-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotting.py
407 lines (364 loc) · 18.8 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thur Aug 5 2022
@author: semvijverberg
"""
from typing import List, Union
import numpy as np
import xarray as xr
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
def plot_maps(corr_xr, mask_xr=None, map_proj=None, row_dim='split',
col_dim='lag', clim='relaxed', hspace=-0.6, wspace=0.02,
size=2.5, cbar_vert=-0.01, units='units', cmap=None,
clevels=None, clabels=None, cticks_center=None,
cbar_tick_dict: dict={},
kwrgs_cbar = {'orientation':'horizontal', 'extend':'neither'},
title=None, title_fontdict: dict=None, subtitles: np.ndarray=None,
subtitle_fontdict: dict=None, zoomregion=None,
aspect=None, n_xticks=5, n_yticks=3, x_ticks: Union[bool, np.ndarray]=None,
y_ticks: Union[bool, np.ndarray]=None, add_cfeature: str=None,
col_wrap: int=None,
kwrgs_mask: dict={}):
'''
zoomregion = tuple(east_lon, west_lon, south_lat, north_lat)
'''
#%%
# default parameters
# mask_xr=None ; row_dim='split'; col_dim='lag'; clim='relaxed'; wspace=.03;
# size=2.5; cbar_vert=-0.01; units='units'; cmap=None; hspace=-0.6;
# clevels=None; clabels=None; cticks_center=None; cbar_tick_dict={}; map_proj=None ;
# drawbox=None; subtitles=None; title=None; lat_labels=True; zoomregion=None
# aspect=None; n_xticks=5; n_yticks=3; title_fontdict=None; x_ticks=None;
# y_ticks=None; add_cfeature=None; col_wrap=None
# kwrgs_cbar = {'orientation':'horizontal', 'extend':'neither'}
if map_proj is None:
cen_lon = int(corr_xr.longitude.mean().values)
map_proj = ccrs.LambertCylindrical(central_longitude=cen_lon)
if row_dim not in corr_xr.dims:
corr_xr = corr_xr.expand_dims(row_dim, 0)
if mask_xr is not None and row_dim not in mask_xr.dims:
mask_xr = mask_xr.expand_dims(row_dim, 0)
if col_dim not in corr_xr.dims:
corr_xr = corr_xr.expand_dims(col_dim, 0)
if mask_xr is not None and col_dim not in mask_xr.dims:
mask_xr = mask_xr.expand_dims(col_dim, 0)
var_n = corr_xr.name
rows = corr_xr[row_dim].values
cols = corr_xr[col_dim].values
rename_dims = {row_dim:'row', col_dim:'col'}
rename_dims_inv = {'row':row_dim, 'col':col_dim}
plot_xr = corr_xr.rename(rename_dims)
if mask_xr is not None:
plot_mask = mask_xr.rename(rename_dims)
dim_coords = plot_xr.squeeze().dims
dim_coords = [d for d in dim_coords if d not in ['latitude', 'longitude']]
rename_subs = {d:rename_dims_inv[d] for d in dim_coords}
lat = plot_xr.latitude
lon = plot_xr.longitude
zonal_width = abs(lon[-1] - lon[0]).values
if aspect is None:
aspect = (lon.size) / lat.size
if col_wrap is None:
g = xr.plot.FacetGrid(plot_xr, col='col', row='row',
subplot_kws={'projection': map_proj},
sharex=True, sharey=True,
aspect=aspect, size=size)
else:
g = xr.plot.FacetGrid(plot_xr, col='col',
subplot_kws={'projection': map_proj},
sharex=True, sharey=True,
aspect=aspect, size=size,
col_wrap=col_wrap)
figheight = g.fig.get_figheight()
g.fig.subplots_adjust(hspace=hspace, wspace=wspace)
# =============================================================================
# Coordinate labels
# =============================================================================
import cartopy.mpl.ticker as cticker
g.set_ticks(fontsize='large')
if x_ticks is None or x_ticks is False: #auto-ticks, if False, will be masked
longitude_labels = np.linspace(np.min(lon), np.max(lon), n_xticks, dtype=int)
longitude_labels = np.array(sorted(list(set(np.round(longitude_labels, -1)))))
else:
longitude_labels = x_ticks # if x_ticks==False -> no ticklabels
if y_ticks is None or y_ticks is False: #auto-ticks, if False, will be masked
latitude_labels = np.linspace(lat.min(), lat.max(), n_yticks, dtype=int)
latitude_labels = sorted(list(set(np.round(latitude_labels, -1))))
else:
latitude_labels = y_ticks # if y_ticks==False -> no ticklabels
# =============================================================================
# clevels and colormap
# =============================================================================
if clevels is None:
vmin_ = np.nanpercentile(plot_xr, 1) ; vmax_ = np.nanpercentile(plot_xr, 99)
vmin = np.round(float(vmin_),decimals=2) ; vmax = np.round(float(vmax_),decimals=2)
clevels = np.linspace(-max(abs(vmin),vmax),max(abs(vmin),vmax),17) # choose uneven number for # steps
else:
vmin_ = np.nanpercentile(plot_xr, 1) ; vmax_ = np.nanpercentile(plot_xr, 99)
vmin = np.round(float(vmin_),decimals=2) ; vmax = np.round(float(vmax_),decimals=2)
clevels=clevels
if cmap is None:
cmap = plt.cm.RdBu_r
else:
cmap=cmap
# =============================================================================
# loop over subplots in Facetgrid
# =============================================================================
for col, c_label in enumerate(cols):
xrdatavar = plot_xr.sel(col=c_label)
dlon = abs(lon[1] - lon[0])
if abs(lon[-1] - 360) <= dlon and lon[0] < dlon:
xrdatavar = extend_longitude(xrdatavar)
for row, r_label in enumerate(rows):
if col_wrap is not None:
row = np.repeat(list(range(g.axes.shape[0])), g.axes.shape[1])[col]
col = (list(range(col_wrap))*g.axes.shape[0])[col]
print(f"\rPlotting Corr maps {var_n}, {row_dim} {r_label}, {col_dim} {c_label}", end="\n")
plotdata = xrdatavar.sel(row=r_label).rename(rename_subs).squeeze()
# =============================================================================
# Plot contour mask
# =============================================================================
if mask_xr is not None:
xrmaskvar = plot_mask.sel(col=c_label)
if abs(lon[-1] - 360) <= (lon[1] - lon[0]) and lon[0]==0:
xrmaskvar = extend_longitude(xrmaskvar)
plotmask = xrmaskvar.sel(row=r_label)
_kwrgs_mask = {'linestyles':['solid'],
'colors':['black'],
'linewidths':np.round(zonal_width/150, 1)+0.3}
_kwrgs_mask.update(kwrgs_mask)
# field not completely masked?
all_masked = (plotmask.values==False).all()
if all_masked == False:
# if plotdata is already masked (with nans):
p_nans = int(100*plotdata.values[np.isnan(plotdata.values)].size / plotdata.size)
if p_nans != 100:
plotmask.plot.contour(ax=g.axes[row,col],
transform=ccrs.PlateCarree(),
levels=[float(vmin),float(vmax)],
add_colorbar=False,
**_kwrgs_mask)
# =============================================================================
# Plot colourmap
# =============================================================================
# if no signifcant regions, still plot corr values, but the causal plot must remain empty
if mask_xr is None or all_masked==False or (all_masked and 'tigr' not in str(c_label)):
im = plotdata.plot.pcolormesh(ax=g.axes[row,col], transform=ccrs.PlateCarree(),
center=0, levels=clevels,
cmap=cmap,add_colorbar=False)
elif all_masked and 'tigr' in c_label:
g.axes[row,col].text(0.5, 0.5, 'No regions significant',
horizontalalignment='center', fontsize='x-large',
verticalalignment='center', transform=g.axes[row,col].transAxes)
# =============================================================================
# Subtitles
# =============================================================================
if subtitles is not None:
if subtitle_fontdict is None:
subtitle_fontdict = dict({'fontsize' : 16})
if subtitles is not False:
subtitle = np.array(subtitles)[row,col]
else:
subtitle = ''
g.axes[row,col].set_title(subtitle,
fontdict=subtitle_fontdict,
loc='center')
# =============================================================================
# Format coordinate ticks
# =============================================================================
if map_proj.proj4_params['proj'] in ['merc', 'eqc', 'cea']:
ax = g.axes[row,col]
# x-ticks and labels
ax.set_xticks(longitude_labels[:], crs=ccrs.PlateCarree())
if x_ticks is not False:
ax.set_xticklabels(longitude_labels[:], fontsize=12)
lon_formatter = cticker.LongitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
else:
fake_labels = [' ' * len( str(l) ) for l in longitude_labels]
g.axes[row,col].set_xticklabels(fake_labels, fontsize=12)
# y-ticks and labels
g.axes[row,col].set_yticks(latitude_labels, crs=ccrs.PlateCarree())
if y_ticks is not False:
g.axes[row,col].set_yticklabels(latitude_labels, fontsize=12)
lat_formatter = cticker.LatitudeFormatter()
g.axes[row,col].yaxis.set_major_formatter(lat_formatter)
else:
fake_labels = [' ' * len( str(l) ) for l in latitude_labels]
g.axes[row,col].set_yticklabels(fake_labels, fontsize=12)
# =============================================================================
# Gridlines
# =============================================================================
if type(y_ticks) is bool and type(x_ticks) is bool:
if np.logical_and(y_ticks==False, x_ticks==False):
# if no ticks, then also no gridlines
pass
else:
gl = g.axes[row,col].gridlines(crs=ccrs.PlateCarree(),
linewidth=.5, color='black', alpha=0.15,
linestyle='--', zorder=4)
gl.xlocator = mticker.FixedLocator((longitude_labels % 360 + 540) % 360 - 180)
gl.ylocator = mticker.FixedLocator(latitude_labels)
g.axes[row,col].set_ylabel('')
g.axes[row,col].set_xlabel('')
g.axes[row,col].coastlines(color='black', alpha=0.3, linewidth=2, facecolor='white')
# black outline subplot
g.axes[row,col].spines['geo'].set_edgecolor('black')
if corr_xr.name is not None:
if corr_xr.name[:3] == 'sst':
g.axes[row,col].add_feature(cfeature.LAND, facecolor='grey',
alpha=0.1, zorder=0)
if add_cfeature is not None:
g.axes[row,col].add_feature(cfeature.__dict__[add_cfeature],
facecolor='white', alpha=0.1,
zorder=4)
if zoomregion is not None:
g.axes[row,col].set_extent(zoomregion, crs=ccrs.PlateCarree())
else:
g.axes[row,col].set_extent([lon[0], lon[-1],
lat[0], lat[-1]], crs=ccrs.PlateCarree())
# =============================================================================
# lay-out settings FacetGrid and colorbar
# =============================================================================
# height colorbor 1/10th of height of subfigure
height = g.axes[-1,0].get_position().height / 10
bottom_ysub = (figheight/40)/(rows.size*2) + cbar_vert
cbar_ax = g.fig.add_axes([0.25, bottom_ysub,
0.5, height]) #[left, bottom, width, height]
if units == 'units' and 'units' in corr_xr.attrs:
clabel = corr_xr.attrs['units']
elif units != 'units' and units is not None:
clabel = units
else:
clabel = ''
if cticks_center is None:
if clabels is None:
clabels = clevels[::2]
plt.colorbar(im, cax=cbar_ax,
label=clabel, ticks=clabels, **kwrgs_cbar)
else:
cbar = plt.colorbar(im, cbar_ax, label=clabel, **kwrgs_cbar)
cbar.set_ticks(clevels[:-1] + 0.5)
cbar.set_ticklabels(np.array(clevels[1:], dtype=int))
cbar_ax.tick_params(**cbar_tick_dict)
if title is not None:
if title_fontdict is None:
title_fontdict = dict({'fontsize' : 18,
'fontweight' : 'bold'})
g.fig.suptitle(title, **title_fontdict)
return g
class MidpointNormalize(mcolors.Normalize):
def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
self.midpoint = midpoint
mcolors.Normalize.__init__(self, vmin, vmax, clip)
def __call__(self, value, clip=None):
# I'm ignoring masked values and all kinds of edge cases to make a
# simple example...
x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1]
return np.ma.masked_array(np.interp(value, x, y))
def extend_longitude(data):
plottable = xr.concat([data, data.sel(longitude=data.longitude[:1])], dim='longitude').to_dataset(name="ds")
plottable["longitude"] = np.linspace(0,360, len(plottable.longitude))
plottable = plottable.to_array(dim='ds').squeeze(dim='ds').drop_vars('ds')
return plottable
def plot_labels(prec_labels,
kwrgs_plot={},
labelsintext=False):
xrlabels = prec_labels.copy()
# if 'cmap' not in kwrgs_plot.keys():
# # default cmap is plt.cm.tab20, which does not have more than 20 colours
# xrlabels = xrlabels.where(~(xrlabels.values>20))
kwrgs_labels = _get_kwrgs_labels(xrlabels, kwrgs_plot, labelsintext)
xrlabels.values = prec_labels.values - 0.5
return plot_maps(xrlabels, **kwrgs_labels)
def _get_kwrgs_labels(prec_labels, kwrgs_plot={}, labelsintext=False):
# default dims such that I can use dims to ensure position textinmap
if 'row_dim' not in kwrgs_plot.keys():
kwrgs_plot['row_dim'] = 'split'
if 'col_dim' not in kwrgs_plot.keys():
kwrgs_plot['col_dim'] = 'lag'
kwrgs_labels = {'size':3, 'cticks_center':True, 'units': None}
if labelsintext:
textinmap = []
min_lat = float(np.min(prec_labels.latitude))
max_lat = float(np.max(prec_labels.latitude))
spatdim = ['latitude', 'longitude', 'lat', 'lon', 'mask']
dims = [d for d in prec_labels.dims if d not in spatdim]
coords = [list(np.array(prec_labels[d], dtype=str)) for d in dims]
if len(coords) == 1:
coords.append(['fake'])
elif len(coords) == 0:
coords = ['fake', 'fake'] ; dims = ['fake']
combs = np.array(np.meshgrid(coords[0], coords[1])).T.reshape(-1,2)
for i, (c1, c2) in enumerate(combs):
idx1 = coords[0].index(c1)
if c2 != 'fake':
idx2 = coords[1].index(c2)
labelsmap = prec_labels[idx1, idx2]
elif c1 != 'fake' and c2 == 'fake':
idx2 = 0
labelsmap = prec_labels[idx1]
else:
idx1 = 0; idx2 = 0
labelsmap = prec_labels
df_labelloc = labels_to_df(labelsmap,
return_mean_latlon=True)
labels = np.unique(labelsmap)
labels = labels[~np.isnan(labels)]
if kwrgs_plot['col_dim'] == dims[0]:
rowdim = (idx2, idx1)
else:
rowdim = (idx1, idx2)
temp = []
for q, l in enumerate(labels):
if l == 0: # pattern cov
lat, lon = df_labelloc.mean(0)[:2]
else:
lat, lon = df_labelloc.loc[l].iloc[:2].values.round(1)
if lon > 180: lon-360
temp.append([lon,max(min_lat,min(max_lat,lat)),
str(int(l)),
{'fontsize':10}]),
# 'bbox':dict(facecolor='pink', alpha=0.01)}])
textinmap.append([rowdim, temp])
kwrgs_labels['textinmap'] = textinmap
if np.isnan(prec_labels.values).all() == False:
max_N_regs = min(20, int(prec_labels.max() + 0.5))
else:
max_N_regs = 20
label_weak = np.nan_to_num(prec_labels.values) >= max_N_regs
prec_labels.values[label_weak] = max_N_regs
steps = max_N_regs+1
prec_labels.values = prec_labels.values-0.5
clevels = np.linspace(0, max_N_regs,steps)
if 'cmap' not in kwrgs_plot:
cmap = plt.cm.tab20
else:
cmap = kwrgs_plot['cmap']
kwrgs_labels.update({'clevels':clevels,
'cmap':cmap})
if len(prec_labels.shape) == 2 or prec_labels.shape[0] == 1:
kwrgs_labels['cbar_vert'] = -0.1
kwrgs_labels.update(kwrgs_plot)
return kwrgs_labels
def labels_to_df(prec_labels, return_mean_latlon=True):
dims = [d for d in prec_labels.dims if d not in ['latitude', 'longitude']]
df = prec_labels.mean(dim=tuple(dims)).to_dataframe().dropna()
label_coord = [c for c in df.columns if 'label' in c][0]
if return_mean_latlon:
labels = np.unique(prec_labels)[~np.isnan(np.unique(prec_labels))]
mean_coords_area = np.zeros( (len(labels), 3))
for i,l in enumerate(labels):
latlon = np.array(df[(df[label_coord]==l).values].index)
latlon = np.array([list(l) for l in latlon])
if latlon.size != 0:
mean_coords_area[i][:2] = np.median(latlon, 0)
mean_coords_area[i][-1] = latlon.shape[0]
df = pd.DataFrame(mean_coords_area, index=labels,
columns=['latitude', 'longitude', 'n_gridcells'])
return df