forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetr_mla_head.py
62 lines (52 loc) · 2.1 KB
/
setr_mla_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmseg.registry import MODELS
from ..utils import Upsample
from .decode_head import BaseDecodeHead
@MODELS.register_module()
class SETRMLAHead(BaseDecodeHead):
"""Multi level feature aggretation head of SETR.
MLA head of `SETR <https://arxiv.org/pdf/2012.15840.pdf>`_.
Args:
mlahead_channels (int): Channels of conv-conv-4x of multi-level feature
aggregation. Default: 128.
up_scale (int): The scale factor of interpolate. Default:4.
"""
def __init__(self, mla_channels=128, up_scale=4, **kwargs):
super().__init__(input_transform='multiple_select', **kwargs)
self.mla_channels = mla_channels
num_inputs = len(self.in_channels)
# Refer to self.cls_seg settings of BaseDecodeHead
assert self.channels == num_inputs * mla_channels
self.up_convs = nn.ModuleList()
for i in range(num_inputs):
self.up_convs.append(
nn.Sequential(
ConvModule(
in_channels=self.in_channels[i],
out_channels=mla_channels,
kernel_size=3,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
ConvModule(
in_channels=mla_channels,
out_channels=mla_channels,
kernel_size=3,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
Upsample(
scale_factor=up_scale,
mode='bilinear',
align_corners=self.align_corners)))
def forward(self, inputs):
inputs = self._transform_inputs(inputs)
outs = []
for x, up_conv in zip(inputs, self.up_convs):
outs.append(up_conv(x))
out = torch.cat(outs, dim=1)
out = self.cls_seg(out)
return out