromEuler(float x, float y, float z)
{
float cx = cos(x * 0.5);
float cy = cos(y * 0.5);
float cz = cos(z * 0.5);
float sx = sin(x * 0.5);
float sy = sin(y * 0.5);
float sz = sin(z * 0.5);
Quaternion q;
q.X = cx * sy * sz + cy * cz * sx;
q.Y = cx * cz * sy - cy * sx * sz;
q.Z = cx * cy * sz - cz * sx * sy;
q.W = sx * sy * sz + cx * cy * cz;
return q;
}
Quaternion Quaternion::FromToRotation(Vector3 fromVector, Vector3 toVector)
{
float dot = Vector3::Dot(fromVector, toVector);
float k = sqrt(Vector3::SqrMagnitude(fromVector) *
Vector3::SqrMagnitude(toVector));
if (fabs(dot / k + 1) < 0.00001)
{
Vector3 ortho = Vector3::Orthogonal(fromVector);
return Quaternion(Vector3::Normalized(ortho), 0);
}
Vector3 cross = Vector3::Cross(fromVector, toVector);
return Normalized(Quaternion(cross, dot + k));
}
Quaternion Quaternion::Inverse(Quaternion rotation)
{
float n = Norm(rotation);
return Conjugate(rotation) / (n * n);
}
Quaternion Quaternion::Lerp(Quaternion a, Quaternion b, float t)
{
if (t < 0) return Normalized(a);
else if (t > 1) return Normalized(b);
return LerpUnclamped(a, b, t);
}
Quaternion Quaternion::LerpUnclamped(Quaternion a, Quaternion b, float t)
{
Quaternion quaternion;
if (Dot(a, b) >= 0)
quaternion = a * (1 - t) + b * t;
else
quaternion = a * (1 - t) - b * t;
return Normalized(quaternion);
}
Quaternion Quaternion::LookRotation(Vector3 forward)
{
return LookRotation(forward, Vector3(0, 1, 0));
}
Quaternion Quaternion::LookRotation(Vector3 forward, Vector3 upwards)
{
// Normalize inputs
forward = Vector3::Normalized(forward);
upwards = Vector3::Normalized(upwards);
// Don't allow zero vectors
if (Vector3::SqrMagnitude(forward) < SMALL_float || Vector3::SqrMagnitude(upwards) < SMALL_float)
return Quaternion::Identity();
// Handle alignment with up direction
if (1 - fabs(Vector3::Dot(forward, upwards)) < SMALL_float)
return FromToRotation(Vector3::Forward(), forward);
// Get orthogonal vectors
Vector3 right = Vector3::Normalized(Vector3::Cross(upwards, forward));
upwards = Vector3::Cross(forward, right);
// Calculate rotation
Quaternion quaternion;
float radicand = right.X + upwards.Y + forward.Z;
if (radicand > 0)
{
quaternion.W = sqrt(1.0 + radicand) * 0.5;
float recip = 1.0 / (4.0 * quaternion.W);
quaternion.X = (upwards.Z - forward.Y) * recip;
quaternion.Y = (forward.X - right.Z) * recip;
quaternion.Z = (right.Y - upwards.X) * recip;
}
else if (right.X >= upwards.Y && right.X >= forward.Z)
{
quaternion.X = sqrt(1.0 + right.X - upwards.Y - forward.Z) * 0.5;
float recip = 1.0 / (4.0 * quaternion.X);
quaternion.W = (upwards.Z - forward.Y) * recip;
quaternion.Z = (forward.X + right.Z) * recip;
quaternion.Y = (right.Y + upwards.X) * recip;
}
else if (upwards.Y > forward.Z)
{
quaternion.Y = sqrt(1.0 - right.X + upwards.Y - forward.Z) * 0.5;
float recip = 1.0 / (4.0 * quaternion.Y);
quaternion.Z = (upwards.Z + forward.Y) * recip;
quaternion.W = (forward.X - right.Z) * recip;
quaternion.X = (right.Y + upwards.X) * recip;
}
else
{
quaternion.Z = sqrt(1.0 - right.X - upwards.Y + forward.Z) * 0.5;
float recip = 1.0 / (4.0 * quaternion.Z);
quaternion.Y = (upwards.Z + forward.Y) * recip;
quaternion.X = (forward.X + right.Z) * recip;
quaternion.W = (right.Y - upwards.X) * recip;
}
return quaternion;
}
float Quaternion::Norm(Quaternion rotation)
{
return sqrt(rotation.X * rotation.X +
rotation.Y * rotation.Y +
rotation.Z * rotation.Z +
rotation.W * rotation.W);
}
Quaternion Quaternion::Normalized(Quaternion rotation)
{
return rotation / Norm(rotation);
}
Quaternion Quaternion::RotateTowards(Quaternion from, Quaternion to,
float maxRadiansDelta)
{
float angle = Quaternion::Angle(from, to);
if (angle == 0)
return to;
maxRadiansDelta = fmax(maxRadiansDelta, angle - M_PI);
float t = fmin(1, maxRadiansDelta / angle);
return Quaternion::SlerpUnclamped(from, to, t);
}
Quaternion Quaternion::Slerp(Quaternion a, Quaternion b, float t)
{
if (t < 0) return Normalized(a);
else if (t > 1) return Normalized(b);
return SlerpUnclamped(a, b, t);
}
Quaternion Quaternion::SlerpUnclamped(Quaternion a, Quaternion b, float t)
{
float n1;
float n2;
float n3 = Dot(a, b);
bool flag = false;
if (n3 < 0)
{
flag = true;
n3 = -n3;
}
if (n3 > 0.999999)
{
n2 = 1 - t;
n1 = flag ? -t : t;
}
else
{
float n4 = acos(n3);
float n5 = 1 / sin(n4);
n2 = sin((1 - t) * n4) * n5;
n1 = flag ? -sin(t * n4) * n5 : sin(t * n4) * n5;
}
Quaternion quaternion;
quaternion.X = (n2 * a.X) + (n1 * b.X);
quaternion.Y = (n2 * a.Y) + (n1 * b.Y);
quaternion.Z = (n2 * a.Z) + (n1 * b.Z);
quaternion.W = (n2 * a.W) + (n1 * b.W);
return Normalized(quaternion);
}
void Quaternion::ToAngleAxis(Quaternion rotation, float &angle, Vector3 &axis)
{
if (rotation.W > 1)
rotation = Normalized(rotation);
angle = 2 * acos(rotation.W);
float s = sqrt(1 - rotation.W * rotation.W);
if (s < 0.00001) {
axis.X = 1;
axis.Y = 0;
axis.Z = 0;
} else {
axis.X = rotation.X / s;
axis.Y = rotation.Y / s;
axis.Z = rotation.Z / s;
}
}
Vector3 Quaternion::ToEuler(Quaternion rotation)
{
float sqw = rotation.W * rotation.W;
float sqx = rotation.X * rotation.X;
float sqy = rotation.Y * rotation.Y;
float sqz = rotation.Z * rotation.Z;
// If normalized is one, otherwise is correction factor
float unit = sqx + sqy + sqz + sqw;
float test = rotation.X * rotation.W - rotation.Y * rotation.Z;
Vector3 v;
// Singularity at north pole
if (test > 0.4995f * unit)
{
v.Y = 2 * atan2(rotation.Y, rotation.X);
v.X = M_PI_2;
v.Z = 0;
return v;
}
// Singularity at south pole
if (test < -0.4995f * unit)
{
v.Y = -2 * atan2(rotation.Y, rotation.X);
v.X = -M_PI_2;
v.Z = 0;
return v;
}
// Yaw
v.Y = atan2(2 * rotation.W * rotation.Y + 2 * rotation.Z * rotation.X,
1 - 2 * (rotation.X * rotation.X + rotation.Y * rotation.Y));
// Pitch
v.X = asin(2 * (rotation.W * rotation.X - rotation.Y * rotation.Z));
// Roll
v.Z = atan2(2 * rotation.W * rotation.Z + 2 * rotation.X * rotation.Y,
1 - 2 * (rotation.Z * rotation.Z + rotation.X * rotation.X));
return v;
}
struct Quaternion& Quaternion::operator+=(const float rhs)
{
X += rhs;
Y += rhs;
Z += rhs;
W += rhs;
return *this;
}
struct Quaternion& Quaternion::operator-=(const float rhs)
{
X -= rhs;
Y -= rhs;
Z -= rhs;
W -= rhs;
return *this;
}
struct Quaternion& Quaternion::operator*=(const float rhs)
{
X *= rhs;
Y *= rhs;
Z *= rhs;
W *= rhs;
return *this;
}
struct Quaternion& Quaternion::operator/=(const float rhs)
{
X /= rhs;
Y /= rhs;
Z /= rhs;
W /= rhs;
return *this;
}
struct Quaternion& Quaternion::operator+=(const Quaternion rhs)
{
X += rhs.X;
Y += rhs.Y;
Z += rhs.Z;
W += rhs.W;
return *this;
}
struct Quaternion& Quaternion::operator-=(const Quaternion rhs)
{
X -= rhs.X;
Y -= rhs.Y;
Z -= rhs.Z;
W -= rhs.W;
return *this;
}
struct Quaternion& Quaternion::operator*=(const Quaternion rhs)
{
Quaternion q;
q.W = W * rhs.W - X * rhs.X - Y * rhs.Y - Z * rhs.Z;
q.X = X * rhs.W + W * rhs.X + Y * rhs.Z - Z * rhs.Y;
q.Y = W * rhs.Y - X * rhs.Z + Y * rhs.W + Z * rhs.X;
q.Z = W * rhs.Z + X * rhs.Y - Y * rhs.X + Z * rhs.W;
*this = q;
return *this;
}
Quaternion operator-(Quaternion rhs) { return rhs * -1; }
Quaternion operator+(Quaternion lhs, const float rhs) { return lhs += rhs; }
Quaternion operator-(Quaternion lhs, const float rhs) { return lhs -= rhs; }
Quaternion operator*(Quaternion lhs, const float rhs) { return lhs *= rhs; }
Quaternion operator/(Quaternion lhs, const float rhs) { return lhs /= rhs; }
Quaternion operator+(const float lhs, Quaternion rhs) { return rhs += lhs; }
Quaternion operator-(const float lhs, Quaternion rhs) { return rhs -= lhs; }
Quaternion operator*(const float lhs, Quaternion rhs) { return rhs *= lhs; }
Quaternion operator/(const float lhs, Quaternion rhs) { return rhs /= lhs; }
Quaternion operator+(Quaternion lhs, const Quaternion rhs)
{
return lhs += rhs;
}
Quaternion operator-(Quaternion lhs, const Quaternion rhs)
{
return lhs -= rhs;
}
Quaternion operator*(Quaternion lhs, const Quaternion rhs)
{
return lhs *= rhs;
}
Vector3 operator*(Quaternion lhs, const Vector3 rhs)
{
Vector3 u = Vector3(lhs.X, lhs.Y, lhs.Z);
float s = lhs.W;
return u * (Vector3::Dot(u, rhs) * 2)
+ rhs * (s * s - Vector3::Dot(u, u))
+ Vector3::Cross(u, rhs) * (2.0 * s);
}
bool operator==(const Quaternion lhs, const Quaternion rhs)
{
return lhs.X == rhs.X &&
lhs.Y == rhs.Y &&
lhs.Z == rhs.Z &&
lhs.W == rhs.W;
}
bool operator!=(const Quaternion lhs, const Quaternion rhs)
{
return !(lhs == rhs);
}