forked from matthewsamuel95/ACM-ICPC-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDinic.cpp
118 lines (104 loc) · 3.29 KB
/
Dinic.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#include <iostream>
#include <vector>
#include <climits>
/**
* Dinic's algorithm is a strongly polynomial algorithm for computing
* the maximum flow in a flow network, conceived in 1970 by Yefim A. Dinitz.
* The algorithm runs in O(E*V^2) time and is similar to the Edmonds–Karp algorithm,
* which runs in O(V*E^2) time, in that it uses shortest augmenting paths.
*
* This implementation calculates maximum flow between the first and the last vertexes.
*
* @see https://en.wikipedia.org/wiki/Dinic%27s_algorithm
*/
using namespace std;
class graph {
public:
graph(unsigned vertexes) {
V = vertexes;
s = 0;
t = V - 1;
g.resize(V);
d.resize(V);
ptr.resize(V);
queue.resize(V);
}
int dinic() {
int flow = 0;
while (true) {
if (!bfs()) break; // Break if vertex [t] is not reachable from vertex [s]
ptr.assign(V, 0);
while (int pushed = dfs(s, INT_MAX))
flow += pushed;
}
return flow;
}
void addEdge(unsigned v1, unsigned v2, unsigned capacity) {
v1--; // Remove these decrements if
v2--; // vertexes are numbered from zero
edge e1 = {v1, v2, capacity, 0};
edge e2 = {v2, v1, 0, 0};
g[v1].push_back((int) e.size());
e.push_back(e1);
g[v2].push_back((int) e.size());
e.push_back(e2);
}
private:
struct edge {
int a, b, capacity, flow;
};
unsigned V;
unsigned s, t;
vector<edge> e;
vector<vector<int>> g; // Graph adjacency list
vector<int> d; // d[u] is a shortest path from [s] to [u]
vector<int> ptr; // ptr[u] is a number of the first edge
// in [u] adjacency list, that was not removed
vector<int> queue;
bool bfs() {
int qhead = 0, qtail = 0;
queue[qtail++] = s;
d.assign(V, -1);
d[s] = 0;
while (qhead < qtail && d[t] == -1) {
int v = queue[qhead++];
for (size_t i = 0; i < g[v].size(); ++i) {
int id = g[v][i],
to = e[id].b;
if (d[to] == -1 && e[id].flow < e[id].capacity) {
queue[qtail++] = to;
d[to] = d[v] + 1;
}
}
}
return d[t] != -1;
}
// Finding the blocking flow
// `minflow` is a minimal capacity on the path of the level graph
int dfs(int v, int minflow) {
if (!minflow) return 0;
if (v == t) return minflow;
for (; ptr[v] < (int) g[v].size(); ++ptr[v]) {
int id = g[v][ptr[v]],
to = e[id].b;
if (d[to] != d[v] + 1) continue;
int pushed = dfs(to, min(minflow, e[id].capacity - e[id].flow));
if (pushed) {
e[id].flow += pushed;
e[id ^ 1].flow -= pushed;
return pushed;
}
}
return 0;
}
};
int main(int argc, char **argv) {
graph g(4); // Create graph with 4 vertexes
g.addEdge(1, 2, 1); // [1] --(1)--> [2]
g.addEdge(1, 3, 2); // [1] --(2)--> [3]
g.addEdge(3, 2, 1); // [3] --(1)--> [2]
g.addEdge(2, 4, 2); // [2] --(2)--> [4]
g.addEdge(3, 4, 1); // [3] --(1)--> [4]
cout << "Maximum flow: " << g.dinic();
return 0;
}