forked from DanAnkers/WsprryPi
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwspr.c
executable file
·723 lines (610 loc) · 22.8 KB
/
wspr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
/*
Raspberry Pi bareback LF/MF/HF/VHF WSPR transmitter
Makes a very simple WSPR beacon from your RasberryPi by connecting GPIO
port to Antanna (and LPF), operates on LF, MF, HF and VHF bands from
0 to 250 MHz.
License:
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define _POSIX_SOURCE
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <ctype.h>
#include <dirent.h>
#include <math.h>
#include <fcntl.h>
#include <assert.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <signal.h>
#include <malloc.h>
#include <syslog.h>
#include <errno.h>
#include <pwd.h>
#include <time.h>
#define EXIT_SUCCESS 0
#define EXIT_FAILURE 1
#define DAEMON_NAME "wspr"
#define RUN_AS_USER "root"
#define F_XTAL (19229581.050215044276577479844352) // calibrated 19.2MHz XTAL frequency
#define F_PLLD_CLK (26.0 * F_XTAL) // 500MHz PLLD reference clock
#define T_SECOND 1000000
#define T_01MSECOND 100
#define T_1MSECOND 1000
#define N_ITER 1400 // number of PWM operations per symbol; larger values gives less spurs at the cost of frequency resolution; e.g. use 22500 for HF usage up to 30MHz, 12000 up to 50MHz, 1600 for VHF usage up to 144 Mhz, F_PWM_CLK needs to be adjusted when changing N_ITER
//#define F_PWM_CLK (31500000.0) // 31.5MHz PWM clock use with N_ITER=22500
#define F_PWM_CLK (33970588.235294117647058823529413) // 31.5MHz calibrated PWM clock use with N_ITER=1400
#define WSPR_SYMTIME (8192.0/12000.0) // symbol time
#define POLYNOM_1 0xf2d05351 // polynoms for
#define POLYNOM_2 0xe4613c47 // parity generator
/* RF code: */
#define BCM2708_PERI_BASE 0x20000000
#define GPIO_BASE (BCM2708_PERI_BASE + 0x200000) /* GPIO controller */
#define PAGE_SIZE (4*1024)
#define BLOCK_SIZE (4*1024)
int mem_fd;
char *gpio_mem, *gpio_map;
char *spi0_mem, *spi0_map;
// I/O access
volatile unsigned *gpio = NULL;
volatile unsigned *allof7e = NULL;
// GPIO setup macros. Always use INP_GPIO(x) before using OUT_GPIO(x) or SET_GPIO_ALT(x,y)
#define INP_GPIO(g) *(gpio+((g)/10)) &= ~(7<<(((g)%10)*3))
#define OUT_GPIO(g) *(gpio+((g)/10)) |= (1<<(((g)%10)*3))
#define SET_GPIO_ALT(g,a) *(gpio+(((g)/10))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)*3))
#define GPIO_SET *(gpio+7) // sets bits which are 1 ignores bits which are 0
#define GPIO_CLR *(gpio+10) // clears bits which are 1 ignores bits which are 0
#define GPIO_GET *(gpio+13) // sets bits which are 1 ignores bits which are 0
#define ACCESS(base) *(volatile int*)((int)allof7e+base-0x7e000000)
#define SETBIT(base, bit) ACCESS(base) |= 1<<bit
#define CLRBIT(base, bit) ACCESS(base) &= ~(1<<bit)
#define CM_GP0CTL (0x7e101070)
#define GPFSEL0 (0x7E200000)
#define PADS_GPIO_0_27 (0x7e10002c)
#define CM_GP0DIV (0x7e101074)
#define CLKBASE (0x7E101000)
#define DMABASE (0x7E007000)
#define PWMBASE (0x7e20C000) /* PWM controller */
struct GPCTL {
char SRC : 4;
char ENAB : 1;
char KILL : 1;
char : 1;
char BUSY : 1;
char FLIP : 1;
char MASH : 2;
unsigned int : 13;
char PASSWD : 8;
};
void getRealMemPage(void** vAddr, void** pAddr) {
void* a = (void*)valloc(4096);
((int*)a)[0] = 1; // use page to force allocation.
mlock(a, 4096); // lock into ram.
*vAddr = a; // yay - we know the virtual address
unsigned long long frameinfo;
int fp = open("/proc/self/pagemap", 'r');
lseek(fp, ((int)a)/4096*8, SEEK_SET);
read(fp, &frameinfo, sizeof(frameinfo));
*pAddr = (void*)((int)(frameinfo*4096));
}
void freeRealMemPage(void* vAddr) {
munlock(vAddr, 4096); // unlock ram.
free(vAddr);
}
struct CB {
volatile unsigned int TI;
volatile unsigned int SOURCE_AD;
volatile unsigned int DEST_AD;
volatile unsigned int TXFR_LEN;
volatile unsigned int STRIDE;
volatile unsigned int NEXTCONBK;
volatile unsigned int RES1;
volatile unsigned int RES2;
};
struct DMAregs {
volatile unsigned int CS;
volatile unsigned int CONBLK_AD;
volatile unsigned int TI;
volatile unsigned int SOURCE_AD;
volatile unsigned int DEST_AD;
volatile unsigned int TXFR_LEN;
volatile unsigned int STRIDE;
volatile unsigned int NEXTCONBK;
volatile unsigned int DEBUG;
};
struct PageInfo {
void* p; // physical address
void* v; // virtual address
};
struct PageInfo constPage;
struct PageInfo instrPage;
struct PageInfo instrs[1024];
double fracs[1024];
void txon()
{
if(allof7e == NULL){
allof7e = (unsigned *)mmap(
NULL,
0x01000000, //len
PROT_READ|PROT_WRITE,
MAP_SHARED,
mem_fd,
0x20000000 //base
);
if ((int)allof7e==-1) exit(-1);
}
SETBIT(GPFSEL0 , 14);
CLRBIT(GPFSEL0 , 13);
CLRBIT(GPFSEL0 , 12);
// Set GPIO drive strength, more info: http://www.scribd.com/doc/101830961/GPIO-Pads-Control2
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 0; //2mA -3.4dBm
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 1; //4mA +2.1dBm
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 2; //6mA +4.9dBm
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 3; //8mA +6.6dBm(default)
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 4; //10mA +8.2dBm
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 5; //12mA +9.2dBm
//ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 6; //14mA +10.0dBm
ACCESS(PADS_GPIO_0_27) = 0x5a000018 + 7; //16mA +10.6dBm
struct GPCTL setupword = {6/*SRC*/, 1, 0, 0, 0, 1,0x5a};
ACCESS(CM_GP0CTL) = *((int*)&setupword);
}
void txoff()
{
struct GPCTL setupword = {6/*SRC*/, 0, 0, 0, 0, 1,0x5a};
ACCESS(CM_GP0CTL) = *((int*)&setupword);
}
void setfreq(long freq)
{
ACCESS(CM_GP0DIV) = (0x5a << 24) + freq;
}
void txSym(int sym, double tsym)
{
int bufPtr=0;
int clocksPerIter = (int)((F_PWM_CLK/((double)N_ITER)) * tsym);
//printf("tsym=%f iter=%u clocksPerIter=%u tsymerr=%f\n", tsym, N_ITER, clocksPerIter, tsym - ((float)clocksPerIter*(float)N_ITER)/F_PWM_CLK );
int i = sym*3 + 511;
double dval = -1.0 * fracs[i] - 0.5; // ratio between -0.5 and 0.5 of frequency position that is in between two fractional clock divider bins (frequency goes up for dval from -0.5 to 0.5)
int k = (int)(round(dval)); // integer component
double frac = (dval - (double)k)/2 + 0.5;
unsigned int fracval = (frac*clocksPerIter);
//printf("i=%d *i=%u %u fracval=%u dval=%f sym=%d\n", i, ((int*)(constPage.v))[i-1], ((int*)(constPage.v))[i+1], fracval, dval, sym);
int j;
for(j=0; j!=N_ITER; j++){
bufPtr++;
while( ACCESS(DMABASE + 0x04 /* CurBlock*/) == (int)(instrs[bufPtr].p)) usleep(T_01MSECOND);
((struct CB*)(instrs[bufPtr].v))->SOURCE_AD = (int)constPage.p + (i-1)*4;
bufPtr++;
while( ACCESS(DMABASE + 0x04 /* CurBlock*/) == (int)(instrs[bufPtr].p)) usleep(T_01MSECOND);
((struct CB*)(instrs[bufPtr].v))->TXFR_LEN = clocksPerIter-fracval;
bufPtr++;
while( ACCESS(DMABASE + 0x04 /* CurBlock*/) == (int)(instrs[bufPtr].p)) usleep(T_01MSECOND);
((struct CB*)(instrs[bufPtr].v))->SOURCE_AD = (int)constPage.p + (i+1)*4;
bufPtr=(bufPtr+1) % (1024);
while( ACCESS(DMABASE + 0x04 /* CurBlock*/) == (int)(instrs[bufPtr].p)) usleep(T_01MSECOND);
((struct CB*)(instrs[bufPtr].v))->TXFR_LEN = fracval;
}
}
void unSetupDMA(){
printf("exiting\n");
struct DMAregs* DMA0 = (struct DMAregs*)&(ACCESS(DMABASE));
DMA0->CS =1<<31; // reset dma controller
txoff();
}
void handSig() {
exit(0);
}
void setupDMATab( float centerFreq, double symOffset, double tsym, int nsym ){
// make data page contents - it's essientially 1024 different commands for the
// DMA controller to send to the clock module at the correct time.
int i;
for(i=1; i<1023; i+=3){
double freq = centerFreq + ((double)(-511 + i))*symOffset/3.0;
double divisor = F_PLLD_CLK/freq;
unsigned long integer_part = (unsigned long) divisor;
unsigned long fractional_part = (divisor - integer_part) * (1 << 12);
unsigned long tuning_word = (0x5a << 24) + integer_part * (1 << 12) + fractional_part;
if(fractional_part == 0 || fractional_part == 1023){
if((-511 + i) >= 0 && (-511 + i) <= (nsym * 3))
printf("warning: symbol %u unusable because fractional divider is out of range, try near frequency.\n", i/3);
}
((int*)(constPage.v))[i-1] = tuning_word - 1;
((int*)(constPage.v))[i] = tuning_word;
((int*)(constPage.v))[i+1] = tuning_word + 1;
double actual_freq = F_PLLD_CLK/((double)integer_part + (double)fractional_part/(double)(1<<12));
double freq_corr = freq - actual_freq;
double delta = F_PLLD_CLK/((double)integer_part + (double)fractional_part/(double)(1<<12)) - F_PLLD_CLK/((double)integer_part + ((double)fractional_part+1.0)/(double)(1<<12));
int clocksPerIter = (int)((F_PWM_CLK/((double)N_ITER)) * tsym);
double resolution = 2.0 * delta / ((double)clocksPerIter);
if(resolution > symOffset ){
printf("warning: PWM/PLL fractional divider has not enough resolution: %fHz while %fHz is required, try lower frequency or decrease N_ITER in code to achieve more resolution.\n", resolution, symOffset);
exit(0);
}
fracs[i] = freq_corr/delta;
//printf("i=%u f=%f fa=%f corr=%f delta=%f percfrac=%f int=%u frac=%u tuning_word=%u resolution=%fmHz\n", i, freq, actual_freq, freq_corr, delta, fracs[i], integer_part, fractional_part, tuning_word, resolution *1000);
}
}
void setupDMA(){
atexit(unSetupDMA);
signal (SIGINT, handSig);
signal (SIGTERM, handSig);
signal (SIGHUP, handSig);
signal (SIGQUIT, handSig);
// allocate a few pages of ram
getRealMemPage(&constPage.v, &constPage.p);
int instrCnt = 0;
while (instrCnt<1024) {
getRealMemPage(&instrPage.v, &instrPage.p);
// make copy instructions
struct CB* instr0= (struct CB*)instrPage.v;
int i;
for (i=0; i<4096/sizeof(struct CB); i++) {
instrs[instrCnt].v = (void*)((int)instrPage.v + sizeof(struct CB)*i);
instrs[instrCnt].p = (void*)((int)instrPage.p + sizeof(struct CB)*i);
instr0->SOURCE_AD = (unsigned int)constPage.p+2048;
instr0->DEST_AD = PWMBASE+0x18 /* FIF1 */;
instr0->TXFR_LEN = 4;
instr0->STRIDE = 0;
//instr0->NEXTCONBK = (int)instrPage.p + sizeof(struct CB)*(i+1);
instr0->TI = (1/* DREQ */<<6) | (5 /* PWM */<<16) | (1<<26/* no wide*/) ;
instr0->RES1 = 0;
instr0->RES2 = 0;
if (i%2) {
instr0->DEST_AD = CM_GP0DIV;
instr0->STRIDE = 4;
instr0->TI = (1<<26/* no wide*/) ;
}
if (instrCnt!=0) ((struct CB*)(instrs[instrCnt-1].v))->NEXTCONBK = (int)instrs[instrCnt].p;
instr0++;
instrCnt++;
}
}
((struct CB*)(instrs[1023].v))->NEXTCONBK = (int)instrs[0].p;
// set up a clock for the PWM
ACCESS(CLKBASE + 40*4 /*PWMCLK_CNTL*/) = 0x5A000026; // Source=PLLD and disable
usleep(T_1MSECOND);
// ACCESS(CLKBASE + 41*4 /*PWMCLK_DIV*/) = 0x5A002800;
ACCESS(CLKBASE + 41*4 /*PWMCLK_DIV*/) = 0x5A002000; // set PWM div to 2, for 250MHz
ACCESS(CLKBASE + 40*4 /*PWMCLK_CNTL*/) = 0x5A000016; // Source=PLLD and enable
usleep(T_1MSECOND);
// set up pwm
ACCESS(PWMBASE + 0x0 /* CTRL*/) = 0;
usleep(T_1MSECOND);
ACCESS(PWMBASE + 0x4 /* status*/) = -1; // clear errors
usleep(T_1MSECOND);
ACCESS(PWMBASE + 0x0 /* CTRL*/) = -1; //(1<<13 /* Use fifo */) | (1<<10 /* repeat */) | (1<<9 /* serializer */) | (1<<8 /* enable ch */) ;
usleep(T_1MSECOND);
ACCESS(PWMBASE + 0x8 /* DMAC*/) = (1<<31 /* DMA enable */) | 0x0707;
//activate dma
struct DMAregs* DMA0 = (struct DMAregs*)&(ACCESS(DMABASE));
DMA0->CS =1<<31; // reset
DMA0->CONBLK_AD=0;
DMA0->TI=0;
DMA0->CONBLK_AD = (unsigned int)(instrPage.p);
DMA0->CS =(1<<0)|(255 <<16); // enable bit = 0, clear end flag = 1, prio=19-16
}
//
// Set up a memory regions to access GPIO
//
void setup_io()
{
/* open /dev/mem */
if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) {
printf("can't open /dev/mem \n");
exit (-1);
}
/* mmap GPIO */
// Allocate MAP block
if ((gpio_mem = malloc(BLOCK_SIZE + (PAGE_SIZE-1))) == NULL) {
printf("allocation error \n");
exit (-1);
}
// Make sure pointer is on 4K boundary
if ((unsigned long)gpio_mem % PAGE_SIZE)
gpio_mem += PAGE_SIZE - ((unsigned long)gpio_mem % PAGE_SIZE);
// Now map it
gpio_map = (unsigned char *)mmap(
gpio_mem,
BLOCK_SIZE,
PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_FIXED,
mem_fd,
GPIO_BASE
);
if ((long)gpio_map < 0) {
printf("mmap error %d\n", (int)gpio_map);
exit (-1);
}
// Always use volatile pointer!
gpio = (volatile unsigned *)gpio_map;
}
void setup_gpios()
{
int g;
// Switch GPIO 7..11 to output mode
/************************************************************************\
* You are about to change the GPIO settings of your computer. *
* Mess this up and it will stop working! *
* It might be a good idea to 'sync' before running this program *
* so at least you still have your code changes written to the SD-card! *
\************************************************************************/
// Set GPIO pins 7-11 to output
for (g=7; g<=11; g++) {
INP_GPIO(g); // must use INP_GPIO before we can use OUT_GPIO
//OUT_GPIO(g);
}
}
void strupr(char *str)
{ while(*str)
{
*str = toupper(*str);
str++;
}
}
void wspr(char* call, char* l, char* dbm, unsigned char* symbols)
{
// pack prefix in nadd, call in n1, grid, dbm in n2
char* c, buf[16];
strncpy(buf, call, 16);
c=buf;
strupr(c);
unsigned long ng,nadd=0;
if(strchr(c, '/')){ //prefix-suffix
nadd=2;
int i=strchr(c, '/')-c; //stroke position
int n=strlen(c)-i-1; //suffix len, prefix-call len
c[i]='\0';
if(n==1) ng=60000-32768+(c[i+1]>='0'&&c[i+1]<='9'?c[i+1]-'0':c[i+1]==' '?38:c[i+1]-'A'+10); // suffix /A to /Z, /0 to /9
if(n==2) ng=60000+26+10*(c[i+1]-'0')+(c[i+2]-'0'); // suffix /10 to /99
if(n>2){ // prefix EA8/, right align
ng=(i<3?36:c[i-3]>='0'&&c[i-3]<='9'?c[i-3]-'0':c[i-3]-'A'+10);
ng=37*ng+(i<2?36:c[i-2]>='0'&&c[i-2]<='9'?c[i-2]-'0':c[i-2]-'A'+10);
ng=37*ng+(i<1?36:c[i-1]>='0'&&c[i-1]<='9'?c[i-1]-'0':c[i-1]-'A'+10);
if(ng<32768) nadd=1; else ng=ng-32768;
c=c+i+1;
}
}
int i=(isdigit(c[2])?2:isdigit(c[1])?1:0); //last prefix digit of de-suffixed/de-prefixed callsign
int n=strlen(c)-i-1; //2nd part of call len
unsigned long n1;
n1=(i<2?36:c[i-2]>='0'&&c[i-2]<='9'?c[i-2]-'0':c[i-2]-'A'+10);
n1=36*n1+(i<1?36:c[i-1]>='0'&&c[i-1]<='9'?c[i-1]-'0':c[i-1]-'A'+10);
n1=10*n1+c[i]-'0';
n1=27*n1+(n<1?26:c[i+1]-'A');
n1=27*n1+(n<2?26:c[i+2]-'A');
n1=27*n1+(n<3?26:c[i+3]-'A');
//if(rand() % 2) nadd=0;
if(!nadd){
strupr(l); //grid square Maidenhead locator (uppercase)
ng=180*(179-10*(l[0]-'A')-(l[2]-'0'))+10*(l[1]-'A')+(l[3]-'0');
}
int p = atoi(dbm); //EIRP in dBm={0,3,7,10,13,17,20,23,27,30,33,37,40,43,47,50,53,57,60}
int corr[]={0,-1,1,0,-1,2,1,0,-1,1};
p=p>60?60:p<0?0:p+corr[p%10];
unsigned long n2=(ng<<7)|(p+64+nadd);
// pack n1,n2,zero-tail into 50 bits
char packed[11] = {n1>>20, n1>>12, n1>>4, ((n1&0x0f)<<4)|((n2>>18)&0x0f),
n2>>10, n2>>2, (n2&0x03)<<6, 0, 0, 0, 0};
// convolutional encoding K=32, r=1/2, Layland-Lushbaugh polynomials
int k = 0;
int j,s;
int nstate = 0;
unsigned char symbol[176];
for(j=0;j!=sizeof(packed);j++){
for(i=7;i>=0;i--){
unsigned long poly[2] = { 0xf2d05351L, 0xe4613c47L };
nstate = (nstate<<1) | ((packed[j]>>i)&1);
for(s=0;s!=2;s++){ //convolve
unsigned long n = nstate & poly[s];
int even = 0; // even := parity(n)
while(n){
even = 1 - even;
n = n & (n - 1);
}
symbol[k] = even;
k++;
}
}
}
// interleave symbols
const unsigned char npr3[162] = {
1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,0,0,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1,1,0,1,0,
0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,
0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,0,1,1,0,1,0,0,0,1,1,1,
0,0,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,
0,0 };
for(i=0;i!=162;i++){
// j0 := bit reversed_values_smaller_than_161[i]
unsigned char j0;
p=-1;
for(k=0;p!=i;k++){
for(j=0;j!=8;j++) // j0:=bit_reverse(k)
j0 = ((k>>j)&1)|(j0<<1);
if(j0<162)
p++;
}
symbols[j0]=npr3[j0]|symbol[i]<<1; //interleave and add sync vector
}
}
void wait_every(int minute)
{
time_t t;
struct tm* ptm;
for(;;){
time(&t);
ptm = gmtime(&t);
if((ptm->tm_min % minute) == 0 && ptm->tm_sec == 0) break;
usleep(T_1MSECOND);
}
usleep(T_SECOND); // wait another second
}
// http://www-theorie.physik.unizh.ch/~dpotter/howto/daemonize
static void child_handler(int signum)
{
switch(signum) {
case SIGALRM: exit(EXIT_FAILURE); break;
case SIGUSR1: exit(EXIT_SUCCESS); break;
case SIGCHLD: exit(EXIT_FAILURE); break;
}
}
// http://www-theorie.physik.unizh.ch/~dpotter/howto/daemonize
static void daemonize( const char *lockfile )
{
pid_t pid, sid, parent;
int lfp = -1;
/* already a daemon */
if ( getppid() == 1 ) return;
/* Create the lock file as the current user */
if ( lockfile && lockfile[0] ) {
lfp = open(lockfile,O_RDWR|O_CREAT,0640);
if ( lfp < 0 ) {
syslog( LOG_ERR, "unable to create lock file %s, code=%d (%s)",
lockfile, errno, strerror(errno) );
exit(EXIT_FAILURE);
}
}
/* Drop user if there is one, and we were run as root */
if ( getuid() == 0 || geteuid() == 0 ) {
struct passwd *pw = getpwnam(RUN_AS_USER);
if ( pw ) {
syslog( LOG_NOTICE, "setting user to " RUN_AS_USER );
setuid( pw->pw_uid );
}
}
/* Trap signals that we expect to receive */
signal(SIGCHLD,child_handler);
signal(SIGUSR1,child_handler);
signal(SIGALRM,child_handler);
/* Fork off the parent process */
pid = fork();
if (pid < 0) {
syslog( LOG_ERR, "unable to fork daemon, code=%d (%s)",
errno, strerror(errno) );
exit(EXIT_FAILURE);
}
/* If we got a good PID, then we can exit the parent process. */
if (pid > 0) {
/* Wait for confirmation from the child via SIGTERM or SIGCHLD, or
for two seconds to elapse (SIGALRM). pause() should not return. */
alarm(2);
pause();
exit(EXIT_FAILURE);
}
/* At this point we are executing as the child process */
parent = getppid();
/* Cancel certain signals */
signal(SIGCHLD,SIG_DFL); /* A child process dies */
signal(SIGTSTP,SIG_IGN); /* Various TTY signals */
signal(SIGTTOU,SIG_IGN);
signal(SIGTTIN,SIG_IGN);
signal(SIGHUP, SIG_IGN); /* Ignore hangup signal */
signal(SIGTERM,SIG_DFL); /* Die on SIGTERM */
/* Change the file mode mask */
umask(0);
/* Create a new SID for the child process */
sid = setsid();
if (sid < 0) {
syslog( LOG_ERR, "unable to create a new session, code %d (%s)",
errno, strerror(errno) );
exit(EXIT_FAILURE);
}
/* Change the current working directory. This prevents the current
directory from being locked; hence not being able to remove it. */
if ((chdir("/")) < 0) {
syslog( LOG_ERR, "unable to change directory to %s, code %d (%s)",
"/", errno, strerror(errno) );
exit(EXIT_FAILURE);
}
/* Redirect standard files to /dev/null */
freopen( "/dev/null", "r", stdin);
freopen( "/dev/null", "w", stdout);
freopen( "/dev/null", "w", stderr);
/* Tell the parent process that we are A-okay */
kill( parent, SIGUSR1 );
}
int main(int argc, char *argv[])
{
unsigned char symbols[162];
int i;
double centre_freq;
int wspr15;
double wspr_symtime;
int nbands = argc - 4;
int band = 0;
int tune_mode = 0;
/* Initialize the logging interface */
openlog( DAEMON_NAME, LOG_PID, LOG_LOCAL5 );
syslog( LOG_INFO, "starting" );
/* Commandline Stuff */
if(argc < 5){
printf("Usage: wspr <[prefix/]callsign[/A-Z,/0-9,/00-99]> <locator> <power in dBm> [<frequency in Hz or 0 for interval> ...]\n");
printf("\te.g.: ./wspr K1JT/P JO21 10 7040074 0 0 10140174 0 0\n");
return 1;
}
// argv[1]=callsign, argv[2]=locator, argv[3]=power(dBm)
// negative dBm will setup constant tx for tuning
if (atoi(argv[3]) < 0)
{
printf("Tune mode\n");
tune_mode = 1;
}
wspr(argv[1], argv[2], argv[3], symbols);
printf("Symbols: ");
for (i = 0; i < sizeof(symbols)/sizeof(*symbols); i++)
printf("%d,", symbols[i]);
printf("\n");
setup_io();
setup_gpios();
txon();
setupDMA();
printf("Ready for transmit...\n");
/* Daemonize */
//daemonize( "/var/lock/" DAEMON_NAME );
for(;;)
{
txoff();
centre_freq = atof(argv[band + 4]);
wspr15 = (centre_freq > 137600 && centre_freq < 137625) || \
(centre_freq > 475800 && centre_freq < 475825) || \
(centre_freq > 1838200 && centre_freq < 1838225);
wspr_symtime = (wspr15) ? 8.0 * WSPR_SYMTIME : WSPR_SYMTIME;
band++;
if(band >= nbands)
band = 0;
if(centre_freq) setupDMATab(centre_freq, 1.0/wspr_symtime, wspr_symtime, 4);
if (tune_mode == 0)
{
wait_every((wspr15) ? 15 : 2);
}
time_t t;
time(&t);
char buf[256];
strcpy(buf,ctime(&t));
buf[strlen(buf)-1]='\0';
printf("%s - %s@%f\n", buf, (wspr15)?"wspr-15":"wspr-2", centre_freq);
if(centre_freq){
txon();
for (i = 0; i < 162; i++) {
txSym(symbols[i], wspr_symtime);
//txSym(atoi(argv[5]), wspr_symtime);
}
}
}
/* Finish up */
syslog( LOG_NOTICE, "terminated" );
closelog();
return 0;
}