forked from matthewsamuel95/ACM-ICPC-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ap.cpp
164 lines (137 loc) · 4.94 KB
/
ap.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// A C++ program to find articulation points in an undirected graph
#include<iostream>
#include <list>
#define NIL -1
using namespace std;
// A class that represents an undirected graph
class Graph
{
int V; // No. of vertices
list<int> *adj; // A dynamic array of adjacency lists
void APUtil(int v, bool visited[], int disc[], int low[],
int parent[], bool ap[]);
public:
Graph(int V); // Constructor
void addEdge(int v, int w); // function to add an edge to graph
void AP(); // prints articulation points
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
adj[w].push_back(v); // Note: the graph is undirected
}
// A recursive function that find articulation points using DFS traversal
// u --> The vertex to be visited next
// visited[] --> keeps tract of visited vertices
// disc[] --> Stores discovery times of visited vertices
// parent[] --> Stores parent vertices in DFS tree
// ap[] --> Store articulation points
void Graph::APUtil(int u, bool visited[], int disc[],
int low[], int parent[], bool ap[])
{
// A static variable is used for simplicity, we can avoid use of static
// variable by passing a pointer.
static int time = 0;
// Count of children in DFS Tree
int children = 0;
// Mark the current node as visited
visited[u] = true;
// Initialize discovery time and low value
disc[u] = low[u] = ++time;
// Go through all vertices aadjacent to this
list<int>::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
{
int v = *i; // v is current adjacent of u
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v])
{
children++;
parent[v] = u;
APUtil(v, visited, disc, low, parent, ap);
// Check if the subtree rooted with v has a connection to
// one of the ancestors of u
low[u] = min(low[u], low[v]);
// u is an articulation point in following cases
// (1) u is root of DFS tree and has two or more chilren.
if (parent[u] == NIL && children > 1)
ap[u] = true;
// (2) If u is not root and low value of one of its child is more
// than discovery value of u.
if (parent[u] != NIL && low[v] >= disc[u])
ap[u] = true;
}
// Update low value of u for parent function calls.
else if (v != parent[u])
low[u] = min(low[u], disc[v]);
}
}
// The function to do DFS traversal. It uses recursive function APUtil()
void Graph::AP()
{
// Mark all the vertices as not visited
bool *visited = new bool[V];
int *disc = new int[V];
int *low = new int[V];
int *parent = new int[V];
bool *ap = new bool[V]; // To store articulation points
// Initialize parent and visited, and ap(articulation point) arrays
for (int i = 0; i < V; i++)
{
parent[i] = NIL;
visited[i] = false;
ap[i] = false;
}
// Call the recursive helper function to find articulation points
// in DFS tree rooted with vertex 'i'
for (int i = 0; i < V; i++)
if (visited[i] == false)
APUtil(i, visited, disc, low, parent, ap);
// Now ap[] contains articulation points, print them
for (int i = 0; i < V; i++)
if (ap[i] == true)
cout << i << " ";
}
int main()
{
// Create graphs given in above diagrams
cout << "\nArticulation points in first graph \n";
Graph g1(5);
g1.addEdge(1, 0);
g1.addEdge(0, 2);
g1.addEdge(2, 1);
g1.addEdge(0, 3);
g1.addEdge(3, 4);
g1.AP();
cout << "\nArticulation points in second graph \n";
Graph g2(4);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
g2.addEdge(2, 3);
g2.AP();
cout << "\nArticulation points in third graph \n";
Graph g3(7);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
g3.addEdge(2, 0);
g3.addEdge(1, 3);
g3.addEdge(1, 4);
g3.addEdge(1, 6);
g3.addEdge(3, 5);
g3.addEdge(4, 5);
g3.AP();
return 0;
}
/*
Explaination:
A O(V+E) algorithm to find all Articulation Points (APs)
The idea is to use DFS (Depth First Search). In DFS, we follow vertices in tree form called DFS tree. In DFS tree, a vertex u is parent of another vertex v, if v is discovered by u (obviously v is an adjacent of u in graph). In DFS tree, a vertex u is articulation point if one of the following two conditions is true.
1) u is root of DFS tree and it has at least two children.
2) u is not root of DFS tree and it has a child v such that no vertex in subtree rooted with v has a back edge to one of the ancestors (in DFS tree) of u.
*/