-
Notifications
You must be signed in to change notification settings - Fork 119
/
provider_objaverse.py
172 lines (131 loc) · 7.13 KB
/
provider_objaverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import cv2
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset
import kiui
from core.options import Options
from core.utils import get_rays, grid_distortion, orbit_camera_jitter
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
class ObjaverseDataset(Dataset):
def _warn(self):
raise NotImplementedError('this dataset is just an example and cannot be used directly, you should modify it to your own setting! (search keyword TODO)')
def __init__(self, opt: Options, training=True):
self.opt = opt
self.training = training
# TODO: remove this barrier
self._warn()
# TODO: load the list of objects for training
self.items = []
with open('TODO: file containing the list', 'r') as f:
for line in f.readlines():
self.items.append(line.strip())
# naive split
if self.training:
self.items = self.items[:-self.opt.batch_size]
else:
self.items = self.items[-self.opt.batch_size:]
# default camera intrinsics
self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
self.proj_matrix[0, 0] = 1 / self.tan_half_fov
self.proj_matrix[1, 1] = 1 / self.tan_half_fov
self.proj_matrix[2, 2] = (self.opt.zfar + self.opt.znear) / (self.opt.zfar - self.opt.znear)
self.proj_matrix[3, 2] = - (self.opt.zfar * self.opt.znear) / (self.opt.zfar - self.opt.znear)
self.proj_matrix[2, 3] = 1
def __len__(self):
return len(self.items)
def __getitem__(self, idx):
uid = self.items[idx]
results = {}
# load num_views images
images = []
masks = []
cam_poses = []
vid_cnt = 0
# TODO: choose views, based on your rendering settings
if self.training:
# input views are in (36, 72), other views are randomly selected
vids = np.random.permutation(np.arange(36, 73))[:self.opt.num_input_views].tolist() + np.random.permutation(100).tolist()
else:
# fixed views
vids = np.arange(36, 73, 4).tolist() + np.arange(100).tolist()
for vid in vids:
image_path = os.path.join(uid, 'rgb', f'{vid:03d}.png')
camera_path = os.path.join(uid, 'pose', f'{vid:03d}.txt')
try:
# TODO: load data (modify self.client here)
image = np.frombuffer(self.client.get(image_path), np.uint8)
image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1]
c2w = [float(t) for t in self.client.get(camera_path).decode().strip().split(' ')]
c2w = torch.tensor(c2w, dtype=torch.float32).reshape(4, 4)
except Exception as e:
# print(f'[WARN] dataset {uid} {vid}: {e}')
continue
# TODO: you may have a different camera system
# blender world + opencv cam --> opengl world & cam
c2w[1] *= -1
c2w[[1, 2]] = c2w[[2, 1]]
c2w[:3, 1:3] *= -1 # invert up and forward direction
# scale up radius to fully use the [-1, 1]^3 space!
c2w[:3, 3] *= self.opt.cam_radius / 1.5 # 1.5 is the default scale
image = image.permute(2, 0, 1) # [4, 512, 512]
mask = image[3:4] # [1, 512, 512]
image = image[:3] * mask + (1 - mask) # [3, 512, 512], to white bg
image = image[[2,1,0]].contiguous() # bgr to rgb
images.append(image)
masks.append(mask.squeeze(0))
cam_poses.append(c2w)
vid_cnt += 1
if vid_cnt == self.opt.num_views:
break
if vid_cnt < self.opt.num_views:
print(f'[WARN] dataset {uid}: not enough valid views, only {vid_cnt} views found!')
n = self.opt.num_views - vid_cnt
images = images + [images[-1]] * n
masks = masks + [masks[-1]] * n
cam_poses = cam_poses + [cam_poses[-1]] * n
images = torch.stack(images, dim=0) # [V, C, H, W]
masks = torch.stack(masks, dim=0) # [V, H, W]
cam_poses = torch.stack(cam_poses, dim=0) # [V, 4, 4]
# normalized camera feats as in paper (transform the first pose to a fixed position)
transform = torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, self.opt.cam_radius], [0, 0, 0, 1]], dtype=torch.float32) @ torch.inverse(cam_poses[0])
cam_poses = transform.unsqueeze(0) @ cam_poses # [V, 4, 4]
images_input = F.interpolate(images[:self.opt.num_input_views].clone(), size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) # [V, C, H, W]
cam_poses_input = cam_poses[:self.opt.num_input_views].clone()
# data augmentation
if self.training:
# apply random grid distortion to simulate 3D inconsistency
if random.random() < self.opt.prob_grid_distortion:
images_input[1:] = grid_distortion(images_input[1:])
# apply camera jittering (only to input!)
if random.random() < self.opt.prob_cam_jitter:
cam_poses_input[1:] = orbit_camera_jitter(cam_poses_input[1:])
images_input = TF.normalize(images_input, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
# resize render ground-truth images, range still in [0, 1]
results['images_output'] = F.interpolate(images, size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, C, output_size, output_size]
results['masks_output'] = F.interpolate(masks.unsqueeze(1), size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, 1, output_size, output_size]
# build rays for input views
rays_embeddings = []
for i in range(self.opt.num_input_views):
rays_o, rays_d = get_rays(cam_poses_input[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3]
rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6]
rays_embeddings.append(rays_plucker)
rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous() # [V, 6, h, w]
final_input = torch.cat([images_input, rays_embeddings], dim=1) # [V=4, 9, H, W]
results['input'] = final_input
# opengl to colmap camera for gaussian renderer
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ self.proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
results['cam_view'] = cam_view
results['cam_view_proj'] = cam_view_proj
results['cam_pos'] = cam_pos
return results