-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPredict_Gesture_MQTT_w_Video.py
161 lines (134 loc) · 4.88 KB
/
Predict_Gesture_MQTT_w_Video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Predict_Gesture.py
# Description: Recieved Data from ESP32 Micro via the AGRB-Training-Data-Capture.ino file, make gesture prediction
# Written by: Nate Damen
# Created on JAN 29th 2021
import cfg
import numpy as np
import paho.mqtt.client as mqtt
import datetime
import re
import os, os.path
import time
import random
import tensorflow as tf
import serial
import traceback
import gc
import cv2
import base64
import numpy as np
PORT = "/dev/ttyUSB0"
#PORT = "/dev/ttyUSB1"
#PORT = "COM8"
serialport = None
serialport = serial.Serial(PORT, 115200, timeout=0.05)
#load Model
model = tf.keras.models.load_model('../Atltvhead-Gesture-Recognition-Bracer/Model/cnn_model2_half.h5')
# These commands set the screen to full on whatever display is being used. Don't use if you dont mind it being in a window that can move around
cv2.namedWindow("PositiveMessage", cv2.WND_PROP_FULLSCREEN)
#cv2.moveWindow("PositiveMessage", screen.x - 1, screen.y - 1)
cv2.setWindowProperty("PositiveMessage", cv2.WND_PROP_FULLSCREEN,cv2.WINDOW_FULLSCREEN)
# The callback for when the client receives a CONNACK response from the server.
def on_connect(client, userdata, flags, rc):
print("Connected with result code "+str(rc))
client.subscribe("stream_live")
client.subscribe("screen_shot")
client.subscribe("viewer_click")
# The callback for when a PUBLISH message is received from the server.
def on_message(client, userdata, msg):
if (msg.topic == "screen_shot"):
print(msg.topic)
img = readb64(msg.payload)
cv2.imshow('',img)
cv2.waitKey(1)
else:
print(msg.topic+" "+str(msg.payload))
# Take in base64 string and return cv image
def readb64(uri):
nparr = np.frombuffer(base64.b64decode(uri), np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
return img
#Get Data from imu. Waits for incomming data and data stop
def get_imu_data():
global serialport
if not serialport:
# open serial port
serialport = serial.Serial(PORT, 115200, timeout=0.05)
# check which port was really used
print("Opened", serialport.name)
# Flush input
time.sleep(3)
serialport.readline()
# Poll the serial port
line = str(serialport.readline(),'utf-8')
if not line:
return None
vals = line.replace("Uni:", "").strip().split(',')
if len(vals) != 7:
return None
try:
vals = [float(i) for i in vals]
except ValueError:
return ValueError
return vals
# Create Reshape function for each row of the dataset
def reshape_function(data):
reshaped_data = tf.reshape(data, [-1, 3, 1])
return reshaped_data
#Create a pipeline to process incomming data for the model to read and handle
def data_pipeline(data_a):
tensor_set = tf.data.Dataset.from_tensor_slices((data_a[:,:,1:4]))
tensor_set_cnn = tensor_set.map(reshape_function)
tensor_set_cnn = tensor_set_cnn.batch(192)
return tensor_set_cnn
def gesture_Handler(rw, data, dataholder, dataCollecting, gesture, old_gesture, partialTime):
dataholder = np.array(get_imu_data())
if dataholder.all() != None:
#print(dataholder)
dataCollecting = True
data[0, rw, :] = dataholder
if partialTime >= 0.041:
mqttc.publish("gesture_glove/IMU", dataholder)
partialTime = time.time()
rw += 1
if rw > 380:
rw = 380
if dataholder.all() == None and dataCollecting == True:
if rw == 380:
prediction = np.argmax(model.predict(data_pipeline(data)), axis=1)
gesture=gest_id[prediction[0]]
gc.collect()
rw = 0
dataCollecting = False
return rw, gesture, old_gesture, dataCollecting, partialTime
#every 42 milliseconds send an update over mqtt
def sendPartial(newTime, partialData):
if newTime >= 0.041:
mqttc.publish("gesture_glove/IMU", partialData)
newTime = time.time()
return newTime
if __name__ == "__main__":
mqttc = mqtt.Client()
mqttc.on_connect = on_connect
mqttc.on_message = on_message
mqttc.connect("192.168.1.106", 1883, 60) #change This
mqttc.loop_start()
#define Gestures, current data, temp data holder, a first cylce boolean,
gest_id = {0:'wave_mode', 1:'fist_pump_mode', 2:'random_motion_mode', 3:'speed_mode', 4:'pumped_up_mode'}
data = np.zeros(shape=(1,380,7))
dataholder = np.zeros(shape=(1,7))
row = 0
dataCollecting = False
gesture = ''
old_gesture = ''
#flush the serial port
time.sleep(3)
serialport.readline()
t = time.time()
while(1):
elapsedT = time.time() - t
row, gesture, old_gesture, dataCollecting, t = gesture_Handler(row,data,dataholder,dataCollecting,gesture,old_gesture, elapsedT)
if gesture != old_gesture:
print(gesture)
mqttc.publish("gesture_glove/gesture", gesture)
old_gesture=gesture