-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathTrainer.py
343 lines (267 loc) · 14.5 KB
/
Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from __future__ import print_function
############################################################################################
#
# Project: Peter Moss Acute Myeloid & Lymphoblastic Leukemia AI Research Project
# Repository: ALL Detection System 2019
# Project: Facial Authentication Server
#
# Author: Adam Milton-Barker (AdamMiltonBarker.com)
# Contributors:
# Title: Trainer Class
# Description: Trainer class for the ALL Detection System 2019 NCS1 Classifier.
# License: MIT License
# Last Modified: 2020-07-16
#
############################################################################################
import glob, json, math, os, random, sys, time
import numpy as np
import tensorflow as tf
import Classes.inception_preprocessing
from tensorflow.contrib.framework.python.ops.variables import get_or_create_global_step
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.framework import graph_util
from sys import argv
from datetime import datetime
from builtins import range
from Classes.Helpers import Helpers
from Classes.Data import Data
from Classes.inception_v3 import inception_v3, inception_v3_arg_scope
slim = tf.contrib.slim
class Trainer():
""" Trainer Class
Trains the ALL Detection System 2019 NCS1 Trainer.
"""
def __init__(self):
""" Initializes Trainer Class """
self.Helpers = Helpers("Trainer")
self.confs = self.Helpers.confs
self.Helpers.logger.info(
"Trainer class initialization complete.")
self.labelsToName = {}
def getSplit(self, split_name):
""" Gets the training/validation split """
# Check whether the split_name is train or validation
if split_name not in ['train', 'validation']:
raise ValueError(
'The split_name %s is not recognized. Please input either train or validation as the split_name' % (split_name))
# Create the full path for a general FilePattern to locate the tfrecord_files
FilePattern_path = os.path.join(
self.confs["Classifier"]["DatasetDir"], self.confs["Classifier"]["FilePattern"] % (split_name))
# Count the total number of examples in all of these shard
num_samples = 0
FilePattern_for_counting = 'ALL_' + split_name
tfrecords_to_count = [os.path.join(self.confs["Classifier"]["DatasetDir"], file) for file in os.listdir(
self.confs["Classifier"]["DatasetDir"]) if file.startswith(FilePattern_for_counting)]
# print(tfrecords_to_count)
for tfrecord_file in tfrecords_to_count:
for record in tf.python_io.tf_record_iterator(tfrecord_file):
num_samples += 1
# Create a reader, which must be a TFRecord reader in this case
reader = tf.TFRecordReader
# Create the keys_to_features dictionary for the decoder
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='jpg'),
'image/class/label': tf.FixedLenFeature(
[], tf.int64, default_value=tf.zeros([], dtype=tf.int64)),
}
# Create the items_to_handlers dictionary for the decoder.
items_to_handlers = {
'image': slim.tfexample_decoder.Image(),
'label': slim.tfexample_decoder.Tensor('image/class/label'),
}
# Start to create the decoder
decoder = slim.tfexample_decoder.TFExampleDecoder(
keys_to_features, items_to_handlers)
# Create the labels_to_name file
labels_to_name_dict = self.labelsToName
# Actually create the dataset
dataset = slim.dataset.Dataset(
data_sources=FilePattern_path,
decoder=decoder,
reader=reader,
num_readers=4,
num_samples=num_samples,
num_classes=self.confs["Classifier"]["NumClasses"],
labels_to_name=labels_to_name_dict,
items_to_descriptions=self.items_to_descriptions)
return dataset
def loadBatch(self, dataset, is_training=True):
""" Loads a batch for training """
# First create the data_provider object
data_provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
common_queue_capacity=24 + 3 *
self.confs["Classifier"]["BatchSize"],
common_queue_min=24)
# Obtain the raw image using the get method
raw_image, label = data_provider.get(['image', 'label'])
# Perform the correct preprocessing for this image depending if it is training or evaluating
image = Classes.inception_preprocessing.preprocess_image(
raw_image, self.confs["Classifier"]["ImageSize"], self.confs["Classifier"]["ImageSize"], is_training)
# As for the raw images, we just do a simple reshape to batch it up
raw_image = tf.image.resize_image_with_crop_or_pad(
raw_image, self.confs["Classifier"]["ImageSize"], self.confs["Classifier"]["ImageSize"])
# Batch up the image by enqueing the tensors internally in a FIFO queue and dequeueing many elements with tf.train.batch.
images, raw_images, labels = tf.train.batch(
[image, raw_image, label],
batch_size=self.confs["Classifier"]["BatchSize"],
num_threads=4,
capacity=4 * self.confs["Classifier"]["BatchSize"],
allow_smaller_final_batch=True)
return images, raw_images, labels
Trainer = Trainer()
def run():
""" Trainer Runner
Runs the ALL Detection System 2019 NCS1 Classifier Trainer.
"""
humanStart, clockStart = Trainer.Helpers.timerStart()
Trainer.Helpers.logger.info(
"ALL Detection System 2019 NCS1 Trainer started.")
# Open the labels file
Trainer.labels = open(
Trainer.confs["Classifier"]["DatasetDir"] + "/" + Trainer.confs["Classifier"]["Labels"], 'r')
# Create a dictionary to refer each label to their string name
for line in Trainer.labels:
label, string_name = line.split(':')
string_name = string_name[:-1] # Remove newline
Trainer.labelsToName[int(label)] = string_name
# Create a dictionary that will help people understand your dataset better. This is required by the Dataset class later.
Trainer.items_to_descriptions = {
'image': 'A 3-channel RGB coloured image that is ex: office, people',
'label': 'A label that ,start from zero'
}
# Create the log directory here. Must be done here otherwise import will activate this unneededly.
if not os.path.exists(Trainer.confs["Classifier"]["LogDir"]):
os.mkdir(Trainer.confs["Classifier"]["LogDir"])
# Now we start to construct the graph and build our model
with tf.Graph().as_default() as graph:
# Set the verbosity to INFO level
tf.logging.set_verbosity(tf.logging.INFO)
# First create the dataset and load one batch
dataset = Trainer.getSplit('train')
images, _, labels = Trainer.loadBatch(dataset)
# Know the number steps to take before decaying the learning rate and batches per epoch
num_batches_per_epoch = dataset.num_samples // Trainer.confs["Classifier"]["BatchSize"]
# Because one step is one batch processed
num_steps_per_epoch = num_batches_per_epoch
decay_steps = int(
Trainer.confs["Classifier"]["EpochsBeforeDecay"] * num_steps_per_epoch)
# Create the model inference
with slim.arg_scope(inception_v3_arg_scope()):
logits, end_points = inception_v3(
images, num_classes=dataset.num_classes, is_training=True)
# Perform one-hot-encoding of the labels (Try one-hot-encoding within the load_batch function!)
one_hot_labels = slim.one_hot_encoding(labels, dataset.num_classes)
# Performs the equivalent to tf.nn.sparse_softmax_cross_entropy_with_logits but enhanced with checks
loss = tf.losses.softmax_cross_entropy(
onehot_labels=one_hot_labels, logits=logits)
# obtain the regularization losses as well
total_loss = tf.losses.get_total_loss()
# Create the global step for monitoring the learning_rate and training.
global_step = get_or_create_global_step()
# Define your exponentially decaying learning rate
lr = tf.train.exponential_decay(
learning_rate=Trainer.confs["Classifier"]["LearningRate"],
global_step=global_step,
decay_steps=decay_steps,
decay_rate=Trainer.confs["Classifier"]["LearningRateDecay"],
staircase=True)
# Now we can define the optimizer that takes on the learning rate
optimizer = tf.train.AdamOptimizer(learning_rate=lr)
# optimizer = tf.train.RMSPropOptimizer(learning_rate = lr, momentum=0.9)
# Create the train_op.
train_op = slim.learning.create_train_op(total_loss, optimizer)
# State the metrics that you want to predict. We get a predictions that is not one_hot_encoded.
predictions = tf.argmax(end_points['Predictions'], 1)
probabilities = end_points['Predictions']
accuracy, accuracy_update = tf.contrib.metrics.streaming_accuracy(
predictions, labels)
metrics_op = tf.group(accuracy_update, probabilities)
# Now finally create all the summaries you need to monitor and group them into one summary op.
tf.summary.scalar('losses/Total_Loss', total_loss)
tf.summary.scalar('accuracy', accuracy)
tf.summary.scalar('learning_rate', lr)
my_summary_op = tf.summary.merge_all()
# Now we need to create a training step function that runs both the train_op, metrics_op and updates the global_step concurrently.
def train_step(sess, train_op, global_step, epochCount):
'''
Simply runs a session for the three arguments provided and gives a logging on the time elapsed for each global step
'''
# Check the time for each sess run
start_time = time.time()
total_loss, global_step_count, _ = sess.run(
[train_op, global_step, metrics_op])
time_elapsed = time.time() - start_time
# Run the logging to print some results
logging.info(' Epch %.2f Glb Stp %s: Loss: %.4f (%.2f sec/step)',
epochCount, global_step_count, total_loss, time_elapsed)
return total_loss, global_step_count
# Define your supervisor for running a managed session. Do not run the summary_op automatically or else it will consume too much memory
sv = tf.train.Supervisor(
logdir=Trainer.confs["Classifier"]["LogDir"], summary_op=None)
# Run the managed session
with sv.managed_session() as sess:
for step in range(num_steps_per_epoch * Trainer.confs["Classifier"]["Epochs"]):
# At the start of every epoch, show the vital information:
if step % num_batches_per_epoch == 0:
logging.info('Epoch %s/%s', step/num_batches_per_epoch + 1,
Trainer.confs["Classifier"]["Epochs"])
learning_rate_value, accuracy_value = sess.run(
[lr, accuracy])
logging.info('Current Learning Rate: %s',
learning_rate_value)
logging.info('Current Streaming Accuracy: %s',
accuracy_value)
# optionally, print your logits and predictions for a sanity check that things are going fine.
logits_value, probabilities_value, predictions_value, labels_value = sess.run(
[logits, probabilities, predictions, labels])
print('logits: \n', logits_value[:5])
print('Probabilities: \n', probabilities_value[:5])
print('predictions: \n', predictions_value[:100])
print('Labels:\n:', labels_value[:100])
# Log the summaries every 10 step.
if step % 10 == 0:
loss, _ = train_step(
sess, train_op, sv.global_step, step/num_batches_per_epoch + 1)
summaries = sess.run(my_summary_op)
sv.summary_computed(sess, summaries)
# If not, simply run the training step
else:
loss, _ = train_step(
sess, train_op, sv.global_step, step/num_batches_per_epoch + 1)
# We log the final training loss and accuracy
logging.info('Final Loss: %s', loss)
logging.info('Final Accuracy: %s', sess.run(accuracy))
# Once all the training has been done, save the log files and checkpoint model
logging.info('Finished training! Saving model to disk now.')
checkpoint_file = tf.train.latest_checkpoint(
Trainer.confs["Classifier"]["LogDir"])
with tf.Graph().as_default() as graph:
# images = tf.placeholder(shape=[None, ImageSize, ImageSize, 3], dtype=tf.float32, name = 'Placeholder_only')
images = tf.placeholder("float", [1, Trainer.confs["Classifier"]["ImageSize"],
Trainer.confs["Classifier"]["ImageSize"], 3], name="input")
with slim.arg_scope(inception_v3_arg_scope()):
logits, end_points = inception_v3(
images, num_classes=Trainer.confs["Classifier"]["NumClasses"], is_training=False)
probabilities = tf.nn.softmax(logits)
saver = tf.train.Saver(slim.get_variables_to_restore())
# Setup graph def
input_graph_def = graph.as_graph_def()
output_node_names = Trainer.confs["Classifier"]["OutputNode"]
output_graph_name = Trainer.confs["Classifier"]["ALLGraph"]
with tf.Session() as sess:
saver.restore(sess, checkpoint_file)
# Exporting the graph
print("Exporting graph...")
output_graph_def = graph_util.convert_variables_to_constants(
sess,
input_graph_def,
output_node_names.split(","))
with tf.gfile.GFile(output_graph_name, "wb") as f:
f.write(output_graph_def.SerializeToString())
clockEnd, difference, humanEnd = Trainer.Helpers.timerEnd(clockStart)
Trainer.Helpers.logger.info(
"ALL Detection System 2019 NCS1 Trainer ended in " + str(difference))
if __name__ == "__main__":
run()