-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipelines.py
119 lines (76 loc) · 3.82 KB
/
pipelines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch.optim as optim
from utils import *
from torchvision.utils import save_image
def to_tensor(array):
return torch.tensor(np.array(array))
def style_transfer_pipeline(model, original_img, style_img, output_image='generated.png'):
original_img, style_img, generated = load_essential_images(original_img, style_img)
optimizer = optim.Adam([generated], lr=LEARNING_RATE)
for epoch in range(EPOCHS):
generated_features = model(generated)
original_img_features = model(original_img)
style_features = model(style_img)
style_loss = original_loss = 0
for gen_feature, orig_feature, style_feature in zip(generated_features, original_img_features, style_features):
batch_size, channel, height, width = gen_feature.shape
original_loss += torch.mean((gen_feature - orig_feature) ** 2)
G = gram_matrix(gen_feature.view(channel, height * width))
A = gram_matrix(style_feature.view(channel, height * width))
style_loss += torch.mean((G - A) ** 2)
total_loss = ALPHA * original_loss + BETA * style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
print(f'Epoch[{epoch}] Total loss = {total_loss}')
if epoch % EPOCH_CHECKPOINT == 0:
save_image(generated, output_image)
def segmentation_pipeline(model, original_image, output_image=None):
original_image = basic_transform(image=np.array(open_image(original_image).convert('RGB')))['image']
with torch.no_grad():
p_image = original_image.to(DEVICE).unsqueeze(0)
masks = model(p_image)
masks = torch.max(masks[0], dim=1, keepdim=True)[1]
masks = torch.squeeze(masks, dim=0)
masks = torch.squeeze(masks, dim=0)
masks = masks.cpu().unsqueeze(0)
masks = min_max_normalization(masks).squeeze()
predict_np = masks.numpy() * 255
masks = Image.fromarray(predict_np.astype('uint8')).convert('L')
masks = masks.resize((IMG_SIZE, IMG_SIZE), resample=3)
if output_image is not None:
masks.save(output_image)
return masks
def saliency_map_pipeline(model, original_image, output_image='saliency_map.jpg'):
original_image = load_image(original_image)
with torch.no_grad():
original_image = original_image.to(DEVICE)
d1, d2, d3, d4, d5, d6, d7 = model(original_image)
pred = d1[:, 0, :, :]
pred = min_max_normalization(pred.cpu()).squeeze()
pred = pred.numpy() * 255
map = Image.fromarray(pred.astype('uint8')).convert('L')
map = map.resize((IMG_SIZE, IMG_SIZE))
del d1, d2, d3, d4, d5, d6, d7
if output_image is not None:
map.save(output_image)
return map
def merge_images_pipeline(mask, saliency_map, original_image, generated_image, output_image='output.png'):
original_image = open_image(original_image).convert()
original_size = original_image.size
original_image = original_image.resize((IMG_SIZE, IMG_SIZE))
generated_image = open_image(generated_image).convert()
merged_image = original_image.copy()
pix_mask = mask.load()
pix_saliency = saliency_map.convert('L').load()
pix_gen = generated_image.load()
pix_seg_gen = merged_image.load()
for x in range(original_image.size[0]):
for y in range(original_image.size[1]):
if pix_mask[x, y] == 255:
if pix_saliency[x, y] == 255:
pix_seg_gen[x, y] = tuple(int(i) for i in pix_gen[x, y])
else:
saliency_binary_val = (pix_saliency[x, y] / 255)
final = tuple((saliency_binary_val * pix_gen[x, y][i] + (1 - saliency_binary_val) * pix_seg_gen[x, y][i]) for i in range(3))
pix_seg_gen[x, y] = tuple(int(i) for i in final)
merged_image.resize(original_size).save(output_image)