forked from Westlake-AI/MogaNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cam_image.py
256 lines (224 loc) · 9.88 KB
/
cam_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
""""
Grad-CAM visualization
Support for moganet, poolformer, deit, resmlp, resnet, swin and convnext
Modifed from: https://github.com/jacobgil/pytorch-grad-cam/blob/master/cam.py
please install the following packages
`pip install grad-cam timm`
Example command:
python cam_image.py --use_cuda --image_path /path/to/image.JPEG --model moganet_tiny
"""
import argparse
import os
import cv2
import numpy as np
import torch
from PIL import Image
from pytorch_grad_cam import GradCAM, \
ScoreCAM, \
GradCAMPlusPlus, \
AblationCAM, \
XGradCAM, \
EigenCAM, \
EigenGradCAM, \
LayerCAM, \
FullGrad
from pytorch_grad_cam.utils.image import show_cam_on_image
from torchvision.transforms import Compose, Resize, CenterCrop, Normalize, ToTensor
import models # register_model for MogaNet
import timm
from timm.models import create_model
def reshape_transform_resmlp(tensor, height=14, width=14):
result = tensor.reshape(tensor.size(0),
height, width, tensor.size(2))
result = result.transpose(2, 3).transpose(1, 2)
return result
def reshape_transform_swin(tensor, height=7, width=7):
result = tensor.reshape(tensor.size(0),
height, width, tensor.size(2))
# Bring the channels to the first dimension,
# like in CNNs.
result = result.transpose(2, 3).transpose(1, 2)
return result
def reshape_transform_vit(tensor, height=14, width=14):
result = tensor[:, 1:, :].reshape(tensor.size(0),
height, width, tensor.size(2))
# Bring the channels to the first dimension,
# like in CNNs.
result = result.transpose(2, 3).transpose(1, 2)
return result
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--use_cuda', action='store_true', default=False,
help='Use NVIDIA GPU acceleration')
parser.add_argument(
'--image_path',
type=str,
default=None,
help='Input image path')
parser.add_argument(
'--output_image_path',
type=str,
default=None,
help='Output image path')
parser.add_argument(
'--model',
type=str,
default='moganet_tiny',
help='model name')
parser.add_argument(
'--aug_smooth',
action='store_true',
help='Apply test time augmentation to smooth the CAM')
parser.add_argument(
'--eigen_smooth',
action='store_true',
help='Reduce noise by taking the first principle componenet'
'of cam_weights*activations')
parser.add_argument(
'--method',
type=str, default='gradcam',
choices=['gradcam', 'gradcam++',
'scorecam', 'xgradcam',
'ablationcam', 'eigencam',
'eigengradcam', 'layercam', 'fullgrad'],
help='Can be gradcam/gradcam++/scorecam/xgradcam'
'/ablationcam/eigencam/eigengradcam/layercam')
args = parser.parse_args()
args.use_cuda = args.use_cuda and torch.cuda.is_available()
if args.use_cuda:
print('Using GPU for acceleration')
else:
print('Using CPU for computation')
return args
if __name__ == '__main__':
""" python cam.py -image-path <path_to_image>
Example usage of loading an image, and computing:
1. CAM
2. Guided Back Propagation
3. Combining both
"""
args = get_args()
methods = \
{"gradcam": GradCAM,
"scorecam": ScoreCAM,
"gradcam++": GradCAMPlusPlus,
"ablationcam": AblationCAM,
"xgradcam": XGradCAM,
"eigencam": EigenCAM,
"eigengradcam": EigenGradCAM,
"layercam": LayerCAM,
"fullgrad": FullGrad}
if args.model == 'resize':
model = torch.nn.Identity()
elif 'moganet' in args.model:
model = create_model(args.model, pretrained=True)
else:
model = getattr(timm.models, args.model)(pretrained=('resnet' not in args.model))
if 'resnet' in args.model:
# resnet load the model trianed with 600 epochs
# for fair comparison, load the model trained with 300 epochs.
rsb_300epoch_dict = {
'resnet18': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet18_a2_0-b61bd467.pth',
'resnet34': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet34_a2_0-82d47d71.pth',
'resnet50': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a2_0-a2746f79.pth',
'resnet101': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a2_0-6edb36c7.pth',
'resnet152': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet152_a2_0-b4c6978f.pth',
}
checkpoint = torch.hub.load_state_dict_from_url(url=rsb_300epoch_dict[args.model], map_location="cpu", check_hash=True)
model.load_state_dict(checkpoint)
reshape_transform = None
if 'moganet' in args.model:
target_layers = [model.norm4]
elif 'poolformer' in args.model:
target_layers = [model.network[-1]]
elif 'resnet' in args.model:
target_layers = [model.layer4[-1]]
elif 'convnext' in args.model:
target_layers = [model.stages[-1]]
elif 'resmlp' in args.model:
target_layers = [model.blocks[-1]]
reshape_transform = reshape_transform_resmlp
elif 'deit' in args.model:
target_layers = [model.blocks[-1].norm1]
reshape_transform = reshape_transform_vit
elif 'swin' in args.model:
target_layers = [model.layers[-1].blocks[-1]]
reshape_transform = reshape_transform_swin
model.eval()
# Choose the target layer you want to compute the visualization for.
# Usually this will be the last convolutional layer in the model.
# Some common choices can be:
# Resnet18 and 50: model.layer4
# VGG, densenet161: model.features[-1]
# mnasnet1_0: model.layers[-1]
# You can print the model to help chose the layer
# You can pass a list with several target layers,
# in that case the CAMs will be computed per layer and then aggregated.
# You can also try selecting all layers of a certain type, with e.g:
# from pytorch_grad_cam.utils.find_layers import find_layer_types_recursive
# find_layer_types_recursive(model, [torch.nn.ReLU])
# target_layers = [model.layer4]
# import pdb; pdb.set_trace()
# rgb_img = cv2.imread(args.image_path, 1)[:, :, ::-1]
img_path = args.image_path
if args.image_path:
img_path = args.image_path
else:
import requests
image_url = 'https://user-images.githubusercontent.com/44519745/212287714-98ead823-86c7-49d2-a8d7-4d77a2ce23e4.JPEG' # n02510455_3566
# image_url = 'https://user-images.githubusercontent.com/44519745/212287994-a957bdc0-d23c-48d8-a351-6799ce84182e.JPEG' # n02165456_2300
# image_url = 'https://user-images.githubusercontent.com/44519745/212288107-c5232dd8-ea67-4e8e-bdae-67c4f3033911.JPEG' # n01664065_904
# image_url = 'https://user-images.githubusercontent.com/44519745/212288207-e247e3d9-90fd-4bb2-883c-04598f46b66b.jpg' # Blue_Jay_0009_62873
img_path = image_url.split('/')[-1]
if os.path.exists(img_path):
img_data = requests.get(image_url).content
with open(img_path, 'wb') as handler:
handler.write(img_data)
if args.output_image_path:
save_name = args.output_image_path
else:
img_type = img_path.split('.')[-1]
it_len = len(img_type)
save_name = img_path.split('/')[-1][:-(it_len + 1)]
save_name = save_name + '_' + args.model + '.' + img_type
if args.model == 'resize':
img = cv2.imread(img_path, 1)
img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_AREA)
cv2.imwrite(save_name, img)
else:
img = Image.open(img_path)
img = img.convert('RGB')
image_transforms = Compose([Resize(256),
CenterCrop(224)])
format_transforms = Compose([ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
img = image_transforms(img)
input_tensor = format_transforms(img).unsqueeze(0)
# We have to specify the target we want to generate
# the Class Activation Maps for.
# If targets is None, the highest scoring category (for every member in the batch) will be used.
# You can target specific categories by
# targets = [e.g ClassifierOutputTarget(281)]
targets = None
# Using the with statement ensures the context is freed, and you can
# recreate different CAM objects in a loop.
cam_algorithm = methods[args.method]
with cam_algorithm(model=model,
target_layers=target_layers,
use_cuda=args.use_cuda,
reshape_transform=reshape_transform,
) as cam:
# AblationCAM and ScoreCAM have batched implementations.
# You can override the internal batch size for faster computation.
cam.batch_size = 32
grayscale_cam = cam(input_tensor=input_tensor,
targets=targets,
aug_smooth=args.aug_smooth,
eigen_smooth=args.eigen_smooth)
# Here grayscale_cam has only one image in the batch
grayscale_cam = grayscale_cam[0, :]
rgb_img = np.array(img) / 255
cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
# cam_image is RGB encoded whereas "cv2.imwrite" requires BGR encoding.
cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
cv2.imwrite(save_name, cam_image)