-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
262 lines (213 loc) · 10.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn import TransformerEncoder, TransformerEncoderLayer
import torch.nn.functional as F
from transformers import BertModel, BertTokenizer
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModel
class LearnableYModel(nn.Module):
def __init__(self, sentence_model_name='sentence-transformers/all-mpnet-base-v2',sentence_embed_dim=768, secret_dim=10, hidden_dim=1024, output_dim=128,output_range_max=1):
super(LearnableYModel, self).__init__()
self.sentence_encoder = AutoModel.from_pretrained(sentence_model_name)
self.output_range_max=output_range_max
self.secret_mlp = nn.Sequential(
nn.Linear(secret_dim, 128),
nn.ReLU(),
nn.Linear(128, 128)
)
self.fusion_mlp = nn.Sequential(
nn.Linear(sentence_embed_dim + 128, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim),
nn.Tanh()
)
def encode_sentence(self, sentence,attention_mask):
with torch.no_grad():
model_output = self.sentence_encoder(sentence,attention_mask)
sentence_embeddings = self.mean_pooling(model_output, attention_mask)
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
return sentence_embeddings
def mean_pooling(self,model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def forward(self, sentence,attention_mask, secret):
encoded_sentence = self.encode_sentence(sentence,attention_mask)
processed_secret = self.secret_mlp(secret)
combined_input = torch.cat((encoded_sentence, processed_secret), dim=-1)
output = self.fusion_mlp(combined_input)*self.output_range_max
return output,encoded_sentence
class SecretEncoderBert(nn.Module):
def __init__(self, bert_model_name, llm_tokenizer, hidden_dim, device):
super(SecretEncoderBert, self).__init__()
self.bert_tokenizer = BertTokenizer.from_pretrained(bert_model_name)
self.bert_model = BertModel.from_pretrained(bert_model_name)
self.llm_tokenizer = llm_tokenizer
self.device = device
self.condition_head = nn.Linear(self.bert_model.config.hidden_size, hidden_dim)
def forward(self, condition_y_tokens):
condition_y_text = self.llm_tokenizer.decode(condition_y_tokens, skip_special_tokens=True)
inputs = self.bert_tokenizer(condition_y_text, return_tensors="pt", truncation=True, padding=True).to(self.device)
bert_outputs = self.bert_model(**inputs)
condition_y = bert_outputs.last_hidden_state[:, 0, :]
condition_y = self.condition_head(condition_y)
return condition_y
class TransformerGFWithSecret(nn.Module):
def __init__(self, input_dim, output_dim,secret_dim, num_layers=2, num_heads=8, dim_feedforward=1024,dropout=0.1, hidden_dim=1024):
super(TransformerGFWithSecret, self).__init__()
self.secret_encoder = nn.Sequential(
nn.Linear(secret_dim,512),
nn.ReLU(),
nn.Linear(512,512),
nn.ReLU(),
nn.Linear(512,128),
nn.ReLU(),
nn.Linear(128,hidden_dim)
)
self.input_encoder = nn.Sequential(
nn.Linear(input_dim, hidden_dim)
)
encoder_layer = TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads, dim_feedforward=dim_feedforward,dropout=dropout)
self.transformer_g = TransformerEncoder(encoder_layer, num_layers=num_layers)
self.f = nn.Sequential(
nn.Linear(hidden_dim, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512,output_dim),
nn.Tanh()
)
def forward(self, x, secret, attention_mask=None):
batch_size=x.shape[0]
x = self.input_encoder(x)
secret = self.secret_encoder(secret).unsqueeze(1)
x = torch.cat([secret, x], dim=1)
if attention_mask is not None:
src_key_padding_mask = torch.cat([torch.zeros((batch_size, 1), dtype=torch.bool, device=src_key_padding_mask.device), src_key_padding_mask], dim=1)
transformer_output = self.transformer_g(x.transpose(0,1), src_key_padding_mask=src_key_padding_mask)
output = transformer_output[0, :, :]
return self.f(output)
def forward_train(self, x, secret, attention_mask=None):
batch_size=x.shape[0]
x = self.input_encoder(x)
secret_encoded = self.secret_encoder(secret).unsqueeze(1)
x = torch.cat([secret_encoded, x], dim=1)
if attention_mask is not None:
src_key_padding_mask = attention_mask == 0
src_key_padding_mask = torch.cat([torch.zeros((batch_size, 1), dtype=torch.bool, device=src_key_padding_mask.device), src_key_padding_mask], dim=1)
transformer_output = self.transformer_g(x.transpose(0,1), src_key_padding_mask=src_key_padding_mask)
output = transformer_output[0, :, :]
output = self.f(output)
return output,secret_encoded
def forward_no_f(self, x, secret, attention_mask=None):
batch_size = x.shape[0]
x = self.input_encoder(x)
secret = self.secret_encoder(secret).unsqueeze(1)
x = torch.cat([secret, x], dim=1)
if attention_mask is not None:
src_key_padding_mask = attention_mask == 0
src_key_padding_mask = torch.cat([torch.zeros((batch_size, 1), dtype=torch.bool, device=src_key_padding_mask.device), src_key_padding_mask], dim=1)
transformer_output = self.transformer_g(x.transpose(0, 1), src_key_padding_mask=src_key_padding_mask)
output = transformer_output[0, :, :]
return output
class MLPGFWithSecret(nn.Module):
def __init__(self, input_dim, output_dim, secret_dim, hidden_dim=1024, num_layers=4,dropout_rate=0.1):
super(MLPGFWithSecret, self).__init__()
self.secret_encoder = nn.Sequential(
nn.Linear(secret_dim, 512),
nn.ReLU(),
nn.Linear(512, hidden_dim),
nn.ReLU()
)
self.input_mlp = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU()
)
self.residual_layers = nn.ModuleList()
for _ in range(num_layers):
self.residual_layers.append(nn.Sequential(
nn.Linear(hidden_dim * 2, hidden_dim * 2),
nn.ReLU(),
nn.Dropout(dropout_rate)
))
self.output_layer = nn.Sequential(
nn.Linear(hidden_dim * 2, 512),
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(512, output_dim)
)
def forward(self, x, secret):
secret_embedding = self.secret_encoder(secret)
x_embedding = self.input_mlp(x)
combined_embedding = torch.cat([x_embedding, secret_embedding], dim=-1)
for layer in self.residual_layers:
combined_embedding = layer(combined_embedding) + combined_embedding
output = self.output_layer(combined_embedding)
return output
class TransformerClassifier(nn.Module):
def __init__(self, input_dim, num_classes, num_layers=2, num_heads=8, dim_feedforward=1024, dropout=0.1, hidden_dim=1024):
super(TransformerClassifier, self).__init__()
self.embedding = nn.Parameter(torch.randn(1, 1, hidden_dim))
self.encoder = nn.Sequential(
nn.Linear(input_dim, hidden_dim)
)
encoder_layer = TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads, dim_feedforward=dim_feedforward,dropout=dropout)
self.transformer_encoder = TransformerEncoder(encoder_layer, num_layers=num_layers)
self.mlp = nn.Sequential(
nn.Linear(hidden_dim, 512),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(512, num_classes)
)
def forward(self, x, attention_mask=None):
x = self.encoder(x)
batch_size = x.size(0)
embedded = self.embedding.expand(batch_size, -1, -1)
x = torch.cat([embedded, x], dim=1)
if attention_mask is not None:
src_key_padding_mask = attention_mask == 0
src_key_padding_mask = torch.cat([torch.zeros((batch_size, 1), dtype=torch.bool, device=src_key_padding_mask.device), src_key_padding_mask], dim=1)
transformer_output = self.transformer_encoder(x.transpose(0,1), src_key_padding_mask=src_key_padding_mask)
cls_output = transformer_output[0, :, :]
return self.mlp(cls_output)
class FocalLoss(nn.Module):
def __init__(self, alpha=None, gamma=2, reduction='mean'):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.reduction = reduction
def forward(self, inputs, targets, mask=None):
BCE_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction='none')
pt = torch.exp(-BCE_loss)
if self.alpha is not None:
alpha_t = self.alpha * targets + (1 - self.alpha) * (1 - targets)
F_loss = alpha_t * (1 - pt) ** self.gamma * BCE_loss
else:
F_loss = (1 - pt) ** self.gamma * BCE_loss
if mask is not None:
F_loss = F_loss * mask
if self.reduction == 'mean':
return F_loss.mean()
elif self.reduction == 'sum':
return F_loss.sum()
else:
return F_loss
def distance_loss(cls_output_1, cls_output_2, margin=1.0):
distance = F.pairwise_distance(cls_output_1, cls_output_2, p=2)
loss = F.relu(margin - distance)
return loss.mean()
def combined_loss(outputs_1,outputs_2,cls_output_1,cls_output_2,labels,criterion,margin=0.1,gamma=0.5):
cls_loss_1 = criterion(outputs_1,labels)
cls_loss_2 = criterion(outputs_2,labels)
dist_loss = distance_loss(cls_output_1,cls_output_2,margin)
loss = cls_loss_1 + cls_loss_2 + gamma * dist_loss
return loss
def mask_hidden_states(hs):
result = hs.clone()
result[:,::2,:]=0.
return result