-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathabcGL.cpp
617 lines (527 loc) · 16.8 KB
/
abcGL.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
/*
thorfinn [email protected] dec17 2012
part of angsd
This class will calculate the GL in 4 differnt ways
1) SAMtools 0.1.16+ version
2) Simple GATK model
3) SOAPsnp
4) SYK
5) new fancy method
6) simple sample gls
4 different output formats are supplied
1) binary 10xdouble persample
2) beagle output (requires estimation of major/minor)\
3) binary beagle
4) text output of the 10 llhs persample
*/
#include <cmath>
#include <htslib/kstring.h>
#include "analysisFunction.h"
#include "abc.h"
#include "abcGL.h"
#include "abcError.h"
#include "phys_likes.h"
#include "abcMajorMinor.h"
#include "aio.h"
extern int refToInt[256];
static float *logfactorial=NULL;
void readError(double **errors,const char *fname){
fprintf(stderr,"will try to read errorestimates from file:%s\n",fname);
FILE *fp=NULL;
if(NULL==(fp=fopen(fname,"r"))){
fprintf(stderr,"Error opening file: %s\n",fname);
exit(0);
}
char buf[LENS];
double res[16];
for(int i=0;i<16;i++) res[i] = 0;
int nLines =0;
while(fgets(buf,LENS,fp)){
res[0] += atof(strtok(buf," \t\n"));
for(int i=1;i<16;i++)
res[i] += atof(strtok(NULL," \t\n"));
nLines ++;
}
for(int j=0;j<16;j++)
fprintf(stderr,"%f\t",res[j]);
fprintf(stderr,"\nEstimating errors using nChunks:%d\n",nLines);
int pos =0;
for(int i=0;i<4;i++)
for(int j=0;j<4;j++)
errors[i][j] = res[pos++]/(1.0*nLines);
if(fp) fclose(fp);
}
void abcGL::printArg(FILE *argFile){
fprintf(argFile,"---------------------\n%s:\n",__FILE__);
fprintf(argFile,"\t-GL=%d: \n",GL);
fprintf(argFile,"\t1: SAMtools\n");
fprintf(argFile,"\t2: GATK\n");
fprintf(argFile,"\t3: SOAPsnp\n");
fprintf(argFile,"\t4: SYK\n");
fprintf(argFile,"\t5: phys\n");
fprintf(argFile,"\t6: Super simple sample an allele type GL. (1.0,0.5,0.0)\n");
fprintf(argFile,"\t7: outgroup gls\n");
fprintf(argFile,"\t-trim\t\t%d\t\t(zero means no trimming)\n",trim);
fprintf(argFile,"\t-tmpdir\t\t%s/\t(used by SOAPsnp)\n",angsd_tmpdir);
fprintf(argFile,"\t-errors\t\t%s\t\t(used by SYK)\n",errorFname);
fprintf(argFile,"\t-minInd\t\t%d\t\t(0 indicates no filtering)\n",minInd);
fprintf(argFile,"\n");
fprintf(argFile,"Filedumping:\n");
fprintf(argFile,"\t-doGlf\t%d\n",doGlf);
fprintf(argFile,"\t1: binary glf (10 log likes)\t%s\n",postfix);
fprintf(argFile,"\t2: beagle likelihood file\t%s\n",beaglepostfix);
fprintf(argFile,"\t3: binary 3 times likelihood\t%s\n",postfix);
fprintf(argFile,"\t4: text version (10 log likes)\t%s\n",postfix);
fprintf(argFile,"\t5: binary saf files (usefull for realSFS)\t%s\n",postfix);
fprintf(argFile,"\n");
}
void abcGL::getOptions(argStruct *arguments){
//parse all parameters that this class could use
GL=angsd::getArg("-GL",GL,arguments);
if(0&&GL==0)//DRAGON
return;
trim = angsd::getArg("-trim",trim,arguments);
angsd_tmpdir = angsd::getArg("-tmpdir",angsd_tmpdir,arguments);
doGlf=angsd::getArg("-doGlf",doGlf,arguments);
errorFname = angsd::getArg("-errors",errorFname,arguments);
minInd = angsd::getArg("-minInd",minInd,arguments);
// should parse a list of quals e.g. 0,20,30. Meaning three bins: 0-19; 20-29; 30+
int doCounts=0;
int doMajorMinor =0;
doCounts=angsd::getArg("-doCounts",doCounts,arguments);
doMajorMinor=angsd::getArg("-doMajorMinor",doMajorMinor,arguments);
if(GL!=0 && (arguments->inputtype==INPUT_GLF || arguments->inputtype==INPUT_GLF3 || arguments->inputtype==INPUT_VCF_GL)){
fprintf(stderr,"Can't calculate genotype likelihoods from -glf/-glf3/VCF files\n");
exit(0);
}
if(arguments->inputtype==INPUT_GLF||arguments->inputtype==INPUT_GLF3||arguments->inputtype==INPUT_VCF_GL||arguments->inputtype==INPUT_GLF10_TEXT)
return;
if(doGlf&&GL==0){
fprintf(stderr,"\t-> You need to choose a genotype likelihood model -GL for dumping genotype likelihoods\n");
exit(0);
}
if(GL==0&&doGlf==0){
shouldRun[index] =0;
return;
}
if(GL==0)
return;
if(GL==7){
fprintf(stderr,"\t-> GL model=%d (outgroup gls) is BETA\n", GL);
// return;
}
if(( GL<0||GL>7 )) {
fprintf(stderr,"\t-> You've choosen a GL model=%d, only 1,2,3,4,5,6,7 are implemented\n",GL);
exit(0);
}
if(GL==4&&(doCounts==0)){
fprintf(stderr,"\t-> Must supply -doCounts 1 for SYK model\n");
exit(0);
}
if(GL==6&&(doCounts==0)){
fprintf(stderr,"\t-> Must supply -doCounts 1 for -gl 6\n");
exit(0);
}
/*
if(doGlf==2){
fprintf(stderr,"\t-> BEAGLE format 3.0 is deprecated\n\t-> Consider using -doVCF 1\n");
for(int j=3;j>0;j--){
fprintf(stderr,"\t-> Program will continue in %d seconds \n",j);fflush(stderr);
sleep(1);
}
}
*/
if((doGlf==2||doGlf==3) && doMajorMinor==0){
fprintf(stderr,"\t-> For dumping beaglestyle output you need to estimate major/minor: -doMajorMinor\n");
exit(0);
}
if(arguments->inputtype==INPUT_BEAGLE&&doGlf){
fprintf(stderr,"\t-> cannot output likelihoods (doGlf) when input is beagle\n");
exit(0);
}
if(arguments->inputtype!=INPUT_BAM&&arguments->inputtype!=INPUT_PILEUP){
fprintf(stderr,"Error: Likelihoods can only be estimated based on BAM input and uppile input\n");
exit(0);
}
printArg(arguments->argumentFile);
}
abcGL::abcGL(const char *outfiles,argStruct *arguments,int inputtype){
nnnSites =0;
outfileSAF = NULL;
outfileSAFPOS = NULL;
outfileSAFIDX = NULL;
errors = NULL;
postfix = ".glf.gz";
beaglepostfix = ".beagle.gz";
tmpChr = NULL;
trim =0;
GL=0;
doGlf=0;
errorFname = NULL;
errorProbs = NULL;
GL=0;
minInd=0;
angsd_tmpdir = strdup("angsd_tmpdir");
if(arguments->argc==2){
if(!strcasecmp(arguments->argv[1],"-GL")){
printArg(stdout);
exit(0);
}else
return;
}
getOptions(arguments);
printArg(arguments->argumentFile);
// if(GL==0) //why?
// return;
if(GL==1)
bam_likes_init();
else if(GL==2)
gatk_init();
else if(GL==3){
soap.init(arguments->nInd,angsd_tmpdir);
if(soap.doRecal)
fprintf(stderr,"[%s] Will calculate recalibration matrices, please don't do any other analysis\n",__FILE__);
else
fprintf(stderr,"[%s] Will use precalculated calibration matrices\n",__FILE__);
}else if(GL==4) {
//default errormatrix
double errorsDefault[4][4]={{0 ,0.00031 , 0.00373 , 0.000664},
{0.000737, 0 , 0.000576, 0.001702},
{0.001825,0.000386, 0 , 0.000653},
{0.00066 ,0.003648, 0.000321, 0 },
};
//allocate and plug in default values
errors = new double *[4];
for(int i=0;i<4;i++){
errors[i] = new double[4];
for(int j=0;j<4;j++)
errors[i][j] = errorsDefault[i][j];
}
if(errorFname!=NULL)
readError(errors,errorFname);
errorProbs = abcError::generateErrorPointers(errors,3,4);
}else if(GL==5){
phys_init(arguments->nams);
}else if(GL==6){
simple_init();
}else if(GL==7){
ancestral_lik.init(arguments->nInd, angsd_tmpdir);
if(ancestral_lik.doRecal){
fprintf(stderr, "\t-> [%s] Will generate the counts file, please do not run other analyses\n", __FILE__);
} else {
fprintf(stderr, "\t-> [%s] Will use error matrix already estimated with python script on the counts matrix generated in the previous run\n", __FILE__);
} // ancestral_init();
}
gzoutfile = gzoutfile2 = NULL;
bufstr.s=NULL; bufstr.l=bufstr.m=0;// <- used for buffered output
const char *SAF = ".saf.gz";
const char *SAFPOS =".saf.pos.gz";
const char *SAFIDX =".saf.idx";
if(doGlf==5){
outfileSAF = aio::openFileBG(outfiles,SAF);
outfileSAFPOS = aio::openFileBG(outfiles,SAFPOS);
outfileSAFIDX = aio::openFile(outfiles,SAFIDX);
char buf[8]="safv3";
aio::bgzf_write(outfileSAF,buf,8);
aio::bgzf_write(outfileSAFPOS,buf,8);
fwrite(buf,1,8,outfileSAFIDX);
offs[0] = bgzf_tell(outfileSAFPOS);
offs[1] = bgzf_tell(outfileSAF);
size_t tt = 9;
fwrite(&tt,sizeof(tt),1,outfileSAFIDX);
}
if(doGlf){
if(doGlf!=2){
gzoutfile = aio::openFileBG(outfiles,postfix);
if(doGlf==3)
gzoutfile2 = aio::openFileBG(outfiles,".glf.pos.gz");
}else{
gzoutfile = aio::openFileBG(outfiles,beaglepostfix);
kputs("marker\tallele1\tallele2",&bufstr);
for(int i=0;i<arguments->nInd;i++){
kputs("\tInd",&bufstr);
kputw(i,&bufstr);
kputs("\tInd",&bufstr);
kputw(i,&bufstr);
kputs("\tInd",&bufstr);
kputw(i,&bufstr);
}
kputc('\n',&bufstr);
aio::bgzf_write(gzoutfile,bufstr.s,bufstr.l);bufstr.l=0;
}
}
}
abcGL::~abcGL(){
if(GL>0&&doGlf==5){
aio::doAssert(outfileSAF!=NULL,AT);
aio::doAssert(outfileSAFIDX!=NULL,AT);
aio::doAssert(outfileSAFPOS!=NULL,AT);
// fprintf(stderr,"nnnSites:%d\n",nnnSites);
if(nnnSites!=0&&tmpChr!=NULL){
size_t clen = strlen(tmpChr);
fwrite(&clen,sizeof(size_t),1,outfileSAFIDX);
fwrite(tmpChr,1,clen,outfileSAFIDX);
size_t tt = nnnSites;
fwrite(&tt,sizeof(size_t),1,outfileSAFIDX);
fwrite(offs,sizeof(int64_t),2,outfileSAFIDX);
}//else
// fprintf(stderr,"enpty chr\n");
//reset
offs[0] = bgzf_tell(outfileSAFPOS);
offs[1] = bgzf_tell(outfileSAF);
nnnSites=0;
}
free(angsd_tmpdir);
if(GL==0&&doGlf==0)
return;
else if(GL==1)
bam_likes_destroy();
else if(GL==2)
gatk_destroy();
else if(GL==4)
abcError::killGlobalErrorProbs(errorProbs);
else if(GL==5)
phys_destroy();
else if(GL==6)
simple_destroy();
if(doGlf) bgzf_close(gzoutfile);
if(gzoutfile!=NULL)
bgzf_close(gzoutfile2);
if(bufstr.s!=NULL)
free(bufstr.s);
if(errors){
for(int i=0;i<4;i++)
delete [] errors[i];
delete [] errors;
}
delete [] logfactorial;
if(doGlf==5){
if(outfileSAF) bgzf_close(outfileSAF);;
if(outfileSAFPOS) bgzf_close(outfileSAFPOS);
if(outfileSAFIDX) fclose(outfileSAFIDX);
}
}
void abcGL::clean(funkyPars *pars){
if(pars->likes!=NULL){
for(int i=0;i<pars->numSites;i++)
delete [] pars->likes[i];
delete [] pars->likes;
pars->likes=NULL;
}
}
void abcGL::print(funkyPars *pars){
if(doGlf)
printLike(pars);
}
void abcGL::run(funkyPars *pars){
aio::doAssert(pars!=NULL,AT);
if(GL==0)
return;
//aio::doAssert(pars->chk!=NULL);
double **likes = NULL;
if(soap.doRecal!=1 || ancestral_lik.doRecal!=1)
likes = new double*[pars->chk->nSites];
if(GL==1)
call_bam(pars->chk,likes,trim,pars->keepSites);
else if(GL==2)
call_gatk(pars->chk,likes,trim);
else if(GL==3){
soap.run(pars->chk,likes,pars->ref,trim);
//we dont estimate GL but make a calibration matrix
if(soap.doRecal==1)
return;
}else if(GL==4)
getLikesFullError10Genotypes(pars->numSites,pars->nInd,pars->counts,errorProbs,pars->keepSites,likes);
else if(GL==5)
call_phys(pars->chk,likes,trim);
else if(GL==6){
call_simple(pars->counts,pars->keepSites,likes,pars->numSites,pars->nInd);
}else if(GL==7){
ancestral_lik.run(pars->chk, likes, pars->ref, pars->anc, pars->keepSites, trim);
if(ancestral_lik.doRecal==1){
return;
}
}
pars->likes = likes;
/*
if trimming has been requested, then some site might not contain data,
we therefore set keepsites to zero for these sites
while we are at it, lets also count the effective sample size persite
*/
if(1){
for(int s=0;s<pars->numSites;s++){
if(pars->keepSites[s]==0)
continue;
int efSize=0;
for(int i=0;i<pars->nInd;i++){
for(int ii=1;ii<10;ii++){
if(pars->likes[s][i*10+ii]!=pars->likes[s][i*10+0]){
efSize++;
break;
}
}
}
pars->keepSites[s] = efSize;
if(minInd!=0&&minInd>efSize)
pars->keepSites[s] = 0;
// fprintf(stderr,"posi:%d keepSites2[%d]=%d\n",pars->posi[s]+1,s,pars->keepSites[s]);
}
}
//rescale the genotype likelihoods to loglike ratios.
if(1){
for(int s=0;s<pars->numSites;s++){
if(pars->keepSites[s]==0)
continue;
for(int i=0;i<pars->nInd;i++)
angsd::logrescale(pars->likes[s] +i*10,10);
}
}
}
void abcGL::getLikesFullError10Genotypes(int numSites,int nInd,suint **counts,double ****errorProbs,int *keepSites,double **loglikes) {
//only calculate this once
if(logfactorial==NULL)//dont bother populating if exists.
logfactorial=abcError::logfact(LOGMAX); //calculate log factorials
double *logError;
for(int s=0;s<numSites;s++){
loglikes[s] = new double [10*nInd];
if(keepSites[s]==0)
continue;
for(int allele1=0;allele1<4;allele1++) {
for(int allele2=allele1;allele2<4;allele2++){
int Gindex=angsd::majorminor[allele1][allele2];
int geno=0;
int m2=allele2;
if(allele1!=allele2)
geno++;
else{//total grimt must redo
m2++;
if(m2>3)
m2=0;
}
logError=errorProbs[geno][allele1][m2];
for(int i=0;i<nInd;i++){
loglikes[s][i*10+Gindex]=logfactorial[counts[s][i*4+0]+counts[s][i*4+1]+counts[s][i*4+2]+counts[s][i*4+3]]; //should be computed before these loops for faster implimentation
for(int j=0;j<4;j++)
loglikes[s][i*10+Gindex]+=-logfactorial[counts[s][i*4+j]]+counts[s][i*4+j]*logError[j];
}
}
}
}
}
void abcGL::printLike(funkyPars *pars) {
aio::doAssert(pars->likes!=NULL,AT);
if(doGlf==1){
//glffinn format
for(int i=0;i<pars->numSites;i++){
if(pars->keepSites[i]==0)
continue;
aio::bgzf_write(gzoutfile,pars->likes[i],sizeof(double)*10*pars->nInd);
}
}
else if(doGlf==2){
//beagle format
bufstr.l = 0; //set tmpbuf beginning to zero
for(int s=0;s<pars->numSites;s++) {
lh3struct *lh3 = (lh3struct*) pars->extras[index+2];
aio::doAssert(lh3!=NULL,AT);
if(pars->keepSites[s]==0||lh3->hasAlloced[s]==0)
continue;
kputs(header->target_name[pars->refId],&bufstr);
kputc('_',&bufstr);
kputw(pars->posi[s]+1,&bufstr);
kputc('\t',&bufstr);
kputw(pars->major[s],&bufstr);
kputc('\t',&bufstr);
kputw(pars->minor[s],&bufstr);
int major = pars->major[s];
int minor = pars->minor[s];
aio::doAssert(major!=4&&minor!=4,AT);
for(int i=0;i<pars->nInd;i++) {
double val[3];
val[0]= exp(lh3->lh3[s][i*3+0]);
val[1]= exp(lh3->lh3[s][i*3+1]);
val[2]= exp(lh3->lh3[s][i*3+2]);
angsd::norm(val,3);
ksprintf(&bufstr, "\t%f",val[0]);
ksprintf(&bufstr, "\t%f",val[1]);
ksprintf(&bufstr, "\t%f",val[2]);
aio::doAssert(!std::isnan(val[0]),AT);
aio::doAssert(!std::isnan(val[1]),AT);
aio::doAssert(!std::isnan(val[2]),AT);
}
if(bufstr.l!=0)
kputc('\n',&bufstr);
}
aio::bgzf_write(gzoutfile,bufstr.s,bufstr.l);bufstr.l=0;
}
else if(doGlf==3) { //FGV v0.208 Aug,28
for(int s=0;s<pars->numSites;s++) {
if(pars->keepSites[s]==0) //TSK 0.441 sep 25
continue;
char major = pars->major[s];
char minor = pars->minor[s] ;
aio::doAssert(major!=4&&minor!=4,AT);
for(int i=0;i<pars->nInd;i++) {
double dump[3];
dump[0] = pars->likes[s][i*10+angsd::majorminor[major][major]] ;
dump[1] = pars->likes[s][i*10+angsd::majorminor[major][minor]] ;
dump[2] = pars->likes[s][i*10+angsd::majorminor[minor][minor]] ;
aio::bgzf_write(gzoutfile,dump,3*sizeof(double));
}
bufstr.l=0;
ksprintf(&bufstr,"%s\t%d\t",header->target_name[pars->refId],pars->posi[s]+1);
ksprintf(&bufstr,"%c\t%c\n",intToRef[major],intToRef[minor]);
aio::bgzf_write(gzoutfile2,bufstr.s,bufstr.l);bufstr.l=0;
}
} else if(doGlf==4){
bufstr.l=0;
//otherwise print textoutput
for(int s=0;s<pars->numSites;s++){
if(pars->keepSites[s]==0)
continue;
kputs(header->target_name[pars->refId],&bufstr);
kputc('\t',&bufstr);
kputw(pars->posi[s]+1,&bufstr);
for(int i=0;i<10*pars->nInd;i++)
ksprintf(&bufstr, "\t%f",pars->likes[s][i]);
kputc('\n',&bufstr);
}
aio::bgzf_write(gzoutfile,bufstr.s,bufstr.l);bufstr.l=0;
}else if(doGlf==5){
for(int s=0;s<pars->numSites;s++){
if(pars->keepSites[s]==0)
continue;
nnnSites++;
float tmp[10*pars->nInd];
for(int i=0;i<10;i++)
tmp[i] = pars->likes[s][i];
aio::bgzf_write(outfileSAF,tmp,sizeof(float)*10*pars->nInd);
int mypos = pars->posi[s];
aio::bgzf_write(outfileSAFPOS,&mypos,sizeof(int));
}
}
}
void abcGL::changeChr(int refId) {
// fprintf(stderr,"Charnge chr:%d\n",refId);
if(GL>0&&doGlf==5){
aio::doAssert(outfileSAF!=NULL,AT);
aio::doAssert(outfileSAFIDX!=NULL,AT);
aio::doAssert(outfileSAFPOS!=NULL,AT);
// fprintf(stderr,"nnnSites:%d\n",nnnSites);
if(nnnSites!=0&&tmpChr!=NULL){
size_t clen = strlen(tmpChr);
fwrite(&clen,sizeof(size_t),1,outfileSAFIDX);
fwrite(tmpChr,1,clen,outfileSAFIDX);
size_t tt = nnnSites;
fwrite(&tt,sizeof(size_t),1,outfileSAFIDX);
fwrite(offs,sizeof(int64_t),2,outfileSAFIDX);
}//else
// fprintf(stderr,"enpty chr\n");
//reset
offs[0] = bgzf_tell(outfileSAFPOS);
offs[1] = bgzf_tell(outfileSAF);
nnnSites=0;
free(tmpChr);
tmpChr = strdup(header->target_name[refId]);
}
}