-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_data_generator.py
102 lines (71 loc) · 6 KB
/
training_data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import argparse
import os
from builders.data_training_builders import (sort_by_number,get_file_path,create_dataframe,create_directory_if_does_not_exist)
from builders.data_training_generators import generate_activities
import numpy as np
''' EXECUTION OF THE TRAINING DATA GENERATION PROGRAM '''
parser = argparse.ArgumentParser(description="Script for generating training data")
parser.add_argument('position', type=str, choices=['chest', 'left', 'right'], help='Sensor position')
args = parser.parse_args()
position = args.position.upper()
current_directory = os.path.dirname(__file__)
main_directory = os.path.join(current_directory, 'database')
subdirectory_list = os.listdir(main_directory)
subdirectory_list.sort(key=sort_by_number)
if position == "CHEST":
label_directory = os.path.join(current_directory, 'labels_and_data','labels','chest')
data_array_directory = os.path.join(current_directory, 'labels_and_data','data','chest')
create_directory_if_does_not_exist(label_directory)
create_directory_if_does_not_exist(data_array_directory)
elif position == "LEFT":
label_directory = os.path.join(current_directory, 'labels_and_data', 'labels', 'left')
data_array_directory = os.path.join(current_directory, 'labels_and_data', 'data', 'left')
create_directory_if_does_not_exist(label_directory)
create_directory_if_does_not_exist(data_array_directory)
else:
label_directory = os.path.join(current_directory, 'labels_and_data', 'labels', 'right')
data_array_directory = os.path.join(current_directory, 'labels_and_data', 'data', 'right')
create_directory_if_does_not_exist(label_directory)
create_directory_if_does_not_exist(data_array_directory)
list_of_data_arrays_in_the_time_domain = [[] for _ in range(8)]
list_of_data_arrays_in_the_frequency_domain = [[] for _ in range(8)]
labels_list = [[] for _ in range(4)]
print("comparação realizada")
for subdirectory in subdirectory_list:
acc,gyr,sampling = get_file_path(main_directory, subdirectory, position)
acc_dataframe, gyr_dataframe, sampling_dataframe = create_dataframe(acc, gyr, sampling)
generate_activities(acc_dataframe, gyr_dataframe, sampling_dataframe, position,
list_of_data_arrays_in_the_time_domain, list_of_data_arrays_in_the_frequency_domain,
labels_list)
np.save(os.path.join(label_directory, 'multiple_class_label_1.npy'), np.asarray(labels_list[0]))
np.save(os.path.join(label_directory, 'multiple_class_label_2.npy'), np.asarray(labels_list[1]))
np.save(os.path.join(label_directory, 'binary_class_label_1.npy'), np.asarray(labels_list[2]))
np.save(os.path.join(label_directory, 'binary_class_label_2.npy'), np.asarray(labels_list[3]))
np.save(os.path.join(data_array_directory, 'magacc_time_domain_data_array.npy'), np.asarray(list_of_data_arrays_in_the_time_domain[0]))
np.save(os.path.join(data_array_directory, 'magacc_frequency_domain_data_array.npy'), np.asarray(list_of_data_arrays_in_the_frequency_domain[0]))
np.save(os.path.join(data_array_directory, 'acc_x_y_z_axes_time_domain_data_array.npy'),
np.concatenate((np.asarray(list_of_data_arrays_in_the_time_domain[1]), np.asarray(list_of_data_arrays_in_the_time_domain[2]),
np.asarray(list_of_data_arrays_in_the_time_domain[3])), axis=2))
np.save(os.path.join(data_array_directory, 'acc_x_y_z_axes_frequency_domain_data_array.npy'),
np.concatenate((np.asarray(list_of_data_arrays_in_the_frequency_domain[1]), np.asarray(list_of_data_arrays_in_the_frequency_domain[2]),
np.asarray(list_of_data_arrays_in_the_frequency_domain[3])), axis=2))
np.save(os.path.join(data_array_directory, 'maggyr_time_domain_data_array.npy'), np.asarray(list_of_data_arrays_in_the_time_domain[4]))
np.save(os.path.join(data_array_directory, 'maggyr_frequency_domain_data_array.npy'), np.asarray(list_of_data_arrays_in_the_frequency_domain[4]))
np.save(os.path.join(data_array_directory, 'gyr_x_y_z_axes_time_domain_data_array.npy'),
np.concatenate((np.asarray(list_of_data_arrays_in_the_time_domain[5]), np.asarray(list_of_data_arrays_in_the_time_domain[6]),
np.asarray(list_of_data_arrays_in_the_time_domain[7])), axis=2))
np.save(os.path.join(data_array_directory, 'gyr_x_y_z_axes_frequency_domain_data_array.npy'),
np.concatenate((np.asarray(list_of_data_arrays_in_the_frequency_domain[5]), np.asarray(list_of_data_arrays_in_the_frequency_domain[6]),
np.asarray(list_of_data_arrays_in_the_frequency_domain[7])), axis=2))
np.save(os.path.join(data_array_directory, 'magacc_and_maggyr_time_domain_data_array.npy'),
np.concatenate((np.asarray(list_of_data_arrays_in_the_time_domain[0]), np.asarray(list_of_data_arrays_in_the_time_domain[4])), axis=2))
np.save(os.path.join(data_array_directory, 'magacc_and_maggyr_frequency_domain_data_array.npy'),
np.concatenate((np.asarray(list_of_data_arrays_in_the_frequency_domain[0]), np.asarray(list_of_data_arrays_in_the_frequency_domain[4])), axis=2))
np.save(os.path.join(data_array_directory, 'acc_and_gyr_three_axes_time_domain_data_array.npy'),
np.concatenate((np.asarray(list_of_data_arrays_in_the_time_domain[1]),np.asarray(list_of_data_arrays_in_the_time_domain[2]),
np.asarray(list_of_data_arrays_in_the_time_domain[3]),np.asarray(list_of_data_arrays_in_the_time_domain[5]),
np.asarray(list_of_data_arrays_in_the_time_domain[6]),np.asarray(list_of_data_arrays_in_the_time_domain[7])), axis=2))
np.save(os.path.join(data_array_directory, 'acc_and_gyr_three_axes_frequency_domain_data_array.npy'),
np.concatenate((np.asarray(list_of_data_arrays_in_the_frequency_domain[1]), np.asarray(list_of_data_arrays_in_the_frequency_domain[2]),
np.asarray(list_of_data_arrays_in_the_frequency_domain[3]),np.asarray(list_of_data_arrays_in_the_frequency_domain[5]),
np.asarray(list_of_data_arrays_in_the_frequency_domain[6]),np.asarray(list_of_data_arrays_in_the_frequency_domain[7])), axis=2))