-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscoring.py
52 lines (45 loc) · 1.7 KB
/
scoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import itertools
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, balanced_accuracy_score
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues,
save=None,
scores=None):
""" This function plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if scores is not None:
score = np.mean(scores)
err = np.std(scores)
else:
score = balanced_accuracy_score(y_true, y_pred)
err = None
cm = confusion_matrix(y_true, y_pred)
if normalize:
cm = cm.astype('float')*100 / cm.sum(axis=1)[:, np.newaxis]
fig, ax = plt.subplots(1)
ax.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
#ax.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.1f' if normalize else 'd'
thresh = (cm.max()+cm.min()) / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
if err is not None:
plt.text(2.8, 1, "BA: %0.2f (+/- %0.2f)" % (score,err),fontsize=14)
else:
plt.text(2.8, 1, "BA: %0.2f" % score,fontsize=14)
plt.tight_layout()
# plt.show()
if save:
fig.savefig(save,format='svg')