forked from matthewsamuel95/ACM-ICPC-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
red black tree insertion.c
273 lines (221 loc) · 6.43 KB
/
red black tree insertion.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#include <bits/stdc++.h>
using namespace std;
enum Color {RED, BLACK};
struct Node
{
int data;
bool color;
Node *left, *right, *parent;
// Constructor
Node(int data)
{
this->data = data;
left = right = parent = NULL;
}
};
// Class to represent Red-Black Tree
class RBTree
{
private:
Node *root;
protected:
void rotateLeft(Node *&, Node *&);
void rotateRight(Node *&, Node *&);
void fixViolation(Node *&, Node *&);
public:
// Constructor
RBTree() { root = NULL; }
void insert(const int &n);
void inorder();
void levelOrder();
};
// A recursive function to do level order traversal
void inorderHelper(Node *root)
{
if (root == NULL)
return;
inorderHelper(root->left);
cout << root->data << " ";
inorderHelper(root->right);
}
/* A utility function to insert a new node with given key
in BST */
Node* BSTInsert(Node* root, Node *pt)
{
/* If the tree is empty, return a new node */
if (root == NULL)
return pt;
/* Otherwise, recur down the tree */
if (pt->data < root->data)
{
root->left = BSTInsert(root->left, pt);
root->left->parent = root;
}
else if (pt->data > root->data)
{
root->right = BSTInsert(root->right, pt);
root->right->parent = root;
}
/* return the (unchanged) node pointer */
return root;
}
// Utility function to do level order traversal
void levelOrderHelper(Node *root)
{
if (root == NULL)
return;
std::queue<Node *> q;
q.push(root);
while (!q.empty())
{
Node *temp = q.front();
cout << temp->data << " ";
q.pop();
if (temp->left != NULL)
q.push(temp->left);
if (temp->right != NULL)
q.push(temp->right);
}
}
void RBTree::rotateLeft(Node *&root, Node *&pt)
{
Node *pt_right = pt->right;
pt->right = pt_right->left;
if (pt->right != NULL)
pt->right->parent = pt;
pt_right->parent = pt->parent;
if (pt->parent == NULL)
root = pt_right;
else if (pt == pt->parent->left)
pt->parent->left = pt_right;
else
pt->parent->right = pt_right;
pt_right->left = pt;
pt->parent = pt_right;
}
void RBTree::rotateRight(Node *&root, Node *&pt)
{
Node *pt_left = pt->left;
pt->left = pt_left->right;
if (pt->left != NULL)
pt->left->parent = pt;
pt_left->parent = pt->parent;
if (pt->parent == NULL)
root = pt_left;
else if (pt == pt->parent->left)
pt->parent->left = pt_left;
else
pt->parent->right = pt_left;
pt_left->right = pt;
pt->parent = pt_left;
}
// This function fixes violations caused by BST insertion
void RBTree::fixViolation(Node *&root, Node *&pt)
{
Node *parent_pt = NULL;
Node *grand_parent_pt = NULL;
while ((pt != root) && (pt->color != BLACK) &&
(pt->parent->color == RED))
{
parent_pt = pt->parent;
grand_parent_pt = pt->parent->parent;
/* Case : A
Parent of pt is left child of Grand-parent of pt */
if (parent_pt == grand_parent_pt->left)
{
Node *uncle_pt = grand_parent_pt->right;
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle_pt != NULL && uncle_pt->color == RED)
{
grand_parent_pt->color = RED;
parent_pt->color = BLACK;
uncle_pt->color = BLACK;
pt = grand_parent_pt;
}
else
{
/* Case : 2
pt is right child of its parent
Left-rotation required */
if (pt == parent_pt->right)
{
rotateLeft(root, parent_pt);
pt = parent_pt;
parent_pt = pt->parent;
}
/* Case : 3
pt is left child of its parent
Right-rotation required */
rotateRight(root, grand_parent_pt);
swap(parent_pt->color, grand_parent_pt->color);
pt = parent_pt;
}
}
/* Case : B
Parent of pt is right child of Grand-parent of pt */
else
{
Node *uncle_pt = grand_parent_pt->left;
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if ((uncle_pt != NULL) && (uncle_pt->color == RED))
{
grand_parent_pt->color = RED;
parent_pt->color = BLACK;
uncle_pt->color = BLACK;
pt = grand_parent_pt;
}
else
{
/* Case : 2
pt is left child of its parent
Right-rotation required */
if (pt == parent_pt->left)
{
rotateRight(root, parent_pt);
pt = parent_pt;
parent_pt = pt->parent;
}
/* Case : 3
pt is right child of its parent
Left-rotation required */
rotateLeft(root, grand_parent_pt);
swap(parent_pt->color, grand_parent_pt->color);
pt = parent_pt;
}
}
}
root->color = BLACK;
}
// Function to insert a new node with given data
void RBTree::insert(const int &data)
{
Node *pt = new Node(data);
// Do a normal BST insert
root = BSTInsert(root, pt);
// fix Red Black Tree violations
fixViolation(root, pt);
}
// Function to do inorder and level order traversals
void RBTree::inorder() { inorderHelper(root);}
void RBTree::levelOrder() { levelOrderHelper(root); }
// Driver Code
int main()
{
RBTree tree;
tree.insert(7);
tree.insert(6);
tree.insert(5);
tree.insert(4);
tree.insert(3);
tree.insert(2);
tree.insert(1);
cout << "Inoder Traversal of Created Tree\n";
tree.inorder();
cout << "\n\nLevel Order Traversal of Created Tree\n";
tree.levelOrder();
return 0;
}