forked from univai-summerschool-2019/Lang3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchar-gen.py
98 lines (78 loc) · 3.14 KB
/
char-gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import LSTM, SimpleRNN, GRU
from keras.optimizers import RMSprop
from keras.utils.data_utils import get_file
import numpy as np
import random
import sys
import io
import wandb
from wandb.keras import WandbCallback
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("text", type=str)
args = parser.parse_args()
run = wandb.init()
config = run.config
config.hidden_nodes = 128
config.batch_size = 256
config.file = args.text
config.maxlen = 200
config.step = 3
text = io.open(config.file, encoding='utf-8').read()
chars = sorted(list(set(text)))
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))
# build a sequence for every <config.step>-th character in the text
sentences = []
next_chars = []
for i in range(0, len(text) - config.maxlen, config.step):
sentences.append(text[i: i + config.maxlen])
next_chars.append(text[i + config.maxlen])
# build up one-hot encoded input x and output y where x is a character
# in the text y is the next character in the text
x = np.zeros((len(sentences), config.maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
x[i, t, char_indices[char]] = 1
y[i, char_indices[next_chars[i]]] = 1
model = Sequential()
model.add(SimpleRNN(128, input_shape=(config.maxlen, len(chars))))
model.add(Dense(len(chars), activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer="rmsprop")
def sample(preds, temperature=1.0):
# helper function to sample an index from a probability array
preds = np.asarray(preds).astype('float64')
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial(1, preds, 1)
return np.argmax(probas)
class SampleText(keras.callbacks.Callback):
def on_epoch_end(self, batch, logs={}):
start_index = random.randint(0, len(text) - config.maxlen - 1)
for diversity in [0.5, 1.2]:
print()
print('----- diversity:', diversity)
generated = ''
sentence = text[start_index: start_index + config.maxlen]
generated += sentence
print('----- Generating with seed: "' + sentence + '"')
sys.stdout.write(generated)
for i in range(200):
x_pred = np.zeros((1, config.maxlen, len(chars)))
for t, char in enumerate(sentence):
x_pred[0, t, char_indices[char]] = 1.
preds = model.predict(x_pred, verbose=0)[0]
next_index = sample(preds, diversity)
next_char = indices_char[next_index]
generated += next_char
sentence = sentence[1:] + next_char
sys.stdout.write(next_char)
sys.stdout.flush()
print()
model.fit(x, y, batch_size=config.batch_size,
epochs=100, callbacks=[SampleText(), WandbCallback()])