forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.sh
70 lines (47 loc) · 3.55 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
#export FLAGS_conv_workspace_size_limit=800 #MB
#export FLAGS_cudnn_exhaustive_search=1
#export FLAGS_cudnn_batchnorm_spatial_persistent=1
start_time=$(date +%s)
# run tsm training
#python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" --log_dir=log_tsm main.py --validate -c configs/recognition/tsm/tsm_k400_frames.yaml
# run tsm amp training
#python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" --log_dir=log_tsm main.py --amp --validate -c configs/recognition/tsm/tsm_k400_frames.yaml
# run tsm amp training, nhwc
#python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" --log_dir=log_tsm main.py --amp --validate -c configs/recognition/tsm/tsm_k400_frames_nhwc.yaml
# run tsn training
#python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" --log_dir=log_tsn main.py --validate -c configs/recognition/tsn/tsn_k400_frames.yaml
# run slowfast training
#python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" --log_dir=log_slowfast main.py --validate -c configs/recognition/slowfast/slowfast.yaml
# run slowfast multi-grid training
#python3.7 -B -m paddle.distributed.launch --selected_gpus="0,1,2,3,4,5,6,7" --log_dir=log-slowfast main.py --validate --multigrid -c configs/recognition/slowfast/slowfast_multigrid.yaml
# run bmn training
#python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3" --log_dir=log_bmn main.py --validate -c configs/localization/bmn.yaml
# run attention_lstm training
#python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" --log_dir=log_attetion_lstm main.py --validate -c configs/recognition/attention_lstm/attention_lstm.yaml
# run pp-tsm training
python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" --log_dir=log_pptsm main.py --validate -c configs/recognition/pptsm/pptsm_k400_frames_uniform.yaml
# run pp-tsn training
# python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" --log_dir=log_pptsn main.py --validate -c configs/recognition/pptsn/pptsn_k400_frames.yaml
# run timesformer training
# python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" --log_dir=log_timesformer main.py --validate -c configs/recognition/timesformer/timesformer_k400_videos.yaml
# run st-gcn training
# python3.7 main.py -c configs/recognition/stgcn/stgcn_fsd.yaml
# run pp-agcn training
# python3.7 main.py -c configs/recognition/ppagcn/ppagcn_fsd.yaml
# run tsn dali training
#python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3" --log_dir=log_tsn main.py --train_dali -c configs/recognition/tsn/tsn_dali.yaml
# test.sh
# just use `example` as example, please replace to real name.
# python3.7 -B -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" --log_dir=log_test main.py --test -c configs/example.yaml -w "output/example/example_best.pdparams"
# NOTE: run bmn test, only support single card, bs=1
# python3.7 main.py --test -c configs/localization/bmn.yaml -w output/BMN/BMN_epoch_00010.pdparams -o DATASET.batch_size=1
# export_models script
# just use `example` as example, please replace to real name.
# python3.7 tools/export_model.py -c configs/example.yaml -p output/example/example_best.pdparams -o ./inference
# predict script
# just use `example` as example, please replace to real name.
# python3.7 tools/predict.py -v example.avi --model_file "./inference/example.pdmodel" --params_file "./inference/example.pdiparams" --enable_benchmark=False --model="example" --num_seg=8
end_time=$(date +%s)
cost_time=$[ $end_time-$start_time ]
echo "Time to train is $(($cost_time/60))min $(($cost_time%60))s"