Skip to content

Commit

Permalink
deploy: 3754551
Browse files Browse the repository at this point in the history
  • Loading branch information
rkdarst committed Oct 23, 2024
0 parents commit 515b425
Show file tree
Hide file tree
Showing 1,034 changed files with 287,300 additions and 0 deletions.
Empty file added .nojekyll
Empty file.
9 changes: 9 additions & 0 deletions _downloads/397ee019b6b388442dffa61ae3629d85/lint_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
import numpy
import matplotlib.pyplot as plt

x = np.linspace(0, np.pi, 100))
y = np.sin(x)

plt.plot(x, y)

plt.show()

Large diffs are not rendered by default.

47 changes: 47 additions & 0 deletions _downloads/747df499c1e18239511ea006e0433951/exercise1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
"""
pylint exercise 1
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import linear_model


def f(x):
"""
Example function:
f(x) = x/2 + 2
""""
return 0.5*x + 2


# Create example data
x_data = np.linspace(0, 10, 100)
err = 2 * np.random.random(x_data.shape[0])
y_data = f(x_data) + err

# Put data into dataframe
df = pd.DataFrame({'x': x_data, 'y': y_data})

# Create linear model and fit data
reg = linear_model.LinearRegression(fit_intercept=True)

reg.fit(df[['x'], df[['y']])

slope = reg.coef_[0][0]
intercept = reg.intercept_[0]

df['pred'] = reg.predict(df[['x']])

fig, ax = plt.subplots()

ax.scater(df[['x']], df[['y']], alpha=0.5)
ax.plot(df[['x']], df[['pred']]
color='black', linestyle='--',
label=f'Prediction with slope {slope:.2f} and intercept {intercept:.2f}')
ax.set_ylabel('y')
ax.set_xlabel('x')
ax.legend()

plt.show()
38 changes: 38 additions & 0 deletions _downloads/75c4ab69c0f59fbb1589b03be360a485/optionsparser.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
import yaml

def get_parameters(config_file, required, defaults):
'''
Parameters:
Optionfile: FileName of the yaml file containing the options
required: Dict of required argument names and their object types.
defaults: Dict of default parameters mapping to their default values
Returns: An object with fields named according to required and optional values.
'''
f = open(config_file)
options = yaml.safe_load(f)
# create a parameters object that allows setting attributes.
parameters = type('Options', (), {})()
# check required arguments
for arg in required:
if not arg in options:
raise Exception("Could not find required Argument " + arg + " aborting...")
else:
if not isinstance(options[arg],required[arg]):
raise Exception("Expected input of type " + str(required[arg]) + " but got " + str(type(options[arg])))
print("Setting " + arg + " to " + str(options[arg]))
setattr(parameters,arg,options[arg])
# check the default values.
for arg in defaults:
if arg in options:
if not isinstance(options[arg],type(defaults[arg])):
#Wrong type for the parameter
raise Exception("Expected input of type " + str(type(defaults[arg])) + " but got " + str(type(options[arg])))
print("Setting " + arg + " to " + str(options[arg]))
setattr(parameters,arg,options[arg])
else:
print( arg + " not found in option file. Using default: " +str(defaults[arg]))
setattr(parameters,arg,defaults[arg])
return parameters


18 changes: 18 additions & 0 deletions _downloads/a99f82e01864794e5780d2697d273d9e/code_style_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
import numpy as np

def PI_estimate(n):
"""This function calculates an estimate of pi with dart thrower algorithm.
"""

pi_Numbers = np.random.random(size = 2*n)
x = pi_Numbers[ :n ]
y = pi_Numbers[ n: ]

return 4*np.sum((x * x + y*y ) < 1)/n


for number in range(1,8):

n = 10** number

print(f'Estimate for PI with {n:8d} dart throws: {PI_estimate( n )}')
30 changes: 30 additions & 0 deletions _downloads/b1df8a26f353860c500cc194df1641aa/exercise2_solution.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
import numpy as np
import matplotlib.pyplot as plt


def dice_toss(n, m):
"""Throw n dice m times and the total value together."""
dice_rolls = np.random.randint(1, 6, size=(m, n))

roll_averages = np.sum(dice_rolls, axis=-1)

return roll_averages


fig, ax = plt.subplots()

n = int(input("Number of dices to toss:\n"))

bins = np.arange(1, 6 * n + 1)

m = 1000

ax.hist(dice_toss(n, m), bins=bins)

ax.set_title(f"Histogram of {n} dice tosses")

ax.set_xlabel("Total value")

ax.set_ylabel("Number of instances")

plt.show()
47 changes: 47 additions & 0 deletions _downloads/bd9ea3f34382e553b2a8efaca3708746/exercise1_solution.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
"""
pylint exercise 1
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import linear_model


def f(x):
"""
Example function:
f(x) = x/2 + 2
"""
return 0.5*x + 2


# Create example data
x_data = np.linspace(0, 10, 100)
err = 2 * np.random.random(x_data.shape[0])
y_data = f(x_data) + err

# Put data into dataframe
df = pd.DataFrame({'x': x_data, 'y': y_data})

# Create linear model and fit data
reg = linear_model.LinearRegression(fit_intercept=True)

reg.fit(df[['x']], df[['y']])

slope = reg.coef_[0][0]
intercept = reg.intercept_[0]

df['pred'] = reg.predict(df[['x']])

fig, ax = plt.subplots()

ax.scatter(df[['x']], df[['y']], alpha=0.5)
ax.plot(df[['x']], df[['pred']],
color='black', linestyle='--',
label=f'Prediction with slope {slope:.2f} and intercept {intercept:.2f}')
ax.set_ylabel('y')
ax.set_xlabel('x')
ax.legend()

plt.show()
28 changes: 28 additions & 0 deletions _downloads/c0ff880c08336404fab105236689d632/exercise2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
import numpy as np
import matplotlib.pyplot as plt

def dice_toss(n,m):

"""Throw n dice m times and the total value together."""
dice_rolls = np.random.randint(1,6,size=(m, n))

roll_averages = np.sum(dice_rolls,axis = -1)

return roll_averages
fig,ax = plt.subplots( )

n = int( input('Number of dices to toss:\n'))

bins = np.arange(1, 6 * n+1)

m = 1000

ax.hist(dice_toss(n,m), bins = bins)

ax.set_title(f'Histogram of {n} dice tosses')

ax.set_xlabel('Total value' )

ax.set_ylabel('Number of instances')

plt.show()
Loading

0 comments on commit 515b425

Please sign in to comment.