-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmain.py
145 lines (118 loc) · 5.27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# -*- coding: utf-8 -*-
import time
import torch
import torch.nn.functional as F
import numpy as np
import logging
import argparse
from model import STCK_Atten
from utils import dataset, metrics, config
import copy
from tqdm import tqdm
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def clip_gradient(model, clip_value):
params = list(filter(lambda p: p.grad is not None, model.parameters()))
for p in params:
p.grad.data.clamp_(-clip_value, clip_value)
def train_model(model, train_iter, dev_iter, epoch, lr, loss_func):
optim = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=lr)
all_loss = 0.0
model.train()
ind = 0.0
for idx, batch in enumerate(train_iter):
txt_text = batch.text[0]
cpt_text = batch.concept[0]
# batch_size = text.size()[0]
target = batch.label
if torch.cuda.is_available():
txt_text = txt_text.cuda()
cpt_text = cpt_text.cuda()
target = target.cuda()
optim.zero_grad()
# pred: batch_size, output_size
logit = model(txt_text, cpt_text)
loss = loss_func(logit, target)
loss.backward()
# clip_gradient(model, 1e-1)
optim.step()
if idx % 10 == 0:
logger.info('Epoch:%d, Idx:%d, Training Loss:%.4f', epoch, idx, loss.item())
# dev_iter_ = copy.deepcopy(dev_iter)
# p, r, f1, eval_loss = eval_model(model, dev_iter, id_label)
all_loss += loss.item()
ind += 1
eval_loss, acc, p, r, f1 = 0.0, 0.0, 0.0, 0.0, 0.0
eval_loss, acc, p, r, f1 = eval_model(model, dev_iter, loss_func)
# return all_loss/ind
return all_loss/ind, eval_loss, acc, p, r, f1
def eval_model(model, val_iter, loss_func):
eval_loss = 0.0
ind = 0.0
score = 0.0
pred_label = None
target_label = None
# flag = True
model.eval()
with torch.no_grad():
for idx, batch in enumerate(tqdm(val_iter)):
txt_text = batch.text[0]
cpt_text = batch.concept[0]
# batch_size = text.size()[0]
target = batch.label
if torch.cuda.is_available():
txt_text = txt_text.cuda()
cpt_text = cpt_text.cuda()
target = target.cuda()
logit = model(txt_text, cpt_text)
loss = loss_func(logit, target)
eval_loss += loss.item()
if ind > 0:
pred_label = torch.cat((pred_label, logit), 0)
target_label = torch.cat((target_label, target))
else:
pred_label = logit
target_label = target
ind += 1
acc, p, r, f1 = metrics.assess(pred_label, target_label)
return eval_loss/ind, acc, p, r, f1
def main():
args = config.config()
if not args.train_data_path:
logger.info("please input train dataset path")
exit()
# if not (args.dev_data_path or args.test_data_path):
# logger.info("please input dev or test dataset path")
# exit()
all_ = dataset.load_dataset(args.train_data_path, args.dev_data_path, args.test_data_path, \
args.txt_embedding_path, args.cpt_embedding_path, args.train_batch_size, \
args.dev_batch_size, args.test_batch_size)
txt_TEXT, cpt_TEXT, txt_vocab_size, cpt_vocab_size, txt_word_embeddings, cpt_word_embeddings, \
train_iter, dev_iter, test_iter, label_size = all_
model = STCK_Atten(txt_vocab_size, cpt_vocab_size, args.embedding_dim, txt_word_embeddings,\
cpt_word_embeddings, args.hidden_size, label_size)
if torch.cuda.is_available():
model = model.cuda()
train_data, test_data = dataset.train_test_split(train_iter, 0.8)
train_data, dev_data = dataset.train_dev_split(train_data, 0.8)
loss_func = torch.nn.CrossEntropyLoss()
if args.load_model:
model.load_state_dict(torch.load(args.load_model))
test_loss, acc, p, r, f1 = eval_model(model, test_data, loss_func)
logger.info('Test Loss:%.4f, Test Acc:%.4f, Test P:%.4f, Test R:%.4f, Test F1:%.4f', test_loss, acc, p, r, f1)
return
best_score = 0.0
test_loss, test_acc, test_p, test_r, test_f1 = 0, 0, 0, 0, 0
for epoch in range(args.epoch):
train_loss, eval_loss, acc, p, r, f1 = train_model(model, train_data, dev_data, epoch, args.lr, loss_func)
logger.info('Epoch:%d, Training Loss:%.4f', epoch, train_loss)
logger.info('Epoch:%d, Eval Loss:%.4f, Eval Acc:%.4f, Eval P:%.4f, Eval R:%.4f, Eval F1:%.4f', epoch, eval_loss, acc, p, r, f1)
if f1 > best_score:
best_score = f1
torch.save(model.state_dict(), 'results/%d_%s_%s.pt' % (epoch, 'Model', str(best_score)))
test_loss, test_acc, test_p, test_r, test_f1 = eval_model(model, test_data, loss_func)
logger.info('Test Loss:%.4f, Test Acc:%.4f, Test P:%.4f, Test R:%.4f, Test F1:%.4f', test_loss, test_acc, test_p, test_r, test_f1)
if __name__ == "__main__":
main()