-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnet.py
191 lines (156 loc) · 6.38 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import numpy as np
import torch
import math
import torch.nn as nn
import torch.nn.functional as F
import fusion_strategy
import fusion_strategy
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def hard_sigmoid(x, inplace: bool = False):
if inplace:
return x.add_(3.).clamp_(0., 6.).div_(6.)
else:
return F.relu6(x + 3.) / 6.
class SqueezeExcite(nn.Module):
def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_):
super(SqueezeExcite, self).__init__()
self.gate_fn = gate_fn
reduced_chs = _make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
self.act1 = act_layer(inplace=True)
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
def forward(self, x):
x_se = self.avg_pool(x)
x_se = self.conv_reduce(x_se)
x_se = self.act1(x_se)
x_se = self.conv_expand(x_se)
x = x * self.gate_fn(x_se)
return x
class GhostModule(nn.Module):
def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True):
super(GhostModule, self).__init__()
self.oup = oup
init_channels = math.ceil(oup / ratio)
new_channels = init_channels*(ratio-1)
self.primary_conv = nn.Sequential(
nn.ReflectionPad2d(kernel_size//2),
nn.Conv2d(inp, init_channels, kernel_size, stride, 0, bias=False),
nn.ReLU(inplace=True) if relu else nn.Sequential(),
)
self.cheap_operation = nn.Sequential(
nn.ReflectionPad2d(dw_size//2),
nn.Conv2d(init_channels, new_channels, dw_size, 1, 0, groups=init_channels, bias=False),
nn.ReLU(inplace=True) if relu else nn.Sequential(),
)
def forward(self, x):
x1 = self.primary_conv(x)
x2 = self.cheap_operation(x1)
out = torch.cat([x1,x2], dim=1)
return out[:,:self.oup,:,:]
class GhostBottleneck(nn.Module):
""" Ghost bottleneck w/ optional SE"""
def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3,
stride=1, act_layer=nn.ReLU, se_ratio=0.):
super(GhostBottleneck, self).__init__()
has_se = se_ratio is not None and se_ratio > 0.
self.stride = stride
# Point-wise expansion
self.ghost1 = GhostModule(in_chs, mid_chs, relu=True)
# Squeeze-and-excitation
if has_se:
self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio)
else:
self.se = None
# Point-wise linear projection
self.ghost2 = GhostModule(mid_chs, out_chs, relu=False)
# shortcut
if (in_chs == out_chs and self.stride == 1):
self.shortcut = nn.Sequential()
else:
self.shortcut = nn.Sequential(
nn.ReflectionPad2d((dw_kernel_size - 1) // 2),
nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride,
padding=0, groups=in_chs, bias=False),
nn.BatchNorm2d(in_chs),
nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_chs),
)
def forward(self, x):
residual = x
# 1st ghost bottleneck
x = self.ghost1(x)
# Depth-wise convolution
if self.stride > 1:
x = self.conv_dw(x)
x = self.bn_dw(x)
# Squeeze-and-excitation
if self.se is not None:
x = self.se(x)
# 2nd ghost bottleneck
x = self.ghost2(x)
x += self.shortcut(residual)
x = torch.cat([x,residual],1);
return x
# Dense Block unit
class DenseBlock(torch.nn.Module):
def __init__(self, in_channels, kernel_size, stride):
super(DenseBlock, self).__init__()
out_channels_def = 16;
denseblock = []
denseblock += [GhostBottleneck(in_channels, in_channels*2, out_channels_def,kernel_size,1),
GhostBottleneck(in_channels*2, in_channels*2, out_channels_def, kernel_size, 1),
GhostBottleneck(in_channels*3, in_channels*2, out_channels_def, kernel_size, 1,se_ratio=0.25)]
self.denseblock = nn.Sequential(*denseblock)
def forward(self, x):
out = self.denseblock(x)
return out
# GhostFusion network
class GhostFusion_net(nn.Module):
def __init__(self, input_nc=1, output_nc=1):
super(GhostFusion_net, self).__init__()
denseblock = DenseBlock
nb_filter = [16, 64, 32, 16]
kernel_size = 3
stride = 1
# encoder
self.conv1 = GhostModule(input_nc, nb_filter[0], dw_size=kernel_size, stride=stride)
self.DB1 = denseblock(nb_filter[0], kernel_size, stride)
# decoder
self.conv2 = GhostModule(nb_filter[1], nb_filter[1], dw_size=kernel_size, stride=stride)
self.conv3 = GhostModule(nb_filter[1], nb_filter[2], dw_size=kernel_size, stride=stride)
self.conv4 = GhostModule(nb_filter[2], nb_filter[3], dw_size=kernel_size, stride=stride)
self.conv5 = GhostModule(nb_filter[3], output_nc, dw_size=kernel_size, stride=stride)
def encoder(self, input):
x1 = self.conv1(input)
x_DB = self.DB1(x1)
return [x_DB]
def fusion(self, en1, en2, strategy_type='attention_weight'):
# addition
if strategy_type is 'L1':
# attention weight
fusion_function = fusion_strategy.L1Fusion
elif (strategy_type is 'AVG'):
fusion_function = fusion_strategy.AVGfusion
elif (strategy_type is 'MAX'):
fusion_function = fusion_strategy.MAXfusion
elif (strategy_type is 'AGL1'):
fusion_function = fusion_strategy.AGL1Fusion
else:
fusion_function = fusion_strategy.SCFusion
f_0 = fusion_function(en1[0], en2[0])
return [f_0]
def decoder(self, f_en):
x2 = self.conv2(f_en[0])
x3 = self.conv3(x2)
x4 = self.conv4(x3)
output = self.conv5(x4)
return [output]