-
Notifications
You must be signed in to change notification settings - Fork 15
/
smooth_emnist.py
230 lines (169 loc) · 8.87 KB
/
smooth_emnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "7"
import numpy as np
import torch
import logging
logger = logging.getLogger("logger")
import math
from utils.image_helper import ImageHelper
import yaml
import time
import datetime
from models.MnistNet import MnistNet
def eval_model(model, helper, is_poison=False):
model.eval()
correct = 0
dataset_size = 0
if is_poison:
poison_data_count = 0
data_iterator = helper.test_data_poison
for batch_id, batch in enumerate(data_iterator):
data, targets, poison_num = helper.get_poison_batch(batch, adversarial_index=-1, evaluation=True)
poison_data_count += poison_num
dataset_size += len(data)
output = model(data)
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(targets.data.view_as(pred)).cpu().sum().item()
acc = 100.0 * (float(correct) / float(poison_data_count)) if poison_data_count!=0 else 0
return acc
else:
data_iterator = helper.test_data
for batch_id, batch in enumerate(data_iterator):
data, targets = helper.get_batch(data_iterator, batch, evaluation=True)
dataset_size += len(data)
output = model(data)
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(targets.data.view_as(pred)).cpu().sum().item()
acc = 100.0 * (float(correct) / float(dataset_size)) if dataset_size!=0 else 0
return acc
def dp_noise(param, sigma):
noised_layer = torch.cuda.FloatTensor(param.shape).normal_(mean=0, std=sigma)
return noised_layer
def smooth_model(target_model, sigma):
for name, param in target_model.state_dict().items():
param.add_(dp_noise(param, sigma))
def probability_estimation(labs,model_preds):
k_as=[]
p_as=[]
k_bs=[]
p_bs=[]
is_acc=[]
labs = np.array(labs) # [num_samples]
model_preds= np.transpose(np.array(model_preds))
for i in range(len(model_preds)): # over samples
line = model_preds[i]
bincount= np.bincount(line)
k_a = np.argmax(bincount)
is_acc.append(int(k_a == labs[i]))
p_a = bincount[k_a]*1.0/line.shape[0]
k_as.append(k_a)
p_as.append(p_a)
bincount[k_a] = 0# set the max to be the 0
k_b = np.argmax(bincount)
p_b = bincount[k_b]*1.0/line.shape[0]
# print("b", k_b, p_b) # runnerup
k_bs.append(k_b)
p_bs.append(p_b)
p_as=np.array(p_as) # [num_samples]
p_bs=np.array(p_bs) # [num_samples]
return p_as, p_bs, is_acc
def certificate_over_model(model, model_fname, helper, N_m, sigma):
# # evaluate the base model
# model.load_state_dict(torch.load(model_fname)['state_dict']) # reload the model
# base_acc_benign = eval_model(model, helper, is_poison=False)
# base_acc_poison = eval_model(model, helper, is_poison=True) #the lable is poisoned
# logger.info ("BASE model: Benign/Poison ACC %.4f/%.4f"%(base_acc_benign, base_acc_poison))
acc_benign_list = []
acc_poison_list = []
model_preds = []
model_preds_poison = []
labs = []
for _ in range(0,N_m): # loop over the smoothed model
if (_ == 0): # the first model :
start_time = time.time()
# smooth the model and get the acc/asr
model.load_state_dict(torch.load(model_fname)['state_dict']) # reload the model
smooth_model(model,sigma)
# acc_benign = eval_model(model, helper, is_poison=False)
# acc_poison = eval_model(model, helper, is_poison=True) #the lable is poisoned
# logger.info ("SMOOTH model - %d: Benign/Poison ACC %.4f/%.4f"%(_,acc_benign, acc_poison))
# acc_benign_list.append(acc_benign)
# acc_poison_list.append(acc_poison)
data_iterator = helper.test_data # todo: add poisoned data: the lable is not poisoned, only input image is poisoned
all_pred = np.empty((0), int)
# all_pred_poison = np.empty((0), int)
# if (_ == 0): # the first model :
# logger.info(f'before smoothing. eval Model Done in {time.time() - start_time} sec.')
for batch_id, batch in enumerate(data_iterator):
if batch_id>50: #here we only use a subset of test data
break
# clean input and clean label
data, targets = helper.get_batch(data_iterator, batch, evaluation=True)
output = model(data)
pred = output.data.max(1)[1] # get the index of the max log-probability
if (_ == 0): # the first model
labs = labs + list(targets.cpu().numpy())
all_pred = np.concatenate([all_pred, pred.cpu()], axis=0)
# # backdoor input and clean label
# for index in range(0, len(data)):
# data[index] = helper.add_pixel_pattern(data[index],-1)
# output = model(data)
# pred = output.data.max(1)[1] # get the index of the max log-probability
# all_pred_poison = np.concatenate([all_pred_poison, pred.cpu()], axis=0)
model_preds.append(all_pred) # all_pred: [num_samples, 1] ; # model_preds: [num_models]
# model_preds_poison.append(all_pred_poison)
if (_ == 0): # the first model :
logger.info(f'One Smoothed Model Done in {time.time() - start_time} sec.')
# logger.info ("SMOOTH model - avg: Benign/Poison ACC %.4f/%.4f"%( sum(acc_benign_list) / len(acc_benign_list) , sum(acc_poison_list) / len(acc_poison_list)))
# logger.info ("BASE models: Benign/Poison ACC %.4f/%.4f"%(base_acc_benign, base_acc_poison))
pa_exp, pb_exp, is_acc = probability_estimation(labs, model_preds)
# pa_exp_poison, pb_exp_poison, is_acc_poison = probability_estimation(labs, model_preds_poison)
pa_exp_poison, pb_exp_poison, is_acc_poison = None, None,None
return pa_exp, pb_exp, is_acc, pa_exp_poison, pb_exp_poison, is_acc_poison
if __name__ == '__main__':
with open(f'./configs/emnist_smooth_params.yaml', 'r') as f:
params_loaded = yaml.load(f)
current_time = datetime.datetime.now().strftime('%b.%d_%H.%M.%S')
helper = ImageHelper(current_time=current_time, params=params_loaded,
name=params_loaded.get('name', 'mnist'))
foldername= helper.params['smoothed_fname'].split('/')
epoch = int(foldername[-1].split('_')[-1])
foldername = os.path.join(foldername[0],foldername[1])
# load parameters from training
training_param_fname= os.path.join(foldername,'params.yaml')
with open(training_param_fname, 'r') as f:
training_params = yaml.load(f)
helper.params['poison_delta']=training_params['poison_delta']
helper.params['poison_pattern']=training_params['poison_pattern']
helper.params['poison_label_swap']==training_params['poison_label_swap']
helper.params['is_poison']==training_params['is_poison']
helper.params['adversary_list']==training_params['adversary_list']
logger.info(helper.params['poison_delta'])
helper.load_data()
helper.create_model()
# save parameters:
with open(f'{helper.folder_path}/params.yaml', 'w') as f:
yaml.dump(helper.params, f)
# Calculate the expectation and bound of p_A and p_B
start_time = time.time()
pa_exp, pb_exp, is_acc, pa_exp_poison, pb_exp_poison, is_acc_poison = certificate_over_model(helper.target_model, helper.params['smoothed_fname'], helper, helper.params['N_m'], helper.params['test_sigma'])
# prepare output file
output_fname = os.path.join(foldername, "pred_clean_Epoch%dM%dSigma%.4f.txt"%(epoch, helper.params['N_m'], helper.params['test_sigma']))
f = open(output_fname, 'w')
print("idx\tpa_exp\tpb_exp\tis_acc", file=f, flush=True)
for i in range(len(pa_exp)): # len of test data set
print("{}\t{}\t{}\t{}".format(i, pa_exp[i], pb_exp[i], is_acc[i]), file=f, flush=True)
logger.info("is_acc for clean data-clean label %.4f "% (float(sum(is_acc)) / len(is_acc)))
f.close()
logger.info("save to %s"% output_fname)
# # prepare output file
# output_fname = os.path.join(foldername, "pred_poison_Epoch%dM%dSigma%.4f.txt"%(epoch, helper.params['N_m'], helper.params['test_sigma']))
# f = open(output_fname, 'w')
# print("idx\tpa_exp\tpb_exp\tis_acc", file=f, flush=True)
# for i in range(len(pa_exp_poison)): # len of test data set
# print("{}\t{}\t{}\t{}".format(i, pa_exp_poison[i], pb_exp_poison[i], is_acc_poison[i]), file=f, flush=True)
# logger.info("is_acc for poison data-clean label %.4f "% (float(sum(is_acc_poison)) / len(is_acc_poison)))
# f.close()
# logger.info("save to %s"% output_fname)
logger.info(f'Done in {time.time() - start_time} sec.')