forked from matthewsamuel95/ACM-ICPC-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDinic.java
138 lines (121 loc) · 3.79 KB
/
Dinic.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/**
* @author dbatchunag
*/
import java.util.*;
public class Dinic {
private class Graph {
final int V;
int source;
int sink;
final ArrayList<ArrayList<Integer>> graph; // Graph adjacency list
final ArrayList<Edge> edges;
final int[] distFromSource; // Shortest distance from source in level graph
private class Edge {
final int start;
final int end;
final int capacity;
int flow;
Edge(int u, int v, int capacity, int flow) {
this.start = u;
this.end = v;
this.capacity = capacity;
this.flow = flow;
}
}
Graph(int numVertices) {
V = numVertices;
graph = new ArrayList<>();
for (int i=0; i<V; i++){
graph.add(new ArrayList<>());
}
distFromSource = new int[V];
edges = new ArrayList<>();
}
void addEdge(int v1, int v2, final int capacity) {
v1 -=1; // Remove these decrements if
v2 -=1; // vertexes are numbered from zero
final Edge e1 = new Edge(v1, v2, capacity, 0);
final Edge e2 = new Edge(v2, v1, 0, 0);
graph.get(v1).add(edges.size());
edges.add(e1);
graph.get(v2).add(edges.size());
edges.add(e2);
}
private int dinic(final int source, final int sink) {
this.source = source -1;
this.sink = sink - 1;
int flow = 0;
//Repeat while sink is reachable from source in level graph
while (bfs()) {
final int[] remaining = new int[V];
while (true) {
final int pushed = dfs(this.source, Integer.MAX_VALUE, remaining);
if (pushed==0) {
break;
}
flow += pushed;
}
}
return flow;
}
boolean bfs() {
Arrays.fill(distFromSource, -1);
distFromSource[source]=0;
final Deque<Integer> queue= new ArrayDeque<>();
queue.add(source);
//Find the shortest path to sink in level graph
while (!queue.isEmpty() && (distFromSource[sink] == -1)) {
final int u = queue.pop();
for (final int vId : graph.get(u)) {
final Edge uv = edges.get(vId);
final int v = uv.end;
if ((distFromSource[v] == -1) && (uv.flow < uv.capacity)) {
queue.addLast(v);
distFromSource[v] = distFromSource[u] + 1;
}
}
}
return distFromSource[sink] != -1;
}
// Finding the blocking flow
// `minflow` is a minimal capacity on the path of the level graph
// remaining[u] is a number of [u's] neighbors in adjacency list, that was not removed
int dfs(final int u, final int minflow, final int[] remaining) {
if (minflow == 0) {
return 0;
}
if (u == sink) {
return minflow;
}
for (; remaining[u] < graph.get(u).size(); remaining[u]++) {
final int vId = graph.get(u).get(remaining[u]);
final Edge uv = edges.get(vId);
final int v = uv.end;
if (distFromSource[v] != distFromSource[u] + 1) {
continue;
}
final int pushed = dfs(v, Math.min(minflow, uv.capacity - uv.flow), remaining);
if (pushed>0) {
edges.get(vId).flow += pushed;
//Backward edge
edges.get(vId ^ 1).flow -= pushed;
return pushed;
}
}
return 0;
}
}
private void run() {
final Graph g = new Graph(4); // Create graph with 4 vertexes
g.addEdge(1, 2, 1); // [1] --(1)--> [2]
g.addEdge(1, 3, 2); // [1] --(2)--> [3]
g.addEdge(3, 2, 1); // [3] --(1)--> [2]
g.addEdge(2, 4, 2); // [2] --(2)--> [4]
g.addEdge(3, 4, 1); // [3] --(1)--> [4]
System.out.println(String.format("The maximum possible flow (from 1 to 4) is %d",g.dinic(1, 4)));
System.out.println("Answer should be 3");
}
public static void main(String[] args) {
new Dinic().run();
}
}