Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【开源自荐】一个 基于golang 和 chatgpt qdrant 实现的 AI 知识库 cli #2616

Closed
webws opened this issue Sep 23, 2023 · 1 comment

Comments

@webws
Copy link

webws commented Sep 23, 2023

项目说明

介绍:一个 基于golang 和 chatgpt qdrant 实现的 AI 知识库 cli

项目地址

仓库地址:https://github.com/webws/embedding-knowledge-base

  1. 将数据集 通过 openai embedding 得到向量+组装payload,存入 qdrant
  2. 用户进行问题搜索,通过 openai embedding 得到向量,从 qdrant 中搜索相似度大于0.8的数据
  3. 从 qdrant 中取出数据得到参考答案
  4. 将问题标题+参考答案,组装成promot 向gpt进行提问,得到偏向于 已有知识库设定的扩展知识回答

kbai 知识库的导入和搜索

仓库地址:https://github.com/webws/embedding-knowledge-base

kabi 是使用 golang 基于 openai chatgpt embedding + qdrant 实现知识库的导入和问答

❯ kabi -h
a local knowledge base, based on chatgpt and qdrant

usage:
  kbai [flags]
  kbai [command]

available commands:
  completion  generate the autocompletion script for the specified shell
  help        help about any command
  import      import data to vector database
  search      ask the knowledge base example: kbai ask --msg 'first, the chicken or the egg'

flags:
      --apikey string       openai apikey:default from env apikey
      --collection string   qdrant collection name default: kubernetes (default "kubernetes")
  -h, --help                help for kbai
      --proxy string        http client proxy default:socks5://127.0.0.1:1080  (default "socks5://127.0.0.1:1080")
      --qdrant string       qdrant address default: 127.0.0.1:6334 (default "127.0.0.1:6334")
      --vectorsize uint     qdrant vector size default: 1536 (default 1536)

use "kbai [command] --help" for more information about a command.

启动向量数据库

qdrant 是一个开源的向量搜索引擎,支持多种向量距离计算方式

docker 运行 qdrant

docker run --rm -p 6334:6334 qdrant/qdrant

kbai库导入数据到知识库

clone 源码运行(后续提供二进制文件)

git clone https://github.com/webws/embedding-knowledge-base.git

cd ./embedding-knowledge-base

这里使用的测试数据是k8s相关的知识库,真实数据需自己准备

1.设置 openai apikey

export apikey=xxx

2.导入知识库(源码运行)

go run ./ import --datafile ./example/data.json

data.json 数据格式如下,为 真实数据需自己准备

[
    {
        "questions": "这是问题",
        "answers": "这是答案"
    },
]

说明:

默认的 代理 是 "socks5://127.0.0.1:1080" 自定义 可使用 --proxy 指定

kbai 搜索数据

搜索问题(源码执行)

 go run ./ search --msg "网关是什么"

回答

the answer to the knowledge base:
在kubernetes中,网关通常指的是ingress(入 口)资源对象。ingress是一种kubernetes api对象,用于配置和管理集群中的http和https流量入口。它充当了从集群外部访问集群内部服务的入口点

results of chatgpt answers  with reference answers:
,同时提供负载均衡、ssl/tls终止和基于域名的路由等功能。ingress资源对象定义了一组规则,这些规则指定了通过特定http路径或主机名将请求路由到后端服务的方式。可以使用不同的ingress控制器实现这些规则,如nginx、traefik等。这样就可以在集群中创建多个ingress资源对象来管理不同的流量入口。

only chatgpt answers:
网关是一种网络设备,用于连接两个或多个不同类型的网络,以便实现数据以不同协议进行传递和转换。网关起到了连接不同网络之间的桥梁作用,将两个或多个网络互相连接起来,并负责数据的路由和转发。网关可以是硬件设备,如路由器,也可以是软件程序,如互联网网关。网关通常用于连接本地网络与互联网,使得局域网中的计算机能够访问互联网上的资源。除了连接不同网络的功能,网关还可以实现安全性、负载均衡、数据过滤等功能。
  1. 第一个是知识库的回答(the answer to the knowledge base):
  2. 第二个 是结合知识库 chatgpt 的回答(results of chatgpt answers with reference answers)
  3. 第三个 仅chatgpt 回答

可以看出 直接问chatgpt,得到的答案可能跟k8s无关,结合k8s本地知识库,可以让回答偏向 数据集设定的主题

如果直接搜索 与知识库无关或违规问题,将搜索不到任务数据

go run ./ search --msg "苹果不洗能吃吗"

回答

rearch term violation or exceeding category
@521xueweihan
Copy link
Owner

非常感谢您推荐项目。

该项目暂不能收录到 HelloGitHub 月刊中,HelloGitHub 推荐项目审核标准 #271
期待持续完善该项目,后续推荐更多的项目。

再次感谢您对 HelloGitHub 的支持 🙏

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants