This repository has been archived by the owner on Nov 25, 2023. It is now read-only.
Release bench result of embedded-ai.bench for ncnn/tnn/mnn
-
测试框架:4个。MNN/TNN/NCNN/TFLite;
-
测试平台:2个。android-armv7,android-aarch64;
-
硬件后端:CPU(1/2/4线程),GPU(CL/GL/VK,若有),XNNPACK(仅TFLite);
-
测试模型:4个。tensorflow_mobilenetv1、tensorflow_mobilenetv2、caffe_mobilenetv1、caffe_mobilenetv2。TFLite仅有TF模型+tf_squeezeNet1.1,NCNN仅有Caffe模型;
-
涵盖12部手机,对应SoC分别为:
- 高通骁龙系列:865/855/845/835/625/410;
- 华为麒麟系列:990/980/820/810;
- 三星猎户座系列:exynos5。
-
总计1514条benchmark数据;
-
具体见本仓库根目录下的文件:20200920-bench:ncnn-tnn-mnn-tflite-androidv7v8-cpugpu.csv。
-
具体见本仓库根目录下的文件:20200920-bench:ncnn-tnn-mnn-tflite-androidv7v8-cpugpu.csv。
-
具体见本仓库根目录下的文件:20200920-bench:ncnn-tnn-mnn-tflite-androidv7v8-cpugpu.csv。
注:因为是CSV文件,可以用Excel表格打开。通过对【表格】->【筛选】功能,对表头筛选,进行细致分析。本次不给结论,在不同的手机上,不同框架表现不同。
下图是benchmark的参考示例:
framework | branch | commit_id | model_name | platform | soc_code | soc_name | cpu | gpu | npu | product | power_mode | backend | cpu_thread_num | avg | max | min | std_dev | battery_level | system_version | repeats | warmup | imei |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mnn | master | 3ea9dd1 | caffe_mobilenetv1 | android-armv7 | kirin810 | kirin810 | [email protected][email protected] | Mali-G52 | D100@Lite | SPN-AL00 | big_cores | ARM | 1 | 249.221 | 252.995 | 246.358 | 1.495 | 100 | 9 | 100 | 20 | A00000B7D25778 |
mnn | master | 3ea9dd1 | caffe_mobilenetv1 | android-armv7 | kirin810 | kirin810 | [email protected][email protected] | Mali-G52 | D100@Lite | SPN-AL00 | big_cores | ARM | 2 | 125.97 | 133.192 | 124.363 | 1.038 | 100 | 9 | 100 | 20 | A00000B7D25778 |
mnn | master | 3ea9dd1 | caffe_mobilenetv1 | android-armv7 | kirin810 | kirin810 | [email protected][email protected] | Mali-G52 | D100@Lite | SPN-AL00 | big_cores | ARM | 4 | 70.384 | 75.003 | 68.117 | 1.08 | 100 | 9 | 100 | 20 | A00000B7D25778 |
定期发布性能数据
- 网站:https://ai-performance.com/embedded-ai.bench;
- 微信:NeuralTalk: