From 4c7acb66bb5f9e2995f25bfb65488c9d2ac98e94 Mon Sep 17 00:00:00 2001 From: Abdulrahman Tabaza <84684514+a-tabaza@users.noreply.github.com> Date: Fri, 24 May 2024 23:39:14 +0300 Subject: [PATCH] madi you are equally in the wrong here pick better pastimes. --- .gitignore | 6 - Assignments/Assignment1/Hmw1.ipynb | 267 ------- Assignments/Assignment1/solution.json | 59 -- Assignments/Assignment2/main.ipynb | 561 -------------- Assignments/Side Project/T_Proj.ipynb | 595 --------------- Binary Variables/BankLocation_Problem.ipynb | 68 -- Binary Variables/PartsWorth_Problem.ipynb | 39 - Binary Variables/notes.txt | 29 - Decision Analysis/CarLeases_Problem.ipynb | 218 ------ Decision Analysis/CarpoolRoute_Problem.ipynb | 0 .../ChardonnayOrRiesling_Problem.ipynb | 121 --- .../ClevelandToMyrtle_Problem.ipynb | 192 ----- Decision Analysis/DataWarehouse_Problem.ipynb | 96 --- .../DecisionTree_Winery.png | Bin 122305 -> 0 bytes .../DecisionTree_Winery_Sol1.png | Bin 50130 -> 0 bytes .../DecisionTree_Winery_Sol2.png | Bin 47575 -> 0 bytes .../ImagesForSolutions/PlantSizeTree.png | Bin 64206 -> 0 bytes .../ImagesForSolutions/RiskCarLease.png | Bin 21540 -> 0 bytes .../ImagesForSolutions/RiskDatawareHouse.png | Bin 53494 -> 0 bytes .../ImagesForSolutions/example_1_solve_1.png | Bin 134748 -> 0 bytes .../ImagesForSolutions/example_1_solve_2.png | Bin 47075 -> 0 bytes Decision Analysis/MarketSegment_Problem.ipynb | 148 ---- Decision Analysis/PlantSize_Problem.ipynb | 93 --- .../RezoningProperty_Problem.ipynb | 0 Decision Analysis/TwoStates_Problem.ipynb | 76 -- .../VideoGameProfitability_Problem.ipynb | 127 ---- Decision Analysis/notes.md | 199 ----- .../BankTeller_Problem.ipynb | 145 ---- .../CloudServices_Problem.ipynb | 215 ------ .../Component.lp | 137 ---- .../ComponentOrdering_Problem.ipynb | 257 ------- .../EastborneRealty_Problem.ipynb | 106 --- .../HartManufacturing_Problem.ipynb | 119 --- .../InvestmentNet_Problem.ipynb | 269 ------- .../KingInc_problem.ipynb | 80 -- .../MartinBeckCompany_Problem.ipynb | 181 ----- .../MutualFundPortfolio_Problem.ipynb | 196 ----- Integer Linear Optimization Models/Notes.md | 12 - .../PoliceSubstation.lp | 20 - .../PoliceSubstations_Problem.ipynb | 253 ------- .../ProductDesign_Problem.ipynb | 218 ------ .../TelevisionShow_Problem.ipynb | 206 ----- .../AdvertisingBudget_Problem.ipynb | 86 --- .../Bakery_Problem.ipynb | 275 ------- Linear Optimization Models/Diet_Problem.ipynb | 227 ------ .../HotelRooms_Problem.ipynb | 105 --- .../InvestmentPortfolio_Problem.ipynb | 55 -- Linear Optimization Models/M&D_problem.ipynb | 109 --- Linear Optimization Models/Notes.md | 81 -- Linear Optimization Models/ParInc.ipynb | 258 ------- .../Transportation_Problem.ipynb | 41 - Madi/HWs/HW1.ipynb | 283 ------- Madi/HWs/HW2.ipynb | 497 ------------ Madi/ILP/BankTeller_Problem.ipynb | 339 --------- Madi/ILP/ComponentOrdering_Problem.ipynb | 81 -- Madi/ILP/Locating_Police_Substations.ipynb | 238 ------ Madi/ILP/Nurse_Scheduling.ipynb | 266 ------- Madi/ILP/Television_plan.ipynb | 358 --------- Madi/LP/BankFunds.ipynb | 325 -------- Madi/Problems_for_fun/knapsack.ipynb | 168 ----- Madi/mid.ipynb | 142 ---- .../ChairManufacturing_Problem.ipynb | 132 ---- .../EconomicOrder_Problem.ipynb | 150 ---- .../EstimatingEconomicOutput_Problem.ipynb | 198 ----- .../ExponentialSmoothin_Problem.ipynb | 245 ------ .../ForcastingAdoption_Problem.ipynb | 40 - .../MediaPlanning_Problem.ipynb | 156 ---- .../PricingCameras_Problem.ipynb | 711 ------------------ .../ProductPricing_Problem.ipynb | 148 ---- .../ProductionPlanning_Problem.ipynb | 147 ---- .../SteelProduction_Problem.ipynb | 217 ------ Non Linear Optimization Models/notes.md | 28 - README.md | 2 + StandardForms/notes.md | 171 ----- .../AdministrativeExpenses_Problem.ipynb | 216 ------ Time Series/BondInterests_Problem.ipynb | 106 --- Time Series/DairyProducts_Problem.ipynb | 122 --- .../ForecastingMonthlyData_Problem.ipynb | 166 ---- Time Series/Gasoline_Problem.ipynb | 174 ----- Time Series/ManufacturingCosts_Problem.ipynb | 189 ----- Time Series/SalesForcast_Problem.ipynb | 35 - Time Series/SeasonalEffects_Problem.ipynb | 204 ----- Time Series/Smartphone_Problem.ipynb | 192 ----- Time Series/TextbookSales_Problem.ipynb | 178 ----- Time Series/UniversityEnrollment.ipynb | 205 ----- Time Series/notes.md | 28 - requirements.txt | 31 - 87 files changed, 2 insertions(+), 13431 deletions(-) delete mode 100644 .gitignore delete mode 100644 Assignments/Assignment1/Hmw1.ipynb delete mode 100644 Assignments/Assignment1/solution.json delete mode 100644 Assignments/Assignment2/main.ipynb delete mode 100644 Assignments/Side Project/T_Proj.ipynb delete mode 100644 Binary Variables/BankLocation_Problem.ipynb delete mode 100644 Binary Variables/PartsWorth_Problem.ipynb delete mode 100644 Binary Variables/notes.txt delete mode 100644 Decision Analysis/CarLeases_Problem.ipynb delete mode 100644 Decision Analysis/CarpoolRoute_Problem.ipynb delete mode 100644 Decision Analysis/ChardonnayOrRiesling_Problem.ipynb delete mode 100644 Decision Analysis/ClevelandToMyrtle_Problem.ipynb delete mode 100644 Decision Analysis/DataWarehouse_Problem.ipynb delete mode 100644 Decision Analysis/ImagesForSolutions/DecisionTree_Winery.png delete mode 100644 Decision Analysis/ImagesForSolutions/DecisionTree_Winery_Sol1.png delete mode 100644 Decision Analysis/ImagesForSolutions/DecisionTree_Winery_Sol2.png delete mode 100644 Decision Analysis/ImagesForSolutions/PlantSizeTree.png delete mode 100644 Decision Analysis/ImagesForSolutions/RiskCarLease.png delete mode 100644 Decision Analysis/ImagesForSolutions/RiskDatawareHouse.png delete mode 100644 Decision Analysis/ImagesForSolutions/example_1_solve_1.png delete mode 100644 Decision Analysis/ImagesForSolutions/example_1_solve_2.png delete mode 100644 Decision Analysis/MarketSegment_Problem.ipynb delete mode 100644 Decision Analysis/PlantSize_Problem.ipynb delete mode 100644 Decision Analysis/RezoningProperty_Problem.ipynb delete mode 100644 Decision Analysis/TwoStates_Problem.ipynb delete mode 100644 Decision Analysis/VideoGameProfitability_Problem.ipynb delete mode 100644 Decision Analysis/notes.md delete mode 100644 Integer Linear Optimization Models/BankTeller_Problem.ipynb delete mode 100644 Integer Linear Optimization Models/CloudServices_Problem.ipynb delete mode 100644 Integer Linear Optimization Models/Component.lp delete mode 100644 Integer Linear Optimization Models/ComponentOrdering_Problem.ipynb delete mode 100644 Integer Linear Optimization Models/EastborneRealty_Problem.ipynb delete mode 100644 Integer Linear Optimization Models/HartManufacturing_Problem.ipynb delete mode 100644 Integer Linear Optimization Models/InvestmentNet_Problem.ipynb delete mode 100644 Integer Linear Optimization Models/KingInc_problem.ipynb delete mode 100644 Integer Linear Optimization Models/MartinBeckCompany_Problem.ipynb delete mode 100644 Integer Linear Optimization Models/MutualFundPortfolio_Problem.ipynb delete mode 100644 Integer Linear Optimization Models/Notes.md delete mode 100644 Integer Linear Optimization Models/PoliceSubstation.lp delete mode 100644 Integer Linear Optimization Models/PoliceSubstations_Problem.ipynb delete mode 100644 Integer Linear Optimization Models/ProductDesign_Problem.ipynb delete mode 100644 Integer Linear Optimization Models/TelevisionShow_Problem.ipynb delete mode 100644 Linear Optimization Models/AdvertisingBudget_Problem.ipynb delete mode 100644 Linear Optimization Models/Bakery_Problem.ipynb delete mode 100644 Linear Optimization Models/Diet_Problem.ipynb delete mode 100644 Linear Optimization Models/HotelRooms_Problem.ipynb delete mode 100644 Linear Optimization Models/InvestmentPortfolio_Problem.ipynb delete mode 100644 Linear Optimization Models/M&D_problem.ipynb delete mode 100644 Linear Optimization Models/Notes.md delete mode 100644 Linear Optimization Models/ParInc.ipynb delete mode 100644 Linear Optimization Models/Transportation_Problem.ipynb delete mode 100644 Madi/HWs/HW1.ipynb delete mode 100644 Madi/HWs/HW2.ipynb delete mode 100644 Madi/ILP/BankTeller_Problem.ipynb delete mode 100644 Madi/ILP/ComponentOrdering_Problem.ipynb delete mode 100644 Madi/ILP/Locating_Police_Substations.ipynb delete mode 100644 Madi/ILP/Nurse_Scheduling.ipynb delete mode 100644 Madi/ILP/Television_plan.ipynb delete mode 100644 Madi/LP/BankFunds.ipynb delete mode 100644 Madi/Problems_for_fun/knapsack.ipynb delete mode 100644 Madi/mid.ipynb delete mode 100644 Non Linear Optimization Models/ChairManufacturing_Problem.ipynb delete mode 100644 Non Linear Optimization Models/EconomicOrder_Problem.ipynb delete mode 100644 Non Linear Optimization Models/EstimatingEconomicOutput_Problem.ipynb delete mode 100644 Non Linear Optimization Models/ExponentialSmoothin_Problem.ipynb delete mode 100644 Non Linear Optimization Models/ForcastingAdoption_Problem.ipynb delete mode 100644 Non Linear Optimization Models/MediaPlanning_Problem.ipynb delete mode 100644 Non Linear Optimization Models/PricingCameras_Problem.ipynb delete mode 100644 Non Linear Optimization Models/ProductPricing_Problem.ipynb delete mode 100644 Non Linear Optimization Models/ProductionPlanning_Problem.ipynb delete mode 100644 Non Linear Optimization Models/SteelProduction_Problem.ipynb delete mode 100644 Non Linear Optimization Models/notes.md create mode 100644 README.md delete mode 100644 StandardForms/notes.md delete mode 100644 Time Series/AdministrativeExpenses_Problem.ipynb delete mode 100644 Time Series/BondInterests_Problem.ipynb delete mode 100644 Time Series/DairyProducts_Problem.ipynb delete mode 100644 Time Series/ForecastingMonthlyData_Problem.ipynb delete mode 100644 Time Series/Gasoline_Problem.ipynb delete mode 100644 Time Series/ManufacturingCosts_Problem.ipynb delete mode 100644 Time Series/SalesForcast_Problem.ipynb delete mode 100644 Time Series/SeasonalEffects_Problem.ipynb delete mode 100644 Time Series/Smartphone_Problem.ipynb delete mode 100644 Time Series/TextbookSales_Problem.ipynb delete mode 100644 Time Series/UniversityEnrollment.ipynb delete mode 100644 Time Series/notes.md delete mode 100644 requirements.txt diff --git a/.gitignore b/.gitignore deleted file mode 100644 index 00b2bf7..0000000 --- a/.gitignore +++ /dev/null @@ -1,6 +0,0 @@ -Notebooks/venv -/*/lp_Files -/venv -*.lp -*.pdf -setup.py \ No newline at end of file diff --git a/Assignments/Assignment1/Hmw1.ipynb b/Assignments/Assignment1/Hmw1.ipynb deleted file mode 100644 index e6b52c1..0000000 --- a/Assignments/Assignment1/Hmw1.ipynb +++ /dev/null @@ -1,267 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A company has ten employees, seven machines, and thirty jobs to be completed. The time required\n", - "to complete job $j$ by employee $e$ using machine $m$ is given and denoted by $t_{jem}$. An employee can\n", - "only perform one job at a time. Similarly, a machine can only execute one job at a time. A job\n", - "cannot be divided among employees. Also, a job cannot be divided betwee machines. Develop a\n", - "mathematical formulation that can be used to obtain the optimal job-employee-machine\n", - "assignment if the company wants to minimize the total time spent by all machines to complete the\n", - "seven jobs. Generate different scenarios and, using Cplex, implement and solve your formulation\n", - "for these scenarios." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Sets and Indicies

\n", - "\n", - "$\\mathcal{J}$: A set representing the Jobs. $|\\mathcal{J}| = \\textbf{J}$
\n", - "$\\mathcal{E}$: A set representing the Employees. $|\\mathcal{E}| = \\textbf{E}$
\n", - "$\\mathcal{M}$: A set representing the Machines. $|\\mathcal{M}| = \\textbf{M}$
\n", - "\n", - "

Data

\n", - "\n", - "$T$: 3D-matrix of the time required to complete job $j$ by employee $e$ using machine $m$, where each element is denoted as $t_{jem}$.
\n", - "\n", - "

Decision Variable

\n", - "\n", - "$X$: 3D-binary-matrix of the which each employee in $\\mathcal{E}$ should spend using each machine in $\\mathcal{M}$ to complete every job in $\\mathcal{J}$, where each element is denoted as $x_{jem}$
\n", - "\n", - "\n", - "

Function

\n", - "\n", - "\\begin{align*}\n", - "\\ {\\mathrm{minimize }} & \\; \\sum_{i=1}^{\\textbf{J}}\\sum_{u=1}^{\\textbf{E}}\\sum_{o=1}^{\\textbf{M}}{x_{iou}t_{iou}}\\\\\n", - "\\ \\text{subject to:} \\\\\n", - "& \\sum_{u=1}^{\\textbf{E}}\\sum_{o=1}^{\\textbf{M}}{x_{juo}} = 1 \\; ; \\forall j \\in \\mathcal{J}, \\\\\n", - "& x_{jem} \\in {0, 1}\n", - "\\end{align*}\n" - ] - }, - { - "attachments": { - "image.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAHaCAYAAABb8aNlAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAKEZSURBVHhe7Z0HlBPl18Zvyval9470poAUEVCwAQoiKmBXRPxsiIKKgnRBrGCvqIjoXxEsKChWUIpIkd57722XrUn2u8+bCUxmk9203U2y93fOnKmZTLLZeebe9xZTidKVckgQBEEQhIAxa3NBEARBEAJExFQQBEEQgkTEVBAEQRCCRMZMhdBgitUWgiQnS1sQBEGIHERMhaCwlb+KMuqPphxrCW1LkDiyyZK2jczpu8h8luepm8lydhOZso5rBwiCIIQfIqZCUJxtNYsciXW0tYLDnLab4rdPIMupZdoWQRCE8EHGTIXgyMnWFgoWR2Ityqp+t7YmCIIQXgRsmb44YTg1blRfW3Py54LFNPmND7W185QtU4YmjBtK1apW1rY4mTZ9Js38do62dh5/jy9ODB50P13Rqb225iQlJZVGjX2Ftu/crW0pPGxlLqXMusMoJ668tiUPTGbK0cZWTRDhHLta1pNjTtCWcmM9Pp8SNgzW1gRBEMIHsUyFoLCeXEJJy3tS8qL2+U6mtD38CpOazKlbPB6TvORySlx1F8VvHkGx+6aR5fQKMmWfJEvqRord+5F6T0EQhHAjKMu0erUqPllELksTPDvqJTpx8qRa9oavx3uzYF3sP3DIp/fLC6vVQn1796Ru13SmUqVKEL6sI0eO0TffzaV5vy6gnJzAh5xLlEimO267kdpf0lqdG6SmnqXFS5bTtC9mKYszL+peUIvGjX5SLReVZeozJiuldNSNdzqyqcSittqKIAhCZCOWaR6YTCZ69KF76Zbe11Pp0iXVupmnypUq0IP/dzc9+nB/tS1Qul7dia7reuW5c2OCwHbt0pmeeeoRio+P144UhDDEbKUcSyLlxJTiqTw54qqQI6GGCkhzJNQkR3xVyomtyFNZFe2tXPj8GkGIRqJCTGGB9hswhHrefK/b9NCjw4KySntcdzVdflk7ysrKoqmfzaC+dzxE/e4bTAv+XkI5Dgd1uLQ1tWnVXDvafzIys2jFyjU0bMREuqF3f3V+vE9mZiY1qF+X2rZuoR0pCEWPvUQzyqz9GJ1t+xOlXPYfpXRYRqntF1Fqu/k8/crb59LZ1rNVhPfZ1t/T2TZzKPWSeTz9TqmX/kWpHRY7X3PJL2Qr00E7qyBEB2KZeiE2NpY6dWxHZrOZ5vz0B33z3U+UkZFBJ06dokmvf0ir126ghIR46tC+jfYK//lx7q80dsJkWr9xi3IX4/x4n40bt1JcbAxVrFBOO1IQig576TaU1vxjSmvxGWXV6McWqOdhFV/Jia1AWbUf0dYEIToQMfVC1SqVqFKlCnTq9Bma/9cSbauTy1lk615QWy3XrF5NCW+ogKs3Ni6WMrOy6chRKVRQbDHHBD+FAEdyI0q78AOyl2ypbQkRHiK5BSGSETH1Qs0a1SieLc8Tx0/RgYOH1TaMZ44c/jgNfuz+cwFDiYnxVLJEkloOlooVy9MQPnfDBnVpy9bt9O/yVdoeoTiQVeM+tgCnUkqHf3j6N+gptd2fZCvXWTt7YGTyNXnFkU0mW4qqTmXOPETm9L1kPrtVRV5jjkIb5ox9vP+oisg22VPVa8wZ+yl29zvaSQQhOogKMUU079Qpk2j2rE9o1ldT6MN3XqK77+ytxC9YsrKz1JjppZe0ordeG6/GSDMzMun72fMoNTWNkpOTqFTJktrR/oOI3M+nvqmufcq7L9NlbPUuW7Gannv+deX2FfwHJQ7VGF27Pyi7Uk9ta/iC4Jy0iz6kzNoD2QJszv+Vcdqe4MiJKU2ZtR7W1vwnu0I3/i6v1tacxBz9iRI2Pkkl/r5YRWMjlSl56dWU9O+1KkUqaWVfSvzvdjVPWtGLkpZdz/u7UPI/V1Ly4svUa5KW9VApVUZsZTqq8VTnmGpHbasgRAZRZ5nGWC3KPdv7xu70/LhnlLUXDLExsTR0yMP09FOPUOlSJWnbtl00+KkxyvWbk+PQjgodiBa+pE1Len7s08rVLPhPZq0HndGjMWUoo8FYyqw7lFAwIlzJrtSL7KVaa2uhxZRj05b8J7vyjdqSE+vReRS/aThZj/3Oa6GvQppZ+xE1nooJy0JogZcC3goEgqW1+JwyGj3P3/PD/HfuRY6khnzzCc3QQHElosUUkbqI2NVH8D48aDj9OOdXNeZYs0ZV6npNJ+3owKhbtxZ17NCGstk6nfb5THrimXHn3L7gTEoqnTx1RlvzH+SG3tHvUXXtiOZ9edK7dPTocapXr7ZKvQnleGyxweEuIFlVb6OzF3+lrYUfHiNbHZlBT3Cxxu56UzuhfyC9xV7aPQ84bs8UbSn0YEwW47MucmIl+C7UwEsBbwVSlOwlmlB2hWspq8b9qlHF2Yu/pJT2/1B6s7fUcIP624u4+kXUWab79h+kDz7+gv5btVYF85QvV1bb4x8HDx9hAc1WUbawRh97YjTN+nbuuSINELv4hATKSM+k1LNn1bZggVv370X/0guvvq0KNuBhoEa1KtpewVfidr2hLZ3HkViPHAnOoLFww17KPQUqeWlXKrGoXdATXKye3Km+YC/ZSltyYj32G5nTtmlroQcRw3qsJ/7WloSQkV/Ql8msHuww3JB24fuUcunfLKz9tZ1CfkSdmAKIaHycc9zJbgssavAgW5/HTpwgh8NBf/612M0ahbXY+fL2yqW8acs2NaYaSjAWm5GRSdk2W8jPXRyAgJgzD2prTiynV6q2buEGihrox0gRxGPKOqKtFR220u5uZ8vp5dpSwYAaz3qsp5ZqS0WHrezlavwW+bO2Mu71sCMRPGQi+Mtn+HeZWftRSm/0krZByIuoElOU/ruoWSN6bvRTdNFFTejs2TRasPAfba9/oKzfsuWrVJ7prX1voOu7X6POX7Z0aXr80QHUuHF9On36DC34K7DzewIVjy5t15qGPfUIlS9fljZv3kb7DhzS9gr+YMo6X6wD0aYJG5/W1sILR1wFbckJIl+LGrhYbRW6aGtOrKf/05ZCD8br7CXdrXPLqX+1paIDFhrGb1HZKavmg9rWyEXV0V7Wg5L/6azqXydsepoF9nWKOfQ1mc9u1o7Kja3CNWyhDtDWBG9EtJjqI2ExffPVFBo/9mm66MLGKuJ2+hezaPWaDdrR/vP1rDm0bsNmKpGcRPf3v12df+pHk6lj+zZktztUMQdYpoGAusLvvjnx3LVjmvH5u0pIL6hdk7Zv300fffpVULV/izOxu99W1imsvPgto8mUfUzbE16YHIYWdmFQbi+7vLuQWlLW8c12i7YWemzl3OMarEd/4b/XKW2tiDDHsMif74plT26gLUU+puzT6m+K7zl271SK3/o8Ja28lZL+vY7iNw2j2AP/y2XBZle8VlsSvBFVlqmDhef06RT6c/4ieuTxZ2nOz39oewIDY5gvvPw2zftlvnK9ArvdTrv27KMXXnqTvvz6e7UtVCBoas/e/aqk4NBnx6uC+kJgWE8uVjcHjD9aTy7StoYhxmhbU9EHfdgq9tCWnFiPzNWWCoZsQ/qN9QT/vdCqTz8VMjmGv4PJET7DLS73c+olv+V6EAkGPHzGHP2Z4ra/xJZrP76hnn/Qc9ZbrqGtCZ6I6K4xxR3pGhP5oCA86ti6QLED5GgWFai/i7KBepBHCld5gcAWIApM5IflzGqK3/4CmVM3aVsKFhTvR81hF6asE5T87zXamo4CSI/Lj7SWX7Cl3Fgtwz0Lq7IgSG/6uhJuF4lrHwgL93u4EpUBSELhgfEkIQhyWaZFmwplL3mRtuQk5vDsghNSxhFXXVvKGxSzyKrSR1srBPjhTw9SSlI6rsg1pTd7U3XHKTxM54QUIEq9wDDmZksJyDwJSkxRYWjyK2POjfkNHnS/tscz+kpFmFBYIS/8Pb44gO/Y9X3guw9FladAcFbtmaIiHZEAXlCiimCYaBZskyEntqjHTO0lDIFAbBEWJP4IUa7x5YLEIKbein6gUpOxuEWBYrZoCxpBFOXIjxwyDDkU4HtFA2KZCgGRXaUv2Us5cxGRAG4rd94dFAoQTZrW/BM1LqQEu/k0vvH6ZsWAc9VeLv1LlRcMX9yf9nPMRWyZlnVPUSloMc2JN3Sg4Ru2yZGea8K4d8yBz7WDCh6//g6F6OrNMXguCnQsN8a9TKrJnq4tCZ4IeMw0HMCTgMVEFMufIAZzMvGUwxO2m3jNHawfQpCSBMgGTXqTSSxYV2hrRAnrBuYd6OPjmKly51W7M1dNWIDCAQkbn9LW8gYVXVSJNAbFBpJWFKKL0A9g4UPwXaAgPOrYFgXIeUX/UReooITCDwUJ8hj1hQHidk6m2H3TtLWiw5FYi862+k5bY7xYZSguEb/tBRU1Xhjk+r1gLHep/n8ldDc39K3Vt9tDMF845ECHKxFhmV7Birk40Up/JVqoAy+3MJtodoKFNiZZaR1vX8nzpTz/m/f/zvOfePqR9/9gmPCaf3nf1HgL9Y0RozwYcqyGp1bbaW0pMCCeuEmga4onIQXetntCP5aklsO1Nm8uN29RRvO6X0tOiAru50VOnHv9aWOxjaLD3Z1qSd1CJRa2yTUlbBhSuAJjsJhzYstSymUrz03pjV9WubFBY7a6CSkwZZ/QlgRPhOUdxpiD+Xq9GlSOzcpKbG0OijXT/Tw1ZEENlEtZkJ/jc0xnUY009GOmrgm5tojs9QSiro3H47vFdxwMiHbUY7KnaEuBgYLbeOrOj2gLzzeR+zhgjiVZRdOeL0J+A1vYDdTNrcDJlfNaCGJq/B0VdX7pOYzu93CpU5v3PQsPnKHolOSIcx/LRmUuGTPNm7A3z0x2O8XtO6CtETVhQUU+aShow6LaHX5iwW8Q3ehGPsEhttLttCUnFmOdV6OFxsQcncv/xDu1NY1oK2LhyB0hifSU80XIx6gi/SntlxqKkIdeXE0O95Z/sEyNYhdqcns4gnsoCxnGv0sRR1m7KKwx9RyDVepXGcJiSliOmerzTEePeon+zjr/D5bFV3tHpp3GxlqovimHf1xmMsXFkSkhnhwxMWrCkPzhEydVOUHg+oAIE2hlsGj/Z3PQmMzcAQSuHM78omU3btpKTz/7vLbmPw0a1KF+d/alhg3rqVq/mZmZqmrTe1Om07FjebtV/M0zvbxjO3r0kf583uNB5+8ac9Bi97xPcbvf09Zyk1FvmApachG7/zOK2zFJW2OxLdOeMus+o5Ytp1eQ9cR8NR6F9AM9yYs78AOW8++aFykdl/Ov+/xTfImFrfiHUPg5gb6Qesnvyl3nF45Mijn2K8Uc+EpVswkVZ1v+z617S+zeKRRz5EfV6LsgONt6tpu3AYU2wsHVm3v8eL8qxVfU4LvCd+aG7ndtPf6HyscNNp0J1i3aF7qIOfQNxW99TlsTPBGRA4dr7Dl0Y7qNLo8rSQsnjqMdH7xJ219/mXa+8jztnjiWDvKU/sbL9G6bS+iWdDvdqk2389Q3w/2JsxlbukUFiuVPGDOUmjVtqIQUxPGDQds2LWncqCeD7sVakFiP/6ktOcmq+YCqX2rMe4OVlXnBILKxpaXHemKhtuREVSxCc2me4reO5fMv4BvHBdpeJ+b03T4JKbCeOB+koZbDVEiB5WwAJS/Zasyu2EO5hEPp+o458oO25AQ1WRGIA2FBUBeamKPweUb94ZRZ6yHlhoalrK7BmE7iA0YPh8meqi0VMTnuUbI5loJ3efuEIdcTDzl4UHRNCNALRV6wasCgw5whNcLzI+KjcI4cPkrTv/iGbr9noOoJOmjIKNq8ZbsSpW5dOqkOMno2ONwN8fpe3Lz6PqPG6Ybe/WnJP8tVR5n/Vq3XXuEfVatWpjtvu5GsVist+HsJ9btvsDrvyLEvq441qC7V+8brtKPDj5hD37EF4f4PllnrAb7xfq0CiZzdNn5SN/us6ve6jYdi/MWXSipGkTCn7dCW8idh45MUu+9TNSVsfELbGp6YU91d3rEHZpwvQn5wlqqKlBehbCweu/8Lj63WcHNVBen5vVD4PLtyH354+j/lhka7LlhLiNZW1Xn4AconzDHu4+SO7DBy8xqGLUzhIaaFlZds/Buass53zRI8E9FiCjfl6PGTaMasH1SXF7Br9176auZsSk/PoFKlSlKZ0u5PvgYtJUsAY3BtWjWnFs2b0cFDR+iX385bQP5wcYsLVWeYtes20aTXP6QTp06povZw8X487Svl7r2wWeOgA4UKkhgWKk/gBunstmHIIdSIOfi1tpQ3jnijmO7RlnyALdG4na+pydN4bDhhTnd/SMBY5bki5NvGq/KCScu6ny9CrhNXdJnRW+GhIG7XOyxqgTW8R3WerOr3aGt5k2OO15acIJ80XDAZLdMizv89RyFYzPjfNdb8tZxZoy0J3oh4y9QTiQmJZLZYVIu0kyxSeozSafbTzQtL97prr6T4+DhazNZpoOOOdWrXUO3dTp46naszDCzro8dO8INASapW1T11IJyIPfAlJax/zGeLETlxGFfFeKkvOBLcizSYM/wQ0wjCnL5PW3LiSMzdxNycceBcEXKIq2qhxd990so+IXHr6YEL3+luH0fWkwvJZA9N8/t8CSdXfC4LkEUrADd2yCkEi9lW9jJtyQliGMKxF3C4EVViin6jaI92z1191D/mz78syCVUxn9Xf5NjYJU2blhfdXSZ9+sCbav/HDnqvAEmJLg/nYNTp85QSkoqWawxVKaMIWo2zIBVlPjfncoCRFEFTzl3iMrFWE7y0qtUoJKvGN2XljPuwUjRgvEhwZFUV1vyjmqhxd892mkVBDhvzKFvKWHdo5T8z1X8t+vCAnsTJa7up7bFbx5xrhem5eRSZ9BQjk0VXo/dP107i7/47yUqOHLIkrpRW3aS2u4P59hxq++UWzuj4XM+pXOFksKwmHO1xDse+H2uOBEVYurKvUS/0aFPPExxsbH0ymvv0/y/FmtHuGMUVF9tU71V+teipUG1SNu5e49y5bZscSH1u6uvagyO8zdt3IBGPzuY6tWrox0Z/sA95xybhGB2peQllyvhTP7nGirxd0uK3/SsElp/QDcVtH06Bz+Rq1y3KASWpd66RK6pMQCkSHFk8vUd5e9/pyovCGs15sicc70wE9c9qKJwUcQAHUwCLUGoPrc5QVvzHdz8ERENobOV6aBtDR7rMfcgO+fwRUX+XdZS4/kIAPPVpR0yjBZziFv24fPpo/SB9WRohxGilah085YsmUxPPv4A3XzjdbkCkIDdYK36KqZt27RQYhesVQoQuLR5yw4W/hi6qde1qjH49zM/ponjh1Griy86F90biSCIBC7dYBpy20u6F1xHtG84R+QGi9GNFsoI3XAFvxO34CpzjKrDjHrMzgA2Xm73q0rDyqvZQWatR1gEyiohyKr1oLY1eGL3f5LvEEaONe/UOUQ7qxrRIes9yvcufrg5Byp7hTAH1la2o7bkxHJ6OX8HYdzaMYyICjGd/MaH5yJtHx40XFmkZouVbu3biy7rcIl21HlyDPKJOr75AVHu3u0qimWrd9GS5UE37s7KyqLxL7xB38+ed67xOIpRYAz2hzm/0u49+ymLLdf9+8OlvFrhghq9eixn/tOWohOj1e2Ir6YtFR2wErMrdleVmGCB2Uu3CemNG8Qc/VVbcoJUGXQKcgawVeH18spSyvZiAeIYR1J9bQ3fm+egt4BgKzBp5S3KAvcUkAWXdsyRn7S13KAaEaKdXZ8ps2ZohN5i6OmaesnPdLbND3T24hl0ttUsfs/RfHGBjaXaS7i34BMXr+9EnWW6j8UH0bELFy1VVl+riy/U9pzHlGtsJv+xGliljRvVo6NHj9Mvv4fG7ZGRkUEfffol3X7PI+pBoFfv/tRvwBD6Ye5vlJgQT8dPnqLDR4MT7UjFXopv3DqiPZoQReX15BjKuRU2tjKXUlprvjE3HK8qMWVe8DilXfgBpXRcqlJhkAalKjEFWfM45tAMNeaaH8bIXxc5xvSp1O3aUojIsamx4eQlnVTBEBSVR2R18r/d8nRp40Eko95wbc1JqFrIoZiJnpyYMqqjEh4qMDSSXbkXC/d92l7/cCS553aHsiBItBOVbl5w4oQzijctzT3cvioboTE6S/Qg62h2PloKa7TX9d3UfOHiZXTgQMElMMMCvq1PTypXviytXLn2XMpPcQKBR3o3J4o1RLtlaso4XzITFG7D6dxk1bzfq2sVIooCHRDVlPaLVXF1FHDIqnqrap0HC9aRWJdv8vmXIkSgU+K6h1iw3uIPrXNf6jCzJYYKPJ4wuiXNGQXnkkTBEIxtI7LalJl33mV2tduUyOmJPRBoYJY7iE/I3/0cWBlIu9ZpyUWucp6CV6JOTFHs4P7+t1OP665S5QT/+XeltsdJNUM5wR3GxFMPtGt7MdWrd4FKs5m/wHNQU7Agn/TqKzvSa6+Moc6d2ivBnjvvD21vMcIcR47kBtqKE+vx+dpS9GLONIhpEY6Z4mHGXrKltpYP/PeCOxMFHDLrPk3pjV5UFuzZVjMptd18QmBQ/mOFORS79yMqsaidM3jtn87OALalXdRy0n+3sYWU2zORY0miLF2JSmD1oRhIQYO/HVrL6VHR7kd/0daChK1l5X5mUfWUmwuhjTl6vhSiryDoT+8eRlGWgooWj0YiWkx739g9V0eUd954nq7vfg0/Rprp629+VEUQ9FQxjI/uMQQjGYE1em3XKyg2xkpLlv5Hu/a4u+OCQd8BZuqUSTTokfvogto1aT8L6SuT3wt6XDaSwA0ZlZNSOvxDGXXce5bC0sE4UHblm7Qt0Yc53b2QuCMhd65pYWFsdRdzcAZPX6kxQn9BYBCsVl9RwWt8A1cBbFlH87yZq366+ps/W1HWY79ra0VHVvXz/VkB0oZi9/9PWwsRcD+zQCcvaq9Fz3elpBW9nCU5V9xMltPuRoQv2Eu4D4l5qoQleCeqLFME8Jw+ncKit4KeGT6Bvvkud3AA3Lx69uVjmeqt0nnz3EPlQwnGT7du3UFvvPMxDRoyknbsjM4CBd7IqwWbPbmJGgfKqD9SuRajEWMLuxyL/ykiocJ4U4059ptqgI0xQty0EzYN1coO+liso4CisI29UBEoVNQgYAq/VT2xaABhyA8NJc7o+SMq6jbQ9DF4Ioyt2ywnCsYLF61EZNeYC9MCLw83PtZMfXSNwYdk2GmOPey+Ap8oyq4xoQaRiPqozLyA2w/jaNEEbsJIA3GBmyOEq7BB4ExqB/ebKCwf3LA9gYAXe3JTvv7SPCE9BVM5csSW53klVT0pbtsEsp5cor0idKDPa0aDMaqEIVyoqGdc1OB7QCqMC+TkoshFuIFcWXvyheQo0USloeE7NJK0/EYWZ6l85CtRG4DkjRqGMdMDkamjUQdcVohoxRiQ09V3iv/jcwekqACQKBNSkGNN1JacBFobN1iMDzRw7XoTUqDG5478oEpEIuo1fstoFo+BTiv2nytU27KCEFJgPruFEv+7XY2rhoOQAvxuUcgCLdtQoSqOl8MJpBnhoQ1VnFDBKavqbR6FFH9TEVL/CGvLtFrVyvxka6cG957Pz/LVMu1kMdH4ODNlk4lGZNppMVuf5VhH5yVYqIRu3PTyNDsdzmfcNJzAOOsVndpra05QetCbZfrihOHUuJH7DRJjsuFmmXpD5RrGV+N/+Eb8a42hmMM/8A0r+saSEf2KoB0XqpQd/y5NthPKdYdoX4y9mXhSgSFZefe6DRQUGUBupIuYw7OVQArRQdpFU8heqpW25hn5mwdG1FqmT8SaqSKLZjXWzcd4uRTPH4gxuwnpRkdORAlpcQQCgiosqPcau++TqBRSJ+6/Q1gL9hJNyFamo7IeMus8QemNX6G0Fp+rCFnUiU1v9pbK/8RYl71k7nzqQHAkuJex9HVcVIgMTI4MbSk3sKThVRAhDYywtEz1ICd0XeL50nq+WqZLEq1U9rxu0gkWzbKGSN6xmQ76wha9JeqEyCKt+ce+p6R4wpHNN8JRqrtMoKQ3e5cFvJ22Rmq8D+N+QnRgL9GUMusOJ+QAw01uObOWLKnryczzcGqBF4mEvWWazSLoLLbnJJb18AIvVw3JRaXMxmYTbTc8IhiFdDlrqAipEE7AIrCeXKStBYA5hrKr362tBIaxjKE5LcQVhXS4xu9QhxcWuBAizHHOovwsmK6yjGgfh+hnDBEkoDHBipu1BvqfqEb9IqTBE/aWKfgs3kJtLe5ieIqv+ggLbRKLJJIIEnm354JjuVliz6GhbJXi9YIQbqBgO6JCUdjfwTdAlBaEyDniMX7Mywm1vKYRoSFAwrpHtDV/MVHKZe75iej6U1CcvfhLcmgVdzBGjGAiIXBs5a9S+dj+tIVDLq8aQkHbvChuJFEYRISY3hVjphGxwRvRiA19JctB07LlRyNENqoWa2Idni5QwUv2pPqq3F389hfIrROLH6CiUGr78y5dRPEiLaZAYEsppeMybYXJsakWbkLgoMi9W9tCP0CQW9zOScWi2lhBEREBSJ+x+P0ZglzQnayhIqRCNIA0IgSMoKQcxkmRe5u45r6AhVRh7CVakK4/k3uLQVNOaIrA+4NyM6PdW7s/yVaus7Y1gsmxawv+gxKI6U0mkwNR80JAREw074MZdnqBrcqfbd4jcDG+eoZ37Xbk0Ld83BSDcDbiTzs0BBauIEQjOVZ3MTXZUrWl0JPDlqkbxqbXhQDKHKp2bzGleflhbWvkErfzdZXfqnK1s08pFy6i4WF1IipbpVhlHXHuw4OSB/HNrni9tiT4S0S4eT2B8dHyJrhuTYRg7wzK8dj9BWkxD+sqHoFvWGgX2hy0jLVWxk0FwQkKnZ9t/b22xk/aadsoaUUfbS20IDgGhfBdoBgH2psVGuYYSumgK4rvyKYSi9pqK8UDuPWzq93hVjsZYoxCG4L/RKyZBgHdxzp4lMUwhSdvbdQ+5h3/Gerv3mQ10aR4C/2daFFpNz8mWOh9Xh8dZ6b/Y+HtbjFRC7NJibUgFBuM/TZNMdpCAWC0TClwF2UgGPujmuwFZ4WHKyj1GLvnA2WpulCBbl5a7wl5E/U+TwjtsEw7bTEIqgvksdZn4ezMAnq71ayKPUBov2KBXZRopaU8fcrrw3g7avq25GORfiMI0YbJ6PbLJXihxDBmavfcy7TAsBjLNxY/MXVhbHBubLgu+EaxGEBE4NHATAfNCyCvtDRbp+1YaPuxkKJI/pcssiuSrPQ9z5+Ps6jtHVmEq/BxgXyZeA2ekSHQqNJUgcUd56rOE/JpG7B4Y6rNE7ahqlMZnuN45NwWiz+gUEi4j1vmmGO1pYLAXbhzLHGsaPxr9jaFGLg43XDos9kLFtVusP3fPvZ6LQTM7g82wQQyFWcidsw0UJqwKLXn305ri5mXiSoZijkECyzhVOTr8Rz/njG8HIPmx1jm98JyPLbx22Kb4WccEMf4L7iWLe9NPG3j5wW0ldvL73+8WP1lhWBBfiJ6yrqA+w/F6gsC43vlB5qDx22bSJbU0DQ5sJdoRmktPtPW+PynV6po6MJAn8JiSdlAiavuUMtFRVqz98he5hJtjShxdb9c1qqQP8VOTI3AKqzEAltZs/pQyxedZWAJNuDlkqHV2kIFjquzLKoZ/BeGwO90OGg3L+9nsT3BcxS+OMXijvlJnvIDX4UPhwkRirH9GsbUkhcXTGUiT63e8gNNDpAGFAqQCoNUEBeF1irNFEspHZdqK7zqSFcNvouStOZTyV6yubbGYsriDpEX/KPYi2l+wO1ajy3Yuqwk9SwmasLrzQ3VmKIBOMARzHVE84TH8UfEgwbmCSyjcCljHelHR3gdxx5lUYb1i/4lEOPTPMEiP8vrKbx8hpfRvAvL/jvYhUKnMCNcjUUbfCCU3Uwy6g2j7Cp9tTWi2H3TKG73W9qaDmNQVpAUamEMHznb+jtVVctF0rLrVR6z4B8ipgEAFy2s1rpmM9VnoW3Cy9U1a9ZfIE42FuhM/itkIb2HhQrb0JffxsvYBmJ5GS7iOF6GwMXxejzP4SoO/YhS6IEljIZvEN1T/PkgvKchttoc+3ax4m7DZ3d+ZKEISLnsP23JSUGWE1Riqg9yyvGea2o5syao6k5GMF6JRub5gbq18dtfDFn3nCJPCfIA3O36EoR5NYMXvCNiGmKQ9p7EIpfAAgn3aXkTiyULn41FwiWOKOaUxcfYeB4Kiw2BSYhIrsuqWpvf9wKLmRry++rbzUUSG/hLwfjvdoeD9vN3hEIccFmn8rYU/g5h8XpvJCUEA4rOozi6C9f4GW62OXFVVNlCR3JDspe4iBxJdcmUcZDitz3Px6zSXuE7Z9v+RI64ytoa3Iv3qLHRgsZWpoNqX+crqvH5jknaWnDkxJRXxf1doPB80r/XamtFQ0qHf/hC8JjuRHkjQmyRFwdETKMYuGVhvULgS7OwYjy4GotuVZ6jPR2ey8vxOlzZvuTUQvjDxQqGpQvB3coTKl7t5HX0p/Vl7FfwDgqlZ1fupa05MWWfZBEoo63lJtDxRjQhRzNyFxAsCFdBg96wWdXu1NbyByUb43a+pq0FB8YmMUbpAg8qeGApSnJZpos7qDrPgn+ImAoKRBWjTR3Sbuxs+SHrDy5nWNJwu8KSRmEMuLjL8naIMdKGcHxpXsccwVol+RyYl+LXO/cXbvELdAT6h6cVLKzLeS4/bv/IrtiDMho+p635RqBiCiGFoLqwHv+DEjY8oa0VHGfbznUrTGDKOuYmJnqsp5ZS3LYXVFm+UJBd4VrKaPS8tsb/T0fnUPyWsc6VIrIGUZ8YZRVdJP/TmR+gTmtrgq+ImAqFAlzOpVjaILYlWFxx64LoJqvtGHNG7WSTmkIFnq3n2XJoMYvqv3YHHZJfuk+kXfQh2Uu11tbyBmOJ8VvHs4XlPtbqC47EWnS21XfaGuPIpBKLLuWFgvtD2Uu14s83RVtzWt3J/1yprRUsqkVaw/G5qi+5CPX4rK8Y3e0Yw8VYruAfIqZCWIHbjGvst46FrVpehwCjoAWsXMzL8eT5dpQ3S1lU1zqINrCwwiW8Q375XoHVaCt/jRpfBKp4evo+MqfvVmkT5rObyZK6PmgLBmIKUXWRuPpev8ZfcX0ZDZAuY1IWXn7N1TNrD6SsGufzSWMOzqL4beO1tYLFlxZpsfu/oLgdL2trhQPGcDGW60Is08AQMRUiEhTbqMOiW4st2Vosrk15fomfKUtI49mbY6IDPD/E4nqY/xOO8TLmR3naycveaj4XG8wxlGMpxTfXY9qG0JJRfxQL943aGsZNX3U2qvaRtJZfkD25sVqGwCetvFUte+PsxTPIkVRfWyNK2PgkWY/9rq0VLMb39kQog518JfeYaUeVYyz4h4ipEDVgbPZii5las8i2Z2FFhHOwoKbzVggrz3drUcbe6jwL/oNgJwQ9ubAe/YUSNj2treVPSsflfBc7X0esxMJWRDmeY+TtJZpQWovPtTUGebQoSpGDRLSCR0URN33d7XoJfVy1n5P1NMZnXyz0HE+J5g0NIqZC1NKYxbQti+rlLK6onxwqED38mz2HvrOJsAYLLDVYbC5MWScoeelV2lr+qCITbD27KLGoDZ/Uc75qVo3+lFn7fKBUzNG5FL/pWW2tEDAWxWDyEv/CAIFHCEDSU5C5xdFM6O4wghBmYFz002wH3ZfpoHZpNro3w04vZ9lpLotgMH1s4Vq+L8ZMPyRYaGKchbqwUKNClOA/KMKAhtUuUEjBXpoF0UdMhuL8zrh0zzjiqmpLTiwnlmhLhYMj3v39Mf5clEIK7KUu1pacWE6v0JYEfxExFYoFyD9FVO+U7BwanGmny9Ls1JqnHul2JbJPseBCaCG+6C7kq8WJ3rhvxplpWaKVnos105VsCcs/lTt1+EHjDv6eXuXvaTF/T38lWqiDbnzbevxPbclJ2oUfKGv17MVf0tnW31BGg7Gqlm8uTGbKMZ13TyrXpMN7KzdTtnuEqiOpHjkS6/KOgmw1p8PwGUzZZ7SlosNeooW25MRy2r8Sj8J5xM0rCF5AxDCs0JqY+N6PLkOdWATyqyyFwKYfWLinsTCj/V9x5kG24AfzQ4aRNfz99OGHGICUkfTGr6hlb8TunUJxu97W1pw4Emqw2M7W1lirMvapurLeMOa16jHZWNhgJZosZElZT3E7XiBzGluO+aDSXTDmm5NJ8VueI+sJ751wcuIqUWrbn7U1vt7Mg5T073XaWuFjK9OO0pu9q605SVj3EFlP/qOtCf4gD9GC4AWULNzMFuqvbKl+xML4BFuvsGbRG3cBi4E3ILZoNP9zgpUGsZAUx38ydGCaGm/xKKTAoXseQTSt9Zj7uJ0R1LQ14oivri05Mafv0ZY8Yz2+QFvKTY61JL9HaRXVCpHJqna3tidvMms/ol6D1JKsmvdrWz1jykIF6vM4dOkohQ1a0GU0eklbc2LO2E/WU8u1NcFfCsUyLVumDE0YN5SqVT2fGAymTZ9JM7+do62dx9/jixODB91PV3Ryb9mUkpJKo8a+Qtt35v8kLYSOpqwTnS1m6mo1UcM8IodRaxguZLiZiwMXsvX+fpxF5QN7Yi8/oIzMcqhqVXpsFbpQdoVuZCvn3kNVFYbYNkH1HNWTVaMfi9lj2hpyRmfwcRO1Nc/YylxKWbUeVLWF88KXDjVGyxhjv8lLu2prninKovKOhJrq89vLduR57tZ6+I5jDs7U1gR/EctUEAJkPYvk22yx9ky30y08vcPLngpBwD38CVtpQ9hKQznGaAYR1G96EFLUUH42007X8/d0NU9GIQUqLWbDEBWRm7Sil3Na3pPnN+cSUoV+vJSBezY/rCeXqIL6KNSAsVoVBGQYZ7WkbmRR+Vpb844jvqa25MTiQ0cbY74uHiBCiUr/aT5NpbugXyzm6M6DbkBnW39PmXWf8SikqD0sQhochWqZgmdHvUQnTrq7O4z4c3ybVs3p1j49qfYFtSjGaqFsm5327z9An30+i5atCK5bfF0+57jRT1KJEsnaFnc2btpKTz97vs6mv5hMJurMVuaNN3SjGtWqkMVioczMTFq1egO9+/40OnHqlHakZ1zXB8QyDR+Q4zokxqwsNCMIbJrEVtmfUWilIq/3nTizGmPWM5UfMl7jz5yurYcKe3IjVUfYkVhPuYkTNj6l7fGfc9Zijt3nIu8oDZhdsbu25lv1ogxDH1WgqktlHCTLmRUs8i/xNXhvRZcf6Y1fJlt5/1q6eRqPFvwnoi1TiG7/frdS/fp1lJACzGvXqkFDn3iIOl9etB3s8yI2NpaeeOz/6LGB91HtmtWVkIK4uDi6pG1Leo4fJvD5hMgD7tzeGXZ6i0XESAMWmvfYSh3JViqaA0QL6OX7On8uo5C+ySI6sQCEFFhSN1HSyltULdlghBTA1aomH4XUXrqtm5AC6wnvY7IuYg/OymUJI1IZZQazK/dxK3UYECbfb+mW08uVK1uENDREvJv3yOGjNP2Lb+j2ewZSz5vvpUFDRtHmLduVKHXr0klZf8ECCxTnNk7BWKVZWVm0/8BhOnzoCL35zifU946H6KZbBtAn02Yo67R61cp01RXOuqhCZAIhuZtFdRVbo0buZMt1VoKVrvBgvUYaCLh6hR8O6ho+Ctzenh4oQkqOo9CLskP8Muo4PUIurCcXq0L1+WE+u4UFbJy2lhsEQQVD7L7pZE7bpq25gzFdRBtjXBnu88Q196uxYSE0RLSYwv07evwkmjHrB0pNddaS3LV7L301czalp2dQqVIlqUzp4H6cBcn/ZnxHDwx8hn79/S/KyMggm81O383+mcV7m3oIqF79fJsoITJBcX2Mp8LNaQT9ZWGlPu4l4jVSGBuX26X9AYvo6x4+czSQWefxXDV2Y/Z/oS3lDyovJax/TLmmEUHrAoFW1mPnG4cHArr3JK3oo0oCllh4iTZvpaoaITgK74tALXP6Xu0VQqiIeMvUE4kJiWS2WOj06TN0Mp9xx3AjJyeHr1k6NkQb77K49GUr9W97boF5iK3U6SyqCFSKNBBU1d0gpB/zZ301SoUUtYSNY56xez/Mt1uNEViIcE0nLeuhxE4FWq28xXOgVSCggAVqDqt5dP4two2oElOr1UId27ehe+7qo35AP/+yQIlTJIGx1JrVq5HD4aAdO/POmxMii9VspQ7IcNCLHoSmDQvStwlWuiGENYQLmtv4Wh/gBwE9KNXo6fNFA3DB6ovyA8vJpRS36x1tLUD4XqUsxSACj4SiJyrEFLmXs2d9Qt98NYWGPvEwxbEgvfLa+zT/r8XaEcHRuFF9dX5MX//vA3rrtfF0U69rlXiHmq7XdKLatavTwUNH6O+F+Y/BCJEHLLc70m2qCpCRl+LM9FRs6H9XoaYzi/8YvlY9SBUak+WsahSN2Mperi1p5NgpfmfhtksTwpeoskxdlCyZTE8+/gDdfON1IQlA0hMXG0M1a1Sje+7sQ2NGPEHx8YG0qfZM61YXUd+bryebzUZfff1DvilEQuSynIXn1gy7qhVsZECMiSbFW/ItW1hUoEDFKwYhRQws8khPR1/GzzkQrYs0FhfxW8eqgCJBAFEhppPf+PBchO3Dg4Yri9RssdKtfXvRZR0u0Y7yH+Rt3tHv0XPnvqF3fxo8dAwtXLxMuWFhsXa4tJV2dHBASB97ZACLcyx9On1WyKxqIXyBDYfKSCiybwTjkK/FmshzhnPRgVLt41hIjUL/BD8YoEtPNGPKPk1Jy2+k+C2jKHH1vRRz+AdtjyBEoWW6b/9BmvT6h7Rw0VJlRba6+EJtT/Bg/HX79t302ptTaNeufRQTYw1JtPDll7WjpwY/dE5If5wbXESfEFnMtjnoxnS7slb1oAfr6yxc4SSoo+Is1MKQSzqOLdI/orAIhSdMmYeViFrOrNK2CIKTqHTzghMnnFG8aWmhTxePi4ulmFirElc7W6jB0OO6a+jRh/qRmW9Q70+ZLkJaTNnAVt1d6TYlrHogqK/FmylJWy9K0AEGLef0wE39ua0IhNRkVa3ZUCYvvdELQednCkKwRJ2YVq9Whe7vfzuL1FV09mwa/fNviELNGYyPXtquNY0f8xTVqF6Vjh49TkuX/aft9R8EMSHy2ME30jffnUq//bFQ2yMURyCjcPn+YBDUyyxmNYbqoaNnoQG3s7EDDLrpwE1dFGRVv4eyK/VUy7YKXb22VhOEwiKia/P2vrE73X1nb23NncysbPrfV9/SN9/9pG3xn8s7tqNHH+mv3MVGkAv65jsf0/IVa7Qt/pFf3V8XeXXKkdq80QsaafcwpMmgnu/jGXbVGq4wac5COoPFXM8uWNIZDjpSFKlnplhKbferapumJ3HVHWRJ2aCtCULhElWWqYP/sU+fTqElS1fQM8MnBCWknrDb7XT8xEn69vufaODjIwIWUkHID/ROnWMYh0TpwddY1EIXP54/pU1Ez3mo0ITI3SIRUia70g25hBTYPXRD8QQ6tWReMFhNrMzOjYIQJBHfNaY4I5Zp9AP3rrHCUGFaqC+zhdzTYCE/zUL/ncEVXZiktfyC7MmNtbXzWI/+SgmbnPcNT6AzTHqjl1l0z0f4W06voMS1/6cKJwhCMESVZSoI0QZSTlBVSA8sVIhsbAEbVffG5BZSFK4vSiG1levkUUiBrcI1bo23jWTUe9ZNSIG9VCvKqDtcWxOEwClUy7Ra1craFifexgP9Pb44gWpPV3Ryby2XkpIqlmkUAzl7Nc5C1xkiaX+DhZppJw91H4IGPVnR0FwPRH0wv19Rkt7sLbKVOd9NyXJmLdlLnk9/S1g30GOd3Kxqd1FmnSHaWm6S/+ms8kgFIVDEMhWEMAd24BMsYkYL9WoWvMmxZooJsYVajs83xjBOepDf+oUirrlrK3Opm5ACyxn3aH29sLpwJFyQS0gtZ1ZrS07spdpoS4IQGIVimQqCEDywEyfHmamrwfX6i81BQ7Jy2EINzb8ySgVeb3iP/8uw04IiLsyQ3vhlspW/Wlsjijkyh6zH56vtLqzH/6SEDe7CmdHwOcqu2ENb45te1lGKOfQNZdV8QNuCzi8fU9yuN7U1QfAfsUwFIUKAg/UJFk2Ip54uLHyvsQBWD4GF2jcmt5Ail7SohdSe3MhNSAEE0ZR5QFtzkhNbTltyYivTzk1IAUTTkrpZW3PiSKyrLQlCYIiYCkIEAetzSJZDFUzQA5fvlwkWFZwUKBfw3cDo3oVr2VMx/sLGVv4abckJGmuj96c585i2xYkjzj3OIrvaHdqSE/QRRTlAc/oObYsTewnPQU2C4Cth6eaVACTv+BuA9OKE4aogv579Bw5JylGEg3HS1+IsSkSNwJIMRAAnG4KcUnnqmWaj/WFwh0i9ZB5bnRW1NaKETU+T9egvfAezUkrHZdpWJ2i2jVQX5JOmN3pR2+oEaTCWU87jU9v/TTmW80VTXK8ThEAQy1QQIhBoJSJrZ3qoi4t+qKij6w8QUWO08HOZjrAQUrh39UJqyj7mFFKQYyNT1hHnsoYjtpKaZ1W7R81dxByefU5Igdng6rWXbKEtCYL/hLVlCvyxoCpWLE9jRgxR9XlRTvDNtz+mvxb+o+31D1/L/W3ctJWefvZ5bS0w0GS8Z48udGXnDlSpUsVz5Qvzs8T9LdrgKo947NhxsUyjiLtYOEd4qFKEnNA3fYzA/S7BQo113WC+YZEeVsRpMC5gXcLKdBG7dyrF7XpdWyNKu2iKyhd1kbi6PzmS6lBGvRHaFidJK29x6z+aUX80ZVfupa2Raq0mbdWEQIkayxRNwO+4pVcu13C4U79+HXrnjYnU766+qum4pzrAgpAXn7Fo9suw0xnDY/FAFtlrDdamJ+7k4/RCCqYUUQF7I4746m5CCqzHf9OWnJgNQUiOhOqUWfMhbc1J7L5puRp5mzP2a0tOcuKqakuC4D9RI6adLruU2l/aWnVyOXY8eIsLVp6+Mbh+QpPwJf8sVw3C/1u1XnuF/8CSHvzoAKpcqQIdOXKM3n7/U+o3YMi59ynu48OC7yyx59AAtiSN9XIf8sHdO8BwDCza7WHir7IZInEtp/4lS4r7/5w5bbu25MRW9nL3qF5HNsXu/1xbOY8pwyDCcVW0JUHwn6gQU4hS3949VCuzL776jjIzM7U9BUObVs2pRfNmdPDQEfrlt7+0rf7T9ZpOypJeu34TDRw8kub9Ml9cr0LArGZBfSDDoYo8uGjIFidSZ7zR2WKiKjqj9DiL6NQwiN4FOTGlKKvG3dqak5ij87Sl8xg7xRhTaOJ2vZFrXBWYs49qS05y4sprS4LgPxEvpi73blUWpT8WLKZVqwu2BRPe77prr6T4+DhazNZpoOKXnJxEbVq3oLNn0+mLL7+ljIzCbqwlRCNoMv6RYZy0r1Vb8MBVhmjgWTYHpRRRNxgj2ZX7UI75fBdXc8Y+lVtqxHxmHZmyPf8fIoUmdv90bc0dU660GrFMhcCJeDF1uXd3bN9Nn372tba14IBV2rhhfeWWnffrAm2r/5QvV5bKlCpFp8+coY7t29LUKZPou5kf0+xZn9AXn75NDz9wt2pGLgj+8r2hwAKai7fxkn96mcFq/cNDdHBRgIL1WdUNVun+L7Qld0yOdBbM/2lr50HJwPit47S13CAqWE9OvIipEDgRLaYu967NZqdPP/+6wK07vVX616KlSlADpVrVShSfEKfcvN2vvUpFMJv5/CA5OZG6dbmCRjwziGJjY9U2QfCVrWydIhpXz/UexBRx6noXL/JK/+PXhgPZlXu7dYCBmzb24FfaWm5i937IVut32hqvH/iKElf3I5MtRduSG+wz2c5oayymbAXDtSwIgRCxYupy71apXJF+/Ok3Wr2m4Dvst23Tgpo2bhC0VQosFvjeTJTNDwIrVq6hYSMmqsCmvnc8pJqaI7WnYYM61LJFU+cLBMEPZhsqJN0SY6aqBj1F4289R8JDR5WoZVW/S1tzErtvOu/IO80nfutYSlreU01x21/QtuaNKfOgtuQkR8tRFQR/iVgxdbl3N2/ZTrO+/UnbWnBAvLt3u0pZiouWLA/KKtWzbdsOGjthMq3fuIVycnKUdT31sxn036q1FBcXRxfUqqkdKQi+g+jeZQZ3bw+DS7esIR3mSLhYpdVuYwuxjLbG/3vZx5Sl6Qvm9L1q8hVzxiFtyYkjtoK2JAj+EbFiCosNYtOELcUZn7+rxhoxYewRrlPkaz45+AG1DSX4ggVWaeNG9VTqzS+/Bx7B6yItPY0cdrsqClG6dElt63nS050u64oV3At3C4KvfGOwTm9n61TfodRuCDQKByl1xFelrJoDtDUnTqs0S1sLLaasw9qSE2OhfEHwlYgeMy0sYI32ur6bmi9cvIwOHHB/mg2EffsPUWrqWSpbtjTVrlld2+oEVnCZ0qVUHuuOXb4/ZQuCnh/szlQXFxgf7auzTrPI3TJNMLh9CxtbuU6U1vJLtwheNVZ6IHeOaKgwFsrPEctUCJCIFdPJb3zoVkjBNaHoAQq5Y8zxlcnvq204Nhjatb2Y6tW7gE6eOkXzFyzWtgbHoUNHaMu2nZSYkEAP/d/d1PyiJkpEy5YuTUMeu58ubNaITp0+TevWbdReIQj+gQ4znxis0366TuLpBss0UZsXFZm1HnILOgJxez5mc9WmrYWeXBG9IqZCgIhlmg+wRq/tegXFxlhpydL/aNeefdqe4Jn94y906tQZqlKlEj03+in6fubHNPWjyWo82Gaz0dRpM0P6fkLxY2a2g7J0mlnbbKJHtIpHmQbLNEmLJi8qTA73EoYxh76nmDwieEOBKdNQJF/SY4QAETHNB71VOm/en9rW0IAi+WPGv0rr1m9WljRAdC/Wnx3zEs3/KzRWsBD9oJLR34kW+iPRSu11aTAnWUjfN1ing2LNqiqS0TI971wtGlC83hVAhOX4rWO0PQWH2RDNi1rAghAIUdU1prghXWMEF7MTLKp0IFjlyKFb0s9becgn/R/vb6CL3kWVo7szc+jbeN0YKt8JLkwrOJdqOILx2dQOuofWHDuVWNhaWxEE3xHLVBCigJo6oWzByyV0LlsUYxhraKeG/aNjzx8DvBRJimpQPcmcqQsoNFlURLEg+EtYiylSXJDq4kp76X1jd21P8QVpPq7vY/IrY/Ltt/rihOHnjkeqkLR4i052GuoZVDMI43LeP9pQsxeiq6dg20OEL6b0PdqSkxyp0SsEgFimghAF7DIUXKjswcr8MttBU/LoCJPm44BPBbZq836EiyzMGYZxUxFTIQDCcsxUEAT/eCrWQgN0aS+wQiGenpiXYFFRvUb2853gynzGTCfGWegmq0kd+0ymnf41VFmKRLJqPkCZtR7U1hAI9RbF7v1IWxME3xDLVBCigPUOd+G8JY8epjO8dIbJr03E/bFmJaQAbuROlui4fRjr8zoSpISn4D8ipoIQBSxzjy+iJvyffY0XQZ1vSJVxcb4abm568rme1PJTXewPk1q+wWJO26EtObEnN9aWBMF3REwFIQo4mpNDHxvcujdrVqSR7ayB/TLsqk2bM7vZSVk+3NNY6KUWE70cZxBSPseXXkQ50rCkrCNT1lFtDWOo+7UlQfAdEVNBiBK+M7hvr2ARbOlhbBSgq8ywTDttN1iXlQyHY2z1RYOQgqf5tdEhpU7it01gC3U3Wc6spdg972tbBcF3REwFIUrYzML4ncFa7KkLSvLEQYOntqJOfMvx4nOxZhZY93MMYavW2N4t0rEeX0BJK3pR4uq7yZK6SdsqCL4jYioIUcT3Buv0dqvZY5qMiwMGTayrHduERXVKvJXaGio5vJTloDlRJqSCEApETAUhiljMQvefwXXbw8vYKdhoODaZrVC4h79IsKggJj2fZjvoIy/pNoJQ3BExFYQoA51i9Nweo28J7s7XfOzfdufxe1hY41l334u35Cp6D/fx84YKSoIgnEeKNghClIFh0sUJViqpM0hHsRB+lYdVWctsot5swf6fIf0FvMuve02EVBDyRCxTQYgyUDHwE4Nw9mORNAYSubiA7wLPxpo9CunYTBFSQfAFsUwFIQpBJO6CBAtbqecFFOOpb2fZVdF7gJZsyEWF0BpBO7bHMu30hwQbCYJPiJgKQpTSn0XyabY4jSDoqB5rrF5o9axnsR2ZaVNzQRB8Q9y8ghCloCKSp3HSxmyRehPSL2wOuj1dhFQQ/EUsU0GIcsazddrHgytXzyq2Vt/LctCf4tYVhIAQMRWEYkAHi4m68ARRdSXKoL7uBruDZtuJfomSOruCUFSImApCMSKepzgTEQolnXVuEgQhBMiYqSAUI9Cz9LQIqSCEHBFTQRAEQQgSEVNBEARBCBIRU0EQBEEIEhFTQRAEQQgSEVNBEARBCBIRU0EQBEEIEhFTQRAEQQiSQinaULZMGZowbihVq1pZ2+Jk2vSZNPPbOdraefw9vjgxeND9dEWn9tqak5SUVBo19hXavnO3tkUQBEEoTMQyFQRBEIQgKVTLFDw76iU6cfKkWvaGP8dbrRbq27sndbn6MipdujSZTSbKzMqmrVt30NTpM2jLlh3akYFRokQy3X37zdT+0taUnJxEJj5/WloarVu/md6bMp2OHTuhHRk4jRrUo9tv60UXNm3E50732cqse0EtGjf6SbUslqkgCELREdGWaXx8PI0d9STd2qenEmAIKYiLjaFmTRvSiKcfo8aN6qttgVCxYnl6ccJw6tqlsxJVCClITEyktm1a0jh+bxwTCDjXpZe0ojcnj6cXnh9OLS5qShaLqwS5IAiCEElEtJh2uLSVsuoOHjxMI8e+TDf07k89b76XBg0ZRZu3bGdLtSRd3vES7Wj/6XpNJzVui3PhnDg33gPvhfesWqUStW3dUjvaPypVqkAD7r2NatWsRilnUumb736i1NQ0ba8gCIIQSUS0mJYpXZpiYqy0ddtOWr1mA+XkOD3Wu3bvpRUr16rlxMQENQ+E8uXKKgsS58I5Ad4D74X3NJvNFB8Xq7b7y6FDR2jdhs305/xF9PBjw+nvhUv53NIGSxAEIRKJaDFNSU2lbJudLrqwCTW/qIm21TnOeUmblkr4jh0PfEzzxIlTat7psnbKCnVRs0Y15T7OzrbRyVPOYwJh8hsf0uQ3p6hoXEEQBCFyiWgxXfzPCtq7Z59y5454ZhDddUdvJXLjxzxFdevWov0HDtG8XxdoR/vPgr+W0NFjJ6hatcr04oRnqXu3K+mSti1p9IghVKFCOdq0ZRstWrJCO1oQBEEorkS2ZcoW3bgJr9GqVesoJjaW+tzUXQUM1apVQ20bMeolOnLkmHa0/+xioZ7wwusqSrZkyWR64P676NmnB7F4l6I/5i+i555/nTIy0CFSEARBKM5EtJiCbDtcrafJbj8/3oio3qpVK1OtC2poWwLnDAt2yukU0ucPWS1mFuzqVLVKRW2LIAiCUJyJaDFFWsrz456hzp3a0569++jZUS+ytfga7dy1R7lhhz/1CHW+3L1akD/AZfzKCyPoouZNac3q9TTw8RH0xjsf09Gjx1WO55gRTwSVeiMIgiBEBxEtpr1vvE6llmzctJWGjXiB1q7fRMtWrKbHnxxDfy38h+Li4qjHtVdRbKz/EbeI4r2t7w0qf/VvPtfo8ZNYsPfTb7//TQMHj6QNG7eosdqePbporxAEQRCKKxEtprVqVlfzjZu2uY1dIop3+Yq1lJWdTUnJiZSclKTt8R2k3cC6RbQwqh250m4A3mvV6g1quWyZUmouCIIgFF8iWkwzMzLV/OorL1NVilBaEBYl0mRu6tWNYmNi6GxqGqWePauO84es7CwWUhvF8DlvvrE7tWnVXJ0b79GxfRu65urL1XEnTp5Wc0EQBKH4EtG1eVu3uoiefPwBVd7PE5mZmfT2e9No/l+LtS3+0eO6a+jee25RguqJU6fO0MSX31Ju5kBA5HFeY66oMfzm2x8rl7UnpDavIAhCeBDRlunyFWto1HOv0qo161XxeRdYXrFyDT3z7MSAhRT8OPdXeuGlN1XRfAgbgLsXKTmoXDTk6bEBC6kgCIIQPUR815jijFimgiAI4UFEW6aCIAiCEA4UqmWKDix6pk2fSTO/naOtncff44sTgwfdT1d0cs+dhdtZLFNBEISiQyxTIeKoaiKaHGdRU3Vni1lBEIQipVAsU0EIJR/Fmamj1fkcuMieQ/0z7GpZEAShqBDLVIg42mtCCjpYTCTGqSAIRY2IqSAIgiAESVi6eSUAyTv+BiB5KgyBPq+RnHI0I95CzdkiBWvtOdRb3LyCIBQxYpkKEcfkbAftdeTQfn4MnMTLgiAIRU1YW6bAVwsKBQz69rmemjRqQCVKJquepsFYYK6CCCVKJGtbPIMKSE8/+7y25ju9b+xOd9/ZW1vzTl7WuL9FGy7v2I4efaQ/HTt2XIphCIIghJCIt0xRfP7B/7uLXnphJF16SSsqVaqEElIh/BkYY6ZliVb6O9FCnTS3rSAIQiQS8ZbpbX17Ud/ePcjBn2Lp0pX03Y8/044du8lmK7hxNAj4M08+TJe0vZi+nDGbvvz6e21PaKhatTKNG/kExcXF0oQX3qRNW7Zpe9yJZMt0YpyFbrKeF9DV9hzqK2OfgiBEKBFtmVasWJ6u7NyehdOmuqu8NOkd2rJlR4EKKUA7thbNm9HBQ0fol9/+0raGjuu7X6N6qa5ctc6rkEYybdgK1QspyBZvgiAIEUxEi2nb1i2V6CxfuTao7jD+AKv0umuvpPj4OFr8z/KQW3e1a1anSy9pSWfPprNQL9C2Rhc3GFy6exw59FqWWKWCbzQwm1Q0t/8t/wWh4IhoMa1Tu4aap6aepRfGD6Ov//cBzZ71CX07Ywq9Mfk5atnyQrU/lMAqbdywPh05cozm/Rp6seva9QoqU7o0rV67gdZv2KJtjS6u0BVdAE9kOWiZPexGG4Qw46lYCy1NtNIPCRaVHrUyyapKSraO+MgPIRqI6J9hlSqVyGw2U9drOlGTxg0oLjZGbbdYLMrCG/7UI9SxQxu1LRTordK/Fi1VghpK9FYpeqlGIxeyRVFeZ5geZA1d44eQIlAJAUt/8E21vcHCddEnxux2TBO2ZJ6ONdOLcWZ6nm++43n5OoObWQhv8LcbEGOi0oY/G/6OnydY1dCBIBQlES2mZr5JgqPHTtD0L76h2+8ZSD1vvpeGjZxIO3ftobi4OOpyVSclgqGgbZsW1JRFu6CsUgg1gq+i2SptrP3NXCy0+ZcnOoSFsCL/PavxaR7jZSNt+aYKsXQdM4iXv2VLpj8LbC+2iG/mmy/EFhbNZ2zdeBNkIXx4UPvb5cVN+ewXhIIm4n+BmVnZ9OlnX9OMWT8ody+AEE35+H+UlpZGlSqWp3JlS6vtwQBB7t7tKoqNjaVFS5aH3iqtVUNFB589m0Y///KntjX6aGL4xa1nLbXw3NukB+uNdGLc1IMO9jFYnC0N4q0HwvsJC+q1YqWGLbA8BxsemjDGjspXelJyZJhAKFoiWkwzMzIpNsZK5cqV0bacJy0tnex2ByUmJlJyct6FF3wBVmnjRvXo6NHj9MvvoY/gva4bxkpL0Rq2Stes3ahtjT5aGMRtcJyZNiRZvU6wHhFw4it6sfWV/4txyjZ+JcH8Ukpo1jCs79oBXEeoQIu6q/lBAZY7HhYwzvgdW+fG7z4SGKD9bVzsYM28PcOhSkg+zNMqFta5thz6QCphCUVMRIvp9p17lMXYtHH9XK7c8hXKshUZQydPn6Zjx09oWwMD1miv67up+cLFy+jAgUPantDQqEE9VXACVunceX9STpQ+ZZfThEZPKW3uDViPt8b4/jOt4kUvFrAl8yDffB/i6WPDjRfWMty+K1i8MS1PtNB7LEI9fHAdluH3u4evbx6LFV6HcVoIF9ZX8bmm8XkganW8XFcoQW/X1/lz/MnX8Da/78N8XXBjY5wR3/uDBgsv3IH4NzVc8sgMGx3V/j9+57/pLel2Gpxpp2NimApFTGT9dxlYvnI1paamUauLL6L/u+8OtkCTlKhCmP7vvjuV+MHl63L/Bkq7thdTvXoX0MlTp2j+gtCn4FzLVmmpUiVp89btUW2VGq3GNG2eHw4/Hi7itbmeN7Mc9H8son/yzfcPnl7kdaMlow9IgoV5BYvQq2w1j8hDgLrzMYtZuIbzMZ4s0QSeLuFjIGo/8XEIosG5CwJcP0S8Wx4u60j7Z7/K8Fm+5r/ZcjFAhTAlosV0w8attGz5fyqit/u1V9EXn75F38/8mIYNHUgVypeldRs2q/HUYIAgX9v1CuVOXrL0P9q1Z5+2JzTAKr24RTNKT8+guT/9EbVWKWhs+LUt4JsjitVn82f2NiFAabrN9+/EWEoSbsC3PLgAZ/p4zrtYCJ/1IKiwmCax9efPPxCCaGDxhhpEucKyzkuot/PH/dDD9xDO3GAQ098M46SCEE5EtJhCeF576yNV0g/FE2DBYNupU2foy69n0+hxr1BGRoZ2dGDordJ580IfGOSySjdu5geDFau1rdFJU37o0fMLC92VaTZqlmb3Ot2X6aBdfJyvGOUE42meqOxFd5CqY+RuFtS6huPvi80tiuk8YUxvBV8vHhI8gZzIR/h8oeJytnyRf2kEVvgbbIE/wBb5Zfw9XsffcyTl8nbmz1VJ93BwmP+v54uYCmFMRIspgHj+b8Z31G/AEOrVuz/dwNPd9z1GX3z5bUjKCv618B/qc9v/qfOH2ioFk9/4UKXzjHluUlRbpaCe4de2qQBujsYf9BYvQnwp36yN9Ei3U2cWnS48X2q4tg668VM2BJWLV89YFv2OZ210Lb/+dn49HhLa84TxPGP6T16uWH/p6eFco1lEMT78NluiEKAjut+VK8gq3KsHIYBKz/d+eCcEoSiIeDEVIoeqhnHFIyG+P3qSqONe3sN4swbpmujsZgH+n0EA9fmoNbW5i618/Bd8fKq2DhBReyML3bNsNXY0BDKFysJCUNP1hnOjWcCXBncu3L+wXhcmng+yQvWgbxKsKg83+Fj30ILrQS6wnt9FTIUwJ6zFtFrVyjR1yiRVIhATeoAWdwYPuv/c9zH5lTH59lt9ccLwc8c/OfiBc1WiChvc0PVXirxAvfiEAk9iesKDtY8gpfoeAob0Lt4tBsHTu4VLGcYmXS7depq4ocoSImohYPpqTwBNzaeEaOyyh0Fw/uNzo/uOHuTZovwexlUrGK4b475wOX/GohpOaTNXGR4QkIuMsW9BCGfCWkyF6AFpMXo8jU0Giyc5OOHhfbK0uR6UNNQPChwxnA1pJy4wNqonmUUK5QvnsIC+EuessuQJjFnew5bj6RB99qYGATSmHcXy6jvxFq/pQi6QGjSVBVc/RlmUIAJazxw/q2QJQlEQlv1MhegDXT5QnNzFEhaWfiws/oBXo5CDC0T7IkhJz5ssZl00y+ZHvgk/ken5RvwtW2P6akxIuxiR5X4s8kb1EbKt+b1gUddk0fqVxcfFZraaGuZh2SEvciqff0p2aP/VZvL3iVrHLmDptzprc64wt/H3MIa/Dz0Ix0NAl6fiFi9n2c9dI9zg3fn1SLnBZ55lg+s7x69gsECZzw8l+geAG9NttEH0VAhzxDIVCoVDhpuhP1WNXEA2ESnrYpmHG+yjLJ6TWRQxeRNS8IfdfZ+ntItUg3UaS85j0g2HwjL1BIKYhmfa6Yr08yIVSioa/nuNOneNwUJ+ib+T5iy2N/D1YG5MGbpdqzY0Ic6iij64cm/xQNEvxlmYoqALykPk9UKKBxERUiESEDEVCgWkNpzS3ezh9kUxen8ZzwIJkcI00WBJuniPRQJTXkzj/bPZcsWN+ik+p6egoKU6wUVUsCuYCTf4LN3hKCGIz4dpDp/nBb6um9iaupstb1h0BaCjCqNbNlubA/xjdzAI370xpnNFLWCh4jvS/03wOdBdp7cXNzVAEQsUoygoWhiueZGHv4sghCMipkKhsclgOtXwcM9GCT9UFYIbFq5hIxv4HBApTN7SXnwB45YQUbgQIaqegCjCVfwzC+KTBisXoqnnbzab78xw0BC+rk9YpBA0U9joM6rLevhuEYD0dpzTdYu2dBfxurGlGbrr5AUsx66GAKFQYgyE+q8IvkdBCAQZMxUKDYzfYRxPDyJQYS0lYuL7qD7iFAUXkKcZjkD0UW7QyHcsvv+y0KLsHVJsChLjmC6suP7aODTc6Iji9Yc0tqwTdedDZ5aR/ECB8dOBuipQBfV3QQGK9+Pdq0o9yA8oKx2OXEFbOMbC14pxc0EIB3LfDQShgPiTb8JGkLqBKNRaPBlTN3LcV8MKWKxnPNzHUTIQqTG/sJD9xpOn4hChwjimi7QbF4HkjuqFFCAgayOfc67Bcm9ZQJ/p6djc5RnfizfTv4lW2pjkbECwmucIQsP6Ol6fzd+xy5r1VJdZEAoLEVOh0EDnlle9jHMawfjklKzwtEpddE+3069eXMSgBt/kEbhTUGQarDJ9CcOj2twFeoDmxd8GtzVqF7vc8qjrC1F1caCArEGzFuDlCXyLsMIhmHp7G1HUaBgPKxxCi4cYrBd0oJQgGLHExSeP0ZYFocBBNO4WvmeidRnExgiCeD7jG/kzmXbaUzD37JCBXkRzWYRwnbX5bl/OYNmBTay1PxuEKlT8H4uGPpL4G/7eXOPIqTzTu2ZRaAI9QHGth3mC23QvT4v52t7MdlAV/lvo81RR13cX73eBY9tazHSS/z7ourNPty9UIOXIGIDkC2hu4OraU5qXW/M5brKaqZfVRJXMZnXtnrwIkQ5yn/Eo5ylvWih8ZMxUKDJgaSCCFEUQYGVhHqqCBkUBgnNasX6145t5UxYeFKYYxw8FyEMtCJYlWqmkTnvQ21NfKehHttL0lZ7eZ9H8MDtH5Y0a0efnggF83X/r3PJv8H5X4NE8tsYH5ZF2FCjo+4p2dS4g5ll8rXhIMRb9gM8CzyhbeP8hnnsqD6lnGH8ePGxEOqiwdT0/JDTjv6vrO5nBf1dEjUuVqKJFxFQQIpS1LKaocuSibZrN7WEEaS6eonNx00WubAyLVAyLEbwE1fjmbAxXQs3h0SyapXj/u7qCG5DRxrriEKHiZRbsnjpBf4QtaVf+L94dhTDtfC3YhGtAz1k8BOBz+AKsbRT/N3Iln+fFOAs/zOXQ8Cxn27/8wJh0HL+tt9rPBcFo/qy3674fI8/x55vu4fMJhYP3v4wgCGGNvtAElo1W/ed8Y/WUPoSAHQRGoR0c0o/gXvUU9wurFrmp6OmqZ38BWUC4Dj0HdRY0LFGk/iBn1yUXT7EAGoUUDwqf8ef2JHIo6n+RBwsWY6yw8JG3+yhaAnkALvBhfNxcfoD5L8nZLAApXBirvdhw3aEGfxv0wc1LSAGa1OvLXgqFi4ipIEQoSE+BpYXpUS0lRg/GNVEFKpg6yLXNZreOOWCXBzdxKKhjEMYDebwNUpOMPWYx3v4aW2fjeXK1vzPS1eJ+y0O1Jb0r3FjHGM0LUG/5OxZNBJPhPZHG5QIpSDflUeQiFLzI7w8r3AiKh+iB6N5fgAFvQt7INy8IEQxcl5i8Ofdgmd6QbqOPWHCR0+sv9T3cIXYUgCcRrmT9+C8Chk7mcblXGEzpd/nzXZFmVzWfXSAfFs3R9dxusDyrG6zK7brPBosczQuMbe6MpGjzggBWs/H9kU98FT8sdOTPi7FgPd0LWNgF74iYCkKUA/cv6vLemm5XhfAv55swyh324nVXQ/R7ee4rBRFQZXSV7s/H+m1lsDARgOPpE6BMpL44P6xKfTu9KgZreDe/L9JqPo63qNKJ3kAQFyx+CHaoWuoZQUDYAwZL80/+PAP4AcEVTf2dIahKcm2LDhFTQShGoLMM3KEod4jcUQQZQRQW89xY+N4bxrKQoQAWmJ78ittXNBhgiOj1htFWy9FtMY4xIjBrOgupsa4xgJA9zEJ2MT+QoIMQHkLgSi6oIKTRhu8E48Eogan/avBgoK8ChTFkT+PfQsEjYioIguJNtl6f5pv1L7po1n90blOAG3dBdHExWpVI9/AGXMJ6wcADQl5lBcsYrE/9kcagJ0/Rz0f43Ki5/CBPv/P3gfzigqY7i7mxsXwN/hyoAoUobswX8RxN6PVBWHDr++5jEEKJiKkgCOdAbWG0sWvI1teFbHl9bBC1f3m1IAwxuKFRwQn1jGF95ZUzqQpO6PYjTQVlKT3RmUVJPxaL80McXRiDmIyguxDc4cbGBgVNR8M4KUTSlVeKdCjkaBvFFnxucPsKhYeIqSAIHkGbOWPT8zV5iFwwoBLTlSzeXVi4vHXx0bPacB0fxpuVa9ZV+B/zblZn4Xw9PxlE0VOTdIAWf2heP4FFvjBzSV24esm68MXaxPjtlwU0fivkj4ipIAhe0ZcYBAVVzclffjJYYBBPBA3B/YlcUMxfj8s9evi3TqgRrKMveuECLfTQ4k8fGVyYYBxXH0gEq/RlzXL3JJUYy0U6ULh2WCouSAUkQRC8Mp+FSZ97eS1bjzvC5I4xIMZET8X6Hm6DJgsf6Cw3CBaK4+sxHlMUGNvnweWNUpEuVJBRTo6aeyoNKRQNYpkKguAR1E3WCylyP8NFSMGUbFhsvlljw9lq80Ukfykia1RPgsFaPmu4JARboRqUCGl4IWIqCIJHYCHpQcefcAOCirFNFPHXXx9kExYdxhCvZ6sOeahGIEhwkbr4mo/V56QWFQcNml/Hy7iuP+BGjzQaY8MAIXSIm1cQBI+gYIA+/xNlC1FtKZxB2gxI4buar1d6r5YOg7HScAF1f/XCh4hifU9ZX0GqD0oRttXlzeJTotgDuv+gqIUQGsQyFQTBI8YczG1haJkaQdoMJn9kESIaTkIKltjdr2dSvEWJopc6/B75KsGiOgfphRTgpo96woh0vlnKD4YMEVNBEDyC/E09edXKFULLjwa3dB3WPHSOWc0W67pEnmuda9DTFpHLnydY3dKY7mSLFN2B8mNUnIUqaulEQnCImAqC4JFkQ3mGNG0uFDwYy33Hg7WMGF9E8SISGQ87KEiBtCC000N0s4ubPRTnR8EKYwchnKeXWKchoVDGTMuWKUMTxg2lalUra1ucTJs+k2Z+O0dbO4+/xxcnBg+6n67o1F5bc5KSkkqjxr5C23fu1rYIQvDMYEsI/U5doCg+avmCXnyzLm/KoXl292pEQmhBj9J7PJQ49ASKNrhyTfV/OxSduD7ddq74xC18vnG6sfBfbQ4amBlebu5IRCxTQRA8UsLgJkzVUjEQlIQem8jx/ClebiEFyfNZDrqDhRDBX3kVzEDzgU91luxkXt7D2/Cg84SuGD+s2RsMlihKRArBU6iWKXh21Et04uRJtewNf463Wi3Ut3dP6nL1ZVS6dGkym0yUmZVNW7fuoKnTZ9CWLTu0IwOnLJ/35puuo6uu7EiJCQkhs5B739id7r6zt7aWm/zep+4FtWjc6CfVslimQqhBIXV9/de2aTZ6hK0ao6V0O1us4Zg2E43gm7eoMc4csvBXDrcvbFGk+fjC5DhLrlKFaMmHTkJCcET0Y2V8fDyNHfUk3dqnpxJgCCmIi42hZk0b0oinH6PGjeqrbYFQtWplGvHMIPrgvZfo+u7XKCEVhOJCKcOY6QQPLsflbNWIkBYeMCJRtCGbv3IIKDrY+CqkEz0IKZrGi5CGhogW0w6XtqJGDerRwYOHaeTYl+mG3v2p58330qAho2jzlu1sqZakyzteoh3tP/3u6kNt27Qkk8lMf85fRNu3F4zlBwsU122civv4sDcut5jor0QLLeSpkyHsXwgdW3Lcv9trDEEta+w59ESGTVsTwhXkq6JOMdJh9GCMFd16hNAQ0WJapnRpiomx0tZtO2n1mg2Uoz1h7dq9l1asXKuWExMDtyb/WbqSNm3eRsNGPk+T35xCWdlZ2h6hKHk81kKVTCaqwBOWhYIBSf3egEU6hG/EeTXlFoqei/hhEw0A0EFHz2/8IDRCCuOHlIgW05TUVMq22emiC5tQ84uaaFuJSpRIpkvYooS4Hjt+QtvqP3+wNTp0+ISQjLsKoQG1YpvqfrWV3O8RQghBKzRPTbdRwm9Auk2ieMMcFGv4koXU2GZuIf9dn2UhLYwm58WJiBbTxf+soL179il3LsY277qjtxojHT/mKapbtxbtP3CI5v26QDtaiAYuMNwYNhoqxQihAzmJ3dLt9AJboN/Ycmh6toNu43UUl0/XjhHCl8diLSpASQ+K47eymunvBCttTLLSNBZbYw1mITAi2zJNSaVxE16jVavWUUxsLPW5qTu9OGE41apVQ20bMeolOnLkmHZ0+IKI3tmzPqHvZ35MX3z6Nj8MDKWLW1yo7RX0oBKMns1iHBUo+/j7Ram9YWzJPMeiulKs0YigDP+foJCDERR4wMAX+rhi9yVsvd5hcAELgRHRYgqy7TY6eeo02XUWCqJ6EYlb64Ia2pbIwMTXnZycSBdd2JieHfYY3drnBm2P4KKOxf0nu1Pu7YKQC5R+3CBOm0IlosW0YsXy9Py4Z6hzp/a0Z+8+enbUi/Tc86/Rzl17qEKFcjT8qUeo8+Xu1YLCCUTr6qN3+97xEE18+W3atWcfxVgtdNUVHdRnFM5zkeEhOhxaZglCOHJXuo2mZjvyFNWl9hz63FAHWAiMiBbT3jdeR7VqVqONm7bSsBEv0Nr1m2jZitX0+JNj6K+F/1BcXBz1uPYqio2N1V4R3mRkZNCSf5bTh1M+p7S0NBWJXCIpSdsroFn1hYZUmC18M0B9UUEQ3EnlaWKWg25kUW181kYteGrO04VpNmqWZqdGvHx3hp22yANpSIhoMa1Vs7qab9y0TQmRC0TxLl+xlrKysykpOZGSI0yQEpMSyGKxkIN/5HaH+GpcXGxw8YJ/k6yqgwY6alTPY+gH7avGxJlVhw30iuxsEGVBiGZwF0HQGO6SWaydiNIWCQ0tES2mmRmZan71lZdR1y6dVWlBjDsiTeamXt0oNiaGzqamUerZyAgCRxUnjJMOfPBeZVVv2LiZdu/Zp+0VPAVUuIBY3uChUwZAUW+I7W28HwEYSGIfFGuh+maTimRE66qI/keIEPAAgxKFKLjR0cvfShAilYiuzdu61UX05OMPUGJiorbFnczMTHr7vWk0/6/F2hb/yK92LvhzwWKa/MaH2pp/eOoAA2BZw3X90ivv0olTp7StuSlutXn/4BsxXL3eeDXLQR9ku1vyEFJ0ycgPPLF/zq99h88B95gQer5POJ/ziOpJfTKkaIAQPUT04+HyFWto1HOv0qo169UYowssr1i5hp55dmLAQloUoEA/qje99tZHNGzkC3kKaXGjBt+E9UIKycRf3DWhwMBXhoo96O/oi5ACjLvex8fOZsHWtYUUQgT+CvriAY3FMPUILHZXqUwZiogsIr5rTHGmOFmmXfgm82bc+TswyqE9kodlg1FyWLKldfej/xw51FJ3Q/fGeLZOPzNYuEJw4C+HIgEuMGaHIBjBna/jLaoEINjIv9de6fIdRQryfChEBEZLZh2LaV7AItULKTpjPJbhUBYsohfhZlzFcwjsdsOpuksSu1AEVOWfnUtIAepPC5FDoVqm1apW1rY48dav09/jixOexllRCSraLdOP2CrVB608yFbpn14EFS7b39kq1ffinMDW5jQv1ias2JU6qwnjp0ghKEhwaXHORbKr6zSRnQU/Wu1hsUzzB8Xo0d3Fxdf8ex3Bv1shMhDLVIgIWhuiP+EC80ZXPlYvpMf40Bl5uG2zCsEAQPm2W9lanhRvoW8TrLRBS+nBtI6Ff12iRYkNxss6yFhZseQPfjh05Xzi1zpLiilEFIVimQpCMKBQw0wWIRc7+Bd7bZp3y/EttmL1vTdRqB31Zb2BM0PcXITaahrIIoqm2iV91MhojHQVy9Q38FtEt5cD/BvfnccDoxB+iGUqhD1NDUFDKwxRu0aaGIo74Ik/L4x7Uds5VIyNNdOjPPkqpADX05MfBpAbi7zMZTz9x0K0lucQpPk8F+s1OsHjxRL+vYqQRh4ipkLYc6FBTNfmcZ9Bw3B9Cg3SZvK7MRn3hkqmkJoD16430A4L16evSnOU5xX4877M1jUKUcBdDSFGJrWr0wd6uj6Wx3n1VOZjH+RjX+Hz/ZBgoS94eozFPdzTLq6zmmg0XzPGyu/n65V0JSHcCUs3rwQgecffACS0pEOPVz3o8xpJKUdw8epr8t6UbqP1XoxT5DKiOIALROve6kN6ASw+vTyhbmkw/xg4F6zKsjoR2M8nRGGIxWx5oEC/p56gGE9t4oNOIhL5a1sODWKVcbD8o9nzIp0FjqCqASxCD+chujP59XidJyryQ4mFvwG8Gn1N8/YFnAcR1Kc8fHE4jy9uXlSkeoav22h5w/X9SKaDjvDrBCEc8eHfVhCKloOGG+h0FhwE6vzEYvULC+fzcRYlHuC04dhy2jwvcNs23qLdb+X+g8hMo5DewQ8BH7GYInjKk5D2ZeHzRUhBCxad0Sw6SJ+ApfoCW3CulyKa+W1+AMlLSEFvvsaRfA4Ayw/lFmHBonbx3/z9wp2MXF2I4LN8XHMv1ixeO5z3b+bjlmrH47VPxVryrFhlBK7tb+JzCylAykgnSVkSwpiwtkxBfhYU6vH27d2Tul3TmUqVKqFuimgI/s13c2nerwtUab5gKFEime6+/WZqf2lrSk5OUrV/UWFp3frN9N6U6XTs2AntyMBo0KAO9buzLzVsWE+1XUMJxNVrNvh0bn+LNlzesR09+kh/Pu/xiLJM72JRGKHd9L3xJovUW1kOJSSIkHUB0UK3jLzozjdqRNm6CEUAEIQEbl4Xb/C1vZ1HEBT4nB8S9PWH3+XjEdF5ksV3MH/+LiwmsBi98XKWnaZk5yiBvDMfIdUzhD/rg/waWIX5MYk/x/uGz6EvNGAE3z/SkmbhISIPyxTfFb6zvPCUKnI7CzDGpHHmp9nKzm98XBAKCt//48KQ+Ph4GjvqSbq1T08qXbqkEjoEj1SuVIEeGHBn0M210UsUblIU0Yeo4vwAtYDbtmlJ4/i9g+k3il6rE8YMpWZNGyohBShwH4pzRxN/8Q1yYT5BR6W0OcYf9a7ABJ4glt6ox7tuMAiPt/xVf6hpcj/HOhbEvIB1qRdSjKF+zsK4l1+HWsHPsYjclO5QrllvDGQxuokF1yika/nzPM5Cc0O6nR5g4YSLWA8eJHwRUjCEhauO7tCm/FbehBTg+x/Pr4Gl7o3G/N6ehNRYhaqm4RrR2ADjqvAAYFwZY8HRAsbL4SGQYLPIIaJ/fRDRZk0a0lG24Ca+9Bbd0Ls/3X7PQJrz0+9qf7eunal2rRpqORC6XtNJjdtu3rKdBg0ZpRp44z1Gjn2ZDh48TFWrVKK2rVtqR/tHVT7vnbfdyJa1lRb8vYT63TfY7dzVq1VR/VoFZwDRfZkOepEF5bgHLUHz4x91AviTQXDu4xt1D77x6mnFN2ZYQxij7GS4Wc0NgZjWNtz49+UjpkYxW+pw0FGDVwXrZwzbkEPrAsI1UZf0D/AQ0psFFN/JJr6G+fzZYInmB9zSGNfd6uG6++jEuqrZ/XvVX48eBEF5w5PQDmPx/8zwd6xr+I5u0Vn+AA8geBfj5A/wbNTl0+L3gQcF/F2SnbsKFTy0oLsRHrJgeQvhT8T+leByvfjiCykrK4s++Gg6LVm6Qrl0U1PP8vrntHbdJipdqiS1adVce4X/lC9XVlmjK1auVQXoAd4Dbtit23aSmW8k8XGBNR6/uMWFVL58WXWdk17/UBW1d53742lfKXfvhc0aK5e34ORjtlTapzkbHLfj+RU8deIJzY9X6wTwc8NNGDfFV9mC0aeXIKoV1hAiZPXgtRCRYMA/lVEcnb8e79QzHO8twKqkwc27IY9rhSv1RbZujUAovVn6r/MDy/VswV7J32tXnvfgCVatnl66B5Njhvffzutw3xoDm9DmzhtXGh5mBvKD02Y+T3+DyG6yn7/mNvwaCJ4eNEPA39Y4vcOWN0QpL1D7eRofhyGCufwbwe/jG37QQgT0Ct72Hc/hUi4M8Dik//00y+fahfAgYsUUQlemVCkW02w6dtR9bBGi9N/q9Wq5fv0L1DwQTpxwdm3pdFk7ZYW6qFmjmoqQzc620ckAO7vUqV1DifHJU6dzjevCEoa1XaZ0SbaMz7+v4ASu3JP8lSGx/ZD7V6eAJWsc1wP69BJPfMECM84gAoFgNLRcqS95Uc0gDNu9iOllBm9oXu7j4fymroo6RuZ7OD8K/L/D35vxNbBq9+i2wa3qqhsLYdZTh79ciDjc0RjHzgu4MpewcBkfPCbzHwlCZkwr+kb3kKTvQAOO83uWcd90jqv4fXrnIYTIBUYThUsMoq4Hrmi4lOGyLmjwC9R/czH8XRf8uwrBErF/o9TUVBUIZLGYKTERDi53jh8/SVksdqVKltC2+M+Cv5YoUatWrTK9OOFZ6t7tSrqkbUsaPWIIVahQjjZt2UaLlqzQjvaPI0ePq3lCAhxL7pw6dUalu1isMVSmTGltq+APngJlvIEx1uEsomPZIgoFEE59tC7+wrn/yu4gH1SP0cULmvANXV/8HMf8ZbDC9fyRxzgzLEgjK3WWn5FUQ3xzvLZ60hAHjebrLn7J49oAxjj1Ec8uIB5G4J6eo/M+tDQI35m838prag/GXfPKBTYCFzeirguaLG3uIg+dF8KEiBXT42w1Hj5yTAUDDeh/GzVt0kBth/u3783X0z139aG42Bi1LVB27dlHE154XUXJliyZTA/cfxc9+/QgKl26FP0xfxE99/zrlJEBu8N/du7eo1y5LVtcSP3u6quCqeBSbtq4AY1+djDVq1dHO1IIFAjqNel2eotF1XizhSt3Om8fzCIKV2ao66CeMJzO6J41go4heo56ELv2Bqv0bzZhdnkQXfAzf568mpwb042A8Zr1nDUc77kdvzs7vVybCw8eaI/A5Y2/oZ4LDN/nJ3wyWMmwio0Tvgvk5HoCUcxGMC5vtLj1VNDmBQmuW48lj+sRwoOIFVO4Rn/5fYESpAtq16SJzw2j2bM+oS8+fYvuvP0mqlC+rHZkcJxhCzHldIrb87eVreFatapT1SoVtS3+89+q9bR5yw4l+Df1upZmfP4ufT/zY5o4fhi1uviic9G9QnDAPfkmi2obbawV43koyIDxQETIzuWb7OkCuFEdMIjhyFiTGhuEu1Bvvbk4bji+HVtM+vFcjDneGeP+m/iZLU+4u403XrDYgxjrOejBVDumzT1hTC4y58rMzU1+gTuTWCD17mM9KBSBdnkYP0WRDkQku8DX0tBw5/qRj8U4L/6+xukxfmDyVOwBY6z6yGQXCPzJKz8WhUAKmiyDJyAuj+sRwoOIFVOwcNEytg5fo+3bd5Pd7hzryszKpg0bt9CPc3+jbJudDh0+qrYHAsZFX3lhBF3UvCmtWb2eBj4+gt5452M6evS4yvEcM+KJXNWFfAWBU+NfeIO+nz2PUlNRVI7Iwf/wyP38Yc6vtHvPfsriB4X9+w+qfULwwIcA4Sn4WyHR77qbP0CAy7vxFhXIsjzRQgt5QmUnBLsg/cHYFQe5oqjJi32/8Wtm86QPokHU7GJNECE8Rv4zvL8RfBd4kHCB5bwsRWNaSl5WrIu8UpIAatDemeGu6hjvbsIPO51ZGJ9iIf3Vg6vaWZ3pPBDks9qyP3hyMefHp/wAgApWBY3xYaxKPp4NoeiJaDEFa9ZtosFDx9CNfQeo1JU+t/0fPTNiIlusWWThG8DWbbu0I/0DLtfb+t6gomn/XvgPjR4/ifbs3U+//f43DRw8Ugk2clt79uiivcJ/4CL+6NMv6fZ7HlHX3qt3f+o3YAj9wA8CiQnxdPzkKTp8NC97QQhX0KVmaR43XdQQRolEpGFAJD2NqWIb9sGCMvJulv2cRXrY8DYQJG+BR3rg4oYrHBOWvYHr0FtqONKTgOu5mj/bSEOaji8k8ffi/UqcZBkehwK12oyuak/vi+/yN/47ohhGvww7Pc/fVWGw1/D9VgrwMwqFR8SLqSdgLV51RUdVQWjlqrXaVv8oU7q0CjKCdYtqR/qIW4jgqtUb1HLZMq5yAaFBiXifnlSufFlauXKtSvURIhPkxhZET8r3WKin6877j0G0/XlPBGnlF6hVxyDmO/IRaogvyhnq8RYgdJj/r/TjkyjsjxZkeWG0oGMCLP54SPc/DZALfCFbxK3T7HQZTxgW6JJup0dYRFFdCpZ0YWG8tooeHqiE8CJqxBRlBVGa76EH7qZxo56gEiWS6Pc/F9GBA4e0I/wjKzuLhdSmxi5vvrG7yleF0OF9OrZvQ9dcfbk67sTJ02oeLLCAr76yI732yhjq3Km9uu658/7Q9gqRCCxHRAnfwjdkCBaiURFM46kurwu85gBPhwyChQ4zCKRBzudkg3WE4BxYwjgGJffgigwl9Q038rwaswN9UwIXKPXnjd8MrtzJbNHqq0EZMTZzT+B1V21mf9jFb6u/qlr8Oevx/zi+R4yxBhZaGBqMKV/uLT+EcCSia/O6atOi1J8eWJM/zvmFpn72da4cTn/ocd01dO89t3gNBkIKy8SX36KNm7ZqW/zDUwcYsG//QXpl8nu0Y+cebYtniktt3mgE436oJI0bNqY0/plm8lwvKwhAKslzPK75GvlaEJTi6/g9wXIucOpOttSWaVYaihCtSzxfcxefBRbdVLZML9VEFQ8U3/KDAAoouMBDA4KDAIpqIK/UCMo6zuAHA0/1dtEZSJ9rimIT37Moe4vCxR3iaquZxsSZlYt6FF8TPsPrLNz6CkyoEoUUqZX5PDAUNLgmXJuL7/izPR2i1C2hYIgayxQBSMdPnKTf/lhIjw4eQZ9MmxGUkIIf5/5KL7z0Jm3dukMFNgGcEzmgf85fREOeHhuwkBqB6xjvgwCnQUNG5iukQmQDy2c7/zxx80cqBqxV460S+aoINCpKIQWIdr4u3TmuitKELiHNC4wvwiK/Ns2Wr9sZ1jrE0AiKOiBoCwJoxHhO5Kyiww26Cf3KQovKRVhexQKObjaoYvQinwcZ6YjgvUcTUAiwHgj0//i1hZFLmhfGKOe62oOMEL5EfNeY4oxYpkJR480y9cR0FkaUAQSIiL2XBVcPWsZ5K1aP8pFIA9KDSGgEcAUCXO6uGsWogOSpcMMCPgZlKlFlCpOnutAFBSxpPAC40FvyQngSNZapIAjhDfJ6IaKYJngYQ0Upw7tZ4JBfqgcRtUYhBa/x+fIaf/YG3Lzv6yzh0bzsqfQhGiAMYqH9gB8C0MEFrmj0db3OWC+yAEDBDb3LGlWhjOlJQngR1pYpOrbomTZ9Js38do62VjzxNM4Kt7M3yxQt5Iy5sPsPHBLLVAgJ/lim/oAm6cjNhVsWrdj2eblLYey5M4sbUnEuZbHRF7rQA8tuS46J5trs9GW25+pQ1/J5Xoiz5Fv6ESCP+GGDZR1q3mMRh6vbBQpYeMq7FcIDsUwFQQg70FYPludEnrwJKcDYM4KU/o+FDWktcAdfnmZXhR9cHYYa8gQXKSopIV/UW5lFFPTvnZ7bMvYEiucbC/QHApq+j2IBR19dI2hSr6ex3K3DmrC0TAVBiAwKyjItalAso5nFrCKNW7JottNZiAB5syhRGQxvxJmpq1b5Cg8FyG3VA6sU1qkLtM1D7rIQnoiYCoIQMNEqpkbg+m3GuteCBS7eZKLv8nA9+wJ6saJnqh6Iqb6GMDoEISLZBaK7YX0L4Yk4DgRBEPIBDwnL2SiEm/itfFzPvuCKanaBQv16IQWoDvWvztWL8eCLDK8TwgcRU0EQhEKmg0EU53mJZdppyDdtmk++KQKyBsSYaGKchfrFmJXnQCgcREwFQRAKEbhvjfWHl3lpzL7WYAHnZZlCRFGp6qlYC91kNdGwWDN9n2B167AjFBwipoIgCIWIsfUb3Mee8mjBdkNEbxkPWoqbOOoZQ0SNqUEoavEQi6pQ8Mi3LAiCUIigkL4eTwLpIo9d55jAQppXIYnuhl65QsEg37IgCEIhctogkaW1uSdM+bSyRxlEuHT1oHISIn9doBaxjJ0WPCKmgiAIhUiqwTItx0KHyRM3GKzK7Yah1VsNQopOO9el2eiMtu7C2AhdCD0ipoIgCIUIpHSRYSy0N4tmNdZFFItARG5Ds4lGx5lzda9ZbAhUcuisXLiPx2baVRrPWYNgi5gWPCKmgiAEDNrDoQeoC2MJPMEzvxi+pyGxzhZy83n6O9FCsxMsdLvBKkWDAKMIv5JlV4X79/Lf4NFMh1oGZw2u5Hj3VaEAEDEVhCBBd5GFfAPEjdCYP1gceDHLoTq7bOXpdb65C/mDfqzGIg358YGHzjYQ2M5pNro63U5LdEJrDHJCwwChYBExFYQggVVRwWRSLjq07Cpu4IbehW/mPXhCmoeQP+higy4wO3zQU3y/D2W4i2V+GFvTWfMp9iAEj9TmFYQgKMX3qH91tWlP8X/TJVI/VfARFFQYEGNWhfQr8G8phtfxOGZh8dvClv7XbI2i3Zu/6Buxg178oLNR544XQo+IqSAEAdIOftKJKW5YuHEJQlHybYJV9YR10ZV/k7tETAsUcfMKQhCUM/S0PCz3KyEMSDLkp2b4OT4r+I+IqSAEQRnDWNSxAO5ZCFpC8BKm9oUYwIR+mUv4PdHmq6NUyYkqkg2/S2N0rxB65D9IEIKgnDZ3cSwAC+CJWIsKXsI02JBXWJAMjjWrOrEovD4oj3J0QuRRQpu7yMinkpIQPCKmghAExqLlx/28Z+HlTXX/hegK4kvpt2D/cWuanYUBXFSWO0HUgL+qvuA9AqyRDywULPIvJAhBAGtSzwk/b1qeDk/S5kZwg3yMrUm4ZjcmWVVuKwJNXo0zUxc/3bTNDIf/JjFTghAUIqaCEAT1DGOc+0IQMelJTJGC80O8hR6OcbpmAXJbEbHZg4X0TRZUtOHyJsRG/rA5iywA5Dx+b3NQZ/4sEGiMoRbH4hPRghihRYOIqSAEQWNDNO8uP8dMfZWsu1lEaxveywjacD3JouoLqN96Y4aD7sqwU7d0O62259DjWvEJjKG+wsJcwhDEIkQmcpMvHOR7FoQgsBjE09+oSU9Heyoi1MfHAKFOFt//pWGR/ssiuk/7CDm6q4H1+4j07YoI8GcyTkby2y8Ej4ipIARBikEO47V5MBhtW9z8YC26gAg2PGuj9mm2XFVtNhi6ivjDLJv7a+9la/hptlbXJVrovyQrPc/Wqr4QgFC0wC2/KNHKf5/ckxHj/rk8tZa/ZUiRr1MQgsCYCnOpn2ONiKrVA6E8ZFBTRGLqC5fHsLAm8xyRwy9lOWgPCyoKzf+PxfCZzMDFdHq2g/4xlK7rz4KK90MLr5vZOkbA08BCTN8RvDMo1kLl/fu5naMuv64/v14IHYVSTrBsmTI0YdxQqla1srbFybTpM2nmt3O0tfP4e3xxYvCg++mKTu21NScpKak0auwrtH3nbm2LUFg8xTekATq/GcYeX2ZRWuZjPVW02ULfShcQ02ZpuUNrf0mwUC2d8L7H7zGZhTTUXM0PA2/H53+TRc3YEQXw/oLvfMW/iRb5jKPnxc+2HHosU8K4Q4U8YgpCEMw2uEabsxihyPg0niC017NYNtDd8KrzYls+5gbejshcvZAC/bilnrkGcX6QX4vo3VC7Xff4+Gjdh9//RcO1C4XLq1rrOwST+Tvhoe/9bBHSUFKolil4dtRLdOLkSbXsDX+Pd1GxYnkaM2IIVa9WhTKzsunNtz+mvxb+o+31H5PJRF2v6UQ9ul9D1apUIovFos67desOmjp9Bm3ZskM7MnDKly9LDw64k5pf1ITi4uIo22anzZu3+XT+uhfUonGjn1TLYpkWHc/FmqlvPq7PVJ7QUzI/my+L/xsv9NB1Bsbv5yyeEGsj77CV+BHfWPEewXInf46R/Hn0oP3XWZ4/y9v1hR7Al/zeo8VCFYTosUwhfHfc0iuXazgY6tSuSXfdfjPVrF5VCSmIi42hZk0b0oinH6PGjeqrbYEC8R836klq26alElIQY7Wo8z836im6/LJ2apsQ3oxkMXmXRSUvMMbpywiVw7NhqsZNx/N7eCoKAQt3bqLF58INSLF5i61KTLCU9bTx4DZEtO9StmT6s6gax1Rv9SC++RE1Nx1B0BE1v+tOl11K7S9tTUePHqdjx32zZPPD7nDQnr0H6M13PqG+dzxEN/TuTyPHvkwHDx6m0qVLUrcunbUj/Qfi//ADdysrGufDeXH+YSMn0s5deyghIZ5u7nUtlSiB27AQ7rzGgvoAi01BNsdew0J2D7+H0bUMEO2Lwg03+ZBCA0v6GhZeTCPZ2tVTzcPLEXwEUMR/UKad/jZEDMOaHZiPoMKiHs7HfB1vUdWbNvP0eYJV1QeGxS4IkU5UiCksvL69e5DDkUNffPUdZWZmanuCY9fuvUrcfv39L8rIyKCcnBxavWYD/TD3d34vB1WuVEE70n+aNK5PDerVpbNn0+idD6ap8+L86zdsocmvf6hc21WrVqGWzZtprxDCnfksdnek26hdmo3uZdF7gQX2Bxa+/TpjDssLedvnthx6OctOgw0BIKd1UbueQMPopzIdyvW63oNwT2RxNBaS0IPIXIzZumhvOLaGh9emaXNwmi/v8QyHyk/V8ygLqtEF7AL7ZrCI3sNz1B52gdQMjP1+waIqCJFOxIupy71btWpl+mPBYlq1eoO2p+BIiI9T73vo8FFti/80qF+XkpISaOu2nbRm7UZtK5HVaqHu113NFmlJ5VK+oHYNbY8QKZxknVnMYvNJtoOeZOG7ksW10VkbNecJy/fxtnEsolOycyjNoJ0bfLRs/+Dz38TC/byH8UpUQgoE5MiW9vBSfVoOwNjsML5+Y7PpNh7uJvf5YLUiiOouPk6PVF8SIo2IF1OXe3fH9t306Wdfa1sLhvj4eLrh+q7U64ZudPp0Cv38y3xtj//UrlVdCfL2HbuVRQqaNm5A77wxUQU9YewUVChfVs2FyAZ/YURRGrnAYM1tMghUfnzKgv2oIbe0XR6WaV7g+jzFd6Z6iDDGOOoHhnHiSzwER91hEElv3KiN96Kc4cdsxS5PtNB7PPe11rAgFDURLaYu967NZqdPP/9auWILghcnDKfZsz6hGZ+/S/f1u5VSU1Jp3MTJtHHTVu2IwIGbF9bogHtvo3FjhirX8b79B1mo/1T7K1QwdswUookLDQK0w0fLVI/RcvQWxOQLpzxo+Vkvrudlhms1BkAh/Uc/BotzP5hhp1ZsobdOs7sFU9m097jB6myWDtC8/P/ysWoFIVyI2F+qy71bpXJF+vGn39SYY2FRpUolGj18iLKKg6VixXL0xqTnqGePLmp93q8LaNCQkXTkyHG1LkQ36QadWu9nOcCWbIVinFTPf4bxTH/AmKye/3jd2xWh8tJRg9Ciu40LY7rQNLZk/+Rrg5sYDwBPZNrVGDKmyZqVaxx3bePB2hWEcCRixdTl3t28ZTvN+vYnbWvB8PSzz1PPm+9V0baDh46hVavWUYmSyWxN3kqNGtTTjgqMbl2uUBG9GH8dNeYlevu9qcrSdhHMuKwQ/sxkEXEJ2ItZDtrurk150p2F5ssES66eqkuCENPfDa/925b3ucwGF7BDW8eNxVj7FW3e9GBcGWPImFzX3MxQqL+2jJ0KEULEimnLFk1VbmaTxg2U+xVuWExTp0xSuaYI3nly8ANqG0rwhQKMbW7fvptGj59EmzZtpVKlSqqc0EA4ePCImqNIA6zRhwcNo/Ubt6htoEGDOmp+4sQpNReiE1h+16fbVeH6jw1jkPlxlYfxSBRwWBCEmH7Gr0eNXzCXhXRGPmJqzJ11jf/jDMbx1wM+XFaSocx/omipECFErJgWJbhhnElJVekxGZlZ2lb/2LZjJ6WnZ1BKyhmaM/c3N2sU1m7jhvXU/vUbN2tbBcGddQbRfIst29c9RPfqQe1ffZDTek389IzJdChxR9qO0Y1rxGIQP72Aphhe6spX9QYiiY03JOSgip4KkUDEiunkNz5Urlfj1G/AENp/4JAq+/fK5PfVNhwbCjBOW7duLRo65GFqdXFzOnbsBK1ctVbb6x9r1m6ivXsPqNKJgx+7n5o2aaC2Yz5oYH9l9e7YuUcdJwiegCWLXNb3eY681jd9tGxfzs6hgyx0GPPMT3zzw2pww9p1q8bAqB8TrfR+vIU+4QlF2n/jaTFvW8oToncxRzSvEWdtMEEIb8QyzQO4h13uY0zfz/yYJr80hjp2aKMih6d+NoMOsHAHQlZWFn306Zd06tQZuqB2TZr43DD1HphjDBVFG6Z9PlMdJwjeQC7rJBZEjD/6CopGdE6z0TXp9qDGV8FyXcAUOuWgtrCLhToLGGBsFz042/OEbicoEFGOt8EizSuvFIUmBCHcETH1A7vdTsdPnKTf/lhIjz0xihYuXqbtCQyk1ox/8XVat36zGjsFqN7077L/6Mlnxock9UYQCpJxrJ6I0MU0xlDN6UMWeYwJB0upXO3SBSH8iKquMcUN6RojhDuwPB+JtVBPi29VjSC+GXxH0jdZ75thVy3DBCGcEctUEIQC4zhrIEonokhDt3Qb3Zpup94sjj15fjlvw/aLtVKLzdKc+41BT1IDTIgECtUyNbZHmzZ9Js38do62dh5/jy9OYBz3ik7ttTUnKSmpYpkKUcPQWLOq6etiOIvxrHxSdAShqBHLVBCEsOKEwTItFyUBSCiPuCjRSvN5cpVMFKKHQrFMBUEQfKWX1Uwvxp1/zkchifFBpvCEAz8kWKiBVi5xlSOHbkk3lrUQIhmxTAVBCCsOGyzTmoZ6vZEI2tu5hBTol4XoQMRUEISwAu3d9NSJAt0xtj9HxLIn4AoeEGOiR2LMqs+rEDmEpZtXApC8428AEtrHNW5UX1tzggpRknIkhCvQzg1JVrcnfUT7FkyDxcIBhSlQ4ckFrG9EM7tAK74X4yxU1/DgAPc23NxC+CPPPoIghBV4ut9qKPYAMYpkYg0VhvWVomCNTo/PLaRgRKyZbrLm3oFWd/ew9fprgoVW8YPHc3wcKksJRUdYW6YgPwuqTavmdGufnlT7gloUY7WoSkL79x+gzz6fRctWrNaOCgxXUYQSJZK1Le6gQhHaswVD+fJl6cEBd1Lzi5qoLji4/s2bt9HU6TNoy5Yd2lGe8bdow+Ud29Gjj/SnY8eOi2UqhDW/sEjU0o0rok0b+p5GKlX5o/yps0zRau86/kzo+QohzIvN/GCBvFwXV7NoTmYrNtaDdv5ic9CwTIfqGSsULhFtmUJ0+/e7lerXr6OEFGBeu1YNGvrEQ9T5cnd3aLhRsWJ5GjfqSWrbpqUSUoDrR1u350Y9RZdf1k5tE4RoAI2+PVlfnqhiSIdB8YdIxtgQICsnR1mknoT0XYNbFw3TXdYpvsO32Yr1JKSgi9VM7/H+6j5+z0LoiHg375HDR2n6F9/Q7fcMVB1iBg0ZpRqGQ5y6demkOr0ECyxQfWca1xSMVYrreviBu1VR+4MHD9PIsS+r5uPDRk6knbv2UEJCPN3c61qvVrEgRAoQgz/YKoMrcy7P83NHwoWpF4sTLKSRPF7qCXy8kWxdGhmd5aDXeDIK6t1swVbke8aEfKxYAMF9l79rWMNC4RHRYgo3JRp1z5j1A6WmnlXbdu3eS1/NnK16gaKNWZnSpdX2cKNJ4/rUoF5dOns2jd75YBqtXrNB9Uldv2ELTX79Q/XZqlatQi2bN9NeIQiRB4Tx7TgzVdPd2NE5Ji/aGNJGjKkykQj6yOpBqoz+OwEPZ9jpS01EvzKIaWP+Tu6LMbm5vgFKNd7Jr5tjqF2M1JuXWKx9qYcshIaIt0w9kZiQSGaLhU6fPkMnT53StoYXDerXpaSkBNq6bSetWbtR20pktVqo+3VXs0VakuJiY+iC2jW0PYIQedzLFhVarelBwQJvoE3bGF3BBrAyCoJZjY0Uaxu+kxfZGv1dJ4joNzvVIKj9+LvUg9Z7n9tyVOu7ISyo0w3Hw0IdygIsFA5RJaYQoo7t29A9d/UhynHQz78sUNZeOFK7VnXl6t2+Y/e5a2zauAG988ZE6npNp3NjwBXKS5lvIXLpZHG/xbzEAjDXUGcXAnoxiwsiV1Fqz9gg/AeDSEQiWYZoXj2/2hyq0buRDXl8bLS8Q1N4Pc9p4qoHAU5SurBwiAoxdTXx/uarKTT0iYfZooulV157n+b/tVg7IjiQp+lqEP71/z6gt14bTzf1ulaJd7DAzYvzDLj3Nho3ZihVrlSB9u0/yA8Cf6r9FSqUU3NBiEQ2GKxQFLHfnGSlFTz9lWihtSyeEND/JVjoLoPlBSAQoeiJWtQY3bx6Xsn2vG9THp/b5Q42ArcvhFbPQx6+VyH0ROW3XLJkMj35+AN0843XhSQASQ9crzVrVKN77uxDY0Y8QfHxGP0InIoVy9Ebk56jnj26qPV5vy6gQUNG0pEjx9W6IEQy89jq8gTC6irx/6a3qFTwLVtZRtdlpGJ087r4gD/fLi+iucOLli5hsZxvEEw97/EDiB64e1EUIi8wtgoPgchu4ETFdzf5jQ/PRdg+PGi4skjNFivd2rcXXdbhEu0o/0He5h39Hj13bkTbDh46hhYuXkYOh0NZrB0ubaUdHRjdulyhInoPHT5Ko8a8RG+/N5VstvM5ZdguCJHKX3zTn2C4uecHxlTRdu0ZnqIFfAPGBuf4dNO9WKUA1izGTo3M8PKA4gLf39eGhxC40b0xIc5CyxMtykPwXYKF6oXW/ig2RN2DCFykk17/kBYuWqqsyFYXX6jtCR6MbW7fvptee3MK7dq1j2JirAFHCx88eETNUaQB1ujDg4bR+o1b1DbQoEEdNT9xIjwDqATBV6bxjf2mdBt9ynNPhRcgGLC2YKU9kGFX3VSisX+pUQSHZjryjVT29H2tysMqdfGvQW8v9WCZJvD0RpyZeusqLCGN6fbY4IeviiNRa9W7RCgtLV3NQ0lcXCzFxFqVuNrZQg2EbTt2qvSdlJQzNGfub27WaKMG9ahxw3pq//qNm7WtghC5rOd/k+fZQkUlo0ZnbarW7iW8fDHPO/O8H4voq7w/L/dlpDOTHxAGs7WNHFJ83h/zsTDBQsMxiPA94MNXtNLu/rpmhjs9iugjF7WrNbcEXCkBSwERdWIKl+n9/W+nHtddpYJ7/vl3pbYneDA+emm71jR+zFNUo3pVOnr0OC1d9p+21z/WrN1Ee/ceUFWcBj92PzVt0kBtx3zQwP4qR3bHzj3qOEGIJqAFKMJwihec2eHFB0QyoygDLHFfgPDCst/ryFFiPNlHlzk67+jdypu1ZUT2wp37bYLVo7UKMHYqpWL8J6Jr8/a+sTvdfWdvbc2dzKxs+t9X39I33/2kbfEfVy1buIuNnDx1mt5852NavmKNtsV/MOY67KmBVLp0SW3LefCZX3zlXVV9yRtSm1cQBG80ZVNpWKxFPbwgKnoLC/IMtkabexBRuNohoi7apdnoZNgpQ3gTVZapIyeHTp9OoSVLV9AzwycEJaSesNvtdPzESfr2+59o4OMjghJSAKEc/+LrtG79ZjV2CjIzM+lftnaffGZ8nkIqCIKQF3CtozrSXTxBSEGOB2MUrmOjvWvNIy9W8EzEd40pzohlKgiCP6Au8vg4C4tlDi3m5/dvbQ5aas/J1aWnE1umh8Qy9YuoGzMVBEEQPLOYhRNBYGhMjtQjCCmwGfLxJZ7Xf8LaMq1WtbK2xcm06TNp5rdztLXiCao9XdHJvbVcSkqqV8v0xQnD1disnv0HDollKgjCOb5iy7SFzjJFKhPcxILviGUqCIJQzDFWYapmFmnwl7C0TAVBEITCY2CsmR7V1fB9IctBn2SLaeoP8vghCIJQzDlgsEz1aTKCb4iYCoIgFHOOG/yTxjZ4Qv6ImAqCIBRzjhlqBFfMozC+4BkRU0EQhGKO0TIVN6//iJgKgiAUc44axLQai6mIg3/I9yUIglDMQTFTY+/UWG0u+IaIqSAIgpCrPm8JCULyCxFTQRAEQdXr1ZNtWBfyRsRUEARBoBhDpxibaKlfiJgKgiAIFGvw6tq0ueAbIqaCIAjFDAincYoz5JpaJNfUL6Q2ryAIQjGhs8VEE+IsVN5HndzqyKHRmQ5aYSg3KORGLFNBEIRiwsAYs89CCuqzddovRixUXxAxFQRBKCbYAtBFmyEwSfCMiKkgCEIx4dUsh+pdms7Lvkz/8bEfSCs2n5AxU0EQBEEIErFMBUEQBCFIREwFQRAEIUhETAVBEAQhSERMBUEQBCFIREwFQRAEIUhETAVBEAQhSERMBUEQBCFIREwFQRAEIUhETAVBEAQhSAqlAlLZMmVowrihVK1qZW2Lk2nTZ9LMb+doa+fx9/jixOBB99MVndpra05SUlJp1NhXaPvO3doWQRAEoTARy1QQBEEQgqRQLVPw7KiX6MTJk2rZG/4cX758WbrrtpuoTeuWlJycSI6cHDpy5Bh9PetH+vX3v7SjAsNkMlHXazpRj+7XULUqlchisVBmVjZt3bqDpk6fQVu27NCODJwGDepQvzv7Uv36dSguNkZd/6lTp+iX3/6mGTNnk81m147MTd0LatG40U+qZbFMBUEQio6ItkxbNG9Kr744iq7o3EEJKTCzAFauVIEefuBu6nNTD7UtUOrUrkl33X4z1axeVQkpgOA1a9qQRjz9GDVuVF9tC5TOl7enCWOGqvPhvADXj4eJW3pfT48+dK8SdEEQBCG8iWgxPXDwMFtxp2nhomU0aMgo6nnzvfTgo8No85btSvyuvKKDEqZAsTsctGfvAXrznU+o7x0P0Q29+9PIsS/TQX7f0qVLUrcunbUj/Sc2NpZ6XHsVWa1WmvPT73T7PQPV9eN9pn42g7Kysqg5PyxUN4wbC4IgCOFHRIsp3LmPPTGaXpr0Du3avVdtO3DgkApSyszMpJIlkqkMi16g4JzDRk5U7uKMjAzKycmh1Ws20A9zfycHCy0s4EBJTkqiJLam09Mz6Y8Fiyk19azajvf56+9/6MSJUxTDQgvRFQRBEMKbqAxAOnb0BFt22dpa6EmIj1Pu10OHj2pb/Cf17FnKYCFNSkqgnt2vZgvV6UYGl7RpSeXLl6O0tHRK4eMEQRCE8CYqxbRevdoUn5BAJ0+dpiPHjmtbgyc+Pp5uuL4r9bqhG50+nUI//zJf2+M/cOP+Pn8R2ewOurxjO3r5hZFqDPbuO3tTv3tuJbPZRH/MX6ysb0EQBCG8iToxLVEima7rdiVZWIwwlooczGB5ccJwmj3rE5rx+bt0X79bKZXPOW7iZNq4aat2RGD8OPdXmvLR53TmTKqKzMX79L6xO1usGfTBlM/pfzO+044UBEEQwpmoElNYjg8/cA/VrlWD1m/cQt/9ME/bE1qqVKlEo4cPoU6XXaptCZxjx0+o8V09iUmJ1LBhXfV5BEEQhPAnasQUwvPYwPuofbtWtHnrdnp10vsqmCcUPP3s8yrSFtG8g4eOoVWr1lGJksk04N5bqVGDetpR/nNrnxvomaGPUqlSJWjWt3Pp/x55mn6Y8ys57Da6snMHGjn8MRFUQRCECCAqxBSCM+KZQeeE9IUX36YTp05pe0MHonm3b99No8dPok2btrIIllQ5ooEA6/nableoqOB3PviMPp3+NR06dIQ+/PgLGvPcJDUmC6HucGkr7RWCIAhCuBLxYlq2dGkaN/oJuujCxrRh41Z67vnXC0RI9UBUz6SkKiHMyMzStvpHzRrVKDExkc6cPpNr7HUDrx86fIRiYqxUhj+fIAiCEN5EtJhWrFieRgx7jBrWr0tr1m6ksRMmhyTgyBtIh6lbtxYNHfIwtbq4OR07doJWrlqr7fWPtPQ0ctjtqhzi/f1vp6pacYbk5CTqd1cfql27JmVn2+hkAT8YCIIgCMET0bV5PXVQMbL/wCGf3tMTeZ0/JfUsvfv+p7Rw8TJti39AmEcNf5wubnmh15KBa9dvUpa2t7Ffqc0rCIIQHkRVNG9BY2dL8viJk/TbHwvpsSdGBSykAK7iCS++QV/OmK1ySXFugDnGTlFScPS4V0IWRCUIgiAUHBHfNaY4I5apIAhCeCCWqSAIgiAESaFaptUMHVCmTZ+pitIb8ff44oSncVwEXYllKgiCUHSIZSoIgiAIQVIolqkgCIIgRDNimQqCIAhCkISlZSpjpt7xd8wUnWjQ2k1PMLm3giAIQm7EMhUEQRCEIAlryxT4YkGh0P0NPa6h6669isqULkV/LlhMk9/4UNsbOKhM1PWaTtSj+zVUrUolslgslJmVTVu37qCp02fQli07tCMDA71X77jtRmp/SWvVOQakpp6lxUuW07QvZuVbGtHfPFM0IX/0kf507NhxsUwFQRBCSERbpihyP/Che2nqlEksSjcpIQ0ldWrXpLtuv5lqVq+qhBTExcaoTjEjnn4sl/vUX7pe3Ymu63ollS5dUgk3Jghs1y6d6ZmnHpH2a4IgCBFCRIvp9WyNdrn6ciU66DG69N//tD2hwe5w0J69B+jNdz6hvnc8pPqZjhz7Mh08eFgJYDcWvWBAx5kVK9fQsBET1bnxHigjiGbhDerXpbatW2hHCoIgCOFMRIvp8pWrVX/RCRNfp1HPvUpp6enantCwa/deGjZyIv36+1+qRi7q6a5es4F+mPu7ar9WuVIF7cjA+HHur6rTzfqNW9S58R7ffPcTbdy4VVnAFSuU044UBEEQwpmIFtP1G7bQ4KFjaNmK1dqWwiEhPk65ZA8dPqptCR04b2xcrBqbPXL0uLZVEARBCGckmtcPVKDT9V2p1w3d6PTpFPr5l/nantCA/qxDHrufGjaoS1u2bqd/l6/S9giCIAjhjIipDyBXc/asT2jG5+/Sff1updSUVBo3cTJt3LRVOyJwEJH7+dQ31fmnvPsyXdaxnbK08+pjKgiCIIQXIqYBUKVKJRo9fAh1uuxSbUvoMJtMdEmblvT82KepKr+PIAiCEP6ImPrA088+Tz1vvldF3GKMFpHDJUom04B7b6VGDeppRwUGckPv6PeoOj+ieV+e9C4dPXqc6tWrTY8+3J9iY2O1IwVBEIRwRcTUDxBxi+jh0eMn0aZNW6lUqZIq5zRUwK3796J/6YVX31YFG2rWqEo1qlXR9gqCIAjhiohpAEBUz7DYIT0GuaKhJjU1jYU1k7JtNsrKCv35BUEQhNAiYuoHSFupW7cWDR3yMLW6uDkdO3aCVq5aq+0NHkQLX9quNQ176hEqX74sbd68jfYdOKTtFQRBEMKViK7N66o1iwIH3kDELcY8A8FThxYXKaln6d33P6WFi5dpW/zDW2ccF9u27VLu3iNHjmlbciO1eQVBEMIDsUz9wG630/ETJ+m3PxbSY0+MClhIvYFCDXv27lclBYc+Oz5PIRUEQRDCh6joGlNcEctUEAQhPBDLVBAEQRCCJKwtU+N44rTpM2nmt3O0teKJp3FcpNF4s0xRvcnYKm7/gUNimQqCIIQQsUwFQRAEIUjC0jIVBEEQhEhCLFNBEARBCBIRU0EQBEEIEhFTQRAEQQgSEVNBEARBCBIRU0EQBEEIEhFTQRAEQQgSEVNBEARBCBIRU0EQBEEIEhFTQRAEQQgSEVNBEARBCBIRU0EQBEEIEhFTQRAEQQgSEVNBEARBCBIRU0EQBEEIEhFTQRAEQQgSEVNBEARBCBIRU0EQBEEIEhFTQRAEQQgSEVNBEARBCBIRU0EQBEEIEhFTQRAEQQgSEVNBEARBCBIRU0EQBEEIEhFTQRAEQQgSEVNBEARBCBJTidKVcrTlAqNsmTI0YdxQqla1srbFybTpM2nmt3O0tfP4e3xxYvCg++mKTu21NScpKak0auwrtH3nbm2LIAiCUJiIZSoIgiAIQVKolil4dtRLdOLkSbXsDX+Ob9OqOd3apyfVvqAWxVgtlG2z0/79B+izz2fRshWrtaP8py6fb9zoJ6lEiWRti2c2btpKTz/7vLbmP+XLl6UHB9xJzS9qQnFxcer6N2/eRlOnz6AtW3ZoR3nGdY1ALFNBEISiI6ItU4hu/363Uv36dZSQAsxr16pBQ594iDpf7u4ODTcqVixP40Y9SW3btFRCCnD9zZo2pOdGPUWXX9ZObRMEQRDCm4h38x45fJSmf/EN3X7PQOp58700aMgo2rxluxKnbl06kclk0o70D1h5d/R7VJ3TON3Quz8t+Wc5ORwO+m/Veu0V/oHreviBu6l6tSp08OBhGjn2ZXXeYSMn0s5deyghIZ5u7nVtvpaxIAiCUPREtJjC/Tt6/CSaMesHSk09q7bt2r2Xvpo5m9LTM6hUqZJUpnRptT2UwLXconkzOnjoCP3y21/aVv9o0rg+NahXl86eTaN3PphGq9dsoJycHFq/YQtNfv1D9dmqVq1CLfl9BEEQhPAmKgOQEhMSyWyx0OnTZ+jkqVPa1tAAi/K6a6+k+Pg4WszWaX7jv95oUL8uJSUl0NZtO2nN2o3aViKr1ULdr7uaLdKSFBcbQxfUrqHtEQRBEMKVqBJTCFHH9m3onrv6EOU46OdfFihrL5TAKm3csD4dOXKM5v26QNvqP7VrVVfCvH3H7nPX2LRxA3rnjYnU9ZpO58aAK5Qvq+aCIAhC+BIVYorcy9mzPqFvvppCQ594mC26WHrltfdp/l+LtSNCg94q/WvRUiWowQI3Lx4CBtx7G40bM5QqV6pA+/Yf5AeBP9X+ChXKqbkgCIIQvkSlm7dkyWR68vEH6OYbrws4AMkTbdu0UNZjsFapnooVy9Ebk56jnj26qHWcd9CQkfwex9W6IAiCEP5EhZhOfuPDc5G2Dw8arixSs8VKt/btRZd1uEQ7Kjggyt27XUWxbPUuWrI8JFYp6NblChXRe+jwURo15iV6+72pZLPZtb2ktguCIAjhTdRZpnCRTnr9Q1q4aKkK4Gl18YXanuCAVdq4UT06evQ4/fJ7YBG8eg4ePKLmKNIAa/ThQcNo/cYtahto0KCOmp84EdoAKkEQBCH0RKWbF7hEKC0tXc2DAdZor+u7qfnCxcvowIFD2p7A2bZjp0rfSUk5Q3Pm/uZmjTZqUI8aN6yn9q/fuFnbKgiCIIQrUSemcJne3/926nHdVSq4559/V2p7Aqdd24upXr0LVJrN/AWhCWpas3YT7d17QFVxGvzY/dS0SQO1HfNBA/urHNkdO/eo4wRBEITwJqLFtPeN3VUUr356543n6fru1xCZzPT1Nz+qYgjBAGv02q5XUGyMlZYs/Y927dmn7QmOrKws+ujTL+nUqTN0Qe2aNPG5Yer6MccDAfJXp30+Ux0nCIIghDdRZZk6cnLo9OkUFr0V9MzwCfTNdz9pewJHb5XOm+dMVwkVKJI//sXXad36zWrsFGRmZtK/y/6jJ58Zr/YLgiAI4U/Ed40pzkjXGEEQhPAgagOQBEEQBKGwKFTLtFrVytoWJ9Omz6SZ387R1s7j7/HFCVR7uqKTe2u5lJRUsUwFQRCKELFMBUEQBCFICsUyFQRBEIRoRixTQRAEQQgSEVNBEARBCJKwdPNKAJJ3/A1AenHCcGrcqL625mT/gUNeU478PV4QBEEQy1QQBEEQgiasLVPgi0UUHx9PN/S4hq679ioqU7oU/blgsWrLFgpKlEimu2+/mTq0b0vJyYlkt9tp7/6D9BlbyctWrNaOChx0h+l3Z19q2LAexVgtqgISSiC+N2U6HTt2QjvKM/4Wbbi8Yzt69JH+fN7jPn2v/h4vCIJQXIloy7Rs6dI08KF7aeqUSXTHbTcpIQ0lFSuWV27Prl06KyEFFouFatesTkOfeIg6X+7ubvUXvH7CmKHUrGlDJaQgLi6O2rZpSeNGPaneXxAEQQh/IlpMr2drtMvVlyvLdNWqdbT03/+0PcGDZuD33XOLKjq/c9ceGjZyomo+PuChp2jJP8tVAfzeN12nLNdAqFq1Mt15241ktVppwd9LqN99g+mG3v1p5NiX6eDBw+p9e994nXa0IAiCEM5EtJguX7matm/fTRMmvk6jnnuV0tKD713qojqLHVyvJ0+dpslvTKH1G5yNu48cOUZvvfcp7d13gCpVqkgtmzdT2/3l4hYXUvnyZWntuk2qmfmJU6coJydHuXg/nvaVcvde2KyxcnkLgiAI4U1EiykEbvDQMSEZuzRSs2Y1SkpKVM3Fz5xJ1bY6QfTsli07KC42hi6oXUPb6h91+HVms1mJNURUz+Yt2+nosRNUpnRJqla1krZVEARBCFckmtcLR1jMsrNsFBsTQ7FxMdrW8xw4eFjNy5Ytreb+cuTocTVPSIhXcz3ocQrBtlhjqEyZwM4vCIIgFB4ipl44dOiIil6FK/aRB+5RY5wAQUH33XMr3XhDN7UeKDt371Gu3JYtLqR+d/VV474Yp23auAGNfnYw1atXRztSEARBCHdETL0Ay3DBX/+Qw+Gg5hc1offenEizZ31CU959mW7o2TXgwCMX/61aT5s1V/FNva6lGZ+/S9/P/Jgmjh9GrS6+6Fx0ryAIghD+iJjmwdff/EiT35yiomsd2rhmWloarVi5RuWygr17D6i5v2RlZdH4F96g72fPo9TUNLUN7wFr+Ic5v9LuPfspiy3X/fsPqn2CIAhC+CJimg9//f0PPTDwGerVu79Kjbn1rkdo7ITJaqwzPT2Ddu3Zqx3pPxkZGfTRp1/S7fc8os6N9+g3YAj9MPc3SuTzHz95ig4fPaYdLQiCIIQrIqYBgGILLZs3ZavxEK1b70yZCRUYN72tT08qV74srVy5lq3Ws9oeQRAEIVwRMfURBAi1uKgJPf3kI6rEHpg951dlXYYC5JNefWVHeu2VMdS5U3s6cOAQzZ33h7ZXEARBCGciWkxRO/br/32gAoMwubqpYO7ahnKAgaI/PwKExo1+ijpc2pps2dk0ddoMmv+Xc9w0UNABxnWdKIk46JH76ILaNVWXllcmv6cKRAiCIAjhj1imPpJts9Phw0fpm+9+oocGDqM5P4fWaoSFu3XrDnrjnY9p0JCRtGPnHm2PIAiCEO5ERdeY4op0jREEQQgPxDIVBEEQhCAJa8u0mlZ1yMW06TNp5rdztLXiCcZZXWPDLlBgwptlijHjxo3qa2tOMCbrzdL093hBEARBLFNBEARBCJqwtEwFQRAEIZIQy1QQBEEQgkTEVBAEQRCCRMRUEARBEIJExFQQBEEQgkTEVBAEQRCCRMRUEARBEIJExFQQBEEQgkTEVBAEQRCCRMRUEARBEIJExFQQBEEQgkTEVBAEQRCCRMRUEARBEIKC6P8BITUPTDV+OuoAAAAASUVORK5CYII=" - } - }, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![image.png](attachment:image.png)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "import numpy as np\n", - "import json\n", - "\n", - "### Numbers too large to solve.\n", - "JOBS = 3\n", - "EMPLOYEES = 10\n", - "MACHINES = 5\n", - "\n", - "def get_model(T):\n", - " m = Model(name = 'Assignment')\n", - "\n", - " dv = m.binary_var_list(EMPLOYEES*MACHINES*JOBS, name = 'x')\n", - "\n", - " for i in range(JOBS):\n", - " summation = 0\n", - " for u in range(EMPLOYEES):\n", - " for o in range(MACHINES):\n", - " summation += dv[i*EMPLOYEES*MACHINES + u*MACHINES + o]\n", - "\n", - " m.add_constraint(summation == 1)\n", - "\n", - " function_summation = 0\n", - " T_flat = T.flatten()\n", - " for i in range(JOBS):\n", - " for u in range(EMPLOYEES):\n", - " for o in range(MACHINES):\n", - " function_summation += dv[i*EMPLOYEES*MACHINES + u*MACHINES + o] * T_flat[i*EMPLOYEES*MACHINES + u*MACHINES + o]\n", - "\n", - " m.minimize(function_summation)\n", - "\n", - " m.export_as_lp(\"Assignment_1.lp\")\n", - "\n", - " return m" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-11 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 33.000000 after 0.00 sec. (0.01 ticks)\n", - "Found incumbent of value 12.000000 after 0.01 sec. (0.01 ticks)\n", - "Tried aggregator 1 time.\n", - "MIP Presolve eliminated 3 rows and 150 columns.\n", - "All rows and columns eliminated.\n", - "Presolve time = 0.01 sec. (0.05 ticks)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.01 sec. (0.07 ticks)\n", - "Parallel b&c, 4 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.01 sec. (0.07 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=12,values={x_39:1,x_55:1,x_130:1})" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import numpy as np\n", - "np.random.seed(0)\n", - "\n", - "T = np.random.randint(4, 20, (JOBS, EMPLOYEES, MACHINES))\n", - "\n", - "model = get_model(T)\n", - "model.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JobSolveStatus.OPTIMAL_SOLUTION\n", - "\n" - ] - } - ], - "source": [ - "print(model.solve_status)\n", - "print()\n", - "# model.solution.get_values(model.use_vars)\n", - "solution = json.loads(model.solution.export_as_json_string())\n", - "indicies = [int(index['index']) for index in solution['CPLEXSolution']['variables']]" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[[16 19 9 4 7]\n", - " [15 7 11 13 7]\n", - " [ 9 6 8 11 10]\n", - " [12 12 16 14 5]\n", - " [10 11 11 18 12]\n", - " [ 5 9 13 17 12]\n", - " [13 8 7 4 7]\n", - " [ 9 18 19 19 4]\n", - " [ 6 7 12 5 7]\n", - " [17 7 7 18 11]]\n", - "\n", - " [[ 4 5 13 13 19]\n", - " [ 4 19 14 8 11]\n", - " [ 7 18 15 6 11]\n", - " [16 6 4 4 8]\n", - " [ 9 9 10 12 8]\n", - " [ 5 19 8 13 14]\n", - " [14 19 12 5 5]\n", - " [11 13 13 7 10]\n", - " [11 15 18 6 15]\n", - " [ 4 18 7 9 16]]\n", - "\n", - " [[13 14 8 15 8]\n", - " [10 8 19 19 8]\n", - " [ 7 16 8 8 12]\n", - " [18 19 8 7 14]\n", - " [11 19 17 9 9]\n", - " [ 4 5 9 13 7]\n", - " [ 4 19 9 18 4]\n", - " [ 5 6 8 6 4]\n", - " [17 7 6 14 17]\n", - " [ 4 11 9 13 19]]]\n", - "Job 1 is assigned to Employee 8 on Machine 5 with a cost of 4\n", - "Job 2 is assigned to Employee 2 on Machine 1 with a cost of 4\n", - "Job 3 is assigned to Employee 7 on Machine 1 with a cost of 4\n" - ] - } - ], - "source": [ - "print(T)\n", - "\n", - "for i in range(JOBS):\n", - " for u in range(EMPLOYEES):\n", - " for o in range(MACHINES):\n", - " # print(indicies)\n", - " if (i*EMPLOYEES*MACHINES + u*MACHINES + o) in indicies:\n", - " print(f\"Job {i+1} is assigned to Employee {u+1} on Machine {o+1} with a cost of {T[i][u][o]}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Question, can the same machines be operated in 2 different jobs\n", - "#### Question, can the same person complete 2 different jobs" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Assignments/Assignment1/solution.json b/Assignments/Assignment1/solution.json deleted file mode 100644 index f436e6d..0000000 --- a/Assignments/Assignment1/solution.json +++ /dev/null @@ -1,59 +0,0 @@ -{ - "CPLEXSolution": { - "version": "1.0", - "header": { - "problemName": "Assignment", - "objectiveValue": "1.0", - "solved_by": "cplex_local" - }, - "variables": [ - { - "index": "1", - "name": "x_1", - "value": "1.0" - }, - { - "index": "19", - "name": "x_19", - "value": "1.0" - }, - { - "index": "29", - "name": "x_29", - "value": "1.0" - }, - { - "index": "42", - "name": "x_42", - "value": "1.0" - }, - { - "index": "50", - "name": "x_50", - "value": "1.0" - } - ], - "linearConstraints": [ - { - "name": null, - "index": 0 - }, - { - "name": null, - "index": 1 - }, - { - "name": null, - "index": 2 - }, - { - "name": null, - "index": 3 - }, - { - "name": null, - "index": 4 - } - ] - } -} \ No newline at end of file diff --git a/Assignments/Assignment2/main.ipynb b/Assignments/Assignment2/main.ipynb deleted file mode 100644 index aabe7c4..0000000 --- a/Assignments/Assignment2/main.ipynb +++ /dev/null @@ -1,561 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "CHeck \"LaRosa Machine Shop\" problem, location-like problem.\n", - "\n", - "Minimize sqrt((x-1)^2 + (y-2)^2) + sqrt((x-n)^2 + (y-4)^2) + ... \n", - "\n", - "Optimal answer = (2.230, 3.349)\n", - "\n", - "Part A: Solve LaRosa with derivation. (answer should be (2.230, 3.349))\n", - "\n", - "Part B: Solve LaRosa as binary Linear Problem: Do it by splitting the 6x6 into 36 grids, and calculating the distances for each one of the points prior to giving it to the model.\n", - " \n", - "for example, (0.5, 0.5) = 12, (1.5, 0.5) = 10, (2.5, 0.5) = 7, etc.. , and then its a binary problem. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us consider the case of LaRosa Machine Shop (LMS). LMS is studying where to locate\n", - "its tool bin facility on the shop floor. The locations of the five production stations appear in\n", - "Figure 14.9. In an attempt to be fair to the workers in each of the production stations, man-\n", - "agement has decided to try to find the position of the tool bin that would minimize the sum\n", - "of the distances from the tool bin to the five production stations. We define the following\n", - "decision variables:\n", - "\n", - "X = horizontal location of the tool bin\n", - "\n", - "Y = vertical location of the tool bin" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Important Note

\n", - "

The fast and optimzied solution I showed you is in the last cells. It was in Numpy but I changed it based on your request to DoCplex. Its still fast and accurate

" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solve with derivation" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2.3\n", - "3.4\n" - ] - } - ], - "source": [ - "from sympy import Symbol\n", - "from sympy.solvers import solve\n", - "import numpy as np\n", - "\n", - "Stations = [\"Fabrication\",\"Paint\",\"Subassembly 1\",\"Subassembly 2\",\"Assembly\"]\n", - "x_coords = [1,1,2.5,3,4]\n", - "y_coords = [4,2,2 ,5,4]\n", - "\n", - "# Solve => Minimize the sum of distances\n", - "# Euclidian Distance = sqrt(a^2-b^2)\n", - "# TRIED USING EUCLIDIAN DISTANCE, BUT THE DERIVATES BECOMES TOO COMPLEX TO SOLVE.\n", - "# HENCE, I SWITCHED TO MANHATTEN DISTANCE. \n", - "# Manhatten Distance = |a-b|\n", - "# BUT EVEN THIS DIDN'T WORK BECAUSE SYMPY DOESN'T KNOW HOW TO DERIVE abs\n", - "# HENCE, I FINALLY CREATED MY NEW VERY OWN EQUATION CALLED:\n", - "# Clidian distance = a^2-b^2\n", - "# WHICH IS JUST EUCLIDIAN DISTANCE BUT WITHOUT THE SQRT.\n", - "\n", - "distance = lambda x, y: ((x[0] - y[0])**2 + (x[1] - y[1])**2)\n", - "\n", - "X = Symbol('X')\n", - "Y = Symbol('Y')\n", - "\n", - "value = 0\n", - "for x_coord, y_coord in zip(x_coords, y_coords):\n", - " value += distance((X, Y), (x_coord, y_coord))\n", - "\n", - "\n", - "diffed_X = value.diff(X)\n", - "diffed_Y = value.diff(Y)\n", - "\n", - "print(float(solve(diffed_X, X)[0]))\n", - "print(float(solve(diffed_Y, Y)[0]))" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh7UlEQVR4nO3db1BU58H38d+Cupsm7FbTyKJurKkGRaSKJnFJGm3UaOJY6Ys2ZUwwrWYaB2bgRdNKxo4mTget8U6dMUNsMkrvWoeJmaqtVSzVipOACSpMwUQnpkbwCQudRneRxq0D53nhLXGVxV3+XcB+PzPnxR6uw1575uB+PRzO2izLsgQAAGBInOkJAACA2EaMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwKhhpicQifb2dn3++edKSEiQzWYzPR0AABABy7LU0tKiMWPGKC4u/PmPQREjn3/+uTwej+lpAACAbmhoaNC4cePCfn1QxEhCQoKk6y/G6XQang0AAIhEIBCQx+PpeB8PZ1DEyI1fzTidTmIEAIBB5k6XWHABKwAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFGD4qZnABDr2totfXj+CzW3XNXoBIcenjBK8XF8VheGhqjOjKxbt042my1kmTx5cpfb7N69W5MnT5bD4dC0adN04MCBHk0YAGJNaV2jHtt4RFlvHVdeSY2y3jquxzYeUWldo+mpAb0i6l/TTJ06VY2NjR3Le++9F3ZsRUWFsrKytGLFClVXVyszM1OZmZmqq6vr0aQBIFaU1jVq1c5TavRfDVnv81/Vqp2nCBIMCVHHyLBhw+R2uzuWb3zjG2HHbtmyRYsWLdJLL72kKVOmaP369UpPT9fWrVt7NGkAiAVt7ZZe+fNHsjr52o11r/z5I7W1dzYCGDyijpFPPvlEY8aM0QMPPKBly5apvr4+7NjKykrNnz8/ZN3ChQtVWVnZ5XMEg0EFAoGQBQBizYfnv7jtjMjNLEmN/qv68PwX/TcpoA9EFSOPPPKIiouLVVpaqqKiIp0/f17f+c531NLS0ul4n8+nxMTEkHWJiYny+XxdPk9hYaFcLlfH4vF4opkmAAwJzS3hQ6Q744CBKqoYeeqpp/SDH/xAaWlpWrhwoQ4cOKDLly/rnXfe6dVJFRQUyO/3dywNDQ29+v0BYDAYneDo1XHAQNWjP+39+te/rgcffFDnzp3r9Otut1tNTU0h65qamuR2u7v8vna7XXa7vSdTA4BB7+EJo5Tkcsjnv9rpdSM2SW7X9T/zBQazHt307MqVK/r000+VlJTU6de9Xq8OHz4csq6srExer7cnTwsAMSE+zqa1S1IkXQ+Pm914vHZJCvcbwaAXVYz87Gc/U3l5uT777DNVVFTo+9//vuLj45WVlSVJys7OVkFBQcf4vLw8lZaWavPmzTpz5ozWrVunEydOKDc3t3dfBQAMUYtSk1T0bLrcrtBfxbhdDhU9m65FqZ3/ZxAYTKL6Nc3FixeVlZWlf//737rvvvv02GOP6fjx47rvvvskSfX19YqL+6pvMjIytGvXLq1Zs0Yvv/yyJk2apL179yo1NbV3XwUADGGLUpO0IMXNHVgxZNksyxrwf6AeCATkcrnk9/vldDpNTwcAAEQg0vdvPigPAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFE9ipENGzbIZrMpPz8/7Jji4mLZbLaQxeFw9ORpAQDAEDKsuxtWVVVp27ZtSktLu+NYp9Ops2fPdjy22WzdfVoAADDEdOvMyJUrV7Rs2TK99dZbGjly5B3H22w2ud3ujiUxMbE7TwsAAIagbsVITk6OFi9erPnz50c0/sqVKxo/frw8Ho+WLl2q06dPdzk+GAwqEAiELAAAYGiKOkZKSkp06tQpFRYWRjQ+OTlZ27dv1759+7Rz5061t7crIyNDFy9eDLtNYWGhXC5Xx+LxeKKdJgAAGCRslmVZkQ5uaGjQrFmzVFZW1nGtyNy5czV9+nT95je/ieh7XLt2TVOmTFFWVpbWr1/f6ZhgMKhgMNjxOBAIyOPxyO/3y+l0RjpdAABgUCAQkMvluuP7d1QXsJ48eVLNzc1KT0/vWNfW1qZjx45p69atCgaDio+P7/J7DB8+XDNmzNC5c+fCjrHb7bLb7dFMDQAADFJRxci8efNUW1sbsu7HP/6xJk+erF/84hd3DBHperzU1tbq6aefjm6mAABgSIoqRhISEpSamhqy7u6779a9997bsT47O1tjx47tuKbk1Vdf1ezZszVx4kRdvnxZmzZt0oULF7Ry5cpeegkAAGAw6/Z9RsKpr69XXNxX18VeunRJL7zwgnw+n0aOHKmZM2eqoqJCKSkpvf3UAABgEIrqAlZTIr0ABgAADByRvn/z2TQAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYNQw0xMwpa3d0ofnv1Bzy1WNTnDo4QmjFB9nMz0tAAD6zUB5L+zRmZENGzbIZrMpPz+/y3G7d+/W5MmT5XA4NG3aNB04cKAnT9tjpXWNemzjEWW9dVx5JTXKeuu4Htt4RKV1jUbnBQBAfxlI74XdjpGqqipt27ZNaWlpXY6rqKhQVlaWVqxYoerqamVmZiozM1N1dXXdfeoeKa1r1Kqdp9Tovxqy3ue/qlU7TxEkAIAhb6C9F3YrRq5cuaJly5bprbfe0siRI7scu2XLFi1atEgvvfSSpkyZovXr1ys9PV1bt27t1oR7oq3d0it//khWJ1+7se6VP3+ktvbORgAAMPgNxPfCbsVITk6OFi9erPnz599xbGVl5W3jFi5cqMrKyrDbBINBBQKBkKU3fHj+i9sq8GaWpEb/VX14/oteeT4AAAaagfheGPUFrCUlJTp16pSqqqoiGu/z+ZSYmBiyLjExUT6fL+w2hYWFeuWVV6Kd2h01t4Tf+d0ZBwDAYDMQ3wujOjPS0NCgvLw8/eEPf5DD4eirOamgoEB+v79jaWho6JXvOzohsjlHOg4AgMFmIL4XRnVm5OTJk2publZ6enrHura2Nh07dkxbt25VMBhUfHx8yDZut1tNTU0h65qamuR2u8M+j91ul91uj2ZqEXl4wigluRzy+a92+rsymyS36/qfNgEAMBQNxPfCqM6MzJs3T7W1taqpqelYZs2apWXLlqmmpua2EJEkr9erw4cPh6wrKyuT1+vt2cy7IT7OprVLUiRd39k3u/F47ZIU7jcCABiyBuJ7YVQxkpCQoNTU1JDl7rvv1r333qvU1FRJUnZ2tgoKCjq2ycvLU2lpqTZv3qwzZ85o3bp1OnHihHJzc3v3lURoUWqSip5Nl9sVevrJ7XKo6Nl0LUpNMjIvAAD6y0B7L+z1O7DW19crLu6rxsnIyNCuXbu0Zs0avfzyy5o0aZL27t3bES8mLEpN0oIU94C46xwAACYMpPdCm2VZA/6mGoFAQC6XS36/X06n0/R0AABABCJ9/+aD8gAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYFVWMFBUVKS0tTU6nU06nU16vVwcPHgw7vri4WDabLWRxOBw9njQAABg6hkUzeNy4cdqwYYMmTZoky7L0u9/9TkuXLlV1dbWmTp3a6TZOp1Nnz57teGyz2Xo2YwAAMKREFSNLliwJefyrX/1KRUVFOn78eNgYsdlscrvd3Z8hAAAY0rp9zUhbW5tKSkrU2toqr9cbdtyVK1c0fvx4eTweLV26VKdPn77j9w4GgwoEAiELAAAYmqKOkdraWt1zzz2y2+168cUXtWfPHqWkpHQ6Njk5Wdu3b9e+ffu0c+dOtbe3KyMjQxcvXuzyOQoLC+VyuToWj8cT7TQBAMAgYbMsy4pmg//+97+qr6+X3+/Xu+++q7ffflvl5eVhg+Rm165d05QpU5SVlaX169eHHRcMBhUMBjseBwIBeTwe+f1+OZ3OaKYLAAAMCQQCcrlcd3z/juqaEUkaMWKEJk6cKEmaOXOmqqqqtGXLFm3btu2O2w4fPlwzZszQuXPnuhxnt9tlt9ujnRoAABiEenyfkfb29pCzGF1pa2tTbW2tkpKSevq0AABgiIjqzEhBQYGeeuop3X///WppadGuXbt09OhRHTp0SJKUnZ2tsWPHqrCwUJL06quvavbs2Zo4caIuX76sTZs26cKFC1q5cmXvvxIAADAoRRUjzc3Nys7OVmNjo1wul9LS0nTo0CEtWLBAklRfX6+4uK9Otly6dEkvvPCCfD6fRo4cqZkzZ6qioiKi60sAAEBsiPoCVhMivQAGAAAMHH12ASuAIai9TbpQIV1pku5JlMZnSHHxpmcFIEYQI0Cs++hPUukvpMDnX61zjpEWbZRSvmduXgBiBp/aC8Syj/4kvZMdGiKSFGi8vv6jP5mZF4CYQowAsaq97foZEXV22dj/rStdfX0cAPQhYgSIVRcqbj8jEsKSAv/v+jgA6EPECBCrrjT17jgA6CZiBIhV9yT27jgA6CZiBIhV4zOu/9WMbGEG2CTn2OvjAKAPESNArIqLv/7nu5JuD5L/e7xoA/cbAdDniBEglqV8T/rh/0rOWz680jnm+nruMwKgH3DTMyDWpXxPmryYO7ACMIYYAXA9PCZ8x/QsAMQofk0DAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMiipGioqKlJaWJqfTKafTKa/Xq4MHD3a5ze7duzV58mQ5HA5NmzZNBw4c6NGEAQDA0BJVjIwbN04bNmzQyZMndeLECT3xxBNaunSpTp8+3en4iooKZWVlacWKFaqurlZmZqYyMzNVV1fXK5MHAACDn82yLKsn32DUqFHatGmTVqxYcdvXnnnmGbW2tmr//v0d62bPnq3p06frzTffjPg5AoGAXC6X/H6/nE5nT6YLAAD6SaTv392+ZqStrU0lJSVqbW2V1+vtdExlZaXmz58fsm7hwoWqrKzs8nsHg0EFAoGQBQAADE1Rx0htba3uuece2e12vfjii9qzZ49SUlI6Hevz+ZSYmBiyLjExUT6fr8vnKCwslMvl6lg8Hk+00wQAAINE1DGSnJysmpoaffDBB1q1apWWL1+ujz76qFcnVVBQIL/f37E0NDT06vcHAAADx7BoNxgxYoQmTpwoSZo5c6aqqqq0ZcsWbdu27baxbrdbTU1NIeuamprkdru7fA673S673R7t1AAAwCDU4/uMtLe3KxgMdvo1r9erw4cPh6wrKysLe40JAACIPVGdGSkoKNBTTz2l+++/Xy0tLdq1a5eOHj2qQ4cOSZKys7M1duxYFRYWSpLy8vI0Z84cbd68WYsXL1ZJSYlOnDih3/72t73/SgAAwKAUVYw0NzcrOztbjY2NcrlcSktL06FDh7RgwQJJUn19veLivjrZkpGRoV27dmnNmjV6+eWXNWnSJO3du1epqam9+yoAAMCg1eP7jPQH7jMCAMDg0+f3GQEAAOgNxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGBVVjBQWFuqhhx5SQkKCRo8erczMTJ09e7bLbYqLi2Wz2UIWh8PRo0kDAIChI6oYKS8vV05Ojo4fP66ysjJdu3ZNTz75pFpbW7vczul0qrGxsWO5cOFCjyYNAACGjmHRDC4tLQ15XFxcrNGjR+vkyZN6/PHHw25ns9nkdru7N0MAADCk9eiaEb/fL0kaNWpUl+OuXLmi8ePHy+PxaOnSpTp9+nSX44PBoAKBQMgCAACGpm7HSHt7u/Lz8/Xoo48qNTU17Ljk5GRt375d+/bt086dO9Xe3q6MjAxdvHgx7DaFhYVyuVwdi8fj6e40AQDAAGezLMvqzoarVq3SwYMH9d5772ncuHERb3ft2jVNmTJFWVlZWr9+fadjgsGggsFgx+NAICCPxyO/3y+n09md6QIAgH4WCATkcrnu+P4d1TUjN+Tm5mr//v06duxYVCEiScOHD9eMGTN07ty5sGPsdrvsdnt3pgYAAAaZqH5NY1mWcnNztWfPHh05ckQTJkyI+gnb2tpUW1urpKSkqLcFAABDT1RnRnJycrRr1y7t27dPCQkJ8vl8kiSXy6W77rpLkpSdna2xY8eqsLBQkvTqq69q9uzZmjhxoi5fvqxNmzbpwoULWrlyZS+/FAAAMBhFFSNFRUWSpLlz54as37Fjh55//nlJUn19veLivjrhcunSJb3wwgvy+XwaOXKkZs6cqYqKCqWkpPRs5gAAYEjo9gWs/SnSC2AAAMDAEen7N59NAwAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGDTM9AVPa2i19eP4LNbdc1egEhx6eMErxcTbT0wJiCj+HAKQoY6SwsFB//OMfdebMGd11113KyMjQxo0blZyc3OV2u3fv1i9/+Ut99tlnmjRpkjZu3Kinn366RxPvidK6Rr3y54/U6L/asS7J5dDaJSlalJpkbF5ALOHnEMANUf2apry8XDk5OTp+/LjKysp07do1Pfnkk2ptbQ27TUVFhbKysrRixQpVV1crMzNTmZmZqqur6/Hku6O0rlGrdp4K+QdQknz+q1q185RK6xqNzAuIJfwcAriZzbIsq7sb/+tf/9Lo0aNVXl6uxx9/vNMxzzzzjFpbW7V///6OdbNnz9b06dP15ptvRvQ8gUBALpdLfr9fTqezu9NVW7ulxzYeue0fwBtsktwuh977xROcKgb6CD+HQOyI9P27Rxew+v1+SdKoUaPCjqmsrNT8+fND1i1cuFCVlZVhtwkGgwoEAiFLb/jw/Bdh/wGUJEtSo/+qPjz/Ra88H4Db8XMI4FbdjpH29nbl5+fr0UcfVWpqathxPp9PiYmJIesSExPl8/nCblNYWCiXy9WxeDye7k4zRHNL+H8AuzMOQPT4OQRwq27HSE5Ojurq6lRSUtKb85EkFRQUyO/3dywNDQ298n1HJzh6dRyA6PFzCOBW3frT3tzcXO3fv1/Hjh3TuHHjuhzrdrvV1NQUsq6pqUlutzvsNna7XXa7vTtT69LDE0YpyeWQz39VnV0oc+N31Q9PCP9rJwA9w88hgFtFdWbEsizl5uZqz549OnLkiCZMmHDHbbxerw4fPhyyrqysTF6vN7qZ9oL4OJvWLkmRdP0fvJvdeLx2SQoXzQF9iJ9DALeKKkZycnK0c+dO7dq1SwkJCfL5fPL5fPryyy87xmRnZ6ugoKDjcV5enkpLS7V582adOXNG69at04kTJ5Sbm9t7ryIKi1KTVPRsutyu0FPAbpdDRc+mc38DoB/wcwjgZlH9aa/N1vn/VHbs2KHnn39ekjR37lx985vfVHFxccfXd+/erTVr1nTc9OzXv/51VDc9660/7b0Zd34EzOPnEBjaIn3/7tF9RvpLX8QIAADoW/1ynxEAAICeIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACM6tan9va3GzeJDQQChmcCAAAideN9+043ex8UMdLS0iJJ8ng8hmcCAACi1dLSIpfLFfbrg+Kzadrb2/X5558rISEh7If1dUcgEJDH41FDQwOfeXMH7KvIsa+iw/6KHPsqcuyryPXlvrIsSy0tLRozZozi4sJfGTIozozExcVp3Lhxffb9nU4nB2uE2FeRY19Fh/0VOfZV5NhXkeurfdXVGZEbuIAVAAAYRYwAAACjYjpG7Ha71q5dK7vdbnoqAx77KnLsq+iwvyLHvooc+ypyA2FfDYoLWAEAwNAV02dGAACAecQIAAAwihgBAABGESMAAMCoIR0jx44d05IlSzRmzBjZbDbt3bv3jtscPXpU6enpstvtmjhxooqLi/t8ngNBtPvq6NGjstlsty0+n69/JmxQYWGhHnroISUkJGj06NHKzMzU2bNn77jd7t27NXnyZDkcDk2bNk0HDhzoh9ma1Z19VVxcfNtx5XA4+mnG5hQVFSktLa3jxlNer1cHDx7scptYPKak6PdVrB5TndmwYYNsNpvy8/O7HNffx9aQjpHW1lZ9+9vf1htvvBHR+PPnz2vx4sX67ne/q5qaGuXn52vlypU6dOhQH8/UvGj31Q1nz55VY2NjxzJ69Og+muHAUV5erpycHB0/flxlZWW6du2annzySbW2tobdpqKiQllZWVqxYoWqq6uVmZmpzMxM1dXV9ePM+1939pV0/U6QNx9XFy5c6KcZmzNu3Dht2LBBJ0+e1IkTJ/TEE09o6dKlOn36dKfjY/WYkqLfV1JsHlO3qqqq0rZt25SWltblOCPHlhUjJFl79uzpcszPf/5za+rUqSHrnnnmGWvhwoV9OLOBJ5J99fe//92SZF26dKlf5jSQNTc3W5Ks8vLysGN++MMfWosXLw5Z98gjj1g//elP+3p6A0ok+2rHjh2Wy+Xqv0kNYCNHjrTefvvtTr/GMRWqq33FMWVZLS0t1qRJk6yysjJrzpw5Vl5eXtixJo6tIX1mJFqVlZWaP39+yLqFCxeqsrLS0IwGvunTpyspKUkLFizQ+++/b3o6Rvj9fknSqFGjwo7h2Loukn0lSVeuXNH48ePl8Xju+D/eoaitrU0lJSVqbW2V1+vtdAzH1HWR7CuJYyonJ0eLFy++7ZjpjIlja1B8UF5/8fl8SkxMDFmXmJioQCCgL7/8UnfddZehmQ08SUlJevPNNzVr1iwFg0G9/fbbmjt3rj744AOlp6ebnl6/aW9vV35+vh599FGlpqaGHRfu2IqFa2xuiHRfJScna/v27UpLS5Pf79drr72mjIwMnT59uk8/MHMgqK2tldfr1dWrV3XPPfdoz549SklJ6XRsrB9T0eyrWD6mJKmkpESnTp1SVVVVRONNHFvECLolOTlZycnJHY8zMjL06aef6vXXX9fvf/97gzPrXzk5Oaqrq9N7771neioDXqT7yuv1hvwPNyMjQ1OmTNG2bdu0fv36vp6mUcnJyaqpqZHf79e7776r5cuXq7y8POybbCyLZl/F8jHV0NCgvLw8lZWVDeiLdomRm7jdbjU1NYWsa2pqktPp5KxIBB5++OGYelPOzc3V/v37dezYsTv+7yrcseV2u/tyigNGNPvqVsOHD9eMGTN07ty5PprdwDFixAhNnDhRkjRz5kxVVVVpy5Yt2rZt221jY/2YimZf3SqWjqmTJ0+qubk55Ix1W1ubjh07pq1btyoYDCo+Pj5kGxPHFteM3MTr9erw4cMh68rKyrr8PSS+UlNTo6SkJNPT6HOWZSk3N1d79uzRkSNHNGHChDtuE6vHVnf21a3a2tpUW1sbE8fWrdrb2xUMBjv9WqweU+F0ta9uFUvH1Lx581RbW6uampqOZdasWVq2bJlqampuCxHJ0LHVZ5fGDgAtLS1WdXW1VV1dbUmy/ud//seqrq62Lly4YFmWZa1evdp67rnnOsb/85//tL72ta9ZL730kvXxxx9bb7zxhhUfH2+Vlpaaegn9Jtp99frrr1t79+61PvnkE6u2ttbKy8uz4uLirL/97W+mXkK/WbVqleVyuayjR49ajY2NHct//vOfjjHPPfectXr16o7H77//vjVs2DDrtddesz7++GNr7dq11vDhw63a2loTL6HfdGdfvfLKK9ahQ4esTz/91Dp58qT1ox/9yHI4HNbp06dNvIR+s3r1aqu8vNw6f/689Y9//MNavXq1ZbPZrL/+9a+WZXFM3SzafRWrx1Q4t/41zUA4toZ0jNz489Nbl+XLl1uWZVnLly+35syZc9s206dPt0aMGGE98MAD1o4dO/p93iZEu682btxofetb37IcDoc1atQoa+7cudaRI0fMTL6fdbafJIUcK3PmzOnYdze888471oMPPmiNGDHCmjp1qvWXv/ylfyduQHf2VX5+vnX//fdbI0aMsBITE62nn37aOnXqVP9Pvp/95Cc/scaPH2+NGDHCuu+++6x58+Z1vLlaFsfUzaLdV7F6TIVza4wMhGPLZlmW1XfnXQAAALrGNSMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYNT/B5GWDaw7WdsMAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "plt.scatter(x_coords, y_coords)\n", - "plt.scatter(float(solve(diffed_X, X)[0]), float(solve(diffed_Y, Y)[0]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Solve as Integer Optimization " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|██████████| 30/30 [00:00<00:00, 3323.27it/s]\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzyUlEQVR4nO3df3DV9Z3v8dcBIdGSUKBAQIL1B79DgFh1w7YL1apsHGt6Z6jNYIMtODsO7IZh1q3Z6QyJjoo7KmWGimi7prOWZYsrdHQxypaGXArYAMFNsFp+E2sStkqTKCTF5Hv/4JKeJCfhnPM95/M5n2+ez5lMm3Aevr+cxsmn5+S8T8jzPE9ERERElhpi+wKIiIhocMdhhIiIiKzGYYSIiIisxmGEiIiIrMZhhIiIiKzGYYSIiIisxmGEiIiIrMZhhIiIiKx2le0LiKauri599NFHysjIUCgUsn05REREFEWe56mtrU0TJ07UkCH9P/7hxGHko48+UnZ2tu3LICIiojhqaGjQpEmT+v1zJw4jGRkZki79ZTIzMy1fDREREUVTa2ursrOzu3+O95cTh5HLT81kZmZyGCEiInKsK/2KBb/ASkRERFbjMEJERERW4zBCREREVuMwQkRERFbjMEJERERW4zBCREREVuMwQkRERFbjMEJERERWc2LpGRHRYK+zy9NvT36is23tGpeRrluvH62hQ3ivLgpGMT0yUlZWplAo1ONj+vTpA5qtW7dq+vTpSk9P1+zZs7Vjxw5fF0xENNiqrG/UV5/epaKX9qtky2EVvbRfX316lyrrG21fGlFCivlpmlmzZqmxsbH7Y8+ePf3edu/evSoqKtKyZctUW1urwsJCFRYWqr6+3tdFExENlirrG/XwK4fU2NLe4+tNLe16+JVDHEgoEMV8GLnqqquUlZXV/fGlL32p39uuX79eixYt0iOPPKIZM2bo8ccfV15enjZs2ODroomIBkOdXZ7KX39PXoQ/u/y18tffU2dXpFsQuVPMh5GjR49q4sSJuuGGG7RkyRKdOXOm39vu27dP3/jGN3p87e6779a+ffsGnNHR0aHW1tYeH0REg63fnvykzyMi4XmSGlva9duTn5i7KKIkFNNh5LbbblNFRYUqKyu1ceNGnTx5Ul/72tfU1tYW8fZNTU0aP358j6+NHz9eTU1NA8556qmnNHLkyO6P7OzsWC6TiCgQnW3r/yASz+2IUrWYXk3zt3/7t93/PTc3V7fddpuuu+46/eIXv9CyZcsSdlGlpaVavXp19+etra3mDySeJ7U1SRfPS8OukTKypCu8BTIWi8Um0o7LSI+KjhuRJrU2psQ1Y5Ngbc82kK+X9n7xi1/U1KlTdezYsYh/npWVpebm5h5fa25uVlZW1oD/3LS0NKWlpfm5NH+dOyWd/L/SJyekz9ulq9Kl0TdI139NGvVlLBaLNWJvve6rmjAyXU0t7RF/byQkaV5mi25r2SGdOpkS14xNsLU921Ahz/Pi/s2nTz/9VJMnT1ZZWZn+4R/+oc+f33///Tp//rxef/317q/Nnz9fubm5euGFF6Ke09raqpEjR6qlpUWZmZnxXm50nTslvfsL6cLHUua1l06RF89LrR9JV4+W5ny7//8BsVgsNsF299Vf14PbzkpSjwNJSNKk0Fn9dN5xTc24mFLXjE2QtT07AUX78zum3xn5x3/8R+3evVunTp3S3r179a1vfUtDhw5VUVGRJKm4uFilpaXdty8pKVFlZaWeffZZvf/++yorK9OBAwe0cuXKOP9aSc7zLp0gL3wsfWmalJYhDRl66T+/NFW68MmlP490fsNisdgk2AXD3tfGJfOUNbLnUzZZmWl6fv6nlw4iKXbN2ARY27MNF9Nh5MMPP1RRUZGmTZumb3/72xozZoz279+vsWPHSpLOnDmjxsa/vOZ9/vz52rx5s1588UXNmTNHr776qrZv366cnJzE/i0SVVvTpYeyMq/t+3xaKCRlTrz0520RfgEXi8Vik2QXXRfSnh/crn9/6K+0/jtz9e8P/ZX2rJip2Vd/krLXjPVpbc82XEy/M7Jly5YB/7yqqqrP1xYvXqzFixfHdFHWunj+0nNqw66J/OfDrpHa/v8viWGxWKxBO3RISPk3jvnLn318POWvGevD2p5tON4oL7xh11z65Z6BvjGuSo/8Py4Wi8VisYmytmcbjsNIeBlZl37LuPWjvs+jed6lr4++4dLtsFgsFotNlrU923AcRsILhS693Onq0dIffy91tEldnZf+84+/v/T1678W+fXZWCwWi8UmytqebThfL+01ldGX9kpuvhYdi8ViscGztmf7LNqf3xxG+svFLX1YLBaLDZ61PdtHSdkzQkRERJTofK2DD2wuPpSHxWKx2OBZ27MNxdM0vXNxZTAWi8Vig2dtz05APE0TTy6uDMZisVhs8Kzt2YbjMBKeiyuDsVgsFhs8a3u24TiMhBfN+tzP2+NfvYvFYrFYbDTW9mzDcRgJz9bqXSwWi8ViU2m24TiMhOfiymAsFovFBs/anm04DiPhubgyGIvFYrHBs7ZnG46X9kbKxdeiY7FYLDZ41vZsn7EO3m8urgzGYrFYbPCs7dk+Ys8IERERORHr4CPl4kN5WCwWiw2etT3bUDxN0zsXVwZjsVgsNnjW9uwExNM08eTiymAsFovFBs/anm04DiPhubgyGIvFYrHBs7ZnG47DSHi2Vu9isVgsFptKsw3HYSQ8W6t3sVgsFotNpdmG4zASnosrg7FYLBYbPGt7tuE4jITn4spgLBaLxQbP2p5tOF7aGykXX4uOxWKx2OBZ27N9xjp4v7m4MhiLxWKxwbO2Z/uIwwgRERFZLdqf36yD7y8XT89YLBaLDZ61PdtAHEYi5eLzilgsFosNnrU921A8TdM7F9+/AIvFYrHBs7ZnJyDemyaebL0PABaLxWKxqTTbcBxGwnPx/QuwWCwWGzxre7bhOIyEd/G8e+9fgMVisdjgWduzDcdhJLxh17j3/gVYLBaLDZ61PdtwHEbCc/H9C7BYLBYbPGt7tuE4jIRn630AsFgsFotNpdmG46W9kXLxtehYLBaLDZ61PdtnrIP3m4tb+rBYLBYbPGt7to/YM0JEREROxDr4SLn4UB4Wi8Vig2dtzzYUT9P0zsWVwVgsFosNnrU9OwHxNE08ubgyGIvFYrHBs7ZnG47DSHgurgzGYrFYbPCs7dmG4zASnq3Vu1gsFovFptJsw/k6jKxdu1ahUEirVq3q9zYVFRUKhUI9PtLT0/2MTV62Vu9isVgsFptKsw0X92GkpqZGmzZtUm5u7hVvm5mZqcbGxu6P06dPxzs2ubm4MhiLxWKxwbO2ZxsursPIp59+qiVLluill17SqFGjrnj7UCikrKys7o/x48fHMzb5ubgyGIvFYrHBs7ZnGy6ul/YuXbpUo0eP1rp167Rw4ULNnTtXP/rRjyLetqKiQsuXL9e1116rrq4u5eXl6cknn9SsWbP6/ed3dHSoo6Oj+/PW1lZlZ2ezDh6LxWKxg8vanu2zpK2D37Jli5544gnV1NQoPT39ioeRffv26ejRo8rNzVVLS4ueeeYZVVdX68iRI5o0aVJEU1ZWpvLy8j5fZx08FovFYgedtT3bR0nZM9LQ0KCSkhL9/Oc/j/qXUPPz81VcXKy5c+dqwYIFeu211zR27Fht2rSpX1NaWqqWlpbuj4aGhlguk4iIiBwqpnXwBw8e1NmzZ5WXl9f9tc7OTlVXV2vDhg3q6OjQ0KFDB/xnDBs2TPPmzdOxY8f6vU1aWprS0tJiubTE5uJDeVgsFosNnrU921AxPU3T1tbW55Uw3/ve9zR9+nT94Ac/UE5OzhX/GZ2dnZo1a5YKCgr03HPPRTWXdfBYLBaLHXTW9uwElJSnaTIyMpSTk9Pj4wtf+ILGjBnTfRApLi5WaWlpt3nsscf09ttv68SJEzp06JAeeOABnT59WsuXL4/zr5bEXFwZjMVisdjgWduzDRfTYSSazpw5o8bGxu7Pz507p4ceekgzZsxQQUGBWltbtXfvXs2cOTPRo/3n4spgLBaLxQbP2p5tuJh+ZyRSVVVVA36+bt06rVu3zu8YM0WzPretMf7Vu1gsFovFRmNtzzZcwh8ZcTpbq3exWCwWi02l2YbjMBKeiyuDsVgsFhs8a3u24TiMhOfiymAsFovFBs/anm24uNbBm87oS3slN1+LjsVisdjgWduzfZa0dfA2Mn4YkdxcGYzFYrHY4Fnbs32UlD0jRERERInO90t7A5mLD+VhsVgsNnjW9mxD8TRN71xcGYzFYrHY4FnbsxMQT9PEk4srg7FYLBYbPGt7tuE4jITn4spgLBaLxQbP2p5tOA4j4UWzPvfz9vhX72KxWCwWG421PdtwHEbCs7V6F4vFYrHYVJptOA4j4bm4MhiLxWKxwbO2ZxuOw0h4Lq4MxmKxWGzwrO3ZhuOlvZFy8bXoWCwWiw2etT3bZ6yD95uLK4OxWCwWGzxre7aP2DNCRERETsQ6+Ei5+FAeFovFYoNnbc82FE/T9M7FlcFYLBaLDZ61PTsB8TRNPLm4MhiLxWKxwbO2ZxuOw0h4Lq4MxmKxWGzwrO3ZhuMwEp6t1btYLBaLxabSbMNxGAnP1updLBaLxWJTabbhOIyE5+LKYCwWi8UGz9qebTgOI+G5uDIYi8ViscGztmcbjpf2RsrF16JjsVgsNnjW9myfsQ7eby6uDMZisVhs8Kzt2T7iMEJERERWi/bnN+vg+8vF0zMWi8Vig2dtzzYQh5FIufi8IhaLxWKDZ23PNhRP0/TOxfcvwGKxWGzwrO3ZCYj3poknW+8DgMVisVhsKs02HIeR8Fx8/wIsFovFBs/anm04DiPhXTzv3vsXYLFYLDZ41vZsw3EYCW/YNe69fwEWi8Vig2dtzzYch5HwXHz/AiwWi8UGz9qebTgOI+HZeh8ALBaLxWJTabbheGlvpFx8LToWi8Vig2dtz/YZ6+D95uKWPiwWi8UGz9qe7SP2jBAREZETsQ4+Ui4+lIfFYrHY4Fnbsw3F0zS9c3FlMBaLxWKDZ23PTkA8TRNPLq4MxmKxWGzwrO3ZhuMwEp6LK4OxWCwWGzxre7bhBu1hpLPL077jH+uXh/+gfcc/VmeXZ2/1LhaLxWKxFmZ3/vl835+FFvJ1GFm7dq1CoZBWrVo14O22bt2q6dOnKz09XbNnz9aOHTv8jPVdZX2jvvr0LhW9tF8lWw6r6KX9+urTu/TrE23urQzGYrFYbPCsgdnHz32uwhcP9flZWFnfGNkksbgPIzU1Ndq0aZNyc3MHvN3evXtVVFSkZcuWqba2VoWFhSosLFR9fX28o31VWd+oh185pMaW9h5fb2pp1/f/80PVXRjt1spgLBaLxQbPJnn2qZNH9UKdVNd6dY8/ampp18OvHDJ+IInrMPLpp59qyZIleumllzRq1KgBb7t+/XotWrRIjzzyiGbMmKHHH39ceXl52rBhQ1wX7KfOLk/lr7+nSA9CXfpaSGvqxqjr6lHurAzGYrFYbPBsEmd3/e/v9dbJP2ufN1NST3v552P56+8Zfcomrpf2Ll26VKNHj9a6deu0cOFCzZ07Vz/60Y8i3nby5MlavXp1j6dy1qxZo+3bt+vdd9+NaDo6OtTR0dH9eWtrq7Kzs32/tHff8Y9V9NL+K97ute9cq7yuOrdei47FYrHY4NkkzD7WOU4PVqXrQ2/cgPTfH/or5d845srXN0DRvrQ35qVnW7Zs0aFDh1RTUxPV7ZuamjR+/PgeXxs/fryampr6NU899ZTKy8tjvbQrdrat/co3ktSgscqb90B863NHfVn64nVYLBaLxfq3SZh95HinPvQiPxgQXrQ/MxNRTE/TNDQ0qKSkRD//+c+Vnp6erGtSaWmpWlpauj8aGhoS8s8dlxHdNUd7OyIiItdKxZ+FMT0ycvDgQZ09e1Z5eXndX+vs7FR1dbU2bNigjo4ODR06tIfJyspSc3Nzj681NzcrKyur3zlpaWlKS0uL5dKi6tbrR2vCyHQ1tbRH/L2RkKSskem69YutUu0Otx7Kw2KxWGzwbBJm3zbqeuVlXqXa1pED/yy8fvSVry1BxfQ7I21tbTp9+nSPr33ve9/T9OnT9YMf/EA5OTl9zP3336/z58/r9ddf7/7a/PnzlZubqxdeeCGquYlcB3/51TSSevyPcPnBropvjdOCC792a2UwFovFYoNnkzj7921XaVntjfrQGxfxZ+HGB/K0KGdC/9cVZUlZB5+RkaGcnJweH1/4whc0ZsyY7oNIcXGxSktLu01JSYkqKyv17LPP6v3331dZWZkOHDiglStXxvlX89einAna+ECeskb2fPgpa2S6Ni6ZpwXD3ndrZTAWi8Vig2eTPHtqxud6fv6nysrs+SxE1sj0hB1EYinh79p75swZDRnylzPO/PnztXnzZv3whz/UP//zP2vKlCnavn17xEdRTLUoZ4LunJml3578RGfb2jUu49LDUUM/bZJ+G+X63Mxe/0PFsnoXi8VisdiBrIHZsy98oj0rZuq3f0zr+bNwSJS/WJvAfB9GqqqqBvxckhYvXqzFixf7HZXQhg4J9X3JUjTrc9sa41+9i8VisVhsNNbQ7KGfX1D+jRMj38ZgMT1NE/hsrf3FYrFYLDaVZhuOw0h4Lq4MxmKxWGzwrO3ZhuMwEp6LK4OxWCwWGzxre7bh4loHb7pEvrQ3qlx8LToWi8Vig2dtz/ZZtD+/OYz0l+fFv7oXi8VisdhEWduzfZSUPSNEREREiS7he0YCkYsP5WGxWCw2eNb2bEPxNE3vXFwZjMVisdjgWduzExBP08STiyuDsVgsFhs8a3u24TiMhBfL6l0sFovFYpNlbc82HIeR8KJZn/t5e/yrd7FYLBaLjcbanm04DiPh2Vq9i8VisVhsKs02HIeR8FxcGYzFYrHY4Fnbsw3HYSQ8F1cGY7FYLDZ41vZsw/HS3ki5+Fp0LBaLxQbP2p7tM9bB+83FlcFYLBaLDZ61PdtH7BkhIiIiJ2IdfKRcfCgPi8ViscGztmcbiqdpeufiymAsFovFBs/anp2AeJomnlxcGYzFYrHY4Fnbsw3HYSQ8F1cGY7FYLDZ41vZsw3EYCc/W6l0sFovFYlNptuE4jIRna/UuFovFYrGpNNtwHEbCc3FlMBaLxWKDZ23PNhyHkfBcXBmMxWKx2OBZ27MNx0t7I+Xia9GxWCwWGzxre7bPWAfvNxdXBmOxWCw2eNb2bB9xGCEiIiKrRfvzm3Xw/eXi6RmLxWKxwbO2ZxuIw0ikXHxeEYvFYrHBs7ZnG4qnaXrn4vsXYLFYLDZ41vbsBMR708STrfcBwGKxWCw2lWYbjsNIeC6+fwEWi8Vig2dtzzYch5HwLp537/0LsFgsFhs8a3u24TiMhDfsGvfevwCLxWKxwbO2ZxuOw0h4Lr5/ARaLxWKDZ23PNhyHkfBsvQ8AFovFYrGpNNtwvLQ3Ui6+Fh2LxWKxwbO2Z/uMdfB+c3FLHxaLxWKDZ23P9hF7RoiIiMiJWAcfKRcfysNisVhs8Kzt2YbiaZreubgyGIvFYrHBs7ZnJyCepoknF1cGY7FYLDZ41vZsw3EYCc/FlcFYLBaLDZ61PdtwHEbCs7V6F4vFYrHYVJptuJgOIxs3blRubq4yMzOVmZmp/Px8vfnmm/3evqKiQqFQqMdHenq674tOWrZW72KxWCwWm0qzDRfTYWTSpElau3atDh48qAMHDuj222/XfffdpyNHjvRrMjMz1djY2P1x+vRp3xedtFxcGYzFYrHY4Fnbsw0X02Hk3nvvVUFBgaZMmaKpU6fqiSee0IgRI7R///5+TSgUUlZWVvfH+PHjfV900nJxZTAWi8Vig2dtzzZc3C/t7ezs1NatW7V06VLV1tZq5syZfW5TUVGh5cuX69prr1VXV5fy8vL05JNPatasWQP+szs6OtTR0dH9eWtrq7Kzs1kHj8VisdjBZW3P9lnS1sHX1dUpPz9f7e3tGjFihDZv3qyCgoKIt923b5+OHj2q3NxctbS06JlnnlF1dbWOHDmiSZMm9TujrKxM5eXlfb7OOngsFovFDjpre7aPkrZnZNq0aTp8+LDeeecdPfzww1q6dKnee++9iLfNz89XcXGx5s6dqwULFui1117T2LFjtWnTpgFnlJaWqqWlpfujoaEh1sskIiIiR4p5Hfzw4cN10003SZJuvvlm1dTUaP369Vc8YEjSsGHDNG/ePB07dmzA26WlpSktLS3WS0tcLj6Uh8VisdjgWduzDeX7vWm6urp6/H7HQHV2dqqurq7fp3VSov7W5zYfkVob41u9i8VisVhsrNb2bIPF9DRNaWmpqqurderUKdXV1am0tFRVVVVasmSJJKm4uFilpaXdt3/sscf09ttv68SJEzp06JAeeOABnT59WsuXL0/s3yJRubgyGIvFYrHBs7ZnGy6mw8jZs2dVXFysadOm6Y477lBNTY3eeust3XnnnZKkM2fOqLGxsfv2586d00MPPaQZM2aooKBAra2t2rt3b8RX3qRELq4MxmKxWGzwrO3ZhovpaZqf/vSnA/55VVVVj8/XrVundevWxXxR1opmfW5bY/yrd7FYLBaLjcbanm24mF9NE+hsrd7FYrFYLDaVZhuOw0h4Lq4MxmKxWGzwrO3ZhuMwEp6LK4OxWCwWGzxre7bh4l4Hb7JoN7glLBdfi47FYrHY4Fnbs32WtHXwNjJ+GJHcXBmMxWKx2OBZ27N9lLR18ERERESJzPcG1kDm4kN5WCwWiw2etT3bUDxN07v+1ue2fnTpF37iWb2LxWKxWGys1vbsBMTTNPHk4spgLBaLxQbP2p5tOA4j4bm4MhiLxWKxwbO2ZxuOw0h40azP/bw9/tW7WCwWi8VGY23PNhyHkfBsrd7FYrFYLDaVZhuOw0h4Lq4MxmKxWGzwrO3ZhuMwEp6LK4OxWCwWGzxre7bheGlvpFx8LToWi8Vig2dtz/YZ6+D95uLKYCwWi8UGz9qe7SP2jBAREZETsQ4+Ui4+lIfFYrHY4Fnbsw3F0zS9c3FlMBaLxWKDZ23PTkA8TRNPLq4MxmKxWGzwrO3ZhuMwEp6LK4OxWCwWGzxre7bhOIyEZ2v1LhaLxWKxqTTbcBxGwrO1eheLxWKx2FSabTgOI+G5uDIYi8ViscGztmcbjsNIeC6uDMZisVhs8Kzt2Ybjpb2RcvG16FgsFosNnrU922esg/ebiyuDsVgsFhs8a3u2jziMEBERkdWi/fnNOvj+cvH0jMVisdjgWduzDcRhJFIuPq+IxWKx2OBZ27MNxdM0vXPx/QuwWCwWGzxre3YC4r1p4snW+wBgsVgsFptKsw3HYSQ8F9+/AIvFYrHBs7ZnG47DSHgXz7v3/gVYLBaLDZ61PdtwHEbCG3aNe+9fgMVisdjgWduzDcdhJDwX378Ai8ViscGztmcbjsNIeLbeBwCLxWKx2FSabThe2hspF1+LjsVisdjgWduzfcY6eL+5uKUPi8ViscGztmf7iD0jRERE5ESsg4+Uiw/lYbFYLDZ41vZsQ/E0Te9cXBmMxWKx2OBZ27MTEE/TxJOLK4OxWCwWGzxre7bhOIyE5+LKYCwWi8UGz9qebTgOI+HZWr2LxWKxWGwqzTZcTIeRjRs3Kjc3V5mZmcrMzFR+fr7efPPNAc3WrVs1ffp0paena/bs2dqxY4evC05qtlbvYrFYLBabSrMNF9NhZNKkSVq7dq0OHjyoAwcO6Pbbb9d9992nI0eORLz93r17VVRUpGXLlqm2tlaFhYUqLCxUfX19Qi4+4bm4MhiLxWKxwbO2ZxsupsPIvffeq4KCAk2ZMkVTp07VE088oREjRmj//v0Rb79+/XotWrRIjzzyiGbMmKHHH39ceXl52rBhQ0IuPuG5uDIYi8ViscGztmcbLu6X9nZ2dmrr1q1aunSpamtrNXPmzD63mTx5slavXq1Vq1Z1f23NmjXavn273n333X7/2R0dHero6Oj+vLW1VdnZ2ayDx2KxWOzgsrZn+yxp6+Dr6uqUn5+v9vZ2jRgxQps3b1ZBQUHE2w4fPlw/+9nPVFRU1P21559/XuXl5Wpubu53RllZmcrLy/t8nXXwWCwWix101vZsHyVtz8i0adN0+PBhvfPOO3r44Ye1dOlSvffee74utnelpaVqaWnp/mhoaEjoP5+IiIhSp5jXwQ8fPlw33XSTJOnmm29WTU2N1q9fr02bNvW5bVZWVp9HQJqbm5WVNfAvzKSlpSktLS3WS0tcLj6Uh8VisdjgWduzDeV7Hfztt9+uyZMnq6Kios+f3X///Tp//rxef/317q/Nnz9fubm5euGFF6KewTp4LBaLxQ46a3t2AkrK0zSlpaWqrq7WqVOnVFdXp9LSUlVVVWnJkiWSpOLiYpWWlnbfvqSkRJWVlXr22Wf1/vvvq6ysTAcOHNDKlSvj/GslORdXBmOxWCw2eNb2bMPFdBg5e/asiouLNW3aNN1xxx2qqanRW2+9pTvvvFOSdObMGTU2Nnbffv78+dq8ebNefPFFzZkzR6+++qq2b9+unJycxP4tEpWLK4OxWCwWGzxre7bhYvqdkZ/+9KcD/nlVVVWfry1evFiLFy+O6aKsFc363LbG+FfvYrFYLBYbjbU923Axv5om0NlavYvFYrFYbCrNNhyHkfBcXBmMxWKx2OBZ27MNx2EkPBdXBmOxWCw2eNb2bMP5fmmviYy+tFdy87XoWCwWiw2etT3bZ0lbB28j44cRyc2VwVgsFosNnrU920dJWwdPRERElMhiXgc/KHLxoTwsFovFBs/anm0onqbpnYsrg7FYLBYbPGt7dgLiaZp4cnFlMBaLxWKDZ23PNhyHkfBcXBmMxWKx2OBZ27MNx2EkvGjW537eHv/qXSwWi8Vio7G2ZxuOw0h4tlbvYrFYLBabSrMNx2EkPBdXBmOxWCw2eNb2bMNxGAnPxZXBWCwWiw2etT3bcLy0N1IuvhYdi8ViscGztmf7jHXwfnNxZTAWi8Vig2dtz/YRe0aIiIjIiVgHHykXH8rDYrFYbPCs7dmG4mma3rm4MhiLxWKxwbO2ZycgnqaJJxdXBmOxWCw2eNb2bMNxGAnPxZXBWCwWiw2etT3bcBxGwrO1eheLxWKx2FSabTgOI+HZWr2LxWKxWGwqzTYch5HwXFwZjMVisdjgWduzDcdhJDwXVwZjsVgsNnjW9mzD8dLeSLn4WnQsFovFBs/anu0z1sH7zcWVwVgsFosNnrU920ccRoiIiMhq0f78Zh18f7l4esZisVhs8Kzt2QbiMBIpF59XxGKxWGzwrO3ZhuJpmt65+P4FWCwWiw2etT07AfHeNPFk630AsFgsFotNpdmG4zASnovvX4DFYrHY4Fnbsw3HYSS8i+fde/8CLBaLxQbP2p5tOA4j4Q27xr33L8BisVhs8Kzt2YbjMBKei+9fgMVisdjgWduzDcdhJDxb7wOAxWKxWGwqzTYcL+2NlIuvRcdisVhs8Kzt2T5jHbzfXNzSh8VisdjgWduzfcSeESIiInIi1sFHysWH8rBYLBYbPGt7tqF4mqZ3Lq4MxmKxWGzwrO3ZCYinaeLJxZXBWCwWiw2etT3bcBxGwnNxZTAWi8Vig2dtzzYch5HwbK3exWKxWCw2lWYbLqbDyFNPPaVbbrlFGRkZGjdunAoLC/XBBx8MaCoqKhQKhXp8pKen+7ropGVr9S4Wi8Visak023AxHUZ2796tFStWaP/+/dq5c6cuXryou+66S5999tmALjMzU42Njd0fp0+f9nXRScvFlcFYLBaLDZ61PdtwMb20t7KyssfnFRUVGjdunA4ePKi/+Zu/6deFQiFlZaXGX3jALq/PbW28tC43c2Lf3z6+0updLBaLxWL9WtuzDefrpb3Hjh3TlClTVFdXp5ycnIi3qaio0PLly3Xttdeqq6tLeXl5evLJJzVr1qx+/7kdHR3q6Ojo/ry1tVXZ2dmsg8disVjs4LK2Z/ss6evgu7q69M1vflN/+tOftGfPnn5vt2/fPh09elS5ublqaWnRM888o+rqah05ckSTJk2KaMrKylReXt7n66yDx2KxWOygs7Zn+yjpe0ZWrFih+vp6bdmyZcDb5efnq7i4WHPnztWCBQv02muvaezYsdq0aVO/prS0VC0tLd0fDQ0N8V4mERERpXhxrYNfuXKl3njjDVVXV/f76EZ/DRs2TPPmzdOxY8f6vU1aWprS0tLiubTE5OJDeVgsFosNnrU921AxPU3jeZ7+/u//Xtu2bVNVVZWmTJkS88DOzk7NmjVLBQUFeu6556IyrIPHYrFY7KCztmcnoKQ8TbNixQq98sor2rx5szIyMtTU1KSmpiZduHCh+zbFxcUqLS3t/vyxxx7T22+/rRMnTujQoUN64IEHdPr0aS1fvjyOv1aSc3FlMBaLxWKDZ23PNlxMh5GNGzeqpaVFCxcu1IQJE7o//uM//qP7NmfOnFFjY2P35+fOndNDDz2kGTNmqKCgQK2trdq7d69mzpyZuL9FonJxZTAWi8Vig2dtzzZcTL8zEs0zOlVVVT0+X7dundatWxfTRVnr4vkrr89ta4y80Q6LxWKx2ERZ27MNF/eraQLZsGvcWxmMxWKx2OBZ27MNx2EkPBdXBmOxWCw2eNb2bMNxGAnv8vrcq0dfWp/b0SZ1dV76zz/+PrrVu1gsFovF+rW2ZxvO1zp4Uxl9aa/k5mvRsVgsFhs8a3u2z5K+Dt5kxg8jkpsrg7FYLBYbPGt7to+Svg6eiIiIKBHFtQ4+8Ln4UB4Wi8Vig2dtzzYUT9P0zsWVwVgsFosNnrU9OwHxNE08ubgyGIvFYrHBs7ZnG47DSHgurgzGYrFYbPCs7dmG4zASXjTrcz9vj3/1LhaLxWKx0Vjbsw3HYSQ8W6t3sVgsFotNpdmG4zASnosrg7FYLBYbPGt7tuE4jITn4spgLBaLxQbP2p5tOF7aGykXX4uOxWKx2OBZ27N9xjp4v7m4MhiLxWKxwbO2Z/uIPSNERETkRKyDj5SLD+VhsVgsNnjW9mxD8TRN71xcGYzFYrHY4FnbsxMQT9PEk4srg7FYLBYbPGt7tuE4jITn4spgLBaLxQbP2p5tOA4j4dlavYvFYrFYbCrNNhyHkfBsrd7FYrFYLDaVZhuOw0h4Lq4MxmKxWGzwrO3ZhuMwEp6LK4OxWCwWGzxre7bheGlvpFx8LToWi8Vig2dtz/YZ6+D95uLKYCwWi8UGz9qe7SMOI0RERGS1aH9+sw6+v1w8PWOxWCw2eNb2bANxGImUi88rYrFYLDZ41vZsQ/E0Te9cfP8CLBaLxQbP2p6dgHhvmniy9T4AWCwWi8Wm0mzDcRgJz8X3L8BisVhs8Kzt2YbjMBLexfPuvX8BFovFYoNnbc82HIeR8IZd4977F2CxWCw2eNb2bMNxGAnPxfcvwGKxWGzwrO3ZhuMwEp6t9wHAYrFYLDaVZhuOl/ZGysXXomOxWCw2eNb2bJ+xDt5vLm7pw2KxWGzwrO3ZPmLPCBERETkR6+Aj5eJDeVgsFosNnrU921A8TdM7F1cGY7FYLDZ41vbsBMTTNPHk4spgLBaLxQbP2p5tOA4j4bm4MhiLxWKxwbO2Zxtu0B5GOrs87Tv+sX55+A/ad/xjdXZ59lbvYrGD1Pb59/DPqX/NWKwRa3u24WI6jDz11FO65ZZblJGRoXHjxqmwsFAffPDBFd3WrVs1ffp0paena/bs2dqxY0fcF5yIKusb9dWnd6nopf0q2XJYRS/t11ef3qVfn2hzb2UwFuuo/fWJtj7/Hha+eEjHz32esteMxRqztmcbLqbDyO7du7VixQrt379fO3fu1MWLF3XXXXfps88+69fs3btXRUVFWrZsmWpra1VYWKjCwkLV19f7vvh4qqxv1MOvHFJjS3uPrze1tOv7//mh6i6MdmtlMBbroK27MFrf/88P+/x7WN96tV6ok06dPJpy14zFGrW2ZxsupsNIZWWlHnzwQc2aNUtz5sxRRUWFzpw5o4MHD/Zr1q9fr0WLFumRRx7RjBkz9PjjjysvL08bNmzwffGx1tnlqfz19xTp13UufS2kNXVj1HX1KHdWBmOxjtmuq0dpTd0YeeprPYW035upt07+WV3/mzrXjMWyDj65+Xpp77FjxzRlyhTV1dUpJycn4m0mT56s1atXa9WqVd1fW7NmjbZv36533303ouno6FBHR0f3562trcrOzvb90t59xz9W0Uv7r3i7175zrfK66tx6LToW64g9NGS2/s+WPwxIJ4XOqmJhu24aejYlrhmLZc9IfCV9HXxXV5e++c1v6k9/+pP27NnT7+2GDx+un/3sZyoqKur+2vPPP6/y8nI1NzdHNGVlZSovL+/zdb+HkV8e/oNKthy+4u3Wf2eu7psz0b2VwVisA/aX734U3b+H98/RfTcOTYlrxmKtWtuzfRTtYSTuDawrVqxQfX39gAeReCstLdXq1au7P7/8yIjfxmWkR3+7UEjKnBDfICwW26+N+t/DzKulzDEJm4vFOmttzzZQXIeRlStX6o033lB1dbUmTZo04G2zsrL6PALS3NysrKz+f2kmLS1NaWlp8VzagN16/WhNGJmuppb2iL83EpKUNTJdt14/OuGziehS/HtIRL2L6RdYPc/TypUrtW3bNu3atUvXX3/9FU1+fr5+9atf9fjazp07lZ+fH9uVJqChQ0Jac+9MSerzq3OXP19z70wNHZIav9BDFMT495CIehfTYWTFihV65ZVXtHnzZmVkZKipqUlNTU26cOFC922Ki4tVWlra/XlJSYkqKyv17LPP6v3331dZWZkOHDiglStXJu5vEUOLciZo4wN5yhrZ86HirJHp2vhAnhblpPZDWURBiH8PiSi8mH6BNdTPL7y8/PLLevDBByVJCxcu1Je//GVVVFR0//nWrVv1wx/+UKdOndKUKVP0L//yLyooKIj6IpPxRnmdXZ5+e/ITnW1r17iMSw8J8//EiMzGv4dEwS7pr6YxmdF37SUiIqKExLv2EhERkRNxGCEiIiKrcRghIiIiq3EYISIiIqtxGCEiIiKrcRghIiIiq3EYISIiIqtxGCEiIiKrcRghIiIiq8X1rr2mu7wktrW11fKVEBERUbRd/rl9pWXvThxG2traJEnZ2dmWr4SIiIhira2tTSNHjuz3z514b5quri599NFHysjI6PfN+uKptbVV2dnZamho4D1vrhD3VfRxX8UW91f0cV9FH/dV9CXzvvI8T21tbZo4caKGDOn/N0OceGRkyJAhmjRpUtL++ZmZmXyzRhn3VfRxX8UW91f0cV9FH/dV9CXrvhroEZHL8QusREREZDUOI0RERGS1QX0YSUtL05o1a5SWlmb7UlI+7qvo476KLe6v6OO+ij7uq+hLhfvKiV9gJSIiouA2qB8ZISIiIvtxGCEiIiKrcRghIiIiq3EYISIiIqsF+jBSXV2te++9VxMnTlQoFNL27duvaKqqqpSXl6e0tDTddNNNqqioSPp1pkKx3ldVVVUKhUJ9PpqamsxcsMWeeuop3XLLLcrIyNC4ceNUWFioDz744Ipu69atmj59utLT0zV79mzt2LHDwNXaLZ77qqKios/3VXp6uqErttfGjRuVm5vbvXgqPz9fb7755oBmMH5PSbHfV4P1eypSa9euVSgU0qpVqwa8nenvrUAfRj777DPNmTNHP/7xj6O6/cmTJ3XPPffo61//ug4fPqxVq1Zp+fLleuutt5J8pfaL9b663AcffKDGxsbuj3HjxiXpClOn3bt3a8WKFdq/f7927typixcv6q677tJnn33Wr9m7d6+Kioq0bNky1dbWqrCwUIWFhaqvrzd45eaL576SLm2CDP++On36tKErttekSZO0du1aHTx4UAcOHNDtt9+u++67T0eOHIl4+8H6PSXFfl9Jg/N7qnc1NTXatGmTcnNzB7ydle8tb5Akydu2bduAt/mnf/onb9asWT2+dv/993t33313Eq8s9Yrmvvr1r3/tSfLOnTtn5JpSubNnz3qSvN27d/d7m29/+9vePffc0+Nrt912m/d3f/d3yb68lCqa++rll1/2Ro4cae6iUrhRo0Z5P/nJTyL+Gd9TPRvovuJ7yvPa2tq8KVOmeDt37vQWLFjglZSU9HtbG99bgX5kJNb27dunb3zjGz2+dvfdd2vfvn2Wrij1mzt3riZMmKA777xTv/nNb2xfjpVaWlokSaNHj+73NnxvXSqa+0qSPv30U1133XXKzs6+4v/jDWKdnZ3asmWLPvvsM+Xn50e8Dd9Tl4rmvpL4nlqxYoXuueeePt8zkbLxveXEG+WZqqmpSePHj+/xtfHjx6u1tVUXLlzQ1VdfbenKUq8JEybohRde0Fe+8hV1dHToJz/5iRYuXKh33nlHeXl5ti/PWF1dXVq1apX++q//Wjk5Of3err/vrcHwOzaXi/a+mjZtmv71X/9Vubm5amlp0TPPPKP58+fryJEjSX3DzFSorq5O+fn5am9v14gRI7Rt2zbNnDkz4m0H+/dULPfVYP6ekqQtW7bo0KFDqqmpier2Nr63OIxQXE2bNk3Tpk3r/nz+/Pk6fvy41q1bp3/7t3+zeGVmW7Fiherr67Vnzx7bl5LyRXtf5efn9/h/uPPnz9eMGTO0adMmPf7448m+TKtNmzZNhw8fVktLi1599VUtXbpUu3fv7veH7GAulvtqMH9PNTQ0qKSkRDt37kzpX9rlMBJWVlaWmpube3ytublZmZmZPCoSRbfeeuug+qG8cuVKvfHGG6qurr7i/7vq73srKysrmZeYMsVyX/Vu2LBhmjdvno4dO5akq0udhg8frptuukmSdPPNN6umpkbr16/Xpk2b+tx2sH9PxXJf9W4wfU8dPHhQZ8+e7fGIdWdnp6qrq7VhwwZ1dHRo6NChPYyN7y1+ZySs/Px8/epXv+rxtZ07dw74PCT9pcOHD2vChAm2LyPpeZ6nlStXatu2bdq1a5euv/76K5rB+r0Vz33Vu87OTtXV1Q2K763edXV1qaOjI+KfDdbvqf4a6L7q3WD6nrrjjjtUV1enw4cPd3985Stf0ZIlS3T48OE+BxHJ0vdW0n41NgVqa2vzamtrvdraWk+S99xzz3m1tbXe6dOnPc/zvEcffdT77ne/2337EydOeNdcc433yCOPeL/73e+8H//4x97QoUO9yspKW38FY8V6X61bt87bvn27d/ToUa+urs4rKSnxhgwZ4v33f/+3rb+CsR5++GFv5MiRXlVVldfY2Nj9cf78+e7bfPe73/UeffTR7s9/85vfeFdddZX3zDPPeL/73e+8NWvWeMOGDfPq6ups/BWMFc99VV5e7r311lve8ePHvYMHD3rf+c53vPT0dO/IkSM2/grGevTRR73du3d7J0+e9P7nf/7He/TRR71QKOS9/fbbnufxPRVerPfVYP2e6q/er6ZJhe+tQB9GLr/8tPfH0qVLPc/zvKVLl3oLFizoY+bOnesNHz7cu+GGG7yXX37Z+HXbKNb76umnn/ZuvPFGLz093Rs9erS3cOFCb9euXXYu3nCR7idJPb5XFixY0H3fXe4Xv/iFN3XqVG/48OHerFmzvP/6r/8ye+EWiue+WrVqlTd58mRv+PDh3vjx472CggLv0KFD5i/ecN///ve96667zhs+fLg3duxY74477uj+4ep5fE+FF+t9NVi/p/qr92EkFb63Qp7necl73IWIiIho4PidESIiIrIahxEiIiKyGocRIiIishqHESIiIrIahxEiIiKyGocRIiIishqHESIiIrIahxEiIiKyGocRIiIishqHESIiIrIahxEiIiKyGocRIiIistr/AxhuQNgmQhq8AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "from tqdm import tqdm \n", - "\n", - "Stations = [\"Fabrication\",\"Paint\",\"Subassembly 1\",\"Subassembly 2\",\"Assembly\"]\n", - "x_coords = [1,1,2.5,3,4]\n", - "y_coords = [4,2,2 ,5,4]\n", - "\n", - "# WHATEVER YOU DO, DO NOT MAKE THIS LARGER THAN 1000. IT BROKE MY PC. PLEASE DONT\n", - "# ALSO, IF VALUE IS LARGER THAN 200. COMMENT THE LAST LINE IN THIS CELL.\n", - "# ALSO ALSO, IF THE VALUE IS LARGER THAN 5O. DO NOT SOLVE IT USING DOCPLEX.\n", - "expansion = 10 # Higher values mean more accurate output, but more computationally expensive\n", - "# TRIED RASING THE EXPANSION TO 500, AND GOT THE MOST CORRECT ANSWER WHICH IS:\n", - "# (2.229, 3.349) with a distance of 8.3006 units\n", - "\n", - "count_x_possible = int(max(x_coords)) - int(min(x_coords))\n", - "count_y_possible = int(max(y_coords)) - int(min(y_coords))\n", - "\n", - "plt.scatter(x_coords, y_coords)\n", - "\n", - "possibles_places_X= []\n", - "possibles_places_Y= []\n", - "possibles_places = []\n", - "\n", - "for x_indx in tqdm(range(int(count_x_possible*expansion))):\n", - " for y_indx in range(int(count_y_possible*expansion)):\n", - "\n", - " x_possible_coord = min(x_coords) + (x_indx + 0.5) / expansion\n", - " y_possible_coord = min(y_coords) + (y_indx + 0.5) / expansion\n", - "\n", - " possibles_places_X.append(x_possible_coord)\n", - " possibles_places_Y.append(y_possible_coord)\n", - " possibles_places.append((x_possible_coord, y_possible_coord))\n", - "\n", - "plt.scatter(possibles_places_X, possibles_places_Y, alpha=0.4)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|██████████| 900/900 [00:00<00:00, 149293.00it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "900\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "euclidian_distance = lambda x, y: ((x[0] - y[0])**2 + (x[1] - y[1])**2)**0.5\n", - "distances = []\n", - "\n", - "for x_possible_coord, y_possible_coord in tqdm(possibles_places):\n", - " point_distance = []\n", - " for x_coord, y_coord in zip(x_coords, y_coords):\n", - " point_distance.append(euclidian_distance((x_possible_coord, y_possible_coord),\n", - " (x_coord, y_coord)))\n", - "\n", - " distances.append(point_distance)\n", - "\n", - "distances = np.array(distances)\n", - "print(len(possibles_places))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Solve with NumPy (Ignore)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Distance: 8.300962617731178\n", - "Coords:\t (2.25, 3.35)\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh8UlEQVR4nO3df1AU9+H/8deBepcm3FXTyKFerKkGRaSKJvFIGm000cSx0j/alDHBtJppHJiBP5pWMnY0cTpojU2dMUNsMko/tQ4TM1Ubq1iqFScBE1SYgolOTI3gNxx0Gr1DGq8O7PcP68VTDu/49ebH8zGzf7C8l3vfzuI+XZbFZlmWJQAAAEPiTE8AAAAMbcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjBpmegLRaG9v1+eff66EhATZbDbT0wEAAFGwLEstLS0aM2aM4uIiX/8YEDHy+eefy+PxmJ4GAADogoaGBo0bNy7i5wdEjCQkJEi69macTqfh2QAAgGgEAgF5PJ7QeTySAREj138043Q6iREAAAaY291iwQ2sAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARg2Ih54BwFDX1m7pw3NfqLnlikYnOPTghFGKj+NvdWFwiOnKyNq1a2Wz2cKWyZMnd7rNrl27NHnyZDkcDk2bNk379+/v1oQBYKgprWvUIxsOK+vNY8orqVHWm8f0yIbDKq1rND01oEfE/GOaqVOnqrGxMbS89957EcdWVFQoKytLy5cvV3V1tTIzM5WZmam6urpuTRoAhorSukat3HFSjf4rYet9/itaueMkQYJBIeYYGTZsmNxud2j5xje+EXHs5s2btXDhQr344ouaMmWK1q1bp/T0dG3ZsqVbkwaAoaCt3dLL734kq4PPXV/38rsfqa29oxHAwBFzjHzyyScaM2aM7rvvPi1dulT19fURx1ZWVmr+/Plh6xYsWKDKyspOXyMYDCoQCIQtADDUfHjui1uuiNzIktTov6IPz33Rd5MCekFMMfLQQw+puLhYpaWlKioq0rlz5/Sd73xHLS0tHY73+XxKTEwMW5eYmCifz9fp6xQWFsrlcoUWj8cTyzQBYFBobokcIl0ZB/RXMcXIk08+qR/84AdKS0vTggULtH//fl26dElvv/12j06qoKBAfr8/tDQ0NPTo1weAgWB0gqNHxwH9Vbd+tffrX/+67r//fp09e7bDz7vdbjU1NYWta2pqktvt7vTr2u122e327kwNAAa8ByeMUpLLIZ//Sof3jdgkuV3Xfs0XGMi69dCzy5cv69NPP1VSUlKHn/d6vTp06FDYurKyMnm93u68LAAMCfFxNq1ZnCLpWnjc6PrHaxan8LwRDHgxxcjPfvYzlZeX67PPPlNFRYW+//3vKz4+XllZWZKk7OxsFRQUhMbn5eWptLRUmzZt0unTp7V27VodP35cubm5PfsuAGCQWpiapKJn0uV2hf8oxu1yqOiZdC1M7fg/g8BAEtOPaS5cuKCsrCz9+9//1j333KNHHnlEx44d0z333CNJqq+vV1zcV32TkZGhnTt3avXq1XrppZc0adIk7dmzR6mpqT37LgBgEFuYmqTHU9w8gRWDls2yrH7/C+qBQEAul0t+v19Op9P0dAAAQBSiPX/zh/IAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGNWtGFm/fr1sNpvy8/MjjikuLpbNZgtbHA5Hd14WAAAMIsO6umFVVZW2bt2qtLS02451Op06c+ZM6GObzdbVlwUAAINMl66MXL58WUuXLtWbb76pkSNH3na8zWaT2+0OLYmJiV15WQAAMAh1KUZycnK0aNEizZ8/P6rxly9f1vjx4+XxeLRkyRKdOnWq0/HBYFCBQCBsAQAAg1PMMVJSUqKTJ0+qsLAwqvHJycnatm2b9u7dqx07dqi9vV0ZGRm6cOFCxG0KCwvlcrlCi8fjiXWaAABggLBZlmVFO7ihoUGzZs1SWVlZ6F6RuXPnavr06frtb38b1de4evWqpkyZoqysLK1bt67DMcFgUMFgMPRxIBCQx+OR3++X0+mMdroAAMCgQCAgl8t12/N3TDewnjhxQs3NzUpPTw+ta2tr09GjR7VlyxYFg0HFx8d3+jWGDx+uGTNm6OzZsxHH2O122e32WKYGAAAGqJhiZN68eaqtrQ1b9+Mf/1iTJ0/WL37xi9uGiHQtXmpra/XUU0/FNlMAADAoxRQjCQkJSk1NDVt355136u677w6tz87O1tixY0P3lLzyyiuaPXu2Jk6cqEuXLmnjxo06f/68VqxY0UNvAQAADGRdfs5IJPX19YqL++q+2IsXL+r555+Xz+fTyJEjNXPmTFVUVCglJaWnXxoAAAxAMd3Aakq0N8AAAID+I9rzN3+bBgAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMGmZ6Aqa0tVv68NwXam65otEJDj04YZTi42ympwUAQJ/pL+fCbl0ZWb9+vWw2m/Lz8zsdt2vXLk2ePFkOh0PTpk3T/v37u/Oy3VZa16hHNhxW1pvHlFdSo6w3j+mRDYdVWtdodF4AAPSV/nQu7HKMVFVVaevWrUpLS+t0XEVFhbKysrR8+XJVV1crMzNTmZmZqqur6+pLd0tpXaNW7jipRv+VsPU+/xWt3HGSIAEADHr97VzYpRi5fPmyli5dqjfffFMjR47sdOzmzZu1cOFCvfjii5oyZYrWrVun9PR0bdmypUsT7o62dksvv/uRrA4+d33dy+9+pLb2jkYAADDw9cdzYZdiJCcnR4sWLdL8+fNvO7aysvKWcQsWLFBlZWXEbYLBoAKBQNjSEz4898UtFXgjS1Kj/4o+PPdFj7weAAD9TX88F8Z8A2tJSYlOnjypqqqqqMb7fD4lJiaGrUtMTJTP54u4TWFhoV5++eVYp3ZbzS2Rd35XxgEAMND0x3NhTFdGGhoalJeXpz/+8Y9yOBy9NScVFBTI7/eHloaGhh75uqMToptztOMAABho+uO5MKYrIydOnFBzc7PS09ND69ra2nT06FFt2bJFwWBQ8fHxYdu43W41NTWFrWtqapLb7Y74Ona7XXa7PZapReXBCaOU5HLI57/S4c/KbJLcrmu/2gQAwGDUH8+FMV0ZmTdvnmpra1VTUxNaZs2apaVLl6qmpuaWEJEkr9erQ4cOha0rKyuT1+vt3sy7ID7OpjWLUyRd29k3uv7xmsUpPG8EADBo9cdzYUwxkpCQoNTU1LDlzjvv1N13363U1FRJUnZ2tgoKCkLb5OXlqbS0VJs2bdLp06e1du1aHT9+XLm5uT37TqK0MDVJRc+ky+0Kv/zkdjlU9Ey6FqYmGZkXAAB9pb+dC3v8Caz19fWKi/uqcTIyMrRz506tXr1aL730kiZNmqQ9e/aE4sWEhalJejzF3S+eOgcAgAn96Vxosyyr3z9UIxAIyOVyye/3y+l0mp4OAACIQrTnb/5QHgAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjYoqRoqIipaWlyel0yul0yuv16sCBAxHHFxcXy2azhS0Oh6PbkwYAAIPHsFgGjxs3TuvXr9ekSZNkWZZ+//vfa8mSJaqurtbUqVM73MbpdOrMmTOhj202W/dmDAAABpWYYmTx4sVhH//qV79SUVGRjh07FjFGbDab3G5312cIAAAGtS7fM9LW1qaSkhK1trbK6/VGHHf58mWNHz9eHo9HS5Ys0alTp277tYPBoAKBQNgCAAAGp5hjpLa2VnfddZfsdrteeOEF7d69WykpKR2OTU5O1rZt27R3717t2LFD7e3tysjI0IULFzp9jcLCQrlcrtDi8XhinSYAABggbJZlWbFs8N///lf19fXy+/1655139NZbb6m8vDxikNzo6tWrmjJlirKysrRu3bqI44LBoILBYOjjQCAgj8cjv98vp9MZy3QBAIAhgUBALpfrtufvmO4ZkaQRI0Zo4sSJkqSZM2eqqqpKmzdv1tatW2+77fDhwzVjxgydPXu203F2u112uz3WqQEAgAGo288ZaW9vD7uK0Zm2tjbV1tYqKSmpuy8LAAAGiZiujBQUFOjJJ5/Uvffeq5aWFu3cuVNHjhzRwYMHJUnZ2dkaO3asCgsLJUmvvPKKZs+erYkTJ+rSpUvauHGjzp8/rxUrVvT8OwEAAANSTDHS3Nys7OxsNTY2yuVyKS0tTQcPHtTjjz8uSaqvr1dc3FcXWy5evKjnn39ePp9PI0eO1MyZM1VRURHV/SUAAGBoiPkGVhOivQEGAAD0H9Gev/nbNAAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMivkJrAAGoPY26XyFdLlJuitRGp8hxcWbnhUASCJGgMHvoz9Lpb+QAp9/tc45Rlq4QUr5nrl5AcD/8GMaYDD76M/S29nhISJJgcZr6z/6s5l5AcANiBFgsGpvu3ZFRB091/B/60pXXRsHAAYRI8Bgdb7i1isiYSwp8P+ujQMAg4gRYLC63NSz4wCglxAjwGB1V2LPjgOAXkKMAIPV+IxrvzUjW4QBNsk59to4ADCIGAEGq7j4a7++K+nWIPnfxwvX87wRAMYRI8BglvI96Yf/JzmTwtc7x1xbz3NGAPQDPPQMGOxSvidNXsQTWAH0W8QIMBTExUsTvmN6FgDQIX5MAwAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGxRQjRUVFSktLk9PplNPplNfr1YEDBzrdZteuXZo8ebIcDoemTZum/fv3d2vCAABgcIkpRsaNG6f169frxIkTOn78uB577DEtWbJEp06d6nB8RUWFsrKytHz5clVXVyszM1OZmZmqq6vrkckDAICBz2ZZltWdLzBq1Cht3LhRy5cvv+VzTz/9tFpbW7Vv377QutmzZ2v69Ol64403on6NQCAgl8slv98vp9PZnekCAIA+Eu35u8v3jLS1tamkpEStra3yer0djqmsrNT8+fPD1i1YsECVlZWdfu1gMKhAIBC2AACAwSnmGKmtrdVdd90lu92uF154Qbt371ZKSkqHY30+nxITE8PWJSYmyufzdfoahYWFcrlcocXj8cQ6TQAAMEDEHCPJycmqqanRBx98oJUrV2rZsmX66KOPenRSBQUF8vv9oaWhoaFHvz4AAOg/hsW6wYgRIzRx4kRJ0syZM1VVVaXNmzdr69att4x1u91qamoKW9fU1CS3293pa9jtdtnt9linBgAABqBuP2ekvb1dwWCww895vV4dOnQobF1ZWVnEe0wAAMDQE9OVkYKCAj355JO699571dLSop07d+rIkSM6ePCgJCk7O1tjx45VYWGhJCkvL09z5szRpk2btGjRIpWUlOj48eP63e9+1/PvBAAADEgxxUhzc7Oys7PV2Ngol8ultLQ0HTx4UI8//rgkqb6+XnFxX11sycjI0M6dO7V69Wq99NJLmjRpkvbs2aPU1NSefRcAAGDA6vZzRvoCzxkBAGDg6fXnjAAAAPQEYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjIopRgoLC/XAAw8oISFBo0ePVmZmps6cOdPpNsXFxbLZbGGLw+Ho1qQBAMDgEVOMlJeXKycnR8eOHVNZWZmuXr2qJ554Qq2trZ1u53Q61djYGFrOnz/frUkDAIDBY1gsg0tLS8M+Li4u1ujRo3XixAk9+uijEbez2Wxyu91dmyEAABjUunXPiN/vlySNGjWq03GXL1/W+PHj5fF4tGTJEp06darT8cFgUIFAIGwBAACDU5djpL29Xfn5+Xr44YeVmpoacVxycrK2bdumvXv3aseOHWpvb1dGRoYuXLgQcZvCwkK5XK7Q4vF4ujpNAADQz9ksy7K6suHKlSt14MABvffeexo3blzU2129elVTpkxRVlaW1q1b1+GYYDCoYDAY+jgQCMjj8cjv98vpdHZlugAAoI8FAgG5XK7bnr9jumfkutzcXO3bt09Hjx6NKUQkafjw4ZoxY4bOnj0bcYzdbpfdbu/K1AAAwAAT049pLMtSbm6udu/ercOHD2vChAkxv2BbW5tqa2uVlJQU87YAAGDwienKSE5Ojnbu3Km9e/cqISFBPp9PkuRyuXTHHXdIkrKzszV27FgVFhZKkl555RXNnj1bEydO1KVLl7Rx40adP39eK1as6OG3AgAABqKYYqSoqEiSNHfu3LD127dv13PPPSdJqq+vV1zcVxdcLl68qOeff14+n08jR47UzJkzVVFRoZSUlO7NHAAADApdvoG1L0V7AwwAAOg/oj1/87dpAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMCoYaYnYEpbu6UPz32h5pYrGp3g0IMTRik+zmZ6WsCQwvchACnGGCksLNSf/vQnnT59WnfccYcyMjK0YcMGJScnd7rdrl279Mtf/lKfffaZJk2apA0bNuipp57q1sS7o7SuUS+/+5Ea/VdC65JcDq1ZnKKFqUnG5gUMJXwfArguph/TlJeXKycnR8eOHVNZWZmuXr2qJ554Qq2trRG3qaioUFZWlpYvX67q6mplZmYqMzNTdXV13Z58V5TWNWrljpNh/wBKks9/RSt3nFRpXaOReQFDCd+HAG5ksyzL6urG//rXvzR69GiVl5fr0Ucf7XDM008/rdbWVu3bty+0bvbs2Zo+fbreeOONqF4nEAjI5XLJ7/fL6XR2dbpqa7f0yIbDt/wDeJ1Nktvl0Hu/eIxLxUAv4fsQGDqiPX936wZWv98vSRo1alTEMZWVlZo/f37YugULFqiysjLiNsFgUIFAIGzpCR+e+yLiP4CSZElq9F/Rh+e+6JHXA3Arvg8B3KzLMdLe3q78/Hw9/PDDSk1NjTjO5/MpMTExbF1iYqJ8Pl/EbQoLC+VyuUKLx+Pp6jTDNLdE/gewK+MAxI7vQwA363KM5OTkqK6uTiUlJT05H0lSQUGB/H5/aGloaOiRrzs6wdGj4wDEju9DADfr0q/25ubmat++fTp69KjGjRvX6Vi3262mpqawdU1NTXK73RG3sdvtstvtXZlapx6cMEpJLod8/ivq6EaZ6z+rfnBC5B87Aegevg8B3CymKyOWZSk3N1e7d+/W4cOHNWHChNtu4/V6dejQobB1ZWVl8nq9sc20B8TH2bRmcYqka//g3ej6x2sWp3DTHNCL+D4EcLOYYiQnJ0c7duzQzp07lZCQIJ/PJ5/Ppy+//DI0Jjs7WwUFBaGP8/LyVFpaqk2bNun06dNau3atjh8/rtzc3J57FzFYmJqkomfS5XaFXwJ2uxwqeiad5xsAfYDvQwA3iulXe222jv+nsn37dj333HOSpLlz5+qb3/ymiouLQ5/ftWuXVq9eHXro2a9//euYHnrWU7/aeyOe/AiYx/chMLhFe/7u1nNG+kpvxAgAAOhdffKcEQAAgO4iRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIzq0l/t7WvXHxIbCAQMzwQAAETr+nn7dg97HxAx0tLSIknyeDyGZwIAAGLV0tIil8sV8fMD4m/TtLe36/PPP1dCQkLEP9bXFYFAQB6PRw0NDfzNm9tgX0WPfRUb9lf02FfRY19Frzf3lWVZamlp0ZgxYxQXF/nOkAFxZSQuLk7jxo3rta/vdDo5WKPEvooe+yo27K/osa+ix76KXm/tq86uiFzHDawAAMAoYgQAABg1pGPEbrdrzZo1stvtpqfS77Gvose+ig37K3rsq+ixr6LXH/bVgLiBFQAADF5D+soIAAAwjxgBAABGESMAAMAoYgQAABg1qGPk6NGjWrx4scaMGSObzaY9e/bcdpsjR44oPT1ddrtdEydOVHFxca/Psz+IdV8dOXJENpvtlsXn8/XNhA0qLCzUAw88oISEBI0ePVqZmZk6c+bMbbfbtWuXJk+eLIfDoWnTpmn//v19MFuzurKviouLbzmuHA5HH83YnKKiIqWlpYUePOX1enXgwIFOtxmKx5QU+74aqsdUR9avXy+bzab8/PxOx/X1sTWoY6S1tVXf/va39frrr0c1/ty5c1q0aJG++93vqqamRvn5+VqxYoUOHjzYyzM1L9Z9dd2ZM2fU2NgYWkaPHt1LM+w/ysvLlZOTo2PHjqmsrExXr17VE088odbW1ojbVFRUKCsrS8uXL1d1dbUyMzOVmZmpurq6Ppx53+vKvpKuPQnyxuPq/PnzfTRjc8aNG6f169frxIkTOn78uB577DEtWbJEp06d6nD8UD2mpNj3lTQ0j6mbVVVVaevWrUpLS+t0nJFjyxoiJFm7d+/udMzPf/5za+rUqWHrnn76aWvBggW9OLP+J5p99fe//92SZF28eLFP5tSfNTc3W5Ks8vLyiGN++MMfWosWLQpb99BDD1k//elPe3t6/Uo0+2r79u2Wy+Xqu0n1YyNHjrTeeuutDj/HMRWus33FMWVZLS0t1qRJk6yysjJrzpw5Vl5eXsSxJo6tQX1lJFaVlZWaP39+2LoFCxaosrLS0Iz6v+nTpyspKUmPP/643n//fdPTMcLv90uSRo0aFXEMx9Y10ewrSbp8+bLGjx8vj8dz2//xDkZtbW0qKSlRa2urvF5vh2M4pq6JZl9JHFM5OTlatGjRLcdMR0wcWwPiD+X1FZ/Pp8TExLB1iYmJCgQC+vLLL3XHHXcYmln/k5SUpDfeeEOzZs1SMBjUW2+9pblz5+qDDz5Qenq66en1mfb2duXn5+vhhx9WampqxHGRjq2hcI/NddHuq+TkZG3btk1paWny+/169dVXlZGRoVOnTvXqH8zsD2pra+X1enXlyhXddddd2r17t1JSUjocO9SPqVj21VA+piSppKREJ0+eVFVVVVTjTRxbxAi6JDk5WcnJyaGPMzIy9Omnn+q1117TH/7wB4Mz61s5OTmqq6vTe++9Z3oq/V60+8rr9Yb9DzcjI0NTpkzR1q1btW7dut6eplHJycmqqamR3+/XO++8o2XLlqm8vDziSXYoi2VfDeVjqqGhQXl5eSorK+vXN+0SIzdwu91qamoKW9fU1CSn08lVkSg8+OCDQ+qknJubq3379uno0aO3/d9VpGPL7Xb35hT7jVj21c2GDx+uGTNm6OzZs700u/5jxIgRmjhxoiRp5syZqqqq0ubNm7V169Zbxg71YyqWfXWzoXRMnThxQs3NzWFXrNva2nT06FFt2bJFwWBQ8fHxYduYOLa4Z+QGXq9Xhw4dCltXVlbW6c8h8ZWamholJSWZnkavsyxLubm52r17tw4fPqwJEybcdpuhemx1ZV/drK2tTbW1tUPi2LpZe3u7gsFgh58bqsdUJJ3tq5sNpWNq3rx5qq2tVU1NTWiZNWuWli5dqpqamltCRDJ0bPXarbH9QEtLi1VdXW1VV1dbkqzf/OY3VnV1tXX+/HnLsixr1apV1rPPPhsa/89//tP62te+Zr344ovWxx9/bL3++utWfHy8VVpaauot9JlY99Vrr71m7dmzx/rkk0+s2tpaKy8vz4qLi7P+9re/mXoLfWblypWWy+Wyjhw5YjU2NoaW//znP6Exzz77rLVq1arQx++//741bNgw69VXX7U+/vhja82aNdbw4cOt2tpaE2+hz3RlX7388svWwYMHrU8//dQ6ceKE9aMf/chyOBzWqVOnTLyFPrNq1SqrvLzcOnfunPWPf/zDWrVqlWWz2ay//vWvlmVxTN0o1n01VI+pSG7+bZr+cGwN6hi5/uunNy/Lli2zLMuyli1bZs2ZM+eWbaZPn26NGDHCuu+++6zt27f3+bxNiHVfbdiwwfrWt75lORwOa9SoUdbcuXOtw4cPm5l8H+toP0kKO1bmzJkT2nfXvf3229b9999vjRgxwpo6dar1l7/8pW8nbkBX9lV+fr517733WiNGjLASExOtp556yjp58mTfT76P/eQnP7HGjx9vjRgxwrrnnnusefPmhU6ulsUxdaNY99VQPaYiuTlG+sOxZbMsy+q96y4AAACd454RAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADDq/wMH8g2s2G3fKAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "print('Distance:', distances[distances.sum(1).argmin()].sum())\n", - "print('Coords:\\t', possibles_places[distances.sum(1).argmin()])\n", - "\n", - "plt.scatter(x_coords, y_coords)\n", - "x_temp_solution, y_temp_solution = possibles_places[distances.sum(1).argmin()]\n", - "plt.scatter(x_temp_solution, y_temp_solution)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Solve with DoCplex" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "from tqdm import tqdm\n", - "\n", - "m = Model()\n", - "\n", - "X_stations = m.binary_var_list(possibles_places)\n", - "\n", - "m.add_constraint(sum(X_stations) >= 1)\n", - "\n", - "m.minimize(sum([X_stations[i]*sum(distances[i]) for i in range(len(X_stations))]))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2022-11-27 | 9160aff4d\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 8633.214624 after 0.02 sec. (0.04 ticks)\n", - "Tried aggregator 1 time.\n", - "MIP Presolve eliminated 1 rows and 900 columns.\n", - "All rows and columns eliminated.\n", - "Presolve time = 0.00 sec. (0.34 ticks)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.02 sec. (0.41 ticks)\n", - "Parallel b&c, 6 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.02 sec. (0.41 ticks)\n" - ] - } - ], - "source": [ - "solution = m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "solution for: docplex_model1\n", - "objective: 8.30096\n", - "status: OPTIMAL_SOLUTION(2)\n", - "(2.25, 3.35)=1\n", - "\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh8UlEQVR4nO3df1AU9+H/8deBepcm3FXTyKFerKkGRaSKJvFIGm000cSx0j/alDHBtJppHJiBP5pWMnY0cTpojU2dMUNsMko/tQ4TM1Ubq1iqFScBE1SYgolOTI3gNxx0Gr1DGq8O7PcP68VTDu/49ebH8zGzf7C8l3vfzuI+XZbFZlmWJQAAAEPiTE8AAAAMbcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjBpmegLRaG9v1+eff66EhATZbDbT0wEAAFGwLEstLS0aM2aM4uIiX/8YEDHy+eefy+PxmJ4GAADogoaGBo0bNy7i5wdEjCQkJEi69macTqfh2QAAgGgEAgF5PJ7QeTySAREj138043Q6iREAAAaY291iwQ2sAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARg2Ih54BwFDX1m7pw3NfqLnlikYnOPTghFGKj+NvdWFwiOnKyNq1a2Wz2cKWyZMnd7rNrl27NHnyZDkcDk2bNk379+/v1oQBYKgprWvUIxsOK+vNY8orqVHWm8f0yIbDKq1rND01oEfE/GOaqVOnqrGxMbS89957EcdWVFQoKytLy5cvV3V1tTIzM5WZmam6urpuTRoAhorSukat3HFSjf4rYet9/itaueMkQYJBIeYYGTZsmNxud2j5xje+EXHs5s2btXDhQr344ouaMmWK1q1bp/T0dG3ZsqVbkwaAoaCt3dLL734kq4PPXV/38rsfqa29oxHAwBFzjHzyyScaM2aM7rvvPi1dulT19fURx1ZWVmr+/Plh6xYsWKDKyspOXyMYDCoQCIQtADDUfHjui1uuiNzIktTov6IPz33Rd5MCekFMMfLQQw+puLhYpaWlKioq0rlz5/Sd73xHLS0tHY73+XxKTEwMW5eYmCifz9fp6xQWFsrlcoUWj8cTyzQBYFBobokcIl0ZB/RXMcXIk08+qR/84AdKS0vTggULtH//fl26dElvv/12j06qoKBAfr8/tDQ0NPTo1weAgWB0gqNHxwH9Vbd+tffrX/+67r//fp09e7bDz7vdbjU1NYWta2pqktvt7vTr2u122e327kwNAAa8ByeMUpLLIZ//Sof3jdgkuV3Xfs0XGMi69dCzy5cv69NPP1VSUlKHn/d6vTp06FDYurKyMnm93u68LAAMCfFxNq1ZnCLpWnjc6PrHaxan8LwRDHgxxcjPfvYzlZeX67PPPlNFRYW+//3vKz4+XllZWZKk7OxsFRQUhMbn5eWptLRUmzZt0unTp7V27VodP35cubm5PfsuAGCQWpiapKJn0uV2hf8oxu1yqOiZdC1M7fg/g8BAEtOPaS5cuKCsrCz9+9//1j333KNHHnlEx44d0z333CNJqq+vV1zcV32TkZGhnTt3avXq1XrppZc0adIk7dmzR6mpqT37LgBgEFuYmqTHU9w8gRWDls2yrH7/C+qBQEAul0t+v19Op9P0dAAAQBSiPX/zh/IAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGNWtGFm/fr1sNpvy8/MjjikuLpbNZgtbHA5Hd14WAAAMIsO6umFVVZW2bt2qtLS02451Op06c+ZM6GObzdbVlwUAAINMl66MXL58WUuXLtWbb76pkSNH3na8zWaT2+0OLYmJiV15WQAAMAh1KUZycnK0aNEizZ8/P6rxly9f1vjx4+XxeLRkyRKdOnWq0/HBYFCBQCBsAQAAg1PMMVJSUqKTJ0+qsLAwqvHJycnatm2b9u7dqx07dqi9vV0ZGRm6cOFCxG0KCwvlcrlCi8fjiXWaAABggLBZlmVFO7ihoUGzZs1SWVlZ6F6RuXPnavr06frtb38b1de4evWqpkyZoqysLK1bt67DMcFgUMFgMPRxIBCQx+OR3++X0+mMdroAAMCgQCAgl8t12/N3TDewnjhxQs3NzUpPTw+ta2tr09GjR7VlyxYFg0HFx8d3+jWGDx+uGTNm6OzZsxHH2O122e32WKYGAAAGqJhiZN68eaqtrQ1b9+Mf/1iTJ0/WL37xi9uGiHQtXmpra/XUU0/FNlMAADAoxRQjCQkJSk1NDVt355136u677w6tz87O1tixY0P3lLzyyiuaPXu2Jk6cqEuXLmnjxo06f/68VqxY0UNvAQAADGRdfs5IJPX19YqL++q+2IsXL+r555+Xz+fTyJEjNXPmTFVUVCglJaWnXxoAAAxAMd3Aakq0N8AAAID+I9rzN3+bBgAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMGmZ6Aqa0tVv68NwXam65otEJDj04YZTi42ympwUAQJ/pL+fCbl0ZWb9+vWw2m/Lz8zsdt2vXLk2ePFkOh0PTpk3T/v37u/Oy3VZa16hHNhxW1pvHlFdSo6w3j+mRDYdVWtdodF4AAPSV/nQu7HKMVFVVaevWrUpLS+t0XEVFhbKysrR8+XJVV1crMzNTmZmZqqur6+pLd0tpXaNW7jipRv+VsPU+/xWt3HGSIAEADHr97VzYpRi5fPmyli5dqjfffFMjR47sdOzmzZu1cOFCvfjii5oyZYrWrVun9PR0bdmypUsT7o62dksvv/uRrA4+d33dy+9+pLb2jkYAADDw9cdzYZdiJCcnR4sWLdL8+fNvO7aysvKWcQsWLFBlZWXEbYLBoAKBQNjSEz4898UtFXgjS1Kj/4o+PPdFj7weAAD9TX88F8Z8A2tJSYlOnjypqqqqqMb7fD4lJiaGrUtMTJTP54u4TWFhoV5++eVYp3ZbzS2Rd35XxgEAMND0x3NhTFdGGhoalJeXpz/+8Y9yOBy9NScVFBTI7/eHloaGhh75uqMToptztOMAABho+uO5MKYrIydOnFBzc7PS09ND69ra2nT06FFt2bJFwWBQ8fHxYdu43W41NTWFrWtqapLb7Y74Ona7XXa7PZapReXBCaOU5HLI57/S4c/KbJLcrmu/2gQAwGDUH8+FMV0ZmTdvnmpra1VTUxNaZs2apaVLl6qmpuaWEJEkr9erQ4cOha0rKyuT1+vt3sy7ID7OpjWLUyRd29k3uv7xmsUpPG8EADBo9cdzYUwxkpCQoNTU1LDlzjvv1N13363U1FRJUnZ2tgoKCkLb5OXlqbS0VJs2bdLp06e1du1aHT9+XLm5uT37TqK0MDVJRc+ky+0Kv/zkdjlU9Ey6FqYmGZkXAAB9pb+dC3v8Caz19fWKi/uqcTIyMrRz506tXr1aL730kiZNmqQ9e/aE4sWEhalJejzF3S+eOgcAgAn96Vxosyyr3z9UIxAIyOVyye/3y+l0mp4OAACIQrTnb/5QHgAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjYoqRoqIipaWlyel0yul0yuv16sCBAxHHFxcXy2azhS0Oh6PbkwYAAIPHsFgGjxs3TuvXr9ekSZNkWZZ+//vfa8mSJaqurtbUqVM73MbpdOrMmTOhj202W/dmDAAABpWYYmTx4sVhH//qV79SUVGRjh07FjFGbDab3G5312cIAAAGtS7fM9LW1qaSkhK1trbK6/VGHHf58mWNHz9eHo9HS5Ys0alTp277tYPBoAKBQNgCAAAGp5hjpLa2VnfddZfsdrteeOEF7d69WykpKR2OTU5O1rZt27R3717t2LFD7e3tysjI0IULFzp9jcLCQrlcrtDi8XhinSYAABggbJZlWbFs8N///lf19fXy+/1655139NZbb6m8vDxikNzo6tWrmjJlirKysrRu3bqI44LBoILBYOjjQCAgj8cjv98vp9MZy3QBAIAhgUBALpfrtufvmO4ZkaQRI0Zo4sSJkqSZM2eqqqpKmzdv1tatW2+77fDhwzVjxgydPXu203F2u112uz3WqQEAgAGo288ZaW9vD7uK0Zm2tjbV1tYqKSmpuy8LAAAGiZiujBQUFOjJJ5/Uvffeq5aWFu3cuVNHjhzRwYMHJUnZ2dkaO3asCgsLJUmvvPKKZs+erYkTJ+rSpUvauHGjzp8/rxUrVvT8OwEAAANSTDHS3Nys7OxsNTY2yuVyKS0tTQcPHtTjjz8uSaqvr1dc3FcXWy5evKjnn39ePp9PI0eO1MyZM1VRURHV/SUAAGBoiPkGVhOivQEGAAD0H9Gev/nbNAAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMivkJrAAGoPY26XyFdLlJuitRGp8hxcWbnhUASCJGgMHvoz9Lpb+QAp9/tc45Rlq4QUr5nrl5AcD/8GMaYDD76M/S29nhISJJgcZr6z/6s5l5AcANiBFgsGpvu3ZFRB091/B/60pXXRsHAAYRI8Bgdb7i1isiYSwp8P+ujQMAg4gRYLC63NSz4wCglxAjwGB1V2LPjgOAXkKMAIPV+IxrvzUjW4QBNsk59to4ADCIGAEGq7j4a7++K+nWIPnfxwvX87wRAMYRI8BglvI96Yf/JzmTwtc7x1xbz3NGAPQDPPQMGOxSvidNXsQTWAH0W8QIMBTExUsTvmN6FgDQIX5MAwAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGxRQjRUVFSktLk9PplNPplNfr1YEDBzrdZteuXZo8ebIcDoemTZum/fv3d2vCAABgcIkpRsaNG6f169frxIkTOn78uB577DEtWbJEp06d6nB8RUWFsrKytHz5clVXVyszM1OZmZmqq6vrkckDAICBz2ZZltWdLzBq1Cht3LhRy5cvv+VzTz/9tFpbW7Vv377QutmzZ2v69Ol64403on6NQCAgl8slv98vp9PZnekCAIA+Eu35u8v3jLS1tamkpEStra3yer0djqmsrNT8+fPD1i1YsECVlZWdfu1gMKhAIBC2AACAwSnmGKmtrdVdd90lu92uF154Qbt371ZKSkqHY30+nxITE8PWJSYmyufzdfoahYWFcrlcocXj8cQ6TQAAMEDEHCPJycmqqanRBx98oJUrV2rZsmX66KOPenRSBQUF8vv9oaWhoaFHvz4AAOg/hsW6wYgRIzRx4kRJ0syZM1VVVaXNmzdr69att4x1u91qamoKW9fU1CS3293pa9jtdtnt9linBgAABqBuP2ekvb1dwWCww895vV4dOnQobF1ZWVnEe0wAAMDQE9OVkYKCAj355JO699571dLSop07d+rIkSM6ePCgJCk7O1tjx45VYWGhJCkvL09z5szRpk2btGjRIpWUlOj48eP63e9+1/PvBAAADEgxxUhzc7Oys7PV2Ngol8ultLQ0HTx4UI8//rgkqb6+XnFxX11sycjI0M6dO7V69Wq99NJLmjRpkvbs2aPU1NSefRcAAGDA6vZzRvoCzxkBAGDg6fXnjAAAAPQEYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjIopRgoLC/XAAw8oISFBo0ePVmZmps6cOdPpNsXFxbLZbGGLw+Ho1qQBAMDgEVOMlJeXKycnR8eOHVNZWZmuXr2qJ554Qq2trZ1u53Q61djYGFrOnz/frUkDAIDBY1gsg0tLS8M+Li4u1ujRo3XixAk9+uijEbez2Wxyu91dmyEAABjUunXPiN/vlySNGjWq03GXL1/W+PHj5fF4tGTJEp06darT8cFgUIFAIGwBAACDU5djpL29Xfn5+Xr44YeVmpoacVxycrK2bdumvXv3aseOHWpvb1dGRoYuXLgQcZvCwkK5XK7Q4vF4ujpNAADQz9ksy7K6suHKlSt14MABvffeexo3blzU2129elVTpkxRVlaW1q1b1+GYYDCoYDAY+jgQCMjj8cjv98vpdHZlugAAoI8FAgG5XK7bnr9jumfkutzcXO3bt09Hjx6NKUQkafjw4ZoxY4bOnj0bcYzdbpfdbu/K1AAAwAAT049pLMtSbm6udu/ercOHD2vChAkxv2BbW5tqa2uVlJQU87YAAGDwienKSE5Ojnbu3Km9e/cqISFBPp9PkuRyuXTHHXdIkrKzszV27FgVFhZKkl555RXNnj1bEydO1KVLl7Rx40adP39eK1as6OG3AgAABqKYYqSoqEiSNHfu3LD127dv13PPPSdJqq+vV1zcVxdcLl68qOeff14+n08jR47UzJkzVVFRoZSUlO7NHAAADApdvoG1L0V7AwwAAOg/oj1/87dpAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMCoYaYnYEpbu6UPz32h5pYrGp3g0IMTRik+zmZ6WsCQwvchACnGGCksLNSf/vQnnT59WnfccYcyMjK0YcMGJScnd7rdrl279Mtf/lKfffaZJk2apA0bNuipp57q1sS7o7SuUS+/+5Ea/VdC65JcDq1ZnKKFqUnG5gUMJXwfArguph/TlJeXKycnR8eOHVNZWZmuXr2qJ554Qq2trRG3qaioUFZWlpYvX67q6mplZmYqMzNTdXV13Z58V5TWNWrljpNh/wBKks9/RSt3nFRpXaOReQFDCd+HAG5ksyzL6urG//rXvzR69GiVl5fr0Ucf7XDM008/rdbWVu3bty+0bvbs2Zo+fbreeOONqF4nEAjI5XLJ7/fL6XR2dbpqa7f0yIbDt/wDeJ1Nktvl0Hu/eIxLxUAv4fsQGDqiPX936wZWv98vSRo1alTEMZWVlZo/f37YugULFqiysjLiNsFgUIFAIGzpCR+e+yLiP4CSZElq9F/Rh+e+6JHXA3Arvg8B3KzLMdLe3q78/Hw9/PDDSk1NjTjO5/MpMTExbF1iYqJ8Pl/EbQoLC+VyuUKLx+Pp6jTDNLdE/gewK+MAxI7vQwA363KM5OTkqK6uTiUlJT05H0lSQUGB/H5/aGloaOiRrzs6wdGj4wDEju9DADfr0q/25ubmat++fTp69KjGjRvX6Vi3262mpqawdU1NTXK73RG3sdvtstvtXZlapx6cMEpJLod8/ivq6EaZ6z+rfnBC5B87Aegevg8B3CymKyOWZSk3N1e7d+/W4cOHNWHChNtu4/V6dejQobB1ZWVl8nq9sc20B8TH2bRmcYqka//g3ej6x2sWp3DTHNCL+D4EcLOYYiQnJ0c7duzQzp07lZCQIJ/PJ5/Ppy+//DI0Jjs7WwUFBaGP8/LyVFpaqk2bNun06dNau3atjh8/rtzc3J57FzFYmJqkomfS5XaFXwJ2uxwqeiad5xsAfYDvQwA3iulXe222jv+nsn37dj333HOSpLlz5+qb3/ymiouLQ5/ftWuXVq9eHXro2a9//euYHnrWU7/aeyOe/AiYx/chMLhFe/7u1nNG+kpvxAgAAOhdffKcEQAAgO4iRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIzq0l/t7WvXHxIbCAQMzwQAAETr+nn7dg97HxAx0tLSIknyeDyGZwIAAGLV0tIil8sV8fMD4m/TtLe36/PPP1dCQkLEP9bXFYFAQB6PRw0NDfzNm9tgX0WPfRUb9lf02FfRY19Frzf3lWVZamlp0ZgxYxQXF/nOkAFxZSQuLk7jxo3rta/vdDo5WKPEvooe+yo27K/osa+ix76KXm/tq86uiFzHDawAAMAoYgQAABg1pGPEbrdrzZo1stvtpqfS77Gvose+ig37K3rsq+ixr6LXH/bVgLiBFQAADF5D+soIAAAwjxgBAABGESMAAMAoYgQAABg1qGPk6NGjWrx4scaMGSObzaY9e/bcdpsjR44oPT1ddrtdEydOVHFxca/Psz+IdV8dOXJENpvtlsXn8/XNhA0qLCzUAw88oISEBI0ePVqZmZk6c+bMbbfbtWuXJk+eLIfDoWnTpmn//v19MFuzurKviouLbzmuHA5HH83YnKKiIqWlpYUePOX1enXgwIFOtxmKx5QU+74aqsdUR9avXy+bzab8/PxOx/X1sTWoY6S1tVXf/va39frrr0c1/ty5c1q0aJG++93vqqamRvn5+VqxYoUOHjzYyzM1L9Z9dd2ZM2fU2NgYWkaPHt1LM+w/ysvLlZOTo2PHjqmsrExXr17VE088odbW1ojbVFRUKCsrS8uXL1d1dbUyMzOVmZmpurq6Ppx53+vKvpKuPQnyxuPq/PnzfTRjc8aNG6f169frxIkTOn78uB577DEtWbJEp06d6nD8UD2mpNj3lTQ0j6mbVVVVaevWrUpLS+t0nJFjyxoiJFm7d+/udMzPf/5za+rUqWHrnn76aWvBggW9OLP+J5p99fe//92SZF28eLFP5tSfNTc3W5Ks8vLyiGN++MMfWosWLQpb99BDD1k//elPe3t6/Uo0+2r79u2Wy+Xqu0n1YyNHjrTeeuutDj/HMRWus33FMWVZLS0t1qRJk6yysjJrzpw5Vl5eXsSxJo6tQX1lJFaVlZWaP39+2LoFCxaosrLS0Iz6v+nTpyspKUmPP/643n//fdPTMcLv90uSRo0aFXEMx9Y10ewrSbp8+bLGjx8vj8dz2//xDkZtbW0qKSlRa2urvF5vh2M4pq6JZl9JHFM5OTlatGjRLcdMR0wcWwPiD+X1FZ/Pp8TExLB1iYmJCgQC+vLLL3XHHXcYmln/k5SUpDfeeEOzZs1SMBjUW2+9pblz5+qDDz5Qenq66en1mfb2duXn5+vhhx9WampqxHGRjq2hcI/NddHuq+TkZG3btk1paWny+/169dVXlZGRoVOnTvXqH8zsD2pra+X1enXlyhXddddd2r17t1JSUjocO9SPqVj21VA+piSppKREJ0+eVFVVVVTjTRxbxAi6JDk5WcnJyaGPMzIy9Omnn+q1117TH/7wB4Mz61s5OTmqq6vTe++9Z3oq/V60+8rr9Yb9DzcjI0NTpkzR1q1btW7dut6eplHJycmqqamR3+/XO++8o2XLlqm8vDziSXYoi2VfDeVjqqGhQXl5eSorK+vXN+0SIzdwu91qamoKW9fU1CSn08lVkSg8+OCDQ+qknJubq3379uno0aO3/d9VpGPL7Xb35hT7jVj21c2GDx+uGTNm6OzZs700u/5jxIgRmjhxoiRp5syZqqqq0ubNm7V169Zbxg71YyqWfXWzoXRMnThxQs3NzWFXrNva2nT06FFt2bJFwWBQ8fHxYduYOLa4Z+QGXq9Xhw4dCltXVlbW6c8h8ZWamholJSWZnkavsyxLubm52r17tw4fPqwJEybcdpuhemx1ZV/drK2tTbW1tUPi2LpZe3u7gsFgh58bqsdUJJ3tq5sNpWNq3rx5qq2tVU1NTWiZNWuWli5dqpqamltCRDJ0bPXarbH9QEtLi1VdXW1VV1dbkqzf/OY3VnV1tXX+/HnLsixr1apV1rPPPhsa/89//tP62te+Zr344ovWxx9/bL3++utWfHy8VVpaauot9JlY99Vrr71m7dmzx/rkk0+s2tpaKy8vz4qLi7P+9re/mXoLfWblypWWy+Wyjhw5YjU2NoaW//znP6Exzz77rLVq1arQx++//741bNgw69VXX7U+/vhja82aNdbw4cOt2tpaE2+hz3RlX7388svWwYMHrU8//dQ6ceKE9aMf/chyOBzWqVOnTLyFPrNq1SqrvLzcOnfunPWPf/zDWrVqlWWz2ay//vWvlmVxTN0o1n01VI+pSG7+bZr+cGwN6hi5/uunNy/Lli2zLMuyli1bZs2ZM+eWbaZPn26NGDHCuu+++6zt27f3+bxNiHVfbdiwwfrWt75lORwOa9SoUdbcuXOtw4cPm5l8H+toP0kKO1bmzJkT2nfXvf3229b9999vjRgxwpo6dar1l7/8pW8nbkBX9lV+fr517733WiNGjLASExOtp556yjp58mTfT76P/eQnP7HGjx9vjRgxwrrnnnusefPmhU6ulsUxdaNY99VQPaYiuTlG+sOxZbMsy+q96y4AAACd454RAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADDq/wMH8g2s2G3fKAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "print(solution)\n", - "plt.scatter(x_coords, y_coords)\n", - "plt.scatter(2.25, 3.35)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Most accurate and Fastest solution (Personal)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|██████████| 500/500 [00:07<00:00, 65.09it/s]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+c0lEQVR4nOz9eYxk2XnYif7Ocpe4sWVGZlZmVlVWL+wmWc02KXGR1BzZosfySKJGT5wHeAA+ejjwWMLAzx7IMGz40ZAXWc9qyQtsGcIQgmYEDZ6GEIYGrIEGfDQ0Goh+HlKjpriY4tp7ZVXlHhnr3c8574+opYuV1ezqrM6l8vyAQCDjni9/9+aNe+PLG/d8n3DOOTwej8fj8XiOCXncK+DxeDwej+ds45MRj8fj8Xg8x4pPRjwej8fj8RwrPhnxeDwej8dzrPhkxOPxeDwez7HikxGPx+PxeDzHik9GPB6Px+PxHCs+GfF4PB6Px3Os6ONegTeCtZbr16/TbrcRQhz36ng8Ho/H43kDOOcYj8ecP38eKe99/eNUJCPXr19nbW3tuFfD4/F4PB7Pm2B9fZ2LFy/ec/mpSEba7TYw25hOp3PMa+PxeDwej+eNMBqNWFtbu/U5fi9ORTJy86uZTqfjkxGPx+PxeE4Z3+sWC38Dq8fj8Xg8nmPFJyMej8fj8XiOFZ+MeDwej8fjOVZ8MuLxeDwej+dY8cmIx+PxeDyeY8UnIx6Px+PxeI4Vn4x4PB6Px+M5Vnwy4vF4PB6P51g5FUXPPB6P56xjrOOPX+6zPc451475gcd6KOl7dXkeDu7rysg/+kf/CCHEHY93vvOdrxvz6U9/mne+853Eccyf+TN/hs985jOHWmGPx+M5a3z2Tzf44V/5P/job/wRP/c7X+Gjv/FH/PCv/B989k83jnvVPJ4Hwn1/TfOud72LjY2NW4//8B/+wz3Hfv7zn+ejH/0of/Wv/lW+/OUv85GPfISPfOQj/Omf/umhVtrj8XjOCp/90w3+2m9/iY1hfsfrm8Ocv/bbX/IJieeh4L6TEa01Kysrtx6Li4v3HPurv/qr/PiP/zh/5+/8HS5fvswv/uIv8t73vpdf+7VfO9RKezwez1nAWMcv/N43cAcsu/naL/zeNzD2oBEez+nhvpOR559/nvPnz/P444/zsY99jCtXrtxz7Be+8AV+9Ed/9I7XfuzHfowvfOELr+soioLRaHTHw+PxeM4af/xy/64rIq/FARvDnD9+uX90K+XxvAXcVzLygz/4g/zWb/0Wn/3sZ/nkJz/Jyy+/zJ/9s3+W8Xh84PjNzU2Wl5fveG15eZnNzc3X9Tz77LN0u91bj7W1tftZTY/H43ko2B7fOxF5M+M8npPKfSUjP/ETP8Ff+kt/iXe/+9382I/9GJ/5zGcYDAb8L//L//JAV+oTn/gEw+Hw1mN9ff2B/n6Px+M5DZxrxw90nMdzUjnU1N65uTne/va388ILLxy4fGVlha2trTte29raYmVl5XV/bxRFRFF0mFXzeDyeU88PPNZjtRuzOcwPvG9EACvd2TRfj+c0c6iiZ5PJhBdffJHV1dUDlz/zzDP8wR/8wR2v/f7v/z7PPPPMYbQej8dzJlBS8A9/6ilglni8lps//8OfesrXG/Gceu4rGfnbf/tv87nPfY5XXnmFz3/+8/wX/8V/gVKKj370owB8/OMf5xOf+MSt8T/3cz/HZz/7Wf7Fv/gXfOtb3+If/aN/xBe/+EX+xt/4Gw92Kzwej+ch5cefXuWTf/m9rHTv/CpmpRvzyb/8Xn786YP/GfR4ThP39TXN1atX+ehHP8re3h5LS0v88A//MH/0R3/E0tISAFeuXEHK2/nNBz/4QT71qU/x8z//8/y9v/f3ePLJJ/nd3/1dnn766Qe7FR6Px/MQ8+NPr/IXn1rxFVg9Dy3COXfiJ6iPRiO63S7D4ZBOp3Pcq+PxeDwej+cN8EY/v32jPI/H4/F4PMeKT0Y8Ho/H4/EcKz4Z8Xg8Ho/Hc6z4ZMTj8Xg8Hs+x4pMRj8fj8Xg8x4pPRjwej8fj8RwrPhnxeDwej8dzrPhkxOPxeDwez7HikxGPx+PxeDzHik9GPB6Px+PxHCs+GfF4PB6Px3Os3FejvIcK56CcgKlABRC2QBxB0ynv9d6Hze293uu9p9d7QjibyUg2gP2XYbp7e8c3F2H+MWjMea/3ni7vcbq913u99/R6TxBnLxnJBrDxVSjGkPRAR1AXMLwG+QhW3/PW7Hzv9d636qRy1rbZe73Xex86ztY9I87Nss9iDN0LEDRAyNlz98Ls9f1XZuO813tPuvc43d7rvd57er0nkLOVjJST2WWwpHfw8qQH053ZOO/13pPuPU6393qv955e7wnkbCUjppo9dHTwchXeHuO93nvSvcfp9l7v9d7T6z2BnK1kRAWzR10cvNyUt8d4r/eedO9xur3Xe7339HpPIGcrGQlbszuU0/7By9M+NJdm47zXe0+69zjd3uu93nt6vSeQs5WMCDGbKhW1Z3cqVxlYM3seXpu9Pv/og5/b7b3e+1Z4j9Ptvd7rvafXewIRzp3823RHoxHdbpfhcEin0zn8LzxwTvfSbKcf+Vxy7/XeU+z2Xu/13tPrPQLe6Of32UxG4OxV2fPeh9t7nG7v9V7vPb3et5g3+vl99oqe3USI2SUw7/Xeh8F7nG7v9V7vPb3eE8LZumfE4/F4PB7PicMnIx6Px+PxeI4Vn4x4PB6Px+M5Vnwy4vF4PB6P51jxyYjH4/F4PJ5jxScjHo/H4/F4jhWfjHg8Ho/H4zlWfDLi8Xg8Ho/nWPHJiMfj8Xg8nmPFJyMej8fj8XiOlbNbDv6s9R/w3ofbe5xu7/Ve7z293hPC2UxGDuyQuDhr5XzknRm913tPsdt7vdd7T6/3BHH2kpFsABtfhWIMSQ90BHUBw2uQj2D1PW/Nzvde732rTipnbZu913u996HjbN0z4tws+yzG0L0AQQOEnD13L8xe339lNs57vfeke4/T7b3e672n13sCOVvJSDmZXQZLegcvT3ow3ZmN817vPene43R7r/d67+n1nkDOVjJiqtlDRwcvV+HtMd7rvSfde5xu7/Ve7z293hPI2UpGVDB71MXBy015e4z3eu9J9x6n23u913tPr/cEcraSkbA1u0M57R+8PO1Dc2k2znu996R7j9Ptvd7rvafXewI5W8mIELOpUlF7dqdylYE1s+fhtdnr848++Lnd3uu9b4X3ON3e673ee3q9JxDh3Mm/TXc0GtHtdhkOh3Q6ncP/wgPndC/NdvqRzyX3Xu89xW7v9V7vPb3eI+CNfn6fzWQEzl6VPe99uL3H6fZe7/Xe0+t9i3mjn99nr+jZTYSYXQLzXu99GLzH6fZe7/Xe0+s9IRzqnpFf/uVfRgjB3/ybf/OeY37rt34LIcQdjziOD6P1eDwej8fzEPGmr4w899xz/Pqv/zrvfve7v+fYTqfDt7/97Vs/i4fg0pPH4/F4PJ4Hw5u6MjKZTPjYxz7Gb/zGbzA/P/89xwshWFlZufVYXl5+M1qPx+PxeDwPIW8qGfnrf/2v85M/+ZP86I/+6BsaP5lMeOSRR1hbW+Onf/qn+frXv/6644uiYDQa3fHweDwej8fzcHLfycjv/M7v8KUvfYlnn332DY1/xzvewW/+5m/yv/6v/yu//du/jbWWD37wg1y9evWeMc8++yzdbvfWY21t7X5X0+PxeDwezynhvqb2rq+v8/73v5/f//3fv3WvyIc+9CG+7/u+j3/1r/7VG/odVVVx+fJlPvrRj/KLv/iLB44pioKiuF0edzQasba29mCn9no8Ho/H43lLeUum9v7Jn/wJ29vbvPe97731mjGGf//v/z2/9mu/RlEUKKVe93cEQcD3f//388ILL9xzTBRFRNE9Ggd5PB6Px+N5qLivZOQv/IW/wNe+9rU7Xvsrf+Wv8M53vpO/+3f/7vdMRGCWvHzta1/jwx/+8P2tqcfj8Xg8noeS+0pG2u02Tz/99B2vNZtNFhYWbr3+8Y9/nAsXLty6p+Qf/+N/zA/90A/xxBNPMBgM+Gf/7J/x6quv8jM/8zMPaBM8Ho/H4/GcZh54BdYrV64g5e37Yvf39/nZn/1ZNjc3mZ+f533vex+f//zneeqppx602uPxeDwezynk7Pam8Xg8Ho/H85bie9N8L85aMyTvfbi9x+n2Xu/13tPrPSGczWTkwHbNizD/2DG0ifZe7z3Fbu/1Xu89vd4TxNlLRrIBbHwVijEkPdAR1AUMr0E+gtX3vDU733u99606qZy1bfZe7/Xeh45Dde09dTg3yz6LMXQvQNAAIWfP3Quz1/dfmY3zXu896d7jdHuv93rv6fWeQM5WMlJOZpfBkt7By5MeTHdm47zXe0+69zjd3uu93nt6vSeQs5WMmGr20Peo7qrC22O813tPuvc43d7rvd57er0nkLOVjKhg9qiLg5eb8vYY7/Xek+49Trf3eq/3nl7vCeRsJSNha3aHcto/eHnah+bSbJz3eu9J9x6n23u913tPr/cEcraSESFmU6Wi9uxO5SoDa2bPw2uz1+cfffBzu73Xe98K73G6vdd7vff0ek8gZ7MC64FzupdmO/3I55J7r/eeYrf3eq/3nl7vEfBGP7/PZjICZ6/Knvc+3N7jdHuv93rv6fW+xfhy8N8LIWaXwI4YB6RSUqPQUpIAb/Tt5pwjrVNqW6OlJtEJ4g2+Wb334fYep9t7H27vcZ0rvfdscXaTkWNgVI5YH63Tz/u3Tgq9uMdaZ41O+PpXfHysjz2Jbh/7cMd6PEfF2f2a5ogZlSO+uftNpvWUbtQlVCGlKRkWQ5q6yeXFy/c8MfhYH/t6Hxqncb197MmP9XgeBG/08/tszaY5JpxzrI/WmdZTlpvLxDpGCkmsY5aby0zrKVfHVzkoL/SxPvZesad1vX3syY/1eI4an4wcAWmd0s/7dKPugcu7UZe9bI+0Tn2sj33Dsad1vX3syY/1eI4an4wcAbWtqW1NqMIDl4cqvDXGx/rYNxp7Wtfbx578WI/nqPHJyBGgpUZLTWnKA5eXprw1xsf62Dcae1rX28ee/FiP56jxycgRkOiEXtxjWAwPXD4shiw0Fkh04mN97BuOPa3r7WNPfqzHc9T4ZOQIEEKw1lmjqZtsTbfI6xzrLHmdszXdoqmbXGxfPHDev4/1sfeKPa3r7WNPfqzHc9T4qb1HyEHz/RcaC1xsX3xTtQJ8rI89brePfbhjPZ7D4svBn1AOVYHRx/rYE+j2sQ93rMdzGHw5+O/FcfYfKMZQ56BjUA3v9d7T7fbeh997lnq1nDXvCeFsJiMHdkhcnLVyfgs7JI6G66xvPEd/uE5tKrQK6HXXWFv9AJ3u2uvHHqYctPc+1N6zuM3ee0TvrWM6V3rvEXlPEGfva5psABtfnf2HkfRAR1AXkPZnTYpW3/OW7PzRcJ1vvvAZpvmAbmuFMEgoq5ThZJNmPMflJz58z5PKocpBe+9D7T2L2+y9R/TeOqZzpfcekfeI8OXgD8K5WfZZjKF7AYIGCDl77l6Yvb7/ymzcg9Ray/rGc0zzAcsLTxJHbaRUxFGb5YUnmeYDrm58EWftAat8iHLQ3vtQe8/iNnvvEb23julc6b1H5D2BnK1kpJzMLoMlvYOXJz2Y7szGPUDSdJv+cJ1ua+XA5d3WCnvDK6Tp9t2xhykH7b0Ptfc43d77cHuP61zpvUfkPYGcrWTEVLOHjg5ersLbYx4gdZ1Tm4owOLi4UKgb1KairvO7Yw9TDtp7H2rvcbq99+H2Hte50nuPyHsCOVvJiApmj7o4eLkpb495gGgdo1VAWR38321ZZ2gVoHV8d+xhykF770PtPU639z7c3uM6V3rvEXlPIGcrGQlbszuU0/7By9M+NJdm4x4gSXKOXneN4WTzwOXDySYL3Uskybm7Yw9TDtp7H2rvcbq99+H2Hte50nuPyHsCOVvJiBCzqVJRG4bXoMrAmtnz8Nrs9flHH/jcbiEla6sfoBnPsbX3PHkxxpqavBiztfc8zXiOi6vvR8i7d8ehykF770PtPYvb7L1H9N46pnOl9x6R9wRy9qb2wj3mdC/NdvoR1xlZ6F7i4ur731StgDdcDtp7H2rvWdxm7z2i99YxnSu994i8R4AvB/+9OKZqd85a0nSbus7ROiZJzh34X82BsYcpB+29D7X3ON3e+3B7z1xF0rPmfYvx5eC/F0LMLoEdlzdogNRH92bz3ofbe5xu7z0b3qPGe88UZzcZOQYOVQ7ax/rYE+j2sQ93rMdzVJzdr2mOmEOVg/axPvb1ysGfwvX2sSc/1uN5EPhy8CeIQ5WD9rE+9vXKwZ/C9faxJz/W4zlqfDJyBByqHLSP9bGvVw7+FK63jz35sR7PUeOTkSPgUOWgfayPfb1y8KdwvX3syY/1eI4an4wcAYcqB+1jfezrlYM/hevtY09+rMdz1Phk5Ag4VDloH+tjX68c/Clcbx978mM9nqPGJyNHwKHKQftYH/t65eBP4Xr72JMf6/EcNX5q7xFyqHLQPtbHnkC3j324Yz2ew+LLwZ9QDlUO2sf62BPo9rEPd6zHcxh8OfjvgTGWLz6/zt5owkKnxfufXEOpI/jWyjkoxlDnoGNQjaPre+C9D6/3ON3e+/B7z1KvljPmNdbxxy/32R7nnGvH/MBjPZQ8+kT1UMnIL//yL/OJT3yCn/u5n+Nf/at/dc9xn/70p/n7f//v88orr/Dkk0/yK7/yK3z4wx8+jPpQ/O9f+ja//ZnP4aY7aGGonUI0l/jLH/4RfvS973jLvAd13ux111hb/cCb6rz5hstBe+9D7T2L2+y9R/TeOrCb7OKs7f2Rd7H13gfNZ/90g1/4vW+wMcxvvbbajfmHP/UUP/706lvmPYg3/TXNc889x3/5X/6XdDod/vyf//P3TEY+//nP8+f+3J/j2Wef5T//z/9zPvWpT/Erv/IrfOlLX+Lpp59+Q64H+TXN//6lb/Obn/5dEnL2aVGiCanpMWFKzH/zlz7yliQko+E633zhM0zzAd3WCmGQUFYpw8kmzXiOy098+J4nlUOVg/beh9p7FrfZe4/ovZUNYOOrs6sxSQ90BHUBaX/W0G31PW/NB6X3Hon3s3+6wV/77S/x3QnAzWsin/zL730gCclbWg5+MpnwsY99jN/4jd9gfn7+dcf+6q/+Kj/+4z/O3/k7f4fLly/zi7/4i7z3ve/l137t196M+lAYY/ntz3yOhJxNehSEOCQFIRv0aJLz//nM5zDGPlCvs5b1jeeY5gOWF54kjtpIqYijNssLTzLNB1zd+CLO3u09VDlo732ovWdxm733iN5bzs3+Uy/G0L0w6xQs5Oy5e2H2+v4rs3EPEu89Eq+xjl/4vW/clYgAt177hd/7BsYe3S2lbyoZ+et//a/zkz/5k/zoj/7o9xz7hS984a5xP/ZjP8YXvvCFe8YURcFoNLrj8SD44vPruOkO+7QOXN6nBdMdvvj8+gPx3SRNt+kP1+m2Vg5c3m2tsDe8Qppu3x17mHLQ3vtQe4/T7b0Pt5dyMvvKIOkdGEvSg+nObNyDxHuPxPvHL/fv+Grmu3HAxjDnj1/uP1Dv63Hfycjv/M7v8KUvfYlnn332DY3f3NxkeXn5jteWl5fZ3Ny8Z8yzzz5Lt9u99Vhbe/3vRN8oe6MJWhjKe9wqU6HRwrA3erA7vq5zalMRBgcXFwp1g9pU1PXdb45DlYP23ofae5xu7324vZhq9tDRgbGo8PaYB4n3Hol3e3zvROTNjHsQ3Fcysr6+zs/93M/xP//P/zNxHL9V68QnPvEJhsPhrcf6+oO5UrHQaVE7RcjBJ/aAmtopFjoHXzl5s2gdo1VAWR38321ZZ2gVoPXdf9NDlYP23ofae5xu7324vahg9qiLA2Mx5e0xDxLvPRLvufYb+/x+o+MeBPeVjPzJn/wJ29vbvPe970Vrjdaaz33uc/zrf/2v0VpjjLkrZmVlha2trTte29raYmXl4MuOAFEU0el07ng8CN7/5BqiuUSPg6989JhAc4n3P/lgrsTcJEnO0euuMZwcfDVoONlkoXuJJDl3d+xhykF770PtPU639z7cXsLWbDZHeo/L9GkfmkuzcQ8S7z0S7w881mO1G3OvCbyC2ayaH3jsHl8fvQXcVzLyF/7CX+BrX/saX/nKV2493v/+9/Oxj32Mr3zlKyil7op55pln+IM/+IM7Xvv93/99nnnmmcOt+ZtAKclf/vCPMCVmlT4RJRJLRMkqfabE/Fcf/pEHXm9ESMna6gdoxnNs7T1PXoyxpiYvxmztPU8znuPi6vsR8m7vocpBe+9D7T2L2+y9R/TeEmI2rTRqw/AaVBlYM3seXpu9Pv/og6+D4b1H4lVS8A9/6qnZKnz3Kt14/oc/9dSR1hs5dAXWD33oQ3zf933fram9H//4x7lw4cKte0o+//nP8yM/8iP88i//Mj/5kz/J7/zO7/BLv/RLxza1Fw6uM0Jzif/qGOqMLHQvcXH1/W+qVsAbLgftvQ+19yxus/ce0XvrwPoXS7MPyCOvu+G9D5qjqDNyZOXgvzsZ+dCHPsSjjz7Kb/3Wb90a8+lPf5qf//mfv1X07J/+0396X0XP3opy8MdVgdVZS5puU9c5WsckybkD/6s5MPYw5aC996H2Hqfbex9u71mrSHrWvG91BVbfm8bj8Xg8Hs+x4nvTnFBOY6MsH3vyY0/revvYkx/r8RwFPhk5Qg7Vm8LH+tgT6PaxD3esx3NU+K9pjohD9abwsT729XrTnML19rEnP9bjeRC8pb1pPPfHoXpT+Fgf+3q9aU7hevvYkx/r8Rw1Phk5Ag7Vm8LH+tjX601zCtfbx578WI/nqPHJyBFwqN4UPtbHvl5vmlO43j725Md6PEeNT0aOgEP1pvCxPvb1etOcwvX2sSc/1uM5anwycgQcqjeFj/Wxr9eb5hSut489+bEez1Hjk5Ej4FC9KXysj3293jSncL197MmP9XiOGj+19wg5VG8KH+tjT6Dbxz7csR7PYfHl4E8op7ECo489+bGndb197MmP9XgOgy8H/704zmZIxRjqHHQMquG93nu63d778HvPUOO4M+c9IZzNZOTAds2LMP/YW9qu+aA24L3uGmurH3hTbcDfcDlo732ovWdxm733iN5bx3Su9N4j8p4gzt7XNNkANr46+w8j6YGOoC4g7UPUhtX3vCU7fzRc55svfIZpPqDbWiEMEsoqZTjZpBnPcfmJD9/zpHKoctDe+1B7z+I2e+8RvbeO6VzpvUfkPSJ8OfiDcG6WfRZj6F6AoAFCzp67F2av778yG/cgtdayvvEc03zA8sKTxFEbKRVx1GZ54Umm+YCrG1/EWXvAKh+iHLT3PtTes7jN3ntE761jOld67xF5TyBnKxkpJ7PLYEnv4OVJD6Y7s3EPkDTdpj9cp9taOXB5t7XC3vAKabp9d+xhykF770PtPU639z7c3uM6V3rvEXlPIGcrGTHV7KGjg5er8PaYB0hd59SmIgwOLi4U6ga1qajr/O7Yw5SD9t6H2nucbu99uL3Hda703iPynkDOVjKigtmjLg5ebsrbYx4gWsdoFVBWB/93W9YZWgVoHd8de5hy0N77UHuP0+29D7f3uM6V3ntE3hPI2UpGwtbsDuW0f/DytA/Npdm4B0iSnKPXXWM42Txw+XCyyUL3Ekly7u7Yw5SDPu1e52CawWg8e3buQK9zDjOZEpUhvfAcw/HGwd7xBgvhMlEZYibTO74rP41eMxgQuSa9zsV7/60fsm1+YN6DYh/mY+k+vcd1rvTeI/KeQM7W1F4hZlOl8hEMr82+j1PhLPu8eefy/KMPfG63kJK11Q8wme6wtff87I543aCss1t3xF9cfT9C3p0b3izpPCknbE23Drwj/p7loE+zt7/F3neeoz21aCephWXclDQvPcLFldteMxpRXlmn7u9BXbNUhKSTgu3sT+mce+SWd7T9Ku2BY7EVkO1/BbRG9xYIL62hOp1T60VrlsM5Jia+62/9sG7zob1n7Vh6E97jOld67xF5TyBnb2ov3GNO99Jspx9xnZGF7iUurr7/TdUKeMPloE+Z14xG7H31OXZ2rjBsOIySKGOZyyWLi2ssvOcDqE4HMxqRff3r2OkUNTePCENcWTK5/jy72Tr7S44qlgS5pbcjWWhcpHX+yVvjzGAf2WzSeNe7bv2+0+g1g31yUnbmxvTNLrWpHvptfrPes3YsHdZ7XOdK7z0i7xHgy8F/L46p2p2zljTdpq5ztI5JknMH/ldzYOxhykGfEq9zjvzr36Da3CBYWSGvc2pn0EIR65hqc5NgdZXo8mWKb3zzxrjVu35PtXGdei5CvO0i7sV19KAkWD1/97jNjQN+3yn0bm6gV1awjyxQ1zn2hSsP/zbfpzd+6qlb79uzcCw9KO+Zq0h61rxvMb4c/PdCiNklsOPyBg2Q+ujebKfEa6cpdX8PNTd/4HI1N0+9t4fe2X39cfPzFKM+cmqx44Jo/uCpc2/4951079w8Zm8PLp7DuQhzFrb5Pr12mqJazQPH3Ben5Fh64N6jxnvPFGc3GTkGDlUO+qzE1hXUNaks2R5cY1iOMNagpKIbdjiXLBHXNS7PoK4R4d3TFqf1hK10g/HuVYrGgGh3m7a+yLJepanvvBFMBAG85vedRi8wi99/mf3rGbWtiXdfeai3+c14qWfTI0/V8XDMsR7PUeGTkSPiXmWZt9ItJuXk9ctBn6VYHZC5kld3rpEpQytsEciAylbs5X3S6ZBH9BJx3ACtcWWJiG9Pa5zWE14evEI2HdKOGjTnl6m3x+yNt0ltwWNzj97xYeWqCrRGxI1T6b3pfmXnBYp6TKPxxKx+RLT10G7zm/Wig9N3PBxjrMdzlJytqb3HxKHKQZ+xWJE02IlKiv4uC40ekQqRQhCpkIVGj6K/y26jRi4uoHsLmMH+a81sTbbI6oyFMiBcOodc6BEuLrFQBmR1xvZ0G7jtNYN99MICcnHhFHpvu4v+LvPnHyVuzyGT5CHe5jfvFUnj1B0PxxXr8Rw1/srIEXA/ZZmbQfNMx2YmY38xIhn1YGsXogiUAOOgKEi6Pfq9gNzmxJfWMOMR1cYGIo7JXclo7xptI6HdhfPLICVcWIFJSnswZDi+ysQ0iUWIy3Nkq0m4tkZu81PnFUqSVynjjVdIur2Z9+Z9BA/pNh/Gm5ns1B0PxxXr8Rw1Phk5At5IWeZRMTq4HPQZjK2SkGBtDf7jt+ClK1BWEAawukzw5DuoEkFta1SnS3jpEukX/4TqO98myybIchd96VF45zK0b5xg2024sIz+yi7yyqtk4QgaLYK1S8RPXUZ1OtTF8NR5XVVRCINtVwTvevq29yHe5sN6T+PxcByxHs9R45ORI+C1ZZnjA8o2v2456DMYG6Ql1fomUSOGp54EKcA6yAuq9XWCYAUt9Y1iWFcQSYP43e9BuBKz9x1qA+G1LWg1Zx9S4ylc26KONeby20gW3k4kQmyeUV65gmq30Y3b3jCOMW9/Ow6BwKGq/A5vPRwyffFVKt1AX343DVVh+jNvcHULEyS4JEGkKerqnd6QgHKSM37+VZIgQc0Fb9qrI4UoU+TW16nW1wlbTUyU4Ax3uRu9t6NMQJnluBdfRbZa6OSNbbMSimx7n/T5V3FBg+jPvBtBdetv/Xrb/FZ638w+Po3Hw3HEejxHjX8XHgE3yzJvpVsHnhSGxZCV5srB5aDPWGxDNZjfLdgf9okuve3Ohd026ZUX6fUXiJ+MKa98CzudEt6oLaFxdOWEvbzPwjiD61vw5KNwbRPSjPFczGJjgWb3HCCAearNDcr1deJ3vpP53YLdvQFR922UucDZWTfvMO5Q7L3I0twC4oJm40+eZ3I9RXYXECk0EkHSPc9+vk9js6Yc7+JWlhEbu4RpTXauwXK3h44XGQ4tmW1SXekTTF+mc/lxWtcLhm/Gi6TdbdEOUnZffpnoazuUi6uzZOQ17l6jR27myVKHc03slT4T8zIL77/8Pbd5LllgEtaMvvEyVT8l6C3QqCXtrqQrJ2yP7r3Nb6X3zezjxuXLp+54OK5Yj+eo8cnIEXCoctBnLNal2azcd2+Rvax/x0yLSTmh0VtkMdPY3b0DalAIllvLpHXGXjikvbON7nWod3cYh4aG7nKuefNDasatmha7e3THIRusMNqf0G5GBKGmqmt29gsacoXGrmb7T68x3RgQz7UJGgJjYDK2YBcopzWTOqMz2UebhHq6z44RNEYtktYie9s1ZemIG5JwqU09HTG+sou7GpGbN+M1lIWl2Vxig4zx1R2ac23CMLjlDvfauFaPibTEDYlSUIk2o+sDzJ9eI+mHVPfY5tCuYq8EjNlF5iOaS22cEnd4zahip87v2ua30jvfO/em9nGYZqfueDiuWI/nqDm7FViPgUOVgz4jsWYwIP3Sl8jnGmynO3fUoJiLuiw1FokHGdHb3kbx4ouoxaW7qlBO6wlbow3Gm1cp1s4RrW/TWV3jXHvlrhoUzhjM3i7h449z/YsvMZQhuRowqaYYZ1BC0Q5bhFUHMaxoXFwmGm0h5+ZueZ1zbFwtqVyJ6u6T7m1TrcwTbO7TWlwmtHMo2yAIoNWe5f/OWuxggL5wgatfvkbVUOj5MdP6jXsBxqOaugYjMorJFUaPLGJsTfjSBs2FZaphl0jFrJwPblcfveEuOstkV7dw3YBCD+/Y5lbQotpvE6Q1a++9QHX12h3um14rc3LZZ7p7e5vfSu9kbGi1FfF8zvZ48772cfLe96Lm5k7V8XDcsR7PYfEVWE8gnbDDUwtPvamyzGcmVgegNYkNeXzu8btKhdu8wOoK8Tp1N5q6xaPJRdLFBHnxcWz2Ekmjh9SNu3Q3a1DUMqKoJe1WwEJygdKUt7yhCklHBTtZRTuJIFW41xTjMjUgBAEhi/oc9VyMPHcRm18ljruUJmB7s+Lcyu3DzdU1aIWRIU5CYDXLjfNYWb1hL0AQSPb3KhZ7AfOdC6wsPoZxhrofoHWHXSlx1mFqhw7EHe6gGbOTwdJ8wGL7zm2WNmDLZDhZU4sA9J3um95zKw3m1TL5a7b5rfTGDUmWWrpzzfvex+jgzb8vb3DWYj2eo+Ls1hlxDorxrDNiMZ79fJTebN97D0A2k1u1JZxz2DzDTSazZ+du1YxQS4uvqUHhsFmGnYyxWQY4zP4+qh0jmxLVjjD79xh3swbFfA/R7CDSMdY6ymlONcwopznWOtx0AlGC7s0h2x3K/RFlaSknOfV0ClWJkFAPx7gwpBYOFwaY4QghLKYsociweU5dWfL+CJe0Ee02Kmni8gxj7H15bTrFVQXOOVw6QXQ6mLqiKnJcGFANxwgsrq6opynlJJ/F7o+QnQ56rgtRgksnd21zbSwuz1DNJrQ7uEabvD+iriw2z3F5iiln22yGozu2+a30iiLF5AXW3v8+ls0HdG/EKTmWHrj3uM6V3nsmOJtXRg7skLg4a+V8xF17e9011lY/8KY6b77hctCnyCuEILy0xujqS+z+4f/GtJrirENIQTNosvjk0zTX1pBSEl5ao97cZPrHzzG7A1KAc+T5iGFzyr4Kqb416+g6f62k+50mcdy5NQ4hiS5dIlxbwwSKYHmR0Tc22PvWc0xLg3MCIRzNUNG9cJFg/gJVbqlUl/GwT/XSS4BBS8gqRV3nDJpTppOQeutVtLF0xgXtUmHNHONJhbWCwmjUXI9orkW4l+OaHfK9PV764y+T19Ub9kbaIaWjzkKmy4Jr20OGr6YYY9HG0hyWqEmC0hH9HUdtABTBwjzt1S5hURPMd5kO9rj2+Tu3OdYaPXeRpNFm0i8oTYtisI955UUiVSMV2FSz1x/ObjRtR7e2+a30hoED59i/vkvaGd/XPr55JeCsHEsPwntc50rvPSLvCeLsJSPZADa+Oss8kx7oCOoChtcgH8Hqe96SnT8arvPNFz7DNB/Qba0QBglllbK19zyT6Q6Xn/jwPU8qhyoHfQq943LM+vgqVTkmVhE60NSmZlSOycZXicoxc8y8TgDOzv6JEIIi22er/20yp2nE76E716Mc9NmffJV8r2J54Z1ESQ+cQwg3iweCSFGS88rWGApLHEiUFBjrGBeW0c6Y5YWK/vUJytUoDULVWCcoa8VwYsjKKYGY0lhu02o3qcZTBpv7jMaCuVbAMGsRSEugLWEEQagoMsPuzpjxMCOqahr34c0rTVk7hJtwZSOlrjTNxTmCIKQaTxlt7FOPoRGFKKUIlUFKg9SQjmvGkylGVVzfGSO+a5unpaHYT+nEU6JOkyBUEEEpLXmlKHOJsBM2RmNMy9FY6tza5rfSOy4kc+Eue5Ovk8v728dn8Vg6VDn4YzpXeu8ReU8YZysZcW6WfRZj6F64/XrQmP08vAb7r0D8ngfaEdNZy/rGc0zzAcsLT956PY7axFGbrb3nubrxRS63L9x1M+Z3l3S+FatjYh2zNd3i6vgql3uX7/oO+DR6rbVc+9afkNc58z/4g5CXYAyhUoRxyP76S1z/zpdpz69QXlkH50h+4AdxeY6rKravf57pXIcFMwf7JcwJ4n5J3D7P3tyAUSy4dP6diCBAxDH11ibl+jrBO97B7pXvUBlD+9IjKFEhsCgksQsY7e4z3L3K/PLbYTBAWUf4tscxRYVLa0qzQR2FdEKFHGaYG89J0GE0X5JF0Iy6EIJsxbgsp+73Me0FJnsbVOWU1vlVZABCOKQTBDWMdvv0N19i4fy7YDhAGou8dAGbF4hydq/JpLxCtVvRNm2EERhb3HLvtRVKOkSvC7FAxhFunGMHA0xnjv71F8nLlM751RuNYG+4KxhfHzMZbFCbBcR+H2ct8uJ5mOSoEqbFmDKMaBMivmub34xXIYltwPTahHS8h7GLiP0+OEf42GMwLRGFZap2MY0Oi/b+9nF0+fKZOpYO4z2uc6X3HpH3BHK2kpFyMrsMlhzcapykB9Od2bgH2Mo5TbfpD9fptlYOXN5trbA3vEKabtP8rjGHKgd9Cr3T0S7j7askizdKmzeiO5Yni8uMNq8w2VxH3pjaK4RANBrkTBnW+7SaS2ADGExmj+EEWgktGTAo+qwGJXFj9t/gzWmf0ytXmO7t0VtLwDnqMphd5RcQhI658yGTnTEXHsmwdkoZJpgcpAhQcYGMxiQ4Sjuh3sqwaQM5zghbMc2GYLA/JlqsqcuY6ZZAqZgwm1KnO5TpC8hAUWQTqjJB6RhT5zibEkQZg/UBc50IJgXjwlCNtwFLGGl04BhPxnR6hnJwlbJqYo1FDifoJCYOG5TFFtN0gksjQBLomMROqfUeg2sv02hDkeWU8rbb1ikqqCjG20w2NWpcUlqDGW2jA4cjZzDaozsfUOUZ5VZ+a5vfjDeMu+gwQAWO9mJIXQygHFGOJjidoCpIOjFCjljfmLI4vwxS3dc+rke7Z+pYOlQ5+GM6V3rvEXlPIGcrGTHV7KGjg5erEMxgNuYBUtc5takIg4NvoAt1g5HZoa7zu2MPUw76NHrLHFtWBNHdsyIAgqhBvrdDnU0Iv2tmSW1KjK0JdDzrkza1UFRgLASaAMnU7lOb8lbMzfby5XSCqWparRApHda4W4W4pIIyDxnWU6QoaScO14pwCKQUTCYGY6ZQ10RRSjNxiK7EmZqSAdN+QZHFBPEynU6XqqyZjPpM93dRwSJKCsJmh0bLUGZ98lFKmCQk3TZ1HZCNpkyHG7C7QzS3RLs7jwo0gpr9/hbTwR6hdGgKmt0mQgW4qiZzQ9JhHyeg0V6h2ZzDVDXpdJ/R7g7CLeKcJO620NqRjW+7G+02jphiPKDMN7GDHeL5RbrzPYJQMxrW5OkURUGcBDST4NY236+3zMbgcuLWElJFVIXGFBVxUhO3HXRmX/coDWlqsAaUbEBg7msf12V+to6lw5SDP6ZzpfcekfcEcrZm06hg9qiLg5eb8vaYB4jWMVoFlFV64PKyztAqQB9QJfG1JZ0PjH29ctCn0RvGyDCgKrIDY6siQ4YButG6NbX3VqwKUVJT1TlUBpSEKJg9VzWVKVBSo19zcr457TNstlCBpsoPfm/UZYnSChXEoOVsmqoAcGgtsWVOXefEYYTUChFohJJgLEWRI6VDyxAhBFJpMJayLlBBhNABzhikUjgcVTn7YBFKYWuD0gFSBhSmmH1VojVCCJQOiJMO1kxIR0PCRoyMAoSSs4c1mCqbVTYNbri1htpQmAKCCBUEs6mz3+WWWs3WSQeoMKCsC1xtkeqme5a0lXkGxiHV7W2+H6/UmjBpYeqKfDIC4bB1hVCaoNEAPdt3N7vwCjRSgbHZfe9jHcZn61g6hPe4zpXee0TeE8jZSkbC1uwO5bR/8PK0D82l2bgHSJKco9ddYzjZPHD5cLLJQvcSSXLu7tgbJZ2HxfDg2GLIQmPh4HLQp9Db7CzSPneRdHfrwNh0d4vOyiVaK2t3tZeP4x7d1jKTdBcmKcy1Zo9uCyYpk3SXudYKcXz7kujNaZ9zly7RXVlgvDUhHQkmfclkXzLpS9KRYLo7Zm61DcEcE9Ni99qY/m7N3k5NNg3AaYyFYuSYVAnjiWZcRKSDCosi1JZ8CqOdjP7mhP7mPk73KFNLKCKq4ZhsmJP2K6TtUuwZ0r2S6e6ARkdSlxCG5xhsDdnbHrG3NWW4V2BSTSuKKKc5qWkwGQimu5Isb1KOLE5ohFWkI9jfTOlvTehv76OiBUxuaSaabHfMtH+nO9svyUdDhNRUU5B6ieHWiN2tEYO9lHICTa1AREz3S0ZFyHQUfm9vvEBVGuKWYLI3IB3WpENBVTQY7+Sko5piPCFszmHoMsgTdq9N2NupGe4byqLJfLdDWmzf9z5udhbP1LF0GO9xnSu994i8J5Cz9TWNELOpUvlodmNQ0rtxGayc7fSoDfOPPvAbhYSUrK1+gMl0h62952d3xOsGZZ0xnGzSjOe4uPr+u25Am63yIcpBn0KvlJIL73wf2WCP/SsvkrTmCHRIVZekkwFxe47zb//+2SyN72ovL5RkKbhANr5CX++QzC8ROkvZC0k3d0iykMXF85jxGGfsHe3lldZcfOpdbL+csfvqkFZXEwSKqjIMNmsarTYXLz/BtF+T1glhOEVlI2oUw3FB4CKqLGc3HaM7GpVOqaqcfDL7Pr7TalJvjqidRoiKxGkC2aHczGlKjao09dUpsbREUYItC8wkJY4iuu0G5U6GICEuC8TOPk5oMqfRSrIkeuwJzXhQ0CwmxESYUmLzJl2h0FZRXB8Rao20FZHRiKyJzAp6rQaDrKAY3O1uak2kAtxWRqvRoXQlbO8zRaOFYN61SYuYvMoJAklI+bpebQRZoTDlLq35WfIxHVwlbsXESYu6LOhfGRAlHZL2CoPtjObiPNpllOMRe31FFElWlhbZ2/7Ofe9jKeWZOpYOVQ7+mM6V3ntE3hPI2SwHf+Cc7qXZTj/iOiML3UtcXH3/m6oV8IbLQZ9Cb//lb7Pxf/4B6foruKJCRAHNS4+x8sH/lN5j77g1rrx2bdZe/uo6rqoQQUC9kNBftfTjyW1v3mb+Ouh+dmtcsHaJ5H3vJbxwAeccO1fGrP/HFxh8509Jd0bY2iK1pHmuS+eJp2ifmzXkc8B0Y5fi1XXccB9Rp2yO9yhEgW3XVErhhIC6Ro4ndIo2oYgIdITUEhc0CGyIc5YsLNCtHlSOxrigSMf08x2MLJmbX2Wh9QhCa3anV8hNSmADemIRUVkyO6BwUypnCeM2UdQkpyKTBbYu0WlJu+ogURhVYqRAhBGhCxFSkKqUxuI5RF4j+/md7rlVuo1LCCUZlNfIyjEhMQtyEVXXjOoBo3IXSUCnsYSIG4z0lMpkB3pdGGBcjZWGLCzorK5h8oLJ5jr5cISzEAQNlh55G9Hq0zR7izR7DcqsotofUK9fRU12wVg6SU37omL//P3t4+N+T59G73GdK733iLxHwBv9/D6byQjMplSVk9s7PmwdSfbprCVNt6nrHK1jkuTcgf/VHBjr3Jsu6XyavGY0Ivv61zHjCWUgMNKhrCCsHKrdovGud6E6ndvjJhNk3AClwBjsjQqe7rFz2IZGZjXi5W3MdHr3uNbs95kw4ep/vI67fgXyjFwIDA6FIHaOWscMxCIrl5cIXUn6/EtU0wwdhRjgW1/7GtPJLqsXlmGuiVUSypryxU3KcY4JYpaWz6EliFxTZTlFmRPMt6mDJuGkoiEFaTFiONlDtATnkosoEVO4gELsszd8mYVgmXbUQymFCQyZSbl+7VW6cYcLF95FHpcUuoSqpry2RzUuCaM2zV6TWhXIQlPnOXmVo+daVKpJxxqCCib5bfdichFXxxCGFOyz23+JhWiZTtSbzfxxNRu7VwiNpds6R2NhARNCKfO7vbrAVDWT6T51ZQgW5iiCNi05RZmSUghGwz063QXWlt/OsGigl8+x8s5zuDQlf+kVXJ4RNEIMirqwLHYK4rn728fqNeeOs3IsPQjvcZ0rvfeIvG8xvjfN90KI45kqddMbNLhRYMF7X4NzjvLKOnY6JTy/iq1zuNmrRcdUm7drRtwat3r+u37LPNXGBvX2APH2t2FeeRE9TQ8ed6O9vLv0BNXWLkGZo5cWqIsSZy1aSoIopNrsU2VDYIlqcwub5QQLC0gBVZGjGwmRmCcbDRGugvk5XH+AqgQy1lS1xVqLUBESTVn1QYEqBXU+RpiIqmGpRUUznqOiQAhNVaUUlUBrSUd2UZWkSgxWgjIKayGOOsSywTTdRdHBRWAGKapSFFpRUUDdQsoAKTRF1Ucq0IWkqifIIKIK3R1u6TRplYLJUVLQVl1kJamaBiVBlIKAmGYUUVRTZBqi6cw+/L/LK5TGKkddFUglUQVUkz2qhoF2g7rMiTtz6KQJcy3ceoYdDjH1InZrG5vnhAsLKC1QDox26HPz2P2t+9rH8VNPPZh+LKfkWHrg3qPGe88U95WMfPKTn+STn/wkr7zyCgDvete7+Af/4B/wEz/xEweO/63f+i3+yl/5K3e8FkUReX73NLSzwKHKQZ+RWDtNqft7FK2Q9cFLd3Tt7YYdzrXmEHt76J1d6ht1Rr6baT1hSw4Yv/gdCrtO9PIG7e45luv2XR1db9agkO0ebjpiohQ71zYYpznWgpTQTmLmgwYUKdlWn3x9QEUCuzUCsLbGOoXQTfbGfbK9Tcw1RVTAYrBI0Oygpg47qimBsBZo10a7AF0oTFmhpCWvcqg1YdDCFVOqusJIi6wNIQlKLiGMoB5W1NREQUSgQuaic0RCkQ7HqKklr3NUbWioJs2whatL3MRRuZqAmTsQAarWmHyKNZY0vdstnAVXEYQJLZaQTlANKoyu0YS0ZZskbDLJh+T9jGAkqOuKSCV3eMtxRU2Ftl3QYIqaYrpNURnKocXJCN2a3WiZ600SOY8aThm8vENxfTirM7JTE8WSMBYIIcjslP597mM7TVGt5qk6Ho471uM5Ku4rGbl48SK//Mu/zJNPPolzjv/pf/qf+Omf/mm+/OUv8653vevAmE6nw7e//e1bP5/VTpGHKgd9lmLrijQbc6UekdmCVtgikAGVrdjL+6RyyqWqQ5Rn8F11RmCWiLw8eIXMTGmjacoWNZo9MyYdvMJjc4/e8WF1swaFtgVllfLidoVVFUkjQKtZGfrBOGNY1yzJkP61CTJzRPMapQXWwGQC43HGNNtDhJA0u6huG7s/ps4FamSIgghkA1RAoEKCIsDamtxVTIXDCkVLz2GpSE1KJlJU0CQhAenIqilpNaATzJOEXRCSiprMZJg6A9silB1kEFI3BGU6QVQVURmjZYLVChs6hA1oZhpbGTJRUoYOpKIpu9RU5DYlJyPQTcK6gQOqOiOt90h0jzjoIITCuIpc9KlTS6iahJHGhZKyTDGlJTQBUrYQWqMjgSRATqDKS0rliBptxtLhRI1WoGyOChtMspJhOqXlAuJJgRIO3dQ4J0hTy2hkmVs2rE+vkt/nPqauTt/xcIyxHs9Rcl/JyE/91E/d8fM/+Sf/hE9+8pP80R/90T2TESEEKysHVw88KxyqHPRZi9Wa3apPVmcszN1+30QqJGr02BtssucM83F8q86IiG/WWHBsTbZmsboDYQZRTBg2WNAN9uoJ29NtHus2uVEk5HZ7+ThmZEZUtaQTt2alzMWsVkMzCBjmEya6pqtnl8edqW/N/VdKU5QZdTllrtNDuhoRNUCXRCoirBSlqGjrCCUkEk2laoZVSpEUTFxOaWsqEmyQkTGmEIaajH09IgCMtozshDQWJLpAOYUVjoKCab1LLAytpEkaDcgxCAWRTBm5EU4GhLKJ0TmRVcjQYQtBFdfkKkfZAiUEQlvqqiDDkYcDtFYoq6iwjMWQTixIpEGYCOMsQ1kR4Ii0RCmDUhpu1q2oLUIEKKVR0iKFIhcjAiOxsaIUGUhBErURGvLpHlo3aEZt+uOSQjgINELe+FvLYPathHPsZ/uYMGPxPvex05r10aun63g4pliP56h50/eMGGP49Kc/zXQ65ZlnnrnnuMlkwiOPPIK1lve+97380i/90j0Tl5sURUFR3C4CMxqN3uxqnggOVQ76jMXmIQwb0B7MurOSl2DNrAxqHNLOHYN5KOYSdG+BanMDubKCzXKyYsJotEOr2YH+GJYXYWEO9rqwvUer12I43Gbq2jSiFrIRYwb7BKurTBsxYy1YTHJclFCnBmdAKAgSRa8qGJkWFx/r4tZLsp0BdasNpsaWY2Rc0VAJNhtBswMECBVgTA4qITEJDStQIsDWjqEaYtq7hI2MOVHjMIxVTuECAtNAk2H1dVIRIFyDSBgEU0ZuQCUlzcBQA9PaotoFqBETmVDgKFSG7IIsFDWSQtfE0tG1AYWLGYkJUtQ0XIJVFhuMyJxDlC3CShDIMalKkK5BQ1gKUVBZS2ZzWnaEKBP6uSKvHU0iEhdi0RTGYoWg5SSRjMAJpIGg1FhnaZiEKspBO2rjSFQFUlFPM5SJEQakKumEFVUD5HwDmzYp90foTodI1cTNnOvjIQtzTRje3z7OQ+gPTtfxcFyxHs9Rc9/JyNe+9jWeeeYZ8jyn1Wrxb//tv+Wpp546cOw73vEOfvM3f5N3v/vdDIdD/vk//+d88IMf5Otf/zoXL168p+PZZ5/lF37hF+531U4shyoHfcZijTOUqz3aowq+8g1wdtaaV8zawesLy5Qr81gs4aU16s1Npn/8HDhLVheI8VWCqAlrF+D88uymjwsrsNMn+I/foSymZO1iVn75Ne3lx3VFNdehU+0ht17EWoGzEiEtcuwo5xepRYOgIehePs+0GlJsvojAMsqnqHFKqCNUJ8J0BVZMUC1BVISEpQIDJp8COZMwx85foxFIqrpBaTIm7TE7zYCh7WKrFlWYUoWGuI7IqyaTxKJURVQ5CjRCQNvkYA25EDR1RW0aDN0cMsxQckpZJlA1mJdDUFNq2yTIY2wcM4kDMAplKiq1jHKCuJ6ihKFSCY0yIq+bTBKH1BXdyhGMA3YKw6raI1SWupynwmKEQUhJQyjGypIFhkYtcNZBVUKVM+ulo4jnlnHVkHq6T1CnBJM+oYoIdQOb7RFvOWyyRjmf0FwIaM6fJ/vGmHr7BZQwFKaE0QA1qOGx5fvaxxNnTt3xcFyxHs9Rc9/JyDve8Q6+8pWvMBwO+Tf/5t/wX//X/zWf+9znDkxInnnmmTuumnzwgx/k8uXL/Pqv/zq/+Iu/eE/HJz7xCf7W3/pbt34ejUasrb3+XPqTzGvLMscHlG1+3XLQZzS2shWRc4C4cbV9dhm5stVrYs2sPbyzOAdaKqSQGGeQ3z1h3YFxNVJItFQ3muDdbi8fBgFaSypjiG7Gitu/pLYGFQkEavbrbpSCd0CgbnitQQuHcODk7PcHRDgBYzMAYkCQJ31QBZO6QylTBs09rjW7ZKZLrEaUjZTNYJGp6dKUQ2Q4QdaOSdkijyCyBbqUjF2MCDMsgnHexAWGWo4pjKasFwiZEugxtYWyXKAKDY0oJcZSpAlZVFDokEYpwBqCwCFQTMs5YlmgopTSBuR5h7FOWQhSxjTYrRZ5XFzDNXbIM0UuarQICaTCiIqssmROIR2ESHKmWAwGQcs1CQgQQmCd4+Zf2GKQYtbrxzqLlIJAayhv7iML7kY5eAmWGu5zHx/3e/o0xXo8R819vwvDMOSJJ54A4H3vex/PPfccv/qrv8qv//qvf8/YIAj4/u//fl544YXXHRdFEVF0j8ZBp5CbZZm30q0DTwrDYshKc+XgctBnLLahGszvFuyXKdH3v2v2NY0xs7oRcUi6/hK9fkX8ZEx55VvgHMkP/CAuz3F1RXPaY89NWJg4uL4FTz4K1zYBx+jyJRZFi3bzIkLf2V6+9Y530CsqdiYGs/rE7Gua2iK0RCeK6d4WvcRgJ7B7/TrpwCEWn0SYCi0rVF4zHK3jUoVwDjodzHiEqSxlbdANTdCcp9YVJtmgNDVWXyVISkYdzUgprJgyUA32wzZlHrA8uU6nnLBY7JPUORWKSgVUTlELiRaWyJTErsAIhXUShCNVDSYuoWVTAlkxokViS9puQi1mSYIUhoKAVMZUQtM0GVYoMhnQNi9Ro9kP22Q2xsmaa3GPzaDJqprQDATXizbnWpu4okSbBkpICglVZRAWSjf7AJRRA6kUVljKyQ7DrQ10q0M7jsjyGLuwRJrm1FVBa/4C4fmLFBv7NMaWYt+x//I16pFDLb6dUNVgDJ21NtPukMb0/vZx4/LlU3c8HFesx3PUHDolttbecX/H62GM4Wtf+xof/vCHD6s9VRyqHPQZi3VpxlIRkvYW2cv3b8ymaVDZikm+T6O3yGKmsbt7t6b2CiEQjQbQYLlxiXTwCnvhkPbONrrXod7dYRwaGkGXc3OXUK+ZaXFz2qfe67MsNFuqy+5uQautCOKAqqoZ7BbEQZflQDLdGDC5PqLZbRDGUFcBo5Ek0k2k00xLQUPmaBNhq5JpDaFz9IJzaNPAWYvppohwQkNapjZiV3VJgxinLKquUEXJhf09WmXKohkhTUHpKnr1LqqwjFVCQM6EmJ6bInHs0mWeCU5WqLLNOWkZE+Os4YLapLYhc3aKk4Id0WbeDukIwZgmkTWkMqCQcNFkFLKJoYGrDEWwwILo03IT1tUqW6ZDw5XoRsGS0ThpwWgkgtgoagSVdMQuJibBWUUkBSEGJecYF3vUdUanoWZJ06QiUBYRKoxy7O0VBGGLKJPsv7xHkE2I5xoYYDiSRA3FyvIqO7Zir7q/fRym2ak7Ho4r1uM5au4rGfnEJz7BT/zET3Dp0iXG4zGf+tSn+MM//EP+3b/7dwB8/OMf58KFCzz77LMA/ON//I/5oR/6IZ544gkGgwH/7J/9M1599VV+5md+5sFvyQmnE3a4vHj51nz/UTFCS81Kc+V7lmU+U7F1RUOEPLr0BNvpDsNyxNROUVKx2FhgqbFIPMhw95ja29QtHpt7lC25wXjzKqP9LaIiY7G3xrn2yl01KG5O+7RZCmXIhXNNhvmIcVaQVzVKCpYWY9phiyqtic9ZdAsqpSlykALaHcNkKFhafJTc9Mn2+xT9iqCo6SbnaKs5nNVYV4GscHoKqqQo2kwjQz+IMcLSKkomWhKPC+aKIWt2l0YxYEBOIIcMQssIR3njO6gKyY50hNbh3DY7QoB0OLOLFoJCaKxzhNLgHOzc+lpkkz1mNZakEzjnyEWAk4K0rkiICE2HS7VkmX1ejc5T1iWjfEilm0zqJhu6xZOqwEmYqhJla5SS1LYilDGqESOsQGCo6hKDRWhFqz1Ppksmk5wkglIZaiLQEVVdsrSoCO08Ojd05wTpBMpaISXML2gcoOqIR+cfYVtu3tc+pq7otOZO1/FwjLEez1FyX8nI9vY2H//4x9nY2KDb7fLud7+bf/fv/h1/8S/+RQCuXLmCfE154v39fX72Z3+Wzc1N5ufned/73sfnP//5e97w+rDTCTs8tfDUmyrLfGZidQBak9iQx+ceJ69z6hsVWGMdY/MCqytE3Dhgau+Mpm7xaHKRdDFBXnwcm71E0ughdeMu3c1pn7WMKGrJfCvk3OIqWVFSWUMgFY0oJBuX7OzVrM41kJXEakBrpBQUeYmQjkg3aMkWU1NAu4npD2jakEQ32J32aTYjTFAihaNUBS6ucJGm1IKAgr6KyeqQ8/k+825MM99jW+SUVHTyilxYCumYCAe1ZL4s2deasXWIAEDQMlAKy8RIam2JakHoLLWwjJTAakFoHa0KMgSVNIBCyIqOgDqyTEVOISW1DpkrNW0zJVMhvXrM8+0uoSoYm4CRUHSFQIvZZKdUl0CJcBHOWQwOoSx1kGOcoa4KOqpDJWuyoqKVxHSSBjKI0Y0mwhiWFxcY7EpcYGgtJsS5xIUCHQUoPfvGLkst3bnmfe9jdHA87+lTHOvxHBX3lYz8j//j//i6y//wD//wjp//5b/8l/zLf/kv73ulHmaEEG96Gt1ZiJXN107ZXSX+rg+Xm9M01dIieuf2uO/GDAa0Vi8QXXicYljcGHf3B9XN3+fme4hmB5H2EckiyXclOG46gaiF7s0hywn13i56YRGAolA4U5OmfWKR0106R7C8QiGuUV6bMCxqtA0IgxgXwsAFaFlAWKFEAg62g0UiURAVFcvFLkFZUDJClzntYUWdVcSFIso1PZNgjSIMmyzFIQgw1mCsQ0uBExYhBM4IhJUgDVKCERasxFmHlApEjSCEWs0+5MMReXfMcDGjEaa0yAlVRmS6OOc4J/t8s3qEoUzomBRZKWoqClsRBTHdoEUhJHVmqOocSYBqBMRRE2Mr0mnGUPSxiSaK52loSxAnVGVOPR3SaHZAaFw+RXXayO4cUTqe/a1bs7+1ko7SgbXAfe5j2bx9b8RpOR5OQqzHcxSc3duofaO8E+kVQhBeWsOMR5Qb16nC2w3rgtKhWq1b7eBvjqs2NhBxjFDydtv4ZkLdiyhHV5ALEXKUHDzuRnt5EyiC5UXc9ZRyZ4dCCox1KCmIrENEMUE8q9egl89RjiakG7uoKERiqbMp+WSf+QvL2EZINhkgmw2kzhiNd+hGl4iriMpZVMtQOoV0NVE4JdA5FfMUxCRyQrvKiKsRpZ3S2LREYwdGEk7b1PUcsrWAfjREnssok5I6zDFYcI7cCQJqAmqcU2RCoYQkcDVOqNnXHNYgKalFhLANdN1BD+aY22xi98fsTV7gysUdVJQhtSGpp8Q3qsU6IC8DEimJZImwAifBSQe1QxMSKqjSDB1KEpNgUod0oHXIoNqiGSwThm2EGuPSFCcEo8Eutrb04hEibCC7XZQS2N4S9WBCvbmLTkKsE7jCYbZL9Nz97ePXvmfPwrH0oLxnrnHcWfOeEM5mMnJgu+ZFmH/sLW3XfFAb8F53jbXVD7ypNuBvuDfFKfOqTodypcfG//ll0vVXcEWFiAKStcdYfeI/pXWj86PqdAgvXSL94p9Qfefbt9rG1wsJ/dDSv/LcbW/Vorcr7movHz91GdXpIJ2jtTzH+vYegxdfJt0ZYGuL1JJkaZ7u259ibmmObFyRO8HUdil2RtjhFlRT6skYKWBjcI1yrHEIVO2YL0IS2cVVU4ajijqssEs5QhfUVlHlCbQC0AKHo3SKyFQEdUY+cHQGjkxCWbUR7jyi2yV6EvLFMdsqZywqJtMpahgTTZewpkMpNFYaBA5chbESpETduGNEoVEiJ5RDTDJEdh1ypUHcCVm5ssy5/Q7Z1oukF77NUFekosGjboqzkrwMqYTERBarCpR1hEbisPQZAYa5KiJQXUTtSKcDclFSBxJrLUmwiMkrwl6DrAyZbm+SD0ez+naDEmdaxBeeRqmQcT+nSC2V7VDvjFDjDahrOk1DcVGx2by/fXwWj6XDeo/rXOm9R+Q9QZy9ZCQbwMZXoRhD0psVRqoLGF6DfASr73lLdv5ouM43X/gM03xAt7VCGCSUVcrW3vNMpjtcfuLD9zypHKo3xSn0Dnav8dLXP08uc5KnLxPokKou2R/vk33988h2i7nFC5jRiPLKFUTSIH73e0Ap0vEG117+AtmkJHnqKcK585SDPv3n/yNZHbL2xDMk7dVb7eXLK1dQ7fYsASr3uPbCC2SZpHVhmShQVJVhd1gxffFF3rnaIu1HpP0pYdonbAaY5nlG4wIoqKaGclSimzUyUpiqwJYNoqBDHaUUaCqZYTEoJEoETKWgdoLAFSSiJjQ5pdDI2tEcWoyxiMoRp0ukukm0DOniiOu6IK9S4n5Eb/cZ9vQy2+GUntrlojQ0pKSoLU47hKrBBoRGIB1Mas31+lF2meficEz3yneoe1fIL17k+UfmeGfZ5dzkPC9PBuRzL/G2epOCeXKp0HWF1A6HxAqNk466BgU0CMhcSe0cQswq0JYYyiAHagyGpjpHyohpvsfetW2qytFcXCRO2lRlQT9zRNevYIWmKi3NhkNn+5gwYNq5SBgpgqU9rm9/nmx6//v4rB1Lh+pNc0znSu89Iu8J441d43tYcG6WfRZj6F6YteIWcvbcvTB7ff+V2bgHqbWW9Y3nmOYDlheeJI7aSKmIozbLC08yzQdc3fgiztoDVvnO/hKxjpFCEuuY5eYy03rK1fFV3AHrfBq91lqufetPyMcD5h95gqi3gOy0iXoLzD/yBPl4wPXvfBljDOWVdex0Srh6Hj0/j2632K2ukbahFywR75ezKaf9kl6wRNqGveo6ut1Cz88Trp7HTqeU6+vUdc3Vb3wd3ITFS3PoRgurGuhGi8VLczg74eo3XyBqa9o6xRYVJu4iG016ywmVyHFhTSsUyMpCLQgqSaAthZoiakWsA8JYI5XA5G20MKg4R2pDz+5Tu4A90WPsEuLCEEzAWofOIwrdxTVALlXshgVlMaWxFzC/9wNst1t055/jB5MvscyQamAodkPCUZtgsIzaWybY7+GGHSZDzaSa8EjrOf588k0iXbLTvkxrd4nz33oFGPHKuYSWaNHIL1IT44QgdBUpTQo0MQVVFVGLEC0tsZM0jKbhAgIbIAWzKb/OEAYaLSIEEdoGGJFCIJjujXCuoDkXI8MYi0ZHTXpr89g6Ix1tMncuptrdJx9XqHaXhfNtWgsx2+ku09b972Nr7Zk6lg7jPa5zpfcekfcEcraSkXIyuwyW9A5envRgujMb9wBJ0236w3W6rYMbBnZbK+wNr5Cm23fH3kd/iYfBOx3tMt6+SrK4fEAkJIvLjDavMNlcv1Vn5CZ53mc42aKVLEIrgcFk9hhOoJXQShYZTDbJ8/6tmJs1KAZXrjDc3KOz0iTpOlo9S2ve0urZ2c9LLQYbY0Q5oK0mLF5ss7CoWVgKaLQqjC0x1RQRlDSDmnZH0wpB6Ipxvo2toanadFWPkBDVGJEbi8sbOKPYVwsEVDTFGIfDWUtUgC6hpIVBYQNF1Z4wLXOybEK3f5ndlqHXfI6GWcX0n6Y1ucCXdv8DX04/z3b6IuXuq9jdTdLdK2wVr/DlyVd4eesFqs1HeMU4VhavsJzl7C8uEgwlj7/yHdbnI1w8h6o7CJMwm29jsQiclGQuBgzaGKxVZLIkUwW5rGjJiKaIKaqM0pY0dMR8NE8vniMMJPvDVzAmoy4V7cUFmt0YrVNMtUUyJ0m6mqjTpEwHKEbMxSkLF9ssLAV05xVRNGV/OCKJzt33Pp6Ods/UsXQY73GdK733iLwnkLP1NY2pZg99j+quKgQzmI15gNR1Tm0qwuDgSoehbjAyO9R1fnfsYXpTnEZvmWPLiiC6e1YEQBA1yPd2qLMJ4XfVGalNibE1gY5npcKnFooKjIVAEyCZ2n1qU96KuVmDopxOMFVNEB/83tBhiKmnmCoHYxENfeMODEddG5yrEULO0nvrwFgcFoQikR1qZyjUFLS7fVOaAGENwloKp8lEDJSABCkQBtrZrBD+tCMR2pEHJVme4vImjgXGjf+LXvok0bRFI0m5Wme8b/79/OvP/R7wAnzkU7c34nf/HwD8dz/20+igiy5Lrk4sq/Ob7A7OU5yLuXh1m/Kxgippo/IGIJBW4GZ3oFBWmloLBA7jDM4ym5mDwGDIqQgQhKKFFpqSEhOAxWIKaMgmzjpsbRA6uruiuwWpA1w6oc4yVG2RiWa2QwWOGmtAyQYE5r72cV3mZ+tYOkxvmmM6V3rvEXlPIGcrGVHB7FEXs8tg340pb495gGgdo1VAWaXEUfuu5WWdoVWAPqBk86F6U5xGbxgjw4CqyIiS1l3LqyJDhgG60QLdv6POiFYhSmqqOieyASgJ0Y3nqqaSFUpq9GtOzjdrUITNFirQ5OMSREJdiBu9TUBHDlOXKK2wRAwngmpSgNYIoKwsziqCaB5XZ0zzDGtLSCtiHdGKuwzKAWVVYk1F1RHURMSBwURTlC5nX21g0VgkhlrNZqmEuUCGBotDKUchYCIyetky0+YYl+0S9z9A1Nnham1RgymheRk+8qkbXXRew0c+hQEe6f8HXuUacbBKVgZclV9mabpCdV6gXjTE6Qir1hBO46hBaayRSAxRWFG5COcEyigCoWnUARqFU46ByWniCHUMzlLVNdm4wAiLsRXNxjKpyKhdRjbMUTpGqiYyiEgHFqFr6lzg0GRpwHQscFmBCjRRLJFCIRUYm0Gl7msf6zBGl2foWDpMb5pjOld67xF5TyBn62uasDW7QzntH7w87UNzaTbuAZIk5+h11xhONg9cPpxsstC9RJKcuzv2Rn+JYTE8OLYYstBYOLg3xSn0NjuLtM9dJN3dmn1PmhUwTWfPzpHubtFZuURrZQ3dW8AM9gGHzTKCKqAbzDOZ7sIkhbnW7NFtwSRlMt1lLugRVAE2ywCHGeyjFxaYu3SJZGGB/aslZQrSVQQUSFdRpjC8XtKYb5NNYwrZRFYpUQySGpOCrWLyHOrSISKFaih0GFCXNXlVMSfnCYqEwAboOkZLR6VKsqpNVTXRrqIthrTNmKbLkXbWhi+LBNrU4BwqkNSmIhWOsGwyTfaYK55moEb8webvMXzxm4TmZf750t+7OxG5gQL+du+HeSS7wP50wHj3f2d/tIRsj6hshIkcuihp1AKJxIgKbWoKFE1XEFYlWldI6ShpYKQjE4ZUGqbC0BANtAlxThG4CE1Ag5imSGjWCUYISiMI44h8XFNXDlxNIC3CldS5ZdIvcWIOEbUJOy1Ck6IDSIcF+1uKdtgkzbfvex83O4tn6lg6jPe4zpXee0TeE8jZujIixGyqVD6a3amc9G5cBitnOz1qw/yjD3xut5CStdUPMJnusLX3/OyOeN2grDOGk02a8RwXV99/YM2AQ/WmOIVeKSUX3vk+so2rjP/4j4hljJIaY2tymxOvrXH+7d+PUorw0hr15ibTP35udn1fCOYyKPYG7PemNJ5cInSWsheSvXKdVr+iu7BCPpw12Htte3mpFEuX3s7eC1+iWH8VoQRIibGWwjh0s0f33EWEkqj5LmJjTPHiy1jrMKVF5TVV0SePS+K5HrrRwBpNPamoqwkE3VkH2VKAKKGKMHWEaTicdszVQwZygaESBMKgbYWzAictRaBnRcxchXGGXDicgZEqebxcIYj2WEm/j9/++v8PAPWR138/KuBv//v/HoD/9j/9vzNWkrS1i8rauMjOiqJhsFhKqRnIhCVbkIkGJQG6coiGnM3SMQ7nwCkxKy8vFU5YjKlwLkBWCiUsxlmcqynKKUI72r1VrNnGjcbUDDFConUEY4EKz9NoLyCERC/MU49HFC+/TFVLaiuYC8EUA/YX7nMfS3mmjqVD9aY5pnOl9x6R9wRytpIRmE2RWn3Pa+Z0D2aXwLoXZzv9LZpC1emucfmJD9+qFTAyO2gVsLLwdi6uvv91awUcqjfFKfS2wzYXO2vsBQOmZYo1sxkTnahLr7NGO7x9udoJwNnZzeZCEEZzLC9eZpCk7OdDRowJckuvdYGubBCGXRwCnLujvXxVGEJiHl1ts3dlyLSwWGORQCfWdJbbmDqgd6lJOZgytlBXs+BQS6LAYYwlTloUxlJlGco4WmELV1gmbko3UNQypcJghUVbQewcCseumke7kiU7RQpDSD0rZIYDoXAIrBEYBKUEJRUVFdKEtJZK5jcC/p8//BT//eLP3/Pvegcf+RS/sPX/pdCLlMlVxuGYbtaGeta/ppz9iXBWseCGhC4BHKGoSEWbFiWRqxGO2TY4iUYyIkUKR2VStGoQEJK5ghpDwRRpBEmrQyUUi52E1GYUlSYvxoQEzEURwVxCstQibCjqcUFezcrAR7qmHQK2zULzXUxbk/vax8f5nj6N3uM6V3rvEXlPGGcvGYHZzo2/78ir3XW6azzVvvCmqigeqjfFKfI65yivrJOoBp0P/RTZZEBdl2gd0mjNUW9tUa6vE12+THllHZwj+YEfxOU5rq4RWtOMY9qbG6y2I8TbLuJeXEdfKNErq3eMe217eXfpCaqtXTqNiPln3k86mVCXNTrUJK0W2dY+u/tDgmiJ0A4Jug7xyNsQVUWRTum7MbJOaIiM+VYD0ZvDbvUJ8wCnFZkpUY2QOIKhiEDvga5wrgW1owgVpQoolMQ5SSUlUgiks9xsb4dV1GgMAicUwlU4aoSqSEyL1iCFxe+5W25xUTzKurY0yBmIGm0NsgQrJYUEiUJLQyE1kZt98VMQzsrKi9mVG6tn5dkDaWf3ZViBNBKtQ5ACFWviOKEWNdX+kChs4KyhHI3pNhXJY5dIx0Oc7dJodzj/yLsYXM2R6Zj2wjlsukOj6wgeexJpSzCGrJB0H/kz9AZb97WP46eeQghxZo6lB+E9rnOl9/oKrGcHIWaXwI7LGzRA6qN7s50Sr52mt6bsCiGQjQbShUihEELcmqapd3bvGCcad978pebnKUZ95NRixwXRfO/gcTd+n2z3cNMRrtWeecMIoQOklLO4ZgsGKXV/gBwNka02CIGMQqSrkVFMq9EmVEMmwz5WgJxmxFFEHHQJxxZdBVQYdKemsDFV0UBEFUpaBBJjFLE1IARaOMrAEluBUAYnJIiKG//wUwkQTnL7r2mog/urReCUBSSCGofD4rABGClBSBwSYx0NUyOY1bEIMCA01iqsckgCAqmRTjCtc4QTdFRIFLXRViAcyEKghaIbnsNpQ6oq7HRCFmmi3BE1uzca5dUIHCJuYKZTGI0w4yGq2Zp9BRRFGANKOJQS972P7TRFtR5Af5ZTciw9cO9R471nirObjBwDhyoHfVZi6wrqmlSWbA+uMSxHGGtQUtENO5xLlojrGpdn8F1Te28yrSdspRuMd69SNAZEu9u09UWW9eo928trWxBpy+60ZNTfZZzmWAtSQjuJaYdtWg3Ihin1vqUKAWoEszHOQVbmDOoJ6WhCXeSEWY0KmihboQKNdQ5jHEZYpBMoJ8lRVEhCVxJYC6ZAGIt0EiEkRlkapUI4h9AGoxS2hpp6NjXYWapcMQ4nXIsSYAq8kQ/cKS/lz1NHq5Q6QCNwBCChkOGNe1QMCQIjFM4JBFBbgRYV1mqMDqgx5M6gLURKU9UllTA4HMJJrHVU1t1IdgSustTOEmhHXleMRhmGDBGkSAl5sEtoe4QljHenpLsWEoEc10SxBOGYmw8oxJTtdPO+9jF1dTzv6VMc6/EcFT4ZOSIOVQ76LMXqWUnxV3eukSlDK2wRyIDKVuzlfdLpkEf0EnHcAK3vmNoLs0Tk5cErZNMh7ahBc36ZenvM3nib1BY8NvfoHR9WN6d9ykYCYcn1V/fJK0GrrQliTVXV7O4WTIKcJ5aaZLliMoFmtyZMAuoKxiNFVcPu7ss4IUiiBklvjmp3nzKtyd0Y0RaEqkeBwZoAERegMkrRwaKZt3sMgy6FalIzuwk0sIbACAaBAAxCSIQyUAM4tHTkpFRZyCvFy3z2uW8DP3tnbZF78bs/yy8BH3vmg2TROearJlIZmDX2nSUTwiKsQAuLcBaHINKG0lRYCcYKnKux1oKSOAm1qilqSVGOQSWgNCZyWOmYjgboQmBakqgdMMpqqloTqApncnRnmf2BJaBPVyYwcAQKQl1jCNjfq4kagvZSxivDK/e9j9HB6TsejjHW4zlKztbU3mPiUOWgz1isSBrsRCVFf5eFRo9IhUghiFTIQqNH0d9lt1EjFxdeM7X3lpmtyRZZnbFQBoRL55ALPcLFJRbKgKzO2J5uw2tKbd2c9ikWemy5GlGPWFyM0CLAVgItAhYXI6hGbFWW5PwcvfMdbJpR5LNJPHM9SeEynDQk2iKjGCtDgihBy5qCFFcpAiUJQ42ShtoIKqdoBFO0yhnoeZQ1NN0ETY2wAlkpnHRoKgQC6oDYlkgH0kFkY/rhLmnd4Vx3j7/5wZ/kv/vPfpjgrlJidxLgePZH/lv+3//Z/4uIFxjaKzT3lwmSHIwkMoaocoQoAllT29lXNhJHUSkKF2GdwwmDsIIQgUSRyQorBNrCrDKKRWnASVwtCFAYVSJDxcQIMBmtVoASEmcESmgWFiJcMaWILfOP9ZCNFvkgw1mYX9A0Esnm/h5p9Sb2cdI4dcfDccV6PEeNT0aOgEOVgz5jsZnJ2F+MSLo92NqFwRjGk9nz1i5Jt0e/F5DbnPDSGrLZpNrYoN7fZ9LfZrRzjfaggKQB55dn36FcWIGkQXtQMNy+yqS/Tb2/T7WxgWzO2stPspR+FNBZjEnMPq1gQiue0goms5/nG/SNQjVh6fJ5FldjunLEXJzh6n3qfEQr7tLoJqiuQKgJqgUqVoiGgEqgCktUAqpAhQWhiHBFE2pF4ULGokslYgwK3I3ptULMMh4c1lq0gdBJjCppVUtsxt9hMY25uPKf4Oa6qMk8P5t+8p4JSYDjH+7/e2y0yE7wCsXyh+h2h6i9JYJkDJWmYWtCoHIVpTNoZRGzerIE4Wx2ihSWhqhASSplMKKmZSMSEaHCAKEUtavQtSOpIakccRiRXFhExoppXqBkhSr2SRqChcUODTEhzHeJmg3yjiSclyw/fZ6FldnfuqWmaMYMtvZo7pX3vY8zk5264+G4Yj2eo8Z/TXMEHKoc9BmMrZKQYG0N/uO34KUrUFYQBrC6TPDkO6gSQW1rVKdLeOkS6Rf/hOo73ybLJshyF33pUXjnMrRv3DvRbsKFZfRXdpFXXiULR9Bo3dFevuzvUemAYHUZXngZdrahNBAqWJpDXzpPvQsOg2zOoc8tU33z2xRXr5BNRzAYIlvzuFaMUBZnzKz2RhjQyDV5VTC1W7gkx1IjkYDACYsTdnbjJY7KKaRwCAcOhcQghbyRWlhq2yUxGVM94Py0Rbj6dvbrfRrlOZLmNVLmGF7bI//qxwCIP/I/AAmQkv/uz2CAVz/wfyNqDdkNC1wj5dH99zNclcwXs+9oKp1gxewekVAoaqPQSHBQ1BodOaRwWGFBGEAinKBWNZWo0CVoArSx5PmQUqa4MECGMZFukxd71EDUauFGA9jtgwixymF1E7kwjwmgrmsazTb63DnK579Dee1VqjxFFBnybW14+v72cV0MT+XxcByxHs9R45ORI+BQ5aDPYGyQllTrm0SNGJ56EqSY9XvJC6r1dYJgBS01ZjSivHIFkTSI3/0ehCsxe9+hNhBe24JWc/YhNZ7CtS3qWGMuv41k4e1EIryjvXwYBAR1Rb7Rh7pJPT+PQyKw6LrEXN9G63lsAf1Xdhm/uIHNI2Tvbdi5jLr8KlU+JNiUyPkF0AllPsWMcpxrUsqC5twidaiRUpJnCSKeIGID2hK4gkBUhCJDCnvjmqUBJ6iFRqCQQGjbNGzGtDUmvlKwuPokm3PfYmWgqLMuryavMJHf4b/50H9GTINg+7NEVUCtK4oP/TQpE54bf4FO8nYuqC7n9ptU0wvE79gjeCVgHLfJG/MIY3BCUVqNljXCGhCORObktoEIxGw2jTOERiCVJhUV1hqalcDYEi0DRNTC6hBTF+SjPq2spg4KpNbIqsLKNmlksCjCqIF2CfXePmK+RdqvydIdyuubUEVE555ARgY7uoptZHCf+1g3TufxcByxHs9R47+mOQIOVQ76jMU2VIP53YJ02IflRei2od2aPS8vkg779PoVsYwpr6xjp1PC1fPo+XmavXN0l84znoshzeD6FlgL1zYhzRjPxcydu0Czd+6u9vKtRkJ7UrG/YSnDDrIVEXQCZCuiDDsMtwzNyjC+XjK6souyJcnyHGEnQYQdrAnJygpBhCwrdCQIaodxMKkmJGEb4RKEjQFBGE3QJqAoepg6Yt7uU7mQPdmbdeiVUGuFxCK0Q8gQyoSFMgS5hkgU2/GLrF1LUAtPcWWpZrB3haXBPBcv/ADZimBnbcDLb9viG5ev88Lbd9m4NCRbljy59j6e2JIsfrPNjrzE8GnL0v4YMTB868LjNE2bsCpRUhAKR201zilAktuQwFZIBRKNsZKaWV+dFhGhmXXXsbXFoRBSE+qQOGkRyZhxNsAaQVMEZCOHDVvodhcnCwgUpjHHZN8gdiyuEIjxkJCSqDdHIRqM04R2r8d0IbrvfdxQjVN3PBxXrMdz1PiU+Ag4VDnoMxbr0oylIiTtLbKX9e+YTTMpJzR6iyxmGru7d6vOyGvMLLeWSeuMvXBIe2cb3etQ7+4wDg0N3eVc8xy8pjrHzRoUanePuTJgN0lIqymJDtFCU9uatCpRSUKzVNgsRaRTRDu5dY+kczVhGFObJnmVEqUVKta4dEptJbUwNJFEtUaLhLFRiNAhnaBhQOPYlT1Calp2PPtqxgnqyFAAMjMEVmKm0N5tMXdB0XePsHluj2T9ZZ745iNsPvo4r/7ZS9hBTme/IB4YhK1RyiECBU4hXTWbnhskrD86h+xoLpVjll6Zwn7FRnOBb679Gf6ToUHmE+o4x+FuXxnBEUvDVAYIlxFaQeAiAusIpSCuI3A1SkiMsNSuIrYJQa0wzPrblK5AVooQRx6EFFWKqg0qaOIEpMUIGTWJKomdpojpBNlMbryvAAfzjXmmenrf+zhMs1N3PBxXrMdz1Phk5Ig4VDnosxRbVzREyKNLT7Cd7jAsR0ztFCUVi40FlhqLxIPsnnVGmrrFY3OPsiU3GG9eZbS/RVRkLPbWONdeuWcNinKUEtiAxx9dZHc4YpwVpLZGScF8u0k3aZFdr5mfl+Tp7N6OOndIAYGGTiuh1W6SVztkgz753i66qOgmS3TCBaq0plAjSjKEU9gqwQQFItpFyjUqeuQiJpQah6SUIS7S1KqmDip0XVGhKbbmeFen5P9qX2LYnOP5tX1WN7/Bua+ushT2KDqdWQ2Uxo27TBzgbvSNwc1qk9QBl7Yc4csZqhqTyoyX51fYOP8YT9Rt3jYsGNgMwgEtY9izS/Ru/L0yp7FC4qygFqCUo3SC2lZMxQBpakKR0EjaBJWgJCOrcwwGoRULwQqFLmeJZkdQWEdNhA0SsIZuIyZuzqEzQygNRelAS6R0NBqSuXkFLmSt+Qh9tXlf+5i6otOaO13HwzHGejxHiU9GjpBDlYM+K7E6AK1JbMjjc4+T1zm1M2ihiHWMzQusrhD3qDMCs4Tk0eQi6WKCvPg4NnuJpNFD6rtbdN+sQeGCCCMl3Shk/uIqWVFSWUMgFY0oJJ+UTKiJ2g2ieYnVzOqTSEFe1PS3Z+XSm2GL1BbQbmL7I1quQURISkaoY0ItyG2E1QapakzVwtQRhAIpHMpYCqeZ6BbNuE9daHACzZjQdUinBfMvtfmhi45vdRe52jnPF6IANbZ0spqoLsiLECsNEQWiAkRMpdWtr1OSOsUEAeVCTNZ4HOKYJGrw/rHk6d2SKh0wULuYcEDbaRABuyKmRBMKgxAGayUVAQ0BSgiUUlg9K8IWOo12CqkFaIPWIJHUVU5ME6MctTAkMqLdaiCDGBk10EKytLLMaBdsaOica2LqPi4U6Ci4MU0YsszRkM373sfo4Hje06c41uM5Ks5uMuLc8fQBcA6KMdQ56BhUw3tfg2wm6N4C1eYGYnkZm2e4qsQGIa4ZYQb7BKurqKVF9M5snFxZwWY5mBqURjZizP4+ai5GNCWiHWH295Gr8d3jbvw+sbxI0NmkGvYJF3vYsoCqxgYaF4aY8QTdaiM6HWTWpd7eQ873sEVBYGbFwsbD6zRDS9xqIebnoJZUexlVUdJUcyQ2AacZK4MpQ6IiQSU1QkkCKoLaEriMkWhhtaHVShA2A10QTvehCigrzWgkaXynxQ+1muRtTSUVGSGFUBDWN+qSQO0UVkmccASYWQVUFEoIQlFSIJGFppEFzE8NOs8Y2REDvYFJ9mgEfbrW0pdtSkIyGujQoYzCoNHKoWtBy0YEMkQLxUBNoARR1UgREWiNdgFGWIrKMa77uPmEpLlEpAuCsMF0MqTa32Fx5RECHWGyweyG094cjIeUe32IeriipC4NWImUGrN3f/v45tc9R/2efmAcp/e4zpXe+9Z7TwhnMxnJBq/pkHhjxzcXZ62c38IOiaPh+q3Om7Wp0Cqg111jbfUDr9t5Ew5ZDvoUeYUQhJfWGF19id0//N+YVlOcdQgpaAZNFp98muaNdvDhpTXqzU2mf/zcrBaHmDVuyfMRw+aUfRVSfUsS5Jb5ayXd7zSJ486tcXe0l28EdB5f5cp/2GT8neeYlmZWAl04mqGitbzG/NuXyKc1TnUZD/tUL70EGAJpKft98kmfqmGozBQ72SeoYD4NULWiESbUqcIEOdQOGQpSUZM5iQXO1TuURIxlzKbuccEa6maXqlK4qiLs7iPSFrqUYBVZUVNVFjdqIyRoO0EjEG5WB8QCIQJhDZqCSijAgZMIYVEOpFJgA5y27IkCI0ZUQYrQY0yjwqmayixRiJiUiC05T20kTZEipKBQigrD2OUoalzlUE4gLNSmRiuNKSxFXmKwGJhNaq6hudAm60/pb71EVs5m4WQDS7YxRXcfIWl1mA4KMtOiGOxjXnmRSNUgBJ24ZHh9j1Hr/vbxzSsBZ+VYehDe4zpXeu8ReU8QZy8ZyQaw8dXZfxhJD3QEdQHDa5CPZq2c34KdPxqu880XPsM0H9BtrRAGCWWVsrX3PJPpDpef+PA9TyqHKgd9Cr3jcsz6+CpVOSZWETrQ1KZmVI7JxleJyjFzzLxOAM7iHCAERbbPVv/bZE7TiN9Dd65HOeizP/kq+V7F8sI7iZLeXe3lhRDUQc7maEiZKpIQtIL6/9/em8ZIdp2H2c85d61bW6/T3TPTQ45EckRSEbVQkof6ECq2lliKIP6KI+SzpEQGApsExPxwIgV2BMeJR3SMGAJsSAIMiUEMgQgDUcKnOFJoLRQsUTbFxeYmivv0DHvvrvXWXc/5ftxZ2T3D6emZqu6u8wB3ClP3vPXcvd6+dc97clgPLbrtJqPVjO5aQrgW4QhOVScVNEJJkvZA2PRSsHONZStUliN1Dcey6bFGlFZJRUSeC4QdY7sJlqri5BnC0uyT8yBHWXWrlHSPQEwyqiRxGCKTDo73GlqOoXSOYJRcRUgycgE4RQKiBQgNliryM20Lcp0iidFSoSVFbxdchHKQFHG5VCRehC41UEEHx00Yz6GraixaIyhhMS/GkVaGZStsS2HlGQhNpnOKKilFHZZUCxKRIhQIbRHqJpqMzBJ4/jg6T+mqBqvNFVQvp+R5uK5HrmA91NhuC3oR+bxDuSRwXYhQNHsOrq2p2Q2WOs/SY2v7eBjPpW2Vgx/QtdJ4++TdYQxXMqJ1kX3GbagfOPu+Uyr+3zwJ66+Af8sVvT2mlWJu/hG6UYOp8evPvO97VXyvyuLq85yY/zk3Vg9sGBL89SWdz8TaPr7ts9hd5ET7BDeO3bjhN+Dd6FVKcfIXjxJlEaPvfS9ExbDxrmXh+i7rcy/x2i8fpzo6TXJ8DrQmeM97i2Hj05Sl135Kd6TGeD4C6wmMCPy1BL+6n9WRBi1fcGj/WxCOc97w8s6RI5x45mmwIkZvnCYLc1QOlgWjgUVndZkTz77A9HW3YLVCekojDh7GzjNGszarLyq071BRmiRVaMtGJjmOBdiCJBeUSw7a0vScFFIPJ6sQuCnjepU1XaGZT+LKmOVyiYauooSkWw5wnZhmGjGum0id0iXGy48T6RIV3cHFokGZsh2R65iYGlaW0JMlhMpwrJRcWdRkFyUFa1Sp6wiZZXRlBV8l9OyAROZUnIiecMl0lVeFz0lrEmFrIumx6lSRto0rFaMipCwTBBZlbWNlNo5l08zbJFIjZFGozXEtBD6KHJ32cGxNiqCxuIIWKf6+GkL44JSRpFSnJumsRIStBaaunSR8+TWyROMcOkxZZpDnrKXLxJM1JtTW9rF3441DdS5txzuoa6Xx9sm7AxmuZCTpFLfBgrHN5wdj0F0u2l3BoZzDcIm15hz1yvSm8+uVaVabxwnDJcqva7OVks5l5/zRWnejt9taob10gmBiqjj5St5584OJKVoLx+kszCFPde09PWx8RJdmtk6lPAnKgUanmJodqARUpEMjXmPGSfBLxV+Dp7t9do8fp7mwSm26jBeAqlrFLz8SpAXICo35NjOHGlStDuWDVbAdpHTpdtqkKgKVINyMMgJRCyCJSOMeVpZT0lXKdhXtZoTCIsMm6ZXReY+xUofY8clzQeg46MDm5fwA+8UqqfLYp9YoW7CY18i0JLFsYlzcPKUjq7ikoCyWRYAQ0FUletIjoIdUEEoPn4SOirCkRgIrKgBp0REece5SlhFawHLuURURuZCs6iqZZbPuVJmXk+SuYFq0EcrmgL1KkEeEIieRRaFaUDiWhZULHGXhCAfHchh1R8lUSqwlve4qqSfJEkl1YhzHs0jjGK0T3HKZUk2SJmWSsIFFixE/RNeqpx5gdeiFDV473mOiOlXsmC3s46y1MlTn0na8g7pWGm+fvDuQ4UpG8rSYbG/z+ZYLeaNocwXJsogsT3GdzR+gc+0SrXyZLIs2xm6nHPRu9CYRKklxvI29IgAcr0S0ukzW6+C+rmtvlifkKsOx/aIGSFdBnEKuwLFxkHTVOlmenIk507W32yFPMxzfQwiKnhvnYLsuedYlTyNErnCqzpm/RJUWqDxBZylurYzMIhCqOLtSjU4U2BbSEmSWxsrLxDpDuW0sHCbiiI7sEdkRlSyjZjV43nkTr8kxGl6Jl6IJVC6JlUNX+/gyxtGaOHew7AQJ2JkmtwS5EMSZg+0ItFKIHFwrQyFIchdfRrikRMpHOZpUuFhphpSqqPyaC3KreO7D0prcksTSxbd77LOaiKxE2e6yX62Q5Q5Ca2wkAuiKBIGirGXxc5EAISRYYFs2SWKRJxmi5BSl7h0baUm8ICBsriEoIaSNtCU67JBFER4KGTgIWfxVqMmKO1ayBE6+pX2cJdFwnUvbKQc/oGul8fbJuwMZrmTEcoopi4vbYK8nT862uYLYto9tOSRpiL9JdptkPWzLwd6kZPO2ykHvRq/rI12HNO7hBZUN89O4h3Qd7FIF7LXzuvbaloslbdIswlMOWBK8U69pRipTLGljn3NxPt3t0y1XsBybNIqRQYDKOe/OSJYkWLaF5fhoq03aS8FxkIKiS67loIQgjXpYAoSW5FmKpQS+U6KVreDhIAQkmYPO6th2D1Vq4dFmfy9jzR6l7QR4dsqsu0AzqpILSeJbrCdVBDDhtEiUh9aSMdFBa02GwNGaVDukloWnU5QCJSS2nWIlILSm7CdIkZPlDq7UKAkl3UW7FkpbeCIpRhnOfCytsJyUdlalTELVDinJlBE6zOZdqolFmrvkCFKRAja+sIhUSCxsFBmZLpKRXGoyldLJ1ym5Ad08QZGgUsilTRbHWG4ASLTKUJlAWDa275MhoZtg+S6WLRDYSAty1YPU2tI+tl0fOxmic2k75eAHdK003j55dyDDlYy4leIJ5ebJ83+fO024BvWDRbsrSBDsY6w+y+Lq85teUJqdBabHbyAI9m2MPVXSeTFc3PSC0oybTJenNy8HvQu95doE1X0HWZ97Ee/Qxv0Qriwyds31VKZnSda7p7r2zgDg+2PUK1OsNo/jZXWYqMNIBeoVWG3SsZtM1K/B98/eEj3d7bN06BD16XGWX14iHy+TxaLojCHA9jTdlTYjM9PgjNDJe4SLDWSlhgCE8LGdCkkWodKYCFDNDCv1CJQgs3PKVpUs1cWkPSwvxo32k6XjJKlLyQ6ZSmHCWyd1cmbTJlbkk7mCnp2hLY1OKnhBC0unxOEYWlj4wTKOimh1DmD7MVImqNwhzn0sp42FwLI8stTFFS20rcmFj0oDXH8RJSDpjOIJiSqvo7WCsIJdgtjK0FojkiqWnaASSdANsLSH5aXkaQVb+ZSUg6MctAWRclGKIoPTkizV9NIeOTlWXoJSCct28ESDzuoaXqWOtMpYbkDcy+h1NHG7S2l0gpw67ahDttTCrtXwfAmUGa3XCONfEuRb28debYKxbHlozqXteAd1rTTePnl3IMOVjAhRdJWKWsXOD8ZO3QZLip3uVWH02iv+oJCQktmZd9PpLrO4+nzxRLxdIsl6NDsLlP0RDs7cuuEBtGKRt1EOehd6pZQceMu76DVWWT/+IkFlBMd2SbOEsNPAr46w/4Z3YFkW7qFZ8naLdH4e4fsISzLpHKDXPs6avUwwOomrFcmYS7iwTNBzmZjYT95uo3OFjiJkpRhe3rJtDt50M0sv91h5tUmlbuM4Fmma01jIKFWqHLzxOrprGWEW4LpdrF6LDItOJ8MTZbIooqM1VlVi2Rrt2kSRJlM9JoIJnLxEkml8OUXqxKR+A5lUsHvT6PJrOKV1ZFLC7oxj+01k0CJNfdzuCNJt4lWWyBIHqR2E2wAtyGMbKX3K5UXStEQW1rD8FnalSRqVyNoVnFIbt7yOSsrknRr46zjlBjr1i1s/bpNca3Qk0RY41QZZEuA2K1hBG7+ySBoH5L0JNALL6ZJlDsTjeMoDpVGORiOpyAA3s0jzDCkFXm5TtkrkZPRkj5ZKsJRmZN8Ei3Mx4XqEX5XYUpDnmvWTHbxShaA6TWOpR3liFFv3SNotVtcsPE8yPTnB6tIvt7yPpZRDdS5tqxz8gK6Vxtsn7w5EaK31oBfijWi1WtTrdZrNJrXaFShfvGmf7slip/e5zsh4/RAHZ269rFoB46XxSyrpvBu9ay8/x/xPvk849wo6ThGeQ/nQYaZv+1XGDh850y45eZLw54+SnphDpynCccjGA9ZmFGt+56w3qjL6GthrvTPtnNlDBO96J+6BA2itWT7eZu4fXqDxy6cIl1uoTCFtSXlfndp1N1Hdtx849TjK/Arxq3Po5jq2SljsrNPO1qAuSC0LLQRWLhjr+Ni9ogeDbXkoKem4EuyY1F1CBSGZk5OqBFtnKCWIc4WWKa5tI4WLFhax6iF0giNKWEKDHaI16MRBKQE2CBy0sshlghYZWkmc3AWhsWRGqkHiYUtAp2TCAkfjWBE6V+SxS6RzpMhwZRmUQyoTbKHIsxxLlEBLdC9A9+rEiUZJSZUylmUjRTFOj5dJJuIyLi7SUvSIyF0LhSJNQ0TFh/014rBNZ2GOqNkiz3LKwRjjhw7jTL2F8tgE5bESSS8lXW+QzZ3A6qxArqgFGdWDFuv7t7aPB31M70bvoK6Vxtsnbx+41O/v4UxGYGDV7rRShOESWRZh2z5BsG/Tv2o2jdX6sks67yZv3mrRe/pp8naHxBHkUmMpgZtqrGqF0s03Y9VqZ9t1Oki/VPTDzXNU1MMql9GH96FKNrKXIV5eIu92N7arFJ+XuwEn/uE19GvHIeoRCUFejDuLrzWZ7dMQE0zfOImrE8LnXyLt9rA9FyUELz33Ms31OWqjPs7EGLg2updivxoiexaRzKmNjGALQSfOiJTCzSEtp0RWThYrhJLkIkblPVIrx2WEsuXQJSKWGXEUMW4HKAkuLsrSdFWbKEqp6DpB4BO5EULaRHFOnkU4OQS6RGRLpBPjZIJUWehMYHmaxMqxlUWQW3R0j14WoxGMO1UiociRoCHL1rHtEgElLO3TI6cdN6jkPmNuHccroW1NS3YptWGk5+NYLqJskzo9siwhikPs3CWv2DQ8QcXuIdIeYZaQZRnjEwfYN3KARuRjT+1j+i370GFI9NIr6KiHU3LJschixUQtxh/Z2j62zrl2DMu5dCW8Q1eRdNi8V5lL/f4erp9pzkWIwXSVOu11SiDt/h1su8SrtSY5PofqdnH3z6CyCE6NTePaPunC2ZoRZ9rN7H/dp4ySzs+TLTUQN7yZ/JUXsbvh5u0W5knm5tCHriNdXMFJIuzJcbI4QSuFLSWO55IurJH2msAk6cIiqhfhjI8jBaRxBK5FbeowTrJK3GiQlwNks4OLh1uvoLoZWufkQlAWHhk9UkciVQkZdfGUR9dOQblUZZVER+RS0kwzPEqMOTZtt0M31QQqIMAn0xkdCUJm1HUFV/nEsU3bCnFzzVhaIxaSDimekpSyMlbuFHdZLJtAe8gwJBOalhC4usKEHKFJl7YCP/OpCo+OG5PYVazMoSLqaKFp00ZYDjWngq0EeZrSI0WohIou4/hl0AqlcrI8RwmBi4tV8VAOpI0lQjfGr1UolceQrg9SoutldKuHajbJswnU4hIqinDHx7FsgaUhtzX2vlHU+uKW9rF/001XZjyWXXIuXXFvvzHeoWJ4k5EBsK1y0EMSq7oh2doqccVlrvESzaRFrnIsaVF3a+yrjCBWV7GXV8hO1Rl5Pd2sw6Js0H7xl8RqDu/lear1fUxl1Q0jup6uQSGrY+hui45lsXxynnYYoRRICdXAZ9QpQRzSW1wjmmuQEsBKhgCUykjT4gu3mcT01ptkrRZemKPlCL4fogAvDyC1ELmFnUNuZ6QpKAW2EPhKoLKczFakucKxbHwBIs9AWJSUR640Qio6IsJXLmOyTKIzMqHopA0QNm4KVgo5gKVxc4FnO2RKIzSUcxtpWWitkEriWRZax+RZRm5bOJnAth1Ak6gIL7Wx8LFyScfqYSEYJyDKLbQlWc3biFwQqBJeYiMQhE4PlWWUpI9SFrnWJHlW/OSW25CnpELQbrXI6SG9MkJldHSJQI5iNbs0Xl4mfq2JtgOs5QzPl7i+QAhBT3VZ2+I+Vt0Qq1LeVefDoGMNhn5hkpE+sa1y0MMUm6WEvTbHsxY9FVNxKzjSIVUpq9EaoexyKK3hRT14XZ0RKBKRlxuv0Mu7VLEpywoZNqt5m7DxCodHrj3vy+p0DQpbxSRpyItLKcpKCUoOtlWUoW+0ezSzjEnpsnayg+xpvFEbyxaoHDodaLd7dHurSC+l5LgE9ToqaxKFEe3lJp7rgXZwXItSnpN1QwhjHLtMpiSWdJBOhsoSZJqTiRhfBsWIvUKjoowsaTDijmBXyiBsZA7dqAVJE5SHLyVerUzmeKTtJjKKUVmCJ12q1RGUVyQmYScki7rYThnpSCzlYZOTpyEy7aJ0QlmWSVOB0Aony4nSJoEziuWVQNjYKSTZKiqKsWWG75cpeT49vUazFxFHMbblIfxJVEmQ6ZxOY528leJ6VaRj08lAobFlikjbWG6JTi+hGXapaAe/E2MJjV220VoQhopWSzEylTPXPUG0xX1Mlu6+82GAsQZDP7m0HxwN2+L1ZZl920cKiW/7TJWn6GZdTrRPsNnjO0MXa9uspGv0em3GS2N4losUAs9yGS+N0eu1WU3XwffBttFJcm40i51FelmPcbuG65aQno/rlhi3q/SyHkvdJYpHUE9FnB5e3vdp5S3SLKbsBNjSLrr1SpuyE5BmMR0VFm2FQOfZmY+xLJs46ZElXQKvgmW7CMsGy0ZLhV0MNAu2hZIKZYFjucgMcCAROTkZJVnBlwFJ2kLJDNu2cSgmLE0vWUNZGSWrREmcqq3huoRxgzQJGXXHkJ6F8gRCSgRF8uEKD2lLhKWRlsQVHlYO2oaUhIyUslUlkAFZ0ia3MqRl4+DiCQ/tQBivg51RtgJ84ZJL6OmEOG1REUER62hSoclFjqXAFg7KhlzmCMtGCguZazIbYpGjdE7JDXD9ClkSIhSUvSpZnhLrBBwbIU9ta079KqE16731y9rH2rZ33/kwoFiDod+YZKQPbKUs87DHRi40S1CNdPFAVy+Gbli8ak010jQCiEcC7LFx8sY6oFG9Ht3GCq3WMhWnDM02jI3A+AiM1qHZpuKUaTaX6DZWUL0eoMkb69jj43RLPm1bMBFEOJ5C9TKyVobqZTieYsyPCYWkerhOMFElbYVEkSLpJaikhfRTSpUA1WuhLJscB2VJwnQN4UqsRGDpCIucOIvRqcZxyyQkCDcBK8ZGIRTkaHSWkokQT2g0gszN8MoVorhDnuToTKN0CKqNlB6uI0lEjMqBzEIJQZx28ewSUiiSvEOWZoRpDLnG9ctkdkZCjpQ9rNe5U0I8S2M5ikwk2H6FXq9DnipspdGiQ57EaAek1mgsEglKbuJNMtIow8oksuQSexGxzgisBCEzsm4bK/cROUgroeamUMuQoyWUWyZaD8lSjWdlVMs9Ou0mgdj6Po5cdt35MKhYg6HfmJ9p+sC2ykEPWWyuc5KZMaqtFJ545tTQs6eGohUS+8AUyfQoCoV7aJZsYYHu3z0CWtHLYkT7BI5XhtkDsH+qeOjjwDQsr+H8wy9J4i69alyUXz5nePl2lpKO1Kilq8jFF1FKoJVESIVsa5LRCTJRwikJ6jfup5s2iRdeRKBoRV2sdohre9g1DzVmo+0EhQWxRPe6xEkO7Q62E5PlOYmnCKZm8HohWZiio4x2eJw8T6k6PrnKsLoNOl5IB5eRUomxsSN0l+bp9o5jSYFt2ZRSQU+VyMoZnf0Jlta4qYVT8UnikG7UIY0jRmUF33LIVOEuT+0nC7skHYkgptN7lSzLzrhlt0HTjkkci5GgxMj4JOHKImHvVSxbkKfgKx/fgdBdR9YsHMfHuohX+YrSoQOk4Qrpeg90gt1o4koH1/JRvVX8RY0KZklGA8rjDuXR/fSeaZMtvYAlcuI8gVYDq5HB4akt7eOOznfd+TCoWIOh35hkpA9sqxz0kMamKsXTGhAg4NQ/pCo9JzYvhofXCq3BlhZSSHKdI19/51lDrjOkkNjSOlVd9ezw8q7jYNuSNM/xTseKsx+SqRzLEwis4uNE8aEacKzCq4UgqNRQE5Nox0aFPZJmizQOiWSCKGksW6GVJnc0aVmjqz69BtjNBD9NiOIuKTHC0pT8EnHFIbQ9qnWf1MpRnRw3LQpaWbYgS3Ja4TqOgLGpwyjbI0s1OoyIw9cIo4hMZIyXymBppC4KlKV1RR549Gyw8x5SJ0Q6PON2vYCeE5CMeIzUS6SZJu/muK7GEoLc1nSikJwUfBd/pkzmBxf14khkySJwJgh1hJ+18LBBWOiifj1SCpRWSClwbBuS0/tIgaYoBy9BkZ37S8wl7eNBH9O7KdZg6DfmKOwD2yoHPWSxJavE6ErMehLiveNmiBLI86JuhO8Szr3E2FqKf71PcvwXoDXBe96LjiJ0llLujrGqO4x3NLy2CNdfCycXAE3rxkNMiArV8kGEff7w8pUjRxiLU5Y7OfnMdWRhjs4UwpbYgUV3dZGxIEd1YOW11wgbGjFxPSJPsWWKk0q6yTpBYpEvROj6CKxn5HmJrhNTG5/EGZklt23STJItz7H86hyjh2/AznISLfFmDqPWV+m21/CrY1hj4yTNNcYqLpYdsPzqL3FkBWvfLEJlSKsYgdeRIXGvQ7IYoaoltALWEzLt0HN6lMtTWFOzpMpCCYtkbY7uq3NUD91Axc/ptcCfeRNq7axbjo6Tr7QIcg9EicXjv6TkVHAmZ5F2jp1meP5xmu1lajogXc1JR6w39r5SeEdcRRRJ5NS15FFOErZxgirJ5BTx/DqltiJe16y/fJKspbEmbsC1MshzarNVuvUmpe7W9nHpxht33fkwqFiDod+YZ0b6wOmyzGW7zGJ3kSiLUFoRZRGL3cWLl4Meslgd9piMXbyxCVajdWJXoMolYlewGq3jjU0w0bNRK6tnuvYKIZClEla1xtTEIUpOwKqbkiwvoVbXSFaWWXVTSk7AvolDWNUaslQq7i6c6vapV9eYEjbKqrOyEpNZGllxyCzNykqMtutMOZLufIPV11rIUgnPB+k6tHs+9doBbBGw0u6RdlqIrEsWtmmnEsuuMDJSJcol7TZAhlP2sJGEyx2cWIPj0Wj0yCXY5YBcQGO9h7LKjEhN3OyRRhLpulh2irAlrY6mG4ZMz+zHDfaxOrdMEnUQIiYL23RSiWUHuHaZTlcUiZWTIR2PtCdJGyGjlkZZZRrr57ubjR7YJeyeprvUwRYSJ3CBlHYbYiUZGalhWRXaiSDrnl3nrXjX10KipINVLmGVq6ytJQi3gteTrL+8iup18EdKSAnNliRSLtNTMwTuZezjsLfrzodBxRoM/WZ4K7AOgG2Vgx6S2LzRIHzsMaKREkvh8nl1Rka8OpOlCfxGD+/NbyZ+8UWsickNVSi7WYfF1jzthRPEs/vw5paozcyyrzq9oQaFznPy1RXcN72J137+Equ5QzNq0e7F5EpjSUEt8Km6FZwww943Sba0TOqW0VogBbieoN3OieIW3fgknZUVsrKL3U2oTk4wUp1AZJo47oBWZKnAdgKcHKxRn7VXT5I7oJyEFBttuYgswZU5vuXiJJpg+iCi3aOnIYlDQOF6No4XEFTGSLIey6+9QNuzyLIcp9mlOjGBK8cRKseyeqRxDkhcv0wJjar69BZOkrqCXhaf53ZEjkwd7BTGrj1IttYjtTRZ2sN2iud3PK8CtmStvUxn+Zx1vgyv8Cq4rk+15GMlZewoZ+TwJOGJZQgCpJR4vkQDo2M2/mjEUnthS/s4eOc7sUZGdtX5MOhYg2G7mHLwO5RtlYMegti80yV87FFkUEb6HlEWkZ2qwOrbPiqKUWEX/8hbiJ77xal2G29Bq6hH2FpDXv8m1PMvEdTGijLhG9pFqLCLvPZ65n76HE6lhFNy6MUJqcpxpEXJc+m1E5ZPhszccgi5fAJll8B2kFIU49osZaA1YyM5YWsNPb0PsbBEbXycTHsszieMTygcR6O0BTnINMI6MMvJR59H2zb7DgRoKci0Ku5ESAhbEWsLMQfe+WaslZPklk+GRqCwHYs8d1hezJgY0zgqJN4/Q5LG8OoJgtoYa00brRSj4wp0MZidjcDKI9TkQU48+gJjUx5B3SdVnHELpVk6GSKyjAPvuo785AmU44MFUuSkqWR1RTA142CLhNbq6pl1vlyvIy0c6bB0MkKnMTNvv4bsxBzaLWF7LpZd/GKXJprp/Q6Wire0j4N3vgurUu77Mb3bYw2G7XCp39/D+zON1hC3i5ER43bx/356e+vGuwmyfLbLrtYaFfXQnU7xqs9207QmJzZ07VWd9tnunOvrWFUfWZZYVY98/QLtTn2eGB1DlGuIsI3WoJIYehEqiYsB6bod8ALssRGsWh3VaYMAFcfkYQhpgpCg2l28egVvpIxXL6PbHYRQqDTFVgpHWDiOi+52sGo1rHodtzaKnYNlueg0gV6EThNsx8PJcqzyCM74KFatju52cFwPGws7zyFL0Fqjww7WyAhuycELXLx6mbzdRaAgz5CpwsbCcb3CXa/jjI4Un53n2I53nltaLnYObn0UWR/BqtYKt+PiCAsrz1FpipCg253z1vlyvSop7kbpU2MLiVodq1ortjUaHceIOCSPYpTa+j6W5Sv0bMQuOZeuuHdQ10rjHQq29ADrl7/8Zb785S/zyiuvAHDzzTfzH//jf+TXf/3XLxhz//338/u///u88sorXH/99dxzzz185CMf2dZCb5tNR0icKIZy7vOovWP1WWZn3n1ZI29ecjnoXeQVQuAemqV14iVWfvQdumkXrTRCCspOmYnr30r51HDwr+/aixCgNVHUolnusm65pL+QOJFi9GRC/ZdlfL92pt253T5zx8KZmqD1zDyrv3iEbpKjtUAITdm1qB84iDN6gDRSpFaddnON9KWXgBxbQi+1yLKIRrlLt+OSLb6KnStq7ZhqYqHyEdqd9NSovDbWyBjeSAV3NUKXa0Srq7z0d48TZeklez1bI6Um67l0pwQnl5o0Xw3Jc4WdK8rNBKsTYNkea8uarKgPjzM+SnWmjhtnOKN1uo1VTv70/HX2bRt75CBBqUpnLSbJK8SNdfJXXsSzMqQFKrRZXWvScTNaVe/MOl9Nr+sU9WfWX1shrLW3tI9P3wkYlnPpSngHda003j55dxBbSkYOHjzIF7/4Ra6//nq01vz3//7f+fjHP87jjz/OzTffvKH9T3/6Uz7xiU9w7Ngx/tk/+2d84xvf4I477uCxxx7jrW996xVbiS3Ra8D83xeZZzBW1CLIYmiehKgFM7dclZ3fas7x7At/RTdqUK9M4zoBSRqyuPo8ne4yN173kQteVLZVDnoXettJm7n2CdKkjW952E5Rlr2VtOm1T+AlbUYovOd27UUI4t46i2vP0dM2Jf8W6iNjJI011jt/T7SaMjX+FrxgDLQ+r9un41kkRLyy2IZY4TsSSwpypWnHitZym6nxlLXXOlg6w7JBWBlKC5LMotnJ6SVdHNGlNFWlUi2Ttrs0FtZptQUjFYdmr4IjFY6tcD1wXIu4l7Oy3Kbd7OGlGaUteKPUJsk0Qnc4Ph+SpTbliREcxyVtd2nNr5O1oeS5WJaFa+VImSNtCNsZ7U6X3Ep5bbmNeN06d5OceD2k5nfxamUc1wIPEqmIUoskkgjVYb7VJq9oSpO1M+t8Nb3tWDLirrDaeZpIbm0fD+O5tK1y8AO6Vhpvn7w7jC0lIx/72MfO+/9/+S//hS9/+cv87Gc/2zQZ+dKXvsQ//af/lN/93d8F4A//8A958MEH+bM/+zO+8pWvbGOxLxOti+wzbkP9wNn3nVLx/+ZJWH8F/Fuu6IiYWinm5h+hGzWYGr/+zPu+V8X3qiyuPs+J+Z9zY/XAhocxX1/S+Uys7ePbPovdRU60T3Dj2I0bfgPejV6lFCd/8ShRFjH63vee6drrWhau77I+9xKv/fJxqqPTJMfnzu/am6YsvfZTuiM1xvMRWE9gROCvJfjV/ayONGj5gkP734Jwzu/26Rw5wsrxX5LmOdVD12CJFIHCQuJrh9bKOs2VE4xO3QCNBpbSuG9+E3mcosOMJJ8n81zqno3dzRBVcLoZ0q3THI2JfEE1mMTxLdyyC+0W2doaqjZB2FglzzP82Wuw5KV7iRSkinb8KulKSk3VsKSHoHCX3TorVYltgbNvEiewsTyHbL1F3mig6qM0l+ZIVU7t9eusHLonO4TtVXI1gVhfA61xDx+GbgJRTjvskLgeNeFhnbPOV9MrYkXXWiEv1ZhQW9vH3o03DtW5tB3voK6Vxtsn7w7ksp8ZyfOc++67j263y9GjRzdt8/DDD/OBD3zgvPc+/OEP8/DDD1/0s+M4ptVqnTddEZJOcRssGNt8fjAG3eWi3RUkDJdYa85Rr0xvOr9emWa1eZwwXNoYu51y0LvQ222t0F46QTAxVZx8JQ8qQfEqBMHEFK2F43QW5jZ07U2dhGa2TqU8WcQ0OsXU7EAloFKepJGtkTrJhm6fjePH6a6uMjbr4pQ0SjpkwkNJB6ekGdnv0ltrE/g9XNUldwPiCBQOlp8jvTbVmsAqW6hOSraeojopTlUwOiYJs5jqeE6p5pOnkFgBSbODTltI2aQy4WL5W/MGIyUq4zlhFDG6T+KkHVSkyNoK1UmxypJaVYLXwPJzFA5xBLkb4KoupSCi1+gwOuNtWGfL01QnXIRuQNIiaXVIrIA8haDmU5nICbOE0VGJUxXnrfPV9NanMtppl8Cf2vI+7rZWhupc2lY5+AFdK423T94dyJaLnj355JMcPXqUKIqoVCo88MAD3HTTTZu2XVhYYGpq6rz3pqamWFhYuKjj2LFj/MEf/MFWF+2NydNisr3N51su5I2izRUkyyKyPMV1Nn+AzrVLtPJlsizaGLudctC70ZtEqCTF8Tb2igBwvBLR6jJZr4P7ulF7szwhVxmO7RfVObsK4hRyBY6Ng6Sr1snys4PrnR7RNel2yNOMSsVFSo3KdfEYigRpQRK5NLMuUiRUA42ueGiKiqGdTg4iwXZ8SpUYKUN0xUX0usi6T5JaNDKQTk69bpFnFnkuoRURl1IkKbZXoVTWSOvSvZYNzUZOngncwMWNQ9RIUjwq0e6igoC0bZNFOX4lp1J2UEojsBCdiFDH5FmOG5Rw/fPXWeWQxjZ5nOIHGX5VQ6342eU8r2/j2imK+Mw6X01vGOaoHCxZAiff0j7Okmi4zqXtlIMf0LXSePvk3YFs+c7IkSNHeOKJJ/jbv/1bfvu3f5tPfepTPPPMM1d0oT7/+c/TbDbPTHNzc1fmgy2nmLJ48/l5crbNFcS2fWzLIUk3H5AqyXrYloO9SZXEc0s6bxp7sXLQu9Hr+kjXIY17m8amcQ/pOtilyoZRe23LxZI2aRZBmhej2nqnRrdNM9I8xpI29jkX59MjurrlCpZjk0YxQoBlg+0Wr0JAliRYtoXl+AjHwhI5riexHYHr2Ehho1SG1DmWo7HLEsvRiDwny1MsW2NhIYTAdgSOVNi+hROUwbJQWYq0tuYVQiClhWVr8jhCWALLF9glgeVopM5QeYaQAte2i2X1JJbIEY6F8EpYtkWebFxnaYHKUoRl4wZBsaxSbfRmCSJX563z1fQKbKQFuepteR/brj9c59I2vIO6Vhpvn7w7kC0nI67rct111/Gud72LY8eOccstt/ClL31p07bT09MsLi6e997i4iLT05vfcjyN53nUarXzpiuCWymeUA7XNp8frkF5smh3BQmCfYzVZ2l2Nr8j1OwsMF4/RBDs2xh7qqRzM25uHhs3GS+Nb14Oehd6y7UJqvsOEq4sbhIJ4coitelDVKZnz+naW+D7Y9QrU3TCFeiEMFIppnoFOiGdcIWRyjS+f/aW6OlunyOHDlGfHqez3N7cu9ZiZKaKXR0vuva2z/50WApqeH6ZJOkioxCqQTFVAggjur0uo3UPYVXPxKh2C6tepzo9jVcZIQnbSGtrXgAhKozUPbqNVuF0nWKqBMioR5x2CbwapeDsrfrTbqc8Rn2qQnd948+g0oKk06ZUG6E6Pb3Bfcbb60IYnbfOV9OrVIXReo0wXtryPi7XJobqXNqOd1DXSuPtk3cHsu06I0op4njzrO7o0aN8//vfP++9Bx988ILPmFx1hCi6SnnV4sGgtHfqvnCv+L9XhdFrr/iDQkJKZmfeTdkfYXH1eaK4jcozorjN4urzlP0RDs7cuuEBtGKRt1EOehd6pZQceMu78KsjrB9/kXhtFdVqE6+tsn78RfzqCPtveEfRS+PQLLJcJp2fJ1tfJ2+3mXQOELRhLV0mGnWLZR5zWUuXCdow4ewnb7fJ1tdJ5+eR5TLu7Cy2bfOmd76NUq3EyiuLROst8k6XaL3FyiuLBPUSN/zKjZQCl9gfRTk+6fIK8VqTzkrITK1KlZCVXkQvcMlzRa/sshxGlJOMw1M1rDSitdAkWlxB+D5ibJJeK2P2xjdRHXNYfXVr3vZSGyuNuHakRFDxWEwjelGPPM/plV1WehE1QqZqVTorXeK1JunyCsrxib1RSmWPI7fdRLDJOq++ukh1wuHAkcP0WhlifBLh+0SLK7QWmthZzJumagRJxnJ4/jpfTa+VRhysT1DubH0fSymH6lzaVjn4AV0rjbdP3h3Iliqwfv7zn+fXf/3XOXToEO12m2984xvcc889fO973+ODH/wgn/zkJzlw4ADHjh0Diq69t99+O1/84hf56Ec/yn333ccf/dEfbblr7xWvwLppn+7JYqf3uc7IeP0QB2duvaxaAZdcDnoXetdefo75n3yfcO4VdJwiPIfyocNM3/arjB0+cqZdcvIk4c8fJT0xh05ThOOQjQeszSjW/M5Zb1Rl9DWw13pn2jmzhwje9U7cA2efYl949lle+dFPab+2gkoV0pHUDkxyze1Hmb7xRuIwpbnco/3yPL1fvkC+toynI6plTTZaYr4sWVUpWZZj2xYTlst0JydodYmjnK4qk41O47zpzXj7JgmqDrXJEuuvvnDZ3vK1B4kOTfNK4ySrK6sb3PZ6j3ZXEAsfa3yS0vXXUTs8Q22yhBc4F13n0Wuuo7nco9dOiZeWSV96EXt9nrIM8XyLsFa+4DpfTe929vGwnUvbKgc/oGul8fbJ2weuSjn4z3zmM3z/+99nfn6eer3O2972Nv79v//3fPCDHwTg/e9/P9deey333nvvmZj777+f3/u93ztT9OyP//iPt1z07KqUg9e6eEL59I53K33JPrVShOESWRZh2z5BsG/Tv2o2jd1OOehd5M1bLXpPP03e7pA4glxqLCVwU41VrVC6+WasWu1su06nKANuWZDnqFMVPPXhfaiSjexliJeXyLvdje0qGz8va3UIhSBDYyMItMaunW2XNZu0//5p0nYXu+RjexZCKVTUQwYB6YFJMtfCTnKck8uoMDzj1VlG0okQQZngphvxJ0dQ7fa2vValgveWt9DNQ5Ik2uDWUpLFOVkvwqmWqd5yM3a9fknrLKtVouUG4TPPosMubsVH2PaZbXixdb6a3svZx4M6pnezd1DXSuPtk/cqY8amMexKtNZETz9DujCPMz2zYX66MI8zM4N3443Ezzxr2r2unX+qZ5vZhptvGzMei8HQXy71+3vLXXsN22M3DpTVz1jVDc/UDwG9YaC80zUj7OWVc9ptxBoZobN4krDmoZZOEoxs3o9/88/bjd5RspUVOs3lokvnUKzz1ryqG5qB8sxAeYYdiklG+si2xqYYltgshSwjlAlLjZM0kxa5yrGkRd2tsS+YxM8ydNSD19UZOU0367AYztNeOUFcauCtLFG1DzJlz2wYXv50DYrTn7cbvUARv/4y66/1yFSGv/LKnl7ny/GSFbUadtX5MOBYg6FfmGSkT2xrbIphirUdejrh1eWT9KycilvBkQ6pSlmN1gi7Ta6xJ/H90pk6I8I/W2Ohm3V4ufEKvW6TqleiPDpFttRmtb1EqGIOj1x73pfV6RoUwi/tSu9p9yvLLxBnbUql63Atl8xb3LPrfLlebGf3nQ8DjDUY+sm2u/Ya3pjXjxHh2z5SSHzbZ6o8RTfrcqJ9gs0e3xm2WBGUWPYS4rUVxv1RvEQjwx5eohn3R4nXVlgpZciJ8XPqjBTDxuftFosrx+llIeOJgzu5Dzk+hjsxyXji0MtCllbmyNutjcPLT4zvOq/qtMl7IYudBeK1FUb3X4tfHUEGwZ5d5+14RVDadefDoGINhn5j7oz0ga2MEVF2ykMd28t7rE94BAsBPPEMaFUMzSuK4eCD6THWxhwiFeEfmiVbWKD7d4+AViR5QrdzkprlwjWHYP8USAkHpmF5jdrTx+nkCa3KclEi+5zh5SMV7TovQpBkMd3OawSHDhbe088B7NF13o63l/d23fkwqFiDod+YOyN94FLGiDjdxsQW7zvSKbq6IUDAqX9wpHNerBaAVmgNORp16tkDXv/HngZLWiiVk6OLj+bs8PK70asR5FqhtCriX88eXOcr4d2N50O/Yw2GfmPujPSBc8eI8DcZQ+KiY1MMWawlLNz5NTKd4r7jZogSyPOiboTvki0u4C6sI98sSY4fB60J3vNedBQh4w6q5ZGWa3hrHXhtEa6/Fk4uAJr0bTegui2C2pvxvcp5w8vL6w7tOq/OMiQpKqyRNULc1xbhhsPFhtyj67wdr3X9NbvufBhUrMHQb8ydkT6wrbEphizWT6Deg7Yvip8cSl4xxkvJAyFo+4KRELzG2S7AQghkqUQwMkG9Nkkn7UK9CmsNWG3AehPqVTppl5H6PoKRiQ3Dy3uNcNd5rWqVoDpK3asX8WuNYpyYMNqz67wdr5+w686HQcUaDP3GJCN9YFtjUwxbbJYx4YxRKlVZ7a0R5wlKa+I8YbW3RqlUZdwZhSjapNunYKoyRckusZq1SJIeKo5Ikh6rWZuSXWJfeR+nfw6Ac7p9RtEu9J7jLlVpdFaJ4i4qS/fwOl++V2TZ7jsfBhRrMPQbc3+uT9TcGjdO3Himv38rbmFLm+ny9BuOETFUsbZDUKpyrVtlKWvQTFp0VRdLWkyUxpm06vgJiAt0+yzbFQ6PXMvi6hxtlmipDh4ZE/Y4+0YObqhBcW53093oPe2+NjjAUiVjXSe0kxB/D6/z5XqxHWpueXedDwOMNRj6iSkH32d2YwXGfsaeXw5+ekN1znRh4dJKgM/Pk+0bQdzwZvRzL2IvN3BmLrWk+C70LsxjT8+gbriGTGWoX7yw99d5i95zy8HvlvNhJ8QaDNvBlIN/IwY5GFLchiwC2werZLznIITAPTRL3m6RzM+TuwKFJkeQJBqrUjkzHPzpdun8PML3EZZE56p40LEc4OwbQcVN5NQIIkw2b1cpb/i8XemtlHEPHiBOOogswhmGdd6i94p9+e6Sc+mKeodp4Lhh8+4QhjMZ2XS45gkYPXxVh2vebBjwsfosszPvvqxhwC+5HPQu81q1Gsn0GPM/eZxw7hV0nCI8h2D2MDPX/SqVU9m1VavhHjpE+PNHSX/53Jlh47PxgDVXsXb8kbPetMLYitgwvLx/041nRnPdrV5n9hDZ7AivLvzg/G29h9f5cr2DOqZ3q3dQ10rj7ZN3BzF8P9P0GjD/98VfGMEY2B5kMYRr4FVh5parsvNbzTmefeGv6EYN6pVpXCcgSUOanQXK/gg3XveRC15ULlTSuRk3Kdvli5eD3oXexspJXvjZ/yVqrRNUR3FslzRLCNvr+LVRrvuVDzEyceDMMPR5p3Nm2PiwPc/cyw/TsxOCm27CHRkjaawRPvMMpcxl9vBRgurMpsPL70YveU53bY4Tjado7/eo7bum2NZ7eJ234x22c2k73kFdK423T94+canf38PVm0brIvuM21A/AE4JhCxe6weK99dfOVWI6QpqlWJu/hG6UYOp8evxvSpSWvhelanx6+lGDU7M/xyt1CaLvI1y0LvQq5Ti5C8eJWo3GL3mOryxcWStijc2zug11xG1G7z2y8fJ85zk+Byq28Wd2Y89OopdrbCSniSswpgzib+eIBH4awljziRhFVbT17CrFezRUdyZ/ahul2RujjzPd5+3VsMeqbNqrRC1G+xLRvHdSrGf9uo6b8OrlBqqc2lb5eAHdK003j55dyDDlYwkneI2WLD5UOMEY9BdLtpdQcJwibXmHPXK9Kbz65VpVpvHCcOljbFbKOm8F7zd1grtpRMEE1ObxgYTU7QWjtNZmNswvHwUrdHsLFIJJoq6FY1OMTU7UAmoBBM0OgtE0dqZmNM1KDoLc7vOe647mJwpnFFSTHt0nbfj7bZWhupc2o53UNdK4+2TdwcyXMlInhaT7W0+33LPtrmCZFlElqe4zubFhVy7RJanZFm0MXY75aB3ozeJUEmK45U2jXW8EipJyXqdDTUosjwhVxmO7YNjQa4gTotXx8axPHKVkeXJmZjTNSiyXmfXec9z++XCl+XFtEfXeVveJBquc2k75eAHdK003j55dyDDlYxYTjFl8ebz8+RsmyuIbfvYlkOSbvIXCJBkPWzLwd6kZPO5JZ03jb1YOejd6HV9pOuQxr1NY9O4h3Qd7FLlTA2KM7GWiyVt0iyCNAdLgucUr2lGmsdY0sY+5+J8ugaFXarsOu957qhb+GyrmPboOm/L6/rDdS5twzuoa6Xx9sm7AxmuZMStFE8oh2ubzw/XoDxZtLuCBME+xuqzNDsLm85vdhYYrx8iCPZtjN1OOehd6C3XJqjuO0i4srhpbLiySG36EJXp2XOGly/w/THqlSk64Qp0QhipFFO9Ap2QTrjCSGUa3z97S/T08PKV6dld5z3XHS7PF07fLaY9us7b8ZZrE0N1Lm2rHPyArpXG2yfvDmS4khEhiq5SXhWaJyHtgcqL1+bJ4v3Ra694324hJbMz76bsj7C4+jxR3EblGVHcZnH1ecr+CAdnbkXIjbtjW+Wgd6FXSsmBt7wLvzrC+vEXicMOKs+Jww7rx1/Er46w/4Z3YFkW7qFZZLlMujCPiiK00uyrvpmgI1hLl4lG3WKZx1zW0mWCjmCy+ia00qgoIl2YR5aLGhSWZe0+b56j4oQJNYlfHWHJXSdKOiiV79113oZXSjlU59K2ysEP6FppvH3y7kCGr2svXKBP92Sx0/tcZ2S8foiDM7deVq2A8dL4JZV03o3exspJTv7iUdpLJ1BJinQdatOH2H/DOxiZOHCmXd5qkRwvHnQky8C2ib2URWuBtXzlrNeaZF82hZc4Z9rZ4+PFl+M5x9Ru9Nrj48R1ycnOs+dv6z28ztvxDtu5tB3voK6Vxtsnbx+41O/v4UxGYGDV7rRShOESWRZh2z5BsG/Tv2o2jd1OOehd6FVK0W2tkCURtutTrk0gN4nVWqO6IWQp2A6yHIDWG7wIsaHdZuuxG71CiE239V5e5+14h+1c2lY5+GGrSDps3quMKQf/RghR3AIblNcpgbT7d7DtQq8QAlkuI0seUtoXvHgKIbAq5fPe07DBu1m7veI9NWOo1nk73m2xC8+lK+LtN8Y7VAxvMjIAtlUO2sSa2B3oNrF7O9Zg6BfD+zNNn9lWOWgTa2Iv8qWxG5fbxO78WIPhSmDKwe8gtlUO2sSa2AuV7N6ly21id36swdBvTDLSB7ZVDtrEmtgLlezepcttYnd+rMHQb0wy0ge2VQ7axJrYC5Xs3qXLbWJ3fqzB0G9MMtIHtlUO2sSa2AuV7N6ly21id36swdBvTDLSB7ZVDtrEmtgLlezepcttYnd+rMHQb0wy0ge2VQ7axJrYC5Xs3qXLbWJ3fqzB0G9M194+sq1y0CbWxO5At4nd27EGw3Yx5eB3KNsqB21iTewOdJvYvR1rMGwHUw7+jRjk+ANxG7IIbB+skvEa7+52G+/e9w7TWC3D5t0hDGcysukIiRPFUM59HrV3rD7L7My7L2vkzUsuB228e9o7jOtsvH06tgZ0rTTePnl3EMP3M02vAfN/X/yFEYyB7UEWQ7hWDFI0c8tV2fmt5hzPvvBXdKMG9co0rhOQpCHNzgJlf4Qbr/vIBS8q2yoHbbx72juM62y8fTq2BnStNN4+efuEKQe/GVoX2WfchvqBYvRLIYvX+oHi/fVXinZXUqsUc/OP0I0aTI1fj+9VkdLC96pMjV9PN2pwYv7naKU2WeRtlIM23j3tHcZ1Nt4+HVsDulYab5+8O5DhSkaSTnEbLBjbfH4wBt3lot0VJAyXWGvOUa9Mbzq/XplmtXmcMFzaGLudctDGu6e9g3Qb7972Dupaabx98u5AhisZydNisr3N51vu2TZXkCyLyPIU19m8uJBrl8jylCyLNsZupxy08e5p7yDdxru3vYO6Vhpvn7w7kOFKRiynmLJ48/l5crbNFcS2fWzLIUk3/+s2yXrYloNt+xtjt1MO2nj3tHeQbuPd295BXSuNt0/eHchwJSNupXhCOVzbfH64BuXJot0VJAj2MVafpdlZ2HR+s7PAeP0QQbBvY+x2ykEb7572DtJtvHvbO6hrpfH2ybsDGa5kRIiiq5RXheZJSHug8uK1ebJ4f/TaK963W0jJ7My7KfsjLK4+TxS3UXlGFLdZXH2esj/CwZlbEXLj7thWOWjj3dPeYVxn4+3TsTWga6Xx9sm7Axm+rr1wgT7dk8VO73OdkfH6IQ7O3HpZtQIuuRy08e5p7zCus/H26dga0LXSePvk7QOmHPwbMaBqd1opwnCJLIuwbZ8g2LfpXzWbxm6nHLTx7mnvIN3Gu7e9Q1eRdNi8VxlTDv6NEKK4BTYor1MCaffvYDPeve0dpNt4h8Pbb4x3qNhSMnLs2DG++c1v8otf/IJSqcRtt93GPffcw5EjRy4Yc++99/Kv/tW/Ou89z/OIoo1d0fY62yoHbWJN7A50m9i9HWsw9IstJSMPPfQQd955J+9+97vJsoz/8B/+Ax/60Id45plnKJfLF4yr1Wo899xzZ/4/jKNFXqgs82K4SCfpXLwctIk1sRcrB78Ll9vE7vxYg6GfbKk3zXe/+10+/elPc/PNN3PLLbdw7733cvz4cR599NGLxgkhmJ6ePjNNTU1ta6F3G9sqB21iTezFysHvwuU2sTs/1mDoN9vq2ttsFv3Xx8YuUMr2FJ1Oh2uuuYbZ2Vk+/vGP8/TTT1+0fRzHtFqt86bdzLbKQZtYE3uxcvC7cLlN7M6PNRj6zWUnI0op7r77bt73vvfx1re+9YLtjhw5wte+9jW+/e1v85d/+Zcopbjttts4ceLEBWOOHTtGvV4/M83OXrzr2k5nW+WgTayJvVg5+F243CZ258caDP3mspORO++8k6eeeor77rvvou2OHj3KJz/5Sd7+9rdz++23881vfpPJyUm++tWvXjDm85//PM1m88w0Nzd3uYu5I9hWOWgTa2IvVg5+Fy63id35sQZDv7msZOSuu+7iO9/5Dj/84Q85ePDglmIdx+Ed73gHL7zwwgXbeJ5HrVY7b9rNbKsctIk1sRcrB78Ll9vE7vxYg6HfbCkZ0Vpz11138cADD/CDH/yAw4cPb1mY5zlPPvkkMzMzW47drWyrHLSJNbEXKwe/C5fbxO78WIOh32ypAuvv/M7v8I1vfINvf/vb59UWqdfrlEolAD75yU9y4MABjh07BsB/+k//iV/5lV/huuuuo9Fo8F//63/lW9/6Fo8++ig33XTTJXmvSgXWAbCtctAm1sTuQLeJ3duxBsN2uSrl4C+UQX/961/n05/+NADvf//7ufbaa7n33nsB+Lf/9t/yzW9+k4WFBUZHR3nXu97Ff/7P/5l3vOMdV3xldgPbKgdtYk3sDnSb2L0dazBsBzM2jcFgMBgMhoFixqZ5I8xAeca7h7yDdBvv3vYO3cBxw+bdIQxnMrLpcM0TMHr4qg7XvNkw4GP1WWZn3n1Zw4Bf8tgUxrunvcO4zsbbp2NrQNdK4+2TdwcxfD/T9Bow//cQtyEYA9uDLIZwrRgxceaWq7LzW805nn3hr+hGDeqVaVwnIElDmp0Fyv4IN173kQteVC40vkQzblK2yxcfm8J497R3GNfZePt0bA3oWmm8ffL2iUv9/t5WOfhdh9ZF9hm3oX6gGIpbyOK1fqB4f/2Vot2V1CrF3PwjdKMGU+PX43tVpLTwvSpT49fTjRqcmP85WqlNFnkbY1MY7572DuM6G2+fjq0BXSuNt0/eHchwJSNJp7gNFlxgLJ1gDLrLRbsrSBgusdaco16Z3nR+vTLNavM4Ybi0MXY7Y1MY7572DtJtvHvbO6hrpfH2ybsDGa5kJE+LyfY2n2+5Z9tcQbIsIstTXGfzSoeuXSLLU7Is2hi7nbEpjHdPewfpNt697R3UtdJ4++TdgQxXMmI5xZTFm8/Pk7NtriC27WNbDkm6+V+3SdbDthxs298Yu52xKYx3T3sH6Tbeve0d1LXSePvk3YEMVzLiVoonlMO1zeeHa1CeLNpdQYJgH2P1WZqdhU3nNzsLjNcPEQT7NsZuZ2wK493T3kG6jXdvewd1rTTePnl3IMOVjAhRdJXyqtA8CWkPVF68Nk8W749ee8X7dgspmZ15N2V/hMXV54niNirPiOI2i6vPU/ZHODhz66Y1A7Y1NoXx7mnvMK6z8fbp2BrQtdJ4++TdgQxf1164QJ/uyWKn97nOyHj9EAdnbr2sWgGXPDaF8e5p7zCus/H26dga0LXSePvk7QOmHPwbYSqwGu8e8g7Sbbx72zt0FUmHzXuVMcmIwWAwGAyGgWKKnhkMBoPBYNgVmGTEYDAYDAbDQDHJiMFgMBgMhoFikhGDwWAwGAwDxSQjBoPBYDAYBopJRgwGg8FgMAwUk4wYDAaDwWAYKCYZMRgMBoPBMFBMMmIwGAwGg2GgmGTEYDAYDAbDQLEHvQADY9jGHzDeve0dpNt4jdd4d693hzCcycimIyROFEM5931kRuM13l3sNl7jNd7d691BDF8y0mvA/N9D3IZgDGwPshiaJyFqwcwtV2fnG6/xXq2LyrCts/Ear/HuOYbrmRGti+wzbkP9ADglELJ4rR8o3l9/pWhnvMa7072DdBuv8Rrv7vXuQIYrGUk6xW2wYGzz+cEYdJeLdsZrvDvdO0i38Rqv8e5e7w5kuJKRPC0m29t8vuWebWO8xrvTvYN0G6/xGu/u9e5AhisZsZxiyuLN5+fJ2TbGa7w73TtIt/Ear/HuXu8OZLiSEbdSPKEcrm0+P1yD8mTRzniNd6d7B+k2XuM13t3r3YEMVzIiRNFVyqsWTyqnPVB58do8Wbw/eu2V79ttvMZ7NbyDdBuv8Rrv7vXuQITWO/8x3VarRb1ep9lsUqvVtv+Bm/bpnix2et/7khuv8e5it/Ear/HuXm8fuNTv7+FMRmD4quwZ7972DtJtvMZrvLvXe5W51O/v4St6dhohiltgxmu8e8E7SLfxGq/x7l7vDmG4nhkxGAwGg8Gw4zDJiMFgMBgMhoFikhGDwWAwGAwDxSQjBoPBYDAYBopJRgwGg8FgMAwUk4wYDAaDwWAYKCYZMRgMBoPBMFBMMmIwGAwGg2GgmGTEYDAYDAbDQDHJiMFgMBgMhoEytOXg81zx8+fnWG11GK9VuPX6WSyrD7nZsI17YLxmbJqLkCvN3728xlI7Yl/V5z2Hx7DkJS7zLlxf4zXeHefdIWwpGTl27Bjf/OY3+cUvfkGpVOK2227jnnvu4ciRIxeNu//++/n93/99XnnlFa6//nruuecePvKRj2xrwbfDXz/2HH/5Vw+hu8vYIifTFqI8yf/7kdv5wDsvvi7bYtORGSeKIaT7PiKk8e4Z7yDd2/B+96l5/uD/e4b5ZnTmvZm6zxc+dhP/9K0zV827LYzXePeSdwexpVsBDz30EHfeeSc/+9nPePDBB0nTlA996EN0u90Lxvz0pz/lE5/4BJ/5zGd4/PHHueOOO7jjjjt46qmntr3wl8NfP/YcX7v/W9jdeTr4LOk6HXyc7jxfu/9b/PVjz10dca8B838PzZPglqE6Vbw2Txbv9xrGa7y7y70N73efmue3//Kx8xIRgIVmxG//5WN896n5q+LdFsZrvHvJu8MQWmt9ucHLy8vs27ePhx56iH/8j//xpm1+4zd+g263y3e+850z7/3Kr/wKb3/72/nKV75ySZ5LHYL4jchzxWeO/QV2d54FxjbMn2GNpDzD1z7/W1f2JxutYf6J4uCqH9g4v3kS6gdh5pYre1vOePe2d5DubXhzpfl/7vnBhkTkNAKYrvv8zb//1Y0/2ezC9TVe491x3j5yqd/f2/rGbTabAIyNbfxiP83DDz/MBz7wgfPe+/CHP8zDDz98wZg4jmm1WudNV4KfPz+H7i6zTmXT+WtUoLvMz5+fuyK+MySd4vZbcIHtFIxBd7loZ7zGuxvc2/D+3ctrF0xEADQw34z4u5fXrqh3Wxiv8e4l7w7kspMRpRR3330373vf+3jrW996wXYLCwtMTU2d997U1BQLCwsXjDl27Bj1ev3MNDs7e7mLeR6rrQ62yEku8KhMio0tclZbV3jH52kx2d7m8y33bBvjNd7d4N6Gd6l94UTkDdvtwvU1XuPdcd4dyGUnI3feeSdPPfUU991335VcHgA+//nP02w2z0xzc1fmTsV4rUKmLVyyTec7ZGTaYry2+Z2Ty8ZyiimLN5+fJ2fbGK/x7gb3Nrz7qv4lKTZttwvX13iNd8d5dyCXlYzcddddfOc73+GHP/whBw8evGjb6elpFhcXz3tvcXGR6enpC8Z4nketVjtvuhLcev0sojzJGJvf+RijA+VJbr3+ytyJOYNbKZ6MDje57QzF++XJop3xGu9ucG/D+57DY8zUfS70C7ig6FXznsOb3LrehetrvMa747w7kC0lI1pr7rrrLh544AF+8IMfcPjw4TeMOXr0KN///vfPe+/BBx/k6NGjW1vSK4BlSf7fj9xOF58Z1vBIkCg8EmZYo4vPb37k9itfb0SIoouWVy0eSEp7oPLitXmyeH/02iv/gJLx7m3vIN3b8FpS8IWP3VR8zOs/9tTrFz520+b1Rnbh+hqv8e447w5kS71pfud3fodvfOMbfPvb3z6vtki9XqdUKgHwyU9+kgMHDnDs2DGg6Np7++2388UvfpGPfvSj3HffffzRH/0Rjz322EWfNTmXK9Wb5jSb1RmhPMlvDqTOyGRxsPW9D7vx7hnvIN3b8F75OiM7e32N13h3nLcPXOr395aSEXGB7OzrX/86n/70pwF4//vfz7XXXsu99957Zv7999/P7/3e750pevbHf/zHWyp6dqWTETAVWI13j3kH6TYVWI3XeHev9ypzVZKRQXE1khGDwWAwGAxXl77UGTEYDAaDwWDYLiYZMRgMBoPBMFBMMmIwGAwGg2GgmGTEYDAYDAbDQDHJiMFgMBgMhoFikhGDwWAwGAwDxSQjBoPBYDAYBopJRgwGg8FgMAwUk4wYDAaDwWAYKPagF+BSOF0kttVqDXhJDAaDwWAwXCqnv7ffqNj7rkhG2u02ALOzswNeEoPBYDAYDFul3W5Tr9cvOH9XjE2jlOK1116jWq1ecLC+y6HVajE7O8vc3JwZ8+YNMNvq0jHbamuY7XXpmG116ZhtdelczW2ltabdbrN//36kvPCTIbvizoiUkoMHD161z6/VauZgvUTMtrp0zLbaGmZ7XTpmW106ZltdOldrW13sjshpzAOsBoPBYDAYBopJRgwGg8FgMAyUoU5GPM/jC1/4Ap7nDXpRdjxmW106ZlttDbO9Lh2zrS4ds60unZ2wrXbFA6wGg8FgMBj2LkN9Z8RgMBgMBsPgMcmIwWAwGAyGgWKSEYPBYDAYDAPFJCMGg8FgMBgGyp5ORn784x/zsY99jP379yOE4Fvf+tYbxvzoRz/ine98J57ncd1113Hvvfde9eXcCWx1W/3oRz9CCLFhWlhY6M8CD5Bjx47x7ne/m2q1yr59+7jjjjt47rnn3jDu/vvv5y1veQu+7/OP/tE/4q/+6q/6sLSD5XK21b333rvhuPJ9v09LPDi+/OUv87a3ve1M4amjR4/yf/7P/7lozDAeU7D1bTWsx9RmfPGLX0QIwd13333Rdv0+tvZ0MtLtdrnlllv48z//80tq//LLL/PRj36Uf/JP/glPPPEEd999N7/1W7/F9773vau8pINnq9vqNM899xzz8/Nnpn379l2lJdw5PPTQQ9x555387Gc/48EHHyRNUz70oQ/R7XYvGPPTn/6UT3ziE3zmM5/h8ccf54477uCOO+7gqaee6uOS95/L2VZQVII897h69dVX+7TEg+PgwYN88Ytf5NFHH+XnP/85v/qrv8rHP/5xnn766U3bD+sxBVvfVjCcx9TreeSRR/jqV7/K2972tou2G8ixpYcEQD/wwAMXbfPv/t2/0zfffPN57/3Gb/yG/vCHP3wVl2zncSnb6oc//KEG9Pr6el+WaSeztLSkAf3QQw9dsM0//+f/XH/0ox897733vve9+t/8m39ztRdvR3Ep2+rrX/+6rtfr/VuoHczo6Kj+i7/4i03nmWPqfC62rcwxpXW73dbXX3+9fvDBB/Xtt9+uP/vZz16w7SCOrT19Z2SrPPzww3zgAx84770Pf/jDPPzwwwNaop3P29/+dmZmZvjgBz/IT37yk0EvzkBoNpsAjI2NXbCNObYKLmVbAXQ6Ha655hpmZ2ff8C/evUie59x33310u12OHj26aRtzTBVcyrYCc0zdeeedfPSjH91wzGzGII6tXTFQXr9YWFhgamrqvPempqZotVr0ej1KpdKAlmznMTMzw1e+8hVuvfVW4jjmL/7iL3j/+9/P3/7t3/LOd75z0IvXN5RS3H333bzvfe/jrW996wXbXejYGoZnbE5zqdvqyJEjfO1rX+Ntb3sbzWaTP/mTP+G2227j6aefvqoDZu4EnnzySY4ePUoURVQqFR544AFuuummTdsO+zG1lW01zMcUwH333cdjjz3GI488ckntB3FsmWTEcFkcOXKEI0eOnPn/bbfdxosvvsif/umf8j/+x/8Y4JL1lzvvvJOnnnqKv/mbvxn0oux4LnVbHT169Ly/cG+77TZuvPFGvvrVr/KHf/iHV3sxB8qRI0d44oknaDab/K//9b/41Kc+xUMPPXTBL9lhZivbapiPqbm5OT772c/y4IMP7uiHdk0ycg7T09MsLi6e997i4iK1Ws3cFbkE3vOe9wzVl/Jdd93Fd77zHX784x+/4V9XFzq2pqenr+Yi7hi2sq1ej+M4vOMd7+CFF164Sku3c3Bdl+uuuw6Ad73rXTzyyCN86Utf4qtf/eqGtsN+TG1lW72eYTqmHn30UZaWls67Y53nOT/+8Y/5sz/7M+I4xrKs82IGcWyZZ0bO4ejRo3z/+98/770HH3zwor9DGs7yxBNPMDMzM+jFuOporbnrrrt44IEH+MEPfsDhw4ffMGZYj63L2VavJ89znnzyyaE4tl6PUoo4jjedN6zH1IW42LZ6PcN0TP3ar/0aTz75JE888cSZ6dZbb+Vf/st/yRNPPLEhEYEBHVtX7dHYHUC73daPP/64fvzxxzWg/9t/+2/68ccf16+++qrWWuvPfe5z+jd/8zfPtH/ppZd0EAT6d3/3d/Wzzz6r//zP/1xblqW/+93vDmoV+sZWt9Wf/umf6m9961v6+eef108++aT+7Gc/q6WU+q//+q8HtQp947d/+7d1vV7XP/rRj/T8/PyZKQzDM21+8zd/U3/uc5878/+f/OQn2rZt/Sd/8if62Wef1V/4whe04zj6ySefHMQq9I3L2VZ/8Ad/oL/3ve/pF198UT/66KP6X/yLf6F939dPP/30IFahb3zuc5/TDz30kH755Zf1P/zDP+jPfe5zWgih/+///b9aa3NMnctWt9WwHlMX4vW9aXbCsbWnk5HT3U9fP33qU5/SWmv9qU99St9+++0bYt7+9rdr13X1m970Jv31r3+978s9CLa6re655x795je/Wfu+r8fGxvT73/9+/YMf/GAwC99nNttOwHnHyu23335m253mf/7P/6lvuOEG7bquvvnmm/X//t//u78LPgAuZ1vdfffd+tChQ9p1XT01NaU/8pGP6Mcee6z/C99n/vW//tf6mmuu0a7r6snJSf1rv/ZrZ75ctTbH1LlsdVsN6zF1IV6fjOyEY0torfXVu+9iMBgMBoPBcHHMMyMGg8FgMBgGiklGDAaDwWAwDBSTjBgMBoPBYBgoJhkxGAwGg8EwUEwyYjAYDAaDYaCYZMRgMBgMBsNAMcmIwWAwGAyGgWKSEYPBYDAYDAPFJCMGg8FgMBgGiklGDAaDwWAwDBSTjBgMBoPBYBgoJhkxGAwGg8EwUP5/wiYncp/PoMoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "from tqdm import tqdm \n", - "import matplotlib.pyplot as plt\n", - "import json\n", - "\n", - "def solve_accurate(x_coords, y_coords, expansion, epochs, draw_plot =False, alpha = 0.2):\n", - "\n", - " min_pos_x, max_pos_x = min(x_coords), max(x_coords)\n", - " min_pos_y, max_pos_y = min(y_coords), max(y_coords)\n", - "\n", - " if draw_plot:\n", - " plt.scatter(x_coords, y_coords)\n", - "\n", - " distances_loss = []\n", - "\n", - " for epoch_num in tqdm(range(epochs)):\n", - "\n", - " possibles_places_X= []\n", - " possibles_places_Y= []\n", - " possibles_places = []\n", - "\n", - " for x_indx in np.arange(min_pos_x, max_pos_x, 1/(expansion*(epoch_num+1))):\n", - " for y_indx in np.arange(min_pos_y, max_pos_y, 1/(expansion*(epoch_num+1))):\n", - "\n", - " x_possible_coord = (x_indx)\n", - " y_possible_coord = (y_indx)\n", - "\n", - " possibles_places_X.append(x_possible_coord)\n", - " possibles_places_Y.append(y_possible_coord)\n", - " possibles_places.append((x_possible_coord, y_possible_coord))\n", - "\n", - " if draw_plot:\n", - " plt.scatter(possibles_places_X, possibles_places_Y, alpha = alpha)\n", - "\n", - " euclidian_distance = lambda x, y: ((x[0] - y[0])**2 + (x[1] - y[1])**2)**0.5\n", - " distances = []\n", - "\n", - " for x_possible_coord, y_possible_coord in possibles_places:\n", - " point_distance = []\n", - " for x_coord, y_coord in zip(x_coords, y_coords):\n", - " point_distance.append(euclidian_distance((x_possible_coord, y_possible_coord),\n", - " (x_coord, y_coord)))\n", - "\n", - " distances.append(point_distance)\n", - "\n", - " distances = np.array(distances)\n", - "\n", - " m = Model()\n", - "\n", - " X_stations = m.binary_var_list(possibles_places)\n", - "\n", - " m.add_constraint(sum(X_stations) >= 1)\n", - "\n", - " m.minimize(sum([X_stations[i]*sum(distances[i]) for i in range(len(X_stations))]))\n", - " \n", - " solution = m.solve(log_output = False)\n", - "\n", - " best_index = (json.loads(solution.export_as_json_string())['CPLEXSolution']['variables'][0][\"index\"])\n", - "\n", - " x_temp_solution, y_temp_solution = possibles_places[int(best_index)]\n", - "\n", - " min_pos_x = x_temp_solution-(1/(epoch_num+1))\n", - " min_pos_y = y_temp_solution-(1/(epoch_num+1))\n", - "\n", - " max_pos_x = x_temp_solution+(1/(epoch_num+1))\n", - " max_pos_y = y_temp_solution+(1/(epoch_num+1))\n", - "\n", - " return possibles_places[distances.sum(1).argmin()], distances_loss, 1/(expansion*(epoch_num+1))\n", - "\n", - "\n", - "Stations = [\"Fabrication\",\"Paint\",\"Subassembly 1\",\"Subassembly 2\",\"Assembly\"]\n", - "x_coords = [1,1,2.5,3,4]\n", - "y_coords = [4,2,2 ,5,4]\n", - "\n", - "expansion = 12\n", - "\n", - "solution_coords, loss, last_step_size = solve_accurate(x_coords, y_coords, 5, 500, True, 0.2)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2.229650636905417, 3.348835650450712)" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solution_coords" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Assignments/Side Project/T_Proj.ipynb b/Assignments/Side Project/T_Proj.ipynb deleted file mode 100644 index c465f86..0000000 --- a/Assignments/Side Project/T_Proj.ipynb +++ /dev/null @@ -1,595 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "write the cplex code for this,\n", - "\n", - "fill an n x n matrix W with random numbers,\n", - "\n", - "define two variable matrices, A and B, with one being n x r • r x n,\n", - "\n", - "optimize for the best r and entries in A and B such that their product contains an approximation of W using some arbitrary loss" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from docplex.cp.model import CpoModel as Model\n", - "from docplex.cp.parameters import CpoParameters\n", - "\n", - "n = 32\n", - "r = 8\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.random.seed(0)\n", - "\n", - "# myparams = CpoParameters()\n", - "m = Model()\n", - "\n", - "W = np.random.rand(n, n).round(6)\n", - "\n", - "A = np.array(m.integer_var_list(r*n, 0, 1000))\n", - "B = np.array(m.integer_var_list(n*r, 0, 1000))\n", - "\n", - "for i in range(n*r):\n", - " m.add_constraint(A[i] * B[i] <= 1_000_000)\n", - " m.add_constraint(A[i] * B[i] >= 0)\n", - "\n", - "\n", - "A_float = np.array([a/1000 for a in A]).reshape(n, r)\n", - "B_float = np.array([b/1000 for b in B]).reshape(r, n)\n", - "\n", - "distance = (( (A_float @ B_float) - (W) )**2).sum()\n", - "\n", - "m.minimize(distance)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "ename": "CpoSolverException", - "evalue": "Solver error: Problem size limit exceeded.\nCP Optimizer Community Edition solves problems with search spaces up to 2^1000.\nUnrestricted version options (including academia) at https://ibm.co/2s0wqSa\n", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mCpoSolverException\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[3], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m solution \u001b[38;5;241m=\u001b[39m \u001b[43mm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msolve\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlog_output\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mTimeLimit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1200\u001b[39;49m\u001b[43m)\u001b[49m \n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# 0.3136016\u001b[39;00m\n", - "File \u001b[0;32m~/GithubRepos/BI/venv/lib/python3.10/site-packages/docplex/cp/model.py:1289\u001b[0m, in \u001b[0;36mCpoModel.solve\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 1246\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\" Solves the model.\u001b[39;00m\n\u001b[1;32m 1247\u001b[0m \n\u001b[1;32m 1248\u001b[0m \u001b[38;5;124;03mThis method solves the model using the appropriate :class:`~docplex.cp.solver.solver.CpoSolver`\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1286\u001b[0m \u001b[38;5;124;03m :class:`~docplex.cp.utils.CpoException`: (or derived) if error.\u001b[39;00m\n\u001b[1;32m 1287\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 1288\u001b[0m solver \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcreate_solver(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m-> 1289\u001b[0m msol \u001b[38;5;241m=\u001b[39m \u001b[43msolver\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msolve\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1290\u001b[0m solver\u001b[38;5;241m.\u001b[39mend()\n\u001b[1;32m 1291\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m msol\n", - "File \u001b[0;32m~/GithubRepos/BI/venv/lib/python3.10/site-packages/docplex/cp/solver/solver.py:708\u001b[0m, in \u001b[0;36mCpoSolver.solve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 706\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcontext\u001b[38;5;241m.\u001b[39mlog_exceptions:\n\u001b[1;32m 707\u001b[0m traceback\u001b[38;5;241m.\u001b[39mprint_exc()\n\u001b[0;32m--> 708\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 709\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_set_status(STATUS_IDLE)\n\u001b[1;32m 710\u001b[0m stime \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime() \u001b[38;5;241m-\u001b[39m stime\n", - "File \u001b[0;32m~/GithubRepos/BI/venv/lib/python3.10/site-packages/docplex/cp/solver/solver.py:701\u001b[0m, in \u001b[0;36mCpoSolver.solve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 699\u001b[0m stime \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime()\n\u001b[1;32m 700\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 701\u001b[0m msol \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magent\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msolve\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 702\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 703\u001b[0m \u001b[38;5;66;03m# Check if aborted in the mean time\u001b[39;00m\n\u001b[1;32m 704\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_check_status_aborted():\n", - "File \u001b[0;32m~/GithubRepos/BI/venv/lib/python3.10/site-packages/docplex/cp/solver/solver_local.py:213\u001b[0m, in \u001b[0;36mCpoSolverLocal.solve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 210\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_write_message(CMD_SOLVE_MODEL)\n\u001b[1;32m 212\u001b[0m \u001b[38;5;66;03m# Wait JSON result\u001b[39;00m\n\u001b[0;32m--> 213\u001b[0m jsol \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_wait_json_result\u001b[49m\u001b[43m(\u001b[49m\u001b[43mEVT_SOLVE_RESULT\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 215\u001b[0m \u001b[38;5;66;03m# Build result object\u001b[39;00m\n\u001b[1;32m 216\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_result_object(CpoSolveResult, jsol)\n", - "File \u001b[0;32m~/GithubRepos/BI/venv/lib/python3.10/site-packages/docplex/cp/solver/solver_local.py:572\u001b[0m, in \u001b[0;36mCpoSolverLocal._wait_json_result\u001b[0;34m(self, evt)\u001b[0m\n\u001b[1;32m 564\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\" Wait for a JSON result while forwarding logs if any.\u001b[39;00m\n\u001b[1;32m 565\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n\u001b[1;32m 566\u001b[0m \u001b[38;5;124;03m evt: Event to wait for\u001b[39;00m\n\u001b[1;32m 567\u001b[0m \u001b[38;5;124;03mReturns:\u001b[39;00m\n\u001b[1;32m 568\u001b[0m \u001b[38;5;124;03m JSON solution string, decoded from UTF8\u001b[39;00m\n\u001b[1;32m 569\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 571\u001b[0m \u001b[38;5;66;03m# Wait JSON result\u001b[39;00m\n\u001b[0;32m--> 572\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_wait_event\u001b[49m\u001b[43m(\u001b[49m\u001b[43mevt\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 574\u001b[0m \u001b[38;5;66;03m# Store last json result\u001b[39;00m\n\u001b[1;32m 575\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_set_last_json_result_string(data)\n", - "File \u001b[0;32m~/GithubRepos/BI/venv/lib/python3.10/site-packages/docplex/cp/solver/solver_local.py:529\u001b[0m, in \u001b[0;36mCpoSolverLocal._wait_event\u001b[0;34m(self, xevt)\u001b[0m\n\u001b[1;32m 527\u001b[0m data \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m (\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m firsterror \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m)\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 528\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mend()\n\u001b[0;32m--> 529\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m CpoSolverException(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSolver error: \u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m data)\n\u001b[1;32m 531\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 532\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mend()\n", - "\u001b[0;31mCpoSolverException\u001b[0m: Solver error: Problem size limit exceeded.\nCP Optimizer Community Edition solves problems with search spaces up to 2^1000.\nUnrestricted version options (including academia) at https://ibm.co/2s0wqSa\n" - ] - } - ], - "source": [ - "solution = m.solve(log_output=True, TimeLimit=1200) \n", - "# 0.3136016" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "A_solution = []\n", - "B_solution = []\n", - "\n", - "for i in range(n*r):\n", - " A_solution.append(solution[A.tolist()[i]] / 1000)\n", - " B_solution.append(solution[B.tolist()[i]] / 1000)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "W_hat = np.array(A_solution).reshape(n, r) @ np.array(B_solution).reshape(r, n)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'W_hat' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m ((\u001b[43mW_hat\u001b[49m \u001b[38;5;241m-\u001b[39m W)\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m2\u001b[39m)\u001b[38;5;241m.\u001b[39msum()\n", - "\u001b[0;31mNameError\u001b[0m: name 'W_hat' is not defined" - ] - } - ], - "source": [ - "\n", - "((W_hat - W)**2).sum()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'W_hat' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mW_hat\u001b[49m\n", - "\u001b[0;31mNameError\u001b[0m: name 'W_hat' is not defined" - ] - } - ], - "source": [ - "W_hat" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.548814, 0.715189, 0.602763, ..., 0.414662, 0.264556, 0.774234],\n", - " [0.45615 , 0.568434, 0.01879 , ..., 0.110375, 0.65633 , 0.138183],\n", - " [0.196582, 0.368725, 0.820993, ..., 0.716327, 0.289406, 0.183191],\n", - " ...,\n", - " [0.77311 , 0.21687 , 0.90315 , ..., 0.522176, 0.853606, 0.889448],\n", - " [0.220104, 0.622894, 0.111496, ..., 0.771225, 0.012171, 0.32283 ],\n", - " [0.229567, 0.506863, 0.736853, ..., 0.6205 , 0.639622, 0.94854 ]])" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "W" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Alternate Solution" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 0%| | 0/100000 [00:00 39\u001b[0m B_ \u001b[38;5;241m=\u001b[39m [((np\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39mrand(r, n)\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m0.5\u001b[39m) \u001b[38;5;241m*\u001b[39m learning_rate) \u001b[38;5;241m+\u001b[39m B[best_index] \u001b[38;5;28;01mfor\u001b[39;00m _ \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(Dupe_count)]\n\u001b[1;32m 41\u001b[0m \u001b[38;5;66;03m# print(A_)\u001b[39;00m\n\u001b[1;32m 43\u001b[0m A \u001b[38;5;241m=\u001b[39m A_\n", - "Cell \u001b[0;32mIn[7], line 39\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 36\u001b[0m best_index \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39margmin(distances)\n\u001b[1;32m 38\u001b[0m A_ \u001b[38;5;241m=\u001b[39m [((np\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39mrand(n, r)\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m0.5\u001b[39m) \u001b[38;5;241m*\u001b[39m learning_rate) \u001b[38;5;241m+\u001b[39m A[best_index] \u001b[38;5;28;01mfor\u001b[39;00m _ \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(Dupe_count)]\n\u001b[0;32m---> 39\u001b[0m B_ \u001b[38;5;241m=\u001b[39m [((\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrandom\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrand\u001b[49m\u001b[43m(\u001b[49m\u001b[43mr\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m0.5\u001b[39m) \u001b[38;5;241m*\u001b[39m learning_rate) \u001b[38;5;241m+\u001b[39m B[best_index] \u001b[38;5;28;01mfor\u001b[39;00m _ \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(Dupe_count)]\n\u001b[1;32m 41\u001b[0m \u001b[38;5;66;03m# print(A_)\u001b[39;00m\n\u001b[1;32m 43\u001b[0m A \u001b[38;5;241m=\u001b[39m A_\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "np.random.seed(0)\n", - "from tqdm import tqdm\n", - "\n", - "n = 64\n", - "r = 32\n", - "# myparams = CpoParameters()\n", - "m = Model()\n", - "\n", - "W = np.random.rand(n, n)\n", - "Dupe_count = 32\n", - "learning_rate = 0.001\n", - "EPOCHS = 100000\n", - "\n", - "all_best_distances = [10e8]\n", - "\n", - "A = [np.random.rand(n, r) for _ in range(Dupe_count)]\n", - "B = [np.random.rand(r, n) for _ in range(Dupe_count)]\n", - "\n", - "for i in tqdm(range(EPOCHS)):\n", - "\n", - " possibles = []\n", - "\n", - " for a, b in zip(A, B):\n", - " possibles.append(a@b)\n", - "\n", - " distances =[]\n", - " for idx, poss in enumerate(possibles):\n", - " distances.append(( ((poss) - (W) )**2).sum())\n", - "\n", - "\n", - " if np.min(distances) >= np.min(all_best_distances):\n", - " continue\n", - "\n", - " all_best_distances.append(np.min(distances))\n", - "\n", - " best_index = np.argmin(distances)\n", - "\n", - " A_ = [((np.random.rand(n, r)-0.5) * learning_rate) + A[best_index] for _ in range(Dupe_count)]\n", - " B_ = [((np.random.rand(r, n)-0.5) * learning_rate) + B[best_index] for _ in range(Dupe_count)]\n", - "\n", - " # print(A_)\n", - "\n", - " A = A_\n", - " B = B_\n", - "\n", - " lowest_distance = np.min(distances)\n", - "\n", - " if i % 1000 == 0:\n", - " print(f'Reached Epoch {i} with distance {lowest_distance}')\n", - " learning_rate -= 0.00001" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAGdCAYAAADt8FyTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9g0lEQVR4nO3de3xU9Z3/8fdMkpkkhEkCIQmBEEDudwGJ8dZaU6JLrahrlVJLWeoVdkVatGzrZX/bFle33apFrd1dsWsrym61ioil4eYlgETCnQgChlsSbplJQu7z/f0RcswAgQCTnMnk9Xw85pHMOZ8585mTB87bc77nexzGGCMAAACcwWl3AwAAAKGKoAQAANACghIAAEALCEoAAAAtICgBAAC0gKAEAADQAoISAABACwhKAAAALYi0u4FQ5vf7dejQIXXt2lUOh8PudgAAQCsYY1ReXq60tDQ5nZd2TIigdA6HDh1Senq63W0AAICLsH//fvXu3fuStkFQOoeuXbtKatzRHo/H5m4AAEBr+Hw+paenW9/jl4KgdA5Np9s8Hg9BCQCADiYYw2YYzA0AANACghIAAEALCEoAAAAtICgBAAC0gKAEAADQAoISAABACwhKAAAALSAoAQAAtICgBAAA0AKCEgAAQAsISgAAAC0gKAEAALSAm+La4FBZlf60rkh1fr/m3TTU7nYAAEALOKJkg5O19frtyt16Le9LGWPsbgcAALSAoGSDjO5dFBXhUGVtgw6WVdndDgAAaAFByQZREU5d1iNOkvR5SbnN3QAAgJYQlGwyKKWrJOnzkgqbOwEAAC0hKNlkUMqpI0rFHFECACBUEZRs0nREqZBTbwAAhCyCkk0GpzYGpV2lFWrwc+UbAAChiKBkk/TEWEVHOVVb79eXxyrtbgcAAJwFQckmTqdDA5MZ0A0AQCgjKNnIGqfEgG4AAEISQclG1pVvpQQlAABCEUHJRk1HlHZx5RsAACGJoGSjQaeufNtzpFK19X6buwEAAKcjKNkoLT5ace5I1fuN9nHlGwAAIYegZCOHw6EBydzzDQCAUEVQstngpnu+ceUbAAAhh6Bks6ZxSsylBABA6CEo2cw6osSpNwAAQg5ByWZNcyntO1ap6roGm7sBAADNEZRs1qOrWwmxUfIb6YsjnH4DACCUEJRs5nA4uJUJAAAhiqAUAprGKRUyTgkAgJBCUAoBQ3o2BqWdhwlKAACEEoJSCBiS6pEk7Sz22dwJAABojqAUAgafmkupxFej45W1NncDAACaEJRCQJw7Un27x0qSth3y2twNAABockFBaf78+briiivUtWtXJScna/LkySosLAyoqa6u1syZM9W9e3fFxcXp9ttvV0lJSUBNUVGRJk2apNjYWCUnJ2vu3Lmqr68PqFm1apXGjh0rt9utAQMGaOHChWf0s2DBAvXt21fR0dHKzMzU+vXrL7iXUDEsrfH02/ZDnH4DACBUXFBQWr16tWbOnKm1a9dq+fLlqqur08SJE1VZ+dWd7x9++GG9++67Wrx4sVavXq1Dhw7ptttus9Y3NDRo0qRJqq2t1SeffKJXX31VCxcu1OOPP27V7N27V5MmTdL111+vgoICzZ49Wz/84Q/1wQcfWDVvvPGG5syZoyeeeEKfffaZRo8erZycHJWWlra6l1AyPC1ekrT9MEEJAICQYS5BaWmpkWRWr15tjDGmrKzMREVFmcWLF1s1O3bsMJJMXl6eMcaYpUuXGqfTaYqLi62aF1980Xg8HlNTU2OMMeaRRx4xw4cPD3ivO++80+Tk5FjPJ0yYYGbOnGk9b2hoMGlpaWb+/Pmt7uV8vF6vkWS8Xm+r6i/Fih0lJuPRJeaGX61q8/cCACCcBfP7+5LGKHm9jeNpunXrJknKz89XXV2dsrOzrZohQ4aoT58+ysvLkyTl5eVp5MiRSklJsWpycnLk8/m0bds2q6b5NppqmrZRW1ur/Pz8gBqn06ns7GyrpjW9nK6mpkY+ny/g0V6Gnzr1tudIhU7W1p+nGgAAtIeLDkp+v1+zZ8/W1VdfrREjRkiSiouL5XK5lJCQEFCbkpKi4uJiq6Z5SGpa37TuXDU+n09VVVU6evSoGhoazlrTfBvn6+V08+fPV3x8vPVIT09v5d64dMmeaCXFueQ3zNANAECouOigNHPmTG3dulWLFi0KZj+2mjdvnrxer/XYv39/u77/0J6NR5V2MPEkAAAh4aKC0qxZs7RkyRKtXLlSvXv3tpanpqaqtrZWZWVlAfUlJSVKTU21ak6/8qzp+flqPB6PYmJilJSUpIiIiLPWNN/G+Xo5ndvtlsfjCXi0p6Yr35giAACA0HBBQckYo1mzZumtt97SihUr1K9fv4D148aNU1RUlHJzc61lhYWFKioqUlZWliQpKytLW7ZsCbg6bfny5fJ4PBo2bJhV03wbTTVN23C5XBo3blxAjd/vV25urlXTml5CzTDriBJXvgEAEBIuZOT3Aw88YOLj482qVavM4cOHrcfJkyetmvvvv9/06dPHrFixwmzYsMFkZWWZrKwsa319fb0ZMWKEmThxoikoKDDLli0zPXr0MPPmzbNq9uzZY2JjY83cuXPNjh07zIIFC0xERIRZtmyZVbNo0SLjdrvNwoULzfbt2829995rEhISAq6mO18v59OeV70ZY8yuEp/JeHSJGfrY+6a+wd8u7wkAQLgJ5vf3BQUlSWd9vPLKK1ZNVVWVefDBB01iYqKJjY01t956qzl8+HDAdvbt22duuukmExMTY5KSksyPfvQjU1dXF1CzcuVKM2bMGONyuUz//v0D3qPJ888/b/r06WNcLpeZMGGCWbt2bcD61vRyLu0dlOob/Gbwz5aajEeXmC9Ky9vlPQEACDfB/P52GGOMXUezQp3P51N8fLy8Xm+7jVe6ZcHH2rS/TL/97uX61qi0dnlPAADCSTC/v7nXW4hpGqfErUwAALAfQSnEWPd8Y0A3AAC2IyiFmOHWFAEEJQAA7EZQCjFDUrvK4ZCOlNeotLza7nYAAOjUCEohJtYVqf5JXSQxTgkAALsRlELQsLR4SZx+AwDAbgSlENQ0TokjSgAA2IugFIKGc883AABCAkEpBA0/dept37GTKq+us7kbAAA6L4JSCOrWxaWe8dGSpJ3F5TZ3AwBA50VQClHW6beDnH4DAMAuBKUQxZVvAADYj6AUopqOKG3hiBIAALYhKIWokb0ajyjtKq1QdV2Dzd0AANA5EZRCVM/4aHXv4lKD32gHN8gFAMAWBKUQ5XA4NOLUUaWtnH4DAMAWBKUQ1nT6jXFKAADYg6AUwkZYQYlTbwAA2IGgFMJG9j41oLuknAHdAADYgKAUwtLio9Wti0v1fsMM3QAA2ICgFMKaD+hmnBIAAO2PoBTiRvZqnHhy6wGCEgAA7Y2gFOK48g0AAPsQlELcyN4JkqTPGdANAEC7IyiFuLT4aCXFNQ7o3s4M3QAAtCuCUohzOBxfnX5jnBIAAO2KoNQBNJ1+20xQAgCgXRGUOoBRp44obT5QZm8jAAB0MgSlDmDUqRm6vzhSocqaepu7AQCg8yAodQDJnmileqLlN9K2QwzoBgCgvRCUOoim+75x+g0AgPZDUOogxqQnSJI2MaAbAIB2Q1DqIEafuvJt0/4yW/sAAKAzISh1EE2n3oqOn9SJylqbuwEAoHMgKHUQ8TFR6p/URZK0iXFKAAC0C4JSBzK6aZzSfsYpAQDQHghKHcgornwDAKBdEZQ6EOuI0oEyGWPsbQYAgE6AoNSBDOvpUaTToaMVtTpYVmV3OwAAhD2CUgcSHRWhIT27SmKcEgAA7YGg1ME0zafEOCUAANoeQamDaQpKBUw8CQBAmyModTBNA7q3HPSqwc+AbgAA2hJBqYMZkBynWFeETtY26IsjFXa3AwBAWCModTARTodG9GqcT4nTbwAAtC2CUgc0xpqhu8zWPgAACHcEpQ7oqyvfmCIAAIC2RFDqgJpuZbLjsE/VdQ02dwMAQPgiKHVAvRNjlBTnUr3faNshjioBANBWCEodkMPh0Jj0REnSxqIye5sBACCMEZQ6qLEZCZKk/C9P2NsIAABhjKDUQY3twxElAADaGkGpgxrVO15Oh1Tsq1axt9rudgAACEsEpQ4q1hWpwakeSVLBfk6/AQDQFghKHdjYPgmSpM84/QYAQJsgKHVgTeOUGNANAEDbICh1YOMyGoPSlgNe1dQz8SQAAMFGUOrAMrrHqnsXl2ob/Np60Gd3OwAAhB2CUgfmcDh0uTVNAKffAAAINoJSB9c08eRnBCUAAIKOoNTBNR/QbYyxuRsAAMILQamDG907QZFOh0p8NTpwosrudgAACCsEpQ4uxhWh4b3iJUkbvjxuczcAAIQXglIYGJ/BfEoAALQFglIY+CooldnbCAAAYYagFAbGngpKhcU+lVfX2dwNAADh44KD0po1a3TzzTcrLS1NDodDb7/9dsD6H/zgB3I4HAGPG2+8MaDm+PHjmjp1qjwejxISEjRjxgxVVFQE1GzevFnXXnutoqOjlZ6erqeffvqMXhYvXqwhQ4YoOjpaI0eO1NKlSwPWG2P0+OOPq2fPnoqJiVF2drZ27dp1oR855KV4otU7MUZ+IxXsL7O7HQAAwsYFB6XKykqNHj1aCxYsaLHmxhtv1OHDh63H66+/HrB+6tSp2rZtm5YvX64lS5ZozZo1uvfee631Pp9PEydOVEZGhvLz8/XMM8/oySef1Msvv2zVfPLJJ5oyZYpmzJihjRs3avLkyZo8ebK2bt1q1Tz99NN67rnn9NJLL2ndunXq0qWLcnJyVF1dfaEfO+SNY5wSAADBZy6BJPPWW28FLJs2bZq55ZZbWnzN9u3bjSTz6aefWsvef/9943A4zMGDB40xxrzwwgsmMTHR1NTUWDWPPvqoGTx4sPX8O9/5jpk0aVLAtjMzM819991njDHG7/eb1NRU88wzz1jry8rKjNvtNq+//nqrPp/X6zWSjNfrbVW9nV79ZK/JeHSJ+d5/rrW7FQAAbBXM7+82GaO0atUqJScna/DgwXrggQd07Ngxa11eXp4SEhI0fvx4a1l2dracTqfWrVtn1Vx33XVyuVxWTU5OjgoLC3XixAmrJjs7O+B9c3JylJeXJ0nau3eviouLA2ri4+OVmZlp1ZyupqZGPp8v4NFRjM/oJkn67MsTqm/w29wNAADhIehB6cYbb9Qf/vAH5ebm6t/+7d+0evVq3XTTTWpoaLy7fXFxsZKTkwNeExkZqW7duqm4uNiqSUlJCahpen6+mubrm7/ubDWnmz9/vuLj461Henr6BX9+uwxO7aqu7khV1jaosKTc7nYAAAgLQQ9Kd911l7797W9r5MiRmjx5spYsWaJPP/1Uq1atCvZbBd28efPk9Xqtx/79++1uqdUinA5dfmqc0vq9TDwJAEAwtPn0AP3791dSUpJ2794tSUpNTVVpaWlATX19vY4fP67U1FSrpqSkJKCm6fn5apqvb/66s9Wczu12y+PxBDw6ksx+jaff1u0hKAEAEAxtHpQOHDigY8eOqWfPnpKkrKwslZWVKT8/36pZsWKF/H6/MjMzrZo1a9aoru6rOYGWL1+uwYMHKzEx0arJzc0NeK/ly5crKytLktSvXz+lpqYG1Ph8Pq1bt86qCTdNQenTfce5QS4AAEFwwUGpoqJCBQUFKigokNQ4aLqgoEBFRUWqqKjQ3LlztXbtWu3bt0+5ubm65ZZbNGDAAOXk5EiShg4dqhtvvFH33HOP1q9fr48//lizZs3SXXfdpbS0NEnSd7/7XblcLs2YMUPbtm3TG2+8oWeffVZz5syx+njooYe0bNky/epXv9LOnTv15JNPasOGDZo1a5YkyeFwaPbs2fr5z3+ud955R1u2bNH3v/99paWlafLkyZe420LTyN7xckc6dayyVl8cqTj/CwAAwLld6GVyK1euNJLOeEybNs2cPHnSTJw40fTo0cNERUWZjIwMc88995ji4uKAbRw7dsxMmTLFxMXFGY/HY6ZPn27Ky8sDajZt2mSuueYa43a7Ta9evcxTTz11Ri9vvvmmGTRokHG5XGb48OHmvffeC1jv9/vNY489ZlJSUozb7TY33HCDKSwsbPVn7UjTAzS563d5JuPRJea1tfvsbgUAAFsE8/vbYQznaFri8/kUHx8vr9fbYcYr/cfyz/Vs7i7dMiZNz951ud3tAADQ7oL5/c293sJMZv+vBnSTgQEAuDQEpTBzeXqioiIcKvZVq+j4SbvbAQCgQyMohZkYV4TGpCdIYpoAAAAuFUEpDGX26y5JWrvn2HkqAQDAuRCUwtCV/b8KSoxTAgDg4hGUwtDYjARFRTh0yFut/cer7G4HAIAOi6AUhmJdkRrdO0ESp98AALgUBKUw1fz0GwAAuDgEpTBlzae0l/mUAAC4WASlMDUuI1GRTocOllXpwAnGKQEAcDEISmEq1hWp0afmU8rj9BsAABeFoBTGrjx1+o1xSgAAXByCUhhrGtDNfd8AALg4BKUwxjglAAAuDUEpjMW6IjWqd7wkxikBAHAxCEphrvnpNwAAcGEISmGOiScBALh4BKUw13yc0v7jJ+1uBwCADoWgFOa6uCM18tQ4JY4qAQBwYQhKnUDT6be8LwhKAABcCIJSJ3D1ZUmSpI+/OMp8SgAAXACCUicwvm+i3JFOlfhqtLu0wu52AADoMAhKnUB0VISu6Nt4O5OPdh+1uRsAADoOglIncc3AxtNvH+0iKAEA0FoEpU7imgGNQWntnmOqa/Db3A0AAB0DQamTGNbTo25dXKqsbVDB/jK72wEAoEMgKHUSTqdDV13WOE3Ah5x+AwCgVQhKnUjT6bePdh2xuRMAADoGglIn0jSge9MBr3zVdTZ3AwBA6CModSK9E2PVL6mLGvxGa5mlGwCA8yIodTJXD2gcp/Qx8ykBAHBeBKVO5poBPSRJHxKUAAA4L4JSJ5N1WXc5HdKeI5U6VFZldzsAAIQ0glInEx8TpVG9EyRxOxMAAM6HoNQJXcvtTAAAaBWCUid09an5lD7efVR+v7G5GwAAQhdBqRMa2ydRsa4IHaus1fbDPrvbAQAgZBGUOiFXpFNZ/bmdCQAA50NQ6qSuG3RqmgBuZwIAQIsISp1U04DuT/cdV2VNvc3dAAAQmghKnVS/pC7K6B6rugbDNAEAALSAoNRJORwOXT84WZK05nNOvwEAcDYEpU7sukGNp99Wf35ExjBNAAAApyModWJX9u8uV4RTB05U6YsjFXa3AwBAyCEodWKxrkhl9u8mSVqxs9TmbgAACD0EpU7uG0MaxykRlAAAOBNBqZNrCkob9p2Qr7rO5m4AAAgtBKVOLqN7F/VP6qJ6v9HHzNINAEAAghL0tcGNs3SvKmSaAAAAmiMowZpPadXnpUwTAABAMwQlaEK/boqJilCJr0bbDvnsbgcAgJBBUIKioyKse7/9bUeJzd0AABA6CEqQJGUPS5Ek5e5gmgAAAJoQlCDpq3FKWw56VeqrtrkbAABCA0EJkqQeXd0a3TtekrSykKNKAABIBCU0840hnH4DAKA5ghIsNwxtPP22ZtcRVdU22NwNAAD2IyjBMjzNo14JMaqu8+uj3czSDQAAQQkWh8Ohb566+u2v24pt7gYAAPsRlBBg4vDGoPS3HSWqb/Db3A0AAPYiKCHAhL7dFB8TpRMn65T/5Qm72wEAwFYEJQSIjHBag7r/up1ZugEAnRtBCWeYOCxVkvTX7cXcJBcA0KkRlHCG6wYlyR3p1P7jVdpxuNzudgAAsA1BCWeIdUXq2oE9JEkfcPUbAKATu+CgtGbNGt18881KS0uTw+HQ22+/HbDeGKPHH39cPXv2VExMjLKzs7Vr166AmuPHj2vq1KnyeDxKSEjQjBkzVFFREVCzefNmXXvttYqOjlZ6erqefvrpM3pZvHixhgwZoujoaI0cOVJLly694F5wdjeOaDz9RlACAHRmFxyUKisrNXr0aC1YsOCs659++mk999xzeumll7Ru3Tp16dJFOTk5qq7+6karU6dO1bZt27R8+XItWbJEa9as0b333mut9/l8mjhxojIyMpSfn69nnnlGTz75pF5++WWr5pNPPtGUKVM0Y8YMbdy4UZMnT9bkyZO1devWC+oFZ5c9NFmRTod2Fpdr39FKu9sBAMAe5hJIMm+99Zb13O/3m9TUVPPMM89Yy8rKyozb7Tavv/66McaY7du3G0nm008/tWref/9943A4zMGDB40xxrzwwgsmMTHR1NTUWDWPPvqoGTx4sPX8O9/5jpk0aVJAP5mZmea+++5rdS/n4/V6jSTj9XpbVR9uvvefa03Go0vMi6t2290KAACtFszv76COUdq7d6+Ki4uVnZ1tLYuPj1dmZqby8vIkSXl5eUpISND48eOtmuzsbDmdTq1bt86que666+RyuayanJwcFRYW6sSJE1ZN8/dpqml6n9b0gnPLGd54+u39LYdt7gQAAHsENSgVFzeOZ0lJSQlYnpKSYq0rLi5WcnJywPrIyEh169YtoOZs22j+Hi3VNF9/vl5OV1NTI5/PF/DozHKGp8rpkDYd8Gr/8ZN2twMAQLvjqrdm5s+fr/j4eOuRnp5ud0u26tHVrSv7d5ckLeWoEgCgEwpqUEpNbTxVU1ISOKNzSUmJtS41NVWlpaUB6+vr63X8+PGAmrNto/l7tFTTfP35ejndvHnz5PV6rcf+/ftb8anD26RRPSVJ7xGUAACdUFCDUr9+/ZSamqrc3Fxrmc/n07p165SVlSVJysrKUllZmfLz862aFStWyO/3KzMz06pZs2aN6urqrJrly5dr8ODBSkxMtGqav09TTdP7tKaX07ndbnk8noBHZ9d0+m3zAa+KjnH6DQDQuVxwUKqoqFBBQYEKCgokNQ6aLigoUFFRkRwOh2bPnq2f//zneuedd7RlyxZ9//vfV1pamiZPnixJGjp0qG688Ubdc889Wr9+vT7++GPNmjVLd911l9LS0iRJ3/3ud+VyuTRjxgxt27ZNb7zxhp599lnNmTPH6uOhhx7SsmXL9Ktf/Uo7d+7Uk08+qQ0bNmjWrFmS1KpecH5JcW5lXdZ4+o2jSgCATudCL5NbuXKlkXTGY9q0acaYxsvyH3vsMZOSkmLcbre54YYbTGFhYcA2jh07ZqZMmWLi4uKMx+Mx06dPN+Xl5QE1mzZtMtdcc41xu92mV69e5qmnnjqjlzfffNMMGjTIuFwuM3z4cPPee+8FrG9NL+fS2acHaPLa2n0m49El5lvPfWh3KwAAnFcwv78dxnDX05b4fD7Fx8fL6/V26tNwxypqdMUv/ia/kdbMvV59usfa3RIAAC0K5vc3V73hvLo3O/22ZMshm7sBAKD9EJTQKt8a1Th+7N1NjFMCAHQeBCW0yo3DUxXpdGjHYZ92l5bb3Q4AAO2CoIRWSezi0rUDkyRJ73BUCQDQSRCU0Gq3jOklSXqn4KC4BgAA0BkQlNBq3xyWopioCO07dlKbDnjtbgcAgDZHUEKrdXFH6pvDGm8y/E4BV78BAMIfQQkX5ObRjVe/Ldl8SA1+Tr8BAMIbQQkX5GuDeig+Jkql5TVau+eY3e0AANCmCEq4IK5IpyaN6ilJ+r/PDtjcDQAAbYughAv29+N6S5Le31Ksipp6m7sBAKDtEJRwwS5PT1D/pC6qqmvQ+1uYUwkAEL4ISrhgDodDt586qvS/+Zx+AwCEL4ISLsptY3vJ4ZDW7T2u/cdP2t0OAABtgqCEi9IzPkZXX9Z4SxMGdQMAwhVBCRetaVD3nz/jliYAgPBEUMJFyxmeqjh3pIqOn9Sn+07Y3Q4AAEFHUMJFi3FFaNLIxjmV/jd/v83dAAAQfAQlXJKmq9+WbinWyVrmVAIAhBeCEi7JFX0T1adbrCpq6vXBtmK72wEAIKgISrgkDodDt49tPKq0aD2n3wAA4YWghEt2x/jecp6aU2l3aYXd7QAAEDQEJVyytIQYfWNIsiTpT+uKbO4GAIDgISghKKZmZkhqnHyyuq7B5m4AAAgOghKC4rpBPdQrIUbeqjq9t5kb5QIAwgNBCUER4XTou5l9JEl/XPelzd0AABAcBCUEzR3jeyvS6dBnRWXacdhndzsAAFwyghKCJrlrtHKGp0piUDcAIDwQlBBUUyY0nn57a+NBVdQwUzcAoGMjKCGorrqsu/ondVFFTb3e2njQ7nYAALgkBCUEldPp0N1ZjVMF/OGTfTLG2NwRAAAXj6CEoLt9XG91cUVoV2mFPtp91O52AAC4aAQlBJ0nOkp3jE+XJL3y8T57mwEA4BIQlNAmpl3VV5K0Ymep9h6ttLcZAAAuEkEJbaJfUhddP7iHJOnVT/bZ2wwAABeJoIQ2M/3qfpKkxRv2y1ddZ3M3AABcOIIS2sy1A5M0IDlOlbUNWrzhgN3tAABwwQhKaDMOh0PTr+4rSVr4yV7VN/jtbQgAgAtEUEKbuu3y3urWxaX9x6u0bFux3e0AAHBBCEpoUzGuCH3vysYJKJkqAADQ0RCU0Oa+d2UfRUU4lP/lCW0sOmF3OwAAtBpBCW0uuWu0bhnTS5L0u9V7bO4GAIDWIyihXdz/tf6SpA+2F+uLIxU2dwMAQOsQlNAuBiR3VfbQFBkjvbTqC7vbAQCgVQhKaDcPXn+ZJOmtjQd1sKzK5m4AADg/ghLazdg+icrq3131fqP/+nCv3e0AAHBeBCW0q/u/3nhU6fX1RTpeWWtzNwAAnBtBCe3quoFJGtHLo6q6Bi38mKNKAIDQRlBCu3I4HJr59QGSpIWf7FM5N8sFAIQwghLaXc7wVF3Wo4t81fX647oiu9sBAKBFBCW0O6fToQdPHVX6zw/3qrquweaOAAA4O4ISbPHtMWnqnRijoxU1euPT/Xa3AwDAWRGUYIuoCKfu+1rjFXAvrNrNUSUAQEgiKME23xnfW2nx0SrxcVQJABCaCEqwjTsyQg9e3zhWiaNKAIBQRFCCre7gqBIAIIQRlGArjioBAEIZQQm2a35U6X/yvrS7HQAALAQl2M4dGaGHsgdKkp5fsUsnuAccACBEEJQQEv5+XLqGpHaVr7pez+busrsdAAAkEZQQIiKcDv1s0jBJ0v+s/VK7Syts7ggAAIISQsg1A5N0w5BkNfiNfrl0h93tAABAUEJo+edJQxXpdGjFzlJ9uOuI3e0AADo5ghJCymU94vS9KzMkSb94b4ca/MbmjgAAnRlBCSFndvZAxcdEaWdxOZNQAgBsRVBCyEmIdemhGxqnC/j18kKVV9fZ3BEAoLMKelB68skn5XA4Ah5Dhgyx1ldXV2vmzJnq3r274uLidPvtt6ukpCRgG0VFRZo0aZJiY2OVnJysuXPnqr6+PqBm1apVGjt2rNxutwYMGKCFCxee0cuCBQvUt29fRUdHKzMzU+vXrw/2x0UbuTsrQ/2TuuhoRa0WrPzC7nYAAJ1UmxxRGj58uA4fPmw9PvroI2vdww8/rHfffVeLFy/W6tWrdejQId12223W+oaGBk2aNEm1tbX65JNP9Oqrr2rhwoV6/PHHrZq9e/dq0qRJuv7661VQUKDZs2frhz/8oT744AOr5o033tCcOXP0xBNP6LPPPtPo0aOVk5Oj0tLStvjICLKoCKf++e+GSpL++6O92n/8pM0dAQA6JRNkTzzxhBk9evRZ15WVlZmoqCizePFia9mOHTuMJJOXl2eMMWbp0qXG6XSa4uJiq+bFF180Ho/H1NTUGGOMeeSRR8zw4cMDtn3nnXeanJwc6/mECRPMzJkzrecNDQ0mLS3NzJ8/v9Wfxev1GknG6/W2+jUIHr/fb6a8nGcyHl1iHnwt3+52AAAdRDC/v9vkiNKuXbuUlpam/v37a+rUqSoqKpIk5efnq66uTtnZ2VbtkCFD1KdPH+Xl5UmS8vLyNHLkSKWkpFg1OTk58vl82rZtm1XTfBtNNU3bqK2tVX5+fkCN0+lUdna2VXM2NTU18vl8AQ/Yx+FonITS4ZDe23JYG/Ydt7slAEAnE/SglJmZqYULF2rZsmV68cUXtXfvXl177bUqLy9XcXGxXC6XEhISAl6TkpKi4uJiSVJxcXFASGpa37TuXDU+n09VVVU6evSoGhoazlrTtI2zmT9/vuLj461Henr6Re0DBM+wNI/uHN/4d/h/S7bLz3QBAIB2FPSgdNNNN+mOO+7QqFGjlJOTo6VLl6qsrExvvvlmsN8q6ObNmyev12s99u/n0vRQ8KOJgxXnjtTmA169sYG/CQCg/bT59AAJCQkaNGiQdu/erdTUVNXW1qqsrCygpqSkRKmpqZKk1NTUM66Ca3p+vhqPx6OYmBglJSUpIiLirDVN2zgbt9stj8cT8ID9enR16+FvDpIk/duynTpWUWNzRwCAzqLNg1JFRYW++OIL9ezZU+PGjVNUVJRyc3Ot9YWFhSoqKlJWVpYkKSsrS1u2bAm4Om358uXyeDwaNmyYVdN8G001TdtwuVwaN25cQI3f71dubq5Vg45lWlaGhvb0qOxknX65dKfd7QAAOomgB6Uf//jHWr16tfbt26dPPvlEt956qyIiIjRlyhTFx8drxowZmjNnjlauXKn8/HxNnz5dWVlZuvLKKyVJEydO1LBhw3T33Xdr06ZN+uCDD/Szn/1MM2fOlNvtliTdf//92rNnjx555BHt3LlTL7zwgt588009/PDDVh9z5szR73//e7366qvasWOHHnjgAVVWVmr69OnB/shoB5ERTv3y1hFyOKT/++yAVn/OfeAAAO0gCFfhBbjzzjtNz549jcvlMr169TJ33nmn2b17t7W+qqrKPPjggyYxMdHExsaaW2+91Rw+fDhgG/v27TM33XSTiYmJMUlJSeZHP/qRqaurC6hZuXKlGTNmjHG5XKZ///7mlVdeOaOX559/3vTp08e4XC4zYcIEs3bt2gv6LEwPEHqe+MtWk/HoEnPlL/9mvFW1drcDAAhBwfz+dhhjuIyoBT6fT/Hx8fJ6vYxXChEna+t107Mf6stjJ3XXFel66vZRdrcEAAgxwfz+5l5v6FBiXZF6+lQ4WvTpfk7BAQDaFEEJHU5m/+76wVV9JUk/+b/N8nHTXABAGyEooUN65MbByugeq8Peav3yvR12twMACFMEJXRInIIDALQHghI6LE7BAQDaGkEJHVrzU3C/WMIpOABAcBGU0KE1PwX3xob9Wr695DyvAACg9QhK6PAy+3fXPdf2kyT9ePEmHThx0uaOAADhgqCEsDA3Z4hG946Xt6pOD/7xM1XXNdjdEgAgDBCUEBZckU4tmDpWCbFR2nzAq395d7vdLQEAwgBBCWGjd2Ksnr3rcjkc0uvri7R4w367WwIAdHAEJYSVrw3qoYezB0mSfvb2Vm075LW5IwBAR0ZQQtiZdf0AfWNIsmrq/br/tXx5TzK/EgDg4hCUEHacTof+4ztjlN4tRvuPV2n2Gxvl9xu72wIAdEAEJYSl+NgovTh1nNyRTq0sPKLfrtxtd0sAgA6IoISwNaJXvH4+eYQk6T/+9jn3gwMAXDCCEsLaHePTNWVCHxkjPbRoI5NRAgAuCEEJYe+Jm4dpVO94lZ2s0wOvfaaqWiajBAC0DkEJYS86KkIvTB2rxNgobTno1cNvFKiBwd0AgFYgKKFT6J0Yq9/dPV6uCKeWbSvWk+9skzGEJQDAuRGU0GlM6NdNv75ztBwO6X/WfqkFXAkHADgPghI6lW+NStMT3xomSfr3v36uNz4tsrkjAEAoIyih0/nB1f304NcvkyTN+/MW/W17ic0dAQBCFUEJndLcnMG6Y1xv+Y0080+fKf/L43a3BAAIQQQldEoOh0Pzbxtp3RPuHxZuUGFxud1tAQBCDEEJnVZkhFMLvjtWY/skyFtVp+/91zrtPVppd1sAgBBCUEKnFuOK0Cs/mKAhqV11pLxGU15eS1gCAFgISuj04mOj9NoPMzUwOU7FvmrCEgDAQlACJCXFufX6vVcSlgAAAQhKwCmnh6U7f5enXSUM8AaAzoygBDTTFJaGpHZVaXmN7nx5rTbtL7O7LQCATQhKwGmS4tx6/Z4rNap3vI5X1uqul9cqdweTUgJAZ0RQAs4isYtLf7rnSl03qIeq6hp0zx826E/ruN0JAHQ2BCWgBXHuSP3XtPHWDN7//NYW/eqvhTLG2N0aAKCdEJSAc4iKcOrpvx+lf7phoCTp+RW79ePFm1XX4Le5MwBAeyAoAefhcDg055uDNP+2kYpwOvR/nx3QPyz8VL7qOrtbAwC0MYIS0EpTJvTR778/TjFREfpw11Hd8tuPuT8cAIQ5ghJwAb4xJEVv3peltPho7T1aqckLPtZfCg7a3RYAoI0QlIALNLJ3vJb807W6dmCSquoa9NCiAs378xZV1TbY3RoAIMgISsBF6NbFpYXTJ2jW9QMkSa+vL9K3nv9Q2w55be4MABBMBCXgIkU4HfpxzmC9NiNTyV3d+uJIpW5d8In+66O98vuZQgAAwgFBCbhE1wxM0rLZ1yl7aIpqG/z61yXbNX3hpzpSXmN3awCAS0RQAoKgWxeXfv/9cfrXySPkjnRq9edHdNOza7SysNTu1gAAl4CgBASJw+HQ3Vdm6N1/vEZDUrvqaEWtpr/yqeb9eTNzLgFAB0VQAoJsUEpXvT3zav3gqr6SpNfX79c3f71ay7YW29sYAOCCEZSANhAdFaEnvz1cb96XpX5JXVTiq9H9r+Xr3j9s0GFvld3tAQBaiaAEtKEJ/brp/Yeu1azrByjS6dBft5co+1ertWDlblXXMe8SAIQ6h+FW6C3y+XyKj4+X1+uVx+Oxux10cIXF5Zr35836rKhMktQrIUZzcwbr26PT5HQ67G0OAMJIML+/CUrnQFBCsPn9Rn/ZdFDPLCvUIW+1JGl073j9dNIwTejXzebuACA8EJTaCUEJbaW6rkH/9dFevbBytypP3fokZ3iKfjxxsAamdLW5OwDo2AhK7YSghLZ2pLxG//G3z7VofZH8RnI4pG+PTtM/fmOgBiTH2d0eAHRIBKV2QlBCe/m8pFy//uvnWratcQoBh0P65tAU3f/1yzS2T6LN3QFAx0JQaicEJbS3rQe9ei53l/66vcRaNqFfN917bX99Y0gyg74BoBUISu2EoAS77C4t1+9W79HbBQdV19D4T7R/jy6aflVf3Tq2t+LckTZ3CAChi6DUTghKsFuxt1qvfLxXf1pfpPLqeklSnDtSt17eS3dNSNfwtHibOwSA0ENQaicEJYSKipp6/e+G/fpD3pfac7TSWj6yV7z+flxv3Tw6Td26uGzsEABCB0GpnRCUEGqMMfrki2P60/oi/XVbsXVaLtLp0NcH99AtY3ope2iKYlwRNncKAPYhKLUTghJC2fHKWr298aDe2nhQWw56reWxrghddVmSrh/SQ18fnKxeCTE2dgkA7Y+g1E4ISugodpWU6+2Cg3p74yEdLAu86e6glDhdPzhZXx+crPF9ExUVwS0eAYQ3glI7ISihozHGaNshn1YVlmpl4RFtLDohf7N/4XHuSF0z4KujTSmeaPuaBYA2QlBqJwQldHRlJ2u1ZtdRrdpZqtWfH9GxytqA9UN7enT94B66ekCSxqQnqAvTDgAIAwSldkJQQjjx+422HPRqZWGpVhUe0aYDZWr+rz/C6dDwNI/GZSRqfEY3jeodr96JMXI4mOQSQMdCUGonBCWEs2MVNVqz64hWFx7Rp/tOnDG2SZISY6M0sneCRvWK17A0j4b29CijWywzhAMIaQSldkJQQmdysKxKG/Yd14Z9J7Rx/wkVFpdb0w80F+uKUL+kLurbvYv6JsWe+tn4PCnOxREoALYjKLUTghI6s5r6BhUWl2vzAa+2HPBq+2GfCkvKVVvvb/E1ce5IZXSPPRWcGkNUv6QuyiBEAWhHBKV2QlACAtU3+LXv2EntPVqpL49VnvrZ+PyQt0rn+q9JTFSEkj1uJXd1K7lrtHp0datH11PPPdGnlruVGOvi1B6ASxLM7+9OcYnLggUL9Mwzz6i4uFijR4/W888/rwkTJtjdFtDhREY4NSA5TgOS485YV13XoAMnTmrv0ZNWiNp3rFL7jp7UIW+Vquoa9OWxk/ry2MlzvkeE06Gu0ZHqGh0pT3RUs5+nfo+Jkqf5upioU/WNy7u4I+WOdHL0CkBQhH1QeuONNzRnzhy99NJLyszM1G9+8xvl5OSosLBQycnJdrcHhI3oqAgNSO6qAcldz1hXXdegw95qHSmvUWl5tUp9NSotr7GeN/6s0fHKWjX4jcpO1qnsZJ2kMweYt5Y70qnoqAjrZ3TUqZ+REXJHOeWOdCrS6VREhENRTocinE5FRTgU4XQoKsKpCKdDkREORTodinQ6G39GNP1s9rtVd2ZN821FORt/Op2S0+GQQ5LD4ZDT0fjc6XDI4ZAczZ47HV/VnP7zfK8BEBxhf+otMzNTV1xxhX77299Kkvx+v9LT0/WP//iP+slPfnLO13LqDWhfdQ1+Ha+sla+qTr7qevmq61ReXS9fVePP8uq6M5Y1f15Z22D3RwgZ5w1XkpzOswQyNXvuPMtrmj13nqoJeM2pn41BsLGXxmeSTm1Dp9Y1LbfqzrKs8XdH08ubbTNw+Vev+er1gcsbt32291IL23QErrY+11ef5bT+W3ivszl3lm155Tm3eVGvCe57Nb7uwoJ6j65uzbx+wAW95nw49dZKtbW1ys/P17x586xlTqdT2dnZysvLO6O+pqZGNTU11nOfz9cufQJoFBXhVIon+qJnDK9v8Ku63q/quoZTj8bfa+q/+r3pZ12DX3V+o4YGv+r9pvHR9HvDac/9fjX4jeoazKmfzZ83f82Zr2/wG9X5/WpoMKrzGxnTOIO63xgZNc5vZYzkN0b+Uz+NmmpOPb+I/531N25EjdExrP9/GB1c/x5dgh6Ugimsg9LRo0fV0NCglJSUgOUpKSnauXPnGfXz58/Xv/zLv7RXewCCLDLCqbgIp+LCbIZxY74KU0ZfhSf/aWGqebhqXnP6z/O9xjR77jdnhrazvkZGfv9X228KZ00hzwT8bgKWN33Grz5vY03A601grVXdwjabv9fpr1ez13+1/cBlLfXVcv9n9tySc53IOddrz7XZll5nzvGqi32vc73wYnpM7OI617vZLrz+a3KJ5s2bpzlz5ljPfT6f0tPTbewIAE6d8nFIznOe8ADQFsI6KCUlJSkiIkIlJSUBy0tKSpSamnpGvdvtltvtbq/2AABAiHPa3UBbcrlcGjdunHJzc61lfr9fubm5ysrKsrEzAADQEYT1ESVJmjNnjqZNm6bx48drwoQJ+s1vfqPKykpNnz7d7tYAAECIC/ugdOedd+rIkSN6/PHHVVxcrDFjxmjZsmVnDPAGAAA4XdjPo3QpmEcJAICOJ5jf32E9RgkAAOBSEJQAAABaQFACAABoAUEJAACgBQQlAACAFhCUAAAAWkBQAgAAaAFBCQAAoAVhPzP3pWiai9Pn89ncCQAAaK2m7+1gzKlNUDqH8vJySVJ6errNnQAAgAtVXl6u+Pj4S9oGtzA5B7/fr0OHDqlr165yOBxB3bbP51N6err279/P7VHaGPu6/bCv2w/7uv2wr9tPsPa1MUbl5eVKS0uT03lpo4w4onQOTqdTvXv3btP38Hg8/MNrJ+zr9sO+bj/s6/bDvm4/wdjXl3okqQmDuQEAAFpAUAIAAGgBQckmbrdbTzzxhNxut92thD32dfthX7cf9nX7YV+3n1Dc1wzmBgAAaAFHlAAAAFpAUAIAAGgBQQkAAKAFBCUAAIAWEJRssGDBAvXt21fR0dHKzMzU+vXr7W4ppMyfP19XXHGFunbtquTkZE2ePFmFhYUBNdXV1Zo5c6a6d++uuLg43X777SopKQmoKSoq0qRJkxQbG6vk5GTNnTtX9fX1ATWrVq3S2LFj5Xa7NWDAAC1cuPCMfjrT3+upp56Sw+HQ7NmzrWXs6+A5ePCgvve976l79+6KiYnRyJEjtWHDBmu9MUaPP/64evbsqZiYGGVnZ2vXrl0B2zh+/LimTp0qj8ejhIQEzZgxQxUVFQE1mzdv1rXXXqvo6Gilp6fr6aefPqOXxYsXa8iQIYqOjtbIkSO1dOnStvnQNmhoaNBjjz2mfv36KSYmRpdddpn+9V//NeC+X+zri7dmzRrdfPPNSktLk8Ph0Ntvvx2wPpT2bWt6OS+DdrVo0SLjcrnMf//3f5tt27aZe+65xyQkJJiSkhK7WwsZOTk55pVXXjFbt241BQUF5u/+7u9Mnz59TEVFhVVz//33m/T0dJObm2s2bNhgrrzySnPVVVdZ6+vr682IESNMdna22bhxo1m6dKlJSkoy8+bNs2r27NljYmNjzZw5c8z27dvN888/byIiIsyyZcusms7091q/fr3p27evGTVqlHnooYes5ezr4Dh+/LjJyMgwP/jBD8y6devMnj17zAcffGB2795t1Tz11FMmPj7evP3222bTpk3m29/+tunXr5+pqqqyam688UYzevRos3btWvPhhx+aAQMGmClTpljrvV6vSUlJMVOnTjVbt241r7/+uomJiTG/+93vrJqPP/7YREREmKefftps377d/OxnPzNRUVFmy5Yt7bMz2tgvfvEL0717d7NkyRKzd+9es3jxYhMXF2eeffZZq4Z9ffGWLl1qfvrTn5o///nPRpJ56623AtaH0r5tTS/nQ1BqZxMmTDAzZ860njc0NJi0tDQzf/58G7sKbaWlpUaSWb16tTHGmLKyMhMVFWUWL15s1ezYscNIMnl5ecaYxn/ITqfTFBcXWzUvvvii8Xg8pqamxhhjzCOPPGKGDx8e8F533nmnycnJsZ53lr9XeXm5GThwoFm+fLn52te+ZgUl9nXwPProo+aaa65pcb3f7zepqanmmWeesZaVlZUZt9ttXn/9dWOMMdu3bzeSzKeffmrVvP/++8bhcJiDBw8aY4x54YUXTGJiorXvm9578ODB1vPvfOc7ZtKkSQHvn5mZae67775L+5AhYtKkSeYf/uEfApbddtttZurUqcYY9nUwnR6UQmnftqaX1uDUWzuqra1Vfn6+srOzrWVOp1PZ2dnKy8uzsbPQ5vV6JUndunWTJOXn56uuri5gPw4ZMkR9+vSx9mNeXp5GjhyplJQUqyYnJ0c+n0/btm2zappvo6mmaRud6e81c+ZMTZo06Yz9wb4OnnfeeUfjx4/XHXfcoeTkZF1++eX6/e9/b63fu3eviouLA/ZBfHy8MjMzA/Z1QkKCxo8fb9VkZ2fL6XRq3bp1Vs11110nl8tl1eTk5KiwsFAnTpywas719+jorrrqKuXm5urzzz+XJG3atEkfffSRbrrpJkns67YUSvu2Nb20BkGpHR09elQNDQ0BXyiSlJKSouLiYpu6Cm1+v1+zZ8/W1VdfrREjRkiSiouL5XK5lJCQEFDbfD8WFxefdT83rTtXjc/nU1VVVaf5ey1atEifffaZ5s+ff8Y69nXw7NmzRy+++KIGDhyoDz74QA888ID+6Z/+Sa+++qqkr/bVufZBcXGxkpOTA9ZHRkaqW7duQfl7hMu+/slPfqK77rpLQ4YMUVRUlC6//HLNnj1bU6dOlcS+bkuhtG9b00trRLa6ErDBzJkztXXrVn300Ud2txKW9u/fr4ceekjLly9XdHS03e2ENb/fr/Hjx+uXv/ylJOnyyy/X1q1b9dJLL2natGk2dxde3nzzTf3xj3/Un/70Jw0fPlwFBQWaPXu20tLS2Ne4YBxRakdJSUmKiIg444qhkpISpaam2tRV6Jo1a5aWLFmilStXqnfv3tby1NRU1dbWqqysLKC++X5MTU09635uWneuGo/Ho5iYmE7x98rPz1dpaanGjh2ryMhIRUZGavXq1XruuecUGRmplJQU9nWQ9OzZU8OGDQtYNnToUBUVFUn6al+dax+kpqaqtLQ0YH19fb2OHz8elL9HuOzruXPnWkeVRo4cqbvvvlsPP/ywddSUfd12QmnftqaX1iAotSOXy6Vx48YpNzfXWub3+5Wbm6usrCwbOwstxhjNmjVLb731llasWKF+/foFrB83bpyioqIC9mNhYaGKioqs/ZiVlaUtW7YE/GNcvny5PB6P9WWVlZUVsI2mmqZtdIa/1w033KAtW7aooKDAeowfP15Tp061fmdfB8fVV199xjQXn3/+uTIyMiRJ/fr1U2pqasA+8Pl8WrduXcC+LisrU35+vlWzYsUK+f1+ZWZmWjVr1qxRXV2dVbN8+XINHjxYiYmJVs25/h4d3cmTJ+V0Bn69RUREyO/3S2Jft6VQ2ret6aVVWj3sG0GxaNEi43a7zcKFC8327dvNvffeaxISEgKuGOrsHnjgARMfH29WrVplDh8+bD1Onjxp1dx///2mT58+ZsWKFWbDhg0mKyvLZGVlWeubLlmfOHGiKSgoMMuWLTM9evQ46yXrc+fONTt27DALFiw46yXrne3v1fyqN2PY18Gyfv16ExkZaX7xi1+YXbt2mT/+8Y8mNjbWvPbaa1bNU089ZRISEsxf/vIXs3nzZnPLLbec9bLqyy+/3Kxbt8589NFHZuDAgQGXVZeVlZmUlBRz9913m61bt5pFixaZ2NjYMy6rjoyMNP/+7/9uduzYYZ544okOf8l6c9OmTTO9evWypgf485//bJKSkswjjzxi1bCvL155ebnZuHGj2bhxo5Fkfv3rX5uNGzeaL7/80hgTWvu2Nb2cD0HJBs8//7zp06ePcblcZsKECWbt2rV2txRSJJ318corr1g1VVVV5sEHHzSJiYkmNjbW3Hrrrebw4cMB29m3b5+56aabTExMjElKSjI/+tGPTF1dXUDNypUrzZgxY4zL5TL9+/cPeI8mne3vdXpQYl8Hz7vvvmtGjBhh3G63GTJkiHn55ZcD1vv9fvPYY4+ZlJQU43a7zQ033GAKCwsDao4dO2amTJli4uLijMfjMdOnTzfl5eUBNZs2bTLXXHONcbvdplevXuapp546o5c333zTDBo0yLhcLjN8+HDz3nvvBf8D28Tn85mHHnrI9OnTx0RHR5v+/fubn/70pwGXmrOvL97KlSvP+t/oadOmGWNCa9+2ppfzcRjTbKpSAAAAWBijBAAA0AKCEgAAQAsISgAAAC0gKAEAALSAoAQAANACghIAAEALCEoAAAAtICgBAAC0gKAEAADQAoISAABACwhKAAAALSAoAQAAtOD/Azj4Io9BSj56AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "plt.plot(all_best_distances[1:])" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "205.49650823550252" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "all_best_distances[-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 ,\n", - " 0.64589411, 0.43758721, 0.891773 , 0.96366276, 0.38344152,\n", - " 0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606,\n", - " 0.0871293 , 0.0202184 , 0.83261985, 0.77815675, 0.87001215,\n", - " 0.97861834, 0.79915856, 0.46147936, 0.78052918, 0.11827443,\n", - " 0.63992102, 0.14335329, 0.94466892, 0.52184832, 0.41466194,\n", - " 0.26455561, 0.77423369, 0.45615033, 0.56843395, 0.0187898 ,\n", - " 0.6176355 , 0.61209572, 0.616934 , 0.94374808, 0.6818203 ,\n", - " 0.3595079 , 0.43703195, 0.6976312 , 0.06022547, 0.66676672,\n", - " 0.67063787, 0.21038256, 0.1289263 , 0.31542835, 0.36371077,\n", - " 0.57019677, 0.43860151, 0.98837384, 0.10204481, 0.20887676,\n", - " 0.16130952, 0.65310833, 0.2532916 , 0.46631077, 0.24442559,\n", - " 0.15896958, 0.11037514, 0.65632959, 0.13818295]])" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "W[:1]" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.44256429, 0.53827876, 0.47480137, 0.61519475, 0.58260742,\n", - " 0.56843893, 0.45556814, 0.64610971, 0.77281468, 0.39536792,\n", - " 0.51052557, 0.41572843, 0.5553761 , 0.83698542, 0.16370298,\n", - " 0.44696992, 0.21374778, 0.74687941, 0.34679602, 0.58910765,\n", - " 0.56707936, 0.50925248, 0.50661505, 0.66326411, 0.05034912,\n", - " 0.71679844, 0.41421399, 0.52798474, 0.75863155, 0.57991776,\n", - " 0.30463705, 0.56892616, 0.44259512, 0.41057791, 0.32003543,\n", - " 0.46886895, 0.4089395 , 0.46595273, 0.66987709, 0.53688839,\n", - " 0.49296935, 0.64164668, 0.65569185, 0.35627781, 0.48744864,\n", - " 0.52200075, 0.54076961, 0.18914343, 0.51702804, 0.41517277,\n", - " 0.39479315, 0.55722324, 0.85716223, 0.18230271, 0.3141962 ,\n", - " 0.06932318, 0.68103497, 0.41798767, 0.63270966, 0.80774156,\n", - " 0.32853918, 0.54547272, 0.91917801, 0.37671129]])" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(A[best_index] @ B[best_index])[:1]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "np.random.seed(0)\n", - "from tqdm import tqdm\n", - "\n", - "n = 64\n", - "r = 32\n", - "# myparams = CpoParameters()\n", - "m = Model()\n", - "\n", - "W = np.random.rand(n, n)\n", - "Dupe_count = 32\n", - "learning_rate = 0.001\n", - "EPOCHS = 100000\n", - "\n", - "all_best_distances = [10e8]\n", - "\n", - "A = [np.random.rand(n, r) for _ in range(Dupe_count)]\n", - "B = [np.random.rand(r, n) for _ in range(Dupe_count)]\n", - "\n", - "for i in tqdm(range(EPOCHS)):\n", - "\n", - " possibles = []\n", - "\n", - " for a, b in zip(A, B):\n", - " possibles.append(a@b)\n", - "\n", - " distances =[]\n", - " for idx, poss in enumerate(possibles):\n", - " distances.append(( ((poss) - (W) )**2).sum())\n", - "\n", - "\n", - " if np.min(distances) >= np.min(all_best_distances):\n", - " continue\n", - "\n", - " all_best_distances.append(np.min(distances))\n", - "\n", - " best_index = np.argmin(distances)\n", - "\n", - " A_ = [((np.random.rand(n, r)-0.5) * learning_rate) + A[best_index] for _ in range(Dupe_count)]\n", - " B_ = [((np.random.rand(r, n)-0.5) * learning_rate) + B[best_index] for _ in range(Dupe_count)]\n", - "\n", - " # print(A_)\n", - "\n", - " A = A_\n", - " B = B_\n", - "\n", - " lowest_distance = np.min(distances)\n", - "\n", - " if i % 1000 == 0:\n", - " print(f'Reached Epoch {i} with distance {lowest_distance}')\n", - " learning_rate -= 0.00001" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Binary Variables/BankLocation_Problem.ipynb b/Binary Variables/BankLocation_Problem.ipynb deleted file mode 100644 index 8ead692..0000000 --- a/Binary Variables/BankLocation_Problem.ipynb +++ /dev/null @@ -1,68 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The long-range planning department for the Ohio Trust Company is considering expanding\n", - "its operation into a 20-county region in northeastern Ohio (Figure 13.10). Currently, Ohio\n", - "Trust does not have a principal place of business in any of the 20 counties. According to the\n", - "banking laws in Ohio, if a bank establishes a principal place of business (PPB) in any county,\n", - "branch banks can be established in that county and in any of the adjacent counties. However,\n", - "to establish a new principal place of business, Ohio Trust must either obtain approval for a\n", - "new bank from the state’s superintendent of banks or purchase an existing bank." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Sets and Indicies\n", - "\n", - "$\\mathcal{L}$: All banks locations
\n", - "$l, l \\in \\mathcal{L}$: An index represesnting a bank location\n", - "\n", - "#### Data\n", - "l_1 = neigbors of l_1\n", - "l_2 = neigbors of l_2\n", - "l_3 = neigbors of l_3\n", - "...\n", - "\n", - "#### D.V\n", - "x for each x in L\n", - "\n", - "#### Function\n", - "Minimize sum of x\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.10.10" - }, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Binary Variables/PartsWorth_Problem.ipynb b/Binary Variables/PartsWorth_Problem.ipynb deleted file mode 100644 index 549a7d5..0000000 --- a/Binary Variables/PartsWorth_Problem.ipynb +++ /dev/null @@ -1,39 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We represent the problem by \n", - "[\n", - " [0, 0, 0, 0], # Thin Crust, Mozerella Cheese, Smooth Sauce, Mild Sausage\n", - " [0, 0, 0, 0], # Thick Crust, Mixed Cheese, Chunky Sauce, Medium Sausage\n", - " [-, -, -, 0] # - , - , - , Hot Sausage\n", - "]\n", - "\n", - "How to know if customer 1 will buy put pizza?\n", - " 11L_{11} + 2L_{21} + 6L_{12} + ... >= 51\n", - " \n", - " 1 is already enforced, because it is trying to maximize.\n", - " 0 Needs to be enforced. \n", - "\n", - " 11L_{11} + 2L_{21} + 6L_{12} + ... >= (51 * Y_1) + 1\n", - "\n", - "\n", - "\n" - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Binary Variables/notes.txt b/Binary Variables/notes.txt deleted file mode 100644 index 45e8fa5..0000000 --- a/Binary Variables/notes.txt +++ /dev/null @@ -1,29 +0,0 @@ -Fixed Cost -> Doesn't take volume into consideration, AKA only added once - -Let's say we have the continuous variable x, -To represent whether the variable x was used whatsoever, we - -xx = 1_{{x > 0}} - -such that : - -1_{{.}} = { 1, if . is satisfied - { 0, otherwise - -And if x had a Fixed Cost (A) which was applied once, e.g. setup costs which is only - - applied. We can do as Follow - -Maximize {(PROFIT * x) - (A * xx)} - -Auxiliary DV: Their values aren't independant, and they add no new info, - - and thier values rely on other variables, also, they are used to write - - a simplify the formulation - -Examples on Auxiliary DV: - - F is a D.V. and F has a fixed cost of M. - - F <= [MaxCreationLimitForF] * FF. - - FF is the Auxiliary DV. - - - - \ No newline at end of file diff --git a/Decision Analysis/CarLeases_Problem.ipynb b/Decision Analysis/CarLeases_Problem.ipynb deleted file mode 100644 index fa08472..0000000 --- a/Decision Analysis/CarLeases_Problem.ipynb +++ /dev/null @@ -1,218 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Amy Lloyd is interested in leasing a new Honda and has contacted three\n", - "automobile dealers for pricing information. Each dealer offered Amy a closed-end\n", - "36-month lease with no down payment due at the time of signing. Each lease includes a\n", - "monthly charge and a mileage allowance. Additional miles receive a surcharge on a per-\n", - "mile basis. The monthly lease cost, the mileage allowance, and the cost for additional\n", - "miles are as follows:\n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DealerMonthly CostMileage AllowanceCost per Additional Mile
Hepburn Honda$29936,000$0.15
Midtown Motors$31045,000$0.20
Hopkins Automotive$32554,000$0.15
\n", - "\n", - "\n", - "Amy decided to choose the lease option that will minimize her total 36-month cost. The difficulty is that Amy is not sure how many miles she will drive over the next three years. For purposes of this decision, she believes it is reasonable to assume that she will drive 12,000 miles per year, 15,000 miles per year, or 18,000 miles per year. With this assumption Amy estimated her total costs for the three lease options. For example, she figures that the Hepburn Honda lease will cost her

\n", - "$36($299) + $0.15(36,000 - 36,000) = $10,764$ if she drives 12,000 miles per year,
\n", - "$36($299) + $0.15(45,000 - 36,000) = $12,114$ if she drives 15,000 miles per year,
\n", - "$36($299) + $0.15(54,000 - 36,000) = $13,464$ if she drives 18,000 miles per year.
\n", - "\n", - "\n", - "a. What is the decision, and what is the chance event?
\n", - "b. Construct a payoff table for Amy’s problem.
\n", - "c. If Amy has no idea which of the three mileage assumptions is most appropriate, what is the recommended decision (leasing option) using the optimistic, conservative, and minimax regret approaches?
\n", - "d. Suppose that the probabilities that Amy drives 12,000, 15,000, and 18,000 miles per year are 0.5, 0.4, and 0.1, respectively. What option should Amy choose using the expected value approach?
\n", - "e. Develop a risk profile for the decision selected in part (d). What is the most likely cost, and what is its probability?
\n", - "f. Suppose that, after further consideration, Amy concludes that the probabilities\n", - "that she will drive 12,000, 15,000, and 18,000 miles per year are 0.3, 0.4, and 0.3,\n", - "respectively. What decision should Amy make using the expected value approach?\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "11160.0\n", - "11160.0\n", - "12960.0\n", - "11700.0\n", - "11700.0\n", - "11700.0\n" - ] - } - ], - "source": [ - "##### B ######\n", - "print((36 * 310) + (0.2 * (max(0, ((3 * 12_000) - 45_000)))))\n", - "print((36 * 310) + (0.2 * (max(0, ((3 * 15_000) - 45_000)))))\n", - "print((36 * 310) + (0.2 * (max(0, ((3 * 18_000) - 45_000)))))\n", - "# ---------------\n", - "print((36 * 325) + (0.15 * (max(0, ((3 * 12_000) - 54_000)))))\n", - "print((36 * 325) + (0.15 * (max(0, ((3 * 15_000) - 54_000)))))\n", - "print((36 * 325) + (0.15 * (max(0, ((3 * 18_000) - 54_000)))))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Solution:\n", - "a. Chance event is How many miles Amy will drive.
\n", - "______\n", - "b. \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DealerCost of 12000 milesCost of 15000 milesCost of 18000 miles
Hepburn Honda10,76412,11413,464
Midtown Motors11,16011,16012,960
Hopkins Automotive11,70011,70011,700
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_____________\n", - "c.
\n", - "Optimistic (12,000 miles): Hepburn Honda - 10,764
\n", - "Conservative (18,000 miles): Hopkins Automotive - 11,700
\n", - "Minimax: \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DealerCost of 12000 milesCost of 15000 milesCost of 18000 miles
Hepburn Honda09541260
Midtown Motors39601764
Hopkins Automotive9365400
\n", - "\n", - "Meaning Hopkins Automotive is the best option with 1476." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_______________\n", - "d.
\n", - "Hupburn = $0.5(10746) + 0.4(12114) + 0.1(13464) = 11565$
\n", - "Midtown = $0.5(11160) + 0.4(11160) + 0.1(12960) = 11340$
\n", - "Hopkins = $0.5(11700) + 0.4(11700) + 0.1(11700) = 11700$
\n", - "\n", - "meaning Midtown motors would be the best choice" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "____________\n", - "e.

\n", - "\n", - "\n", - "11,160 would be the likely with 50%.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "f. Decide on something Amy" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Decision Analysis/CarpoolRoute_Problem.ipynb b/Decision Analysis/CarpoolRoute_Problem.ipynb deleted file mode 100644 index e69de29..0000000 diff --git a/Decision Analysis/ChardonnayOrRiesling_Problem.ipynb b/Decision Analysis/ChardonnayOrRiesling_Problem.ipynb deleted file mode 100644 index 1fbc0ac..0000000 --- a/Decision Analysis/ChardonnayOrRiesling_Problem.ipynb +++ /dev/null @@ -1,121 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Seneca Hill Winery recently purchased land for the\n", - "purpose of establishing a new vineyard. Management is considering two varieties of white\n", - "grapes for the new vineyard: Chardonnay and Riesling. The Chardonnay grapes would be\n", - "used to produce a dry Chardonnay wine, and the Riesling grapes would be used to produce a semidry Riesling wine. It takes approximately four years from the time of planting\n", - "before new grapes can be harvested. This length of time creates a great deal of uncertainty\n", - "concerning future demand and makes the decision about the type of grapes to plant difficult. Three possibilities are being considered: Chardonnay grapes only; Riesling grapes\n", - "only; and both Chardonnay and Riesling grapes. Seneca management decided that for\n", - "planning purposes it would be adequate to consider only two demand possibilities for each\n", - "type of wine: strong or weak. With two possibilities for each type of wine, it was necessary to assess four probabilities. With the help of some forecasts in industry publications,\n", - "management made the following probability assessments:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Riesling Demand
Chardonnay DemandWeakStrong
Weak0.050.50
Strong0.250.20
\n", - "\n", - "\n", - "Revenue projections show an annual contribution to profit of $20,000 if Seneca Hill plants\n", - "only Chardonnay grapes and demand is weak for Chardonnay wine, and $70,000 if ­Seneca\n", - "plants only Chardonnay grapes and demand is strong for Chardonnay wine. If ­Seneca plants\n", - "only Riesling grapes, the annual profit projection is $25,000 if demand is weak for Riesling\n", - "grapes and $45,000 if demand is strong for Riesling grapes. If Seneca plants both types of\n", - "grapes, the annual profit projections are as shown in the following table:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Riesling Demand
Chardonnay DemandWeakStrong
Weak$22,000$40,000
Strong$26,000$60,000
\n", - "\n", - "a. What is the decision to be made, what is the chance event, and what is the consequence? Identify the alternatives for the decisions and the possible outcomes for the\n", - "chance events.
\n", - "b. Develop a decision tree.
\n", - "c. Use the expected value approach to recommend which alternative Seneca Hill\n", - "­Winery should follow in order to maximize expected annual profit.
\n", - "d. Suppose management is concerned about the probability assessments when demand\n", - "for Chardonnay wine is strong. Some believe it is likely for Riesling demand\n", - "to also be strong in this case. Suppose that the probability of strong demand for\n", - "­Chardonnay and weak demand for Riesling is 0.05 and that the probability of strong\n", - "demand for Chardonnay and strong demand for Riesling is 0.40. How does this\n", - "change the recommended decision? Assume that the probabilities when Chardonnay\n", - "demand is weak are still 0.05 and 0.50.
\n", - "e. Other members of the management team expect the Chardonnay market to become\n", - "saturated at some point in the future, causing a fall in prices. Suppose that the\n", - "annual profit projections fall to $50,000 when demand for Chardonnay is strong and\n", - "only Chardonnay grapes are planted. Using the original probability assessments,\n", - "determine how this change would affect the optimal decision.
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Solution\n", - "a. Whether to plan Chardonnay or Riesling. Whether the demand for either of the plants is going to be weak of strong.\n", - "______________________\n", - "b. \n", - "\n", - "_____________________\n", - "c. \n", - "\n", - "_____________________\n", - "d. \n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Decision Analysis/ClevelandToMyrtle_Problem.ipynb b/Decision Analysis/ClevelandToMyrtle_Problem.ipynb deleted file mode 100644 index 93bfab0..0000000 --- a/Decision Analysis/ClevelandToMyrtle_Problem.ipynb +++ /dev/null @@ -1,192 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Myrtle Air Express decided to offer direct service from Cleveland to Myrtle Beach. Management must decide between a full-price service using the company’s new fleet of jet aircraft and a discount service using smaller-capacity commuter planes. It is clear that the best choice depends on the market reaction to the service Myrtle Air offers. Management developed estimates of the contribution to profit for each type of service based on two possible levels of demand for service to Myrtle Beach: strong and weak. The following table shows the estimated quarterly profits (in thousands of dollars):\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ServiceStrongWeak
Full price$960-$490
Discount$670$320
\n", - "\n", - "a. What is the decision to be made, what is the chance event, and what is the consequence for this problem? How many decision alternatives are there? How many\n", - "outcomes are there for the chance event?

\n", - "b. If nothing is known about the probabilities of the chance outcomes, what is the\n", - "recommended decision using the optimistic, conservative, and minimax regret\n", - "approaches?

\n", - "c. Suppose that management of Myrtle Air Express believes that the probability of\n", - "strong demand is 0.7 and the probability of weak demand is 0.3. Use the expected\n", - "value approach to determine an optimal decision.

\n", - "d. Suppose that the probability of strong demand is 0.8 and the probability of\n", - "weak demand is 0.2. What is the optimal decision using the expected value\n", - "approach?

\n", - "e. Use sensitivity analysis to determine the range of demand probabilities for which\n", - "each of the decision alternatives has the largest expected value." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Solution\n", - "\n", - "a. ---\n", - "\n", - "____________\n", - "\n", - "b. \n", - "Optimistic = Strong if Full Price: $960
\n", - "Conservative = Weak if Discount: $320
\n", - "Minimax = \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ServiceStrongWeak
Full price0810
Discount2900
\n", - "\n", - "We choose discount because the regret is lower = $290\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__________\n", - "\n", - "c. \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ServiceStrongWeak
Full price672-$147
Discount46996
\n", - "\n", - "Full Price = 672 - 147 = 525
\n", - "Discount = 469 + 96 = 565
\n", - "\n", - "Meaning Discount is better = 565 " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_________________________\n", - "d.\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ServiceStrongWeak
Full price768-98
Discount53664
\n", - "\n", - "Full Price = 768 - 98 = 670
\n", - "Discount = 536 + 64 = 600
\n", - "Meaning that Full price is better = 670\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_________________________________" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Find intersection between the two equations:\n", - "\n", - "$Full Price = x960 - (1-x)490$
\n", - "$Discount = x670 + (1-x)320$
\n", - "\n", - "$x670 + (1-x)320 = x960 - (1-x)490$
\n", - "\n", - "$x670 + 320-x320 = x960 - 490 + x490$
\n", - "\n", - "$x350 + 320 = x1450 -490$
\n", - "\n", - "$810 = x1100$
\n", - "\n", - "$x = \\frac{81}{110}$
\n", - "\n", - "$x = 0.736363636$
\n", - "\n", - "Meaning that any value higher than x would mean that higher price is better, and lower than X means that Discount is better." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Decision Analysis/DataWarehouse_Problem.ipynb b/Decision Analysis/DataWarehouse_Problem.ipynb deleted file mode 100644 index e4d33ef..0000000 --- a/Decision Analysis/DataWarehouse_Problem.ipynb +++ /dev/null @@ -1,96 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hudson Corporation is considering three options for managing its data warehouse: continuing with its own staff, hiring an outside vendor to do the managing, or using a combination of its own staff and an outside vendor. The cost of the operation depends on future demand. The annual cost of each option (in thousands of dollars) depends on demand as follows:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Staffing OptionsHighMediumLow
Own staff650650600
Outside vendor900600300
Combination800650500
\n", - "\n", - "a. If the demand probabilities are 0.2, 0.5, and 0.3, which decision alternative will minimize the expected cost of the data warehouse? What is the expected annual cost associated with that recommendation?

\n", - "b. Construct a risk profile for the optimal decision in part (a). What is the probability of the cost exceeding $700,000?
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "a. \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Staffing OptionsHighMediumLow
Own staff130325180
Outside vendor18030090
Combination160325150
\n", - "\n", - "Own Staff = 130 + 325 + 180 = 635\n", - "Outside Vendor = 180 + 300 + 90 = 570\n", - "Combination = 160 + 325 + 150 = 635\n", - "\n", - "Outside Vendor would be the best. = 570\n", - "\n", - "______________\n", - "\n", - "\n", - "b. \n", - "\n", - "\n", - "The chance is 20%" - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Decision Analysis/ImagesForSolutions/DecisionTree_Winery.png b/Decision Analysis/ImagesForSolutions/DecisionTree_Winery.png deleted file mode 100644 index 1d3fac9bf0040e560c742bfb96c1606d8a782776..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 122305 zcmbrm1yGjX);3NlARW>mjUXW?E!{03(k0R<-6<(ZgLHRymmneC9ZGk1_}|Y@IPW>< z{bs)Z%s2DsILdS1d#}CrTGzVPwG4bKD~9rf;0Y8I6pDnnumThmED!i~gYX#qjoIAL zM<^&#C<$SKcaB;+N$`$OMb10Xl!WVT-$G|S8F>Vk2`3myu4E#Jq8Vgc3LUNm11BgW zXqk3SEgWZa>~^A*I1`RTYtvx~K+^+bn=#-aGq za45vEfB$$UV2TS4FK55#HU6)EdJcol$jj zPl~q|A-+ASJw39v{?DI;JQn`np9%i_|MFNJ3z%QOepzpg(Vp6!ZYk9{>?dE13{0t)#>PWF!{Ykaod|iC?GlJ?%ov!s6rH&3*%44lJs7Vi7T;hY7@!Bre z>-vfi4x4toF-$?LkQso@s3C0K60SayEkk2GniXj~bN+gBL^A%h@p#JqVhhvxv$PR z7D)uN9<@M67sl>Hk=3RBpv81iU@;QzfYf}wT{Kj_MqN1t$)F)vrHX)Ode;+`#;6D5 zwAR5*lxQ;@uMaBw4_N+rFz-G z|Hz4iLKH?%-T2k}FK<~of)f-J{J7BQ6v1U@Vmz9i^sZPzDVf)0En?a4Lbd*5*&Fv8 z@xYYM5W&QC$1tL7TF;h1_bt$bT-aB6F5*(ve<8unJuVd*{9#Yq+ z#F_8n%8zd9B5kHHyHAGNV9OnK!-5n-@R$XUR(oSxlN|{W!}tY(OH)P>?NdCQTq%-Q zYb!sMKuG!hynOP?u@KtgI@KqQROR9f;l^B|* z9{8BvrCBS#(H*{zIg2cxG&m*FQ_N%ELW(CK8DsBzxFj0O`R>57y>%MGmD* zytHfASKzhD@i7BPyC26f+8_5K^(PH1diZ6Ehkvi6=lFzKiVKd}C0xJdU*5}%S!=%= zf3h(w6!i23wc9n?*xYpA3rBL;_&1*#6FJ=^v3Tzyz%6U$0bgOG zFaZZkVFRy?N4h_@Z2IxIbZKqRH5fYVnx%`CD{x0eV?1+_H)t_{e6dq$JyGIs0BeXY|%4~imVJ6+&xHOF&rRLcj&(pZ>RtHA>{GNU4=pQB3 zw?2ROO|qLDNXj%-er7zLuO!&;%MHAM0NAtn@xQETPhoZVTO?1lBAZ^ldE^~@=**Mn zs4q_~CPnRcrpPXj;?|ems~_s|QKn*n``YlY`>MkZvpZW8tB}1>D7Y1#`aorfWwJvLh=VJ6MNUIJ!M0t8Z?$><95 z`{8s-{2eLx;P9QIB`9!;GNG8XRdR5 zby{xqOE8YrkR;=cy*sfhmjil<{cfgwhN!(eW&;iMIVrfhB-`Dp_xas(6j29uq1jC= z?`>ZBXxHyO*r^JaSo$ZZ5h#Qc4cG5D`7lcn!G;oaKGNJ945ZSuv^17azlGx(NX3)+ zJajGaP~+WPN~&3`S`8JlB%i|bgolzrFN0{xyf^b{<-yP_aDJ%7beuM;5o;-x_HoR0 z*Zepp;mL$8+L531y6XRVnfPnypk!f+kMRHUNGhqAC=sa`iI~D^gmwYAVy!0fh25F% zvJ5fe6JcIIxL_$@xmwe%aF9eGoAQ)GpQ^LT=}YEOH|UF}VA6V7)gS)l_h?;)?e-Q$ za&q!lSNaqY7(WVNyIQJc&xZ?Lg>W*7O3t8?Tl(6h&qj}^iKRD|Av|R;C6-o^n)_`wl2zXXn%om@B@H|QG**(y(-~7Uq-7EqbpQV0cN&02{!9l`EE6ygKh@NZ>%QQANW?Cf8$Pz$5lY%Lh z16wi_ff&j-tBh~`taAIzI@rgp!Bpz(u6gZ6t@GdDvBzTdBcgZcyTDB;yA4|ur z?O*xW9b=qrtWjvX)d%?d`zH)WjZ%1h#z@_ez++!{_)0d-OTA9yI=A(&wz~_xMXJGv z#8d^!MNvH0XHo!gX;>G#&v5d@RWvfXIiK729DaIBxnu^GJD>#(R`55uBTMRR45dZ1 z@I&V*w}kihEv0zeh1c1@tZe*hx8BqE#>Jg$RQ4hM6O#*TF<1mN70n*x0hryc5c^a(P3fe#v_@5(($ipX9nR> ziJteyGR6LC_m^59NMay}t-?hiWRu2WP@@ESHLB8hRL!M9quEuJ_vWA-Z(k~gK5nHu zTqp_FuMUS%V`}S;Vv&D1^0{kc+`XClq*BE~NffH${om!ipQj>y<9hM-%56sKD-kEX z)A4HL?;ld#`z_j&aQ$Re_({)d-(s;oqUgLj_C*?LPyvgvkdUt-ALc(fsCGf5N!N-h2ZMr_EXvxkym= ze1pR(u&qh+1@%~XVk4w5tjoEa$_3@fa55W32`yPM3 zoY{=c3Zz<0l?p7l?DI4%l}B#~FsS_qda6yZoFNuEcEJSDU{54XEUW1Rr3nc(kG<2Q zDcbwYUd!jjW*LDW(O5LH!U4kn@~3b5sJOb#!Jxr;HRxn#LFsJ&&%jzczhpv5Nl6SByGT~Ki22kB zE|ZoTS(R6xMIDuT8^?M`Tm}Byrbd z=^tm)k?U;x)nksuN+-WjC1AH8(mMxfMbgpH$*Bk2`1JAAzIaxtKp0mw?fiGNmp8|Q zS=ue`)=RC>Re56Ai068+Eq2@Qqgi4Y)Y+)A-zIq5vNYY^UGFOtYj9rv{=)Q*7^Cyi zVH~H8!R3+<+Pebn6Q8crc5Ihf3&-|7jCp$Pz`JXY=XQ@+ePvelQ?nH__Ja@4Yk z7YZjR?0T*NF{D?p;VRkE_~Q=DMSBd^LMHfEo{oafs`>BoqH=%O$bZSK`6i4ukpqfD zYq3|HZ58N6K}DOaJcog=gv$=x`QK4j%Kt|l7Kz1w)mI;qP-PTg$`!xa3mbkUpQIK+ zZB8)VXy-3^YCKt=^*+E|wAx~kYBcAvN4^MkW8v0Cf&Z1kfyJWy&*(o)ZnWhaZJhW3@m2{>VrBjJCfguB1If%tNAoO9`urHrV_I9l42BnIqtdFmCB)$O{%&T`vMG z>>;7V*Om(!Sw5>jqoo2#u(SVMZI{q7Kx+AX*~i1|X1NZ#Gg)xxY)6wN+RB739BaDA z!M2>QHBb282&|;pBWyoD^nQ*cjKX$aU*=7c=X~7HKF(1(%$qsx^oztSeHn{K+wC+u zs4_KWrpk2oV;n=s327C&u^k@!$oddEar-_A98w2$FzVN5e8r!Gn;FrK(M@xi=~T-z z>(Pw;#G877KVj;lyVXA4e?8Jg`ex|v?%Fas+aJ3g6t@MHoB=;USS@g_X>Dx{FwF=` zo~^MgIMiscmkE4X=%LY%Ieh%(tii8Lm*ktAAfbqyV9z1%0|e)Uu6<9;>nxaDchHvE zVnV1P?BssEt9<#pw`4WrG0J$p+uRZb;-tc_a^sW(zN>8}+M>EDp7FU^RN^D_x)+!qu<}Q<8l{-;_w=s;b9M@MxNN&O4legwXfQyC0`tVHox- zz+PaZl?=t3*c3PSt)tfo_-wSR zwK|zEHoN`Ig$ZYS_Uzf|BY)ARO*`Qwls%(x5wzqlPMSl=g6R0c{m~38Ew#df%Uz+5 zs@?@`=#rqTtMq(Jr}CR)Js%O1 z${GDGt&v{Hw5MfXw8=c*^Ca} z8qYNPGWeN9^1f9bP1Q2j&oV3V%k8~7-BvnTtyy&c;@C%M*_bxcLMnT*A*qoLZ$HTg z^0bs4(-ghltI+0*?08+h7V}xQr_tRB?3Tir@E=S89$}Kf#rPthQE3zXzT|y4`WPA6 zEs8hIksm%ejNlVg+rvPT02tw@m(3R@cJ%s|c^d*AOF>Rs=~5|?cZ+z0ol`~X>`z&R zxClB>guA}`B8`WINg`0gqmcy1T)`hAI`9gQl1hH!BNw}{S-JdP3Da_%%kVv|1K5+? z5WT3BwQG<(r}f7VO2%H3TiyUO;Td#0N$HFY31prHse3R=P3+Zb_@D8+CpouQ1zgG9DB19_jJM=pVv8MnIteCQp;2Y67K4c))R|}iNhT`F za4=zKC?Q2pmE4?i$$V-OY*gFRZ2CV0_!rNImjWISXG|`W=EGokg`AJ&DUL5MWAfDE z2vS)4KuM(VHd&K>nK?k@5?WZhRc(y?4|!oVejO5sC!dQ zO-&HO4;p8yJJfX2m&~3rRSfa0>0-Fnxx2=b#Yy?G0esDzY9O66y6T9` zn1XM#NMoj`1F;i1$VV&WSS4W$#B|Wrd>icM!MnLX9%o~JFtD=~Zthd}5lK-5SaTqo& zpucV*49EA~>r4X%twxTS1B_vQ?BxW@=J5ALY9aw7!m&E#=yf7bdC)}z+{t9BNM>8PtAjwIwJV}|k_N*+sC=;cB!FekjRxwwo^?&mKgSN;b9W+5T#0#O33 zOQ{ON)mB!tCfP%8|9n0TENFWPV;pQGF6Uzm+lNqk_A;7(1^GKowm2Fudh1ndDokEr zz)z9tsjs_rF=HqE9UnBwT$j1}Sewt2(`k4GZ#W+S5`QqY1%?^`~~{ z%dIaMzf}vWT`y0cgAzfcu>HxCL?%#)n83$8mMS|BYO$T)@r+}k(TTA(C^!)KVH7id z0Y_kX2~fTS4je-SIa~g*II<8?YrT{Yo?dFX&V+h^7S6G|8=6umZTSp@Jb#<-`F3VKFvKax-h+g2vu;Ma0LjavcnU~)uLDz7S zrUe9V`0q5;*`Zh;@|8=pJ~4U$o0&qT!SV)lR$4Cd3PNq631Gt&+gT0x;CVy&sEl~P z>zqM-%2N;OV&!OBK>Yqh*4D9F3-+@EbT*7U1y6mC4@tDibU6e>Q7=pmVGjFLwX5ia zz102w+3`Af7v{eq)y2Eop!a>+pgWO8-{nXwmkdvmJ9Z@w6A*eSo19U@#q zFnohBn41m{gJgiP^u)`%o|L2LM+eS6oaHZI?nkdqwXwGPUZ_Kg!!j;tO%N3(- z3Ku_%dryc!NCPfocI3CXjFPZC&;S41YkRddDuJ9A(KgVN^VWi15rL{iW z)W<8xBD66T2_+E_2+{?G={p{!F+T)kVYmhDv6EH<4NI#^p9xGB<__GciaW zM0-0tf}5P)rJ&IG^?`6(qJptGgS;C^!mzqvQcxzM$om`p#DGmViT zAhS}aRwrnq&z)u-pskc=qS9Jaj<6c5n%RB zKagjfY|nPBg|<=?oRZ{v2-IVv=JiF=gwmyUW#em?_K0S}Z^{`3Ji(@WC$8mjYiEc4 zoNeMl)hr!8oGXBE%)2!jrSmbz_9H z2PbQUE@}1nb32hqEFf@{2=IlW*Zc!8*NC($-k-FVy{%vdBIN{bIXDB1BSkjW7{;Ziu#G~X^_N8Dp~;l*awj+ z>`*QPDPgou{|ax?GtyjJ0itKixqP5LjKM2;=ssY+g)0>hVf-_;SvJXu9<7H!I*z(2 zk<9w%3;)zrPpM3&0Rf}tb1VN@0;2Y%-~L>Yx!<8#dC{S3abWNVOv?gEf}j3=f&pjN zq5H=3x05i^V-$juh>)tPba*$4RkJqlM|7Cp@ABmMZr^1Yk(r~4B0H~8@EX)UJN|yL zl~~~`~g2~J?ST4>2>xzpQBz0 z3nReDTB^Vc$5=58yz^Em)M~1)M-3-LVC*9le9kru+ZN<o&K5w{1Nr zF>{A;!X4Fq*gS_#^Zya}4`|uhTxK2Iqy%ND-)1;Joz5P&22rW{55f|$NIs6jQM%}F zQlip4vC6LDezoD{jl;U-W57*+QsSg};HJ@`vHb_*c?MSpwmuD=X#QpfF*zL2c27_P zY^&3}rJw>|2Mi6pjn?w7u(vYGTR`8;Rm}N%adDA5^ID8Oh(rtvH*Mq78ynv6dk3HM zgBme5nJl7t_C9Zo&4y)0*nWS8R-MfyLynMkPo!)iWcPad^KtdS6oyCZS{)v&*tgr7+3}y>gy?a%86@ty;IK-cU zGEcTFa>%n~1*p+tY4o@L@5(<)=ntTelgyIAj*zhEv_k2}g|sV96A1xklsWMd`{BV- zFjL~+FOAC=k!uoDFsR21#Mq4svaH-r4`n>L#J}i2g=M+_x6j= zn^%SdzeyrlhUmYyTS|_G68S)kG|}e^`#YGC zN>!wqgoFY)qswwCYpn{ov*U!VEuqy5@zy-R^(F?TpglPDGFIy)LxsVk0FPFpWw}nB zR|mryvs`vt^ru@BY*XEw8kkn}fMf4ES{r@nJTf3Iq4%`*LYX*M86fJoWEp4)^SZY%nfsiT~jdwQyDw64g7Lnflw+ok^eDM4Ml7 zh!<-&kYja*vj2VS8^~K7%J5fSvp3NCzKZzDZ_0a6;z9g*{) z?`MSqGvx{Y=uvOqw2h`7zr~v%#w0HB?TMl+)lq7TH&U`8aAsoQjP2>CvF4plL}bN7k1+=m0TD5L zwO6_O^&eGPVt;PFMwdy(ky;5X<5R>z5$kokwK+3L6QTOeG-%)cLsflC_RPu2Ik~DV ziF%>kc0zB4vb5xN%VNHT4cb*N%=67rVsGnMf%R&%v}7N$0g;>z;0nu4PEF$Wo-JMY zH(X*hIPB7+ylxM$H=n7!l;-5YEM)*+nmzhx`LC2r0Bvb$NvoBfX>FrdfdXAyMa*NZ z0)q?3@>7p6bLWRJ@FnTWsYJT_m2m{M0=+_(`|TBGrBNXE^S49tp?0(DiGN#QJ$^C? zS>j|zwzIx#9Xq06Qx-2QUna{mypn$f4^vSxoY+~+Ls^b8|_vfa9h}&NJz3J&2zT12tK1ntt_rz8Gb6rmyxQu|fv8&J;Ec_d`4V7##r(E%pm8(@#MA zMo&2%EP1{0xYO8MY$*{Q1Y|ly@BqVJ6Zgunr;yWz%4Usz4LYhjZlV4uBX1IyB&3Tk z(5pghVIPODO$|cl9e=_#Y^g6FNgB20K-SH z=u5`2n#MRfI_BQx$R^RbobN`)LEBJ)LhC)>s2O`B;B-OPEebTFCI7g)Q2}z^K&bUH z!t=kkaZcqKaslY+)vjkA?}mvHQa<)X zH5NV37t8jLdPH9layg~~f>y%SO-#xobT~uzWw!mWWT~|FQ|XZiR`=0 z)tE$FHa`D~)3!{({yGX+ZyBULJu7ezdnwUrpj8w~H0l)CEaskz+Xz)s7yA*UOjj71 z`WsIKoU)t@H@P^3Q%Y13q%dc*vGW&=m6G|afPZH(pLs3ncyTQbV-Gr~dhoeB5f7;` z9O^Tgi8F*uQz$J}4b1};wd}Oga&Yp+%urhUirJJZm201oA&UAIsBNFVRBOWXAFZW26=6x@8`ns z;l*I)ap-IgM{MsLfp$L-m!H*Fs-9FIkYkGDfwt-APs^GQmsJf0((eI$>rY=K+_C95 zxyONX1SSa=ylz+G&90a92A{v*Lb^mXBs^J3$}V5_Uv2q9g7#YQCX3kxg7N;Y{?-X^ zMlo5JIX&o{b*eFajk(`=qT~`N4{`Ab=SBu*Y1Jxo%gX>!xF22D2AT!qQ_UB@kyeKu zOPQJyTwQGyl&qGBdGzGCU7ONsKPsx5N1sdvp-Pcj=502*kUvT+x$m6iS3ea5)Dc@q zq^ns;e0lE-l)+Ga@N0u9Oh9B24(>EDIV+$@XMP!B`E5NK`@cE4gwB)mjR_e1ZbE2IJVDy(!hkc?{1|zuYIXR3QU- z=1B<@^nGK4{|1gxvp%yAF)U`h!ccCN4X28j*Hy*+aut_WyVPTj_JMuM%dZiF4 z*rPB<#D_Q@*9wT(AAl~GP2?bhg-5NNitdl;10)BPxQo=O3EgF;zA5O|wa3iQR+jKI zIM9|IUkpWB~X}e7y3fCYCq$60wJ3;+5P~wOzuB%e6U`d%nvU z5Q~*_nYsS@#U9=5HC13lw2Ayr3UH+58yEd+)v9?Sl$ zFmd$r5|DtcUX*1h2w`!7PGPuOGHcxTwFpai(4h`KIUxR@nCIKN=<%lr84ffq(#YS8 z7bwRnYdQVMa%uu0zuJ73x~pm?V>Cy$H||x=YPh|XNt?ItnDQR`LKtB9jo0C`6c@)+ z{`|SVy*^*{I`iG%8brIhbq91RCH+p}m3N>}nxJo%)vxbc!Ra$VVG@MhqZy9~50Oy* zyKIsa2L`nJV)GPpBtd$3ysDQ*JX5Iz%a2PuMbw@VXxO zPv(8MsSfw3Y3|8QutbuQo4ay1x~ybqKw(;jct0+U8Et*)!B%NI1VIoX6)o) zZ0i1#uroj)X1;o2ee)2RgkWAM7f1d0f-99F8uGe#HB>1c_aE5xztm`i7@j<*pzdEq zDOzfgie)^SP`8}UHMAFkMD+m(F4wqo<$6dRa9$ue^h}lMt%A4)!K|yY5IGJ%%$^{) zteWp5j_*&>3l7uqWFs83hsEso7Z`Y4&Z6j)@{Qj2(PB;!TK==>Ngxhcb~gQv@erMb z5O-#4akpqHU@oWra5w@E|j(?JPKp>O|+9J|J6NT0bDEE2* zbDITPUL&QtLVz(yl8~^PfoxJ1EMZ>x+wnb0^1?$%H+m zp~*!GScA&xXr)6KVrUD98H!?KBOlffi?~Ej;^Ei#V9;%1S&rS`&u=;YhpmBV8GAakT zrxtJ2L6!241;Gtvf5Y$Ym$# z_RBRLSTV1p!C_zY2LDeI$jkvHKtm*a!>L@XakSU4pI-uk;kO`S8Y!4P2vACTA8B)6 z)Od;iqaK2WhKA^^i~(OdYdNFc=t#zGzY~DYiOv;D!lU3{0yG`}h>{ERC25RV&+GqR zM9JJB66rue#Ly~~s1N)=Ar&yhBYYm`%8z~D~+6wJM7KTg1jxS4g5JK zUF3^Io1ibHhnF{KecL+~2a>5*g4_Dj_jrB9Rpnda8z%*bpu}!#OkSJSWUTZD#S}V3p4*>H3LC}0M;eV@_ny=K&ym_1)$iU0{tZxa@>#;FTipHx+QwGN^zh)&QvORZ$gnw zEkmIEtop|?NGwed35upR5TE2Lm5`~H8;pPc`a^SS^?QMGNq4j5d3UiU_aj70Aa{xa z)YH_e>JA_qTAhK(CSENQ|8-2trE)k()&}bFr^0-thd|L?)BANi-bU7fC2_xm<+w=bw4N9_*!bzg0_#w6m| zEiD2**@RIpeT7`g|DlscF&r-r(k`yAd((vc-x14Q9<8G6(%S=hC_blkCJw`;`i#Q{ zY1YrE==H&*#P*ohnyvr8ifCN&QUG&7h4%GbiI%2Xr4bqUvwhmIDtpxbK`1?6D2$l0 zIeHUyaCmlBeP*vE2SXW#0L&Wb*`@wKT|7ldVuh@wG;Y0$K#VKZ_bGaSp6-&#^(1MYMU1dnA*+Gnzm z2n0U%6bI5aOh^Dy0bC*3V81(t&zwuhtaf~StcWwaOd}mpa}=MmK((`jkI(k8^tJhn zFuojQ_F^g&K(pJaa>M)RSo*>XXwbVa4woTuXGGw|*Lxk8pEcis!XIv^zOl4g_A!)x^W^F~O^AT7}REy{9-ysGdsb$n|reAbD4xyBa zkrqLGfF|%1|JX$VWPJ#dJ{Ywgf10IJcs1RxHfiu*8-+Fgxx4m@Zv)%Ugs8|0RhTztJyO>O z47A#?oPJTu5iuFcrYKA-1KHN=v3ToJ%B3yfgBotW91qHY070G6Y?-ZASvfg57)otAQPmv7sDv!y8es!4mgdj zky%G#P~_8tC0&?2EC?C_B3p|L#G=Xn?EzRMp{MoBOT$2W7*|8u9aTMs=+>lTIA3K$ zvpF*^22{(@Ll%zDK%4`-kbepE16bkk0xnJKvK2+EC|RP_l*#V}!^r#lkDmj$=})88 zs$H}4P)VxBVSYg=?%SJx?D|R^!Ia{JYEku+?@Z`F$)2U}a1i7PPAn1xxSm!o*esy2 zV|+8SA!NGP+!RHpDXLa!W}f@0VMNCVXcQ35Z+*OBG>uh=kp5d-`;yShZhIn6ExF!q zTM|5wO0P56Pr&mN5FW`GJnowaM%oyQ`R2PlT=ZqESV^7Bekbgkg(DNdCfDfSsXq+Ehoz-TKo))b1zv(O=w-@PNAMg!SPIxbE zWAo$3uW!hZ!4~x14uQY9;af=S>Gota&uJ33LnaVU9RYzL{uAiY8M77*X`2cj#WN!k zaK+YCO$YuG%&nwwcbDtW;`lt8V+g91xE%KANk~W{=#=Pug0(&Znh+DS+|StDUWNJp zA~^TK*mX=log&3+(eR;NhMap1FsqMd{gObLONym0SJv>1?Z86jCx9JKGLK&5%+6qe+y z334pKpF+-Kywx%+y(aaP0pgAVO>X0{-0-B7jy;K19uRM8ySS`z{s!2`H0U@u**keQ zYkhe;d5g~54DJ00ga>E4+>*YM(J1Wp87Pi}dz$6XImFq_R4gmgY#J$-u)#UWwhj2- zC;e6rxMIx)YOoAYEbYH=*#cmN09DS&C|5d>Lw=1BA!2<{8_(iKl*sDe6z&wLDSFh< z{*Za0=N5m90I)YL>Vu0zy*O@%VhDK%9G4o*Sww<+MSwawlqN)FSgbK}6FK2W*dPzz z`1Z@m+=V7qpI#S%-4h~qM2=u^WbJQ{1@2QidQz*yqFYWM5}<%yn9o*6?@U(^Vk!c$ zs{U|O40R|g!T6Urvawba}aI(f3LOQ+Z&9lmF9>N%WaM2 zWr6u8zlxj*L+|I~;A#4ug`7vfA1TffU4Ff`-FrS?e-!{&Z;EHVhT)#SfT{5;dN_3c z<{$@BtMvh5J18)zV;Ie22TD(5?xMRHflNT!#)yVESp;X`egchKsrxdk- zw5dGqoXB^%?U;{VBlDbrHWj5(epI~MDU{Hlj}HyB3nbgqXr9U3XZvu3H_j*GPjB|8 zE5z_|mt3QWxhHm-rJ$eubh*%XuE{jVY`#$f1{RmY6v34du@=&UiPa`Y z4f}gLG!b?{BRpF!g%J#t#X=Ot)n=VF4#jWNy!+y6_{$AmWsg^LH>#Hw@6FUjy8gK( zbNGh34!{Ov76i8t0y+P=XIj*dK^_P)hbYjUPd3Q*8;`&K!tnL?mjX1r{(7?8(aohz z`(Rf$R<3GO(9Tqu5U9^gR*bE7D8V!j5H}0;e!WLmOWH6smWw!J%^I~<0*{UCZ~>~f zM|!>JeqAIvnZVM&$grljB60FRy8ZB+wz5didEi4+C=A^9l(d%zBE5RGv>Q-QOM{ZE zB%Nn($e`~VSxwckU%mbQD(YyU9jczISkIQy3;n_7+X#TYV-pKf>}BQF=u4zh7Me7z zU5T&}ITFALRw#Q8-iLTo;NWMcr_pbmju3+G0IHFxiQ9+VHxDlug%Wp)*!WQ}2MK8u z?e4@!9sy2LGB6@5Q>nzuSV+NuWhf=kN+T0LmNhX?;=>7q(~$asm^>JJ z90I)o*BT|_2&9Mf?knn+O;qYN7SW&q)8&GuAi{1omCF0P&UP~*2pjm`wgPB&Dj{98 z!9VMm^_ORY(D$wvzxr(jwPvC?IaG^1bs`Oxt zunbXK_z)=fbMPRt{pA=R5OVCGDk~dS- zdR7KB=p=w-#02bs-Q5@%04eG~?RW+^G@2tfp7vcaN4Co7TTBqin;J0V;5{}B$eI_U zkwDCxzfQto#Sc&_HK5UAwVLj}6#M!4(XD}!yKXFBsW<(wc1r|E8O{I7_Nm=t$y&*H z!EI(VohS@HUvL@xod=4(;2_+GqHh(>3U#nhwE~V16M@8x=oBS=wW;I7UDcbIdW#+wcmz0S=xi;PaRTNTv{eg}_4;x&Zu9p+6=gBcnU=@q_i| zcGxR~!~6U#Jb}@fG#{eemw5z(?e`KSQu%bF9?V`5UXjr7MdXKiK_3y!>`EC7B<6LX zveE5rW2Eget#1(zY}QUEDSrR)zcbf>8C^vDl7{UV7`1Cv5i!S{jt zx#1%ot)zgME(kbWj+DR6#};f^eCN73P=l{0;Ip+WesbA1XVBhoRqA zKlP$XHuPiD*^H_8qF$!Bs5!gE+*@M!%vW6TeE-49v^KTZx1mmA!68ddSO`yof{&Q|}-XWd>Y zsyPzI;+evB*qqYJYQK~@pCs2Da9D1zS+A}%TX^@@Ct~Uh6tTUHPRCKpIslpI?J#n1 zsARdNRqM}G8q?8X)RFxR9HT&hyo?H$XAO6JXEet z0crMQFd78Ptl$lc-I=PR&771c%}m z-vbz`o&XGr%H!Z>k8r%YU8ugL8jxfzB)1H zbUav+LOy9`h8Jch<!vT# z4@E<{xw-i`TWvnG-?dLia5`<6l6Tzmk||LM=bs6TJMTwG`RDMP7XN)No=^kDZ3Y;R zx=V8=6yMUrU^_|>w$|gGG%9>Ngan?C6)YVElJ*|3y0@yXSw~}-yX$+<%)x< zfR!Q?%lc?Vf{Oa>3!mq)RXb(bVDRkia$Aeb#&%AMJLVYMho-OvQ>0;^6T!@uU-*vf z^yb(+F%iG*9#AV9^i2w{2{fdvU{J4qmm=7Z|D%in2aB+-T}-a~6)wlOlk6CacO_qQ zf@Vm!!e1FO(x%tF(LFxDP4h7s<#pL}rPWx`WVIW+n`^rEcO`TtB?$5r@cPYeR~}5X z`l4!k;tM)YLbX|Jo6qC!z~!!wHyu6kfj--K0IBLrJ;fbcraVg$V&)-_0@?(TJZbrGUwmVm`*+wwT_gDW9_D`cBSwu_7*jzBN$eDaP94|AhR6i5+ILJvK&ih$>@XUDJwZiJAu z@t+_aL%X>CYRRbnHZuGBL#Pohxt+G_p)V$_Ga+EuC3{5rafC~%b}-704-e(t(k)*L zuhiRargtzXKx0uj1Cp;$nCZ$-9MA*r%>K7&Gc8G3AE#(g?B9j3r>j#oU=44A=DS#yiA`8l zo9Tv8`*?Xu4YHsAQU33aT2*$7!dK&Ye7N?6GD^jNwM1O0BsBJj9Cp#;dbcLP;!umC z2<5kMNkO302|wlTT-|Y&ZWW-{5uctAvyLMte9RPUYooVZXv7Fl1}zf0L+m+rV&UKMM#2_(^@S%jh|qGJTSO|y`;46r}l znLf@EG6LFo`Dq_m1r%n!mtToQzR!^$#U3^SYxGyrRe`Wr6-&K!mGm`Wb z3JmOuzS8-aEmqN}g}aoHXs(96rztaEC$XD&qA-SPn#b<%{)T9G27feLa>@IWj^(p6 z@q9Pba5`E1r}m3adX#lInkr59KK&ypn7zB&6tK^z$ajVh+}m03eNWI~oxMRDm%yK2u-&-O2hE`84VxCW z%Hi_Fl!}=Uo0PTknfMF|M*SQSmy?becU&Jx;VYqUmx_9xHUf3}`i;~?V0ss(WTW4G z>F}G>GhHXsH}wK9k1Us>G`1q@1q0m3`C~M~;&DlA>#NdI&cYi3CnxpU(#K3e7J3Cp zvA$9<#woVAF~5Z1d#j7oqc#Pq&6sejJV2;78y+}7RIL#hhu%E@n($I0U+FwdWJWjp zuf{*2yA){r-S+TW@fp7Re6pB6vXoT&K=7HH9IC9TUA)Pgl@+xg&~6!PQOfk9=WIMb zp0M)do(~g_@M9SBzk}XPl_yLmLVpzyPfjJf=-93S<$D*d{%#nyhEup9?D5m8v{aJ3 z9B^3?81S(9b@)lUCeUfyrsCPmuM}3OvbTX+ddd47Z%(gZ*(;TQ3ts_GSH*LzxmH;2 z-B|#U0Ef58N`?Cg^LCykdbJ9L)but+`BY(cc)Wjq(Kr;GXr(l>F08z{RYrfys0t zAo&_UX!Ta9DfBb)avUaPOR{^zL+KQRU9LMifyYpA7-&;~(_blgAXQFk6rN9PZGWvb z+sCMe_q_K{3o3Qma@&pkL8#)st`WMr&oM4hot38{fY-mVdBl|o+03S-G@C$m0Mn~` zvnOnx%ih+BgK7!a#JK;#D9}3A!v>{x1xi94#~cx z^Jw&+&M=TsKA65F^AzyhJHUzE2>hwV4$VJ?v<@v|jvkJlg#I-kU4_nh2(5!@1S1?1 zzv`FH8YuRsgimzLb&H1q#x^SU`cwoBM#KInExFy_%~Xt9t6$#b)jw#yKfmkD$uKbf zX8E+}TZ;)RTI@HLk;$;miNZ^oqv=)wjPM|cLLa@~Gu3((O@Cy}*rd?Pr65C9!>~7A z1_zEQNIX)t%Gx*h)}Rs$h6{1oZ>1N9Y$lS7A)aomWelu)9R&93_F`DQ?6P#&AL(%5 zPk#pg;^P$F^5|Xn#BeybpUi8GW^^Zhb7hT9bLK!2VZxITZnk!SlBo+r*izBvEeNO) z>V1grNCcmTQ{fSJfax2ATrj2{l$~1qJR6%X^ZFNouo^@XR0o$G5ZOQl)Yz{AXz*zH z9XoK0+Z*4u`>uE5ZU+7&AsXT{aSQ9jspD}v62?~|9mydSQlW4LQp((s!MCGWark$r zzsKX_lWWO&a(e~oh(Dw8nw5irMit4R$@{J}KQ@fj;{=XR>2yb;^#Rw`U? z4?##n{RTzK0t^3|qdf|Ld@$~sPsD(=3M3MSre!7~24j1IV9msOynlI{VIjb%nd23VQFlfP<69|PZ z2f&-GYrUO^F>GF_-F}VB$J6}iE$Ng#wT?8~&GHe&f;jP{t3?~hp$|bPOZ%TVj4L`r z-Vuz0f1MkJ?IKo_~qNFP?Q(sP%n{Nanng1&%>Yi zKkj12E?5qe&E(l?K?^AEpmcuQ0`tj7{K@A>!6@juUK?$q9)JzQF!=wt`tNwI-!Fa~ zw^#OFSs{DxO*Yvwlf6lqSs96}?7g>8WRpFzWhW9!p|TQ^@jFkw-oMZH^ZBP+f7J8& zcwX1zI@dYpJ`Tft6kV*6ESKRcnlM6zAbh=}Rdw=vHTb6?-64Co`muDS4kI2gITvQL z7L?(!2d63i;Ubgva1Jj}@TZ~-=f$^*sCW_~BI6jUhJ*IheHJ{TUS!-@|GKqRnR8=z zxwV+djK40@QSK+n#AGNcbsq9HM~`P8nuQ@}^mx?g$6!jNt1yfC`1!t#3}0_lmB~Xf z_UfuBU%+`&dTz~nHd%kqFS1g|d* z(u6;0$$~!YLzeJ;Bs325*8j8s!Zi1T4hYf3YDuykOB5I%hDPBzdsz1Gjd1cV1P)-} zx%)*0%Ku;}x)$Ju#o)SAWz>9@!wN+sPYYpBxADF?7Dh{EsB}M0kyGN#7K7M>RnBQ- zMm`Tq_Ax`q_GH$EFo>cIl*hLE2xLi1xRvc~xC5e;6n7HxB1!e$a8_uCQTAEY?O$hg zezu8xL-AKP#xLdTNi1>y*Y(Rp)Xj?Ah&t37nVb}CT(rorrtdKO*!9!zn#Ho6hreoc zJEFfTHyZ|>x_y1>OH71Y@$ub^4__-Eiaj)M3M8l9MZht@wRv1g zw*>?XgUTd;F^sm7CY-?ygK6^Hza|J}5|Rw#K>7QVC#3nRH@M%9;VI44+fRBvtM?yk z!>>@e=E9Fi8!|wT*kxSedSTHAUi&dcs&*OeZ|%NS$ADnX|`e2!_fCq z6qViGBO`o6xM-cPC*)knd`quPbBk@6Una8XZRN=ykAE+6F=6)~x>~ORR-B{RAu|V( z#yVUaoTTAk!KgkpH2>e5tZu@`FQ3c2_*O!+SI4}13SDjU$8ll`|Ni$)61fpvks~oP zG?8{OQtjp#?}K+a7k(wLyK(&Hvb;^ver()g&6N=&!DWy-D-$|zDWsJQR?sU`bq}NR zjAl;YgU&7X=fU=WU0_YcRp?l9jOdrB64}kUCX3gtVv}Vlt7I zGoeqGmLopyt6EjRf^BRV(Co%7d+udSvN4<^j0>(b{|^Kw7LMfX=kY@Fhf%h$3;9np ze}~v%!+deCO`YL1>Bt7xkMo9+n?9dSDQTG(UfoT^{`|K6(TZ$@JG_}`1+ zF24%*(@35Kuu~9yw&85iS7u|Q7RlX(37_9;C$wG*`|%s=h$cer|41KlU12rXuk5w{ zXSGyB7{V>AML|G7V01LQ+i^@sWg=H#1*F`znskGj!P_n9EyUi#c^})E!3FCfsb-px zQ_<=AII|@N?2o;%-NZizO}8})0(A!(_$YJ-8d3JOwhfM1rpENU7%pjL82FwN8X(55mq6@MC7ziUBAzwF=hCKHA;M1*W35 zg!dK)8K|LIDu;e zpzu*(j@i+5Vq&Jz^j8T^7xl{zgJ1Gh?%Zux{mgp1WbURE#W2}?xD6i$thY@yiHh14 zFk`~f>;esXS%70i;q+dP+ z_pOuu&l2HPn>d6mR>t>1-G7+R`wS!|Qt-Aom{OrvBl)R+2rAJJC)i)N-2ad8!ZJ@y z(y{DgyH6TMmX%_=h#T#dO%&*Tl%5Av-*EUx@BscuZ8?xb8W8q3i~8RH6(;J~zeBip zbdtZ|ttkEW3t~IJpTs`>7k{Pl#;B-AxGj1K>)={c-XCxv64`>n%2%gl0*30x#= zl_uAeE{U)t1C-w^HCma{+`}POWky(Wp?vxIU!uPH5)HyGi&?{A12_tf0*~qo!ZQhS z#9`RkxqL*E9RNndPoJF;9GU-*{$eM3^y@Fs&6o#Dc&8j)mr#v7S`pdJzn%o#JNOY! zjp9cC7J)b_LJs(G-Aw`Dji5e+;FCh{s;IhM5KJ5^^-7ayMBOWRJA}bTWAHiseWDp? z`;J)D?1BKpu*>xUiQoQu#0emokRPO6oSy=dMeP~z92tlp#u6hxZ~nJ$Vo!mXfN6X5 zV-dmq9!}%VM!+lxaaqi5Ov2RevcHk^!3lswRNW2)Jg5{AFM)d6A@mG5dKIKEGpO;o z?gE>_hV^GbIfAj5#(R$kY)z6EECOyn%K^Fur`5x)X_iMPdseYGLb1ZI6`$f#anWtn zTJF3BAB@;Ja0^7_g4}Yk&%;_l$I;Q?X7wrCCOPMjK3|;FA%bqZh zJj_RRMZO1ywyzy5xKDO^mA91No}~$(#nDH`)4+^-5_g0ul=tVc-FyT01&+JYxuuwu$l#FE%dMoC=hxdKsE8; zFKlipqWM}uC(QO>P7=XF1GLLm-2bqGSUb@SbZ8r3>!u%Z`l{=q4S{8GgpnFDm`J+c zu(;Rm-Kbj;6_;w7 zxBAPWt;wX8qv__3G!tfZ3!_qX3E(rzHMOyrfdDmNk%Pgm@W0hDPeUpqaG1zR zgySrp#eI;$ZzDwWB~#%3iqy}NQ|ddDYezqqIK1)MP1%Mbe+n#*UV-E?Cy%~7^)G_J zsZ#RZGIM;QGhv&^N)cW}__W@?MYNx|Avo zDH}tvN}M&`^YIlfA4L>igj|Q_UuXt~B!|(<>gr_eTnRF_SY*@0W=P~-?8?sUI ze`{iCP+}38Q{+E-(wLkF!m2^vxY!H(*h+l9fu3SQDX48{`+X3Cn!oFN{=~Ima1hCA z{r|wI5>D(XGzF(8cFHc$MN6+rfFWzo)5NOnaQAS7@K$r;^SeWTe#jb=f@>a&uz4}R+`cWaBmgm1W z=Zni5ex1Gw9_1nM4Anv~q{gUb?B4GYO|LAC&Ta+q)Y8(1VIyLuWumweB1Z6Wgo3$S z#klD7Qj(H*l`X*d>$|(J%-@3DB*iW%@Nv!TqC=Sc;Z|wviLWAObB-iLy`daS2ozD* zMS+!XR2wK6BHf)dVP$ZGf#a(F`=CBGTs)@`zHm9}f(~jX4=@#KJo~-L`={alWA2Tr zf)2WkhTzHEYsu`%tQC%n@2vVjad@0vJhOVx!%Tb^lRHr0K`c`H`^mls7>6QPBaARy!q9W<)swB|V>5f5l8}W-c(hqZ0QLArdSt=n3<`yf~jKl1sFzhT`G6`-cK~RPQEjAT?Us zMtF&q3>UhylnMGD4iTSnnl)7yKC;2*yW#gO*EdDd!W9p*54erx9Bm}z*^83lNpv>fZG@?lM2 z)0vw0^pseU;qa*!SI%1acLsL`TMsP)=SP+S=Odi2`qk8*b1B7r?UsM3mdu*OX~eVm z+Aijn=w*|IDW6&E!%~6!ArEc^;(goi{vg@uXc~CVeE1FF{`Y@tj5x4=j;tL=>@0C= zq;t(rJZ>wVi~s*CjPU6(>467R(E8csGLo?VCd=0UxP{jU<;Eu1XfxMx35qJe_I1lO(s`7ESjG2SAzMH4CP$rAmfG=WjH zCEa9P#yWFIg>+coX5?HMH%2RJpxOQKA9vjAiA}EV*RV~}=@q?>EOi;DMN?=Jdn^|2 zE_P@<%YFMn{?*ThDjnCDnEjfFvfWkUP?ZuV z(im@H+|areN5$?-D9hV$X;@`(>xD}hY3sucpVL6NdznDYJKgD{PV6RRk@X(@9F-di zeNIO_keK%n1kX)JZHFcOq}|L*+&+ zPAEz7xRZfSSh_Ucr@$TF^^C!F~I`{6L|LN)a^vY4#*2>CZj$&e--Jqft z%+QUa$+MHM zl37ist`Fh8D+DX2Y{nm-{_lfRNVY6(V)p^Ne%z9%*0vi ziZ8VsgGf6Ogg*p}{z_WHWis8t>bT(=>#E|mVesh6qQ@8^aB;SM6MFUO-HT{oe*1D_ z6C32^fZ||_oSpWRPS9l+=kIFy%*NZl{RZW8MkHJ$kLI%kuNooEj3Lxob@Ok z#eKRHKKHW%QYd!d!898-|F~Mx)ReCEx;?<$Y>N=i|U)aZY%E|9hVprqDp`#02CJBDhAJrivoAXqOyS zayN~lu0y!UNP#a>qsW`NqIne)i9Nn}b8>phQ8)vBU69V?Pn9K9>@!8+6(PjHh$K_- z_dxcQgv=H4^0B7%99{%JkTL-YKcin6p*ReycLcVpRksOq;1C=PlBiA~8>s#II!>}e zw0q@in+(Ym|5mRjLi@yQNs590T_2s1^y%fphofl4(eE(9jUBXvK30^&RT;DfVHLva(C z8c?m_KTIKBi<*D0g@-tb2L}y8dNZD72qo-z_QJ-X<0x`ZqC2n+z_DFF6R-j9cKdt( z9{>OA^v$ER3ST7=jl;ABIag+1mh1VNvp1qbu{1VHO$ld>RG1o}^4!%4? z!@w8;1zd_gjouQxs~f#Hv`*f^YvAGYCK+)cs#&^KpEvgV{nOF|`S0xH^JSec-JWpn zCH*Cb`rOOA!p;$TjV>`%#r-Qx#A;DBQD{mvrq5Ir#`=Lzt!wu4t~!z1fTPnC^|@?* z`DOAa?~Si3*#SFZ$HDoX2hk(qlYX){7k-I<@(xRQfe@Xi3xh~u*ru`W$0C1uansEp zx@>GdWFzM8qPJwexeH@x8Av1^atPH}5%5%I{_etl=u>c;<TF{YeqK-nfC=ipkoI zmJ!m5W_*~T5&OykMKc6GVh;NZB+WuWr(VF^rp2R^%7DtI;FR)cCt*f+$pLfy^XIMg zftUkM9-jDGf|Fjs@-wPWP^6~pr2@(3iEJ_DjzfMBYZn;Vy5}qHRltWDYlbL2AHZrw zMSLF;No`6u5QN!8MAE2*otXtQpzs-(=DEHdtfk_X{qqDA)=oe&#Ad=&_y*k}gCa$2 z4vRNv8|Tctc0&n?0=8qSR0GF{RDwFEhg4tkbt$%oXKo&Tn<+muIQvt15`Wnh@J-}y zYhVNjJrwB!_vFKn!mz-ii>?%$^hIJm>mnW@3MqyzW^aG|>L;^WvR^4E4`(5NC<74z zhfYCA>0OE0^PKn(r%QD%3p^j%ysOS2H>XYIGKr3EZPiUI8ejv1l0)SvM&S<~0S~;+ z-?|)ro~!bLi(MklfSXR?^IUEcgOrgXON`#?#kUxcI{-=IDgdl zbvI$HrB47KEkGD6BX2)T`MT5iUC&3ie_mPQ?P~A(`p$G{P=M3%&Rw)fQLt%r{?JhQ zTh3z=9zR0~eu_!UiS@tj)QRZ^vArYIs0LtJs-P^`(ky=Kv)AnW;sDTHRTFdI@&pF< zHN#gXF%})cZn-^NKgiY{wvq-8*9Sb=gFypjW%WEzlEe}vjo5O^hF!ihAKpXw@G(|| z5D9Eub8vB0{GD5Fir>2BRtVBU9fVk;olbNVyBd^U(Yb)H>b;$~Tk$aU#o_61no-Fn zd4kAJS=G@eCy&lfi2j_O>Sc?#x$%$I3+~ggdr=#5gS@owa``u!gj-nVzJYy`B7*l@n|5}4rZkS4NyzP@@Cp2cSB zo)d3+{xRm+v&69SdzZ+wYR0}6oewodMLdo0*GTxK&2jRfuaOlXd2bRn7#*J680q=_ z|2Fs+mN{8vaAKYW5Kq4B?rOtn5q*V<*`76{Th-1O?G49=;_!DtPs%Gfd2dXQkQMkS z^))Mf_FRvjwEWg+WU`xbb}sVN9Yh9s4a8dMEZ`uOm|Z=N0Umx{`H$%alb=Q%KO5?D_XL%z0SW3 z!t#1!)o#||8||e2``C;8kfc27%&LSDld7%CRIl04(9kEwbnaRrGp$FM;9I$hJHtI(oL6%%IP#Ti+KMh0EXEGWpT7t3?SQ0tq%z zL`1}}=pS(LE_=8!vgpDwOqV{Rdy^)&hlc1A`o1wZpKQx|)DBI2Z3|PO(A!K=^ZGNb z#28q_20iob@NaaPA=gMOr#|;)PikDnZR2bt91R|m*H554)PhSC3XrDd^c1hz2pqDa z8nb3onskjrf@=iPUcj%OVTthpq`v&Cmq{Z0p16e z!xM{t=bKM;6;@OTF3i&}$=XAclh5Idl(U;cY?N4vFxY_IE$KwXnEJjjq5D|HO;0~! z;G5N1P?mH+(}%mBk2SmPuxmFTEY^IB5JVj6Y83{!IS>}J{zpHke(!$Dm-+ic@H?J; zL>??L78j_T8p)JB#(5GOR@eGegxtfT)~wQ-nCZh33U9FmG`R}7)7}*I82?0W(f9$* zL&fbB#6b(eZV?OpHkm(z;97va!YqhEUzpUhg3FFNi9ztm8s_$VO}3^=$D?2NhzUom zUuz=Nn7)66)X-^u`43NSL-%Zl!ozU7i%x@Le{TeKUfI0w4WCQN&|MTskN01&OYQCq z`pYIDkOY^3CPMG}Qq$BCD%(OxX^EZ?lo#LeeXHXqBq5RYb>g}AaKr3y=`*i+pl4ckKaqjYLPNv_%KzemGa5oRXyU>QN-qIPBLLqGzb}zrKZiVMdZh2RG>RW9 zctEI(roHm2>@9XCQbeA4c~@cz`Yl^C+IP!6s!Y#X=vfQkRP;@v!1;iuu26v0i+r-4 z3y#X^Ta|Fas?@udpEY6o1qA3XKHR8u`y2nkBI>$B7lV&Xu53V>wT;aWv1@c$*pAt7 zH@fZ8Pv#+x!73lxYHtJdOETk6U|3VqJe~W?+YGF%Pl4v9C0OL}tRFq6ay+S=u{M(a zk7v1%V(2+IORM zQmpzyKNWmj1mlv$jq0+q#T!mcS@%Q`8>0AcL*!m#Gwjiuv?fGT{`P~WnmROgHGLkd zeWWBNRzUOtdX^#KDTD-N&9g@ds0;SWyndTr64eT`vLd?g;5z zPJcI>axxEyfY579>eD`c&@8fBQS$I~nRmMH8=61PtgGwrKDV5pc8~r$(+ZXg zFYgL@e${-z~hVd9CaWH!)$PsMLnAn18$apQJ zta3orrUM<&N-$~=^4>NG|J>IGoe}XDy2XQ%!hQ^Sh*Q3`jY0HwTmS_G355`(_4;ES z{m)P1>~i-%J|hlkEU!_eoPJ@*$=VOQ{S4M311p;M>TL6cUJ^w;f1b|t8PpVI!0=b| z6?73f%m3!nwex)>?E z@J%!5){`TwA4&*Ju*^<;))b%ay|$;l(hOj4w9Xb%RIIB*@ZDkuJ9~)5utdREMM6QX z6Rx^blf>gD_5}jyinCzQ!53_BlZqZm=hX%ge6Ry8v!Glcf%$3@Niynpd^DovZ>ulf za{oaC3K|2qlc2+-9jEpIf0kGI<74+PEY`DoXP$`sKnz~HL8^VS|1C9A=;hEnhObCT z`2@hThJP47n?gxb2~tBL=u`U+ZhvUx1i#Sq`0J9&(4P@-;USc&J%b@pVe>EVx(M+M zRZraAv!?Ct=m@HK*tpHp;=jc6XgBX;gQGl`+j2`!6Y4KVO}S$DfsS6E{XSfMZ2)15 z=eKxLDM%v{o$@{|FIUUpwM_Sn=ywHQg>m^Q&-H$6#6&f24kseI&jN(WyQoY4g$~k8=V%WwidS8u9>rONq3$5 zKW7a-&Mnq__N@nvHVwW%@*{N~<< z4oy4ZB9cIatqZih(@ezc!%7%JhQ3uPd%AgJ8-{&x5ju~Sl~gPLh~Ie+$2%FN3|a%E zbaZ)NQY>>7I5rT*Ri`q`vo}KCBakWGFJp@W$#kMiM0>kCx1>?dO8?#zg>Z-q*MFZj zCgO*LU^A<&UY!4(zWxI^F9OoS(~?VVjE3IO(ZWVo?(6OSvL|MK1G@*xUOQHCW*#JTuM3^2e&Ev~Z7fSxd)ZKn;?3ycEw zEwdl416^qUxYF>Nb{q3+jt@+O6GZc4o|Y)XjNL^y#b;0Gt}cZbLa~6OYEn`}F}F7@I#C2*9x?Fp@;cAH>(dfkwaN_nj7YLh0{R7Q5zG8Oq8lcCIh~#C3*4Z# zc4iQ0;YSWaOoTd|l;s^>I(FM1E^$?{v^OYGJ>2h9y(c~76MmqoDQAN?ZLWQOZC9tw zj1Z>bu`4MnPeWnu1ezy6<5;wn;$C?*N{mfZc_YgtqjC>#M-&WkLwHqbR5_G^v6rF=(3@+Ky)YVvs-VVBA zt2iri32wf$ugu0!<|zNoO_X|t?d_1APNu=171yfM(udHJR6>-r4_fx`UOi(u%UTpd70*(9C|PHjV64?OC!;mS6v ztZ3{;tOr_^GJJ%+ougVoq z6etFX`H}e%0Ui+@g&p68$egUAW>290_5nR?rB0zj19)y^$B&0+Y9l?kM?f!K6q465 z-eq#jSCdlo>77@mY5@eaMbO-r{4&<3l$+1T;h@ z>9ip~o(f5YZl2U5S9Rsez8Sc*OmI`PKa+&WaqBg(315uNSh4;E+S$9D#VN0^v+RiB zG}YG)UK_A8j-jyMU(sI4{MOd!;`nJr+UpPT_VOE*e4L(-d63+z5s=u`E^wD|1JyZg}dEQhjM2NF6bsH%6*0{2#X5XRBKpQVHv|0BmF9uE2O z_FN3YtmqoC8B9x&xeYl>5lH9WAxc;XDyckO9$iXf#g*KTFU}fZSOGLxT6)a7QQ24b z|3ps8pFcejCpA@;t^?uCn_s`6P4feAT?v=}*hlWpfBEARv^@frY4GeyjrKp@ar<>R8%HC`+D{B!UDm0` zW4VN_`dsXMd^i~-C4u0Yzyb9`bz2;%!*hB6i!*UNJSr`2(+l6d*|1IVhbM&GU?TJK zZPrilkD5Lw#k}kYIPMfQKxZU}>7?4A>MjRNuJe~?f5_c-pEw3hnaeZJDosPYsc=f+ zsHTbvHj~FV^A6SGJUm)B490`f($Y@Q>|m|wA)PA5QfI#3^R3Q3eD$HPZ~EgoXgy{D zRl-d6F&M~jeZbZD0xcyrNETVgN0(z}iKSW8Q~bVvqT+k%BKY-UwFmXjG#LqyxxDH&Fx z9%~T^+UvD>(T{Xpf<0*kjCDCoC)D{a;+`0$dadZ&$cBcH`;X>^@e%hzLR8T4ps#tN z=2O)Mvf=UaSe}P;KN-NgbM51)Mbu3AyU?W{(0Zux;WN5*$OT%>whw7sCVGQ4Tjchg zkAAV@QSyaoVY{pYkfs3xLikS)vzYuz<+r|mRfdf9ag{bH5?HCW*j{4{sROoNqQ^M& zDQuCQux_-ln^je^_=kms*%r~BKc&DwF%PwT`kS72ZPuB~f0k+Z{3>4;Qn!SLgwW%Q zz=OTL1Rl<|NJBh~0uhpx-pOpy-I{*v6I$>LVqW{E z`smeeug~79{G);z!z%KD!9i2EytL@Nx6kQE#n1HH#*wVcCaLFw#ZeyrGuxVnatmqs-QN{n*`YD*Tx| zSKr(#zzl?-mb9HTyi_Kaeo^=({wkCGa05w{1oD{cv~RroWLKLU)g_!yJ`&K1y(7PM zKzWBjr^DYnIy#RfFMs*Y=EpOhr3PoMN3s(d`sE!zPs8(0e{ZqeUAR+o7dlN81@~2g zZr#+PE#Kf=c;i`dmy+hz+Kd8;`SKyRv>55%KYkhut$R^yR$Ckn7q*6-pMh{Q+j*PQ zDX7jTydX3JwW|w?5OqrYw5LFon1Wi>ZeHolyLV)wFsxX>Lg~^n_|Jje7AwXAt8oJ1 zG0HVQ{Ejv}9vv81$-pet8hqZ?z{-eG0<*rRM+#fKSXlj6_n?VxietSVnT6C0!J-rtC$)88&mcf(V0UAn)Ocb1j_%|7Wb z2;epv)x*()fRCf6*b~$m_~+o^r$d`yORJs>xeV*u0RNVPkX_@Ys&jEezaqiwASR5h zL{;aoI->a#MD~%qE{cPI8Nrv7W+544Es^JG{=PD1wSV; z?t=1NoK_J%50m!AS~PkLnj$X#QuG{Nq_;6A6g?^so)VAOYGm-&S}-Eb166`}WWuaSk8(qKsK5WR6DR2l#5d zXkE_YfU}K#+zM@yk>6}gmXP3l`S~-q`w=kn555`aGg)`ju4DWJj!`nd8Z@6%@3046 zgvsVvF+W1O-_Uh=k)6^qf}kt4G53aHhhkNcEN`T^{8l2cepb7nT8k8F25dNHdRcuK zfK?jBWT!pnS7vfpA)om7DiwB&?baZw#akeKgWjKg>jcoRJmKu5c^IRYtoaKKOxHj9j*mkv z5H*o6sgYdvB$^pNKCxTgL?_~PDR!9R`08%ICA+&Zp~TQS`n7A;d@C4U7aFwYnu=5saUvv_n`|Lc4{CFlCXXob|6zdr&W&Mtf z`m`1agO)CB{Pv(U^xquOFJii3BC#; zz={FKdmKEx)Qis*!^N~B)s1L?C2+q!`blyBi0H@tpSOG--g$=lJM8@*G$Y{$BE`Y$ zC}RcDW!Yl?IV^}#fF;b!U}%g%U*YDDYmu~()3 z?WT8`xlNa7zSDMGx2YS>bbN(Cydw++V~k-jx;JZmp+yxH_15EqTNO2G3!OnXzA`Xz zWIbGJDNC+1q$lq=`}{UOkzaJKYM}u7ts`Q2{U0V}KNay8D^G*(s*+E0?`-p>+**_2 zMvVs96zT$J$?H6!2Pmb)X%TbZMP7WpuywsX7<_S$3H33RzD*3qF*@z|&M})jFNuX3$rWfa?~5OLx5PiS^Q=Ovt#{iYk;$qsIQlW{+QV!IO$7F4X1= z3{s@{(ZX1F{9C@W^QP+1SDLq8u8($}ZgciJNFS+mF}ko;tAamj5^qNeMi07?ya)O{ z}&hPqBp0sP2%#wzf==Pvc=-o-ufTCdRWwC*5iSzKszndA^$%v zfCtLn%+n?86^8X1hOoGrIlw*}ha|MRhE~W)1vIf7L?bf|4#(KC1UXH~sqm<&lWdca zql)EG|LU8rG0irALUKMZ)c?bJw~M{VVf{PIj>heE4+&>HS!R39>zOqY-bY2RH)?L?jc4G4y?>~3kYLWX=w3l$ z@mn1zO7K>K!Dw!Kwv&5_?f;BdA6pM6e7J$x&OLuMx)fW~qk{$(4!pm&oDDSFc*W{BaF`%)>^2 zmFFEjmqZkIs2%k%UcwNPO);Z9%5pVaOVyMaG}V|Mp|?VHvB;DtDXpLQi=E^M+4txu z(ku@#5JD0jUC{5pPld;M4X3AfL(3`ZwnCXm3I3~lU7cRH!?Uxe_k0OePFm}pc7%3^ zIVv5A{iq^FMO*PGoM}Gn-bUlhVR}dCfR-+4GoG>8bMB#X1{SlnWwKc6jnpx8jj9i2 zuWD$_n;}SdT9UiFXppPs)wScAld#yndd=cr$W`!3_Y=&L_M9~?CkKz#^y(@ z*3jN!s(0^WO+@Fqopc;a^NYLYZhdrGjWPGf4@u6?$Zjf))6ZVW=MX%3?p~-`oZQ%p z4#PnUf&zSE`nHx{THc}LDAXuP1={l)MR{7hbq~uaoey`{9!Bz zg@PP+_WRU*57a(k)q)Vej1n}F9pSgrQ2rR3z2oINj4GURLwFmzyWP$fVVO0Z;r;T= zR5~hD;jD}aKlLx;83WTA9cHt_k9+3kIjU>H>osFfhqj-durs$!QAiWot3C~(KqAzr zjqTZv5SuE=VlPs8Hmrb4-rryvr}W&Ext0E^*@H?Vm--0p)jGX4TFdr=qmIpX+g3#) z)x`U3ZQ;Q$GF&%9F**c`4=ibZ?IIo?E7FRe4YF{(5T>R;BC+35& ztVQu~GOOu)B9$-a{Xc8OSfX4l`CFpK*umsfhaL$FU@#Wz8g(r^o4lG-eYMRU$1W-! z(fnsdBUFjPoAw?ZK&Ikx9kMR7HPfipA~5e*ZF+i3V)>&N>Jf>V02h_V(k&fn{Ij+@ zEJUlXt8KnU}_o5F0UjY6I3=#5m(I=$3}?JW964vAZ0N5 z0|A{ypDblxFG`GXHQA8!Q(Np> zsqT-s^ViTm^-Wj1Y{}DmnDhl&QYj3!lu!rX^yq$j<`EUS8HyC9gx!mb=b}Oz%YH}3 z6OjS%;|qKizJIY3gC0d>ytn@-{x|3EgcNUfs^t_3X#tJGs5*sZ+-ld=xU!aJtN7^O zH~}HvYj)%pc=Go=C^R);+Ef31Mo)S@vp()g9YLi-xy@cXB67Ap!z#F!VwjKn{wo0d zvLhc0Sv?B~Kbf zhnNxL`<>1+&}!`|2b%Wde%Fi-5Y9w0|LL*%>fWoD!^g({i~sEQ%!h$Uzp4rJl zdvuKArH@DMOfw~wH8OGp8ZMzEq4mkx6C?#6{-E?XC4O0){$A)TTzt>ws^rIrEF9O4 zNvxUbFs3j><@rL%F#n=+M(^wj^vf!ezl<}DZ6wuG@z zlS%z>!ZFe7$+VGwl~?xCuD z&b=Xq+KxWVy*2fpkD?ay(2L$!%d zPg5=9A+La}*xxZ*vE{y96PP=KcJyOK$*kG6$T)F3J=+FBzPSuSJm_^DO* zqmk~(%62tR51IB}5l1E;><)|~pG+0=6|&>?d>L{yY<+0AMSXlW@afBU3d@n2z&J9j zvDj!*`5%?+jzgB5hZA>S$RkzOuc^PtM%Ri9ZY7uj9sz$Y*}Y*v2Q$%hs+5Q%qF5@; zUdhZ6&yCgF4s*nmEfz`p5o-TE+9{M)@VeV|QH&cKfuxXS;NXVErc@~2Z^iIeS4~%? ze;RUZZkA2s9@4x8GFDZCkc978bhW2*^h~Rgsuyy6Y&?ff}IW zpv%^zmORMQ;B3J`!uK4Iq+fpfa}X~x{25)E8(&UjRYDa?l9kf9 zn49JFP)e{SfIb@gEi^>_g^6vm!0ak(mT?DR6iZ9eOVf4>W|^U#6TTeRr&kEcFMF?} zS3ocSxj$FyO;#|-OCTqS7)yBlTECpfpu?WqKeeB6B(Iwx7-3^4 za7Q|Q9n+g8r?8Oe6x!c*+_)tMx4FhE#lL^?n*I9jVXO;dpe_OWR*BVs?z&gP7u2~q zT`uCSf!|eQ#YoJ-zE+I0_oGt#Jkdp4`l+jxBce%5@6;?wV4zWC4IJ2Mlt|w9I}xHV z73NLF&d`R3`ZIQd4`=)kYc&MDF4>Uu?ECxHYlbiN4Bzl;wQc4X%OP60rmX#lp})4= z&q|_Sh>zspjeiCMrlhUPM5}9e=ty%LN+2R=Y%cCt3`B>U(p8XNF5G*pCLiAIWc#B} zrYJtL?y0dPspyk{68Br?#<5rl+S`v5##Y8Mr%1`9m)`T8d8T5Y#8kU=c7CjUaDyN< z;OkCCh$j&sJ?4LhtE_+$7II4@y10W-e(WF3tHQ%Q+xU7T1t=q|OyBU`>D*EtaIZnn zmI*x3A!ktXb}uO(L>6g{0|rle&hK6QYB9u|3ig%Tjq4c#f~4#n4>zJU9YX-son4pT zYYZ+u?mztt)5Y2B*R0n#j_cU__JuhJLq^@fG;J%AUP~9~KZcu$?UpDL8n9@;cDP@~ zVjHI-t(+3VG2Dw^-C{;3Y?^y;NPlPsriH18L{XZ5aiF6WrhKjM+ zE~sk(4{x~8z9YcP=0O6rMC%<|eS542;pdmYmnvOFOg`|?|7kl?bC9*VYB`e0DcZRE ze(_7diNYurmpP$E*K)f?vXT@z0tZQAMc^QW@V7Ch0%Kp`f6Lz^pw|3@Ln`z=nA<$? zXV%_xf^79IMcO{75@}bq!<&D>E~d+G!NivIPsuZ4*S#NBRQf&_t`RF6(_`1eak=@L zhn!8PJ7tOZrF_#MC_QEXKeqq)mf~i9NVAbcW?`Ls?uX&sC%d*NJP1xwjH?iDGIoW$ zCA5-+T;KDR*Y8kT7aIrd4I&IOoEZ!{p0~7!Wr1_B<4PAPSW0U4-Rlc|8|2_xe3zheJipygX>C2b2g}XEjyHSd_%5 z-R@<}Y$2Ejp^-I}(1Dvg7f2YS|+9iwxMsLqq*-TW>nRroYYfOff-Ex3nx++^U4!u~c%e>n~AE zJ+R%Lw24K<$?I>g7szqx6@FhB(7lflKS#pV3m;gpr7L*d#ac@!I}bT{w#ZIn`(6BZ zCh@7J1HEbli8vM6^H@`^3W7gsZ8nGPmKZeA-&L-69lE zEv$ZkAv+MA%xxx;DTHz-2YSDwtq=avBk!3u`U@*5DhZOOVjtpeYTZ`qjpDH{Au)P{ zvwWT89Wxw(tYwirA(C1iWUwv$WB+D1ME>x!(R22bZuWZvtNllmkMr#(o7~V(L4`GX zI18KrQp5K_TYw7kJ2{!EtHd=dMHvCpS65*fF;fA{#qnK1Xv1rkIfPaCBYGTX(5lEV z&Le;|y_SMb(o;R^{t4ibD{G{2@xT8GN~=v!Vrs$ZnGUxdRI2baJdF_$$fgnX#$qsA z%A6@@vk%5Kdo(LQ($PW)kIU1r_{M8R4CE)lasT5%mM2}M7w9|alt0^s3zFq<8Fv)W9YF612jBF~QLrtW-66;ZF!e>g7$Fpn(62fd&rPS`MqYW2y;d{cqUH#1aG^a?4;i3o5jzcMEqJa zyK8+0<6GssR@zws%M4egoKNSO9ObBYJ>VsP*;MuQ1MrY{qUAMczC0(n* z^P85Fv`#x1#N3_79LW;q1be+?95RlSFNCIADsexYvBDxtG3LoX`W*c*L6F=vS3}0! zpHfFR$N)2+9C_|OVSFtqV<#qg9!NK5AW15%T18A|%IG>fxCSf^b$QUoa_hPZ-ucPx zU3rl*nVx|jQ<0JVAYC&(%%;~mb&>+8hREdideM@un4}0bfbH_FD-LErAJ45=b|(}+ zk^l?Z5gQvD10^zgdTlt+iSmbpXaLOczwf#;t$Pz4YsaPbz?F46%o2r13rXe}(1CKQ zsd~kAl!;mU;m?Hc`<_ct`z1Wr7S(7|YdMC|Edt?-&WWcK{9LuGlpG!iqV!<*6R_?~ ze+^tf7F&1yoyD%lU7BJc8LZ3?`DO{Pc>#j3wUVay%2b+5ap(fW1tNKBQcgVaJ+ySO z7Sf0Hu}IY}f0c6PVmHN8n3QlvB|Jmhi3B%4eN-uPqZcdanxd4Ukn7d3MInc*&4x&( zGZR>=A?rS`0|z)pj0y^xC_W?A8@=YN-1zEqarS6yFrrOp$QKb;8mt}<1ZN=$zM*eOFaGdLu63C@qaIcT3OWw6_;q8ygcCX0fyO%F zy-7S07^+(6r)%yzCf2v}Y;0E+rAI!zRD<*Nt+Hv7-LWXRzkeZ0m3*pCJ!m;kk=h$8 zyHcH7TYGZx$T5Uy*L9ioyPUYMds{cG$vi!|9;oud8S8pWdCzZL9>=!Z!y{$37J>}{ z(H_&y@46pih>Fba%73J{?dlU_=wuF?r<2-YWy*8AMrCH+brfQ z_Y;j2D;Gt*J|Hd_*i%X(q+y@sw{3%b8Mw=eg8`AMf$@=LF`Z!7EjIfxo$~cFQnJ-;s;0HTwR~c#7&Qsgm{@?4Eog|X@ix0pkezRH*Mknay@cEL`Yvafh%v{)67vG;XnfsW#-f4jR{@p&WI4Ti=}`eAyi4q%?^*FhhcM=s8^I; z&F)RtS1J}-+RqLjt*BlV_l;oc=(G{3T@j)OFH+Vm@Es&#pykNaIu2s15P#D0>T`VWZ?BVr-PwPlfS1NTD+^nos`j5027IDTX zAJ%){haq7XBL^+MAnFb^AEpDID|l$-aLDhCC7nj286 z>GI}_CZ9{Jfg$ekZRUCqP<)Bi;`V8Y;4yXo*2^Ai3@^687(Lg|Y2r_KO}tB+F8!HrOnjkI8N-zN z;qt;>4j!A8R#Q_`Z)Ybnqf+<6Mv*1H?5dEBq@YcAkm5CP{d`FIc+(yul3b?vVHZu@ zm7DGP1gSZD99Xw?6SZ=I8}l+hHsEGzAQjxzl}x5P>G)zy=>H?JjT4h9Odng2YIGb4 zHk_$*3mNfj$994SL%_8)gF_(#%}3}-UhZUUcRgrfP%Ep3(DtZjdfag%iU-&lNPG;u zIprLD!`F?Ey>Ccev+;RJMk~wM8TRbao$D{WcHPegRS1;MP#q&D@sXxCAfWT4~~9{%Gnb&@2E&osMfSAJ@{V zuaif^t*_YP*zh?tD`T7R*eoswp;|^}Zan81PoZs`mOd*C!l(IbwRd+%6tuMjE00$` zQbfhXDmXZ@2VC%bKdVb3agC#D7OY*wacz- zjor$VyX|-KY*&>YOV3K^BP> z@Mh+*7D6zzK;vhKin65^I;T}7=5`D#75l7csZuur&5^p@3qj%BbXNDJCu!h$^eBTw z2;AjTZS86+~0Z=Lr^Ib(eCC@W&F9K5MRFyVT|vxhy{vSsiQ+;?%nU^ zf5CP4!2=AH9De&j`o3gw!s^}O#NsKw?_BqG>o?=$x#Iv)Pykw>$kV2Bcy8mWac;fXMvB_7|4^56^DXxf0>wf4c}Xr7&Epln-Jc+HK8teK>%e)uMnW@4rRr4 zEMC$HOJ(R9ka=%2`0_IcI?N*wn)K1ul&p7Okzu(03Y|5XAsy9eJihX=+3QMprg&1S z%=ae5kCKLnAe~sTm4VZJywn1_AW&22-IQJxSQPN#GNE1@$s#<%ZwjK zscl`d4P&FUg$S}1N-+-qNTzhqI21wyK=aZ}$ACVryRx(3Ai;~d!ew59)Bg|EMg3H{ zdiB;g*=Lf&8E5IfHdovEswcIlGm4yDcYW|H$C~Qd3t!j#8r;K5g@hWg>OE`2G7Ur{ znGn+o4^w{Ul#zMd_{f6PD4}yZ?g-g zUVr;IgqmOW@9NSmJrn`WrUXP{XlTa<=T)3@REmKWSFI@e8DMSF28f@k!Md#U+qc8H zv_O6Q#qPlr9uvo3aoa~f*Ycm*HnLDrz4;PdU;pMFcChf;=JRVF+nf6PAg9i}@g!`M z;Puy~k%Y_RZ+m#}8_e78yhMc+DaPBLpSrNU!p8u6&G=vCaDx{{pfLJmjOw!Uo}G5y z(dVkxb>KU_B9%T36oB{!T?fPN^n8~Z&kx5gTD~;9hofK-ty(5M zx4M*=ep!No>LYB@)qrNx36>TaOgNnm7SA3>X|(BJRFL;)-N=5p(r@c{$2UL#f04K{ zyXceK#h(WPR@cPkQ1y+g0q3#- zl0QST&e64*TP|9AwXw7cV$$*ueegy;?NjkS@a29@V2=48Er2zX`g1PTdiQTht*t0? z$1npt&}L=@v-m0aqS2ORQ7)^-V}@5yDW-Y?jfgi0q*S9Y&$5x&0IlNKgVx_{6tup; zK}iM{ky{ZL>qS3?irLN_>cjorox!k(h!35ez2d))_79$wuSJ7p z&UAd^W6E#l&8foM9mtFGLsCNI7UNphU+FjeT@_TtE^C3Isfh#|L=+{DT5RjV_=?)? z->yj@Z{~EGdsXcH2Lrpe%A4@s>gV8vF+zeNC z;XV5IyRa?FpvsY9yFID(-hZF;FE3{;fpe;lqWoP9?3dlHS2-Qzf#ti`zg zo_V!A;;8=X2Y+?oj0ihj*C3NYQJes`lJE?fs+fXmWl)CpJKz`S(f3N9+IWYBnyj=l zcD`{Pu}Zh9(50j$BDt&))O@Bj}5!Ijy8Xya-}bxGBLRDC*d@LzgZdmCxUFa~N^YD2SRs^W4>)~MD_ z7+$;KVevGoR9pr=PCF61`xxS-q0C0E%A!x!U1H}siwp0k>e zui=^W-}z3Pj+(wTxdx$DMHGtUAs_~vwQ`vFAoDN`lw9lZcq#tjSjtQ-^8s&v=%35B zjSBTupPH=-HwdA39VsX%>h4H-3w>OIqe96b@_e$)OdgaVjM+PX#*JC{hK*wx+Agjq z2DPf#xc2fsX~*d0o%YuH_avafNual&cub(tmX4Ls%)?f@B6OD7kJUt&hxI$Irc6=kS}cmKY7^fa+-v&xw~)if;(px&CQD)j9tlZ-+|%gcI|J!X z7Bv?c%S8{u#vtsVXnZZ7n9Z`tG@k%U4OPJ{<0>C2vy1)9x3Yw^DctSQ^CF#>RRvIE zlhiL)enQnmT?dd<#`RJBiO2&eN?S+z8#+4WIH4XA zdKGYUpx-EsgAh63OnW;O<;7^j@_;kC)Dwg+CLRPcHEjI{I3ltqjCx~ zGmV>rUqWhbDKK!bHypj;G<-?s z=I^6tl=Bs6m1qz9c&55?_K3`z9&7t|cXyA#pJ8kTaNbGi&94{#3x6SB7jXR9{y^Oc zJ5jh&R#KJCf*ExYVWo##VjQz9Zf&VE#9r2oP2V|w8KxfJjB@of*iv+V=&HlQRYc3Y z8IZLTl~a0#!2xDG2$tfkL96c?vuIQVCPym_vj(veF<&1-a}DNKEHGXMANVJ|5U}Z0 z0aJTk%<_}77+Qs#WTJy1@QJ@>znwjtor65k-M6Py`fvg7=ZtdG7CGp)a-al2%A(0) zwMXrgUgy7G>m*4|Q9%rk-ZTt4(hay(+<{I%VMS#%Uyk!|2@1UiTT<Q*WvY?P2lu`zU#?@gIPCj?-pw2fA%bra?{1qf>C-tp(&IW-}b=miXzgE=^?j`ZbvA(#J2|wYiD$AJhi^c*))DIj5=o@8S>fUR$?{TiSGO zUzx6jP`Nt>3fn(VPqiTObNdD-Lnc075EfiJr$fVi~_AELu>G=EFl$9WjC;D0tAp;YpD^1-D=n_*)eh78bBX3!(B< z|8!f2M~Nlz6m)eC(7Nftu4cf^Z36!-&^~s&fv)++dW~1FUQHk69%gf;Kl_8^p;%tq z|Ejz!*!BW;2)U8ohb(D2a_jcM$2vckZ@TP*YL@90iuAL{AvRl-_47_D|!K3fXc zU4Hc^JDOT_3}0sY70RkI`S$MZS%u78SO~Ct1X>)xQ%d(=x0R}wq*WIl?JN!<8OiV* zeFj?TLhh{uZlw z??30*eo_v6->zv5qub^0P{L^XANEMmPs}Z56Tk6qpPKp6<>AeHxPQa z>C(i*HTk;gT7Q&h8PEibvwD3e3suLinzJb1RuPn%?+`1n4_Yu{Ur62kuM=7=8Ph5l zafsO-lE;8hgA$?;d?g>nvfu_bwZN{4^9xO^ly~j2&=nhkPW(JEwCG2 z@q6;vUqj{)K8=Gvp*OllnUC-t5%%z+!{17(SCeTqwVK zRj&PL!9WJb#Klx<<)q=@!Y*V!+4SARyJ~YV`k-P4X|M)9mLqcko_i6r(0>VEx#>Um z*-c{Z%wk@4J|CZgT{kQyjo!t7G7CZQl7x^XXW7L?2=>WNq&>d{{|j%}>BHJn^89%~ zB_wsP;F@*C=FAhEQ*FXT?Na$0<x#M87R5r_kMrxP{ zy^i3=&TKZ9pOKNE`(&R&JiWBSSmD!;M}02~j5Ezbwn%jhn7x!m_kO{mPGAzZ@}6s= zz&PY?sltNe6-;Nfz*@A>@Ezc&IpAA-$)#Vc08)fPI7CtJcf3*HUEfnZ`(Fzi*lxxE zbrFzN{O=ywRjyDY=hF*bf+Y&pY+2Ne`(HWDD^3ho3S(A`TIQS_Vc`cn8a4JZkM41i zESX7oj&^tm^DE~SyUf<`0Hyh52l%dE?t3-CaN<2=*FPeNllDJ1G=B!>J+(w8?0Faz z0+B==n}G5a6!3km%JNrU!DdvgRy?8r;_v!eP)U!9q<^jkM_?!T#N%^Ia*ReQkVCDR zUe=t;kXZXd?}j}`5Vm)2rjhvgtP6I-z;^ zka?H1@pk{@WcSMp+9gA@H??Vh{`^6K0XA<~AS~b3HLF_`SDZ@5v}QXjldOU+U*-U+ zLsbURmS}u2Y;^j~#mkh94)|0&#{Ha=HbaW9{)F8rBzf<4NX@nML2_b&(9kO@vGyE;4^_vg=_&BDoyBO%ci{OLCXq-BYu{LYdg4N(&SH`Jf2jGHHL-!(6td_Dhp z=mFrWpZ0i6^pi$ttO54_2TMjajOdCSqyXo-eHE*hJ;)Yod4_+El63iBP7REvkcnF0 zF{yo*kwGwoJ~snr2@J^d`s=Zcu9O&&_{eUI&{L+mHb#-BW{XJ+{B@*EWZk9phh`Fv zL2rhH75qs9?iMpfZ60q;4UNy9O2EZUgd(%V<3L5*<>HcZ6AN}P;_^I43CY-SZkMho zENL5V{0A4~SCjakJ*sXv$(5v8;x9c=qW@hTq5x`nfH9i0qUO%Aa_LTs03Dn~1?)ND zH?oPA-5sPxj(KVQ^!;}YDjXZPUjiFRC{0?P*AJg&`l9UE4X9`CA*$|Y2^6jT?@sV@ zT2v&~9^2%97lOB%qOZG)U~mT#?H1M6iazJLlQmPbyMBMxrRqmplJB4IMp3b`m7h~# zF6Ih9=JV27*;`7Z4Fdy8nB3pEB*U=46BxK&n+IjVLTe+bewp!e9Fq0xRY5S?#OZN5@X0XohHUDpXP*4|sXlSU`c?hnM-P|KE zWdT<$^pgwzq_sUA*-V5IZ-Yd5<7`j7`;GfTcWWoCN)o4I! z+)qCAD*RNYzyusR+9g1FJ9}Lmw^#zI;Jw{|v6oX-hf>=>nc^X&3;W$b2_6N|*HF|P z?~{}}Ah=<2-CdB{{4AI-2SKywcS&oCuG=@zQfGk$aQG+!k1OG3wjfXJlodNh7#4!y z^=3i)WD?pv&{b4Wl2YOmam_>)ACmk_c44lo|2s|gfFqz`-+c%8Jj`g(w}Bn0`0&^N z+V2!4`~goSSePYD9-Hpewu=yY;h@8(y=+|nkW~>@QLWb>+{Ya3Rtox`Rn#RD@#`<} zS+dchvsS9U-bf4lglbA(U%T^GW$A0wMrmS-gqQ;!+~&z2;%GbhC3z25W*@yarjh|4 zcmYFDbCFek-!b-jSMI+XqXM{_#rC*3h@`$T#&*n+5QS43z1VKU!AbJ?}AnY-hgv zrJ2s#b3+bG6-rBF@GHB(zGb zb1xsnlHg~t+lrw3p?d%f?+hpk9O9~oENMSA4y`7ekK}6X0-`zVkfnGhCYX@cdMp4L{o3K&6WrfGaLy|lp2klXZ$2#TSO7?>ZZdEAEpHwW33KmvPVCZ z$e2*B+#$M5uh5cn;9aa|>Y-O=ANH$~7hN5D7?cm3TwGC*?xnd-_~xC{M6n`>`U-bgmauM_ru>4JKQ;#K?!$J zZ)0F{2>#?XD}lL`IjW9-w(I$xFcHUVDVU~aM{MT9o-dq_9BhNDU2CXZ+&|*{govn| z76@{C7z38y5m3EwNK0oyiUrHOxaB_JaU_2J`lSn$=w~n00YL5mIq}I-%7ZooX%7Ul zWlZPHHfQoFGNs%<{GSH^=3{Uk6hZaU!TODOd!ac4kf`^mivTcBVTCSWJ1Dn(!y|7~ z`2E*=LEI|;E@`x(0EVeFN%BGSNx$*UyZz9>26AHHEu*%YC=r;?kIm)+W4z=Ro%UdeDg9Bbz=Z(JrjulW0=A&(#Z;7daI56@USuEI3 zMx7k5@6)o7U3>(~v@@6he6#!pleD9y@T+W25&9(tWOECn{s}2F)w?QyZ)7RCYBCp! zw1~*OG?cCTqTK9FY|*3k^7}Q&A?xX9fsB{L&IfzCyH!gN=KhjTj=3$<5z?@te+_3u zOGXCm`SrWzQH=8e36#KcEplWgn9US( z3r4+&QMl2y<-Ke!eXa(#uVLLG0Orz+$`0rbK+z?)B|O)^#vdBbz0JSUMr9LUVYB_Y zIa()TuqkxfabfP+n3f4a%I*{kx*0kO=CLsowcL36t56SuDn7%mHvXq$~5BU)3<=^0zxj9~P zn^;P+$jkYWm$e{He83JlRzfw8q~uG85#}+Q{d4*?USW!ODP#pFVq4ar7J!8#xL18; zDrmk6vIN+C%E(^4<@uJt^nRacR0_Z&`0mJ@DgnciT9%F_55CgdRiz3Xt zHSom1J}mWDeLmPGnSI{-W&2Sk$){Hrox+i zSptNQ>XJKvXC?H2k!mqCG21a ziIG68=N(H?$F?sxUUTnK8jKI_<6wU^Jn>KYDUI+ z->;AC$^6zzeF==Y=e!r^7hlMp9R1(hBZS8`n-$?=%^k>uKX4e9Y0A|6hP=@}W`Pl> zEOXN-qmq`Xgs#Pc^Z59fx|?5Ar)rg_$k=n6g^#~Rsq8oXYTpleo63n=L1g1+5^N3f6mw0tv;^l=s z8Mu1;&nxx-nem9-i|Y?5(UUo?**HTh%3%+!lO=ieQ))1XmUMPZ>!;t&uiogzy!RZ< zzZTG7nlR`|D0e1hkmPgZL`XT@N*7AJuD#mBn@2D1p5}4=Zk{x{VI5|}uc&6RV*j-{ zW(rr-IQOLuvp21VOt#EOj^YM9dj!VF=cW^$e>9YrB;}Sxt*Ts!F;M*K-ZLttOT4BD z`(oEaC#ZsPT<)vf$N1z3!X-`^IHAh#zRVl7=P@$(NsZwZwQ)n6#(n6|uI;3#%Q3Uo zTbP;FyR(1mwQNjP{Z*EtY=^N5h$Cxh!IltwhhQ{}=$;r_Wl%#K$WLx!DLDF zzxg?fD_EB!Qd6!mReUk*oSlni`o@X+&!*9B(59)uLPQNA6-CuUNsySBc%(H)H(XWA z`C|6lWfnV`e)aCC=b?n=@Hn^ZsN;X{God!~WHI5ruecTAB~PDswigkAruZ5$_Enr8 zy%F_&PIwk!AiYHq5f@hgx^mSMit#0tQs8Q|IrPW>uYsiLE(A| zrS7fZ&Ahjida4)U>rG(%g&Bj&4mOv5YilUXC!EtU2*I(5Wp@%{8C#zyxipX^ zl>wN^2P25W+u3X^CvBfPvi;9gTZm2pA8V_&2aM$Oxko@tM;Y`5-o#ag1!Po)fuv3~ zJ{mRDD7hw3=CwJlN{!<+c?_Um-Pp^*FjG>~K% zpc71Sla3TVmk$cy19BA{d<|9v4UJ0m+?Lj@lbM1AtFbMw-5GFFw5C|IvH2wI-(L~! zwAD!_=paW?n}$CN+OG>H{^a*LmQ;JTdUGikd&C{UfyNCs{5&QN3i==Z1rzp#w7Qsy z+9rU^5|K0_!^iZy-X9ow4DiIb#ju&UId}OM@d)M;`Uo`@6{}eXVdTt1Lw7KSQp%_t zEx{xex(7i={DLTkm}u?@SE_*&9y-6D-(E01al{ed0lD_K=su9#>g+CDR248tK287) zlS5Yo8P)?59#O?3By|})eIM{(D~|1dm+|e$2X$ICwUj)!&-?SdJ=nL?V(p>hfAOQ& zLDa>Bk-Fu_LPU@M-owA3!BjQ02d{7Zvxdy@i5@7AzJ$B)*X1k+cR%i~ z@bRnhH#)j7O+09e6tOoDQXGoOVU%qjhoIY^kBkvgcNESp+^k#kolRn*Yw8Z^}iAdJc&a4HJg z4?=JTE7D~HWg{HxIdcjD(oac8_iIoGDFe0FwYzkGN`*9y4~BkoPL$ai?`*){uT8Yi1KIp1ycf2OgS0P@wM zgC84e!1}nMIFQO(CVzZi<>X6=J=ztCqvp-Ay&pfGr!Be4Ox;T61Ex<0q2M{a;=Lbc z(-w(=d?FsN^qq1bHk)$$1O3hOJ$Zm{*HSv7>SF(AE_SZiJ;EQ--{jyb`diAPl#CwV zMjtGav>=QTrVa&B_nd{U{znVI5b+xVyl6A-CEW~v6d~^Bze-{UKF*sF_7U1PiIU9R zl^>nCeUjAUcC9fkGiiZctuI6LI!GZ8%8b79kd;b5eily3@XxVv$J4vSF94h0F2ZMz zNS#)Xa*wM~wg1r`UsRUh?Yff8f`~oG-3W%d=Jwyt+hMns5BHzd79a#X@V2L0V*f?z zJXSthO!&U`m1lmbgE=QOzvShNI$vWe6puQ;M9T7nm9}wYLoh{`?I6-KdAJ!$euPnY z9v$`E91PNrCue=e{WAn?35c&qBx7J;knhYwXo{~j=@#i+ik30D-wQ7N&9XP0&G>#Y zlI`92oa0Lcv2LF84e%`Avk4Tofo4$P84A5lY(;z1Uvl83xUMlJa+FB;D8w77M9nX% zDy*wWYKprg7lE-1^m*?>b;Id4f~~L;3%I86->iDlg`#1RD15GS`>GJ+BKnbjXam@z zEBOHQDtsxrc@IU4XxM3g7;H%Esy~y!D3A9mglYMdw!DX7$tU713N|JzVoq)m?<$p) z({}j>;BR#m6hcj3RGtMEL@*HH5i*(EwaxR?$12`__;KG)Lxvg4B1xH#Roa)_=`VO3hxt`W+1-svbbP0)M7%9BuT)yB8Ri%;;_dpQ%Yc3LN&!b?g{2$ z^RA_YIC-gZ^gDHY?aRT(z`0i^#jYD>9K;ScH=ICPxdz5ZMyl2s+&x-EE-2enLTc4B zReVa2$FGBTD9^4;0uFx{z5>e9VH=|ftF|QW3ctlR^p9u;B6TfGK6M|udwSHf5I*aq zDTyGy?wh_!dBp`nD}3uCf1`-BbL``57u>0p!fVDw`b7-EOpRA59i^!3R_*oZQ6bDNSqy3Rju|RB@fLetGq~|Q zHd=!qkXD3Kt`KV+9yP8Z@303TBN%&WYOT5n($LVBdki}*uXNlQct;E`AeNxOA4-)L zZ3FbwdWM#J&r@f;t#+JMe9?BM=?wFb5y>Ked*{?>{kclVsgoR5g?=pif!b{kWum4HHFX8Stc! z$nWFOS3f$+VDkA8lYz7jP6iR+wkc(}ztFq_?#Ilx=_io59hx51MHE(gmJ)~k;vKw@ zRj1hV5MfRp4h{|-7oBA!9r^IM8Errl<%^)pV>YjIeNE4hg7L&e^uWC#`j>l?iZBTc#dL^TZ@=iAAPKi-S^XEY^C|qlm>trca6{ZX5qMq4Z8`Zu zhE9uTg>>rAlh@mgD{iZW-~|P?pDhN5$*rh$&M+n;YQyTxf0|yjuD6>b?QYjT=g^ij zHc2=_FLR!)8I{1fB!Op;-+m8gD@{CyopZ24jxmdf`ldSYH`LenVQ3hHk8EZQX5Kf5 z`>V`qyNtCrDU71&u#-ny#O^0;9(L_pkL$8rr`h{~y!T}(z>PLcfz)&yICZBZ6oo6V zZ`UenW-IX@u8nY$QG`CeqIlHi>{O&O$LF|=rN+8Y^wzvKQNVui{#HJl#6mzM(Yb9* ztng*iAq!cpcQ2~%O+l}b5$GMSuWX}e+V~#H zfxh$J9fIhScr0_WuC1dMwhh4Ijgb$^pa_M3S$oZI1oKl8`8vszSlvk4DB^lZ9kuX9 zvyk%9`XJfXQwN#3L4(A|+mR!|`UN1lI2g@Si1#;k-YYk%D)10iXlDJ5qkcKnN`pm8 z3-~-Ph9NGUf8E)+hY^^S7>v>%1w@~RQObrUn1U;SxHB5 zXjOiVdQ(xB>mIJnO^*BBPd zCsDw|TgSaD!Z=vtGH>;K35kbfaV=7+kSygvFf?>v7%|tJ~I(ab?jjN!4*%-EzGPI4ooVuF+94&L=W% z0Ttd?CR@rs>zB{MUgTBa0K&kU(Inkvj7lo%X}^}8wBh=qfJ5=RDpzMVuztQuQ+IW-j26}Oqy|>wA;<}&Y$syNhpj#FSMsGAFV-e==N{`f zv9`D_N$S5bzEyzbGF^oKocclR^W+Hx58}F7C*ym|-xA527t=RL_c)402m|UuHX4F%3RMVBgmfdSz+g$n5l{_%{ zdEVXoSXIT&#e3K0(V*|GZcM*QH}z!Bl6|ZOw-6sLzVoPlQZsJxiC<-nvt*v`jgLn# zjQ%{xL02BaHAQ;3G7~uw&GjVw=oj$9V!{mi8SyiaCfF9o>Z6Kx4AXSo2%r_FFApk@ zV&Yx1A?}=3N~r`m|7P29ZwiB91fOV~DF`Lx8z0FRDQN1EdEft9AW?H!688U72HbV) zvcBEprDRe{FNp+ZgG@Y#RpCk?u5C+I0A&Zl-d2biKd_zcfCf?QS{7o$QpzzI#c&jI z{|P`MCL>9iL=8h1Q`YfDFafEA$?{2thuMTqF}`f&F#{^JX`#*HEd06<9V!h;>={~C z?+cyw^ZZZAo~wLbKdxjxq0>1xC^ys`ZOT$wy>3dsBU1ISd+p$35!q;sU&VWZ`?)=F z#hRoF2Cj`rvuxZB_6GJJUbm!4*mtK}ZXJK0c@rw5LO&Qa`x?(sIZ$G5+#)FAJI2#e zv&S8z(TGz1i1rF@w#bYpHfM5|S9%SwA}Auz47nCJL-`Re;~$fK$|;Bl_z19V-l)q) zM{U@o9Rve)-tne4IEty5LpZrbD+-X$O!av6Tq`^IQwgQ-T9=qv$F2uW5H90KQX(ap z8jUWyD^5yw-M5^Z=9WrSB*l_AQ!XVv?t1qchjcWiQ<&^KPkp!DMtdb9#r0+ z(ycDm0(Lfa(sx5kmgV{C)^p`^0dWQEl}|4ZF`_>s5A?o#+dUx`dqeRvDzK?74J$!^ zE0cS-Pg%HsONlOX9sR|Rt;xO!OL-5TtfYLkl8o<8Gsek0Pe`argajqs_4RUa*XXMK zar`9}il>S;G{!5Bo1u*d159uX-3_)$YiFsph^_Vk@lre2{J1&S!>Ab33L?e9tS~Vu z8?F$GAXZ$XnPEuuDZN>R3>{`aQ$|WEP-1+K#mJ}&3U|5!h?{)kA0fjz#bcPV=(WNx zF`Yte1wxA^uacAJ{0al_S#ZgVkqU;o82L~}ag0*aN?|7j(lePRid9ndpj1v~lgs|$ z^~}r+hDOHXL~tCYXg%FyzB|LwJ8S>Kx$Meh@(xf)`Xu;li_{U+m()p3FKK`35$I%C zC5om|D9u$M6_}&-d=>LJXZlq6#}mliF50Ij=i@{_on3y)&3+#hM74Myqj%3kdET^! zFiwi6qH2xY?1Dd%;bqmMAs3_Shfn+Zywr3!AH6*PNvMWPC7&p^f74TaIEO-tL(>>0 zH{Q?#>obo1AagM^YhL(B!L9;Qq&$-;UQN2ojv=uz<`ERKAF6u?T&X&T5=9zZmpaHu z_yy`{J$)8;!o-ky>?Fj*6Dhbtoz29{?G+V^?F`)aincMMNzXb$T8iLk1V)RlVxI8X zq({G5vb*A9sWKJAkMuzXT2u#e$al_=S=+?w4;hbyXgDMET(5`ZD$jTQ8DdMg6A+ZTk3pu%V+^zLtLWO@^WkyTa;sbtDTr<^Po+FtbU2@ zQnqr%GBT@&L+_q9eJHlevRiIEo%d0sg|)j7DoWnJ5YgB~-+ z5VpAP%d<&FP>svK^C%2ils9%Qy@G-162?J)Idi?8W}TwnLL7de6n~?u5d_gLZk=v! zWKtjI65nI&c)QXnDk*od%f`HJbG+ZJP(~(2gF7i((cZB1;emSYf9^$yI21Tl>s*N! z#rYeU=ZcLk`7|tJq$cx;DL;KrM39Vls}2|4JoRs(mjl1CmYIC!Zko*61;#w8Xpntx z{DJv(iViQ;R#+W(gmslr6hqZ_tTkB-FGL$1iN@sPy*zbIaA4kKZJ96!mtWEKB-*r>lGH+*0#DJ3?2c`U(uj3R=AxuZ zn-T_x7|tb(yeb=JR2KIgiok2S`CR(?OlXI5b9L!KjXm-QPX{tYREiot+6dyJ-$h8N zWCe<`*G)6-V_Cf-x+6zPVOC`q`$j=bF<$(Sh!`PxMI@T9ZK50YpPs#3+kbznOyFs5 zPk@?5Mol?G`q$s;7OO{&TwZLik2dC`H8kYV_<10FH6{UjkVV&hU1)JRjL1ELQ)v#R z6Z9ZvwaJg>%KG#=q^D9aDoYIG>k^9v8^&H*cLrhqr+@BP5)75>=u#63w%hJKd-S?w z>ojwk>2L0vgDQ=c6v7G}AXM^nIN#D{C2(Uz<;i;aH|AUdfpFxtk6n=z^TNdO440}& zcunhGjmf`*NW_G|M!dG_Z$Q@6<;<8;E!KMjKa+js=MKV#W?P#d+@5 z=<#OVeEZJk*1@LdLpK%+R66Gqe4pW;lu``ujVd*SfzPM|=0wBjGVh_NdU7~3f)wCY z3Xi&rm$<=LH6VHG?Mst{z8PwoY2#vpH!IJ#zUHX3X+u~cz2Ye5nOpw4Y*2Bk={o)P z!ZCQE@t!tX&5%%{%S(HIdU?Q5;kTp3B8hjpx;E>Ieqd*hA?fwTVs%FnmtEbGzu!|CSxZ!_a`km9q zZ%U^{OY@aE8h29!#`cO=L$a+Uk3tAKfwVAHZd75Q5Vs+#Xc-gf9~0G%$`3$E)N&Le znM$!I0$`I>91#AMf<@)k*U$>;Po8wNgL@!^`u6VL1ee)wF~74Ti3z4+GLz%q>m$r& z8cqB(qiD`=BOCklD4-MR6Q z==g6!Wes8-xaoPSzruv>jrOOEdB+iBQS$&#UbOt9*pK>;a7!Wt;Y?nylS68PMFo{e zKJFMjmaoo^Qiy<)Xg%XF{^lRUx1$It4y(wyO_jn^m_pMy%) zwvgon76!milnApyPNxPL^H`sK_5_9Gk7OiY$xsn!zkbkSK3eAT!*ZV!=5XzuM>);JDd>a&##L4-aiF=BkvBUUWL} zp~IsY=EP9C(j>N9#r7oE@Z+i}kqEB3_IT4qJVrduz5kw`5 zH2y7sRQ85s5NZek2Ur#*z&6Q|G3;;{g=>Ha@3W_cDM}%D5Hj_073;M- z2tj!IVb%eLKJld-ux_1;m>QWaZ!I3oZVlrO`9HKROLW4>~fN zZ$ff!^3&IcKh}(Wzr7py&y_^lD(89#Vsrm(%^Dbj;*|tV2Yth)rm0J&m1`d*2&PDI zp){Z}w6aK(4M7Bd!&`0_IL7961A!M=Xr$$a<78^Op~;JID(p$hPdGs$ zR$URUBbbRe=$I!$b)|5dT|eK0hzAu|YWqhr;^c! zX^6Bnq%Qc!CXBhx4Dkf&mVy*F$1iR-6Q~>R%+*&<5V|Xe+(4GnwRn*-Nh5#cd+?Ec6m~g#F24X5knMMz=4Bs3mu@S_%^sGITmHDBK}HK^ zutzty0>5EfbrkX2l-ho2@jI9_d7vo95DfjoyY(P-!<9PL2+F!m+MJ&Cb-?G(WRkim zqBeXCbkx*!BeXg8u=){rytn8|NS7qq_LSspFUI(S6W%1JVGp-rezV`fKVKCGy$%nz z#_?Kr)C*Uolkd7@)2$EQ_LHP>(uuevVD*^<#bT)-y-=?bL4hA+u%#N~y{kPxtejQH zNI94#MaMvAO^=yq!Rdp@2&VHfRAsp7U-}G7rmpRl3ygxbVFq?BkT7+`Lb1J)(oZ(#OLCu(EH5_n^3XpRSKwz$vdYPQF&2|7G z1$~t)+Oh?Ll%k%Nc7&*Xm3u@GVo-y+38=5w1cj()Bz`7#u}#gj+-Rpy)I+0w4Q@aK zSh&0@Q;Nt{%aW{@7rA^WOGIY6$7J$}UI6XJ-xOVTgp5E&TqcO0Nu$MHKl-wBu=hGd zz;;yOH!{w#*zcF|;^tSSz#Mj$CXGiz%PtAFMAX!V9Ncuv4-)KXcdYh)RT~^h0%%O@ z!E2aqOAw~phLjk?%BPH6DwXtu(sz=<%KIvhhe0%j$1ml&6kOLqS8pqiBi_aGx+Xr+ zwaq98mkB5MJG@vYnT8wyx{5`-cpuKTF4i?Va%q`VMrw`&>1m&lwr&y)qJ^5{&cnZF zU;-;)>0!Q4cD966*M$6&-;cLvYf?73EENt_vP;ZcT~Tjs7I}~xTlE)w%)B2S?xdtJ)akrtAaz;fvDV!?gem_z3$CkZ2rJe=#75-( zji4tqT?9I&Fu5&vb8sb;rxr3);jXG>G`S327rQhK#D5NU;UtD$mUS2;ms0s0d&eL{_`~Jx=L!@CX0!$54MY|#272_QAi}lFrXssUn)2@!;wLQF$&1#a! zpv$mE0fQhR+_wE3`~86!4(F47Mz}l7D?ZolD<#}ez@K}YkcVc4`w;`Ffz;xDDtA8z zx2L0-m{%XKFP!c&77;gJg;!fX$=xSEHuE2x=2A$l_Y{qVyq{oIPe~5Nr`Yt@&ZBgb zLTy`N`LX%)brF{WLIJn*jw`!-CPUr0rQ~TOom`huP7fe>B4p1=N~I82BDU)xRJ{Bv z=DuxO+-0H)+}=eTQPJF#1gRI)I>GYmjFb4K|J)g4c*qT62Fj z5|RvkZr%c4&Q4^!Ehs{6>6XoUdn&Y}N7y51*YL44ptm<=?XZHoJ_d=&wf!F3!h-Hl%PBb~**Z)rb~-Y1uoW zdb|75-S;J;hDmaAa_`mezO(uGeKVT<8LIfE#iMa?A*AL_x&PTc)l!W?IQ(#}BTwmshM(bW*36$qy#qloq&J( z10F1`A{e))3Ai8At3KzduI2u;u?1;rHCWg+Noe{f<+d_}h4DS;Ds35%U;X%S=b^JE zb6{`@-ms$lEe1-q>e@IGa(3j1{7Uk?rU@4Gxo~tYk*5kdCVkic@x?B*A3t8$b7_x3 zlydH6h;i*`nqK3hEw1ZLd%-v;AzdOQ;A>}2QfM&(ZjixsiFWr;idDG7=5$a`>uHVLS-#bUwcGtUWwQ7Ho6 zYA^zLipD*+J&UXErT@6WB;LH`-FL$&e8Qp6f`ztG#XnOv%3>-RhA`nLOWEOBC3TJA z4IV1>9PqkKzx4PvO&&B;*|S+%TIxUq*LL62;M~D`>vY(95L#PgZDT6zVmcWjRIXw^ zTzLB`J^?}0r#F%*sJ|nBlfOJTliz1YDKI1L z!+Sm+#xKd>h3?+KAP=X(x~7kwqWaF!tCoQ)&+FMiv{T~%TqJhKelJ@ znB+hpsQoslWE|=HYW{%JTUXwGB2)@} z1))nS<{W_*1zY(5!^mOJ)c_SMs=Cc6YNI1V!Gbc4(v8`JR4DWy)J=Z{1?mY546Mr< z{QCD|x`vN*4FGY%C~sYe(8Nb|sGkR*>Cak&iq67Nt^jS#pUR|p`c2o{wDnFaq} z&M4jxcv_TcXws~uf38r7Lzt>shPV33=Ym^wep$l&Qc^xg2>@8>g%Xhy%s*N_Zi8}^6_!KY5NAkT>Y~Pn0O=u#b?V}`*9U4oPtTS!HoS0)T3{s?c~H3FF=!3+8 zZX;)F`1IE=r`np{9NfbPqj{0kdXR~d0)X$0O2$;JBMNt+r~plUT4&?|G8D-GipjS_ zzo5DFq<#;_XiM1enop_i!(YeFAc&1K1po>-z~3m+iUA(&(~KGEFN@gqjfLjM`wLA* z7Tf*nxm#qyi779UzvsnX>fM538}e< z-wN3Fg_5FQ>xGid79K1*jb7W(XK161yo05!Y6^GSpP!;%d~+YHg373zN6Z1-SIG!{ zL>V|VXOhSup7gi7;eF6Km$b(7JfVZWOJKL3%>91oJ6FmXhzR+TUZX742eljQ8JyB+N&%sjkIj6U+X4{|;MHeP z$$sGSiDQr|KEd>*6Lt9>qaN%B55I)KDMZElGa={I>xxm-htt(pq&>8#c}!)t;(B(F z>^sD814=%=WVux5eON%v4bOGCQ?*3{oDu?;agchx2_R7?b=fPtmB9w5Ho9UHl;`*O zD?#@C+x`4%jspxG$d>(4C41R5*TZ*8M>3}W4_WUW&UOF3kDFN;Au4-kN7;Mtkr6`4 zOg7mgqflgJWJ_i?StTp737Oe@C7X=;UeCJk_uc3BI}V3GI`n+Ko{xE5=XIXvB}dK8 z)*mEJXX5sKis~NKOFY?Dn3+919z}#5EimOF^S-x9j1WIx{NBEFohD?Fa~xi#Wc2y2Racgw(ciD*+eTT$Z}MXnvpBaE>yRLa#X}vP3XG;(K!A!Gx@G z>}dmgg{xT2_q?-{gH9`zgm&(Ri5E*fhKis=XR2>qt~{~)6s`38TK8y5o6n)tXfbiB z0W+}~bhKZQ%6qa*w`e_RAJTgH{rq9Ys*@L0rP!!NTKg)e8L0C`5Y3}@0jJ$V0I+zt zln<`nt@pW|CudKD4cFW7Fr|LJNq^HJNj>u8&E?cNy#`dMf@Q}@e2O~dW+M}PajCgQ_H+Z)H&U# zCA=7W4Bti_yRHw!^~h}qoyU-^s9c6Q7+mM!k>{%wNJ5%*Bf6sTZHsxset z)n-Q-O@5y<+##?7Y_?I?@e1)n)1~+;pp~^!PZFOUu^1f2Lvv^X%QZ@o6GZOl)qFN` z8v6SBk8cb`%k_b+0zJ@xZd(3YLX*0faL$IzG=}ITC=06;gU%YwG>Vedt27uc4JA#@ zsJ-(c$-QONoE7*&8K6ZMZb)g>`iFQZL zU77n6hA1`)VMG-@9L(t{cl~-R4s#EEKP^?I{LQ7$wrlrZG89RcE~V(nWpk%UluX2F zbajxlWv37e!)+S>>|*EOlOCb3U3Zik=@5`Luzx=lzUG7Fj9c9h!+m7&Pp8;_7}bQ& z=kYmQ_FP%5^Q?Z>9Z-L~tFmp(?rNV3-mt%_{%q;03gIy?ZW=ItwMQ0tlA=H0uVw)9 zQaCxL9DDWEyho`eLo}+E1H){S(7qIgyD&DN!ZYYC;Sw}c)*Tz7Gjxf3_Zif>d1UYw zr~GexrSaX1Ugsu`P(+Snae0)dc0`AsT4MKwy_X6fKS_;K=;RbOtlBt^lM*wL$xH)0 zakb?5#va$3U-pg~p_Nn1QZX zt`DO)P+T29Q*wIIIuflvcG4ulv96$d5QTy!n(5s4QFu#Q+5XS5fO<$I>4}<(xwm(@ zwwU;5M*Y__ti#17-%#MB-HkTG&RFP(v7w6<^>p4>&Z)y1_?6srJ)!QEcvv`Az@`Dd z0uw56X&eetZ&r1rZoyd_kfdy!#21(;6{MxcxB!^RIh$~Jxlb}qH_gL>!mgBO)6s#^Hxchu*#|ee@wglif;rqUE4lW7KU9%X zh1&3nhr>%<6Q4`f)WC*zAz1rCjpWmYPe=ty~}?0BrLa-6l2}>;L^M68NlN)Q;z_y#~2VmLo z7A3HN;=v*9Ecz81-@H#w?XLr-l zK8HDqL4hD2&h&69k>M}93k&~yf5pZTn6;zhi;eqVWivq2=nVQXBxqJ!-evsrm_NTq zAcb_IvWZw=!hnl_1&N$F4XYI4EcsxrYjp14mq5YsK*~wqCk>0cl`sJIXNK@9?gE3n zpf!e@%3lLAqX+{Mk=0ROmnI3E^aaES6HF9K?y{5rK2QF<@su=7kD*)4x}$Ia5|+Q@ zF*85hoQz@BX8xTp|2vKFK9oob#6vk2Mo82SDDMsX34I7oHqZ+eiIE)S&rhQ_zy=9;Q520eFPWi<6znK8OM-a^E^}KS868dY_1B^|0tNDPYt?Sy%oBlO) z8>qiYd+?Dj!28&v(N;+A zuRjaOgC}miLn?+y1{ziN?W;pWoZemExRn1s7Bb6N_;w-ol)2xG(4eJU!9rj9U04Dv zklHwInr!^FHWeH5;lfCHmXPYr761!M3EEOy0KA*_4x=~u-$8+)nYoK3&!md9!~rl@ z?WaF>7a=u?xq6d+=Qlq2&v)E%gg>LM4@jvu!#M>3f);pnuTIof`28*`{JWAp#9;;W zP0JKF24Da_!~h6aJdnnPOZD7-SF-+D%rolnu+6N#GBr7qt(m6shpSpbkABv*gpv2@ zxXhdX{ld0LVlE<*wkn4KH#2?d&feOPij}R|Z=mPj?}lvEsfq-nr&Jh_U9hrhWktc- z8|%l@fRpz3p@#gv#sFXL`X=u3f)*OINlt+D??E;H|2dDoLlQdg>)m;=H2~$YI@J6u zK4(Y`z*-he>5%zvEx|lIfqBT?AYEQ1MMFx1phxQjl6A^}gvj3?=_mmodH5aGYK9pN zGS67BmQd8!f0=CAc<=A086ii}#aN->RcuNLKcff3g{&V#2ou1zGRfXAh3LN>7Ue$= z%S14O$$N+Pw_pS6mK~6WirpVhVf*{fIAQK>Uwv{BO_BuBg*ixYoR_*UN8Z6=(fDg8 znoz;lTNm8E%1!48QmuR_%_55rN@2@P1#`TA&x0xCTp!mz=3*o1a=B#>8>or4^Icua z{yU#$y5K{7JP&(;hj3Q+sr0@#$uFdP~ zOVWQ2iR@J`kBdhb0f1>ML5;_vDG*b<><(AV-z)bQe4YoNhgbk$#@NJ{QUslv*GD=r z|GOdpTuMNZBP_u!VfO#>1)Lm+iHYeUuG(3vgzER7bN=`5n{Zyv#?204K$^nY)u-f#Y&(ZR<7~Dk`e;>5-F=+s4b0;%L0Tmttrtik!wqxW{8G;?dH3 zLD2l;{{6gIF5_`@y~e)|d^l#F!2)`%SWcsTK{BVxwDnm>_~q-WeBA26f4yPjKD?n( zUkZb8BFfq}cxHD%Ogg_1Ju3G1T(cne;A7)C$|B}cC_b+a7bSBTR;j`rYP#9%B^3Qek zd$*4w@Sk7sMiT}GLav662rmE^QK|R&p?Zx$9Z&5nKFCs1K5q>O0><6`#E=_+=RT)gx)6@%**LVWJM6`XTDaZoO zXEYnazXK8!99dXrA8ndnJxN4xvpIbNdX(JF57olK${N$() z+Pgrf^M;>Sev17}7xmoP8UZrzm7l-~SVeA%!4jzQlJG;^6aul<_UGrj`__OL=xQcd zt$cn}9}&3z=b=XljZpC81Y=1;av>sN(7+Awq(fW~d)~n^3Sw%d0rL*V#N#AJ11+T( z#{8c@!SH8iW)}U&w^e>Qiho{RZthjmA2mSuVIMJxWHq7G&ICqf3-FRN zsK~pSybx>+#enlGMCxWjRG^l>PVg`>*0`fF{mprS4?&y;iXgChIr7TUuF)tffaanUl3HV8SrP^geb4 zyp1vuLlV3Ukm}Z$dPG2>mIw=uekcD{nMsuy7;vpk9HEx!>AUC7Uz(ZfaD4b@`&JX_ z0~FQ`4#$zk_0pKE^Lpx94L{!z3)?5EA7y}{$qVR_SfD>hg%(l`fS3}<9VSIsBh=yX z>VQp?2elD34pu%M8Elpgy{Y$AztPGkB= z8i|3qTp&c`q_D8aq17Y9kl^+;XhhiW)FYAKF3AVt$rxS>Wx_k)mGXQ05s{-o3Rz1g z;_=;Kps<#d^|mS?#?%R16K)$#=qDD5#1ajs&KhXw=-J?9Y@dvW#f*9v?#KCcJ%6l1 z8YMjB^a66g0OUo4FL`qRL{lc*0f1(y0|J#($n;2AvMWBOL{iH0=R}XVEkD;<*T)d^ zj!aFv>??wfv?`pV?a{f>{$j8yHeR*47)v)Q;=BXFdO|p`3V!eC2^Fx%!MwfoaCKZQ ziEX`iu%UbP6Pcbek+^oQ>Tq)|$nTxRQrjS;8bxk30uRxlABcoLd-4jT6Zz>;{{##W zEPi~qyV7sA+Fy}i-W@x(PUbz^?3pO)RL6LW?-2m`vIUVN->#9H--0Q&oV?ttqAB+t zNQ(nyW(wd{#s2iqY2?8Z&?kPPYPGb-zpnn!&{E$w7~IMruH2bRT^vwsq(ly%GQt!& zQVbwSFy73RMd0IqVw){fv==NIWad^BBKCE4aX;+1?^w5Fr%I4B16CCc3QI*GvG`a{ z8ePSyLE=J@JeO{Lobyz|I%J%;8KM6D0_>#QyhI8A1Q}bZXr-IrbbLoX@-mCk3#P+v zxltY)QbDTEC6Np5X~y#5m+mQOh{i$5f*D?_PFz)C1}Y9LDE0)9*?cZ0_}_D&SqO@hlsP_`pzWc`Pg`wK{xYp&(Z-%_y2eu0CJwFv2t&l8bV>sCXIzC<;qC+=nk_F+A}@JoRnkc#)iQkegJ1R=F$=XsE&}bGIP?_|4(l z8gLW|0JUz10*x=DqBhu3x>Watko=i;M-Eg{YJ41==-OQwUtZ42q8rh@@9fqkt-tas zUJuuIz#tjXGQ?C#fl(?Q$^1q`hHv{+V;C511e92aR^XrIlInrx( z{dM`afKW{NeRapJ7Jf!^LWc^Akgx=^ns@~+dE2paAV7<)4|_T~{yFHDiLkM;qkMkg zDF(@_rCj$X+@&I_Hd%v5lWt^#it>xpkKH0D( z{RDy84a{NGHq*~r{fVq*G|_?$zwY$uDSuK;q#Cd0c5{ObzU?sn(%!zl=7&**3=+#? zFo-;54|3sUI4>z%j7h@Zmi+7 zbNlP-=90*C55qbriy(<~MhO6@SsAPY5jq&~yDnnw{fkg^%V$8$g4E1N*^F9jwRe+# zY)n_{Ep_8Y!*%T0lT<@Q?8px@X+>iBYxZ~4>S&iN;?9--&jiv1Ko_bmps|=QZPWsd z!SfLmhe>}e^<1V{H}Bn;`X?Dq@?ruyVhosIbe5U5sfuZ+|E>)xHoBoHs*@0XR(?jx zeb1XkbdU`VA&Rx)$t;F(4;#9Q64L+g=D{0oaGIC5p059W!*<4Vt_NNa!uWHu7a%wL zUGcL$?ZoR6I%yKWz7BmnS@1yp*^{N$N38|^rGJ7?Cm?u|klz*^W=2DbOYprrA(XNc zPG><1p(r>n(nfecT2Y5~R@njpht4+%GNc8>UShnnmk#r8sdBKMG>?O9Cv;9fw~P z#;{-6%{#t)Pj;~uurFXw)cdNe4HvUo#j$(Vd2Azx9qkq5wz)y6ZUQx)f%onX29*!u zNWtx3_N+qY&(hx|8m+QR<}j+!WL8a+AK@3UQ)!!Vn*%YVE}Ne7;CVp~m;~58KMvdH zEnk9-M7~abOgN3i)cjH}&Y$ht^1KoFEejnla*2sXneAD2?uT4>Ddd~PsJxe{e0Os2 zo^Lq=@fN~bo~n9ne@6rQUoF7xw*xLo?>w0))BfzBix^0Jqg)x8<$*K&%n9>*-lx$@ zmk`^rw>QZ+UVblTbu=QrCI+KB=n%cEO0!cm^Ae%>rm{8b4qDsDBmtH` zV3&zV0HpjY$D$;;s?{Gz(pHJkn!W`BjfDcC*vcH6u`tfq!EsV&r!ZNXHdbNP1$-sU z%RW=ShsFZk{xW~k*qWe5z!nxZKX`+-NWuO5_ZXggQl1AJi5ue-`!XMVy$=;js3#ZV z7?sSI3We5Ot`(>(UG$9Vc%!cI=1YlEf_mx%uQ(PHY6XG_o)CC8o+8K`to(#~AA>#r z1ECZUu0eWTGGBqtSzgZTcW?94z22zz#IaAedDuf242zYm=-IZ3I#2B!jZ}`d2mIx(~A zRfiAz@zB6d7mSgZ!73rMYpFS4?hhx<;~^s&Qj8FV!UB@H@c+qN#O1-~USBzZl|8%j zsMd8c2n#xd-kRg*7d5+BulzjZEzkSew>o-5iS zozt~b)MSVPdS{Y(0L4{r?phJpjwz7S{ep#_1u+({!<6XL5|4~C;IU}ElE!TEm4?=k zDZDIt?(ZNp{SXi7qY5ND7)-)`XZw0MczA>BPpZ2B<{NU2Z5h&@_qc`Nz-YvTPm@rl zP}-hTups?J&tK*xBKdRdMqaoNoyu-Jyc-NQPwz7FH#_8=5?5_;V zflVm4c1}+$8YbRay6@T0g;n6z5IgztuDvMZ0kPajv7OBiLneopqISWssYkwvJmT6Y z45#E#t+Jik*s4vrxn2aga$Ql&3^d{+qccFWhsGP>0j}L5y?rIilp4WhEsyHvS zzf!AJ)J8bT5Kqi_V>mKQl>CzHh~Z0SC2z1>C%X($bvJe*!w z2&f5!!T)GE^Ol4xV@H>~MDHN6aI`|#d9+i!AQ%fR=J>-RAcA7ys&yUb?tkuj)2=Tx32 zU2vGugDwrPV=J>th@GK1%30(}fXRbFHc5oraarJAjMw= zr7a;~8S4P8ft`d|H42uG!kEN^eJKy1b07utw=AI+$wDqUWS9tm31{6ZRt_TW2Ylc9 z6$U$TZ#q=*kr?xRcsA$(!oWn$%i5jy^%;Wx);Qk#0Y)XRlovouRRLMK5^%UHTRV0< zQa~9YY*6P>wn|wl3Z|nWjQ!y4)-}$} zZ=Jvh>?-?k4(&4T(2uM-M<20`h{(~&tC`i3l@jd5=tI+((tWuCif*@aUTlvr$Li86 zjtAD0$ddxjROsIqQmz~~9Dhzh06SQnjh#}q70{$?z~XprThemWgJ}QqH4}d_7DYD< z_fmwf)4x0A{k;QDimOm^i3X^AT`&>abZ`?Upria^-3+)@{$3}N@4dX4+kA`R@A1oYdeqU3Le5mF{!d|DbqSp=XX{FX= zILY8_jw&UcV97S}+P1fq`%T_9sC!sz9=4G4SfA>b<@0RIqVa)8Gi|e(%TQHZ3zn!< zo^ZKaTX8XF^1YjK>bw0cjRw?WdFpu&%w1pF&<3Z6v|>ipQE$L*H=xZ(Oz{fjBzf^WR>SJ+njy4=~@|7%soxMH67E9j*22xHLK0!ua?hq zS+7Y@h`+Z_#s;VZxtSeBps|FBlGC1A)d#%wOB1&&Y~SY6XB8DS<`DPVo(UO^xC^XE$@y(^;QLoIa9#|6#Xk*{5Yl zr{uO$u9n-apdkx@GRKdd0p8iVH|4Xd_U$L8lc~O*DR7J3;p)Guutg@-eZEj;MWnpI z02-;9Lt1;=15sWW?Md1~XD5bc=bIvq&~y`#0D7CFdyY=SLyM<=tX?U7qc-x5Bp2!uX9y*LzjvpCi|g^9h=?Dp=4pzsnCw(( zXmx23OIxa|l*QPCfxLQ*x45wfO}{vkghkAAx^WX8REuN<;DFM0lZNgrVGo_c2SfR1_J0@qHpOc~OEwHlhne zSTC5>20peyGdPaN!4^R%NI1w^!Z!J=+xVY#1NbU zu`z1fk#$qB1y7MG>{hUddJB1hukcgU0i6m@W{A1^CIk}tj*D@zIf2K+@4&DX^_!>( z$70lnB8^|DZ2WT#V}%oPR(p#3v5yvU4L)q*dG7Xv|4RInG{kPPuyv2ud=xuhtMc~a z>DP_RK$Wkwp)i{GoLMk7nLf?=pAa<)1)CQA)}ZCjn36_`O8bdPB5&<{X@ia&t^0jRA`+de zwCIMDxB0TP7TI`hTk^2m_Ev{v+%`wK*hdOqR8MtgJt9v9QAnRew$n$io!7X}(yv*+ zA+2^yb;b%|V7vBcI}@|~bh?IIp$Bza6#Gbl1CRKM>S;{S(8=YM>1N(t7jKYL(YQ zEdXb1T+`#Nu_KoC*c;ckE)Txu#H9%N-d^I=zxw^Bp&59zUc))Rl`uiG5WRZc>Pb4N z$D2@DG$<2>*`Dy(&n1)?k{!R zQC;D*G+7Pp_`nH-x0h*%8Uqsc)AX9ljDr4K*J4O6Jw0Dow$~{9_~DphpoxJdDVJL* z2VK7uF#6-U81?-f1Gi+PbKCLhYXH9-e{K&)f-pN(axGl#FKr}L1t>5mnyo0f?6$)G z=*@_?xX|GC8)&5ii{JhGlL?uIJQIFXHv`UShK?MXl-)It&A(t9)Xupi@>!)V^pKya zSphD;I$EE4+d-67uRar8HxtUYHZ-}6GRZ`j>@O3kR~?~2ik+D2h83Gp&}=!XEN`%n*fms}H?213F6>qG;F^QiV9b9_hx z+_D&`39o!NBM}okx80q0^YIa9%Y|1Oujwi{C&sSnW$nsO+b$u*-Fh*ep>W`GWv3g- z@ymc`R?7K5p{N>${d9d%y3t)|jAGT@j87HVu`O0^KFe;D{MrTzH!nokB3>IivLt_U z-&3l5qo=L0`6x#0gz$~0LiaeCXW{pT6KL+0lwZilvRC3;blYIBU<1q%t>HLz_7}0#t2{t8OKzO$e5YtkyoIvGENhJ~PO=#o- z{Jd!R4+@HARC@hE_0X3N9Mz0pk``M5HZ@Fkxu%Eig3Q8~rT(&yKlI6$+*b#fQhUe< zv1ib*-9pCQ`yXZa@YeY}@H z^Cb7UCO_y>AW`6q=lpYly*|xIOo2K_@9}z@68Glq4Bfb0b|%AW+y0Y}2anK*4n}l@ z9cmV4g{y2Gvt?fC=zEXWAt1!z_cAqh*(Zw-cXq%L{TnCp7r~j4A<*sEmNpuP>i#|+ z=DFwJw=Zh2J||DJr6=U{35JhV{^Bje#H&L?5*vz^W>x z?95#Aj+k-2`}B5=%#9=yY1e9&N3&${rzizDAta0vo9f8$wZBmWr4ZA{ zY0_|b!yl1SVq>ob*??y+6p+$!6g*enP&J(^z)IL?rjNjH+73y zp#trcD`?nvXPX<7aVzd#Ou1`>J(ELJtk9ma5A@sujVJ6R_E#FT%XnPZ1)^fIJN13J z2p@6;7>l^KFR4*5>RkM89tJ*s{7Cvw!sdqeecI73s8J!Dh?vXvm20;Z*X3u_>0=Mp z$(~WjXIW5+dXy4e1$}-6vA=`RY5jI{h<>rr_w{fUMTul)wcDQdvv17$u7Jk6_&U9@ z&d;ydx5V5w^6L9PcJX>gikWR05j(P=>dQwz$8{3(2sK$%j53n15=W1Dh8^3qUY|?P{-x_J%_0( z!I^FD2jg$z=tIPeyrHRs_0YCxD29;|ibfXxtDp_>#ZJAb0Y3{}srRvEQ+YxU(ja?? z7klsC!Nv5B%lKX1b>i72!hkwk#u-)&N0LxlTb(HAFcs1J^2yr|5Qd6g4r#3bRQxz! z=t0$tJnxMgI)I2Rv34E4^K?6J&(af%rw8<*5B7FOME_Rty`&_-i+4mIcFP5Bg6kI~ z&w}9#ud>FKXi9Y+#l86QCMPr~T!^3hqTk+$4o^#JXC=lDe8b8IOi(hfu9ZkrMC+wT zi4MZxbCe5e5Ag1Tf36H;i6N$q$D&_>OSm8BeCC7p(OVgksMZrTWn@3(H3c6NKmOdw zx30r+|A7@}z?rQ)>KotTwOctn7Aqm0Ej(aONzvcLMwnAZy{vz=;Ow_DPuoa3K z)l>8_Gx-yUvz5EXC#QDk1({Z zD2qFuXQN_BWk5R_RcxHZ(8NMB#R?cuOX5qQmkZ0M_vo7x<1F|j;bGFip*^>paCcM5 z#3X|t1IE;fB($Ji%1H_P^6RFZ>%hx8yNuF>zm}ar=ZD4Bm&Z$(z)zYiJ6zR{&*OI8 zD!6?wYOMDT+exG>t)hh;-g#S2-2xqY3Ml4Wg3EhrCkp6p9U$j_7{w27_yWbq;r~+} zb=}?nHBPsgVrbO%b7zarp!}+iVg5M+%By)8z4B-g^d`^SJ&kMqGxtz9greotb#||< z?Kgh-2IsGE#l>=3fRD8yUJNmPaFxCm+zl=+znHq&WiC-hn*7mWO+ITM54y;++O5#zT4g7c6nFU8h7Dw-xt;w zm0S1ZTWSX8x6h$kg{HJWB)IL3@TF;;!!$$~vx4r7z9g1#W4%Bj4Xr~J!<1AnEpq538U^dZr z2Rb8%nAbr}cp|Te7k2fb`)uG&b-Lgk;({azKwUG3+P;aH{=~UNk2N+#E6qVd$fy(} zn;RZcz{FCe3$1tbTA!%K@3M(6fF(dIu;Vy=G(*261#dh90{IJ}U6~@Glr}+sN&iRJ zp`Ke1%f7zsKQ)Sp;~@Zv!uP4^OL_pBhzJ4GH$~KQAcWO%b(7KmC;(WG9;vP@!a2c1 zSh`J#*IH8b(tdo3P+l+s``9fPbG;y&L^@}XgfJ?O*njzLwt+PK=R(b1i+*{IGzO-!`i&)%S@sV=tI=b0nAmr_Hpn;YKC}Z28TesA% z+kD< z>jXyk|5TD&so71&pNtCf{8LNTOe{re$!6T5JEty{lOO%v_^B7Qo%Pz0@Q9M&NQG$~m5m#Da^|rto5K+;4 z>}q^%K&|OwN%x_LAiFY656B4F8tLNv6`)AU&iHHz8F?1;r@Amao~=R-Wg4~E^|qQk z?k6EiNcBWre5NR#(uT_)yoVLrdX2NULgWfz8MXv8&dOj}bY?vTc$_RJKLTBVS{dRR zaW{OQttKpC$&1!XV~UNs7$&n)(dy=@N!L8zv<*)=k(H=ZjTgMT8fpIIoplwzc6`Os zoYGku0M}6XZ-jNymMxW)L5+VLro5MN2me#c$^C`k%v42{ zdQd7Mv?3K^!WIj=VsSDw$Hh0gysp9$Hk3W}zF&v6jG4mkPrc25{oe8sNi{D|&D2!acuh6cB3tA}V%BelfgcipLsWn?AL4NGp?sDHE zq|Q4tP3XDidKGS*mO=!s`Qq&_^sHRWT+XAK+lcsWj<8)6_`Ly7 z6xJrSCs2+xamz*ex9ygtUUE{5?2ExY$MP`A}Z*y|KED{nD z0Tj@TqJo}s3R>B71_RTW0crrZY>ii^fjoT^k!ONu_OSIA2175uAB*JBez z;cx(!!k@3N^{#g8(UZm^@Gig|;Loc(OD)49-jYI=Ug_%5=LYyVkBkyRjzpCksK7Fi z+ZZ*{O`Rkk)cX1kQ_*U&$~8k-kT`2zcQlh3Wji4Dgh&u-4v~&T9HNfPPfjQb`FZ$i z%8?Kifa#)nC-oG;3*gZs&#P1a2&BNVi#zs@xp;m;-R|MGX4Nm^jO64qJ&bbS=+L3U!dIC%N$r@T`VrZ%~qCT_@Vm?<1hYksc^iF?` z578_djSAu5iLisN$+-rl8H>Uv#;!>H+a?~K>dY>|BUgT6$BO}Q&2=O+_}{os`ranG zU}?d6ex_rS)peKp%DcwFoXwaY&A#}zsIz9V3P_`mca()Y9Ke#v^>sxMk6zizoHv!d+d z4h89`GTQB`*mzXV6fw#Z7Ss~vnVXqbupp1o2}%H~R)N^PAXk2D(fA^5A`-qAw?r|F zKc^U39B9RJzNs57;d}h{m`L=^B+b@N);RwW(XZ_`n#C^ehKCqr2U2LaF8CAv0@tGd zQ9=p>$$F%kzKttpKa0zPPK^f-=i`>=qzH_F17Jv&R@kxE|;&B{ftb~vNsS((5V)}3hizV#X4dNM9g|)oEL~+OfQLr_~wKf1*>GVeOOkY z`d6Ub_zGmP4`#JNM~aP=A+J$#=fhhBX3Tt`IDHog6Z-Cjz!NOH-Fa^o(U zdT^0(jXsrxa~P(#1N!;uZr4%~YfwG;lD9=AU>G$01NcT+*D1=P{lOBTsAoHCb?Jam zyT$xYy^jHHVYC?j_DgX5kGt|lk)a&pHh)cFldB!5B>F$eLIXL5PTTlULO6p9A|?YA zP^qsp`Qp!KtXS*tdC?YYlH7+Tw_2qpQf+rJ?hKo)58E-uJxl#I{vkJ^sN1RQ$HR?F zwXW+{iPIpi zInV(=ivgAHT8(O58(r%SQ@5zMCZILEot4qVR0|i~?NWVQ(iY#}z4E+Pna+L?8;A9N zz<2F65sI|!L29M*be9S0h>00z@E_Qc_d%(#GRnu`+s7={Ve+WwMRy&3_~sIPa}6+R zkz(>>I<^@y9PVN9gioWjvT=GWo0iGxaQ-e}JaVT*@Tb)JihqB3!@YRTil=i_jEASAD3b9~MPTL66JTdi74HB^7F^&9u0FIeXc7 zkplO+`cA-WlUX6}rMIey!n(X4;`*^}bu-2IuVdF3?=|Y8YV=Y|{M5E$>Cnr_5Ph_n zq)(+__HUl^2!%fF6IH(Dwp2LFeIjwlliAQpKhtv_f4NLYy<6I>YfH%orX=_}&cynH zb+20G78+AI0a^>>MUVapmk%cD4$}1W=S2?Dyj=8~=3^Td#a8g*>1zh4#C`O83uFbX z2Xltz>Avw{TsEA*Zk!ve_w|nU;Lf|0-Y=dyfx^=X+{@u+s{DTI*{5GCTV5+QUO}_J zDAvA%(KMKCBVhfeP-H4*6{p#1Ewim#gG zjD!j`o>xAazLR*JUA9)!Zl~R~joBF~>KIRu#HYNJjZol9dl34ez@E|Ix-cu zVN_Wg$*ndALbiM!R($yEEX{cw!4Q8#*~oj7o_j0t!}Qw!askTrR>r#6D@5tm2Ns^r zGnKvhfv$&ZW#~&J8+MySap)PE_wV6T6h<3KORQKP=$toSkt#BL*3e0C3qn(tNb^UB z9wX7e*yW4rXvLq5>&-0vP0f^ma7y@Oqyx04yx#^uLKVDH&ge@!IiMYhx*pRrlHYNk8@nYzv z?Ir{4kBtXVc_F#&Y%9M$$kI$=-X8U8r|q>wmdnUy=VI3h@lGR&Ik2@5brN*3^*>X z0)R%XBpmmq+V3NCG39V>+imb%m-zKi=2PDIwPM@hXDNU%uD+yvS5WKhUguB<+_crq zlqt)7oQ>kAUtdD&5O!>G-zRzJTAQf9q!SKg0TK27|rtB@l_ zoZH;$@@PZkX;JwgOa`WqN#(cZ!v3AaR>W)++ zbhhw3f{ts8pl;LK7xBv9u&rnJ;3$dzCy#oF`5i*0F&{eJJWVOuth!pakRC^m%t4%u z(J~pJQZfx%_70EGC9h*+RN6Cr8$X9Lg-$ti)tOQ*=1efD5vnW}Q0R;~9U>jbb0T5A zIq;!4)yaUSoGUX_Xzd8hzolEJ_~Vb>6q6!s$#on-wY|n>?Yl#{EDjR1}fazT;6}1>AEu5A~iXR#^1W@!5DQOkUF4t+1+F?27NS z&`r0TYr)}n|JZ`g|9bwZJ$)%q2y|O~(ipvjqHoxKkp-yDbx_rmhD=F;){VNrTnP5MkqgL(;%6Y>f&%l3_^KQmk zG@}0g?E#}dHg}j<4eJASiglDuPdh(9@3AF6zdXN-LCNJ6rF7of)~YA<`=AnD;fM0A zmO5k2j98AF(vXW2uUqFGl3cmMX4RKg*}=&*jOu}cqc3Fw{u>}e(8j^GHEZn`ZMlqL z`NsU}Q{oSK1A2#FCbbs?gLqH&NYOlqDy#=B$KKf$C~xfsl*=y16u$8@=8xkUioQjw z@6wwt!a}aYKMq90|Gyqyo9j~VAPbJ5&R$08r8(85H%V0WFXP9D*|Ap(zg7{%R@-Kd2AI{Y(?|$ZW6paJ{hlz|SJmGc_STXz) zgLHxhj|npASy$w2zU{196_664jXfhZ2bGt_g?#PKv)w;x_eh!ow5hRu_K(R9Yl5Ty zQ@dw=`XaO6taoeHBu5aI3#&dgI6!?;#_%*exyF_~yH39W;fY>X|*nOI_}T=n$m^^xKZsE;iE z3_97F5tn^_d|cAbgQ4lHt3o7=y_p87w6?*m!Szd@4yXH=9J17GTq#o%<`&8o8_jS8 zRrfG3Fcj-gF|z_X^O`LwP)RvOT<0D;-!HRICfY1gr9E zECUi{T-ZF5ABGn@1|_{08HavG;97NOc$5K~ z6YBNKF_&$OYMa;Hi*Y(l{qeJtjn9G?FhNLl!MqhTpzg%}x~Th}%<74oz1EJla`Jsp%Vt>auYq)E}-JbqjkysIf3vXpp_8z}F+(dVl!| z?J{41UPti$`a);i_c+5*m7NIXp$YnoY*G%L(fQ#DzsV~?zH3>kI%9kPn5@7{r7(Jl z|2lOs_~3;kw4s{4WK z@uda)vS`(=3@3vM`Ph<>K)z}Q>tf!eZ;@KiKIa7TPkve<*E z6pr8ZV-&a+{d+R4p!AM-`6LQ6$fk*zonx`GrGyZ4Z6pCSI>N8L2lrN$e>+pPtVl24 zKdb@^qua)^2cQUxA;04x)zFP}Kw>^SCXD4Us7Ulo`jzs{ON%p%FOfhfOfnUgB#tr=8}MBZhk-)mG7&7RJrVkQ4}<(s#7o3u}G z$(_1deD8gRh_y4tfUewgmpRgy>rG4KW^>L(|a#hmcga#i<1PRn0aD~ zABK9|avP>3D{Ow&T~J&q5aZaRu+@1Ixv^Y6jX*WL3&sbdnFTf$+P!|j{IGo`pic&~ zMj8iDOGkXJaSf0{&q`$zSGi;{?<(+iH6q6;hTsUp9(H>yxZrleL}o*N#(!6vNjWxZ zl}+0$=|&m@LFuSA+W{uD8(L&T?C2Q^B}%g!ic2GIOep@^V1<6F?+5byjGLwrzmGpE za>+dmTVgTDhZ8_b*3muYV!i0JGj#FGyX+(O!>S}cG4A`6b6G$}MEnYxo;$-`v=H@7 zs>XTo*<0H&E%Bd6W@>#zVu;EHv6}))KCQ&B(+V=C(8|)ffQJ7W9ZMxm{m(VaxW*MM zbig$WVe3hLDue35N0YHb&ZucrgM|-(?bGL@lVf#9+{!iW+WczfP_nW zH6v2$)qBV@3vj2$9%ep8FdHAvqZ4o}crAHVDqON%^7G8EynHQSi24@Nc|i=7%jTO- zE~=;)$M(nP7_<5lu(4Oopu48VnRg*g$~7*GMWj5{phyupS4m`U^8AN-DCq>jwg=Sl zK8Tl=S1$IZ8V=iyW)0hV(^N%#%iE3mj3S5geewefMZM;CD?D<=*Pqnl-rEx@;LpbR zQHveRbe_ano^d67UZVZOkxo->1p6C`Eq{LyTYBJV+DqVMt>N9C=8!T^wE(G>j^23=6_+Dx``+<^4?!`XqMorScFR6p>!t^2VqSZjE%7gaB;Y-{gy2jRV# z(jJj)-T9@_qM5I(dztrP&8jip>+$NqAL3D9jW)_;{;ihUgX^E==z$g>7)C9MACmkT za+fz(PNvgJA*YU#a4#B5qO6VCw5b6gg|nx$_8 zO;SCs5EkHa@RW9ENMX+gQ~%?Y-0o<_s(QXZ$ehUW2XE3W+BtUR1;z_R_Zj5FvB|}V ztck8UY6NxN1_ej+39vMtl5*bG>6-@~@qmQDaNvHETu*tE9hbvY9T->=gN^i_Y#NOp zmJ{as(BiK$ce0tAMt3PBNLfE;VzNmFR7sXftAvpfZW6R|GSbz&C%f;YAzeB%Fhex) zLC3K`duE#K#Bpufmz(MxPV}U?h1=l=(G$kT?hng9EnlR%NBEu;iIWAMzvp2Rkf!#@ zpXGcSxyJ_+k#ov+GN)3X10;g!a3SfaY`e;XzFze8((16lSdCkVF7^33i#7=nW|1m~ z!J!Gw85E1cNefBZk$eL+up(UMVjfigqdp;a#6eA#BTVCM$Z;k}@)>PrI_Eu~85Wnj zoRD79apW{VVR;g4^&09t1C=%tY8?2l{67mUROl06KLG;YulyCBpM(NML}+?C^oJ0^ zy>>C(I(#YHC)oN8N{>Fm-~3V0b)HTy3a8-TyC45?E9Fue_2W4yTWL)whp%1!xmDMQ zXSR2V_WM_dU5=Fcd9GGBhxn=9A`-I)A^CiCpNFC}F&kCG0pMU0GkRE$I%OPsTtjy8kRbWik^$S zJo5e?IHQbSZkrSN>CAn&sjp=s1ydAgGt977NiSu%@J`&D>2QH|mY8=gPBgah&9NC! z8Sl|j;@^qQ$e^W~3*Hh~sHYX8skP+sL;^_K`ubms4oDzGJ|_s}W2AH8GwZ8a{!x4% z2hkmHaWRn6qrlVW;-vyQHrFwdp*u_Sz)V@70+#Oo(lVaa$WzYS{5A5U(DfV9)(?O%M%5oq z9Dd8V^LSQmWPhli<&BD#wMsgV(b;q)nSjI~c~#0&sq5S77u4PpvU!#Bpl?`5g`&9EpVO+b7Dmc!M5ADzfvLi{KA*u)&x*`9>7ucpL_!6k>kYF*8UAa${v&h;f=* z7`4?ZscNLx-A%JT2p48C-TnB+lV)=$HkAC`dK2&hT-k)fShq%-;F-uo6K$rb@u6E* z5+(y&VIYT0))CHqRo?SH#_F#Kr@cs2Q2lZhVqN}yqKWO;ZthVeTw&`CaN_)U?2Rx)wnY+xypGu8rDkh!d4TQ7-NFB>{=2+LmH@XwD=I4Q#@3F95 zANpJ3nmBbYq4vKotMET)-V0J~7WgZQ(uj}J{rN-Ywh))}&D1Lq*>*gh<}N?Sl-R!x z7SLDxcpmX7+)a;lIu}b&9=Ewv4N<6W{ijgv4GPuF^@Lj8eWTcB)+BuEjg6!JvEtr8 zf$_DY|KWlsUrc{Kj+lJAF9P(=pt!00U>5M28~OXZ)`fVaSpDd0=bAgz&Z057>JnSl z5Hihh^qU7&Ws72Lx=sD`&k90o007l0s8a{?NtzSTOX>m_IOoJxucLd6;9dyVgDJXqBxkt3jH|I_O1Q3`U-N3bkHg4*|F~Z4&AkO8E!sH>rIahr$R-?= zBa&Y|pTo)fWMyB!b3-R%67mGa(hR8?sbrkLsiL0v*~F+HMyQh%g#Kv;twI+#9_kWePS8zK#LheB~Mg1 z(JE*RLyK_%)I!r2tlsm{*WH;tf8R)_npvt!87!Tw(eQHtc3Gk3aj9D9pd1t0-_tS7 z-)|rXNA>%?uZ7%sUDc|kl&W&J-AB5=m-Ko+-Te?ItDzLYcwHw z`Ro@2)Pjk!&43Q@)k7M^CLcBml@^_;Q2yIsX|_qHH#a@R0TZERaBKFTiqDiQR`Gc$ zcf2ciConoTH!m9FbX=mj_G76r+GpwIZ}svg@)A#_(TwSX#+pWhte$_wXU3XjvB00q z4H9W+!=G%q7_25cx5IcBr@7TV8-@9S==-&dq*s{pZx%k`?-m$KRq{J-Z>ah(xWt0c zg`U@bpFG9H)gV@8lPCxSQ@H4fKd%;Tnr+BNv&aT)$jDsHGbN*YVrRN7jef|7*7 zooc4}wgqD;_8m+U?lag8q3wLePZ)SLAGPQl-I(_BZpBwXMP>?geO^c52pXfrT6Wui zHtp^`mc`n$)pU~+WjZDtScokT;*$)@pAKG&!?au((2qxX1g7A4Xb#wZO@!)3*NZEr zTmaqOr%K*FUa!!NT)B*8?iY+|4&JGdTHGCa+GB^Ba=UPag)lC#bWbWuZ4oF}Dxf{{ zwfDNdQUdt*YMGeaNWUh4 z%{pT=H7XC7s%pXn6R~LJ8v)@?>66&!Fu9xh|ZRlY_O_HwVzM#8IDAsdfZ zyZPiprn~thsgs#mYWu=?_}1Nu&FcxW%}@m1Q4?NVwe5b@d|=SU!^pKBP{7wf-Q0ZJ zwDAi@wtwkIe1;5opYTdZ(Yq+@jiZ=xzZp9Sk_b~j2?+{PgyP&>vI6LE;=OnSOEWYi z674#&Jm;~Uj_9S1Zyp_C&PpVmtTAG=Z>YpE*AOgD@^<3wiRGZ2NL+5+)5ln3sRqo= zZ!Z0}1tmRCbUd!Azud4qm%Ul_%oE?Z?xB{>jU)XEbZOKEsG+^|ZJV(i#u|N_Wlf3e zei^+;p14qGTvO`}Mqq8NR3R8f6*|>9)M)V%sVo+JOXU2e@>!0pjNNLgBPCA+Q$#t0 z0yBrDRs>VF#hnTR9)sUtBMD6i1^lk8HGwp<-LH?&I2i+TrrBLalad*8hKVQ6KbEmR z@(&`> zA9SoJ>5kput##1(UF)>@)kY~!GWDjg2G(#;1WtNvBOoa)KrU$HO{Z3&;+aY1c)ein z(T>!FDLR&3`;!SNuCFfntm@@ixNe}fOD4&n$_i?jyvUmrFUvg?uPv)vZp8WBJ}tLR zo;p!TQ&;ym1KL&{o0ckUk80oc2B}bG5U4nWSQaEQ36k(z&ONGL-hMtF&JI@f940>d zc`&BsRb>wxlA*e<=^f#aRll2F^9!nBRoMwhDoy7fTZ-3Pfoe*)aUwHEKT6C$0hPs0 zJwh;5USiqx?e+^pkA00`?(_%JM^oho8?)E-j~Jgmf$-E=fmKW<#jS->C=#}VsqLim zs|sA*-+fJ(Z!9)s#q#5+NZ$lc_v9=DC_kr__|7t1IFl@<$aop6&)gb(0!B1Y*<(7} zzRjWK6_}T|va`$C+;?d2sZKw5$V`$|Sh>INnwTcEGFc#cg*51jfxBZfC>k&$f?nJY zN$f{+wC;^7?v=hD%Pk;VmC@$da6a7O9#5=;d2&zlM^~iJi3G&2Kt#uec8G;u$lf= zV`9N=(#u4v@~F)RU-ZF?-0MVLx3|&G8*>SMz7}YM6gmrJaD9wSyzUR56#C6f5U#7u zz-V^Dp4$`fA)MW5g166^H#n^VH#1I}04sKFck^PYa{2jJ?QKd}=Xv!xPU;>iT)6dQ z>iM}`9y!uEvK8YhYj^kR^O6WeHMz6yS6k+H0`v0iX6e08PcIwcX95Fx#8Vumm1K%o z$nxTnel>aarSgwjw-yOi5-E_=O6+Wyp9d|f@ah#1G*4`WFiWr*@y6&E!Zw1kP1+BBz z;VSjkTb~|~uj1Y?A8pAPud{%uUci!;lGY@L0MTPc0poMKWi|k8n|j|!_m7CZE*bfiiwaEuT^HJ@Yu z+l7KOn|jwj?c@@zOtL#$g?7H^P6xrVHVVG7aoOb_KKZ`Y@jBN`4nd`BLZS=|3>(|q z=d?r1qjTBm&aCw)Xa)RE*dS-SIpUJ>R;Xwv06Sj}n=saU>8|OgCzrLKwFJV-zt3)( zv?#M(i5?iL2vVq(rKULok}_LQb?7rxKSpaC6|mftPk!Mpfi9VCRO6KN2}QL1@GQ}& zuUgi7!TUpMX^$559>sA4(C#E({{6waWE_B_1GEw^Bk4qpg+`CRYza$rN(*|^i@W~&af$i>84>Fn;=`pWxK-r`IgN`_S=e&o9@=_%M;{^|_p+q0|WloM2!# zZe3j`gW1K$BbhjMBaCSG#}{_`{6T4-E%Koh&Z8bm(w7dQ>8*9F>`=j`X&<5W+^ zlg($1h9ZdlLUC@2KX~@yM&^&ocW$(nwn$xj|PL z99PlyQ6iOsfdrh34vybl8u!{xdVjnbc`UKh@H8Q*ZQ=X22{H)Z$w>PZ=QoH%wohq7 zD)wXboX^DT+$>39Lww1<75BGfso%NT6_uWX=6N3)m3rrS^j zeI6Q->&iY1n{VsyyO(CKqc?N4G&koM_Jb;t_2swV>LAk8@&FlV!J;GC zMnF!I$gj?>z&Ri7w@bP5yz;7*_|I)JjK$~lHJ11-V=IpDNWW>nynPOrV9`2sSn}Ru z=)(Uf*+FQdFK*_ZchjwPdC4ei26%zm4{rC7h9p@~F;fsX0BJ`86UAL^e|B?%$Xeo; z`(oe96-OOJI8>rSKAQbH@9x@H+tMIk=je-0Y*8{J-G4r!Cfqq9a6`mN7EbWHY-50zqo2SA82`pvhw--r3}?HVFP6 zzx_}d!9&=ELQ)XsIZo*Uf~A=PwMlPcH{AIk&erwRi#<(*DNfa?|jmY2EZ&xkGmp7 zh_6ZGcWB7jZzV!;sR(MB7GS&RnQ`)a%{L&{KI|z>2Z}z{;cx$_q`fygzq8j8HHmXk z+h<8D>iSPtGx!6dJ|r@+p7HV3&P4T3=@TIZ~Cf^K&F#`4SdM z12%8(`E$zfh>t0uBOB>^w9)pOzaAQh=f%MPA)|i18DBm69Ap#YHUn4 z_vp_dvmPvYR&TH+WixVVM@^1DA{|ZgeSXptlWM-F1rVmm6dP^(F-1;t+ur{uS*9&v zA}OR!h81myy|u;;bNWHtTKCT#G8k5De0C#(!&ScTgFa!C{KUD_H(w};fEV7&Pt8`f zQqrjI;eggSW7Z6HC2cy1!Pqt}OR?R2A<9GQE|1%Ih|P*{p&0+CZo!nGkZLOQB6u;< z%oAdFetL!!R!=dT=xiU*43u7ESACXzwj;p?A0!YdSwpRlljH3FB5vU z;dWJv#YpyUwA5I~Qfb7{qb_XihlhprO*?!87i%@9<15Fzcle6Cm#WGKaNr_sH9>SX zg9+AUQ|hAMZ>v>FzzTic%$i$r$GE6-DM5vTw=?p`mz+x>g`Sk|n=Qy2_aju~og%ML{jDjqwreTTKZ3=`bC{Wd40S)p zo$t`hF6{bk?s2@o;HqaE2?=EfC=6w8d`H9>d*g)eX+INy(Jy~di~_D*SOF-3EnSgC zl+Qq0$&>bQPdKP=8N@93i@C3;;qLhc)d&?#N(UQV_!N=q$L4{D>y8CY+FqDhunD?U zV)a^un%*^e^kM(-PtIPbphwLx6{9V_(=W3Y-ZIQ|?F!o^#}a1Mcs#tF=FAUX@x&dUerW8MB{*P{mBsnp%)xP<#bor}xb5+?qF9)xwS`<6 zEw6C2(w51@dn3jxv4j~#^4(S?w26!t zH`5eBib3%)q`S%(!V&a|xR3Uebn^5fw6%F4p;a;6$O+zje^19^CJ6WSt>C`wt`y!b zP_-kgqwQr!4<)A*v@SEOc9+3taJY0g>dn_c>@5H!Y_>n?&rNNaU3Yuxao!IVfMWxs zGx}xRfWcQ93p}@r-Iad%?eeMoNnTs5iq^XniASlb6RKx;go*(q0}gVf(cQXo#tzs z{=%rlQj*=9)pr@4e)1sVxCP$=h~uAcY^_MU)5wOBtZD<5VvxFLK&cTALvf4&G-Z6a z#%ga$Tp*iIU!1YPGv7uVfoGYXgUchr^DkHP}_Z=0)NV(lhTr zl5~g>MxSodCJ(!bwZFHw7(c#KLX>h*hi4ynd#)!ULFJ?TB)I%Q|D?m++?_lba^i}) z$%rl=u(dpT9bXGMzpHUs6}L>4Kdc<=<0x}p>3%TeMR2+9Z{2Yp&tK+T4wPglHT-RoJ2E!iKW=P);CS73)0Malk_(jISK&c(c z!2m#6i$^1h|>w8^CD0i_`a2s1Znv;+3{(f4dPHUtnoOZOVo@&o5=R39dSws^f z>EszX`b>5oTkmAsJ&Nng&jJ3x0q3*#@81U&&%R|f^~Fdw&P?VCs)UC3%KNYcD|x-) z)`;dG;}6Ij9E?6@Fk8RnD)bMv1g>4bC}a~nsahIlnw8~N^}l)~-u#&wve^zu-0PXY zjLVW$RChWyR2;&RjKHc7lMaxQG7VyvJuN+Svs)+DsK)rZp9pJJ+K;DYv9~PB`Fn>$ zeh7MxoGW(p3oPiNWV*no`}9mg=W|{!V|Q9rEWhPAy9*}$2w*V_+2^aEMyUj4{9o?B zHfZq@61>j&SIfutUpn_F@D4TP)CqvO&``r3qg>Pp+FV+c(k#?mA!h1pL!ePs!9D$L z&Z04B2Yaq~1bw>}v@i>MO|F=@*hHQk20qL%JLRtw@Xu*RwRA46!nWjQf_LV5QMx* z-Es1WGTU97931$Xvx_S$YUn~5^u2g*m%P6oo8(H&*F$P8d4Si@v(!x#lG+$&dfzTZ zKl~_q*j?e&%D=CTI{?LlsFzL2bqsq2M)e#V2?demW`&9VfiY3&8Hk~=HyqqE<)Ybg%JO0$?GH&~SnYVETM`_X*=y zLSsf$9ykME-}iNY2sjkRWnuf|txk!qX+w;`(i5&I>aPjTTyHRm#l>Jf-nkHK4Nc-B zaDMA*X6urCvlL%GDO#}k^;&St{V`gb6g*W96RBHlqB&1pp?&x49Ua{7L$)%I@gJt8 z;vB8C2XioQjR=Ox$4QzKGUw|`$OkQ|n@%C5qYlsSKsVDU_{{!+wkc)$ml6z$Hx%e{ zSizy8Kp;9IbFkJ2oB}IASpzZ^%n?;vL_ismtH-y#}RvCTqTvsj7e^xfdW}t0)tka)>icxXeirByZT*z-j2( z)J*WN+Lh<;nn!X<8$gN>G5BB{dj%kzN~$*CVRWO8Kr{H@+R9dHxs#TMn0ml&&$xus zF46yBq_uBNC&0q(S4ZLg%wUwB;ym*u#4CUg!Rm6!xJ|G|A8Ybie0@E?;vQ3gx)FA&>EpT*@zytb>Uun@s#} ziA87PFu8}Ag{p|XVG7!NqR%Cdylf^*UderHd=4HDPK$j^j|BcVU}xk5Xr12cJFQ=i zB_F8E+)_nE_+M2`#Dmb$4^%*MVdr9x)FBADo?K9)AS+lgxTSNiJHGX`STu*p72B^I zh~C1Dr=lCFbS;OW#?gxcqJYM^d;A_qpM|}%%7|c_%Zl}THJ`3vVf!%-L^Kx6BUoz_ zMd~xHKSwk(xHo2AHow+{i7}^^t;`d8NK#g`*i?yF_8so5rNj<9@4I|`yo=t9sbc-GWsqw_vN+zn4{zw!9C`Z@OpbE0mmPopWDqE0|!IYVy=xB(RIqy0lW zARy)Y{ba*9z>Tzd4uFFX!(Q%?NRe!i*eT*Sz8gs|bSK*J-d@t;_EYOF1H|1yLrRMj zYRG8IbQJiv$;%@4?TfEx#{vWJU(rIn<6{fYnleAJCO8EVzCWNATf&XNf8bw~I zWz578aYe1kC#i;|17LLNsA}&cKyT;1zcL`B{3_HSH-2z(l}bWi`?@!m*A7EGg^726 zqE~9k!InkmQT*28x9;p683F|8;DtSXrb#ODa^KK-X6l>$z9+xkWSXez-$(kB{U8zN z2=PCR0~ogW2W_t~`m;-r`o;Fl2bJ}v2`y_FsDFE>Q)-OJ&UPZ~I%@T*hwWEHUp~SW zmEUUo5KZ@cfY`+9$8dU*{GB?BgbR^6s&YPYWy9sq(kP`s;EL|CyY|3V8}EgG=p98A z`qFXLJ66$Z}a6Z3urr6%!JNjZiF0)l^Ql;HfC?%S!^fEIulPFKF_kv3A=YTW#E+*1P zC!iymiEAbSStn8GC6k7Fkn8PZ8e~YgpuGjEzXqdw&G@`1Pkou^3Je?@$4xj4i;GmW zEoMFlsvPS0(CFP8dE#QKxub`vZn9N8GDydc`--tQQ^l7_PIt1v_}sm`)_=$pTqZvZ zF=!1YI-T<-cd8xlm6^;o9F6H`?dm&*m zlv#^^XvmwS)gx^beJDmyY&BpN=`}S+)k)+<+rnH(qZgDL%v$$CO{+ z!#Z;&oYmvj{GRvBKr7*T(4F%Oe- z4tG+B(}jF(@vh_+X#LPmR;3_}=Z7&}Zr;uO$BorC+Ek(a{w=I8dZx8rh-!pXS4{XLQ zpu~Co6=b!!eP(Fd1}k{$Nt_xlB!5dhrp>BNo%WZZ)P)&@OX@G^$t}+_$xpp& z@<6GV)2{C@V!Z;$_-Clw$4v;cZLYBxbpdbqRZ+{Q$Yk1(e4H~V5?cy-dLHP}eA&OY zK^VsG9)G9k7RBWLk?$`u$FxOsj3a3X_}U-6kHU3?_!MTOW?(%*Xd*{aKc zC`oDk`57&Dq=NeMH1si0clF=&p6@5jTADj4_ySape}HG zxT>B9=Vzopy=c45<-(L{Ca%r(S;NjeHv#rXtn%KMi6(PBF>l8I20RAXpQ~2%Ad5 z^Qm$Chj0?Y0wH83lMGRA-_+{MKjs;HH7%dk71YOc@q2&Zc&U|NGNJ!&L`che#BSJY zYF)sz``H2BX4VpowgY87cmF<+XRmqGo8!#CS&BCCU)I^{g~!3TkmEgV!%bx7V_lrfDa zLC{o_bOT}i4U(%QN`RD&Mm(HXMypgKGJ%i&qakdA(Ea(8*kj{(i37xt`pdo&iFfpB z%-PKDqmw;cQD7mn*2e)yf{l1UBYaiLt0S1b!aa2*;A+V|-Zg&bN*^;X9X68EiTPk_FQr!3fBuP(d0G(f z6J9gtg=KF#mVBI~R_wxNLh_HkIdTI!rK8qqOUB6Lb}_!chnnMJ6upqOXLJGS+;rpN zU4l7+mU4`kK481$$%m7TjNTzY(W4l)c4aPObonpYtmA2c8&k@AVcF>%5y@7ub{tvr zuK-78au;RD^*uQjC+JCAvMabk&`T(3RUjPdBh`LaqNI6IO8PnX;){Nz$Ta9@+ zIN$X>AL&=xvanqZoBU~gDE!PB+jfrE`0T3i#Ir@s^)8I})$91^QLX=i0wWJb!Gy51 zg1}sdc?MnSZr*q6)mqw3R3=e#d=k_~)v8A(*SUFu(`Eo||GbAojtDHLbsepj+${;>JnwzOc* zCN=Z59OA_6WA$LlW`VQsJgJ>tF+LRlc_|PXO@d&y^u-rMxVaM2boV3Fb?((`c?Kto|A$p&-*i| zYr2f5KDSmh@)BLCa7-z>CV^~_Mj@=ed>rCSlaJQkr>hO>Zdwf7q!DRX9Jv2hdBB$c z&RMR!E4aCjZ7A7_nDiNqBmL8VEopHn^SiEo>^3mJq!&fA0D^%<>H7>8P0eiaCi6+v zo>}P2@vYNuHYXdzddhH!RhYalrwQ8?j+)9dTq~eFrW+V}Ou%wA1f_`P|Vl;mzu@Aw1zWy*{a#4%R}W}Dd#0(w8k9oof8?6|IJsc!eL-|gV2rJu>D^GLPFyYeS8(Mq)#Rd z0n1m5)U{qA8oKM#a(ellYWa#A-cKor+O$9p+PG))%_ZHpb2ccA5BWtFV{PWFYC<|| zQwyaFVJ}sQJ&&_?i8s9&y$v7D);YI5RN{&~{D%b?E?QM-PE6_2!#p?ASGoYhs9Ij) zO{*M`!hX287`Kq=Ym85xtNwES0W#Y^XTfCJ=Y}(b!S=czZNMo@Uih0#lBm1w)P{_Z zsHStEsI1%<;2SM@fChCL1wCs}kHRix>qi0%yfc)H4;eogd(5AM6780Rr(#BVwezze zQod)4mn;2kDM_xL6kLUc9$tETTTkofBb^w4fw$YAdtVC%=KduPxgTx;so;iAi1_8F z;Ea$(<2Q{vu|C~GE^w~*)U>Qoz!UXKVU zYgxz*@J13Y4|Y6>xwhn;`DVVe$dS$a<}@I-nBwer~Ix-kV48 ztvEW?p`n45oLzF+?!ikl!>3p`WE0TPm#&Y_@sAS7dlks7E>I(r>SKr!JV48n`PaXOe_6e)||S?oW~>Ym8CPy2^kR-Jncx^$-e7qFM4bijHh*bi2Zapw_^fqD!O}J{|domtXMg9Ag>KK z+~aMkeu6-Uxwx!~N^(BJC)O{aSDlr*Y^2EgI{R@u2sWRoSn5yx|I-%I(vp6&RMG$$ zW}=Q(d|DAXS@))uQ0J8yC1as;pWFWLhayg{*=E0P3>LMemyj`Qg6~dW996yV#*2%+ z??z-B&E;db)4#v2Bt<;0SguDeemD5H$4!;cl4=SE3SQ!&Ycf(&kV;Q%B)8vu!zVeW zaNbdmj1O^T{bj{d#cXYW^P``ILV4zpEM)^b;u?!F;9yO62v~L8~Ni@9_*WxUUwf{5(#<3hR8yu&ZadFd^#~GiN zdHKHI`JAJGZ!=bqO|Cr)Iz`9uF2_!&YrSz0BMunA{h+_{cR@|u%mSpr%mM>Po^r~D zJqgj+Z~xziVBn=T{MI9ZRl|-IS-3Oc0ZD$9g`Sic-Q5Ea5iHimBiV8|o6LXS0(czW z`&O(@+@#$RIi<$?Vru9W&Y1&zJUpSp*hg`+Drx0jWUwDpYtwkf@Ue&`r9h@&uv_JC zJzAe44PF$_@9k#Xu9sI@3!ch)#vtacXmumKaP%6h%Ew*<9JB9l=@nsFWAYXjRcgMz zqp*!HntFeJg(VDwwhCqaz9*L@7-}XgomqFZIOB)*?vzJ zf4u8C&L3#hd`+MJo&*NZWfqm3eHFY%nK4i1l zF$645_-;U%(*h8cW3XIS7-1?GKk?49)45mb?tH3bY;Zxhi(wExA&Fz95;4bIH{ zy`>9$?(3#CKC>Z_^b$Q|A!&`ZGMEQS;DutjGITjU^5*-SjtbTRb>LU^VE5u8_6{+a z*m!wDEXq$$aXO6-a8=NzWz+cn>2tZ8$yzW;Zx8!TN?x!HiU{h?;OIddZN#Ye?=Co2nb91Vv))hA% zhnOCy@ZI$37Gg2BTke$r$G{@nwx0vm+Hf#{=Juj3Q7yfn;d^`DFH|3R}@j^f?DZhE> zK0!|&9+scrcWO6zk-Z{B8pc7$v#JdxK6Uj&!==Rfe^=v2;%{}{Eyr)>fV-V&I7Fue zY3J0txQ$&P3uq@3iV%&+NdL0LCD}}WY$IgQ#G|al(a&N|d$E^{&)!;#9yOMsUd4q+ zBRS1gyFuSqj`Ls)q!2aE-HWf=xMeMVdOIvAMru=F7sm5E!nXNVADqZ(&_miKYSDvv zxQh@U=0VxJP}Ru5X827F>!Ve%(Bf7lDDzIwz_2b{7_KX2XfR-aQ?y$Rx8UE^{S=Ft znHkH>fm0(dkvP2~7O&x4w@twtTR6bD%(5F>h#@|SNij?t}pfT_~nKq=LuUMxwAqfiK#DMt$PWx7-hJAHc`=` zM|=DvJP|%ncnfdCRdskw1fssCBU4WXZRuoRAOaO zumJ7q-QNb{-XD3ZB<{9)DLXqGkxa!Y{rKbbA|#(Rg5XIZjalXuXYGi`M2)%Is~ zZgZ=2Vbt5(CUNGdEEk(EHcSX`c3b&k>APetk7ztau%MeC&@qlI$WGz$nNJ8@S zv4{V=zvI;3O#hn-od)r62w(}i0g{tUSWxuyz`*nD*4?RpS>K=C?*9Qy>XZniGM4!; z);GVF7#Uy_(_e!6*JVij>65>8+MitQ7erR~W1)wmbVM}5H$GB4Y z1M0Wq+E&tYuV#n!v0HC%Y$H@_l5#rtf9G^ECitJLmu`k#z#2)@ z>xBMCIvc{knQ41a`gij`WBAAE?C*Uv(jm7wtM%(n`d<)Lz?FXq;pyXNH6?_fcaLL( zQiGJkxV{=7^>P3xvgE3>KDAvrRZ{U2gKzZYS8ZRRC<;;W1sx(bI1R{reSP1Y=7#_3 zO;PyZI^j(6A36}==2HG*fySJO1=IfXd>h5!nLTYuEdtqgcmtsK&icl@jR@yc59jF` zJiP_UU|6mBhDy9+Z4f^45YukRc&RSm38EmIO8)OBiy`Ki6SC2p>tg`=#C}Y47=*#+ zdNU{AKKyt3oSq$nNTx&QRdSyl1K3Q-f3bZlf-Lz=e`^iobL*^dY-G3yy>sUU1LH&} zp%fJr!zeVSzWw)y-T}M0mfhg%B+~8%YHG2k2nYJt?DnT7zJJ5#6}Z)vmbmgKe$wDV zKr8N|2xpKT#yx9{|GZQ`J$R{4=9T-1>PY_kCQ|lAasT_VLnNI!xz|poOCsw0J@OAt z3)}?I(a|mbyC$VEWcyo0{M$$=uXtBqGN`-}T9bDp_4Djb8zG3^o~||cI)up53mZ$0 z+(aRS0)tw32O_VZSe+)yrym2vyh2QFyOVJWnfuY+>$6;%ifJMaJWwdRyyS+C%l~Z} zAhvOM8g^wCNyMUc>cr59+*0ci_dPx$G7Q)F?;?Ma3g0ocl*mp+&>v_iT_77Y50b^< z84=|FyE6FAzrFBw1RJa+|MwCI?{27_zRJ_Ds>o@>sS|$~mW0+k3I-}~7hkI9Vk`ak zKHaHcne*07P1KGfh7BMy^ndy7>Gjt~z%{uUIh0P=fw$K@=u@YtUj6;GNX+rq->rfS zW&hZ${(S7U;nVv}f*pXqiC`k22$=;%!hcsrV;z!A4Q}rojDt~>A*dK%03oSlKv#H5 z5o7!(x;Y@G;)FV>UXij{kS-sr0Vto5>c4l#i+th?MXEuh@)Qg~Zv#x)W}?0(l2$C< z{r{f4AC}}(xc*QRQ+r-341}Kn-h#SnJ+;#Q7$4;SDMTQ5(1gUQy&0!_56G=QKMy|w zQBNmGmvjERjiFU{R*K&HK~2RTF5{DfdthtfkGH;pNzr$Pxv|A9g zO`MuCHR?$_?VSP6^k}_>*lA})?{_U&9|7cG;m7jH@!HAOE(q(SL$$P;s)Jx?qC_V8 zrhDB%^l3yO%aMY0suixWes9KkSrz31nkhuIqKq(fWgaGX!AvJMDWL4s~~UT+Q1-%aU#+qT^)yG5@5}ByK9}l>z0-N-TA<3rag!AXAEQRFWw#F|LAah7b32OW*&{290-J{RB*NH=4Ef<7ekECQm1`>b`<@Xs?j}-%s zJQ^;mUnArtobVq~fS_e#rvCB`nK-CrZ=UUCHx)k2Z~{2`aMj(aO;H795E6V2qpD31 zgBx`t1(y@nSZi2N;n%Eta5+559vYF*`#Xlg)cC@Ej0}Z8i_=sD!}R?TtG_xepQsumg@wqz-3k&)8d2H6$L}8RAjR8-NmE`HL>LGw| zSOHHJ4+yEyRO<0Bf$R?oVgu*;LA9;PY+2lC2Go6wt}5I=-8-M-R36y>Sx)}Cs3X|y z{2)-n?e2Y1I}x6Za*xQw8-wWR+@?~4a{Xj(qhfqU=_A;^ANy6Dd=QZtWP1-8%t116 z3%~m@k7u#WK0raNFI#;lJ%9cJ$b2Lro)+LJ(S4uGjs-baVpz&xHod=?8#4!P2pYs$ z`pVi`79XESKXV^;FnoUt%&#@FC$%gQiGKuq-#d*CaVHvyZImUqQY%2Q=ne3<5RhUd zwU9C-bZCtnGJ*|NJW^t!>Paw6~UOVym zjidPE%{+pMdwA4LWIP?`Nh$Vd#A5&UqY@-VLtM_M&WTCEo4f&ger)fNSy%>_R$)6b zDFk%%XCP#8>c3qS$ibmMAI3EH0RqS9NZR9h>BDtI3Vxl> zezm`t90Wrq0J%_-kF3NBGJEcAr}l*Li$ zuW{bL8$n;paQ5u;)=3D@v`&O#oJc%z7eJRMnsT=My7-#@$9VY95&Q8sde?{;UdUBN zS>rhPFgUKUP7y%V=*e2i5(0IzSY8xHml>z0+8CorgZJiY-P+Q6)gorb6Qp4;YU^%+ z$TcnM1$H{De?W{@Y8RxplpQPGJsD}$S})W_kz5H`l+mS^U4a(aUSw3+G6al=h52oK zU{FXlGJD1!_+rRGAL|Z~XOqGG=QUpgD~>U7x)^+qQuma`?}yB0(j_!u9xh7`J-L!T zeqTcHe@%FfhnR%@fmkPtY&qNty#RQ6C9bXW*exGXMQlcygKmB;Z!wO@Rs^(M$=3t`2C52vC_^v67u*sJBvnmO;#$~FhW?rc`Q_a61-AM+HQ{7|wp`d1T z(3K@SdnN1&V>Fb{D`fqc2C>8yAQDICL-DMFThil?vL?JqP1@k8AG!AH_Xb|Bkq!)# zc}cB-u%TSidPjy-I%97rBm|9@VSm%M3~-j~U-UF3kSCUXdk2qB&V*X?www&+St6t_ zR8o2V-BZCkF&p?0$UACL{!*|3UIPUSqx7tNa^6Dcx@HY?e%q#O4y{PNF~|PjMye?d zx};$90%$^N%)gsqvy&LckG@u5ko+kXCTy3D%M9$}u%05*lKoFVD|5JW?t(LSt+Kw! zwhN)^aHN^0L*SIOFD=1YDL<6#4{LXwNPkI&xx-@p3T3EB?cMqVm0iN@uAQj@S&|=? zOwDRH(DtvDoR>m1T~y2RTh$4&mHXRc|3+F3tZ5!?@*z&eU?;5<-(rdGeeBLbf- zQy?n9-q6rcYeHPlJ6SknepW~qI9olXudDKLjL!;QRZzM=N1Uxn{H^u%#CX@~|LWDk;_hB4_eto3#1BRX;2EeG)luIEwl?80|YoNIHFGFOk} z-b*4m2hs|D&7hLsYZ0;N{{TtV@Gd^dQ8LFYw4 zemu9Z@K-32TM_7gfg;+D&0^|11!986P?qKeW)_w+S_`I=VBUR(P}d9-?^3nr6d<4( zd}4dA9DW*jaoW`5171+$UG+>6h_KsBIcL5Z7er9-Dw?(t@dJmm=rM_&1aAxrx&uro zW`C}sk^elYTWcU^bve&tD5}iM%YTtycHPiUxZbjWuV@N5w^Ycl!T_t+x!TYK_*0H=%$E!a_p2yHrZL8$`M!r9>&|5~M-tlt#KyIs_yP zq$H)gyCmfu%e~Jz-;eLQ{JFQTIp-5&+%>S0keFX`Sy18xQkhW*15SG93Sr>=_JqIV zBxbeb(L*m^2Kkr{?l@Ir6lLwc)Q4syDOQ-sV={@FC@B4Zv;cmspvFWe;AB)vrMou6 zVR}7w@@EjRI0}9jr%uj)O-mi{?c~Ws(_dJkVmhQih_4qI85`W%^zE8+NfWZ?4Uo2+ zCcXK5*2mcaPrDP8Z$9|9%=BYKR}Fm-%M!CdIi@T6bzY7b==D5aecK#*q%qQ8PzNJT=}~Tg*F#q zzMLreJUNn*8TH8Y_vZuo)_6Dx4CFIxJke1WNwa=Vh2k@2b88-j^f=%n4`5?7l%VQg z|8xgQ-d(mpV}s#Ym4KYg>HDK^iv2@h4VD!< z&+eMot`-J+X(JzN0;GU^g(2^``<};}ZjnpKVv!E!JistF>TfZOqxC{$5w!M@?6S2b9$5#7yMQfq zuM+Bi^cqX;q8_S#t!+FE8A|4{NwBT?{`dAvSDJlwb)MnVkH-1vUDcY9dvV^_#9^U2 z-P%j}r;A_l@+yL5kZw1CAQD-n1*gKq0QK-exI$o9?T3`EziXfr9U1ofdq*^?wfD&j z7_!6Y+X@hFE;2;~dO?8G%~368ndxTJ;8~gu8eWd7P^o51VSP(rPmz+6;{PACwTxO7 z__eztrg4jV-&RP_n(T+Cg&P&81gdjk)RAGGr)@Gi0^kcqlSx>c9g4Hiydhysq#GK# zM&{`S_rE|#9VrU8`Sx&eqE~|l*t0$29r%M=L6fx9`ltE+t7)MXwy&CUt!T*a(<;44 z_(KtDJVF?R$oMEd4vMXmQB}RaS>0GvyFl?M#?bZ2pGUB%r~TuFC9(u|VYN>`FwQAo=c3&ax)UID9J(3df8Wo0Or)KMLFFCI!x^{1$BOpT zI+(XMXSBUoHKGXF-^BtG;7b6nro^{H5*hmQ2cmqxC30qP+l(m9p3eOR4<3QI;3?F8 ziJjeA>llJ$z4R4k=e)lV_3{Y?R;aM_{Z3%%cl3qGMu}x({YZWw+f`uU2z1Jw!@Yn1 z23JPkV1CX|Niuph)+^ik4vObj;NT{oci9}Xj1du53~XGI&KXca(n}hX20v1;xFLrd znO531`1tRMVeg81lD0fLV05EJeQ2t7zUKJ+ygC*rJVoG3rd)1wr=q7y!=gSQu5p1y*K&pAD@gDV|SQ2ne1){+h8ia<5F>4{+h)SaJ`}HpE3nhTjbog zw;Y7Z&aY5G^@$HiBXXev+|_-_*Flb~An8%uN|BRKZTOxiKvVLC^=^{MASqu-B7}t+ zSo9{DTz_eWhLwc8Z3{VXzdevbg_bkH`}`PYc3BEJcuwNOn0&d@ZrI@VIOsMx9Te2}%cHB_fTRe13mwsG3pXM^1igY>>P$G&G+Zd3&eei@Krv z!H59)4~xt>1mVPW7aj?0S{kBKiV(@%{UQs6&e#GD5Q|R&RXt`{fHsI1X_s?=R7$;a zEKSHIW0DwoY$B|Hq~^9h%euq5=V#4#GWaNQX)zREtyxA{9-#i$o6jdR({tQJ0@@)nENN*BMUmvdhuHAAK?bo^rxafMk0cU3J^Ja=qMM!keiD5*D^Uk&i!u zqd^+o%iG(0KhAnzuVyoE@(8XyhEhE*rkPj2(>6t&xWkA*C7O}rlQ#B}#b2_05ox>l zG%0>~i&8)boPMm7MbA7Uh*#SJTyC;zl|&&Et8J&7n33ioq;nJuoQkKjXa_fDI`)x% zPapofgKlv5(8KZMaRu}3`<3{AD8qZ491R|E=l6pqZ#B;ccm<$y96jOiN|&02t}Z?v z&xY)gnp;4{SbEA^##|FG|bLp zhZIFGnZpu;N&|+7E2-rlw?Q^D9Xjaax_ij>>Lds!0h~__Da3%B zk2`LBZyX>C015vgVLRkp`mNKpu}|KO$gIaa@PR>o-p5Ae-qe2ZUOC(g%tl79dp08T z{b9V`qdR*mN`mzX&d9@Mq2s+=s|ot@k7QaHn=&wmw(8mT_X@CJ09XOd{p#|!`Ho+E z-h+dLhEuzds^|ukSK1UTf{|noFW#&sb8X}6Ry)>jjx|4mgw+Xkg4orEJ{J$x2CBoK zcBd;_^d(d7kVOPlnOq7y^gN3L(ZH{5#cIgPg;W(c>D<)r!2$lFn>VC? z@rF`hs$mXxyg^R00bV&hiFsa#Ph`N1dH>l^0q}j)I3EM?89^ZP=&#~IjvK{^S9T^G zib%GBmky|K-y`hlP=w~}pi3^9sp^dGrnA~MoND|I&eo@$`Nig|v*NE+YgXr8ObNKg zyj)2q`{>$d3zNwpLm^pln*A&tXYK>pfOOxQI%BS)YUcNuuQ@`}HxIS7BgrRf*SvpV zrMz%eSGC6|K?d?m)@4T`X)&1cxrj6Y!X8nCp|^{(ZT^pOB&S)>aU6}hBFKv+Fub46 zw)#1qAHRS%R3~x_;NE?c&*%?bHj@ls_S&>+R+Ne<3;1{*Mpl$~qZKlTUPr^)4PL~k9H$$}Cj-QC#JLZ8|0^Z&l%iZ65 z#K|HLbQFA46;`%7=sebk%L)T=_U}`O`dkcM3>9T6?TB3Fs7zf+d|;El?JVxxSEq$XHPD6 z^uE#jM2FHWB>f&`B>ol7)*@&8Sd0Ch+OTDhkmiPm%ML>@&h}{h@TRcO<&pMQb3G*E zq@MvSkpOIy73VF(6VF3Db(PyUD8&xNtdJRPH)+gnfrbST%A9Un$sFQ^*heA*bEZsj z{iXVRmoTcJfCj^EAV0&01vwb)Dk7D{jgq>;;zv@}RnLi1XKE5D8tOODmGQmofh#au zst<+~IgL>U^uA=N#m4qDn>X39`Fx5%4iTQ)bYs98OGDOov+{S-?U6W9lcKK)MRB!)|G+b_mh~#%7U(IyR%md_4xg>O@c z^v@V+qyEEJtC&!(F&!e5SI>?4Lch_XdjFWsIYgQ1>TT5h5X{NNs~Iq+4m!`4u7UnS zqeN$Kt)-LRW45!hMC%3~DvJLucR;4DN3?w@Rb1;N<|VJxBc;C(sC6u?8U}T zknS=}a+cn^Xgf1-vj3vQJQXgloPku`l&Tb#Jhxk}yf&VDHwtyxGz|_tA zl#GA*KTmK*JVHCt@b;H?^pNnkls|dxeqYq9a*bO$n#$y359BBmZv_*oS#C1yzYX3r*c#rEH$z*~(;M82*Df;b34SIBpKq9!91SEz zI$NdQ?TYEVS=~b`D}*)oVN^`zmK2TF9>T>`=w!<>$0LuKZnl_pM{EBte%}rI#+4C$kY`B*z+u$m$6v zr5%QQFj|in_&xjnPK9QqOnVw*^vVY(nMX3%?r8m2ds*V=ud%>n4GoW&k}^s7qN2zI z*1}WnTZ87{!ihzLJ&;S>`nlJ(G^N{aaKC_tUb|&hbvDL9CckQ#LA}$QKR}WxP;fKq z9U4#X?%Jn405G4}3&{^D~wAUptH9(eSNZ6RZe_aP&ae)E&U7308A z5CK=*k+mmHUe$Twy}(*(4eV_C#-cwwui9wji#u*!S0Iff7goS!;q};LRI473yY3qIEXzvAF#K5fTTB4DY}D$PikSn-mkbp z{FHnQ-nNOrraU}a8M#K6V zg9@GPeUtq=1p5R$<)4+V+GU5!VI$qHmXIfocMr}l7ZVM^sfa;Atk5zyQ%{M$^ux%*z!X|@O% z-AIMv34siF>Ao$8KNZign%U9#^52s1#UqL+BXngAAY?;>U{Z_Ch=GVBH4&qzMR8lm zJx6P+VO^8)y9?Mb_>F&;rTuKNvt!n33ixru;e}l_)b<5J$yxj2-w-Y>cM67rFzhfn zC8t#=I%Ey4V3I8TOKX49&=+9v#o27*?`lpss)4!Misrd~99wM`@m z4~xvv>AA4xa6+b2=GBJhQ9TdMLT{R9+PPQR=!Va=hoc@wj1D3zjq6OTsVyy{=^pEa zvS#@*hjNU%o*+PU>5F}Cqh=;IA1n1n-fs{PjeOlhIR{M#v^a)94f=4h6i=iIyzk{) zk=*P(RMVyCE3V}q4qK$s6gQDA9xk$)=LqnEZi3xH>VobfWEansq0o>s`wPvRMRBzc z?&Rur^Ng>!rXKhbI}xpzncWk3n)5;E1>Y(TS?wmIhu}CkIDq1S(o*X*Cx(n6o^BK!GTbZaa+TYN4)>sO1XhHCG{4d@nW?Yb95nYv{sSr+^DM^x|A z(_eg*Olrc8t7AOXF<^c3!{3Gx#S#f!lfdk#f|(-4OgE@3s|)Z@=ih6Z4Kp%~GqM_QqoRy^SWd-(1B5$)Z*~Ze+)u&_>)paZ>bocv0NH;_~@HBSPv(8-pb`Vu$x|UvrvHaU|>Kcg7|$Kg%fEe2u_Jq{7_=nj1AN!47_R0F(Pt#hjw69!1VYd~_`Da(6 zupyl7`lzrU0Cdfh@Du2s)^9neEo$6&r41U$#%y}cS6|=OcIM{#LBl~ZTgi&WpW-X@ z6-JWFUH#;hz|W%5Y+U*XnKsy3oyc}g<7NWP;`1x9aWf=0A-M$I$zk1kj+|6dyI&O(DTF;%jqT;#s5m5aH5_`&rjmcO68w&> zqaQgq{`~0@BTCfBP@B!~WsGkYKxoA4b#*!j-!eUNJUl;85Hx6#g$r@B8`R;>bFzQV zHld|=S|66p`*CG4?J#_rCj645(REvuFrRp9gzC0!`KPm@;)Hg0`PN)?y72fMv;-xC z46prA6-Kr|s#t_DjT>ET!o_6BZspU#7$tq`_p)Z+eiCp@Md~unoGlS{NWB=kqU7K6 zj?r~^IYS`^bsic{v_2OliUWQuMjU7=g)80N&lx$G*!8OVJEzH}a#S-g$?=4$pSfq5 z<@XjXOEU{q#ZJ6y9=+;ZkJllrlp1{=b%v*=4692hP0TCnU?Ea;ou6MGLBm`Ka+2aH zaeNy@H|_9-^zPT4_y7)ZnjndMr9o%gu~bE4seaX=Qgv;D!_CFXP#DWf90xl={B}e) zFP|SW(@I}G$11fhN#|WoR=gg@zJ=B^+#C%zcJ@2c2J#kUctRrITUyM%s4(f31ZY;G zSSODfdXJVr@i$jYTt&yE@#!!RhF=vbrY0d9Ci)4Go(7s`FS<{2K&<#SwT5K$i`_^F z^DMd(7k8&+&!$p`KQJh$h=@$ATx5I0c0=Cs*)Isd{0&m+==Vm0)jjyPlROeV`Ci6UScGr$laq=ImsPvmd7k5;W|gDOM6(T}h<;TR7ce;`U@tJE zXEKyQ-ImLQ?-`=mxz;hPOkqr?c>u1TLpA9`Io}V$DMGl)z-}`#5fgHgl@AvtnilDM z_U;r^ZWj^sg?Ev4Vi0mkc1am_>oIKxh`X{@MY8nBSfXh%V=5Qh9TB z9?W^Z%CB-Lk36enN63#7_^IqM??3(V6sA5ud-H_lm-xwH;dm}19bJGHWvu`?2ZM-T z)s3_hGkL;Vc$G-T?`$cwuE%9#MEPnPm#8*Q5AL6$Bm7_#e^j-GxS3iszm3sX65-1| zan9R0XHywdIJAzK2ri^a;brOr*EJLLjt1J>^lBQarfP^V@@|*hOlwtD)pxF(4w5N+ zcE?N`Dr&0p`rbL&wRO8N5nd2ij>&0p#cv(z)02-bQ#4LFyOla_i@$?9E_5bm z)JP=PFWlVSsV%y-7P}KgbGuJ3xe-YZX$^G8D2;!1U|ExePRX|#z#IADJUv;8fg2S! zoZ)?(j3d^Y$Vmx+Nz7tdkydF~wawtN4d)1*dj*N8NsO$XYs~9fcXjTrw|7fpdE}m> z!Sv$SzO;cV7ngF+GoL!+Cl&%rGV%;Qh8Y9}%O#2cX-BzwLn$x$pzE#C+(ZsujqQw| zsdRXf#mpoV)|fx+F<~ahTL^oEA3!o2Lm&2eL6oHsxVESVVPt#NVd|B+Phgs#rL%{8 zeI5E+;@ow&$y#$_$={&0$CY`DDIq5IPXj1NR-5hjx~OrDRznD+!w?hQ*$YfJ08H?U zjEt-~2CQ`A@nDkAWTa)^=bhi%ru&PkgCD8>LCCSAgryH57LMp+1lZooHKcEEAFw7&>L~gW$N;?VYzX@$L|x? z-~J(qRiaZVksqEAoO8m%6EnX3>d!%jMs(Ds9gSO10mj9se$$I#vch+*zC>R-JE^6x zGJrS{pZ6M*Yo$O}LkJ)d-3aFJ48w7X1A%96pxkO79VNP#QcI)na(!$f>f7MLMoAvZ42733$H6_!SijprC!Lo!K;-Z6CL)YcX4?UtE( zZ}qf}?hQ)MuOBPeURq?It6d=Cw&+4^?!cLo$n)OwW_vx-FnHHTLZTpFMpRJBFJg18yMtOjh z7I02<^AJe-3b(Zz(_}7G6+TmXQqs1qpc{$;qFwOKS8BP|ROExYZ%)Xs-%LNci1O!dd>${AeL-O?p^m41M_0P!jG^!@+yv{jGim6F8N!B%+wGj(A1Om|mfI{9uL+rx8@~br6Q5(N4Hf|Mv$eVBUL!Km~@}sN)xrm?UA^-xI`*jg7}K z7BFoUXKQDC+M%DI{J2VYM?gk_bBnFNt&JL41T(1oY1LKt=nyiM#~~3Q4yUD2mBg~* zg{G$pq}TF-k`ZF4L3C6c_NO=Rh=Gv=zvs;2t8%^Z0Aa>C=8?Txt^xs3iLbgq7}N{2 zzpz0koIj`-F8xJ~D^7yZ{0#0~85nzv%azpWt)6#H?uT(kx=#^BpA)y;^pAHOO+lcQ zxdDKPme@Q!-K;fw$JW#BNq3!3js$;x-=O9DA1%N|xPy?ju#tmgsFtlQ>FRQVRvgC; z<&1L=jT75F0m3Xvc>CnBPlKONoFYgJFrhZHtn4{oK8@_m3M*Lj#)?>JD})7#Gu&%^uNcSy$c<8746Cb@x0 zP#9zZlEx2tV{9sT#8pBWW@VY^M zp8DkT{sKPq@-9XtkBK0Gj}V?o$s z`a!RyavH+-WrVyj>fwPpPICJX|K7_(v&ja6;M;jh_a0nt-1Y`-C$XrH5Deda4QlfB zN@?RyM+MK4Rs?rvZc=2+Wi5tmhxM zMok-5PxoVU$CwhppWXj%c-sw9$OOR*2-@v%UIbHJQWgaeV*xPWBGRlh1PWZV)XVl4;T& zb&r-^$hxk2EFL`usNi5_^urwNX;t}3b53PhPl69KE1PW&xuP5*;=4ZPLzfId6d9h1outaWpx5sf3B{mvBA?0dFKn0dj0 z3#EMeT#6~tw_|PiZoy64PDVhafLeoJ=W)c+)YMcJ&nVk#P;?tcA`uKaMqf)(&HKYC;d_(J&Ixaad8G-dg9d zPyyrYPcU$TA{`I*7hN9d61BJI&7D-5C2?6JnruAX_g(7w5caIFIBcEC3~piZ2Z`zE z5N}VOVtb!o;bZnL>!8jz3}(Bl!_9IXL?u;bj0dv=w6wI<@s@|H1K%(6WwWzoe=37U zZ}8a-O7BBFk&{`pqo`&q2wbXepyYI7^V^zmoxQ}`dGENyvU{6&Gg>PHC@_;Cgb>Z9 zgv9IUz!p+6Pjv?;gd8+k!L{gENxr@v(r@kxQqU_V-fOd+G7E=ld9H`hF4Nh@qTs`k z6lih_1~nD4{aRaFzXV0U&Wa&1cy@#gZ&bctHC*sml0KQ~MkP&UJrRn$0ku{Jr)HP~ zo=CdsQK;S2T@gq0cihiPp6%wmQj6r*hkO26n*9b&(K_B1MI~N0iP!>M z(;D3J&14CJHOHlk$|9U%&SO18XcEUd|H-M=pfD zDC$11*Z86R9d@nBOTv{oRuVk!J0k0C&1SM26yJr(WV0v2Ii2X{y1<&D@qI^h4^j{3 z!Hv-h+ZT_5B7(VS)&|^^N5r+ZQ$J^}*77s#K?L;l(rBa{hIual&(@IsNCMduDHCw2 z=`tSb6j8|hdLu4|c=SV)CmDFEfc0UUS#tAJ=5vLIwNEa-6LeRN;f;3N`uG%VT)uNO zH)DBLE6m05Ljzu_lJn$b$uCUs=n?}Z-4l*8X`|s6X%xL_99w0$-jL)-rWf<3b8di zIXlaC%nfrgdpSaFPl1r5hvq{AbzzClm<|A%sC+8F^5- zg6qja_$9*ot>Ck5nYX0xA&kK7X!uzX2ho$U&Fd*>(Z2ow|L|k71=FLrQmFzDEhW=Q zmGa@ZqCTkguuxsKN)GREV|0|~ru}}&9RZc=y=&ZlFl0@7)JDMhjJr2oIQ->|PjQUq z)6scZ1l1k4<-6o7^ciGV=kFfKsyy{sXC}aKQT!4*rA2xA?DPNtH{9ZYh>*0`fj6?M z6izwIV&OCo_-#|Y_NmJ=68#p^*Jg~-wG`u9jm}~8=?%F4&7M5vhKk0{rg2X|5Pyug zUR={iH0&1(etdpSfW(UaQ7bc#1F`{LYFI8*s^c8RkDBqDNfmheKmk*}%{cUS_+T~z zPVM|3JiZu`DVm@|Z35YZ2ihu&-;-~060in2E*XjkIxazW0?ty+@|m#1HDK9mV4+l| zk$cAY>f=YXZebT?Uv~80p7cmd|5SHSSxJn4A2AVs)xyYggZz8h^QZ4KC)z{`X` zE>Ja^VT6#qMxTsEy0R*-X7O?!*k6W#z$aTfa=WhJ+0)5p&(Vr(OY08P$&({(P;!ox z+7jF#uNA=Ifa)6Qh44e3;h2e%vA)HaU)xJMbT`L8&S)xDbT=I=dxZtwTsGP5r&7X7 zv(g#BuQw6yO+C9lH)rB97n2~)+Gx(gtEw0l)5Yu{W+EKQ^m-kg}WlpF(ta*NQU#x{A}cF zSj8Ky0ckXoO`jU6%7asmI|44U-%Mo~sg*)S3=XPw9!in0<*fioY&Es7 z49?VRgP$#g1mwV&BLCE0ual{#LY)RJyuY%pY#_Tm!~NeKfRF=m(Cr;u#I6{sOwTkV zy;%5&Qc_M&8Z~3VaXYKwUca_lvn3R`2rAU@E`k7T?ff$DcBXPE>ak&e-CQWx78V z!#7CS1%g`M)+3J%_(Oy|IjFrK@y8sw;RRJ^Y8ie1$hgf&@Nx^Q4pi305#T|YSQc-*e6oFj;kpXj6?2}iZiI#*m=(Zk3w!1rh$9`Da_#tm_%g^ z3?|?ADaT6~{^6*63Emfv`B*_$TS&6GRo=88_6PDQhS9Jb6zPmPU`;Fw*lmwIMgLwn z)Vo3R{^-@}^D=5K@AW%E?*mk_h|<46NmX?Mk{$$b=z;m^9yh>2@ROzhggI^?CX9Oc z(qfb??qiIvAC{cnIS?P~(O>bhXszezZA{nho2zEFKKL5_00T6!ftwFM6pI#@|N5|z z(KfMexd&xeo%0Ie_N1DTU2#kCt4622?6c%cEk;6SwVV(_(ffvw{`C0ca?76k^{%em zSl>dpnUmJ*>UBTj!C)=&hSMXl;b+4=HO{ra>~_+p=5{E3J)Ad$Y8bjD$Kfw`0P!@0 za1bCZbGEi{(~h7PK(HJWI0hy*18-8JxYAHbm=ESDpZ!OF$z5*7iGNeeRR#L%YoX!s z1)Lc!y8Ez_9QH2UVLkzl5v6dEksh*Ifx6)=_Zlf&F8>zoTlcWZDTUm8J*ExEYOns;U+GTSl%sLuDB|k|WgNfTF4d>=?MB&=OaLxLEwGWs z9}=z3GCJeusH7StrbK+y~b)@uu5s2vh2~K z%9V&ehbv`U9!_!LzQAG{ltx^BKoKNlBD-SX^u14kAy4jCYGf;}G$aGk^sz%BhLKE= zg|?ew$GoxID;1xfp0?`GL@5<76eKi!A%^NW!wFOu1UB{mf4Htk^DWUv^1c3#^mA2t1-zh9mn_^_C=glp}&~J(GVko7zhGb?H=;w1Z zIITS;(%7G6Tr1a zKqTO@UgDD&|5;M7zVw%;r%{Pvs5zdZszUwP5lpu$txssqpLK&*zzZipB_3I0wC`g~ zWKV;Eo(YqtWOP5smK;Fjs{u7-Cp?oq*F&h<&hv z6N^9Icd{Lf=OeGb$WFCDI)}u7Dg7ql`-Rn>5~IfJ-3c56Sh!LbA({yQ8UIgEz{gnM zcC1u>2UHY4Kb?Ay()N{k^eaS&mhB4|Wzt~@nb`#0Mz1c9zLGo*#a6Jwj!|*|d2b%i z*FwhjZzc2luubrn=in6hBs3Q|tMp7J@i`WbkR5TRwjco^%+D+}2F^ z72a_uax1J>)N39fqS%bvsLdX0Y`!igQ0m<(h1|`RZyd}dvLHfMh;?E62WNi4Er^j-nOM`1oC zf5XSCxDS?I^-W6TzI=(Seh<|Mx}i@Aeb`w?83V0?!9;ZaJ_J+9V`^UDc%u| zu>5gXu9Y1V!s)Jwh=`1j$FgeM*6PGEa?CIM`nY@E+?XWvaA={%vhw=YSS8ww*8%qY zm+SI*{3F==b+oQyL1jiQ5dfdf=9+c_Qgr9f*~X{#Wyev!NHURt$F#3u&ZaLgfejn? z>p2j+#PBatyo{T~#L7_;`+#Bo?cLk8Vs#nwL4sPlsn>RcGGoL9Z(}$UE39wPI)50# z4tw)PN-cT5gM==59xRW~b4ndbap>&9wgTR8&FtGP6wMAs^jusv=i5K&(Id$sx|B)G z#`?1?I$OPCeUTm?{%a3FNBEn{9>TogyrZ!=(0bav?Spc>E&lCT^9K?|Y;r)GFV5gd z+gc#5xAd~<2V>|i@X8V$(eMK@n9HQFHl(xaM8QCg4G8MMg8cCLC+~B;CntM$@jJ-G zBb{as9*)9bCFW(8ghJODZ|$4+c~|hps%;Vpg(Qd2{%o*MABSu{x6UOZA_~T(_k!q} zoL8R@hc0n`GO)rUkuIW$8ie8l#?B5fZU#twg6-@0U zsd8A5f$+nBX1srs&yQjk8PtF1wV)40AUWadIbYd6>`3%0Sm1JZ~9k%Q#Ut$ zy(+6{npBX6Sq&V(6bWSP;F-855F>RjS0X6h1IEN0(RTBv%IxB|SSx66O-0ZkU0mVZ zmxA|oU4yVXl_-Ns>Z*z0f{R?MFuc*aFAwbr=w`W5A+L-z$F>jJC)N05|IIG%lM3o_ z53c8{xaLdu3X{JmyaP#Kx0$m)LeF37ABb7NjA6EgpBA-gC>eCi54~A2c4Nk4gI%*? z-;UiEESUn$dq4veqjf@*Z3NWJWZ-HXFhhn`=sh?8k%R|{y0wl=O+U0yKkIkc%=qlE zXqQ=VS(QH4ueEb-`PA%LG*&l?JG*1&Olc?w#x-)NfH(N}SP;8RsE~r${vWdwIi6U| z`|%&U8fGS`q_xwg4L!iH5G?d zWo0E;xS6MY&R>9kcHtiXJOg9=R%i1I(8|fb#%GPF>*CQCKY$t1o|_GjARzvFy>lxp zl#tAI=NsC^1E{pZB5-(|f1=u8efd8s>RGW6@^tZrFFF=XD@%>ij+dE|;vMnE_QmmB z(ijsAbP@;gS+#yjU2Ufw%oxFd*w#?UM4=WC7%!3z5rmqZkJ@gq=Lp_ZV;v zmaO-Mt347MyRjo5n?KKKzGw0=qVn~A0}2(l5c0v z)@7y7*))|tmmd1T#-czLxgkqq!6@Hv zSWr8!(!}C3zA|=16i$3<3dKg!N}509unAs$ws?h#SfJHP2gKecTKi!^Dk%e^D}N_XOx*rztbHI932xAyOFNY zRSp(s;k|xF)MZeik5qeTl~k}(2h&O5Dt5qT-Rl+H8LNRU(U+Qbg4!CWvrSIFYn~i%cI}PH?9CX?FB6tdPV)Bmu$MCZnpuR; zpyY#Qe@QAZ#^*jT;#-2p+GzC*yQ!)jIxkH&b&%XXSPHgf-E8RQHL4{tBPYuD(%xQUq}vQ zG||Xsz#Eb_{{-;Jsab~e$f5r3d5(>6m3sKTRM4fcL00LO$xa3&B>R-0zakS+{Vfb< zjMzFX{G9Z=o>9JE@S|S8-8tTg>{5Q0ZCNft(K55hdjezGi3`ymL4X+^_jBU=7CC`m ze(`nu4>lWPtr`&CF~@DyKUvSA1=T}EzADOSfsMF#2qQ-)xPu1-u3=!%dPb1#Zdh;6+>H>Z{g1JG{%fB;jF5f4 zz?z=}%Z&}Lj7VWU+c)SxWyGdmhwr-Yb<$vx++%s+f4Ay)bbBxr$BRphTN=!hE>7sby z16nV9nWmfFLqB7kJD8aAB(JFVyV z)7p0V#jT>o6|#EXF3)Fz?kentR6ri83}I}Csg5hgE{iO#95fGORCrXq-|sN$ZXz!S z=)~6~Dj?%j<%k!Cq}#9b+O1B!GA=s*APKPehC}$WvIF><2Rp)Z(-EFgAgr}on|lHt zIb$9acQO3pzC;$!1Wd|Dm1iBb+qWnmqAHW{Xz{rH)a?l*it!c3(lNvSpq*C-iAfuD zw`1bBf!UD&aSE4d2WA|n(eyg|H@&VmN<;wQmN>^Df86ATCHVHSbobUj|B%hfONnc2UYPKf7=>RuSpM0t z;B}Zfpn$snLHwuqm%clRNjzT@lpJE*ZDSl4?hsXj1$fnI6D}4Zx`gsl7Ohk@L5F#C zR5Y|oj~)*pRq3a{QYEPbp3xqARo?{K$-XxrH4t40Nw;B;(bS5emQhjNHho~(qjt5% z@t2d59adx3EUIEnFda<&|Kp_ml<9tbBS2UCa9w^*1A4eZ+o&O-nCw!Zg@>vmLF$%Y zlDZZxnVX(qT48!5UxpMZimc69?hhUJe!_sGEErILsMkLeB$|2+(O{hDdw??UjfXlk z)6H6-=kza3x*s?#o&PV*^u1+xYwCHuPQ7U|q2NB(SWn+==Vqh9+wNewc#8VXJPd|X zqb@J|Ac2fLANz!=!2||E%K9>3=vh9oqf3X;84~5eg_OiAOeP&p zz;|CnvdkM)ohL)(BDo`NyFrPH+;4b)u~pH0pwl$9 zeyPC#z$zCTsGCzh{edtyw_9mCukIIe55)|>=+6|lnr=EZn-TRosi;A)>((G{uZ=Gs zPS|cF>Q^u`+`v;z;PjiowcrhX~K?5Mpi&lWiZ+b0u%IKgkuVV$xf zrdaEf^$#vCFDai0LJaHEzI3#-1{c?2?|0_+9Mk9LT~_-|7JGX%<}4n%ZV$S^5mfWh z>=BejcQ9eT94YDh>`M1R1~MVHf1EdlN42QjyA2eY&3j`R%cqD9>+C63%=)O04cH>c z&q-W|Cc#f31Mb@0_2OZTCpQ}^eqr-s>|>&WLHlO{iM&3$byTd)JnB1oMZzr_#=B(F z=<;D3>CGPRO_z!&+S)@>R;NA+UN1hgp8l?!h!m{3BkL1Ms83QQX5orygL2DZ{m?oU zjQ=a2E(xK<`d^nKE1^D zTT{=^EC{PzA1yDpA#Bx^Zxw^e<(89<0SlHJi65x&7E;vn9b~Ym-3Lop+if1>2kSdr zg^-3ms0g9H9KCsUj;KmmXdn_-9Xav@J9`A*w3}p0PRQeg?9eRAq&KOaFMfMHXX^@hGt_BL zJ_SQR1Cf(kLHPfuis=~)&Vvq1)EHdNp(AcFO0P^GzX=Od(A=9C+Eipq#KXhmFEz~h z7G5#L>yF3ue5^vMQ63KHz?<#e-HKmoAS;ryy8Xa|2(BE5JrsM7|FD19hw@Lk9Ok7i zqu%v@r`4TsWDYONaZV(r_%?pL3HWbK2b35E9dyY9$?~^Sy`3KY&@T4Syo}-`6qK#G zR)kwbR}LvLXgMP47Yv;*H;NB`{e)IF>zeZg!*3k`?W$Oppa6S6MMplcN$=62tY`X& zT{*@(WW}%K642wWo18FMmH4aA*c(YWxA`qQ|HHbYe4k*-d8dOyYC~fXu;wmg;94oa zUGq`GACi`YN2d7T6}a|dqFVOoouP|vWFz)|n&T9pT=eV1zuPo4gPAIM58Cb7PA?t+ z&`C(ym%Q=;W7hVGzkJ$V8mnDvVUb9r>P#LVU8T^eq#a8($Y4(S!kI6@Q?PtY;w*t{7kjVUHvZK`h zyjB}jz~6|rr<;o@)m~KMLfA4D+l6G4YC%Q!Z)jCsnf_^d$e%?~)mN->1hu$${r=Lx z@2NjbamL>7{bh^Bc?Uwv>eX_;C)Ms|VC=_9^>7H9ru7n$O+2ZA zZKACvMJpNxb_YlRolIlF3sp!{qU`_%arRY0pBky$Z&#zrg`SBjMIr;&nh-mFlOG`Y z!LTdJq+R`vFrFgeLi_F-lU5VINLr&Dv>Q$RKex%Ay9F=R59Rf zZEbD(qxEY@=^O!zM!#t$M1sj#F}ts%xmLWo@`2SYZe+8@m@Qr+hA?9wBQ1Dmi+251 z>jRb)%L|K80>tkRtlDL(ZX|fdYTUKpqL1WIRyve>JdKR*GHr&!*^~Q~X$9LoVR>DT zoIZG(YH5uacVy@fj%6>_=6_aK#DAPo(rYn?qt+HAW%||;Mxb*Ztb9M^5h!jmr*?dTEzNUN7`AjLD8$~*durt;D=1{w< zPh!UJpCO%fSrn^ZB1t!PtAAvOQUYNk0wqQDYzQYR#Ig1_d%Cjw6loR*!QK@`@GZqJ zDZdLL484o52(~kFO_O2CGmpv}@&^6l^jh?W$Y8>=;wnf%o9*G78S<98Bkz@rnSspd zvx(I)WV>gHB^}v;2tAUQip7j0fvo!OuOtJs=O037PQP1_!O`CJkhLuCFVX9ZZlEF- zmJIAl@mRHGOZVu{ye0jUwX;V6U?$dVcGz8>AGOU%VpN(>s4VuRXyA1qub};#} zuh9!U`_C^OZ@O$v`nj|8ejVsRjMBcAnD?MdtH-=4?`XfjD9?Vq!~6wgw~c?G;V^~} z(N1tNJF{5Hr&BBc)DM@7e?9z@(Z}==OY;hB}ya?oya;y z)MIBw@>OQ`N=6wcB4lLM6H-=@O;%Q!nWbY#W?5OG@AcuFp655dUw?R=*Lj_DKI6VV z*L~mD`+dFNOHs?Pdx9;qn||qfzdCJHX&3J3((4joc5v?q4?5-^eDQ~WE-==M-^y!#6PNor=>5_xSd}%;3Bjo?Nz2fGHl%5(g#_Ua34RurLVu5Ohv1vyk_U)*cqoHfzy;$b&>3rSlc3N zY>)q7#ns|T5p@WA4nguHJ?iJ}+LQg1;u|6+1WGC{aY`XjkxEEy2Exri=ouAE z4@#z%}q{=IQPX04|5Gc737ie4g(XM`pc`ntdg; z;JR-RJk&!R-4;WYUYh||Y$VlcjTo30gMthLl<=Yc4?X{Qw<6Sc{)GT)@hoFnH>j#G z_m?{i%7})eG*^I~fE32IfKBWj4w?)MyN=WE6BDKwjz{+}a$>v-tITo~#>Nt~HI6;Q zPR6tIIt_lV^jfx5W7g(O8uq{-LH?M;U@wyc{hD_qFOJ(w+H7ls&r}wR@pyZsAy_q# zOoNHnWj@nZ=B+W5Dvyj0R$x6+NWLu#v|L(^HQ>f^m#G#MwmmALug-e1u620eMb)QQ z>Q;Fz+2WyPicG)B37I0;`Y`4kXfMiDr%N@ih{Posor=YDbPf4@$E3W_6n`V>fM*9B zs?WiptNy)U9DA6d`i&3Hg9!0-u(!TJ6W>zrZ2j(O99&>_Og+P8^2B-$T#Ko?sK5vQ zZGmFd$>ejs|6jHm8Ys~{g^6;Y@3suc_Zv35tCjquThGU*zxGK@txQDIK(Ti( z^(`?pb6OyFJU1>EE-U|4lUJdJU?Sg zxz!AL7BxW?rw$6KZvK8-g5T`M`ULp|#Ko6zcPaS10Vc?aIfAm|d+I9eEMO$yCU$LtN#F$SR3!a5<@a0!yWFNKpu#iaG@G6tYugD2wtj-V$^= z8O?3PNJlBba2}G0pDWJfd#P>N)b(XJgC`4x zrlg_@=%I^_GfYVZ*5=I0N4`|0b=9Sy^hC+0SP{dk@6;2#+HWkNquStd>{OZ}hzVAU zR6EnUV@FZOtS(m6#xh-tf3Q?dC;YJ7d1G!yTSn_HU`v3o9_9ll=1AKn{bNz1P%j!e z9lEC27-o$4s+E-_y;KRp2S8ffyk=%Do=eQgPq7#1a7N4F|>CHojIc~r0^Ut7%h69Q!*6P%$<2o9hkLbZf*SMbiv5_HE7S8=1Yt7 zOazktbSdXMTA_SJ9FChK4GiX?c2$c&e8y%*N|6G#_&*#g1AzN2dmk;N4#b_*LWwVw z#48jgUD{WE^#>QhRp#rfQ~+g*yHUAv$N5*a%SzJR#C z?5HpMwOb2ex|iuTs#^v5B_=(ClZ;DtZ9(hVWsL$fRs!SeLTJg>d zYG^OJpM}L@8M#%%qfq*)>MNld&qDcd6VdBw04WN1oAeoagPFLs=`Fp)R?)!wZR|)m zI%$~*5Y|AY2T8pAlQ~)Q#>DTH+G!f}-mweoPnu@#$!K|~>3kT_%Px|&e!oqsJG%NM zG+!-?XiOFv1#W6yWoSK77&2~OZ(7}tb zq^mr3wr?csjf)whD%dNe_H>RF5pJ$L>A=KuwNp{jGscFTx>5xXJ5dkKS=6o9)UC@eygR&wj4= zMp!GW{M4t{RuZQu98$=&!2&HtoZoCu0T;3?eWbjuE^}YD`7+=t(P1=H$p*N6Dk0(Z zhgiPXA$s0tAtMj*{=TRedw96Nn&&OtrdpXp`YSKu%N$&2q|VE zvTM5&m~?_Xnq{T>gt*MR3xMewmL88zqPSs)EmMU<^Krk#t9oMWgdjR&#NeZ<_ua6 z45vn1-YX|^cMY0`mM~0;Pit3 z7)JPtsyqV-Nb~M?w5nUQ{nw6G;_i>-ADjh~B66KJpY6?y*FRKpfO0X83tf<8^Bpfj zl^z6KG^45fU8Q&!r-bAh$i<_7vk_vtZ*Hwxw^Je}9%47f$eS)U0t*0P410E3I3FiQ zDm5u=2$aiLI67bck~g^En22`7ud`HXa$3x;9zLpH77Ze=*nCo}ehxK-~2V0C#h>Sa5gcd>hk}lSmXmnuB1cD(dKsrjO z8aO}VI9yKgAA2gnjST9|P%cs#0ZQ7!j~~jdlex`tDI}|_`{mZUBb}BT4_-)-VVUmw z_A{=b1xuZ+mT@j$&&?yI zTUBS#oWxxo7@@h%idnaFiI|nw^>EDM#K=qHSFve`-K79T|6?RZJde> z*qLjFY zgqY$+Ug)*ZDDFSN=exP$&K{)*(QgRhxnM>NPR5(kh!DclT*h-T3Yj$(4w#S*>q08n zTLmL@Q$iP7;e-nmv{xbB;deqy zCwc5PPhWd7qQ?KHyHG$qutKRTt2QeY+8OdN__$F zE&B6sgLy4gj6Cs+$)$oFNIxFO*Jjhb?EJvrf)ao@Q<}$YS40AzFr?AGcJMi|(mbk2 zA78vfw*M)XPVSmHZ6s#VS%lFu5E)tO-y<7O|BrU6=4i=mjlPk4YElhKmOvT5Ku6PL z>{x6bcgBE=^y_JaHPL+-Eww932eI`{(Htz4K$TNsi|oK#Y?+srbA`v+iMs#Z1hse4 z36V9c^Rf#&ch|sXmSz0_?W$^a2e7Bb6sfow+7Z$icXHU;gH;GB>D?|DV>Q@q8dUOC!!TF##?z#7hlGr~04J%-gYnSGPr3Taz?q zBP=dHpjq295=z8_3e4`b=edt0f3r1N62Vu9Z9SlkIv^%%yxbrxa;2O(h?-4d&EfX- zkDVd!sA*liO`c~$C@=QJOjHpbu$mF_+rPFwT2rLxKyy&x$Bg7cM8VcW-;CtX-)z96 z)o88~s4!ELUqi}=ULG?jUU8@}I}uLa`WsQ&J(CCiBvklnzbm-M8|!u-6dvlb9(la~ zU}1}4U(P3!sw9cbixy3*^B)VmnBE&4jr=yaJ))N_*bvcjF_?xYpa}`Kh~L2`MjKEx z+s7*?vmX$P-a0G|&*R|cgkv$?t2ak)<*>>`N6n88(|u4C5JJ-DggVP~<7A=Eh!X07 z3}lWM;|HCo96?{XD~eMbxhf7`<0x zI~nqIUR^@$&-Me1tqgqI(QPC9@|Wm|YiKH}kC8|X)zBG53=$G4USxfA%Vp+t`%zxk z?M=6O=)BhoOO(dn`-#OP){&9*4_KAUoL^l05A7s^e~gR6;M+kBz>?{VJ8=>t96^j4 zt}`u}xqq+Mg1ApcnKQxrNw4yWOD^K0{U@X-_KEaTt>0(3_aX_IS?}IYA%xlPqzA9V z5dqwzLJe+v>}|rYfO`}YPl9%HN`yIqaF@-QVMtZb$MRx`E04V&su6_u&sbOr{jZ~@ nAyeObHK&x{qqO(p48!^_bTl5rWf{A$5B}7YwUqJ{%me=ocof3@ diff --git a/Decision Analysis/ImagesForSolutions/DecisionTree_Winery_Sol1.png b/Decision Analysis/ImagesForSolutions/DecisionTree_Winery_Sol1.png deleted file mode 100644 index 755cc296a7b74d6685d52e26b2bd65c95877562b..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 50130 zcmc$`Wn5HI*ESC00E2=ubTbUyh|BQ2x^LV;tjF+z0JzB}K#w?r2o|yDDUBM}l9g@iWB0f7Q9Icv4o06@d z!2Ci_k5pCwsmZcNn`V3|Rq1|dHZhwq*?P};cd+!&HeRi7OS$I!k2SZ4t`8?}u*fk& zP-qxYK)eDX8bwrVGaNyJjg*1jhcH9hVE;ZLQbMDMe)3@zYeK`Z;0X909pd_uU=av& zAdx?|h%fkhI93FD7kmgoA-cdNu*TZGPnPiZ#eG2p#8$@5p^l)`(w8{C!ldnkV`DfN$a%XG2R9E2Dj7aO3;_fqxe*ZUrVwm#nRF*nXiR1 zL&U4;UD+T{kzcD#q%(x=UoQ`4=th$BaJFCk&Y~4}Q>PYw#T|rq$8CE0jeJ;vcD|z1 zVh4`rPSYB*`_7ElVOP<`xUS~shIzkD#0}e-bqYIr@2z)AXY~B0Xi`o+_NlvU4>Ajc z*GM^Z`oQ8?%sPU-l5i7NhI6H-);^BFb9@emghvb2C{)sTb3UFQ3^@J$Z8zEIm|vip zqN-o{gaxeHF)C`7CLXrc7C4>@^9aWT+`uc)DO5e%^j#gyNJPj&n*6WY?%Pf2)!WbW z+We^c#ul8uT-h);N^@15>&N-9T>skx?NQ5WjlokIU1wx+c7=qW5U6o8;UjLns;{+pq1^A`W?juO$t0#rEpxXsGTzkLEUR z)^qSe=bD}#taxRwcNx-!5l|t=iZy=}31r6;U^n^xo_vug;%II)QDbJS*YNEgGsKXG zB83I=P6>;KPN<&2|9n3|W3M}QXgAHoFTxEg-6&Jop4WBrd&-|V?_D_31KfZ`C6PH+ z%2e*`;?Mjuumfiw0v??GD$f1BnifrU&+9&%$e>6)%YLrvb-oR-qY?tvNvsc`W|`6#M@bTwCreMQLI}y(f@^B{PY(w8 z>T#@I4(5hK9YDX6B^R%$2Itqz)&5n0=~vSfC6S zb>GRhovwdC(virbcGT|4$qdm|dboCMmFIJMFvYsVi3{JFX&SS5PuRDz z6es=N4=>%GRXshgy^8VA&g|G~Dgl+idiARpr;A|>1y5VObjtKNwzYm2b`>n`FZHf~ zgz%%2CiZ1K)pE;j+gKa+dTbw~W(aD5L&sJL8jhZahet;z8#Osu31AGW$`_*OexK(n z#i@Su*f$^NLn7tGb>I(fu-)B3AkK*wQ(xaaCxhWBoVW3Hkd>Z>v9{E#sy3K@Xa9d{cIttS;R-qW&VKw)rU z7)F8@ymAW0IM12lan$AS;+Oi`fppe_qPE1PUdwX@0+LFavcX7qK#P57Q-Uh#Df-bnR+v+zVCa z@Hy^eTi~8pa5Vq)Ow`Eo5cQJ!0LoGiY6!vR zbhUlKhrQ(^I8FS=Z*U9Bbc{MweE}7EO5ptXop}g|f=P>q%20aw?od#mpf|Czu^jH+ zO8XdH;7rD)pA0gpWPy$z3Tv%KdTzbc2Mz_zzgiiNen^z}eu9%rR`OrT#Fhhv7qKA9 zeO*^EoUnLUMJ@4o&~^PJLV&V~4SC&3d|fUp0M1L4-ER90) z-~C*umgWKx(fiY%#1^Nq@AG@>ab>TrrsN8_T6Bbjs`u}$k%*sK4A?lk`P9Nyhc4yO zG1T!e+YgWQQeY?4*rblaI$VfPGoO>#T>TKquZ%u=ywk9tOG3n;-aj9@kH7pS$B?2$ z2`RF?BkQKgoafA=w=~0`V~CifS>E_o9{2dxceFn8Q$@p$xXu!;s&G(83IQBR`1|M3;y{{0b_YI$zIeecgp3s^(pZ9R4$(iL@e{%D61#{uF zT^5p~M}|`!epn~&dBQ_1Tk&Qo2!&`Q!h}YVj#Sm*#*0xu7Ttdq^I_=jLw+vf<`0Pd zsh!yt!8ammLAZo2_WqR(|kxv9YeExP>}$Z#Blk5J}Vp!}P?K(D@{^+#I~m z-hbO4`{t}S6FVxXHr4;)IBl+Af5o;aTgvx|c$j0PtgP3#mLkWX^V*kRV}vklvXMP| zqW5bmNPcI*NeU1c*a}#yX@_gWn@E8Xc!2N2;#)H_v$OWaByhd)W;sb2CK1fj9 zMoqr6i|uOE+fKfv8xCKU%}|X;S8uI};2_k=-W0W8o^3KU=d<3`zzt0jt2%@}{^=LQ zXi#M|Qe3z?l(kvHF27)^1goSAE@Bj~Aa-Sj_{rp1^u~(WlHN90OZO(21)$a!59=9w z&i1x;X^56?db|T8!HC3bA|<1uFbCZksUFto7HHMzf54>A-|YsS5-rAvO$lv363d?& z68H_SKf>DmG?9B0qqJeLN3_^X6~wWNUdJ1vAG#F{D<0jYYYn<(QdNwzX2oMzuWq7T zu3wqi<{i&(Cf7bly;#(E5?bwd0?o$B65?(A^e14t=lS4RlYeIDd2JVMFvvCj2=sau z#ZwPiffrvYG;uj}3chy!3?x?<2X%uYIDtCQu&dDm?KZKuh=-AcoZu3$RZ1WAP*UDu zMHpHBT?o2E>rSU%WmIa<*(vcX_=A_Yrn@r&-Y6g5&IYoYJ`970c2Ju*97y3}bLgsi z+WO=lh~p~NEp{8kYj6eeUCQT_!e{bSBU^+K!1PRs-xC&Rq4q8U&j%@Ua64?VwRr%t z%Zf0~4ck$+3!oWoyn!8fuPe*5c`OOFaGUY+HF%0?#+p~NVj0r@ZA`yt z$Nwd76$(xB=?iP&I_vGQBLF3KNQ`7u8-qhF-S?b7o^6!J&Ztz~@DkH>k4%KkFm}!V zCsVJ$L8d-XL*YbRlbioZpVyiC0AyZPGl(rn6+8?wvJXlB$Ms2MuI45L(!kD$^2YT z096ZL%{HI)){(y#w%fiW{x47Hf(OWl-B!6cJI47u5zhq+4CGa2Z2)*E&S@k6r9^Ek zk^&ytg?9yz?ThsFjMX~^&lATb!MNWM=mo-{w*yjn z3^(MslsUtiJBSLh6j_IFl5wsF-oN{~)%(wp^Mq+a9jVG3qC^F)H(up=DvPCT9_I4( z9T{_sJWK6;tI_otIe;S~-*Ls`Xb>pNZ>zs*u%Ax_dmG`H`N^l%ipKDw@;7Y+#+pmc zHyq6Xmyt9ph*kWpmF}92L)IWeR3a4Wg&B!Rn7_u<%|h=Om9=BI^GbCJN3GtPc{TZ* z)=IIUEoF$_!S!I}dZmfHY7qxX%BI4Ar%|@ZeagH|C-(9{=85%-PoGz|8|K~Cmmf?| ztlM|LP=@Lok!_%$=fRk4QD;jG8e72UWKXH=)u+_C2743Z(08&yxFgo%^>&7>j27?R zSqR4Y&>7DFGZw2m27IV!`;7le;&@#5;O}nxX0=N;k!jUF%5?hb{BXFAV*{|=?`(kp zu83}sDt+ti2)QNr*z|Si>A*`oe{6O6P|v=s`YMb65RZ}v58F70e&H+5)dRE@MLA6p zfRMwY5x7}zIwpJ*Lo?Q?f|b&4Dkf)^xn5x29qF{UAZxrSA{z+3BN#O6cd-0fzEzY%QWk?)gk{TNXq7o!~ z{)>hCXiiIBVD|Nd4`gD&;NBms~ykievL)DuVDR~7Qg zR72LzEIsjUB)fp~97zA=tZzXYR2zA#fD=rX(>a+{&kVU|5aA2p=>i3`Czh_fJ(7aw z$#OWQ0Pb9~Yq?teK$TV_V-86L$OObjcX{#b!eqiI;nIj3Go!BL!H<#sxLKlu@+0^{y1_9!6YrK1ZoTYTxf|b~q$x$k1QWr> zG;LA8vL<(GoJJpHu6@Z#BIkMXlGs5qh0?-viahO$Oz=*ZfwPlvRdGAp{{`Ox2o%<0 zKL0kx_Qqk%d&&_R#V$>kG2yKxO0i7(gLp##?ZdDt9IAgFkzX zrJ{(Y$rhde$z@1W4(K{}{kW4B6`%p(=qsSToiI4ZDql-$HKahpQ{%x)`KR!mFkll0 zT-{v@|97Dps3JB0ua`B-VwG}h_0fOp-FsmRE#-4)p(6Vne;G(Dc`X*wfg4K%qqX~H z8yTa=Z?T&Ooy)z3y&}zDmC*~#mT#1$&B?Esb1Ig0`J)aOK$GH3evi5&ufpo}oMSk53hA zzWFpXQkfxu&m%c2+ImURyh+S;10~L6$srgyU;?VkXwif6q!~i$`|LeyM&hU{W=p{F z6`+ne#SCd(eDVpfbI3hBM#y)ig}GMmW)Z?sMW!3Y+TxU=;fite+uAwk>xu{DKl*-= zjqSmNHfpwbzP1y&;wZ)6y7sjR$ai!uuse5tWM~^lV4^*}#M#Ol*x-+RLrNIndn6D= zV{9K^VY{jEyPOAyG>^p_?52y}Co8hmd~UEBQ>3Wy2TGkqp{TkLJ2LJdLD>gS=jBAr z8ztX2_57+f$iE!c4C?9pi*O{r#cO&Fi+n|92n`SULl#II3Io9MkQC4y?-1flOL2xb zap?rrCbRPg)nEOczdE`@Ti3_CVO835@%PUrLD9tdB6klyPPel}g4I~jud{yTD8eN2 z$d$&|u)*|Vw&saa!U&8;xq@*7`VPG0(Yv=*BiQRkv$9z&rgJbTBn z4=9h(d`~~FzYNobZZO=TiP4_BV-gOu;t z%dvz>NSIR!=R;;tI?wJ0O6M~{?yXwYUk2>Np@`PW7EVwYBn)%zbb0P+TqFR3NtSA2 zE!qexVbXfF#_vnb$zHQ-g5?E^D+##f`I>`!&vM@#XfR&@QAJMZgzqkB+5dS1c-2Hp^ zcEhV#PEDy(%L=`n>4s|FXH90ExN&s7uL7Wmp=TK5CZesv#U+OJ@PM43Y99`>Ro$=s?DF24gL?ovi(AXy0162LIvN;S)+TyaQ!yc&(_~v^nqtnY6-}Y?>->!j<)+>De*=axBD4SpO4)B@|Xzs;0(inMKXGC zSYjz%^pXayz`uz2IL1JnW7Rk9*}S335Fo7|X8{T=5NT@6{%m|xb6Oqb0L6HW;{9Ho zagC|$wKlFHX%-G=gpR2LMfOlOg5OW~%^{zK~( zpl5;E;6h#elVhY5fktA1o|FWDABEYtmSg^ZxGWe8(zhRXhJ7OHc~Ec-p|5~U*}d<6 zE?k>SEp0Vg;CL4rj? z07#;=KlbNT$*cnP3{{;nmv5!xxg0u$dV+U!Hrh>E+#XaJx3dcC@dR&f?3P5JucRE$ z8AM(7;#EC;WfEB*Y#?xmZj4%mg@ia7o6De4m><{rR67DqoKj+k&ILNyQvlGpJr7rs zW;_p6i`3)P3XrgS%j2al+XsaMi`Jnn0j~H`(e`n}7XO}(IFLQbPIj=0`)M_`5yaK45ef2z9&z5=! zAr{&IOc#PA_8am852P+1EY22Y$eT#a!OFn1>&^)GV*$__NFe3Y*4a@)JtDqM)X{-+ zxbh`uI+Muydxe#XVMtPOG!1K%c+;+y)w7j1F59cTe{^?|d^jHny6o$dEAD!ik7J zirb#IE%Be(4;suBH_UyGOF)SbbzZ&i4IB8agsj;b)w+u`wSxjCQ>c>XoK`iel>_P6 zH5`L3^F$(o@Rxe61YV97L^Q-r*8+JbbwIH&LS})8UjrNPpM)JruYM9uDKe2~KKBn2 zn8KdTOpGL|&#F+0IGBFTy$wRbD`A2M4pW4Z^BS>(vT~<(SBpRbo%TM zkzNq&5fyeeWJ&ipR-m4IVWSNF4Kot81@Spnka7 zop9_Hgu})-ht+&rD=Dwhqh^=Q(zk(fY0&H+wu2>br#+0H0&WtsS}M2O<1duQ%y4M8 zfD`fc!#EIQy34K`Zt0FBw%)=RBfZP^hFH3(Uo@Z9z9}@DicrPFe2$B1OpvA)&?gPA zDg^?cCu$gbm(X;4a+Jnwtx#5K;8G0dCjA;K&YG>8|H}kFp>qPeS`mXq+X?z1iDnF3 zxmZK8cX{>OrCOQg&yECa(_88Km?1V-{)tm?>~Vyc>b{O)=U&JHv)} zVLjE&FFE4gXXz_bU^g3>^}=CLTx=uqEWnWl&wbpKL&JN>U4v8WttRC_Q-TLnsyI7g zY~NTEk=BW*2)qUtqD&Kz7#l^-M_4*w{`^gx+KUI&g5xYA+vydtDAVs*7{73I4E*KP zhf;|@K6gEfpWdJuM%I)KXIwOG&AwN9KKz>Ok%IYMu?Pft-aZ^jqz*$wt!E0_JUbY- zl1-AmueCYWX2(_f=*?SBmoaWF&Ms>sppBX?$)gY=MEvS z|G;a_nrDf?_^3}Z!E10JWSn|hqQT7^Z2M95Uw>$*?wl-oXYjwO5Q0z2Dns2Kv1}+q z)fKT^aZ-7WIZ0SG>mDR{CNb`Lx{Hu~%s&wPR`zgU&7#{C3or)w@*xTn3e&4HdOTIX zi{NWJiX^OS2je;0eO}@tmryoJ-u(x5-|oEXXluk+HJN?!?Y8LAy7o5BV;urIGgSvsXpyG-Q0ByUGxZ2C?BQQ(6p zM3JX>-Xd2Cjn3E-$Ir3?93DR>{?+i#Z0fgcl<8#Qn}1;~WIKTX;!;wCZqcoSb=~tY zna$Lp!b(+L<2E19E5eO#Wo8H;##|R^`U2WqI$#0Pej2r4CBu(bFS7GTefQtu9IP?; z_f5RB;1(4m4q!`uKCwTwqD71>wUv>XNFDYl*53&QZ3X)89sx$xhr7a4%$2LV91%tu@0QK$5dRW%K z*Z=%?^cJvqVN`zD#Brz>>L)<%)~Gq~Faq z7(Q*j8-e)&d+(1VGKF4C&AWG^>7+R@nGPqv?F`kjzE^_UERYHbLYbDX{oUqehp{NUFN;;NRjfwJVwg2w&x|OkqloC~d1uAklj+3$;`{sGTwdZaoCQPk2wY~{cipMV z-!@h-Gefv4aa|c9QZji!hta9kqvFsm`*6qW>WVjx;Yx{myfVK-Z?}~2!qXF}bX(MC zJ$`Gt!N5uC;=^E0yB0BvY6SxpeqP`YK5=)|of*#ptwp4hoMgN6+Hhh!APLfriJ<7R zD*8IAyxLmVj#OXWxV!}*ia&?IiSO_$j)TGX0uR3#D#s%Nc9_JF;o;%&bCN9ssY6)> za^0!|9)0`~6nw9T9pvx_6mG2!042>wNYPdd@CaN%DS4=EuuNwt;mT~!gMyN?so#Z1 z8zT?m{r$(&H49H@t{95Mo{uZHKK`@*&2ZzRu4XyE{SNJ^%OLy3{H)iJi*4KH_o@U? zC{>b*h6*mcbIkSJW6I72^Gp~@AGX9EZO#7JCzH5pe^^jX>kHUaLPzp~tJb-(OLl9_5PP_VH`4STv`nw`t=(MH!SZqG zDp`L@s(SzZdrH2i;sYc3{>rUlbp_US)B+A)@y-lDDTvSK{PU%#a+S*i9b$ffaforoh#}Q+;9J(|e3Uk3of&t5f|M zyQA6}JC$M_v*~^CM?aIW709;;9RP>KsS{=OUskvWAr%7x@>?#?WB;ds)yDnL$sF&8 zNqc`BQw*dkuMR#QFRT-$r(SzOCLA}^YW(+4fz=`TnLEoe|N1wMBkZ87E1{(xxUb zNhM?n+xJIjyl4JPqPcEnQx3IVOTOnhmbx96ZsFy!`PS}t%?|^w_fE;yeht1^F29am ze|R~mdWz@txwcR(S^8(58+m&H?{J;fwA7Oq`zr%!EAKPLT-#^8f2X={T-sC}gw3@1 zs`aPvasZmY-|IjhCyU&p

6t{6-p&V7ks)3IEJ`Z)8;yZ z((+00?ldS-AliwrH;V=Z;BbLmN7~2qu#qcRuMVG}nl^c76frHojTSe6a!SduA6GZ7z ztmWc((ibQBLL@8NW(B+B<<+~S>bYVHQdD&8bAaw&Wk|%(wFu zs(s{*d+~)^E%jnEh+hL*&Bd)4dpT|v>s9SbbL!Z8`vE25w#h*Im!IGJAD_2YhaHsp z69*VLyt@mpVSt2FZ_HM=pKW|uySJj5EmGCKnybD4S97iZxK9Kiysz%KLY%oWAY#qO zmxBJ_t(W9>tEFxJ#n#5(xq07y>Jhb&HFu7fyKh0nV$ekMMOauk=J@$O@X0ObJQ2iM zzUx0i{5fGsCD$xC_D)$6*5LE7MNFm7A6A zpzAjZ-v;_tdaB}AISngErMk7A(|@L*LDhThm+tDEdS1GtMHg3*R*lj6r9M=j^Ac-$ zo*XEAIP0Lgc;4-#lP81idTQG*zrEKo$`WbgJhtY%+N}&dVR`lUHkE|(&2lxnds4aE zx+HK7>BH48iQQ4;r?x!iV|ODELM8iDNK+=L!+XkxNXM25gFwEGert;!MJfA5^Us-r zSr#QFgCaevn?4O#ccSS<<;Z!{i^nANN}mjk^nNQhIGWcjRNZbA5pwJh$vB==-}YuV zXbZfQ%x-52^MCt5HmBJ|7dp|$1JA=gAo%1t^TvYBYNjBg+BA`H^T%g$*I%yy%$1^H z5~53jnFmqlGD3vpu$n?&>!+2M>H7~9Ke0#(nx#)`aY*2@Yj!y+XJCEf5+})exXL#Q z#OLKdR^L9BYDn)dCux4ZH!Q`4_l>2NiE{%_IK=yCW9dYoclA=|o&PS$0?G_EZPeoR za9&fSphMBbW1r=7l@rPoy1v2vGX!5UEsTmd^82zsJsM}J+THB;Lysoa}h(i?X zj1rBZy(>{=oN*=*fzcD0q=MJbL;9q=7Jn+F3=aLF;(Pb&8k=i~x&PUrbG1i=eFP@4 zQT3EQmt#VN6HH^V(om=z>bmxDdJ9{1<%G#Z$HKm@f3M6Eu$tnuYNP;FBd4%o^Ea&1bLv6$h80wes9wP*&<0D#6U7wp<5C=q<)^Z_D6`;{KpKS`gdiU0g zu~7H%!#B3unSz{TVY{QgUAS7rvbI`4lEXZQ(Qfh&7N?(V&=dJWbYclVni=T-iGMud3w*W@9z#hjl6eFnr z^8W&adI}ZO?mHX(#>p52|Fcn4%F6vWM?2r{@!#y?=ZwHOsmX4>kLugttJL8Si9j{_Ks_D;J0S`Heb&!oobL=Pr|$Ir`s<+VcEJFN zqTq>_9)H&4xFl7_%nI~--dib1$SM=?i{XOCWm%d2Z+mU>$Sb0km2X3ye0a%`GGDRY zF55~Ofm*It1!xgzRg%MnzD3^NB2BP zW~`@7=Sdo`PQAL-6#-?Gwlee`R!kfbwm6ektCy=)-UdmsUTG|kBwMFOhyvS=kRuo0n*e8n#yOw8%4pF zu%ATFd-&3-(5}d+MX0i1b=qF-qWOD!15kt}2NYZ*(2rrsz)mo?Ij->3>y+$$v!(PE zBf2(iNt%w!Mz7zhJTzL2k30fh%?pQVLsPjQBL{%!&#GRle=%eFDAvvHiK^gAvVDQm zt^Z+@KEX1;Euz=D@K!7`-265qoOtSDnm6P4l-n>Hm*0jsK-6aVX*ik(F5^wUdYA7#|k@~x!f~*-eL|yxDh|&vh7FIlI&16NA)P$*& zfRG$5a#bVoIy9kRhFqBqC4{4&!Sf>6choGDlH%{$5X;W|$dv?s2PV_>@aIDrY=D9_ zT=<+z26TqqR!veQw0l8}grEFChba!))h{}TRaaM!#xClk;JjUQMsD?@*K zx0l?7!`LCfpOSb)C7_)4N)l2QmV(D1Xx^AD?yg_-Acqs5=TX=M&6Wpp50|H&1;Q98 zOtmIo1YiUJW8-zJU_5+Ppt6_#mKt%e^Z=Rpwu|Mji}INSqs7Cf zifQ#5HyGdgdjHX}5;^Gm$|!HUOX7f&3w%jG68eb)FpT_eTaO+CEraT8q?gh47eQLL z45W{Bs!;8Pp%R|LpWpE?$e$~&Saqmv7*=*Z5Z%)1x5bt7dmh*ow>R8mvg=xoASp1p z!XEvgvXmznlK}hZdvD_PwJ%>;Y5x;m(8~91!_iW;hP=Tik=$=Bl;V<^RT7ow{VwcM zRPGB^v;C*w%0Mkw2ZxUo%1p)SD2vhblHO`jt3$TBx(MEC<_HAu`u<}iktOWo(Wu%1 zc>SIdTx(;p@(*WLQw&TFPac;GqC7u0IX@2>iz?7@>#gZ2PY|NLNsVZ7RXKy#lh2A(>d90`o6)B+4}{_`4@+M~zppp(Jx*Z_#@p}*w@ev**021%V)EyVy^*+x=RvTo z4%_PoG{P{aav^=_-giU6Kmq1)nhIs;TwZrQXeSX-N_f;I238<_HchqXdpD;L6(q8u9R;w&v`8=&l5f1glCYIVtnyAjW4&t zxaB+By-+IaZ)M+V-DaO~=qyulJgSLb{+wlCtTFIn!wTEv0?4w7OksBh{8C8P|46nJ zR!p6PRLxA*pLXl2W;{l0KfV zzWTcs0esjsssRBEU6*URD?(-moO&hkdKFrX>pF7jtuoAz_wZ-_D2yD;=X}4nUtd}m zIM^$PWca^zG5<4WaHa&duK?#mtpU6f@R}764Nk`!51YKU%ZyqgW1e1|&iB~I%WdeD z3W}OO1RJCs_ubdGZ@IFSXh*Lzs;+}hI;>T2En1!+ z;AX#~pR%attV$#)N3yePd&~24Um`H;0_#v%Ne)MIL3AG)&%&7$*Rwj=D~MAhfZ_g? zFAOCl0^0V_wPq)M6hajmF9z`oDk%UycLC57L{bETMw6Vwi0H~!R2~p@0%_VoUJV!(oLA)Q2lv28O_z_6OazhjamV3LKYuym|l_82@6{ znE>2C(rRD;K@N*hV}$H_-Uc5@1c7}#=;ulVZQjSgtRw&a0yN8xe_^!+wO?I|L*o}n z^MMl?^9T5^L?IylQUqq6rlx&VK3w)_L-ZC;*|j0KD%hV1mWa zp_9^zl^um6M3Tqty>#w`5e_SGe0j(!wVo=oB9-e2_XV?WY z*#uSqgWriPkXVc9KH0Y(rxM;TiVQ#jQ?&Ats1SS)4gq2M@k>vHk31=I;WqF$hzFni zlQ^d8?YQRsuUgN+WQx#O_6F`v@DlUl*BY-W4~Fe4>f2(DglFx?)72~~$^c_rCNRom zYV`06hb3GFU-jGv%yBSAVYBUA8yj}-E|H)xiLehZN96oYS12Z1y&G7L^L4%h%e3ii z-J9nqj0IG``YDgy)Q6F090RF5oBPhT%24$6NE9|427$izT&40nT}i`n#bZZduKj>> z$e!OQj5!RE#m*bUm;()gb>V^){$JFKgypr#fMR7i_t8`5qlaVEO9jELP|%5d#ii&Q zfhK_fN5ZHp4j6ZkF$$Nd0B5I*TI{dnM7aUq;}0(rXeB(f!1M(9SNyzJufPz8>)DO` zC;BpEwTlbD2@wwlKKekle~B(h&p5T9ZsssX0NxV!mhX;&|VFIIwX;P|;nvkIBop#-O z2PSd_z4YGd zMAfnEDd(q$;!_q3pW^nWY^nh!F$M*a`OeTY&;Y1)+kSE({y`I{fUn}3M24rsD?a4{beVc> z0Fl83Q%}H}P^Jvp|6s@hG$^kp%_iG?TYB)8RzcGm%mr1ocQAsfrLn_~2TvD%ax0(V z&c>e*PGoZQv5Gk?$bh3~U*NFV@!V~wO^y=mF%h?v(AHF)%>d{Uxx&lOs0S-Jpt&& zRss{ia8{t4AO~Jc@fD#t5w_5H1PPleu(-L*f3^C(HR*h3ThnkMHpa-zh0 zaHB>CSYL52K#3Yz3+GxeXPJl;lPp4Ynk(ox9}DEv-sGWK%wBZtLdPf-|y?N;bQlnd}uP6@?4 zn9hLJs8}!wY23OVLFx+jSNcG#$||>)LYRo@*_B{DQ@Em}fj)k8Nw?>|oAHGcAZFn#eQo|Dy&svMuaPk3UtN-`iHWoJaJw8GIDAbAd= z?qT_w$;-is)6L1bAMM5CBCvekEUD40QZAtu&g-J_=p{Vz+S~TKWBEK_eb{USwk2Qc zUDA^rlD>Jq7t(+NyGIq6d+K`AdGu@S*ni1}#$@&jWRzOWr6dR@V>B^tHWkps#?3uA zat{1X2OH(p){=ezGlYd>9R_*!J~nmgFgOK4bSzDSS}0@i!|V9Ou?AA?xSgyHzZrHE zxVK1icSNaj0`klSI?KpkxTyF3#W1}}=Ka!3;q(w0)~{oyr;TmY2%3dPzY8yLRyB=U zmJU%1j3DO;`7=iIEr5}STh`+}%(!rjE%a~W=4u2#DhL)mZ${Fy>hZG+U)1ZUr2gGf zdpMbCrsokLPe3_* z28_J1NtCq9{L+iPDalJ`nTw=By2 zu&Nz;ZUvBd4b>ApR6%*cQ} z$bg{r@f5#>Oj}sO%--lM-Q+@IdTuAmP2m#dGKRATlF*8XlVJOhio|>>yL!G@CAF2ICC?6IG-z|=Xz+didza2_Xm>tg!D z-IX_vR#Zm`D?r2{4ErY+Qs#vFoYCPo^=UeK1t>U2xObdfVu=Iov5OHW97K_kfAL@~ zg7R9l&OObF4hxQW!OT_ZsV~a7jIf+>~_Eg7xs56u{ zmw(Yzw>M3!Ez&HuBUjS<_js163kvNQ?G1%7`U2zs(YDD^RMfLQl55@;Tj1OX!!ySy zM(f^IzuTyUyu&iuJmBgAIHKfNEf9;m9<1gBVTE~VP?zjMSF@XGf9w5*QvxYhd1o~r*$VCvd zM2;Cb{*)=ZlinFUJ?gj-e}@G74mcbhSj1UG*apxAnb3AD4wiVCYA`?=s7L7tKQVJi zyTRDPpQ9a)ZU^5yxn&hgq6b?@q(z1!8tsrFA z6@xewF?GN=N*0+Fdww*+bd(Ss)>oGojzWCh3U{PvGOtm-^Q@@NEk?9AS)+XbckRxB z!eeE-GGY|?DDdT7Q8I5Nx`m<91@933%XjX-UI5|{;0*-Nj?h|5M=eN0wd@Go$rqgS zhyrA;nF;BE5Zw>uKSU4DUT78t8xAQiVcmoAMx3gC6$Yb-Zh~@R7lKv7ho9^$mwDwn zWC|vW{?~}p!}|JY zdj?mKEdDX+!?}3TR5>Ul2K=LduUtgE`*5%Df)^$4qdt5Iw^6!jRbV3&*=GS`wlb`< zPN~8p_$#5KlD|QjSjH&NF)Am1%lZiUhPM9+GJ@{xzK#|XSCKdaHfPKmdPwbyx2)L2 zV<0tZ&S!Tka2qgSTNCEVT!a$Rd{`oV*z54=X7^L0_x8wJ9Fa4fJ+WJPeL9i-rtGd( z;aqS^3QTtIF*(W1`NevEoXZV*EIkVhL> zO6*SaOKRji{T}yA^!KmO}it>&VF-^O6Nl;23gpNg09?nm%;~hl<{Jw zy4cxG8Xe4hNAR;aF1_d5eCbKBg_LKKLnLXB!_A1DSRm_h9ij*}%UN!~lIdxf1EZdN z9cioy*?NtTioYSGR}k9cto#SPPE$}9>Y)mKZGP>G&G95tu!$!mL*Zm6cu^PeRs^x3 z(Bp70_)DIB6GX*-MoQm(y-|cin*T`?AVXTo1skf;w+Ulyz)1#xm10DU4^SRrgP)h2 zgb?0dVc##jBMT>Ima>_wExi0GIQnR5V6LQX<#Pm<$xew#sAEiXhqiBqKVVSJ5`{Lc z=J}D23sqBSQ%1GYr5u9T^_{ZJzBmIiBy1)5wX=EFB?<4<-=!VzVJw9M!s29yIp>7Ib|9;b0>kX8i_ zruQ}e;(%j(4nT`Ytl5zTA`-tiAj5J$KCRqz3{@xSbG&pvh|m9A5{wXLeywSe^G|=7 z-K{%Dbmkrwp&d(Xu@t<_eLYf(+KPo~P2ei{nVN(8Uk>7|W-8L-&7FnBfo zDFl45PByxVNXXz@bFI^6MR!A;SRp>17C{P(ZbmLnWaA`?Lr*m$u<9Mw__Ym?U@DgP zVG~L4lR$2M&GgEJmkK!dV9Ho+Fx$~k%`O_GLm2*Qq_sWl)OM_BNWQG&1zP9zT{t%F zjKp0n#C!R5=Lf@muNHTqa47{XzQYRXGhNpXU$UQ@)8HU z@w<{6OCaz<4!j?hDz{+{viu0o_F7m%^I^w6%cfjN57q2cNAka7S^8}cqJlwZ1o0(3 zJnzvv^Rw}L?mI^IMZNVXjQw?X$E|C+@ur?nNDH-q_zA%5v_1GY4i({87YJ*-5y^?I z9A7AGA62q!;(zgs8g42v$OLxsU`Tjg0z#bqKHOUFlSgz^5*9LEYi8~-zsVrYb7mA} zh6klBHNZhYlOpl9&In>HEa=?PX35^8gq>O7xkuTT-SlQh;!-t-B zn*Gag+73GGaN+K`#UoUeuMc)7tvQO2u?$Ahk9eK~`eUvWC6M0D{(7 zQ66B*Htkrewjxn*+*`#0uYPrq;v5Jh!Se37+`t!6ddX-@x+GU!5{~s{m-RuW$j#~L zqlfuZj6i6>^h6Oj-^_l;zk<<-c}btHXc~F~q>tl&$iQTOjws+z65@l;RL_vbt*)V* z5gkr9BGF*oXbC{&?zOpS$zv z6A)MVn*yoMEqO^c_K8aw9RyxSDY10(f8@`Cua2?}KRWm&DeO&;3^v2dqwv9RpuQUeKp?ANtcYdzaR^7~Hg%D~G@4n$&5N8s zA^PY37?b>iCYZo3sh!tXr4GwwseAFo&g94S^*f2c%0*gE3Qycv|$$x6|i(u zz6_bbza{2x1dBBC$9e3VloGQJTrp0ePu?r(Vp;SB!w5_ruR@xiIF?DSkRiXJdQ@{} zo`8v*p?2hZWHLnCTRB<8J^}SNRDYR#I2~Oj<2$f=ww#O+B6dI*%m!ZFy&Cn&i4z#r z8Y&c_CI?i}9>3=a8#SFFcmTQ`%patLi!Iy=Or@v(x}R-{-2X94Pmcr^;H6*M*A!mJbuHbn(jYaTHcXasW52#Y%LH~+{HX|uq( z`6C9o;N+p1ix_+b9h|96EX5a@6~dSp+=MNcszeRx3<7`kwRYm^kpKiN9X|r3&)*x;jB96Yp;YT#nWK_9!4 z+olSzF~`Nl4MMXZfa6qvs|2}O2vqUYa5!(si5HAjwcj%X&s&6x|6Ty>HJE??hqLj7 zAn=jz0c2KoyZQR5IxzdB`t+#pp6)u^SIgvp7zUoGpO0>{yIloHNB_Ux00$VA+mAEw6~KK;Sl0j+w)YMuaG3O*ei$NBM){eZw59UxMhf}wJbR*D*u3xqr> z0-a13cPcRES<@n8kud_@i-uE*iWb~=$VQFJI5OlhxIM~v144h`<-@6YJd^v5z%hmJ z`~Ja{=bI~?!O&n>2%t^{#T(s^W!?gvpim~}*<*y^5y!I)=}f~%1Wgf8B`ya)8dqfB zY3c@Y9M-_K%eYhr$)k`R7B86tR*|(698i-Y_jF?5dPyKO6p)S@H8yu>+NcQ2oayg z#h?Hc0$s)ms)DVVH&hJaQF8%dWur2!a?5|$ju0up50U$im7gW5!{w(i!=sA~sD--P zvdl97eVFakV`W;;1Cu-fJj#zW2?_VVAAJ?B*r&H38DPFUS*l)bDqWSm1;ld#(D#IN zF^3(Ifh2=2lXk@?5N)9eQCpde5E}-qdG!Ix3IXMyrv-^uKywRnkIf*)2B?)5< z_7HV|xigF?Q`oycnMHTp`9=*GW9h&j)z-t@HGKvN$B~HK0dh_HZ-$p}NGIq3s9x*v zhHQoYgUGSofiz|a2U><8?hzR{-`4BuLQEX7z%&r$8wBi&jT9ZD>cC#j1Q?V8ypJo> z0na{#i{(m$7P#(=Kgy!`-WEE5gz@+dT;6<`+yk1LKdVg@(P>nHxu_I`s-vIr40h?M^T17%z&-pn zAhOwf0;#i^N(8;eU@ZB|7SBi}kjv))ZFXe%l?PN+1>cTQ>4Ig$iYA!4Np*OGpDmg7 zGO&b*wfS5>vaJ&1L~i;e^wgd{21Yu>G^l}S6A8aGKj)*?F9#L>8lKDlgdnG{HLx=nC2Z|XzzS}{4DLZ= z)!gb{EJq=Q+4=6qZ5D{Lq94|YrKq+aTjmZAWg4pH;|HGV9D6*NY^;1Hvyy~DLcj&Z zI$T~K;x+&%*T&Cm<41rP=&di?kVM3xJ|P`b(AnkO237RECf=Vxx`CSgVIMU8-cnCry<}m-`hlY0wTtv40j8 zt^#?6M*}BVhk`lqM<6i|0xgUVBwqqm1I+}falH0FXMp*%-m8Q1^rcIc?2plaA|@Y2 zG`-J;NlHJR%9<3SBEl4*`EkbE`%>X**!J(aA3a4;F6FUA|07H5IguhK6x{R4z>ijb zvkGVx$I=d_>u}zt{@Ynv?RIW55|#&WhtFi+u4&;Cqi%bQ-~DgZYFLaaRA6m{;G$oA zv_46`t}zetYR2ny(;`|QKUzJxvdWe>J;%}qKp<^HlHE&Y z?)|y6-DF_VZ6)yOFotD_`WqR&-=XsYMY{sURJQwPAJ>221)?yQ{hb6xn;;Al+KFhA zSR;6f^`U13-W)dsKcYOtdQ$G-V4h+2yF;qyKvEz74f!Tb7d`Xwn(!o+@w)tCGChw5 zHh(&MX zA_m6Y$0$fxGNwQq=6X%=8_bq8$%2}M^}l=(H@iP`;4K+FFdilCnhl!viS!b2=-|fc zsDZO$THNS!e@W*}J_S+pa06{33~`9{OOKD5yXLq_pK?)nFS&LphJxq6)17vO;uVQ# z=Fvf(?)q#^8@qkOA=?@aN*d99dK-UsK24WTbY3S9U1~|OefJI;TRtS<&~p62RY!K~ zVz5`CS_Cq!SvodEBdbs(pF}$_#4cLlXkKvp#dK2~Z%UY$Q>*D8D6&d80~^Gr}=`#Dq$Vyzhh)RE^tJkWnU zB#2kYM=2R@n}dveF8m>@ETcCgd~wkjwZD+~qf)H~33zY~+3 z^6Uvjj=Wm4buvuL71~1qTe#cj6PRdeEU=$dH$jh6i2gdlV(iC+>ayX;jrwq^B2Z{g z$WZlKZM+=aDy#pg1y+}ifb9X_)buxA{L*+W6=i&4Bs%#7B|MVuARwS}ToHeeI7X;p8(qiCo42x4iLhRowATRCW zdYzY1=%pJ@8h+fSWuCwp)-Ki*-Vad`qKg`^9;5O2%D|BE?l20Tu8cX2hmtUBzQ}man zVMut{=)arX))AT%R%=FV?s$B6d7fIw@ZCfBH+R$lGWG{+(9yD3A?xQCTosO zFL5?8CQ(=BG6bC84H3$Y3w(ODApMX3@@X#cvpv-%a5^xE&Mn5?Sudra$3g7vVcKYl zHoUcuAC6q$9v_!5Y$}IP7Q+N^|ueS0yiSWaeP(Yd_U&@UP&sif51wq_*pfvQg zS1=@m@X>??B)x%+fuv2P6qgTp1~8!pZ=LuelBq7Zrd#8W-N`WhZaJpa2&&eT9^zfX zt*cEUSyKUrx%Zsz26JF05o0mr%DgY9WlJB(ES+}p<-6-H#W9=t; z@n7(N(x|kTZ?j}ROg%pWS(Cu^F|jQHi7eW}s!GWW-Y;2voC&6*J6ZyYlEWR0SY^Fe zjQ?}7Fr2rQ;{=E5sJ(s~5xtC^VF7BN=wp~^ll8vvK(GCk%k#MUIU@z3YIX;sav3_I z;qgt^sBU?Vsp@m-^=$y+n6QAFBEW4lUXW;g<0}7&tC#|u9g^s`MlaXVz0 zw$JGQxtK8uWZCcEmv8T;l|?kpb%&CfB+Y{`5mPeu%~P21N_ji>NO^_6MHp*Ho5lN{ zzDV)nmaemTF?y?+DfpRN)x0OubKxRtRgPt-(->h|Q|#tutA$9tJOeFYu{ z!|55?Xw&lY<}Eqs0nXatdbAjBit`m<+omuX5v+ut=IjBXi$8LRfBM;#gKK7zvDTV1 zPm)kx20Xxj@@3GoHaV`CDr+BIFw@XaY&lD;wEu(SFn5C!O3G|_qjl~SOfV-uxhZGW zSbY1Wc-eRQg@Xpi$*KVe_d-(*qekhQjPJ77bT(DL-M(p#xfHSJ8VNbrc*Djo*X>t9e~O<>uOiSb!AR@qqQ z!(y7%lU|(1Xy7PI?r6S0PcHiqL_&OhvJdPgc#AlP{}i=8eg!KwPXBu!FGJrQwIKY! z^uaTaHysG_<^5DCO^n;jSL1Qn)WPOjPaE@+UY0rD&GOp0KCSB0eB$e z!TrUa1BvqVbqT>OEeXxu7yTBSWNqc+MO3bYv8MUhTpWVsuw5*Pw`MpQB{dFn8!>ZD ztp5pS1~9+?qf_NxGjzaT+xUI*icCidQih(LruC#wYb|jR^#WagL0hsJ4c5OVltS`W zYjnem0jgKh4?h&M7T)27xA+;d#gRYfBltz_Lm-01ACXCuJ>0Qf&z$OIy!bO*z6(^q zv^Keb?P%$h2tEx2tU2+Lvu-8GH>2)!PE+EautQ4Pz0rtD%5+luH1|!c8vWNoGBkfl zU_bqGi5D3jMYJi^=$!cK&Rmsg$PCY6?%CbKOP|-u>$Lg9f+RAr$>xQM-W98N6UCbq zCov|$%2Qu+3+#VMBt?{8J)?&Eu*3l! zUz`Ek!9Q5C<Mszw(^j@w&0v1?4xQE2BV>W1=A(4qi z#gUc~sATNRYNhewlA~4ZYoJJjmqxns%55kW!71FHDwUmmCk)f&lNOG+YrUO5>H`3? z+(D#HJSTXI=p5-0ub^GY4hSJgr-=;a2(qV7HfMO@!3(V4`G}=K00;B{e-2p#|APX{ zi7Yj0bS@laQ$Qt$l968g%AX4fuDY2oTas$HVHC?~J+clG~IveU$Au2Sy(pZi@eSt?@ox!5kuxU48Sl= zj2gsnmt6eRyF+ahNub87lm{=uKxyJ5zWz6|8qu*Fj&kgIttsU0X2Bq{BM*#^0ZM0) zkvPF-lX8M##5V;!QKC?pWT_)#bf5iY^#RnwvJ7chGgNoQF9>&OXCZ;lF5duCTBJV| zic(c;LJ?nLdpEj2%Gi3)B%c-p;HmN-JR=j@mni@W3>SO+cuAf8*2@AS_KO4!05>ik z%Pm#sH3jt(TG5vr7So2svFD9i3JCxEpx4xKYiwltJ-{chmQsS`gcOw}7`%NX*FwaA zt84RfO)W@W@F?FMz4`AzJny#=!CYoq&=gQ>xEcSmsO#o&Y@fjgVu$cF>x$m8PW1{9 zhEhGW$_zuI)gRGH>|j0ruhLMAM|NcOCG*RTqSv$yXeDc88GxiN`zSjU9z6?uVb;4H zohMp4Btp_MJhpvq;`4|&&jw`kBY_{CJRM4Ivwujm3|c}5ug6L0uKsgTAfW*G^;kPT zW0iBKkgD#p=_=#Hv<)~oVNgmS z*sbVmXjp0HNukOYDqQ*IqdBTRo>TepoQ;)5!)T>6s^RxvnGeYSXomex9-T!6xAGBa zXeMceUq8bA%bLD`j8F<-{>VMoT1bDK%p5&>W|!(>CWejt@7#dHxzz{Ao=&@A*!Y2B zR5-a^nTMrGd##dTv}*}D*BM+aj2Z?#(kW zsWQ&D#9xTOA`W=^D!sW?-DG{bZ>b1`A)fK9+4gUe**v zb@`JVLZ_fG^S6f%?)EGbX^7oUG=qAZG)~9>>*=sf7jPSs`p`E$s-9Scc8!X zG%=saouECffM&`z#lwVxn65|xf>jY%3z;Z=&l14M#(u>xOfm-vOkehUK269H|CLsr z)@fhxWMxxl(@!dd$L(PirLo;0v*2(kVUh}JVOkgUpIV8?Z+z6vEWaCT-3G_pI9bz6 zDZm|lT+>trBa9a$NYxP_wj2cks#}x)7=)GL_BLON#hA_cJW_=EQ9pp_^;AF}fejnp zPhPt3l_)9$6w}YkU?(UX2MMz3|G=6GR4f#a0|iqz&en(FT0D{+hWYk^=lIt{$`Jeq*f?1SYIjt-#INH8FGT6=FqNOPY@~M zIzhn91MR+Gf2-|muzgnoOgK|SdaZl{5!Pu_j0E^Nt0ti9SJ^>E7RPWA8b(=3;kG?}%xcNd89QOyN=)4GKwivKdT8tOS-#|!! zsfRSMyljstFDMcF8H-1)=<4Ar60gyQnwy!|434~RVI)`+bDF&8$9@I>`h)YzI06X2 zXnrF9_P8FfM{y-70Kw&eT$ouN87tA7c}lWm0LhJM|Nd)kBEJWle3ddvAR+Ky>rf%A zfB&zG+50R~^7Sm-HAR=CZD-CXVz6pbJg(Y%@s#6|Lii&%=p@{EP$D zh`7C&EVo*o>kh52=!0N9NT=NRO9u2Y0h>n-&K;;-B2}PD| z1d*E(sc)bx)7Kj}@&L@zk0Id{zTyD$p)4gp`=Vpg!rj%}{Yg-&u7Kud{lve$C{o+F z*-y#7q^V$fYPqUh^mv&e_JJl0iy{$FL*>*{uzyfJxzz=BK`qy=EFOhGc|Z`e0Pz&d z*8IINScCM6L9sHPaY|ft$#MOBy)6z8Qp~w9Gz(Nkt|`J1kcOg?Y{t?a2xfn&S#i45m>|=VmPcJ%}C%a$A)4gsg~_<1#?D~ zh;q16An7U|);p}b;3rr_Ji3Zvh4?p_6t-Tggg#Q z2B1Fm=kT(7-&2m&5FmI-D(#=EKbqKbuinz)gj|rrI_)<_Ib7_0&0UcANlw(%=&9FR1PwLyQ|Qxl{xt{LdwX) zZx4ez-eh{v%BR=k8EwqsWVAXIljRN?$qav@pVd6eW~W_|`u{^?&HteWF?(!I{{vg! z&w;)oR-+khuWO0_{rF?7AG#li0gCL#u$;;cH;YlFs{z=&PscSnX>D&~vGSABGA$iZ zt&!dFUn*h|Cci6mKSKpQc9=1zn5bUcBnM&8M^hFLl$@oa1$@hzvg28a9KsH!wtM$U1@JzYFr6rTk){;|+}> z6_zn_3N>qsz8G@WfyvAeFw45Rbq!E3qmhY@|DyjL0JuVw>x#vyxcZ118{NMc=oBr6 zd=>VJa z1q!gwsxJ9I_-03UDo2R9!X5>9ylDrjRrVICc%NvokP}%MHbc1X)(DRqZ986PgVQ=x zO`Jw1_9L0f^|GHmv$K(_`_-8E&UEqj$+GkMQ3RX%6(b~jZ3pdCPtc&*um!c$r&X`A zSWtUoYri=B%=S!s@q00Lf3q5k+|^XD_J@O1fJVm~H;qd(w|NeWvPsJwhjc$jrZ4`> zONqvdAr!!qZvCFd4GJUt9>!JXO$gp{6)0P&$F=yMVLY|gBGE9+o$3R2Ll)H0%#`TC z4cm`b8L%!bi#)8zR^XFi?-n6pTctJtq>Du4v%jp^aLWDyd3?GzWbcvzXIC+@#D}e+ zdrWpJ@UefQaWp6tm3v`P79vV06!GjXCinZgFu$+fLEE%)7RN8hiUyqDZ8!Ow!?F z?Be>ki?5?DvEfUsPha z-e$h6&v*7|+WnO;n^;9n@#aP9!%N?rZyL;nv?%c?P{fxwS02AvB2D_@!s$o$JoPA? zP#|$ctT`*@1B@=;E1Q}E!^a!4=lnGURlx~>&xzdok z{-wZ%=n1@@%TQTMJ7Or@ej#TlW0m)M4s#Ea*qXS}M=d_=eCf}wMYaajJjpqCDh^^z zIPkhBS&n9zrD5c~7n?e@pB^PIkvV@xM*Ew-h;*Uegz8|rin5bb5j+q$3KpI{-KWB$rdl* zVyV~e*UDu$_%bL!5x1e$1W~xjEhrxIRT`Ap#972DYOt%$OC|H8&h ztB;bs{S}igN|t=&zaPy6{p?adH}a2ccv_k?tC6wM^TP}_gm>da8L$7?Nl{Z*-@6d> z{S9&H9hDpPARKV(yUQMwxi3^uQ=RzpBc&iQL-xmo-PzlW2n+vuRMJDY(r*kCS zm-R`@X%lD3qaB=vQUNE4e}8`=N{KJmN&OcbS;B2al)-6%hDj-sq36ussFjWr*r zx7@a&Q^X?ukJMjZtdO%bqiy`D_=;uZ%4MXVg zrxaQep)9`CE}bt_4|&oNkl=f+L-Td|2HLMfYGP_#oHmPkgCgl$Ir%&AAdrr9!OC5- zrDZFWgnIFaKx4^7q$Wf%UyY>m6%%G0E)FV%cNmm=7rI!X*-n0fXFa!vb<(tn$iyK# zk4rDm3y^yoz+v9)q|zrbf(;L1XeFx05yNEdr=FccXvU2}kmX8QaYMYz9)E5h#$1Wl zCtt{Z?1U!yONhzd`($-BB4{hS)Bc*spodI8y~;pmQb`xkFT>l>4U}5y`I3XX^{&jg zy)9jaL*{!HZ4l!UBc7IM<7*y*9)a(-d&6{3d(^J{X3R0Z{rYhkdOPwYK4|$+9=C$x z#64Inb+-LE=ECKEMi_HnjPCu{PfRo z(SAiX_q(VT-}L)T-WUqM2VrT0cI8fkIBGiom!%DDHNUyx{dEqMp?()6!Y2BiX1~vo zoh^TJ8=&(|={xj%_PY{&7;B#>o}h`X#A;<}bbR#$QwGUGTi;W&;2bnpKSBHJFTUNuS9Jd=)JP&xMfhaRTZ@{Tc28Sxo&-`+$ANwNO9kXi6*t*Fh4mO_`Axtta=4NcQ&y( zqaa#m!x#gieqk>0uOd%2nQrHJq+x14gSCs36t&OymsL}aKcr>w?IBzgK}b3Ze`N>n z*U&s*K9GKvfm(Y>Vp^!AZdA1^58x*Ek#Yaf;V{$tlh*;oJG>(Xo9Pl1LXe&taJ=e3h? zfw1J0%^}%@+}yK(iN>5|7Ba)gYs4r;w_V1XksmcP_0L}=zhO{T9c}d<5VcS!PQ7N& z(r{MhB}(hM7RjJk_|tPVlD_?-TqRgGwkRO6a2uD%FH#X25rd?K9Zs8LD}YA9$3pnvBK4_(p*FX;OItzh(G^M9nm_HTawSp!&rOWpp~ zpFJauE@&hQyc<3n`p8l=a{DX&i{TdjaqAa-rqdAA7Yy1No>L!OZ}~S(RB}5O8qLC~ z`2GC`1^wIR#(p_QAtcP$56-k4eihNQ^V!obulqE?=HNF2{lyLMpuZ!)4|LZLU)lS@ zKXr53Zk5R;n_2dY;^DqI5tG!v;>9&V%)Ph)6~~uFQxb_Z=y>%g*>_y-m`O1ll{ajq z8s+}j|BhvEij_ze2Hbh}W%6(lmG5S+OhP@z;D-yjiast!X3m2H1p)5a4vN#Bx7>T& z@%ML^X66Vl3@oRp?Vpk4|J8a}Y8uW3^;)0Yor+{q(I$xcsJ!tNp%OJ3 zqSB7IUMK7@Qo#LpF}5y^J`h)1MZdmac%b+%1#~`hwFO$(@A08J^P%3pFGQ3V!jfEHH9+yV(yQ% zx1RRT(}BM#ZSoE=iDXo4omo}_mc1*I2> zbXt=Z+s_jY+I-eGxYwY8;7l9)jDN6Uc)1L>)wo|v_Cqb`cHRKA3^#nP)E8#S@B8ZS z27aVOM{!$NJbenj9;eN2|K`DTVS53uE96k*#4c8-=M(c`;t5uJB>voDMjd5bwmG}e z%X9XJfkFQO^3O8KY3m6?zZ}rkLs_n)^IR90$;i2WpSIAyS!`A($o?Q{>4bLqb}Cv} z3dil7SvZR?41RG)Bij4Ia|NfKT`0ALUyaW}l@`C!|3GMisF-ZeY!n&c`()0=D+Nr_ zozEY+*kzA%sVioilhgf+&$z=POh6VmIkT!2lT?uzRk-8j$$@$suEF&dXUwLtX)X6Y zG$Z!;WZ|az=LjCV)8WqVDBFGO_F2>wvA@E_{yEHqbU)lCbqU}uuP^&)2)b{NtkVQV z`*6vhU(CN)Tw1vbXtw3+@8pG+INGMWcl{1Wuwls<)o^KA#@OQ}`M#PQJJCdlgv&*w zosA4UgMXcp-7wf*ABjrECrpI>s0%juI}vu^!Xyy`yKg_0EfbJ*JNvX1S54`6SJ&iZ zEp@cLmA&Ioz)-K&UaCKn#+4j3B~kB=V%5g5P!uE^Q^=@&?v+pdm%ha}QE4?vXuY&f zDk8vveRa<=!b3M(DbQ`Hpo5UrEi>xI;q9{ux8N|#SC zBcEewy?P%yi_yfX373o6V>TxQ47~BXAG=R#zj@DppEwUhVro-jJ0LS{`EaF~zcW{7 zuD6*`SJ4o)w&A`HjBtt zp5g5^CHAh4pqF~f(YE$2Gjqy-gQ}0X%?tn1DznB;F&uX9g1?r!Mgt+Pclenu+hDh9 z3DK9US?hTUK>sifdfs=oo>V$YtRecz&x1BrcnGeHupm{&rm;h zp~UUT74zF20%Gy0V9IXiF~QyU?s? zT+-D?6k4`=Ba0OF+1YgeS&lMz#lq3i6a}+qH;{W!&MZ^Dw_a(}Esz@?pxEUij;td^ zG!J=?Zc}M%tJ1lT5t2fOg%zH2VfHhh`>?G%e01ppe^3B&3}ej|`bFE?_*NI6T>;|- za^yTbmYjyz9m(dm`bA2I_Ltd?^jL}*QbpWmcMe3?^-qBwWFMa(@4$LFNW2xUd*lz0 zJ+z?ZPwH$W1C@l0)2YFpLX2ytTFJqe7Q!Rca53EMo4&HlA4Q{#y zR^0;st@AVv+df}VObXGv-&&hpT-@iz=@?oO4ji5R?FuaN4ldw42 z&=0f=?)&-F{q9>B$knvS|j zHK;xDg4oA~PHW_Y5E0l@-P`vhkv@yBN8!h%ACmj9w+_%uyzoykBGaDFQ?BfXc86N} zU@q6EP^f&)3HlX;f)QDb-x<7(%itSj-tE?(ajjxcNnwv`OqNq3X{>gEdP9b=M-N#* zh;;Tm|1hG@WY}~@kyVM|5hJ>NbJ!wXtdeQ^CEy-R{KPa%O-CU)*H>a> zW)YtdarB+(gII1aKlQd(9pMEDBOG=jCnT5=+Rpd9_0XCjI3kmSlvS^Eg{Ckhf6@84 z@7>QsaD2u^&_nT3#^x9o(H_!(d$l=Oc!J(DKV!jn70mEmcto;4d&+3QQaZbaWJ@+& zjsL6hIerIUE@Llhu@mvT;HK6--mr(h9#6caBi8hRYzJ8t%!%TUHR&+-V|jB_V;%-y zLBmOjECcKG>L!o<3TLdTGV2_3;|P=7g%@6CJrVe2=)^(d2ps*UwY^1l&0h3wG##}H zJgytC&Pxi47r11qNaO+rlDV-#=r&FEi<3LN;0+bkBSSQhljJYP&+~WE5I4~!SQbib zJyVYsArExqH|&-x_qobnhvmd}d8$yyQVHs2HHV97V0I$J=o7-@SDBvZBd(!3av@NQ zhZfeQ)5wlz@~A)xZH2?XJ@_SPy}M`Oi{8^i!umRqqvFZXnJ@1WGnEzCr!zC6FSRFO zUqDES`_@P}Vj$vmKzxrPK7G)3YWFM^>G7s`5Q)P*o`Y#_Y^;h z9ckcn* zhbv>Pj)<}@Ygc|v#dkfb|DaV;_zh;gKx{&+JPHjm;n5GSZ4M9ct<#$1XvueU=~O~v zxcK(!8^^FDZ;308^cNl_LuBWn2xe_3bsYl<*B1`AtGrSs&BHKz$yZ2A!FF&O2GL2_ zsc~gGImft=k*%^{+XsKlbJ#eygN(IX)5m!w=>Ao3`MC@^v&L_sw!II=(kM?BzI$Nr zoA_?Ru}l-_VYHzL@NC=|+rKh4|3)q7%^G|@(|X`x<4q<9ELExk(%P<)T~jzRzQ3G2nBqe?vlE|6R4&P1nE( zhfcyTWW+X1F^@P=4)e0?7N+v{Q_6-((DG&; z)~Z1lHW{k5=h|@xv(mG==Vjk#rJ*QTWU9wVNyVdMFSA;z@B=F|j0-jTu*yDETRh{< z-^Qqdx3t8S2fl8L0f6HO2%5I8%=@3kbZtjj)n8}#dU zod4P~xwRwuRM04=i#8jyd1VUB8{iI5-tMiss`AC{Wf*tgAm#}sSMY<=|MR( zB8PhqDS4D*kCZ}hzD3g+Y3Rf(zeh05wxHWirMH-a$Jdm_FDJ*Sr8s?(pQ?QaouFx) zRs|GfC56SMN`%ZGwkPbP=fvlIs%LE&j7Z&r1>6yi>V=Qj4(B3tUheM- z9MgY0mT_o%LCVgnZ`(EFcObx!5}rI7h#`>NGhZ~1);pPp?CGY!K%Me%ShMMmqf zJtL_z%}hyFqKk0ncBX1`*N20?j52tT76vMhKW`ol58s-w?YyrD*^=d=YezT(Q){6Y zMc~(aUw*72#KLmIm&GYuiQt9+o;|yj%Vs(vlV~XovGsbC)t#q8_Y3Fw_H6pI+WAzH z`CiPwJDQth<^R_UFd4Bvd70gwZQG^F^>!C|UV~k^dB(?13)4xZRZj@=pt<|x*1v@K z+ZyA{+iKKxt24^Fow@s8yoU25Ixnwn7!1>6`2K8=wjP%$&2-{dkxY+-a~f}ULrq~g zw?yBsYXgZvF@xWadg((*z+N6{*8l@k_e0VOiBpz#GShCa+xwX&It$UGCl3nuqH<%i zjdRja!JiJn2tHq$)`qEW2fn9GA23fHT#PS=21tcyP@xV3nQ3a=|)-;*efq^&;` zFK)-^loGGmw#~_uml9775bZeUpZ71lMkkpdh8dXgnM+Yg3K#Hf$Vx1TJxh0;N0pDt z6U9|=N#SIFqCtWreJF=JiXzdD-mY4okli4K&>Wsa684?XVK&l;<+w%>`P`f#Y$m71 zcE|K-f;VOE`oi!lsMXJmqJ#`tUleaNIeh3DRls}PO96G=l>QAQDM97+m=?*4dXx;L z2g34PNS}zjKP#9ThMXVBmwFj1>-6x{OEibCU}6c8a5!=Z>#sa884L4S_|ohz)~46X z5Vcec!JoGl{I;cbhr&=>Q_ay$zfkMAE%L+*CvL>ct&l^jT5BHR`3*k7R{CjSLmmgA+P6sHWg$=wMNQGu!lEJ)2J+AH?l5X1nl9nY=F{LJ&<0%FnU;|=(zvJLRLQjfT4fll>~g0E{sb;g zLm%?iJeaz#Tt&#>^o?_dobQS={hcbta1(fwgPv|Eg+SW*jii<-od}J+!LiaD+=nU4 zL4U8QvN($p4hIa9I=jf7Be0C2&}xGdQNe&b=<>nk?!pW~laxC; z+|grQ25s~6&%k`M>7@D6(Fc#iT7 zf?J{A{K4<~S}0~quwopFm{0BaWB@0MP{T-S+#ndCB_vNdE2kpcZ};OoLczBvSiJAq zO$_N|V|iP2YGq*0wNZr_v|r>iwdDKVsoJnpvHtX+fOH(OyY->-zZx|=wGBn=Thxg~ z=z;y{M2r>h7zP`Bo)iu~R8+R%dC#)J#e{lj+?G6zYUuOi z{SAqY*_yPMi?ZWfDGbBW0VUyQRap$05}%XZaS$I*WH>YNW{x|TqeI#h_Cd-sI z2X$O+Wlp{g;RM8({i|n94nqHr3C$HSs#4Ec$x$JdGAjo+=Vym`(gZ(n`~1{fdhI>) z`KxKiUxjhoOXz;)uKy=2j6LT|^NHIUPuP=KW?#^CoGYuP94SzjtH@>lm}+AnzAeg8Bj>cdzJYzp&k7c zl@2+2QR*u|py>@uGt&DCE-r|rzrHyze5v7rb>O`oGsnDR0Q^>^{tx$)35sY6_|WLc zj`IYXonJBO1pFrPYSP@%25~YzQiui&f~OsbY$`OXc<^x3B4)jBj9+xy6F?lqmUzWS zI{w{srTX3X-k zh5LMhsd}kgudeLoq1ofmy+qXOHO>(&L@kbTV%gRz8be;WlSbCt`K?Cud5OOaPjT{~X^2=kuOwgz|YY>ON`xnXG+#wghdo}j;cud8Qk5(n$A2e>2fStoY zX`I72O#Y993AC%qAorc`jVdiAeXyVh&)0&ir+0n+&xFDm?;?MXQf`HcMZQOR6W{m9 zG(zAKFy1737%_REz9Z|VK1+W`YS1VS%ZGF^x$|eqxf-%@?@{Q^l=xpkx3>W&qoBwj zI|ou+^zn}o^ulFuhc1c;Y_OT0SfPeCr3&DQGqGGzz}~lG)LGym-th!RwY`VjoQhm$ zuNW93gfFxSsm?rrSkq9jXQ&K#Ula`=@~(}ci5CBJ-i%VlMdU5)iAo(C7C1FviaL9W z4I!VaQ~R)jeExSfR0Y5=HAxgB1nbe+y!sJfROCHw?rG6JM*$E)*Lw5c>gKqZ$;W>!1_eP2n4v(7DQ<)QjAlve*E?5Zqu3-XOjeVx z4AOj%TrrM~XdEHIsBnKdW{=3!)GoWzSYP{+IeN$NRdIyLVw2l9n<<;mf@U9$NH*@E zINRf;NUa)G6g<{@uNQhjZd%~x3Nz?UyCe!5IU^WvP$Bi-k^EzI&^VmD477}#&lS3t zAhx2Y#SsXZpc{&5YF|z=@;c{9^0EAbd)mJ$$?Z01KG(@qoGBmGswfRUOkZq*pIhiTw7sqOZ@jIAQM!~2Y0S&F>3Z0#q9d2DI zj$kAqdVeI$s@EVl9p?IQ@5^k|(jZ0NY^hs7#140~`sa>z7mXSi{PlKLS}^C8zzLU_ zQ&CC#Ls57YmimuWl!3U1)F9#P@yW`ac%`3FUwbjWq{IB~&UGZ((tCzJY6L=_#BeZZ z3_0H43fRn6pxP}p#Y7T}#}!MFr{B2XtgcfzKJ?=@b$iuyT^usB3wbetdd9uR$6HRz z6Jl*OzRJ_yhr+qr{QIj+$WTf#K?<|lZjA*-6+{6>yC@Y9OXPGMVK+RJ2Ooc6m7vos zRN(nPO?`Jfm2dpMa~vGAbI4xD-Xl9@Z`reuktniDA>-IHC9BBZiju6%qA1E9*+L;A zArXG>^ZEV0ukWuvdez~1p8L7aJ>K{AzTVfhHd51i{JHRMdH=gEa5~k6qqzU2yrC4_ zJQUjgR8jrYDCaj3ezfFJEclmRv>ZA7@3+#Ap(&)%Q3_)y7b-$4_uPe)7tOxx3rj73 z%PLLO#;azgnA{heqtKdKOIgde()9(E-7x-kKwZl^;~aA%D%~D7Wn9NvVRNuXfX@My z(zhkg1(iJOpdgh8Z)r0u6bq5+1Thf+0{UfLSztarPocs6NYsdIs&dI-!$MVMx zf(i0rpMM!4rmY>rk*DomU`nbjQjo1rXy1+wG$)~D=m!h=ddnRP-d1M}Zy$kQT#QZK z^>0$?CUza*Hld?{xd|7Vcyn3`?)Cq5I);mdT$4{HfnOFoWs`+c*&uRP(5D0k|X zZP&z+DN>hwxh7yJ7UzgX*%_faT)?6E*1hMhz*(w68~n_Ej}HwI z)QF*y@mmt$@I9+RQ>eH;mn7>xH|tO8_J@mCi4qxsZ^rsiVpUi6HqM!p_C2n+ws~qs ziEMaJ#cBHD>!4kVPmh(RivITStxdejOG1mI8%Yoi*f-AAno(DTKA0Eh3z@$&=li+V zI$lKyhSSDhEX_&`7Bb!$J~NM3+*4SR%EvigL``d>9ufR}&Z>l33tKcw?jGddcT(GW z<=9C6MA`pgsZq9e;P0iqoh|qC4=^8-wOdJz=KkBqK2SzH)Tm9%>9Icyt@Bq5wtDHy#Wli=I88ubRmLY1|2*vV@ zn3SrxmMxu3s)t~rR6xx*h&Vcc4Fb9IAr8w?N6t%HugQKmT_#A!fI5!EcgGR&fQb5I zsF^p;OJdnDSG$I0ASTCUUxy0%^IzGQdK!|;7h%I622oM=K*L;m6bg}un>Xbqa+OS` zVUdYbytAP#W>a5}P9irZcH?n1%F`w$qb?n*vSBfktq=U|3W5);pIkRfKnC_=sNvO! z2s{qMinvdQh|y6@Sm;zKJUsPt_|UHFOTwiKDO$I-yM8?><&7exVq1D>Q26s-0I;-m z3F0L--9J&64j52W33%%`)y^x&|44)%d~|Oh-eA~r$_pK-_GBHtDxf*?3uNj)@#$JK z@7$!XK_S#S*wF#$=&!RhS-!s6Ylw4lbR<*N z2p1fp19H$ZXdj9kd2fyq!_3@S&!M!Bel=vZuL#5ek&G~HAjKDhSzL{GDBUnaIYI0F zH8y|D*Tm$(r3}@j)6hxmXr>tStFsW5#Nff(#@r+yB~H_1|Dk3)OONV{#XH5T zMs6ocwB>_)!{BH3bE}Vo|DNWusI-fgy7u|&nODy*H&@DqVmhANy{z^db+<^J5f$+* zDI^LDyZ>R~L-?!mMbN`FQ4>eN{)Rz4OTe4Dk1XYl*ms0kUr7<8=(~OT^6P*UuemnE1`TiX6;F?yf6_sV1(9xQx$|FA6ygVuBQy7lW3xc-m^ejcza=!g zO6c@m^`0IW>hp4_DD*UGRh?o+x$}*xvOaCh3oX?+)i$zbOowMalp_f{$_Td$L8GxNo&9BVv#;Ff{5NNF;4Gyv zdX_qtu;@q%Ak|Ud?BqLjX9_gP($kCzlc{TYK@D?W5`I9V!7tIJrCON0oQ*;C-NOST zYP=sabi=e8t#D(izKZKAEf-?`^2?xzTMza-KLe9py= z4pmDLUU?y=b)kMYjRrz3REWTl@NC(aTgTrag zbJ&HvwyyABAMTY%mFI$+^4rNs$BEV@e|n+MU4+|0!43b?PDkLaeq1a}orf**kI30el`(yZBBBSLQR=`Jaj#Ti_ zq#7D!zGzt5NBnxP8sed;WkVD#t~DR({2 zksW^WtTv-GJ08Y~*9T3qbjR{&dJ{7{bVt$i2d6#=n070_ znvk;mempor%lFpoW!D?U!6 z5YGuimVUy;Lk`ke%E2oHY2DH1r;i`E^f$z)WGX%L0}gn{(K(4a86s-aYh z#~H43O!CJFt!u)AHcwYk*`R^S4NGHLFBtq={C`*p!{NA&U!WF?I!_oTvG@$9 z=~z|pd|H8WieeC~Yx2gdUc$T}EFBE?b`DuAg~?FDc0u~u=baL_UON&*CgJ(COeJ*Q zJVgJUIbrK)U{rrE&j**3+R0%Rl~KHF7uzV+I?h7Fo^%?{N(mxiJPkx+Yp4hdP(h|n z)Xmc{H9=14c%;TzN5>%(x;IY~x=A2&W-=9+>4IVoZBLAzD5!C9agF6Z>odamAmIMu zM5eDLIgpl5tt{2`s+=Ut7UsS{6r@SELbfG?u|t5{JWg3!^(6{+G17$B0P ze(^6pSH-#^wZI$e}$H`X!z|U9XV>9&gPhbo2-b zkC%HV75{*PFqk{>y*{%#Fp^r^Nx8#o2rU{5ij(0`g^!eoUQ#&;!^<1g*>OL6ig~1T zR}RFo66S5dlg!lGU*rglEG6`5S}(tPGcp{cb_sG>ToA=0N_U*x30JlTbGO)|9z6O9 z@^aRE;w9wBwgh;$=hZEJwp=el4sWZ+_cBYn3XYq>8Ycn$IG^}b{AO}AUX#6-Y~crV zK=t^&*T%!Qj! zY&rlQ8Rg)la0`eym8M0c1d=yYH7(Tp&W!$oF}wnTq(xv!5pPzkyHM>^?4a$q)RXej znbND}b3J&AHBDx@=L5fn{3JwZ*Kz}6#-2MEw;vyf zP;;EW==lv)xs6{sOp#$u@4sjD9)Q{Mj0RWVMI9jo4El&87_N4K33`Vr@GUbOv4Ee3 zIxNU(TpFYepCo_Y!<|3>q}rj~2$rkTG$HfXo_2R`|63X4p?7p0wdp1%qbY{^+lo*7 zpv_lI@LTch0VA$r&_fe6y$*8b>Okr++IkF{gV?RkoA8As{b_=zZ>TNgP!Ke}PGhlZ ze}2vsUCRrxBH26ZS4kE=&!51MiKbyw$p4nA5_TN0+|ev(#S1j#mvbGUT&7ey7Iy)) zhdBAHVc(8R&^}5e@<6;p+Cz! zP=y{N*M!o=Y|Z8lA&%N9-ny}c}f}gBs7^rsnY1?{?@O=iC1ps{*xjgEhox~Fmfy(BB|?!Vs9Z3 z7Po+EUH_SW7$~B=ZHGV4Whwd#FEFyTd-N=x{A}J7rjKZEZx50a$L1TCTX}e*B-^~E z>J2@m_W!_IRzZyx7y<+mTX@%#^(sMqaP;@dzu)(>$iAKRoRoR1O*$GOkVRjVJa>0f zX|mCmXJeu!67~Q#VxELuN9Stm=NyJl6b79FY6>(ABc}vL#6v?v$@ju{-^oYWI)iGR z1zR`t!pKQO*-WEvBM{JxVSqc6yugarcs|U$z1S#=ZTJ{gi*!yflrGvnsd&-5@A;9m?20av{hH8Z`$BwI~%s|1}1Yl2Me4s3|^gJ6H>& zIlo7hK#X4J0kyl^x*;ycbJ~PA78F^CVw*@C2mg~>1)$1lArM^kt`&N~e}8MCM$Yei zB6XAXb9;B`u^~}h2SpdM$N?sgMJ9Y^Nm^f)8>C->9RN~}YQ1_iMa4(Q{bilbm`FOo z5%R{se5XFBoe`Gm80Da5)rqBHzrH!!nkMgUf1fs-!T&s1H~D{+y-7(;ZP~R4YxGmu z`%{jR@5x!Rb9wf1KuP8vyk4PKdgHIA+BZE)AW!H&8LLPho4X%JkO+1EO;)26u!Ym+ z?W4?f^7Ssz`#{xsaJbq2oND;Zn>Tt&ULQ}yH61^?+~t;uBg(!J%xY=J9k5Y1KB7Z) zR9QMXSbDrS<^9y0;TRm!?2Zb9e}9s9{~b-Ca|1kh1m4&Z3k&GPgq$&VJc@XHN$hqmCyThyxluv)d81n&+sElzcKVy=376Z<;1 z`Y8BBsjhE0-2DkEiG&2pt|$2Wbg$(t@*t;!eN$27^Qco1ot}#W1sZEU;kIINFTgA1 zb|UPF@)q0q@|b}*q98MmhxMN_(2lAxMogS4p@CoJo=hyPhTo7e`YAcTu!K4iHd==z z)JnUd@xV&Q3-zn%w7T|#aBY-{n_31G&o%IGS`9zUBEEjRMh4Ix;G)}~&1 zLU?R-yBZ=}TB?tGa$Lx}DG$H5MBueizb=1=Dg^G*&%ea3lU+n48 zT`nb;y4V`D8@BcC1M>}n(B{AI?;j1^8Ey-?>u(#8)o<_YZ8ql^e8Mh=RyeCl4RiX} zBOO{ZYCbvAwzC0MA)wVvu1rcsKE;Y#x7Z(30Y|Zm9Ny?$gKWXS0-^uI1(2(fHkX<{ zSI8nY{cu9!0T6ZXxlHmu4Wx#}G?8HR6oEBtwwgLeajQy!Pd)6^9sPf_YA%2;&}7mg zmcnTcSIhFO?0J1zjqWHc2S%cClz50t6=F@IUF~3Z#{Ey7k!0G=OxJ!T5=rDWYRd-PO=6Wd3JmHP`0){_kX^f+ z4UCxkRc)7=2Ln2_9TVHX6eY|4F`Ynqc&cPgNo>Xbs8*uxH+&=+PJqYzV6bP{nnX=oOI!vyEonFgI3)SH|^Cru-qNHEVE}} zUvzpVgUA|xu)&WX=88kKTPQ@|puP>hMEN!y5~)vNScC=Sb`YI)>>!dAjUy+uoseiT zMA?j-+3C~MS_oQ>)V*TTc<;(^l)b~bcN!aHcO2O;9>g#3hv4&@)?58;)n!VlrEflz zN;ZK9`=+{!Pk9uR^wA{pt8I8C9ky@s&IoAQ?rubMZM9BK!EsqjKle8UG8uy~(wHFf zc^N@L`r6EH(|7s3>wQ(8Pqrv~J`*mrlS>t5e9L!}%@spG_#8yCa)$oBY>1jjn|Gi& zb$Wtl{wUn{*Czb;DEvpGJS$bz0DZRX+QmcH7s)Tk5Dw*$su(h9> zs;6F4pI~v+j4cXpuu+#oY8pD#iXK>l1zErgn1$;!Ey23Duz{=HsH+-;>tor|Fy2Dy&@HBApHA9u944jZQYIt zR`~E{ibQHYb7+cMSo&(4LErp}Co>%j=Z(aqJaqlg!_RM4;xAH9WiVmqi|;v#?~iG) zFIHtds$pv2oVIt`dB=sczX^6{`EXD^Ct8gO?|krqG6Me_J>PZvaL;p@`3ma~{1g>; zftu#t+KZgbw{7xO4E`Q-&z6Ora^v1#d0PF9{5y$;4AqctWWUd7tPw}s+}44ldac<= z4R-4^a|;1)xbrJ>&=b>mYxSZ2GSM!{2z{Ig{)Xs?#a2*+K6g!&YcA=quxWShd&BqA z91xnlx24O=K(BE%^1W>&n-P!5$6SrElhf||jf`{ypEmkSdUU8hLIixt+Gt4*g}m0E zYe{}+@{;buK`}Yfl@LuQJ>{2Tr9ezb%sWNPu>3S=aV^(Nl*~|vADQ(ErT$_-`gm(4 zkcx~e?lII$RTB=4J}U2}B2MA(x_0}O@a0aBW$2bZLK993foP<-I^ZSRuSvU@b!$%{ zMq;(+xsfx)fdqVIb6&j2<}{+%U3FAkT9dt~2jgeLHN>{6JzqEl#qpLM?{i7z9eBMp za!55RdFaW9B08!V+&WX;dw3I8rlKb|ZV7Mru^$E}qU-6Z!~w z$)_syZ{lor?yA3Zv|BRY-sRVv|KWh|n_EWD%i-;mwUrmRL&$U~Emuu2Xt#H!nJg(Y zx*8EXLwd5s$3)otN0{mBvaIB^42Ada%mxY!iktM2##5&-(P(X8)oAX3$#nyNRu7Ha z$COFr&n_l;aI4e5eU-aTEF|F#q;#rYrd&zxF=1)oy6Zlj5Tf^KD&gdETt~uF;hWpS zNSh58o^i#o!n%~_6kl`(eMD5lS)T0F)Vy!-b?@LFIOSEVOB1KAZZj(B@m>MSpPa6o zJ*f+QaHR#JJ>fihKVmLd-Wt+E^>0(Bh0MzBtkH^^8oN>>Vyg5~#g^k<^gUM-yApby z@(P?prO6)}%F)$~)`} z!ZdS`#glkX)Ik_in9>)Y)HnA?5uv)K)UxzcbIej#acMWApV(+Du$=xrxaNJ=%!ntM zPt&o>68l&*5)Tu$*rwZtPr+jZPPB)o#uT)QtfE_Y3xF*A-kth3DN~}7OVm5k`@bN| zMCD~IRamcW)fRt z3WC@ohKjk+=%+7h91dJ&qbA?)$)s&{)hhTq|BmM1B)vSs5_6&A+|-@9kTNeK-Ocb} zB`+S_nODH)s9dj;6zs0E#G_57kbI_2!@A{fYALEK<7KB6*3Tq0(~-4?P-0iKOlBET z4^=y^n|9l5eBBpLax(9JPoADo>mn#iPi-fUb=yd0U}32=`uhMYM`7_Lvg(a}Kkk#! zLyJ}YVyY&;W&J{PqAzF7|MsyrDomAO!fSgz+>O8!qnU)(E=r?2MbNWq_0-rlFyu4$ zDmJO(9r0O<%_3RmT$CG8)t-ZyQtH$ha~A(F9;_0` z8C2c)6hLjO4F^d}n;c3s;8Rc)uVdI3@#r;%AdN*juj7kh*QKhLD=KOS63MP2ME0omrsNx45F{j#tncNG6--;pJGxzPxFaILn`8i|TRGuMd z%B|+jSzhmmA`9PL8Pvei`mwzEiBKOlbED!^w);X~tj87}OdNsl#;OjSwxAO*&fVFc zs3+zYz{rI#-FL#gbEWauo7P>}Cm5MHU?ZC0=v^ATw~$P(A-%JwSCZg!`zx-znD$^H zCNj{Cx{?dSv=!q7Dm#V3ikGfH9T7z#i{D;i+MoaOQLwppr!861@jw9n^&Q>dr$oGI zQSzt6a@}geny<9-p*aFig922IW^2hZlYqIHDU?VPQ0*iJ|Mf>Z+pjDM(B(({kLL~I z@sKw&Bril)5wZs}7=5w`yfP~3wEr`2{_Xlp1f=xG$N1?C^$tPP?hK?Qzq3573b!@* zPEjC#YIRW6CC?<{cYcZiK+_W4k|cueQX_omGWaYWHbL2OOIH^&RFd6~iQ)$d6SoQ2 zCYkOwWES)YxLNA;-irWjsZAj=`CVbYsfB1Gq9o6>Yqm<4t56-l^)InXt7&c-MRDMg2 zG{(GeANjS}eqsdV6|*n`{?gz*m;5*K^~e1aCnu*gD04meNAN+f)S@~^aZK>(RAv+) zY}m94f&WQ2xZYQ6^IarmKOZ3Jy4d|KPto5U5L7h1u-zlb*{N3y7njOZ44YMsRP1m5 zlXeldytZ$2yOlR&@N&lnzDUB z;(Pz_-{03(o4wmhO!yN3axsNDUt$tMi>AajF43hKp%DEz$Bgntm~}%iT(5%|kwt5e zf2COoOZxMR@i&?G14#urmNOkfOC|O;N|f&2rYkRHphM~+8c5x0pbH*IsAD9VkpQuS z&$g^X=<8)`&&6=-gZEB`P{(MoA;H2_f0&H zaUg^&VrZBx3ks%XJ^GX7Bx%^)y!Uau^`awo=%O z7@WS~S^#+U5)w9J9s8y~r<>dW5%Y?qjFJYVM+=!QY+VXajp^*QT>r|>}%9SQ&J2s=iQXj^J>=eI;hVqAG*xFhkks)mLj7ipO`VpX2`mlZ%@#rKA zN-6ZeH^1`=aI~jW@8Q5`0H#_+YzB&?twg+Mk3O-=541GhEZ4rbCIgrP1sbip&Hhvg z=1v`b`rrN2NXQ`O+ZOT zBz8;R0W>qqjLQs)H`@=BVK-E#7qQw&V4G#Ji0iQJ>1~X_Q({(TThDW~hyk#IxZzM1e?EG>EY7QbNDNo7Iyp-N0c6>TgO#^B z%F4m%ao#cpf4BmIWP$)uq@8irJ^&dd+9!(_Bw95=p=Iz`4^rJn@qa3^*7hEC_>#M{TWKmeZV^_Us1-_flA`woo9b;m%{dN4;22j zjceU2yidY+_I(?rXC58oc!P=p@!_8m0;>-46oyKfT~UnOFV=@Xc7gAd(Z23yS8qxx zs$xn;@rlELzMDNW#I)s>&2n{aQ{ivF=&nEAuzv47fDg5(3X)y>y%3ubr54xmuva+s zr4*8YR#j*J`7->D<9?3H@qQ>M+S~3(diQr3zSV%06Gd zNNr}$=bpOffKv2VJ?+Q5_N6G+Wgg4@qR;H3W-v1XqXw2KtB__o;fe%pvF_~D9tH{C zq)x;9;Ao1GSAiF-$jGUAca+{}4>xJpu1(bN=vd0vbX^nBbc}aN(?i4B`RMFTenTLo zCtUKNZ zcy`}YftQp>MNDJh@6v647Wq&l{oP{{cBQ|2Pmc~mb+r;tmqPzNW#ZI{kD^K> z8Zs->%eJym7q{m!)OzK+sI9&p^EeBFDys`u=~1`1x4;YA%+rXs;qDxQg2t${Rz6Tk z9C_3A)BO622DkM`XG)PeaUB-Dd~Yd`kkmAswP14`E4{1}!v10E7q?HWdDM8NY5Il0 zpI?Kpfd-KeG2w0*`Y3wT4%ZeKz?%XZef`uN>BBPJis#aS=hRTH2HE=eIh2Z1`1K70 zG;y4-aPvH9Dpt89WMo8|r)t(ArqTZg|7fLsIt|BpT`=5#xJBC$s*bJE0X zOj>cOWC7ciI7d3pLk7y+p3+X*;F29)x_3JfdKMwnhhKCP5aggk1ta84{@tb z(ddWob#pN&ga1s8bh7I`iqe8b9(-d*@h7or0HLh_GLC^dMCY{WxnB_T27)I%53>De zj}^4%o{V`<3e)$rG~%KVl z5whmusLy%lbTr6LerS2EsZl_?&2&N|LRM#rQWfJ>KfNM@;J%*4Vj zgSFPWN{h0?t3v2;eKgA-0zgH^oo~6~w|`C;0nNK;#7=gjB=f?{=OKy*2S1!|{TA9VK*5?i|v~Ho+bm}ZoocO zS3oC_Jp6I=hR|GX{}99$<;PRrW*09qiP^On%&-hVNTadozhTh+Z(G`PrY&)(Sk`r5 z>{@TefEfR?`&2f05ckT?z1rbMGf{*CrfUj0x7Ci!SZcn^DoH@yS!Dyhi@A@rkhIR# z-Vr@(U1g`X*qvPJ#Cb1&(tD(!Gq$bpPxGA;8uoMMhsiZZzrwz*S8hzcDz2WHE3>Ma zV)ARtmh;LtH}FX1Hzw5)(N_LXn%?GW~+UmGIU#|4p4mJQjg za0&+D(>IDA50?owzxfxPxcc|2gim!YpNz{8jCWTy%L*H@vD!bIb7k8u_C*g%>tUww7M`uWh5cU!^sLF6=)X%ru`=W1~7{d}Xn$dkt9tUcLuH;?Q4)bFD|D+AVK zfuZfJX3AVh4e>-^w5(`!B*{m3PuQ*iFnTM)Tl&X%)q$0brm~`jZ&S^ukDT?LIR`TS_kTT`@=^eQdb+}~N_RTdf7Bz6!Z+XM^JyBy3bw@>Gl~_UlbR&}_B!&t0>7 zmFXj5NPBH<4@ri+tIof!o?&414bzJ1Pp>@jJxp4f{P?`x z<{@bRGTXGR{nlh$_2zGV?LAWbak_t{W|6unA6CKAsgvUiow3xi#le0&l1ne+Od{~1 zD2&e5@`AH|^p&o9pX2jcXF`PUElOq43tJ`dechNkF-uQat}yuWQpWA046?@ao4J4T zld}~bP1`lOmtO{O8RkemexH=B3X%MouNH3n{d9ZD_DXk|{=bgZAxe2CqT5(%<`v9z4LvQg{(BD#SQ`TC*Ja5qWBLhX0cV%Z6f|`#_bg zeENY-Eo(>PbOkWJTv~2-mYx(B`$SF{`JZ(i5wIxM#kx%2uDx1d#zuzeikTx&F5B%J^LI`p8E*WIarDtjAZLno z5IK5%@aOq`_L8d~)USUWSv`r@k{k*q16@9#8I&FD&YpRA@yttz%Ka{B3aY89AbXT; z+SPc1(&Y_{ck@eEIpeC%2$r zoW1xZedfekmwvAiAz`R;zcrBm#^RvPnpy}zDy~eeC|cAG4?YNm@Zh{YSXp)axtQ!S zI-lc>arb@m$}}PW-Now6X!LaSvmFt105ifuaO#CG&pkG!&%F;pPpaHRE()r_QYl>8 zj<|Z(Nf6$+{83T+hQUW}j4k2u^6xc2ecfz7iYdK$%v&Vagk|z~(G(|CrJNSAGN6BM zd}CmzPyA8gLh~a@ucU3iwXu>~Cl~tv2_HjIEWTRLtUM?E1{s|*bVpP)7XJ(sT)rW$ zJDe))6D?H)S;3;}q#izWBT+aoCE_5;(G#;xd^17fqc}~HuxTM^n?=K}to~Ta)n`A% zxD|jDp<)*{wGPVvyN3rre%`(C)`&g+gQo^}$X>lzwi_5KE`9%A?{w>qsAfK^`YNz1 z<&bdfTZ|B26bcJRzGoPT7~0)DvvZY*u%{Hwe_}jm=&1+P~uEwLnywIj*H&KfTr+kxEjY9D7NJ7ol z_U}{qpD#DFUNRW&jmaXftF$hed1AZrxFyi=3?~=TTr?FegkI5^2Ukw+5y6fsqUhO@ zCbDqm;nJZLQYcobXvoYfxb&U$EdzG&qOSd!h zjfdRQd-+^Beuo1W8mwUERt>xWXaxWQucLX{PT16Cs2YD zpYMpHnP|eZ<-KXYQb6F7QTwpXL*Z|qut~czr^%ZLl8XLV&MnW5j`--Wh>LL@&m3}k z#Lz3Mju4m1+}-oA;r_64D}VpQTHa@7SEAwe(cxRAz$V$S49QuTbu zc%&(7Xq#eJ?dS~oWWwI42W^a6-`e|@Gaij@iEK_1MhCDXOtDR_ ze+({jteAcM+gm}NJVai%(;;NWwsEJZVI+x=z}qW@Q|f>~Q8$Y!%kMa!{Q>KdKb^C$ zq7py1n7u3xMBUdhYr;MX`l}hB)**|&wK5Pc<@(V;>2BCc7LC|!FR<4toSWrjyrxmf zz2$BPUnsDTLdjjAP9qf5LOUx$BS|ev4bHj`R@NQUh)s8be|v@Vq1;HRp{@Jq%V<6e zcZiIS9bMcb@H}V`7Jkek7PI8zoxidX{Vgm*6r4nM zK>nrNw!v%UsFh>qcIyFLu+%!;7LpBmrW!DD%i`(Yo8zN(i7xPHI&Pn`=wd`ohj*+F zmsMOCuZHtIwflHm(YY8&!#r4#Rf!*=gsrR9Lk@QeI#ho^Eua=)rJueFMo=JgwdMhL zPoVPq{#hgB@YK%wJSp==_VfGL5w*+B{$&8Cnc%fNkiHABR`rkxTtUP5%oj<0(|UO7 z`o0cNV}=?{_JZ9Uj)W{8N0P4zU@EWF3+qVAZe;w|K^VK7d68cb z-AEb^VfkP;k8&xagQ%KP&|dx0hU46Pzmg-h z)p6Y15kBW8>h3mh6F;4%@$g0*k?xeOSw8hm!Z*27to${KLhs}YY*HYV6Y#gs3EKZ7 zai1<0TJHVx%q?Z2(TV+2-ns7YUWj^1eoe>8erpsXswI)gi!9G5N1yVWME=X=kHgJ| z*?!U0>a+A8!w1K!FBys`A0|P~fL@ht-9n{jx~M0{h>C>^Nv6yeXaOMqabibj>?ya; z(@n2@7Sx3;*XV;Xz0q0;4AP>&W)TOUTa~a-_t8@7bP3z{QWe}!NFYskX=zCbsPA#n zM6~0d9-q6sJ#L@H z_tcZ^VJbNafe#<_uB?O1n3RjK7FrT8=ZDci11mZ%PCkCj@6SSEl#%pvn!IFSz~psj z*p~U>A<1XrDDE>jJloluW?%qY0XY(jmH=O2+i(7+N4!nK#vG74pc4!Tjk4E=i9ee(CS#N$yfgbs7nk}GYHWyprL|F4(n(2 za};Ht2HQy#N$dy`*vO(c3Dq`gI4mR*mVRRh|L*7p6nX2{Db-R5c&P|TClGQhz{K8H z0MJ|c7}2vsf`IQ3pk{CQ8!qA0fg?<}3en>>_^toa?ZsNgcZD(9+!?NJ>gbhe}8{(p}O>OGqQ#UDDm%-CajGz<=}o#l81= z^}JlLK5MVF_StieG3Jz)-@- zNlB=?862l0xv77-?NxSXi;*T~3SX&Z#_wMBki_zUMMTTaHql1Qny(B%Cowuh7pj|a zcGYkG_=Giyj8c?q_O$o-xhkIO3tgk*-srZ-!*(aFYujaWmq)ut+f_Qwh8hkrN(>B2 zjQBiGXx4hjqsT6ToG*fG2Ugbl)pv0?usB>mAPk~U%(A&sJc6t*0s{n!@iM=Il1jXj z0?d~>1%?Gt!lH_{!vk}{?6Sxz=STyQyWB6U`1+5X0drwcUW4Fpp%M-`0*b&~5U{k+ z|G%aERA|Q`2L)C4sg}9tU6_*2s8K|Gh-)16{_s?=9>~)ocR#sXZW3#rZqvH0s=~lz z4xza}?fl2mn^V*B?w=m=F21wnwr0QGtXtJlQx?(KbX{#!AhBlFlD~+Rxt+He4ZxI# zvNm5s9uhNs@U?W)8gz6%-$W3_Jzox0-EKwG+Ml)3QuEf$UDPEcDU3k>PF{9lPBxhY zN$u?^{2}*{U0g6z_^dYRo@xDb*PeI(D`fZv8wCYa|9H!}?T-d-%IYv<{bfgmD296q z>XU`T$1Y6eQ8>)-F)-m>Rx!~i)NOlE(n(@V`ce7m%l`F&*X`z4s~=U4qp^vZ-f<1q z^$GjNUAYGo&oQ@)Is+{SbaI0GS);tfV$XV-iYe3_G}5xu>+Y zm3_I=?+D>mCdMhTIXFPr6l@E3EA*9VHj7((=akHu!rF_>%(SPrK3tFWP)N=?EJ(z& zVO#XkiD1Ik?M}aFnlH5f+9_p7}U?5&Ho^G47lWG5-E-mOym;?A^oOqj;frde@PLuG1Ia7b^l z?Q6o1442f<#MyqI6CRr3il%qpbH9#~65a0Sfa+IV9-G9l)+SMKa&MlWlqW~|B`0rS zCzBG=y_>jwo?Aa3cCj3Ez&|(X^=W#Ywfcw14ni(CuO}5o4C@mT+RJ?oXp34dq~&JUzUcXQ8R`cQpD{wH9Ee$%yxmnShA0>@j7z2=pHQI0KBn5|w zy17aZOwe`sYWLIV&XLLU!(#t>U|~a+F7*lz59W^F-aD{JvVUxvQ~3N?^D*o3JWef^ zg}&VE<5z?;>D7mu-)a9Q ze-d017i81yWLq@LY$q&9+mk1=4HRv-Y&PDUf@x*-KPu8(GmpFeHMhk7Fja?_`DeIxo(1TD4BiQoUW6{8iY)3B7jxDpOglsKdx#_Bv$8Y2 z_R^1TjGz$Wr;omP&Mq$XH0Eww=s4s8Qt!lWw&UlTO@mI+rM`TTdtxpREw0tjEWv5H zz8d9<700^IFK^@Ye!S(ee7Zb2%KuIFs zD88Yzjx$zfe#%$KY`zOq;W$zEURVmXZLH9Z3J9%P$PHdg$QHwD?X~sJsBO|E*V{H0 zZhK_frP*OK-+tdiThaX~(&K5qHEo39`AqSxCGY>7AK^W6u$Y=NRQTH+7ME3gblm6& z&+}!9mG?_=E#?;SWQgkQ2wxgr>tB8Q%5P|X&Nj$L@UX%CIhR*se4kv~D&-!9VR)tn5J3T}&A!QJ_xK$Rk$7dxiKvcWZ{W ztMdUJ+5vDYS*NTexF=bW(#`>mr8)W1v*rl6l^r>xJj7_Yk~FQ9upvbdgdR%aIW*o0xF#YA#? z>1)fUTV2L+ytcao{gx5#1C-^BCjY(zUBd`gGDC(7Vi2XDFOFTgbaTlcXAR7DVWl*8 z@)%A=boJzo)eEP9^=)R8EiR`k{9n=RQZSvgfg_`E)<~P?f4F(PMWmJMs9nfya6TOx z6ivsBy06UhAmvhNYLg2Nr;uqKQMfb+s=tjjIb;}A%)4d7@SeI1`rZo$kLOBXrW>D;I+%Bb3eeNwD??nT>k1ON&+ zWf*$dOt-hQZ*%8pmAk$Y4vYzx(s%ap*bS(!IYx*5v8Pv-WF;>NZbhG)K7fZW_$G9C zq=@ko92p@o=r8{91|Bmx*P@lkESp~_Tjeo#V z7JzEt-zA>J0cggz3mA~ONb-}uU>RgwSXA$<{wn>KfgK?%YFn2La)>0{##^IO)0A!t zEuYJQqzs2}u;tglAMr}41h1n~kr3BZ>jMI){MNC|nOS(=wWaZlz`YjOnyO`xzpgNT zBvxrP-7cAqNagPok}7_G^QFHwdh-x3bpd2SuvxbhrZ-l*!H@YnuAWALFq&O(^Qd!k@C~72@;h&X@JvI=FCUJWu&4y!ey%?^) zjI4Rle=*BoJkUYIw?+MO*na06gy|zv^_5zZHqgCP^A9JHut<1`+g-a(-^}@}Zoa=( zJzlA>sL_t_$_Vul!zxq79Tt;xCuV|BkA0jt46^!)OWL%>>OH90;Qmvc@>NQP>R>A{F7g5My6f7E7ytH zkrbl{d#SqbL@&zkCgHZhRjAArCs6Q+}E(n&QJbERS^K6(0Akp%W3Mt9wD0*{WBhY z1v2WgR-u5iRw)YP3*!3ByzC=hAq0v?6Rx`E5RH+X=u}6nw;MB4D`xU)*w%}L$Vo}GQMp^#^uuMiJ-%Uu*;44 z@2pl^{ym`gV{2tQQsZwe|Lz6#YP7-Fs+c(+6Xgn;5>t5S&7s3z!z?QSVH1<;@&i4~?vfVp*2&twxWlKMT~{sKTA>QYpx+<&SYBY@6d#sW?dcIv^X7n zv?o}21q7W^guxkoc!Jk~IB@8a*9s}pO_V(n0DWYJGcm+hK563=>QoCuf;=?RAR zYZqA%n(%OgLVE2u318W>37v3ZwPC|V=8`u3bMb{kUmX|$KzB8KCVl1 z+J`T)KTyLKxk$^SDnRi#T@aA+**zFS&t89c8#V_7PyQ(JBMKkc$lVbOAU$&NmK;wx zRnIOZY;kw?eWW^f9uqNJRik#+plF`a+&$MCmL@6fTbTQH?-0NMX;azc`B&JMpaQ~n zmXTS(%g{&+2(ypF3p6j(5+Mi%QH)`Jf$?Q9uk7n@E9Q7B`x5FU0EUW*>f$2*GPuRb z`qwLZ;kqh71P|~}PyZ*JKLVWgmdh*}nB9Q;-+%4T3&5$D&5VEp+ouwu?;y8MG3TgLh5xwz+&?j;%VfNL zWnWtxR-E@vWfZH{dCnVJS=9brPqbA#ZMVBTMa(c}s@=H<^}`QZ<7g4^$#J!i<57cH z^sT-1RQnTcY5NmX?7;!3euQ_ormVcy)9VYt@eu>0vkm?@6Tu3s!ef~@E%MwVm*V?6 zkwqt@&iSu{9FdS_uu|sgo~&MEq?*g9fPV|OY`gE*4~ox_kQz(s>h~iS@lN9s>DCPj z;NA#AV}}(t5;X#k-GhrKuaQsDDG^Ds-oYkx0BfY9A_nC(#~PW!)f!o?Ckg1H5vp4<_H)&D3zOMBVTKuPKXud6U+QlU1qg+ zCvP>1bJeRqgb#f|4VO$dcK(hpm#`a5k$(`sRku`T_@NX2)l6{=EROTnsoGu}Lrs_a z1G;jhe9`4N4B_+gA!jRwP=FwY(|MCLv0kM86(Tbn45Lqt3$+O#v6$&0NPGXYQ83z$ z1J%1>S#C4{;hwVM{&#Wi#z{S`R*;CxcK>K`!Dzw8j_M3b0SZ`Re{&f4rM>#7W3>&G_cQINs=T z7d)By7vX^m7izQyd#en`i~av)g3fq)6`$pzb1WVoT^UskeOzaX1<@i373dvrt)_aJ zywJ=wwd6BSiLwagJv0*RX?xBZa*DW)zHh(=S#G&5%6%nx6N7NG)@M~AG4@H_6+?5E zq2<&Y{-EU}V!L^!*ON(wO$Kcrg)KSEZe-uka9VWPwFfiI)+13vh6)y)9EE#pNr=Nf=F^zKA<)F!!+eMbIH~2@U zE}!MYarY(r8rnVC8|pR5JuAL7cjyLBMfji92>rQ;0WvA&S46nPe-S^CGE*uW)rEzX zsH}}hzV~k1Sa^@qHiz?NjuM}{gcYdu%+N6_S4$#2O&39g}wD> z8ma6sANUmC9y6DX9_~E-$9~sm8=BCyo zZOKbDtEb(=p`N?tDyl?tqWh2(ue{~o?2fJV^IOKWw!giQw$>cI)V3#`L3$lBu6mt2=^uY%D zf&x0(<4Y>=b=se1`Nr`Y_DoCmoUzUw&>6i}Qa#V5Jp zG1hR}#H!VZsqI|I z!nV%tvx`^6(q&_2STnG}=@WcS3!(Ej zJU#|8O`_PL`AM#zK!gHRbKuquw$B!aPhO<`FBUBS{p@ls0Pn^#V45Q~raG&6<}t zuoGHMuMB(TI`4u&9w!)BG`k*N9>69Vpl$krZCw(opk>v1UyD4fy{>-F7!7pqbCf>KLJm1L~QLGrR*$za)IeBEn)+}w!sn{`6OwL_u7TYw?mD~oH@)+!5A zSyD|N#T6LyL~NU7%*L++nnW42_^h!{YNH{(fQkTzdM@7&C?sicD7Wg$Um~QFAGA0g(aG)%iEVE-boK+^e2&Z zWZ?0#9ryrw(`B#5`G>Hl!Ia}*%i`(X0Jz09is(83!2 z@NwV^$MXl!0tM8g0~?rELZjk7$QV~rgsr9|ShV(j_N(06pH-174nyAc*ku&C>mf(! zJ1w#um~hs4dHMaW)%n`KRA!z{_^@H*yu$^WDz9%gYai61RgN_feomHZ5?=hyccjj7%*U5u9EXzwDnbE67 zWj$-_Hcc33_~3KB_m$2|lMBi}*&jLs+Sn>l)OQ3cYL#CJ=_(~8&L3mdN08g-ly!N& zgoFPfY1aZETqK$7TEAQ&=~pB2imIe3sZ8HeZHVxGd-5tS=;hbC=q9q@B#AaO;dnCd z9$dMRx>F&p{o)JmqJ|YhPUh}SrJnyG+VXhIs-L~iM~?89t^LgeB4TUVI2DB9-0v;L zBL_gm4uwx5xN>1d-A4YT0A$RIC)c{{+cq{)w!nF@>6n4?zxR9z?3sRzEGiNK?*0Fz zVjpg8_W^xA8#5@QukPxaUE~y#CCUIxR`eznO7<-^rruJnEzg3My)2Z zamwoq@^_l6v`1X4Bm zz323son|0^_j*g?e?K|nUY`ySuewQUT1wzApn*lg_8odvMxtKpkJdXSh-hdzeT&Z$klJ9)bbdiBPZXOxpNDRh zoBdn!G+tT$SW{P9(6M_-tB?c*aRz$={z&d+zYY}PY4oSR)v+TbMkBynVn{lTW5n72hiaXI z8WjIcwNhvMS!N28`*U+`KAo#R)B)v?&&l^!_M5XzmdwoYI@VK5SgVbwHd(Ht65T?!q#2AE1P$^z zE@bW3zabm3sFoIP|AR zs%yc{oT1_=Nv>K4YKvT#;Dt&D%Ic{aD}sqZD@vQ#)$8v0pW}2|5Tyn*Qg{@El>fuF zK>uM|Q|aql?j`q@yJJcDK2IO8Y6EJJ?TT`b^2-ewL9hCM@pZ~fwT(LZcG(^GF+!qR zc}NLg;_pWVfKRa~*Ga!b-zZw~PS@kojgEh!uMQA>Ex%Rq{G)rl0SMVATXdv<=FI{H zKHZ`C(%2WV>=O`u$viCi+5d^Yi9qz#$*_w2M_~ijKAYF=^806AEx^KNFF#uX&jGK0 z1lI0bCB}$&nO6clwmy+w7tk&#Vf%o!g>Gljl$rcm&S=B_Z{!OMEzz zNk&UMS@!pC$@}pgH4m+01gcm!1*Ts&$EWwd%~DP5im(y>A*ZS0TlAUzi+5{$VwI_a z0`A{gXw@9|hC(CrM3{92OX8?UdMGaT&Ne5xN65sU!7PBbBnOl}!tUcM<_!EY@^h97 z)`jkG?d-r@xraCbe`n*eIQTLm@tnOlqutH)xp;wGJ9N_qa;EVm^& zzs&tgb)6f4fqI%{b)4>ROJn8o4sJu~1wQBArkH`LMGZEU_*M0CT#|TMQubx1KoQn# zqHL4PU<<6LE)2(Q_EJ(@#5MU;tM3S}82#?G3}OY5z1*9+$;;oiUybSz*VBN_8`|#G z77aaBbMqHVAo0>mwR+Iz<{g3Mp z_F4}hdvlW)&}vYrs;FeXVtg_>@4lJB=pz708t;N>XkcY<3UzDxL%k-u!$3vF_p`hq zO*YWneYFW&cel3J8WYL_2VgO=lj9*q$Y`4wDH)(m_N+`?hHZ6%=F_{Gt$-OrC|E7_es1|<-}oToLZ7O) z=;e&Yu{wUY?bNSiGKH+tEh?zhI03{m~;y7{-+^op|#KPBGWlJ_rBv>588=CXKSHd(wU zFDd-<7rE{3tD9~sx9&MzFQG;9216kAC`4tvL;kN8*+B<4pJlCEEp1||r@*H~F^t`c zBji;0c@#M^QV+FF@i}xJ9VHMBHqe0gtNa#3=!|@sq^524%}R%L>oG`f*_w~Y;k2>M zo5_4m^*kUrgDl>+8hKqsW5gdZ&go7hfb+Vl-4&iHtu)Di+M*zxjhPJbo9e?q+!M|~L(5on=E+FO{Mpcu6kd5JrS({|DYmSW` zCi;TT-}nn%*Y$h{Zx&F1?=n36g<=fcflu_GkYt1j`?=K$axNK`=BPXWxuqs#`M$MA zsa-wpc13HlFB)?e%l#zD|Ez!Mk3_7m2*PsN&*{I>fnR17JQ$wJ2|h1aWe5*cmXV>h zt*jy6%D`bzi)%&Q@O2Hm{ORT{jU`T87E4_F&pqE-E;BuhD_U7PZfR`VVa1O@Tqw-4 z6|WrJFYzp=Z?Jc1pG3=nvP{^)pd1`vbD-_Kz}kMAv(jQdnb zy=5aBABWg-w~FY&J{xcQB7id`>vsCZ0B0gz{U±iYL}(;i>^07GM&!mBaao58>s zLJC^X@U+bEKO>j4?Wv-2;f-jo)?(tl+(>T$>bz1meb4v1&Z#omJ4HPs6t)%nULG+$Y1)y(!m@Fbre z)m!DF+7VO{ExzMC7iPt&wumXR+@`b;Pc?pfsQ|j!qlj~yij<&z+lk5K?V<$eIOBL; z6Z;c!*V|K*iK(U^3XXdfJ2V<~Qpbe#gW2?%K-k#a?EeNzMihRv0Dr3`_MmW{vTAZX z?pn<&NMtUseE;-OZozhqGEzK~=Wr;8i_ILezyS#IS@)etd9AgIi+#!!1(LT__I0IZw$RSdfd0ArP3`IjZ#X?8rN=56X| z8bd6J6@&eq$ok!0>Am>FlC4~~ve;k+C0R%Ix~?<*0tO2I5AmMs15o9j`N6!Ga$iKn zO-AG7?ctEA@DWOzba=h!wQo)9d5e@y!!IeTwjl8eA#aETb^W6JrcLt)u;AidV@<6E zYudo%#S&-OvQzasYFnbHQ!AupTjV`P*`S@I~G;1=B zmfP|tDi*FX^*m)P3oAY4^CdAiLmktxANw>>Ka$Z{4~0_}9j@M3_&ke*wH`Z!U2a+D zX;=-61A^kPDS4L&`f?f?jt)aJ-)wZ#{T^JZ` z>qol+z1(_hCja}Vl-+ulh@hA{8=L(3Q~8nW%!d%@|3}`yP)>5+Q|#Pj9&Z(q{Mpvu0UXmwM)L z`qx1qP5p`{wc}OZ*4^6m$T~q-|4=*xY4?Wl{^YEUhNXU$x^hmBUezO#<59pk$hOzM zqm5I~5=RP5zXV}{6f>i?o%AnIq0B45Fhe2q8TeXiF`AI0?9X~lO_4r!-UWtjx}83I z))tM{Q458UtrnUDhF(YheYuL?{bVRyTe{y1w#$T;RjFB|x<#RET|1!(NSy0CADX7J zD+T-97quGtJGTOf^`%JS>xHo16`d|3qt_L@Fjpj_+z(o)Gym1S;#DqXQ>VRW+k^*= z7X6W!!uLcwJLiFiHi0Cw#UUdvr4-dI2K^ZAXp!L_+fWm1wcH{D{H`Sb6)to#tnJ*y-nvCjB_B0Y*z?Lu8|q)s9i%w&oh@b`N9jkhBYo*z zEFBBAzX>%;`SqLRNEvd|KO!F0p(Ss^d`#^PC99x!^A$E}9tF5>^vu64wQ=|3{mTIp z$PU}RA(PIoDOk6{%1~|Yaf4@HB(}P=_YV=filT`DiziN zTa-3ayJg`nSbs5}6X7Fvn(^TNQ{m|GzIitB#(V8{mjo0W$E4c-Dd*`bx%yby)>m=+ zb`M|SNq8j$*&nz%m~{O(-*kjwxh0X?A5kLy@fF1djV^nWowcRWqHnCxGGph7=47W= zAD}n(KigXG$Q=dwOgF({qEFrJPX;T(tdV<3{r#eR66x!c7S9kGd#~G~?G^8|bVI+< zw*UD?`}3yCLK5_dskXoXkFTs;;Cxg&_?TaWRktQVeZ?cc*GG}J6}`su)l4XCiVG3T z?PFj2Gwn!{Aye#OS-3~VokledLi@?h99V75CHPSvZ4jvwSlxG&Rjxw`u0L@>uU2~d zwb_@UW4Uv568+kG(c4fb=w18dFIB$St`JMNomINGeJr=X7$E(LMDZD{3-NS|fAQ8) z#TaUUq8x%B%;km_+eb>(Y8#ZdXUCKAz_=iTQ)03g>df0=vxT~5vw0kiU`1!dWI*QA z(k)Vs(rqq5JMOeR5m)V2*==EN!49OO*N4aPz@!Q_%SGza3TD~2pRSz97RbIX^5*29 z=%(TrVkRPX0f{?nR8+3R^q=>>55b(Hb+&!_?IV?j(~HZ_eXPepTcS0UZ@l%zXbP zU&{QGFY~lNP0^e8FzBctuXo$Ow<`H;$WF`fnDYVEdwjh56Oh|G7NbSuh;PVbR=Agd z-2Q<8ZbZv~m9a0A@&Jh(i<|R5>6!*sq@m`ma&oU&o%m<-;7GD+W-M{R(0neX_?BqV z#AHITK`xz$Xn$J{6`tBGIW^RPQ=9)HbiXbdgwJ z8sr}t?!TqX-8W+5^Pu#F>f~%se zmEXiHn`I=Lm+tQ%pK<#0M$`OkmNZW6?!rup_!Q+b z%nb+{jd-NUz`?V&yK!jme>%Q%nIBkX}Jk^jvoGGg+#fX!wkP<$p&R%7%Pl7i!5ZN2)ZQq^_55zjokruQLapMx5k#$PZJq66 zK8q!;9(D9^1~xm@lPNvr5JGL^xl1mM5tjv->$gG6zka+EDGci18N;v^M-cRW)=#BZ zj*BqEm%r>+d^N2}Df+$>6G5X+4vtDH%VvVQ$m7|o$>mLhncYrz^nz}cl1PvLY>BPE zzpcoJI$1a>8Q-#Wzco(!W{2hKoOMj7Xf+}T`5Rn%S-QtrQoo{fFx2xnL%h#+C>NkL zQO-Lm=O<6n6=EPee!u%9gSf*!iX=i2Kax&rM$t7EEsZ=mA5x!5w*hjWxUo#M-XOh= zf913gP+2cUn&W+5yhnOqJI8o`{l2ZWZ*_=RJ;ec5BmFK z3gz~MZ0#_JRF59-!b=QT7V1~ZX@HE=fZg zDDlcP9ZHybM?5FLD|rPL<>&eqssk{T8+ z+aIA(7&N!PYN}j)6d57LPnd~QG_cIbB^d$=sXVi!B#i+apK*RA0cT{GNcE<^8f2F2 zH9PYH%*L8fOCu66J2G;KM1TJ7M94m7ewQ}CIj4WbVgRB{Jb zu7e4V|EETgaT0bT);Q}=JZ;w7j%l?_Rh~u#-Ay-5`sYb!|WNyQ=3P5;; z4V!EHvGi9cS!5*0`ShD{$`>4MHeHHIZXElII9})9G+c(ad(1MOXP7+R!3eVAzcar{ ze?4vCI@WwR)$rOxBpAdheLTty*MNUqR6R$MkIAI>W2deFjJ0{|C-q(#v3p;|E(0q; zwNs;_KC>1Csa1hvtfrFd?IsmsUY`b3;8cvN`$jY9rH|2|Fz8F;)MhxLj`Kk6CwK+gahKsDwfhnY&^# zA<^llgUR;5wjw!@vY^~#6hC#zGT#bE?)uWjhzSLFog1zxj!kHf)B-T+)4FWSTIe^b z={2E{V3V*DUk~d4;^kDdk+R1A5S} zXN76moartMlmit7pJbKu$6q~`a+I%;JG?$TA6J8lw8=m5t*8@=J(M_V0ve=RVX=3y z)d_*2>`EN%By=MLRM{B};&EqtBw_)0hNkm`nNZo_4AZ$nWPfwwbEec8k2L6RMN3Wk zjHs?GEh9_i`~li@4hKTUgo|WyPvA0>mr;xa3PH6scmxW%+S*A2#r0e0!Za4~B&mVhSp-*Y+9qN5-VhVkjVzMQ(DT*qw%Bvn{ z6|PIyE>{c?*uP(^RY7+6ewTm=_(dT$;a!l*cEVe`F86U3>d5WFh#w}geSN$>GxDLF z`Kgz}Cr(rG?QGq#)|O1PFXRY9?QjLArtN{saz4E`xHAiHI6Ra(Ji1n1ab))?dthWy z^?O#-W4Z*DKOik?*0i;D+tfAY9ydoz^+_SQC{axUTBVc?ZipP*BUOdzsb0~P+h19{ zF@Am3a-d>kkTx)lz6?emsaaa&F87>L7L&VD7E@sEZpMFWz|4A8@Kl0x_bh_&7{R@MqztC!slh!$NUzMvc*2z zk|8OqcH{EYoJOORI>u%M-6kI{>w*$n|Z12a@H>#5O)zgSl|9c5473V2MwddWmIG0`` zH7=jFzhu15E4x;{%=q!0nE$LkM`GLM}#jre!-6vmoP=v`lQu!6HyQ0)~$VT4L8R196QKm?4$2 z9G-wrs%y`{fet**0@Sa{;%ieUvs9{$Tr3Y~CBlRD{oz2b9bcZ^-uZKNoo*bu_AH-r zf6P_ZrV|$}U~1R3ejMaK#s-TL$l;fOLKk@;EgFu`5L7}cpWBe;y790 zZj~gsdh5qMP)}I!E> zHuv$)^-@KkjuNOABf$zbgZ;#@KNfv~nmpg~4YVDVi92_?NG1cXInb6oLTyq zTEG;hL}@-H{=>B~enJVTk^!6#lzuSS3~D}Je@>efc1QS-3Xyn8lz{rlh7;dIvO*qt z^-Jdq(bIw%C^iObImPnnX6MjRX;SzkMJFt5SIqBHE($R?sk;4)W z+{7pld7zHNT*Tfm3jCLc_x6;xYCdo4t93$XGGXQ^2-Q_aN;-U<9-;L3xH_-2;UlV3 zSE4lB6L9Gdl0%(yF4NPpwWiWmlTEoN#aar-yJ=}P4FfXd3j$y3*9i`((iaOd6Qyr< z>RAn0Cv=XuHPH0vEmbX*B^R0x0c@H`;lmAw!}B?`+orWPH{CI++os84FYl(jm5w1N z>2CA;WXYqJWjC_PA1<>o-Z{#4g%hr^WS4ACE?R>exydmx!wUJE+YMK4?qt!l_P^3P zwPQeCAqJxF66G^7Ftq<{8vzA*)hQy+=7Z;%Fjo`TK6S~vt zXbV@sJV)e>c-F?ODjDLkp=tkj$G>vNQq0IQZwBaWQ$KiR{ZG9%QCDYydx;nUc*Vwc z@l?Y*A8!saQF5f^rYnr;bWL9RF)@cvY);Z zwmQUTOJq{q4pQ7iz_SSpkE6p=Q#bw!)Sp@X*9^2R1}|z$^%(7!tm%O^wB!(}p)oOq zVY)Qg)2(O)DHD@DJ>pew-R!HYk$Ie2F)fc~Y)4`4Dw|dfz??g#cZ3h+AK{p~T(XVJ zrN)f4`B>F`o#3z;#(5piJX~9rh|j2Dnk>fOW7SgWG(9W7HJO*c0(8KPK$k_YUwe&z z6V*GfV0bG^;zfxub)jR;Tyq94HA%2Psnz5gxqSr-e0_w=+cQmntbvA~fu_gXQ9K6C zik&8qjN+7Mq2oA`#rP92Y6 zunykXOBazX0sCDS8YY~To^*b0a=Y!*m{0EUFjpi)(;EA-f3$|MW-sJ*Nluwk_>Cgv zTZ*@cOi%2t;r`Q8O7T=p;jSd)FfZo2ZZhgMRehFssgWSeu4AFI;})CJx(^&)O|NG( zya(mzweL^M@RGEX}KL%!8lc2!d!eysRsI{ZQ5ydGp0I+*_5P^QY! zeMnSnu3W5fH%L74u!-*}oE7eLgPQa{qYY11N@{QCqccIy*ZBM86{^s5$HpD}t;CBO zynEm9B~y|C)j1IGn_S)MI*YKBUenZ@I!gy!9h;jcOWZR~j3`yk>?cSSCK? zR}Tv*Z+*vUu)<)|>H3UevQ%dhR0CL;l5HU!8*`^h=Umr{G%qb~X{FPUd-t28z2az! zG6H4C^5hkN%sU*-CB{#EgDUz|9weXu3E34hWWl}5!(x!W%J`1MmYPH@JzHl8Nw-Jl zALQ#03K!I;XWX`~VItN{&2+JQoBKoNt5-Yt(54`?Jb8VYQ$A)Zb%G)ilroy)@4@Bs z)_hykSDsmd`;+OM)=Y3DP_FzwG@f77l->5z>PN9qjD1!%6?$|X8=NWa2+x!JW- z7yU0~(;9RRSsq#f{+)0AYKKXBv z(oe5j51Hg9(3O=XxktV_S2|s6SSk@poo)XKIWrEeWSiBfF~^PaaO6>8_C)5tWyP{N zAS%F|n?)s~piUD;r0@VEhxF|7E=wX))s`&c-fFH7s=A!Y7Gpg(IY1=nfDC$xUXksw zC8)}$SXcHwR(2>koF=gGAoKZ03xNSUHfJkY%cb5%mlsTDh}*aO?29{~Z8D`WgX*4s zbH(^namlJ2PgIYZ8B=Vzq(8($PiR?!z2WV9!lJT>W~qbWpN!6enrDgz-8*yUU<{Ls zDW@DS!1rpZrlOIf@R=j|UC* zaC5}VAGtvl{(wybHC)1`D^TFKZ(VW6pB-OxZDbK%X{tdiGv(N0%b;k>NQJ%cY{Rd> z*{+LoB^;twfqH);1II_N89zjz70`Fe2%YkK2AcLBeZ?yyQe#fukf97%^-f=M-h|?JQ-k*))0`l=-t8k=QRjm)XTC%Y=(yBPMkCK=FJ+b5Bl}Wzuh| z>4NFf;{H~(OciK}@-Q6=6dLd{A+&{=&r%#mLd0% zs@wy3Jd$lf5|bzU-}Ba|d@;H3m^ENU`;f9jt-~~gQEImgM7xf;2uWmn04-y+`;mH| zqfGy+oj8gWY3&u~Z_rO|m1hx?Qwy*WEr7@pxEE%#z`p9Q&(~-K`-Gs=hLo1q=-EmI z!)~?z@d9Ax;h9fIKU`O|Tc5jw_QPNhGuO~T`=71uF}(T8T~oZ#%qDOy#W+IN=0lYWG^Fjy1ZdVB*tN9vd2i#uj=9q})l zKms9i!sgcYc5;FnCAqPHRsM_TJ;5s3zpAm_`O$5th*1#Y0CXMWw7~n)Q7%6vM6>JD zK<F|XLxP;kN1L^Ot>MPB%!-_*|EO*0OoRub@?bJD-e-v>tjvn zA04iePQ>tdGCy|Iinx{(eU}u*X6<1xbveYAuW}zV#2T;u{b==G2;V@g0m#OZP;Z)C z%zTUQSI_t*oyvxi0FdZok~MJQt`#!S?Li_dEYoRIIhA_dgky_S0EFh)b%Es6i%l>e<{mjN#=|vOpC8*Hg$scbQ<4BFUs$c?FCm z^J6n$pXSl-vqRN(5yR%$vj1Av=J%;Apj%tf9w#XuNt_B4+HCe$jFgFKN?r?VI$4o7 zmVd-NOoLGh=ed1nFY{r!#u-iYUP9*!E}~4UPQ;Mzd1aMBUJ=4MyTtAA{0JYPvs3IQ z5mKrHVCZ=;!nxesf(;3QQDbnOo=FKIn8e>3PNTmNIyTxpDqepW%x$fjWS1!OoF*05 z?xBk;k&yok#Sl36!iN5fwbB=;91)DmcGv(%X%5q!H=Ow?pjOa#u4;|K=(!R+!=^@P zcKBOVZV0&vv7P+JNTZ^%%87p0fj~leawXNocQQxhso`CWPgDr%v#@p}oHKK7IssyG?vjSGcFD^YVsVnc=~VY-zHc z(2Y3hY2>hk0G-1;bUXvKey${rWsho6tc;ZH#?`AnBu7kXz2|fuQEczOwPXlYIIKyi zA1o1e8-H5p(kp^ZNmGbU_S+O`b+se zYDc118?`kC-x?lnjKDcUmbHKrTW(nM)2f@dukqP4!SoXXKf8aGciC=ROzR>`iu~ce2wTafU}GQMjD+8Qxmotf4Z^ zw8wNH1=P=8*iQ@bGxofr2{OS3;eAva@aK_r#SbSqp1;_4zp|+o8UEZD_RF<(Y zk$>YJ(c2-IcOszt7${`=`KR4#Ee^I}1>~xy*fT|H%7PWc(A6pS*$8vT;JEfkmx{i0 z?_P{TvzIYQ!7zo$dP;C^yEpprrXat>_@x8c_3#>wIL04N!NJ~G(Z@k2|x?PP>lvqK;laRTLj zMki_8`v$6dj87G5FD;#n*0HO+9ki2Uz=pqLU$6I2BANGDg^%>X%p%T7PHM-Ccq__# zdw=nT-@O)khqK^r2a3d7SFVcCqGsMfUz~dw^j;WnzfmO&0U9|KXyifO?9QcD?S8Dz z@2C_9b|?XuqP#qA5j$CtKO%0_&q?~mv2h)>>YVn=S%PD)eM#Gbb?bX%^^d4mcW?WH zn|vFa^W3mbzwx^kIhykGL9MWoWGOUZ5-yv!)_Rn2#Q z%ww1ykJ8nv^~yU#Ug`H5SktZ|0TspYH|%39d{6YuiJsw1%XA-Zod6$ihUj6WyedIk!uu-ZxH@4upg8!W}7Lba3!{GgjC){q^qdwOjqr-OnlID`P+BznJX^42; zPb~Mylk%?Uik_ET@sDv=I7bZ9cL{*?d=>0==1YT9(_YOc^0&kK7JI`KrZb zK}Y9~13v>PBZBl^Roq;RKr8K< zqUm-Z#?OJH1139Gg@AS*A~v6Dl}0Lg|u)pzA7-7@# z@n2;Sa=_tGFnfO9aC;7qr=~pHb}xCM!4`ug0X##|uSWy}#BK-$dIB|hEerV(h4Es= zV6!6@$Tqw}WU{rMl~grf8T|@4kydBS1n&aPuM{?((Hj`VLHKD5sQkwfHW_-vXra_V z*E242$Ig2o6l@GU`<%Mnex7jXUn_}I{TUnxbAla%9ojT7&NFA*=~%ya-0R(YJ!-z| z=)f@Ni^I)-C~v!F{<2E@9?~&w^#A%2#ZLag^rI z2gb!6ELNp6gfyTFqG7vPsyC9TUi}`B5)~kqQ}8Gvcz{JLN~b-9;swQ~5$k$)!513Y z-~RhW#qIGT8OeuQtb5xt1gV8e#pV8lT2&P=6TQ9xWLE%vj2Nl-Csj^ey;a$o53Cx~ z{Xbm5vr}8D+aQS`4r?^JWm|>&E|qOR!^|Xdz#%WXO)5XNP7kKU0H);BlKy=-5bZ0e zYqS(Ctz4z$&-{3?CfJTHl5P6kDrN7@>K8nQ5x&1pF}`fY`1l3syCS$d|5|&0%*$j~ z6w7^fcNcv>geMQe>BURam5OgsaTw5e+KwpM#u4KsM6N z%@>CM8h<-4)1E)AM}5h9#vq2!4hB8DdtHoH$Er_Xz>q-;tBuweiIk@aa)N2P?bhMu z3wb!IZ>s$KoCg!KcWudpU&M-G=W$E+@A^(D`}B6dU~S3M;@T?f;=if>KZ&s+3femE zOyL|!d;I%I3S53p<|p!n)m+QOS-faMA43aeFI>Z;LVkWc`Y{AkiV_1%i$KN6%E ziU3wX0+fJ`_M91PnYeo^|NK_KgTm0Lh(71jqo@4jA7215(1ZWF-5U9|b-h=EaB5Hb zVUA3`I6_D)SoQeQX}93ojJ5$)j89Xk$`U^p&dX@n$>cnR(k>V_djsH;))(<4r6A3*|u6+)aYzjLD91FJjcDDelkc)SixsYO@+dM(0K zRQuf*Bp(_eCs#D(Xq5LZGt(sr?u+&bO~)Ok!rJd*k#2zy9YYy1I02RJV;6D#stAGZq4>~ncTFO}t zJl43Ee|nQe=F!mjGQf4&^^DxuCk)DcZB7gNjp%Ggzkl@4q@WIRq6G&x&?+#vts&xF zQ}=jVhPT6<1-dJsqCh8oB(7-JNv@8NP2Bgo?_=3QIXr4jl)uCd5Q)sfquNklHp@Hu32R06b7beoJc_D5h zpfQIrsikzx|KRnfhs6~XCggYNNIu{`Z1d8xLhufoi)d{+zCRyvRR#?iJDIR}FB*s? z=-Hk$(qq1H>>xUIT|<(i`~nsqlt0{n`0l@2hL#JhU;bM}pO)-u1Fr^N$bp7Y5FFhc zIUm%RT`ke=f-IEe{`4g1_t@#(_M}uq`o)4W~L8PW!(W5gzPf z|5JHg*Q=$3r=Djx?cFFm7efw!+yVB+yGM+L2^iicFLL{Vs1$AT1L!E}09WL$|C2U< zq}XmK+N7#6JLpb3$X0b`q+Rs`8@jzh6FVLvHbN682k2zvI<^2p%oA+~CUXx`E?0oB z2;&tzV28uAcDMs1E(uh64POXuk(Q@xagmXcPaEMfVnt2|X*U0u$0dQ}r0}_^E(aod z2Qt=ts4&u7%^kyvii9GPdagS(JVL@@w#L8I#sLrYyMEglp2;kgO%kW4r?=eSwzC3^ z3ax`~T*rj9Eq{NTD2Rz-@6a*w*)4EblxD>^FZ^_WHpcn!-pl&KhcCjjnpk(|Q_6Jw{JI3}MyxclvFA~Ws;cp%fHt78 z{RoMIIz|N0v@KpNEcu;{Y~Joy9slUu+q2jFIO}(H>Z2`>Ya^^&A(9GcVE&S zJDLZ^3|)TFA;2GxLT|D@-pY^iZ<99rETv+WrCuXfXA!DH@6ci?020OXL3?kHYWTe&x$2{#$hHOrq1%K*i+$mZW$q%poc& z*L{WilD#oY?9=BEDJi+kN5sN;<<&URN3146KqDZQS`=m>bjUhl9*Wv63ktDGuD!?+ zUd8*?%|chWC&;vhms#$)ZD$8P7VWLb>3NsE%sc4~R8^@WNL?bo2Rz;c`v;r0bO#)_ zUtN~5HATE?gG%V;TMNm=5L+x%r^$Ds%*J7=Lhs;XD1O9=)st72`rleJ-Cvu3l9Q{h zGQXUbU;V_8`Ng)fS!U~l|LPC(0S~IPy5;n;%9gj5BWZLDS$-~A(~l3w0mCOCSKxQ$ zr5?E7uMc&`cqDg7kKtL6d%OcFSu?X--IG@2#;VxWssKfGi@dB&Jy5{ncaEF$3^l;+ zVsECV)6%rh3mWK>o}~EKe%-WXw=g}eJwlA=zpVLDAX?qNXhTxVTLr;8JNda0UOgv> zm>0#&18(G9W?J~dRCSH0lDdJ{ZG$f{-CtfEcPk5vUqFnl3}~0o9;5UYO-f}!XVbq~+ee^3h{5~U=#noMU-wvq%sl8jw$tf5G+Q(V$3ZgZ zYpt#Z;Uofzhxw~})33W;pvG3i>;Mt{t+ zm!}i~_Y+N7g&#CtYMm|fsL+4FTr1BE=gqfonD1}XY{H0`{A*gRrI`GRjD@iVLjg_f zfJR-NPWz47WUw+^PQ12}cLBElcfAX)NCF88DlMmdH>(v;^hf&fdd>gc&pQ=$Pl~Rg z$KYqLI3@(W#*v1cu%1&Ddu7`Psga>PTe2T|&6H zjq|xCG}f6UCn4g452ZY+1>JXFMIyIHGZqWPo2*wWZvfw?#m`9WB@Zn%HM9HUo8x)UbL!4Ip&SHotv@Ro4R=hT1TBAL)gX8+s($b>ucAmK( zJ^;12mCt(HTk1>6gyRR_I%njYiuxN<^xotYdT!alc~W5fA7`M_Anu3RB!kozCzW<) z3&TO9LFLc5l<=rHtA!PajzcCSIPa$Vi;a1<*CJ3Cr}>R>s)6^uqV@OScY2r2$V816 zjZpah8UbLI1=NE8$sJCqxRS`e5q*m16xM-dX$vX&K@TWpHOxoY9G>;1s#ZHI9{9lX z6Tkwr44}`G1o)WtfxlnPGF0m+JMh>@y<20*!oma%rApu#o*+x!Cz|o|xB$84%<VsgV3arKr%NRjPdMeaf`w5m;wFuZbfa>Qw4i339;O}+GN1WpEkT*(C z_eFSnCGr58NP}~^pjjh%cQje2R;&<1DcAJ^A!e`2*!`q0p`hRt$302;85=@hS_AQ~ z;V(S!;r}eO4V=UNZEoIh#YbH%(-10qhBth{8nJ&gSTytno#zrvxbA^?!{W8plYVxfp!DTT1<&>B?eM_DzOSD0f@gDET&np*gkrPF7bp7Cw zSIn~QDt!^~TUu-<@zrx4H*&(r;orxFLa9{Kd<*VUWpt?+9>j@_qQ3U|6NQq?&$cM| z9z5ssCnp{bON(QcZMfC@ID*N_G`kckNRfc=A zHx^~0g(I@?Y`LyEr@=aW&^ldvs_5M1^b426JhPb_J#GwL;dsBpWszW{ztYO99t+@_ zwQ$7{w-(n&p_0^u>2=e-G)9DhlbAIkQPU~JRU!+l6;^Mb2_qcU1iQK&BlE8cW3ZS` zdtP{WdW}tHpc4VJd0tI+zai%yjsH}vn%81*G*&M>5!y*!nQA>%`0I3Ycm$oIZ!&(g znL(1NcMLG`CbR0A^>0~Yf*5vco7J6 z+ffEX9rH5TsJ(nRnMr3InAq633oxmmk;S^zCP6n%qH`!|j65Z(gQN~D zcDH7B94z0Ed=8fCmAe6niuj~eJVAooA9KuK0N|(_r-Mtu(7Iw|Y1&NI_ehP@hhlfX zX-&Di->>Q<4w9|Vxw0&7rGo5g8~f8i3VvEvfR}$}&Yf8s9*}%KA;Msjf%1FIP-_C6 zp4E)JxOKq8oZR@J=|QB4)KL;jst%v;)SE0;K_NVgjabD{&ZV6Jg4^oXHWLhqBh~SVZzaK9-Xxv3Q3bx(_dn3vX?#bCls& zmi<9^7%Q;HsBSeoH9AG>1w9NXmbR0LemQaYevQ1_%2}?g^`)N>E7nnDVuRDowGZ37 zZ9VJGr^i;((qH$hHsaW4%j=h@Lr5F_y*2DCjEp-%JAjU$1F+t}=-M{k1fAB7CG)Vs zWmHj%J)=N?3;?>#c=n>}@JW-kV7m zS|_5`!sd1HRdla@$ih)Hi_YoEzjS>4ZJ_nI!`6V`A6T*$+bEIy4#?S6EWJt*OEPoJ z%&6uHZH?(Lq7j~qIN`H$os7XstT&?#5v1#V?$O?e$eg zY&TV%?}&k^cmYg>=S~b-f$7X1%L8%D>fn?T?{ski;3MDzdCZm6E0A=nH)~v?)y?Aw zw{dU-_AJm9*s}~@M+vj{7N9ws>!#KHNj| z85&vT$Pk(!4j7_zMnYP=+ssu8k6NzAg*k+!Bn~i794EkC({XkjPa~^S%CBrNGLle~ z`obDaFb9@=CBFKlnpZwyhBbpJ%8IPF!~gayeF{XT5+MLE<2p(-2aLLAqs1mkrRnv% zJ_Z20qs0;cbIEb7B7HrnHu5a?y^i;o@OI>h6BaBK2Ds1NsLi;sZUugn4fnQukfltt z;#=Z#AqaRUz*I%2k95BDFLqeQ;Mr1_Prn)a>ZbGwHcf~yzzD`$t;C6(KNVKTjB7MD z>s>^`hD(DD=e=S_c9AA{gq1Jy>i*!(r*XecF2J%d4ns0V?kpFJ7we#IfTH^)XzJIs znxADCqz3)+06$pqDKwoi`?2*HJ3S=boQ9nUd*uS`mHtl%0=LW++=r?N-6u*_7oqtSEPk+nW+uIv`>VHyJP}skhS5`j0cf`|_%`m!uZ()J# zQrys>)ZK{h`N2)gdrE0C8@V)wB|-+_1w&xsiUOeF#`B8wGdIt(Yu-$*0TISqanqpu z{QS3XZA$a^vVN5?C4B#G_So9cpk=dfQ($B(FufZvx0`kS#1f@7I41f~E(N(c|-<5~= zgI{v!2NKB|eB8tQ&eu>+gG8J@-r1*;mOfchKIX~BHRRpFUx;^8V0A!moj^OZeDB@y zFjQF-qw14050&z&W<}{`v6fB5y1V2YVtzg&|u zHTeOY5+YdqzrFQ;1gp269<_%6A$<7gH!9G}Z|k^y5QF4H3C$(=<1MwqgNuu6(G#j} zasI8nprU;#zK!z!S(dk6S{iW-lw!XtKo(HPesn*em>vpwkpRnjkg_>QfZQOi7k~?5 z#xZB)ek3aMYkDmDV_G{NLoTcR_MU2$Q--MVAGvKy{~Z9ei_2Zmqz)L^z6xUhbT04M zW46}dg?Xh&&UgoDNK%j28<@=}{Uq*5e_5?QSk97pEa?6(b4AR}Y1G)}E(77W#za^w z4>Jg3$>n!|xI!SAYF_RCSiV7aFv0D5jfx-jg@6!52)t3|fIZXalj69hzis*(L*B>9 z@SPRkF$0?0BEY}cNzr)jgWgfVCt39)iCCSqb+<6Vf5ktC*DIEf71E@A5fh{2vTKnt z48`C@kMj0@w?1ba5Z~;%MD>YyD&Vkw4#gg3X93R#?>kdZ&AhD!WA|?4gaWiln3D`k zSpUut)W!;P-M9A~L?J<5>9n7_54gEuNOj)C2N3+guQ0&*sNGmdf!fo`A7Zw=q=dr|QkCi) z*2IOr3!tOKmuytTA3)D;T6OP&aT&F-^KL#oP?E~TCvy8?SX3>Z1kk5|~2`MRr<5fUkW_xAKc}*<)Dzwq34YfRYY-7aI zpz9;(%x}P{)o3ZVx*oMtk?2ztlen#YJsUw=+CJ~nrPRK~yBAv$M{S5wT7Z4(0YT|j ziUwW~O>w%GoS&cHWr8kc_tQKyvZ^s{g{)<=s$7Q-7}>^_-O)<`P)P2Vhm&xH9oUQ{ zCgxSeoaD*y+d7dd>EL#u*jrd6{ch3qzjWI;_o=cn;5V${d}A?N-evbs4cdE~weUo* zT{mZh(|LE4;C?m|^1lCjAufdS9ET}pTln-(_Hy>cg^>x(Rof@4VWTvgoAoI6%L{W6 zW7+O2BF!Bm9hkdj6Ppn1xq`7I@AQvK7A~TceDb|toKS;_O1RPGRXEjq*GYb>;e2^q zi#7t9n#mp+sBUk~U6u6zR+cM_0*3ti7lJxBOQ!m?<23O33SvxM(otC?8WE-Cw{KUS zW_OF;aTJhLD7FwJ1dkCXcLY>?KA+(br*Y-vX2Op_I-qt6pVj(fI*{@HpegZikMrQx z+pOFCG$S)bw|doic#A*{_SoanmCH!ql9mDMO^Ye8V670!{Y`)Y(qIa4vDk4k0*Mq}Z!>bGYm*32}3r^)9{p{Lp z$!M<2P5HC${@koB6xAnhk$K8hK5j%Ud70Z1Td>fsA_j$=$GGg(S-0r6Mqz57;RHbZ zPHwDRj{mks+gec)xcxWk-;N8>R+t-e6G`*Fc($YfR@MZyeEfbyvUJxaNu_T0_Z5%U zMTq93&WNlVxT9CCzp~LqY;`X0I^6HNC)MA@$AYhq%)yd1f8h&v$I{5C z1FEL6g6NG7dFIuZwu{;HhfGfuq%3aMJO56fdlNt^D_=ibFcNTM@#z&~bq6A7TNK6; z3+zh-H1L?C0il2)BtU^a)3xxs$6krc`2^_ZVpv3mJ@207^YmqFC6I+d+V~>;L*;*C z!>zma6IuOo@QrP#T@;_6i=b#@R~G&uX5@P~^KoQF3%1;@>1x&)vq4Zi`%7Jv83+q) zpetvit$kPoxAD6OEr(p>%r2s$4C)kPkCNzJS$LX7*nAPyduwD8)irH1zat1MkrY^K zfcS4_-@DA1=^DCjl!*Ab@0#5TKi!RtapFEYzD^2GorfFF&n6h$- zF2W7m;#YXHC@6!1aQ=L}JKQX>B9Pbe7!^xj-}a|fF=(5l)w;VBeL6Y8eQIURhRNyD z3TBy&PO?oT0Xeld@e5g)7Nu;QY4bk&*MYj7eoQqYf`B{5uP{1w{tK1dE892&MG+>Z zS9cua#K|*P%PjS23`KxHmX4FIuPS{sO1=vnVe0(LjAgnbl`O^LQWq)A;(!WO1N8 zO$IfUp#p1xoF_Y(f~Pz$f`X?fJ0;U3gnFqMLd`^FvicOzS>~8Q=HapYyN#E9%OK!v zF{%A{*|qa-%Xd4&H`td0ftUs^Mx<44sPW?zfzQJQFBf@6glj~XAs}h%x5}DquC-zU zhViIH_TG@NXPY>=^n}6DMrXOyD8uaMC&}Yi#+4tbkA6WuM0Ta*`YcGCg!8XOmDr6= zU}-Cd?~PYta6A0{#*Ct^;-9(|I>ybaY0fU_qt|=77K(N*h2_8ZaQ6vm*VP;;TFfN4 z3G?ZCL)m75`e)>>_q(93^Xd{jb|Zte+<8N8@-!TgxoV9V-~3n`Tb)PuJD#O-1Kl*| z1RlqurT2dLG}-V7Y*Nk{pOeZ|Cd}x#UdBW~QG%9QJtiBVY+M14LNh70GS>#ZYTR3@ z9vbSsr^%5YqT?B{+grVUI3}LVLK`ial{VvrT?5k!SAAT zft7|WLMWmV(>xqIfiK`i8O)mbS%|*`lkC)=nmh;_3Ln&(JBxt+_4seCveew;VXvHD zNfqQPo1sLZ;>Z1pMh%Ptv^7@@1x=l@Jv>c};m(iOK@Oio7I+0b@@c7^ad>6AeXH4~Fi|$p@{#ZtBFSu(gWGF1;|7fx zqiZRc4B_`1xvSaeRNBuc;6#1r_i#|Wo?Tc%!5~)Y?N{3AZM#vVx(<3UewHZXd*g9^ zFkh<;>C{b>al8C&O)TI?o5ZGVG!%WEQq5#Me(&vC@~-`Mx?Vr-!`x(^KH$umBzp^^tnds5JhAcI^M!5VNq&nQFCtcRV z>v_6dbhIA*&X2^7#fO-WS3r!ts^02xDCa`?Z2#M9^PR8NhRaRPAqjK}GT@VFh3}}P z-2lEwb6aWDp7v$cb}Uoak-CJ5gXm=aPbi#8JihFr2%A|AK5@6tOi@cG_ z2t~)Ij`&N1FY)yFU=8G4!_dp$d+{?qi;U?T%SqtO>>pyK8O{}`qdH%@#wJ(kNj}_N zQne8Yrn#An?oKw-`0E|Mv6*e#WC^9vDCKLv)Dv20Fi%lP6+7=kC(Nhr`H7zX^ut_s zH%v|`^R+p>YVVb~^Mh?##lTb$xlog`yX_36pXW4J6$GXeg0#{_I%cbn47Dys<)%Zv#Q8o5~+jfMogF(BpJskn*X#D93snpa@XpbzJ_+WE^m_Nhm+qiB>TZ z-}Wl%c~F+$DVn%zILiW90-O9(Sye}_6g49TzY)~&1NvGB-}QbarEr`R()FDYvcPL_^>C-&E)~#^TW5 zZ?9t7c3;udS7U$=p-`iI3i*BVG*zTrw7P0CuT6Ci?CWG-6d~GM4Hwm)mcz+xE|oGp z$X5V$Pw{tV{M2dw(1mseQlY+A4*ahS@<6!HL?P2fd`kTgWZoNc_VW|2i+|V9Vls>N ztA%QQgYx;i*KHY#CoMB&T9d`ty*p7%rW(ag*b*puRy}bJ1J^bBtH73WOp}fEA^K|N)i@TbX0{moO;<1C zbV@S460v~uDOWoe$Ijl}ag};VOMS^6!%VSk)v^nJCYHz``KM>`)-Ff)(qF~fn3`<{ zV##wFDkK@@C-bLU0R}&USK0Y;2=*%Ts%$-P>?GAxj~TJ2Y7kFANboA8*R>?v2j5kmc=kS$kQ%UPBl{B-aDh0V^7lo2HWq4TFFJ5G0;w}A7 zCIkHLYtFbb+Y^tuI%mY-Pqx2mlCUk=xkCf)F2|7K(hnCK-jYVdkg^>i^9rLY?( z4E+*3mf|rV`NpH!;_GpM$BbF?u#`=zQK2F3MV6t?T|e-j)3jD<%>XvYhB*>7go)U` z(P61rGGYhO4KE?I8THcED&aTKSV(Iu0f_U#NC7wzTH2Kc@jOoV0UDvAZ}SU^H&$mC z%Cy-fazz>0IokO^O{x}`-?yx6`wdf003T^%1@>bc>VKkAnXPeL5ecS0_#<{n>2K9D zKooJtFHI6piMhoT22FDQG6YA@`pu!zxbxMvh|_AIUx*rnqDE}klPlfS?^_Pka?@*T zwL4kHt#5JSYcvk*p|(eOH)-W zT$d*q<6{0>;1LrS>EJ-E)w`g++DS zbF}NXisH+M?#mb&a1Aw;@2?~`_}q-@$maD-W!6Pa%CF-@=3ftGC1mAh1jR*0`dViI zPj&aXqq5gjmoD-sp4e?Hu}CGmQCpLcV3(xE>+RJ8$tV-fw&wG_#W+rjq1?yt@oI(_ zHk|~o5{?#HV$%D%1DNCcZ!q_W7vf(;32F2xeEs_B8}#=??oww!9P?K;NpXweiAdF_ zZ`1elqfy7d2iGLSyqOGU>d3KS4sTe=tBke^(~>9-W|XjgRb@Qw2p){n&y~{K$-9cz z9Nl8R4vP&HT>D-B5cPRqP&+r^;jfLQ^TxeRd1RM^Ao~!o=}Fy5D+Otks7d2sMD%k^ zF@|EY5l7@GrE%qShoE-WJTJ#E;vedL%ia^ggyP6N{%`FNvG#Lri4~4&)fd$XC>8B* zwd(+(=domh^zE+Sox3D)uuCG7BRmrpP(<%hFi6yw{cdKAa;-aOShOP>TZXHmn~mFk ztOZ^qDwoMiXKSW=oaTTk1h|DZXGHhI<;1<|itQh)d@mnmOkVQ%7c$P0^UD+c6~msM zX|WfyaS*c)q>-S~ZTlcnp`!cz7Y!`vAYWlgGhDUDP#8giI#K?aUsFODAx z4CRQQt}+&tV2Nd}52jfY^*#+f{r8LJ4Yvg7CF2+ijGV?2`PcoIQrckSk5kiPfkKKL zj~{8_dN;zUn_V^C#&ZOEgiR++_MR&0Q>Hajq*IUIxQNGOq%w$BvON*ID41-d-zA45 z2)}Gly_$t*1qB=|?f&CXm7kKx5nm>_r531%2qqdVZB$d;pm4={Oge+ivji~=u{AH+ z@E+X{E?_Bof0=q6elYQ6kK05Ln6!bXI z*>w&AB7e3K0Vll@qM*!oD6qJvQ#pt4P0Q(T${I zF}5h1f)G60*u+@ELu{|lVF_7;An6DPNz|Fd)=4g& zPOBTSsF2|7RgXyiJQ}~qN~wk5wiUeHqO~5#2mvP3pFuKAzSo2=vU5yX;v2kFy6UG- zR<*(1PeJ=DFaDP!Wo-n4$xRx)0Y_3p^%34yEzNAJNAkI&=qM8jv=Avc!c$!X1N-;5 zi8I+U2UI5Hk>gi)O2Fh-Yvv=kqg)0A4yJm%n}(sJhcPCqmKzP&0;XLTr(+J4FcjQr zTtRv%P|if?o^Z{XnxXg3&Ot@y@tiIlTP8`H$0n4*FBp`);;~8g3B@{ zA|Y%PJU(9ENM3S3tuy#$Mq>O{_f{|=R9hbCu96VuCa4|H!5JW+`Er-e1+22>0 zv(;R2|7PQnkRUF|zXTFlBJnB0bnsn}yO}BeOp*P_ z1$o4|CZgxoXq@0Y6*Q^{qFha(z_*<^Vyv*9o{wn@XES5K-1>g?t5`6lX+ug3dbs%@ zgQU1xf-GH$z<<3$Z&az*#rVr3$FdLFDpO0)uuVf9~yzsmhhJw zOL&ywYoy8dU17qT_j;jq9-d53h73qfg@n8gq(<<-$jqfXN4NA(5hqvv3$@%U?hCfVKg16u$sj2EQugMTguX_k)`U@p{46fUELnH( z`=mIU=3t#9Oo%3x4ptFt!uOpt%{@xE6o8WRrMn~J*}B-pT5p8L4>M`+>x0sn3Vm(M z&CtcdvhZFzDIyx9o*&(|n3?ZzJHFYRyC8ae^g86mbEZvVDI1H){|p_`0iLB{e+p%j z0nr}mf~HpU4>L*ok=i2VPhx4$Chg#YH5HL!3lU^-gCuH3^~%kzdX>Wr@XrEs`y^~N zMMjazzCrL@H0yN2-ser4h!<1pg&8D0HLe@!7+U_6@4^S2q@x(9^^gUL7dgdgI4QM0 zODJo@PsW_QW#(r1Hx>r(>Xmm|)r*)M@aPB)DpaICQWbhj zL*x8bB#v98%}7q(`qVc?e$+w6nIi`weAb z#%8T2O&kxtMD>kJ5V3Ez`H?2&>0?4+EJq|d5Xx|qsY0bw3~Wd9!J?3_gf=8Dwn|wdk{X?91(!HSMc4>~6*IZg z3Z)vaT{Pc#_JYHHGgIx>NV(m4ywDudV7I{dMC4te`eI}#^w=6hLHT6;F({-f5FQbt ztAs6ImY)Z8yMPX7b$<9XT!)+)JMgeXLs`4cQ_dbtqzrMjWxXQgJ6Dmuwk$Q>o!I*> z&>K@?byb;6@2705a~n)(JPc`)gxmIYjLM~S-{*CkOM0rrMktOuIjhK$dL$j2dJU7l z>FRTQc0sI;B5qdyzUV3|q+Ch3U6TH2B8A%R2le>q^hZcG0{M&SkfHmOQ~ks8Qpn14 zZq}Jsj4dBMDE-RE5{Z-bR{PC45GJSsdzdezKl~SDLjy-J z!OhyPr;A589|RQ!?i;>`&k>8RH#0#wk8j;ar{(Ytlt!xQ7g!z;F8*(hHpr=DkQH$I z^h^gfI1rAo7_}=&-FNWbB8$HISIP3UB#DIO#P2;Rm0CBduB|vw0!GsXON&e`*D`l+ zR0MnP^BMcf3aL%nWOFE~PH!416Q{7UqqOl1Y2DpkzcIgb-Ki~J9m7)j2kh)BOm}z9 z{%23l@o0|5AlJcgZ&|lS&vMQe)(SBYphNsOhiGY{jvdMi!uhKI^90j(u=oFOBtLPu zO&nDf|L*mI+)GDGB(*|ANgVpF>K z4GIgGWQnwr!sAAZtp)wJNGnZu??ilrgVlOZFAo<(-^wro!VYW>8idc*R*yY>U*~iC z!lQp)tcRUV=c^))DDsoziqz~nV<^x#!Y3HX6q}}s<<|f|UNl3*e?ce6%R`2e7%7=e zpB^u9m&T8u%Q2fey{F}jJHbwu%k94EWm*+&Bwwn`knRJ;RyzE5D~qLHyInJi{$CymkcM9_k8aqc0~#mSSKwMaSZU7k!#E}MRXN`u|}Jv-&tAf#9dF74xDgS|A8 zilXTh1<^QaGe_dp;ZmYeho5{RgYv9qt#-qJIm`=ZKDNVXEh#bmG`9(gw&P<-`E%EP z3*pgZV<6{7=FAgf<$j5|M07aIE7OgELJ0ikV|ImZe%WUfJ-w z=2LkJ?m%49(Ukw~(P+dlT}UgnLtc(-DKf!3+h`v|8VN z)>>(oWw)7VOC94s^q*&|f~6>K5n5Yp+bc}H0qiG1W=2{a5gJ;Y9_{-YfnKajbT-u~&# z5K`882LtRU_5Umx7fE9bXJ=D-GyYUxxT+x~H zgF}!bAN$U>r{%u-lxyaN=WL}H2ZFlK*OY_;g*ac9=#m|B|vSunNd@dBNC3Ju{0bMf<;QvW?|Z3Sg9XevzD z8Jt>=%iJ*(Vtd@<_^+y8AQ<~!;M=2N76G70{q{K#?MVtiCYjXQHXEfWwv5nI6RE`xyIb+t$Esa$kmH-yr{ z*Xvqq;c?SrD2avFVk|R+(_)l0xT)qt>4Ricr`H;SVT+gQ_fHu)>MI%fl;WrO%t-1t zE*45w4WAtJ{br#_-Sc%DcS}`CObpEOSYi5YUe4&xHWb4;j`8A5=#jo8THakAy1mUu z6ZO0#%@7TU&5X(q1|4qkSzk-kQ~^H8=)6vQT6F)gk_EuVLWcE_tkWxor~CWeevB4I zHPKbXl^fPvMRTqAbBvWd^v&TrHvHgOzW)+-lZ_Pf}GdT^VC{5^|mDupYup^;g3>r6hY&CV*zMJR8RTx2}2QLllk&}3~23F%XjNB zRIP(j=^@Mh+hm=xKlhMpEkiNk!8v#?=38MX$bRBOpKEI6-gGV|(g1=2GW= zLZspX9YW)*o5L-pSMO@W3(5{2>y<8 zmA41=J($@OaEbnwMv}9t<{~L&2xuyKf~&@XKp@>!6^a?%6i(-|ms)1OQ1@w}(NX!0 z}m>xaGZ|X2B4l|+Pl9p{{8rHs~SbX7L6ZnWrg$-egvE2 zJ2VL&7}}Am*)sUMt7CR=J2PL1}9^ra{kJTj2X zB-m=CyUs(8oAiMDu)Ew!R_=4L=XSQGR2jBUzy!>X4kEk)b_W8}T=n_NNS|ucV{e+3 z8Pd5-S3)QSJ|nO=S^8mlP8Z!tvKAnj-Nh5?h~yQ-$&l-WNhTmw^ezMaE8Up@5xhQi zSE%E#{me&Ipgn{Og{Wy(9g)64A7YxMw?jOP>uogG84aQwD5FLo5b*mAk4g-j>{@B~ zXF*PcLa9Ksm9L9tMma!I+kATyUIQ=Bq{lM?>q!^~K{-n#sosf%+eQiz<++L5OL&FADD(i-%02xOO`+l-J}N{HOc{wHdc6;; zfzP#iBA#xIhuM$4ytg@=c^bgbl>+Q{8G%FD73$Hv%g4&fdZ&#}b#>k+-rq`05p)`v z>olzgZqBvgZ;tE{1`j6F7ayn^hN6gy?|BPWwlESqaC+bit#?93lp1kpnb5x-e91$J zpyiPm(DM1o`+5piVsW3JbB%z>8?Fw+cYyv(0N>>K&VF)P=Q5SU8=De>FaZPavsy07 z1VGccOdZd&@7P(lVjoQzJX)@!@J}}4S#;Cz{e!zdqrt^reWuxWR!v$tzrd&?;2!ee z8QlrZ$aS1oy{M{hV-E5YP{!cGKzw?OHw3uVQI!N7V1b;G;c^CDSuv&vds4Z{yGaSm zzrnWt#O5a(^?zGOfz}y)CN^Aj3OzpMN!`M0XcdAapoG8==_3MrMn5)r;JFR^_i|!K zH8R&)H5C{rsr{o%Jsm{z%xFP~WLU~|UW862K*aUyyYzb757w*cwOa`&QMe_#cIM9Z}bXz^w-dka9Ew76G7MdAj6eF*rLk?*D7hRVJ8c%O} z2!Pd(AqJhOv0RUDR9*pzdTCO=ZqEO^yXg!U`165Z{AU>SS$cF^OXdiu(cgg47J?$G z8l}NLIq6pS)(C5~XYKYj+3^1yMJCIYhS5PKOkYFx#C!k+416Nn~H&9L;`F6 zXwZ@ijFYVRIs|x=C3u9S9#qw09tT_r^5CVGXFWiSS(QXA3*CSaB=0)IenvDI_NeBcjurr~27a>=5@RbCy4 zg-3uHYvnBYPy*RQ3~v6&DiiVmnS{Q+GWxyPB?&bAE#&}Zg21^ss#}EA_4AXk8_hA? zS@oAjvRHyuN|sgCe4;2xJUjn;a55JUn9lnro<;!#xN?TL6uwr_LIv!cB^$;XE8`0f z_4I$H;)Azk{|u!t4ema+w@gx9lPpm3s9eD9nY4KoD^Oq>|D8BK8+7p`o^gmdVzBe+kd@f`uow}U_hwN-&1waoY&SQjdyiagG{ETMm~L%I)LKmePu z?J9zK=-O>=&VpFMuADA$2qa9*b$%SkhP5zL-+?80u$Fvxh}-I>yjpTUFUP3LZQSpez9P50{(3(eg}o=9bGv`teK0u>`QaX5 zpxt_0B?ZnbfI-iVU=mOXV)2#cmp4ZuKb^|6AOvj&uF(luLwoInfl4Us8h(uo3bZAM z63fk`qYX1@a-IOGi#<&q=L0Yr?3mbB`WNW3qM$A+&!|$1;cY??A22e@dr~7i@zh~p z6;h}p0F8PtQ_C#@m4_XM!@Yxf16DAfD=gRUi-A3PnILya1H*_7Ul^5`dM`m&b3>CK zD9W(_3!VJ@qMzdjHdi0)rjXRm^Et9_2uMOEfF9$?Bi4bvi6TON)7BLAG%khjpI(;| z-{8@4bmV%vxA?Hd|Cr8iJYS*F_5;PmUi&^5&^iTZ^{o>_qsf?W%e+}(+Hu8ZwQqxz z`2w)hrdbar?d}TVK4qlr(rU>iT5eBNq1wCpdnz~I=3VNG_h6+$C7ycX;&^9!tv^0Z z(%b%C)^&QZC%ori{+0#*K5_fKyU>yhd{Rog?wYQPXOpGc+B=`Cid<%^b%BNFB*%Y9JTio>H@*w;4R{pW(nb_B3i;(lEHK4%*)PIQ^ z?~~7%tBW0hcfR{f9QR*lQE+OOEp!BsUV?QsB+u9W84YeMz;E91;Q3w*bBNk<$nPrl zrGZ5HsT5YF!l;w+0wod8HRa6Uu~#x0J!F4?5Qo~X8=TBjdtckPk7q4PLC^jP*s;0) z*HDMb8iNrK_YB9e$Zp?#^R`zBw8BVk!fF-Wm;ZEc;n?BRtMgHYRn0T!e2^p}w;3@s z;`(hQdvc@J|Iq#s9B+&}JR+jp_QP`#hcSkGwSH>iuJZ<;iRZe4+o#VuomhTX7*DC0K!JUW{llZq0MSj5Z2h9Zbvcu0 z8U1Ln>XCT3m^WZ~%kx$V25(jaCsQwQ7(fc_^s*v62EpNNYaj{oXn@{b2RI2EE*BtI z;|5XO`e5=D5E&6!*anrSsCK!1eRnV;XFrlvUn9I~qnV}5;Cdzjy-r4!X&W9Y=d}^b zPUo1#Z_>!3+V`v zqjb24XJ{0v(zxb6xZx>{Il1@2-X84vyT*imWEp*p7UoG#FYcChRZ{|h zrq^JDR>dc#N;&1&BXmGB3tHmvKd6=O>fAbyu0)zQ99yBq7n1x~k`>R+AS)WCjgGqK zJm9?z%$?u^y)^|K^k_P7=CtWAp5&PRKv3M=<@4KAxruQ?&P0%OtQArRVl_qJZr=*} zBIpo9$|%hi6jbo5#}6p08fO$M-v^zADz_@`C`arv%(I%GD;$lB{aQKSE`81Af3Sgd z!MowI8+DJUZVUFmvi_7uFJiSq7Wl5z_2*ojh%b13fEw3nN~KWksh?lOk*CEf?o_pz z6j+w26;7U^FJ*(ln^X@pwrOyp2D33(M;5rv&x7+NdPZVnhQU0(d}du_ug66v(Y-a_ zRH-=C-&&D{XAv#%LW2H9&0T;Un_iKN$&34cD zo&ZXoU0UAbEQ808M{*-i%6CIyR%*WkVR1Dv?R=KP4?N!bNvf_5M;2CgjP1U)$(1ds{tMtjdDOA`YE*_i4qnWz`~+TnHbtCAjg6z`aEe50XTh zjc*^$hmUt=xw*L1x;WOZ-~SZd_YKUyd%KMGEL`Hc@DL!$WdE>^dvbYx2urQK?Po37 zZTRj5E#V?)^f}>s&-H<)vtOq}9nj*(C&~g0FlKhT8?2I)Aq9$28>7U(ORb;lB5RDQ za;9@Iam;dEmx>HhKAO+@GzHXugPIdWOK`y({_1DCA7CxILqx`Ejlej7_#W9kdsfpL zc#(@?)d%?3X2ho-O&;!F->I|`T6*Qm1fKAUQ$Jp77039*#Jro2CKNd#QAgb(BW_yf z{R5PEJS5}mOP63ZZ_25vocX=z&t)BAqLXB@^$U~$Y7hf9OvW=p^Q8`d!}y-a8akf6 zvRe@1)xIR6J5L@bMJ7j>&OP>gv97VUm><^H0IBI7fA5(>panb8c3g=fxtS4TF?OP( zEpl0Addz}QvtSL%Dzv2N*=g{OFa=0qvxR7o3PBbGQ(^#c)U>_lmzhSy2D#PB(oo`TBCh%2XXooCcx$zG)*_}k>2Uoz-h6R-k;m2F-|pLgVUreZUYopU zij)K9*#FYS<&96ZfUIqEfo#Ovnau3#*9hG|j1Eu_G1U1T04l-FOtYU9=Hi_)bi7Yu zlKD|j&v1ibdCMayGB9|q)+$wcgxoeu#7WOR!*)*e@ubkTfaP08K&~>b&Z^(9@g4AG zX}7eQ&{i1-ci;N>%qbQe_jZwrs{}o?{NaD~=TwvZGs-0V+qRQD7=%|v(LaJ zEYZ==%I)UoHzUF9*4u79k|i|R03ob40Sgdbv+GCSi#IUA^tPjb#;VVE@n)s!Dvw)s z?Tpl`QLeql9_HJ1&U6=v^x{cam_5$oQ#1~*GQO0!pZDrxh=ZJtvd7ihGDZy5BJ_RB ztkn~(bUp51MYf{3?w%^Y-lDcKRGKxYgSwBtB=B@E6}^5#fN@Yjs!>K72eTPwR3$QZ zY_%M7566P8iio-9C+4U}!4kN`8;yQAt1DFBNsyFX6j3Bnwe4jFX5vf3y{kz?UXfqT zCO%qKN96KT;SS1kto+^hK)Fp^>1QN)pQPq?>oNLr^$YY(O^HMn|8~$({H#z(KYSb7tl5#VZb+g;TT5%1VbwtpUN?Q##Ia5`8 zeX?ZsG{+0F8t9F%1kw}uIJy$Qjz+M!S7xTJcO<3(hrxcmXSwX#$LM4(>z{BY0~p`? zbILJV4C-KmANlYmWtXnh$RSd(hY~#)g-wiZ)C$*8Si%H^eY#_Q%qSx)Upsyx|5HsF zUw|mfufm|50zR4atC2HEg)-s;Y>5VQJ3MH7WW@|Zi`f)@*E=1hnK;3CNy}eUd0y8t zq!X9V&H+*^nBhAsbA^Z?$1zwyxcl7^E@aadsp~JXh!$OjF2#qaOcUS?l!GcgO!32! z`$D!sxQG=dTt~}fCYk52Xp-t6eo_jyf=m+5t|NO6hgC6O3q69BB5In6AwiBV>3PIB zl0bVBVfCGbzoW3vo^;vC?_pNK7jEL&Yku|Dus-*)oWvm?4|%KqVTq;{P6OV^HOz3# zF!zWC=1w?}GrTwDDH(5!H!JiI#g8Hs76o2+$Y2q*59is*PD%@B&;+fZ6+gG zgHXauZvB!pG7jL=egQtM_;1p>pc3Q?I*R1ZF9vlPwrvI=`5(bLvi`mg#57n?hxmRX ztih45h~D$z5|B7K1J_xrQ-<%QAvtP+OOJA{jk?Y*CmM#rHMqUx=94K?LN>O+Zn~`qhU;jPp`{@u_)3HB7!; zwVF=YxrWOtS>zLo*@nJijwQLkBvsixSj$!eK??y-(h7RVz>2xiP8wMd>YJFz{DT zo=Nx(v3N<5(^H19?A@(-XbesHLfPgtVnlK?%4?%qgNa77%_tz1#Xi#BwZD2I9+H2VM~3~s@&*P6{2Sle6kWEFP;cwN~S^M(rcHcF0-0p)5>Qn6jkG1$a z`N3S#R-$)bFTcoI*$+fJghItj=QjB_mT7GiKT}NI9;sW?B8@Z(BZw+@1`v#w%Tl7F@1y~L__^VtPStQ7qqLt6!2oN&*cgMU=xyuj z?|Z-I5>TUX)K|IF? z#6A|?-^)iTZsiSJj?Lo<&6-H?(NWnODlgl}xfcF)Z@a6_Xw;k7~?i{7+CTT*a*X zxUr0{q=!@^cx-`0{#FM^&nL#5hR<%<g z)70ppap#HULtexHh}Vxdn!nlx-O?|1!1gv8yWFdynTK~6!SS=SI$$gWk!7_k;WB+q zjlTH^3lM3z-Xw9k1zmYT7AR5Z0gjD4pU)jGATr!vsg76l*&^8QP~E* zH$cro&s?PtlwGbZ88_{p0(ffnhm@o2c{XOW|w;BaHOn%+f6`6XW04yfQyIi0bXy*#590e<~7Zq z1;cAysP;~mL$v{>k^UO&9~0R05Ls+BxywJ`^HNa8uUy@Lkh=RR#|9bw! zNAT#7=P_1Tmgt9W>*@Y-DS&`f$fea}0a9MC6F{x&EvE9Uh0F8#`!se>J@qt+)HAb7 z&8%3EIV&1)a8~zL>-X8VO~A#2%OJMD7MBZ#y2hvIsKY0Fi<0UuI1|}J5;6gL{?H)r z5f=SCPqKvaMWSX3JrpJZ5tzdVJY6Gm zYqFT+$z`tlR-GSlx znC5;4;#8;4VL!~gzmFAz9Y#&>IuEZ}mo4`*%2UxkJ89pOYr#zpEq+t5QfdDKox^XV z+@XIjqlY)$aj^uM#HT@+BML_oAsF>@vF$K@0xQ<=Km1nAV^}c`;49HA{tH&~4nNj= zOtuzfI#w0S`K)#$Y1w~24;d64LyT%n6f|xM6pouzIsrl?v|q0T=Eo9d!cS zBN0`}wFu~lDUcZwwaHFU3~*F{+!xR%_|NW153X9`T$_}jF9mkxgt)AvB;?F^VwVJy5w(X8XUBrMj)q1zTAcHy4c_o>pJTj7Vi z0+mKcTZ)bLiC?-tY8hV%!`tW;xjfw+2kuF2d`C1&0S8_b%MwL)4%7#>@4~iBKq|m? zYpq7$)ZS9327o|IpP<>N8+5!9fYVOpVMT2XupSVhpyN-wIq4bAbEBmvY0X%~{mY+fO76Ukc&k z5UOxdu2;-HcU(0OsEv2te7-%1@g^5zlNPtU_qcn{tLeh)$g?X;f@aaLI+UE5Z%6g*@}@DAeE`~*ZN>P z0uvuN7;lc{_tGKlV||c~;)sz4K2qtn3HVIANpneog#M0iB(UQ73?j zvmJY<%nx7NAB=QAqprnCK%KyP5S1e7_fC!+L?-~{TY8C;e$I5pDsSN)BnS&OipfbCtT zw-zlKXmR&6GGks5&LG~O6vIQXEmRK>FT6P&%c@)FQmvN0J3>yQbh7s)uijx;9c1wd z{Rz*;XmzXbv0$}dg1_0dQ^OTaS{gJ-1A|jAuG0%G?)rH-uP4AMWw%NzEY2AuyiYnj z0NaYh(UcT+7%Q~nHJW6`&AOxD^1y2T3!A1Cy{6l|6?!({JD~b{Hej{fs;{rthdad( zS-kH2u1kwM#fEzF;ofsjJN={qsW(|ZVvpzKV}k{4Y|!HC)wMtcb{}Ti?vuz97wIVF zvtQimX))!L(ZlHT?MN_n^a!5FB>FLp1;m$Lj~;L#<(Z*64Wg;A_s*XS(`6~4XJy*T zKYl#B@$nf&ip8@4d?(Eq0?MxK=16=XYEW1K#DD<+8s@nhf1eRi{17HeR=3jUoMH~` z$Y15utR0B_B+i8(XMtU#6N$ARj6=AdE*>eZto9Ka)CD~RQW54(0DoO*ZS)Umo|&Tt zG6f+__N)sHw#eTomvI!VDgQgzilb~T+*w@coV-ShFWA~wAnO)k8 z9r`ZXr%=1Xr~vp*Sp>BI{xG8F!;4#XuQCl?K2K?+>LlidlF!xqQwDds3ykIo56V$i zWJM8K;Hxc0!E5h85Xc1bnObYThK!%jwm$_2{k@b-=QDa>gaG-LadM?Tk^mIpZVrpG zgdQp7gD#2qEJD?DWg|jfV1{(T$dMFlq!(TskLuFK1A5i~*)srRkO@e`l8f;f)v;XB z*6W)&Zcb8Ni}xS(iBGMm#A~wB|J$U3;VFH zJbySREH~DdgAkKsBZWJ&)f9#L`tf*U+OmHVWUEeSfdD~x@)~%mBHAhR*5Vi8qqTmL zkEy~pXUZPN6WKJRDR?)YZj(+Fsa5Cs+lMc5N)UaA5Cc@ z+dC!c-oKlxrfakX)cGnrg3|=LF@~Xe0H{@Laa(#*@j6KT4W0M%h(>IowDW$4 zs6s(46!DL*<>Yq%T;wMswtde}mn}+jUI(jRrxPo@UtosNYP3GTLnjr$ex2@48joSM zA|csN;LObHs#S_j*Bjb~o`3|_aq3Yz{dUs4vU^kZ7eqh%hUmrLmNu;6idmukn32E! z=wWL#Y`|%7r&v99KJ!zH{`&kX_9Z(Zk4XUxGCPG&duoa6b+sgnDtK7S++ zsdYdp2Ibp1Q6f%g2|6L?YxwE>H_P{d*rH5%LNTpdUV%7Qb}DU0<$hjgpwHCXY~gF^ z-~iM)^Y_ATcVn;Rw85d?=<&fTm~-69pd(#6xnqj(tK9du4HQ)%`>?^)mWQ+n|omh63{y{iCb{zvb!jH*nxe_P5XfT#q|F9-+` zjG!P_P7`}dngw=?RmRo~;UAKYNIPy%mfoEIqv)R%?{hlFSaEXCF58%itPX@O!=W*y z_fMZ1B4&mneVb`;hv?RFGn!Wb!)%f4^-L&n>$s=tCwKG;PN`34MzHobq1bp zh5Jc8Z1HJgIejDII>4u%e(}1`w7;5cQh=}H3D!FqOkyZ#^<1ZL9zxSQ9e&=u!1=LW zCiwmBqjsd@xkeDfhnC@NOmJUvjXhK|4(IXNYa;r;NXi9F5gsXL%J_Z8GDQ!Si=esK z*y~WWSjdzhmW5g+@E*gt{d1gGc-_`1U{k4h8CtdFst$RsA0 zkKpAHBn^2 zU1mVUWAc_pD@!B_gR{WixN)jq^2WMfL-|KLNZZJfc4AAU6HZdkB)YS%=alo{))?Yl zq}NJ1w|Hz65b`A9u(@W|m>}4smjyTVZd<%lJN_|U$RO!8*_hqH4Wb9V`;MnJkz{{= zr1O?(wCowQnB!$HwW;?LA7NJUoSJoiUPx@Xeyxv6cxToSvd&vhGg6PyMMUcYZF!l$ zunliAc$5sO@J*m61f_GI3?#f}VS8{Dr!HzkFXI*IVQ6}vdnq8E7$$civ4(Rp?R#r` zex`C#Hd*Nr$7@mmj+o%aG)58MOuY&@8nO!5ZSoUwI+!*NIv;IZ>go*C16V>i^7zxW z8}a|0=yK2${s!de{81f?YJ-^L9{uO4Vj%Wb%j}=4v)0XN+%5}>vdpI9&o~PmBnW@a zAD($Tt|dakb4{n~5`Uv$w|&3U;WLMN8)(I%`>#Rk_+a$M5C3P6jbYZ9+oumGiw(Ub^2^dbyKLh@l^<~$kh-l ze~#Ywu>ym7WzW7SJG6KZ$pajuyc`rDtBSuU+20Ikov#?lrI{rsunBO)-vH7tGTj4P zcRE(ZH zpuCy#uF4Xv+XVteY--4hKlS0oa$Mt3+|g^D&1;%xJYj2qtw@KToqvB_?y-ud>IxTuafVu&v5pg8%kEM;DZ``p|`NfYA z_Bt`y*8AFReRmtE?CIL?Ct=eX96!)=2M=KN)4z!}8cv#vplTgmF7 zMRh&qyV_YZW13*9KPhEZbP=z=!+kPJI~wN6IUyTO_`@B(TOh*R6EP=5_LOs`CuRaa z4&11t?qh4&IPVU8w$+p&06ssSA=3+ZEe-@o5K6?CGzUr;nNQV)Hb=6hl8J*&#|I~l zI$si5SOob$LH0DlYMoSbtLnnJRUd*-T`X{{2uRD7<%M?n9(0T}`Zx&Vx!lkvrR>Vy zXUj;0V-OG!F_mJ)LD7i}yMqs_N+y zt>fGw0>pB=Z?Z|#W8|o^=NV@r{lkw`fSQP)Ps!|oIfng{vSVLm0w5QdVTGPyJgciD z!BCe@0eZU1<>oV5;gaIdLy_*~yVh2;xWVu|grqN@1}o zu8jW2Cu1H$tG~|)*0yQD)EvK`^4I;-tEm-MC6(KMpdjFJ@o$NCF94%4)%uHaYf8Jq zy3|#Diszye}|)9n+GHmHbVAuvO2L6;Axhj`syBBKqS?1s2F&*xAe!!uyaOE{fdhfz#;)Jp3!aO)Y|Ga)PGPzUId;YiAmEh{{a3+w3 z3FU%3Ykn=|%T%FXBWpK=3A0O`s}12F%@&<%HtAd+0C>TPm|ZU|t_>X3eAU14LBw~= zl*gz8I#Xp~VG#7u`mGMrNSFPwx=FJwQL$$FbC8+DS%FG#?(cp4gdE7KJt91ef#BEg zMi`Jkr(W0DdQe*#$HKkwfpWCf`l5qF;mHMrzv~v z35Tn6^pOC_utRw30m|@)`~k1?w`g~wQm`D=CNnoI?qXxw^_G6~t|z+BrKR2f{#{-+ zFk*Ob1Rzq`krxXmCG^HD!mGb`PuAmT!g`ceKw#PEbVxnl{FIkbHYip-jgO=03e-f^ z|Hk)FnXO)26mJtmZ%^)Rl!I&=wmb>Xm#?0+4QKGG_V)Is$%V=etA23CrK0Sj<~pDO zLiiQxFd)L30$bJAQMPcTsm#r>*QJp}l=s#Kt=ylrEETffdp@MS78=TV?`7m#*9o1B z|3MZ|A!%yACzMNHu6ZUc&V_^&hRWHggAzf!cEcHoUf;*G`kzsQ655IFTK}6f0Hl`C zCrT>-UVQT7i1sco6J+RX#M`uF_5!)W!Q{WJpce6!%$foVGwj}rXWA6%IqclU8n0i0 zs$Tcoyf)r|{52B&M7P3uYfH|cM~@K#;h;Sl+*7~=v=7FD92cyjp9H|tu62nWFfhoL z&_x7ro|zDPy&%IR0mYBiy<$lXpqU1m?_{8*4NPby1VbtaX~v2^sTYRgu}va-WB`J{ pC$z={n(TqiK>%6s|G(j1GD8jxH>R}+8yxU=PvyRHwW4MC{{Yio_m%(v diff --git a/Decision Analysis/ImagesForSolutions/PlantSizeTree.png b/Decision Analysis/ImagesForSolutions/PlantSizeTree.png deleted file mode 100644 index b8112657b15d60913e1751d78086572c508fe934..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 64206 zcma&OWmuGL7d1RH3^1T{C_M}zDJ>}sozjYcl!y`%ib%uIjewMNmy*&QDxn|^(xsGy zbn~6wdOy$ezTfxb`{6MjGt3p|b?&{_UTf_M(NtF?z^BHCKp+IlN^;r|2n+-MArLs= zor{|$@el|SqAVw^>tg)V2-k)D?zN^{Il(9xzAyRe9dy#3`by?CSpr6XLOgC_>y=Eh z7-Ba9mc5y1R=Vgsq&zV>IdSZP-^G?hiiPw0?!L{w1NRpDX62W&jn8L(ZoV;`J<>yz z^TNU*Os$B&FD?WydtT^XQqzwB{{Q&^Nn#4?5{CWv?|5Oxfexg&()yX$6t-eP)A!lpf8NF5A!o7vkJD1Y)F4eyJ6!AjeHT;1=&;;J*Z%A1 zm$}={Qi#MlgA2EOD0wWug^Hi7E4OUmRsW9H{&*QTHdspo{+tX$vaJojY0|8AjmJ1A zS=fFpl1A9Bt0i61(^`O|`}K|dFK+~N;<@yf^hI}m^s0(F{-~_;R&;KK_YVZ`y8L@) z2$LxptbaUJ%qdhoO`=eIw!!&po}_J^i0wqB?z{VZ90rvIn^!k7Ij@kR^=9bOX#RWu zO7On4+p3c__W9Ed&O?W@-dj5bzSvjlr##+3>Zjtj{r|g25JZZk zr$LM)ZNg2X3hLP5!rA=gujx9?9>+PQCeNScC`HF;=X?;wPL*aEyOIInlj^ zO#-L-aJ&}BS(G=JC4WU3p8D&XDXhRctd``@yHSYL!ZIod0HU1`5X@0$3!=A8T&s_qwA<-M4a>X^;nJ$3uynI@0Ak^6;bWLwf@aAB(Y48% zQrR;&c#@N;A9nxQ+N}}4ce+CI_l!c+4HG#z_{UG5Sj8Sj(x&Sy=H2P8F*B#a%(MHV zW2U&SSb{b9k1Joh)ztdK?U2vZJADDM=S#uEl&NIwx5dr5|7J{PG@2Xge^BbW`(rro4h^;F z^Bid@r4Q?ii?RgNf*Dprc>^HqExV!^$;rr=OmN#Q$IBQ40s{wE2C@rHTD*pQJIqd6s3Edt+<&k*6)`D7m2b8#CUYo$ju zM$w4jZ=hp0Q)s& z!tZU!ehim>g}-`=i1bL&-Ryd&b(JALCETvgcy7Z-{m?Tar8A}O=i2muzv?(+VTyvn~ zx;=bW?&F7^H9D?QMobY(+6Rgkqa^z|0v|PsAVb?|F53LfN4ks|@eq*yW1=<}e)J~u z<6rmkh`OPXrbM=Naen%JJy$g$zVvc`%%p+<<-IlCkT0-{O1fU^_hQb8nDhv{Vw?dw z?5?mK(cG#=w3EQ&4L#Lp?NF?BxJY64@xDB-X;X>5B&Bvx4ZzFD4SweSw^)xL*xd_S+W09QTpLGR2@m(#teU+~`M4<+7f%OZdw@K4=4iT8Qc)14s=sZ|aijM~!YgjdwUc2D{D z0~T!Za)Puzp+oo*KcP`11YaI{!=u))sSP~w7;eW~pD>57R9`-oaQC-0tm&WYhvI|@ z?qePiVzXj?5HB45Jr7uCq!v6Xw!!oC0B6g2ec<&(^?GZ;H#{Hg-Q~e>D;)y2bYXk? zyM@~F`@w3EyRsh%{`<|=>ps*%*8N0MXBqBw=r$QaZ?pDcmhhBnM5WE5;&Pu?>AIjs znnb1N>B|v6UZ^esh47>Qf*((Kh7An z7sK&H!6frT`Q6nZLeu!0pdS9Y;B7*9?2c!TwQ4+{7Sr>T z#m4e))<4%**|2$hD3i-~UOHlT+wB#0+LCfV2+w-bN4)P!G?d!lT#&Kt^mIBeb*OjR zNX$9QT=CV)k8cgm_G=?=6ZFU5K#~H2Y5t2tF?_IsJ{Wffszi5ao@c*0D?S)FIPm6bq|fYM%l>th359xeK5yTA99Z$Vx9Hhc$!u!* zrOA&k`j)*X5$fqjC8^?;LxKCx>02%@#Epol8$KXR!yZSlxEeM;cZ%6nut>sjvKbo6 z*RY)IyN&bcS@(jxpoKP^fa+Gt+Q^~P#7VM{m6BfRgMo+^vkn}N2el3{V0l(5Hx_*U zT%RqR9G1wUO37i|SZh~tWEKzzmAr@a9T*t+jflsL!#};>eF>|zpOv&8%8MWz;R#E~ zSkZqkr0}hJ^X1lr^7$!FGBXD0_5E{fR>k)ooleNStn<$Tq>Bc-Udfbhg|3y~j*p(4 zQ__z+G+M+)i7@R5B)}uQ{KW5m@KlDXMz>JA+n}-U)}`q4?8a2cO~dMNoU1OWo4M-K zZh}wcYME+Uf8JLnX$9COZf&$k*=jH+dOu7WLD3!aU4WWiG8CV}Emzu)!EAPJW^nHc zSy{7$_eFS5{7v@k@N3)=0^&E^g?L#p+y<2y&lY1?bKXHK$Lt(h{wd3~qOczbWW2EL zgkX}$Gt~a-P>|cfPpjR~O8}sh$tDf$n=Bknti=Et3ZT`Hn$YQWno)qWU8oD)fA_+DMah!@EmX)7NszFk#jU;&g zDd8m%7;4zjTpJdLQN3WU+M5{A_gIx>^d<`r4d$w@o^G|=I3j2dpDH#K&eUhmu{m5X zZP5m$-Ew=bZEyFhl+J?(v`rqz+LpRIG3n_HRn{Y+qopPqVb^%_9NWtoq`vef3B7)_ z8zDT?zwfv{%ALe(21^xn478i7m1gkVBk^R+5*h$~+nDIwXo(T0Nrx){nB)u$8c3fm zBfT0sqc@UFt~*QhUL-#uckl&Moc)KSPJRv-lF^Ai|M1omGHrx~5DrvL@XGo5?fvIq zW6zL~(424O?+X;a&J5Svicd7#auQIFr=R%m<;EAEsgbr`ZKpta^>WV2K2g%V;oZJ` zH@ez(axj>L2|!G90T;D@^5+yCR0vLN^K_z;o$j`qE@{*6hUg|uj@6GZZ(>CqA9LvB zg$uslm~PNZns{h#4i-eEB2@+=@Td!|G(AwD#iZPd?%S3+ORRqSO@>#t<3SJy?&0Qi z_OHcGo!uY377Pd_%l-_gwEO)k>$|H72vUSp)!~f0#;D>)8{z;+`xBCVoAu#B+10_^ z>^sS~2KLv-a!n??qD!@{F;fqxINR&!{mDO2Fzkm%OjvdWlHyItFS@5*?Iga^}FBXpYrnj$LyO|S8 z!O0JOF&emC`)3CW0JvlNivG6cbiETi!o&xL&8!S7FM3eNFE1~@Drk*VZ*FcLe225J zx7o0@hCmAX_wUWSb%Dba*v~fa*q<}J2PsFj0@v2)(W4v>@0I>cLGKF>S5q~42P4oB z+)0zrCsp-?A!0&)?JRXOnJ7vMpP9Dry|dJwo4rm(CJTi^1ugrLsh>!a;y|)BajB&!XAZg!Vu};o7|)y)?sR zUPe14P!v-HOpf;WTPH2=HTjpDQ|vH<=X}r?ORU@X|G8Ti{NLbCCK$ji#k)ni(H9ur zVtPsnGJcDmM-W^=XQUl30RWu$6d`Z*O4Sh@T5#5So|ZFh>*-r|f@(alK^(`5g+;jI zPtac%dYzx(G<)=mw3Flbj%Ui^V!_7ioow)lgs&Q)X)LR~NVU?5m+Jf!94{}-)Z3kUf}?Zq=!hA&6v6(WdBa7CD9PI;PsOv$y|mgnI#c{ zm(M$ec*kbQ_qBLTnz?$rj%LZB!@`W5=Q!Bd%8q=9Is2A#1r~Wzh+t4Zl3Eq87&+g@ z4e^lM4&POfi6+|AtyOOqt#pqNMaJ2z0k7!ax;q^0e#IRYVv8ypAO)(RzO7rcNMtw(bD6m*0b^8KNw3gkfh zC8vo~=@3eUJX^mwT71Q(n~@@m{!&Tk2LrU^uOzQ}vhT1XJQ?%VUU>hA4fKXQgv65k zmL+myyg8!c@n_b`-jBIo3$qRE4SPjCKD947R={(UgVEiwCip9u2c=wE}u5s*T=yEt*3bSxt<# zB$ED+5r<{w|AV;MBVRo=MlvW*5CbX-f-9JdBU3F&kiE^5n3Pn8Q?KNO2-H7>ZsKk% zoh)_?;B|UbxY9j#Lax?!vv#TVrHESSzHj9}Q%%YBvZhjxV&XWJb_1pR;$NWNNu zHpNDH+p=JIJ1E$-{pVy6+W9=&)3O{?HVEX2kEkKu{ejY5{EcXt5445QpX24(9NNXE z5YiODZoSFEZ4NJpxWcUmA|}^9hjK7SnM_N5(P__Wmy(-3XLcPvU=ZHs$sCFPa8zC? zVfUs)8jmC*T*+0a9j-~BG8Onw4DiUc(n57Tj?uh(oIbQ74w&YP6Ps10KwaM8gMikW zl9wA3G2~gdV|XT2AkjtGb;rb-zOAJ4+x0P}MA5BC4Pq98a8Ux}1V`ah7#5Zlpozqm zz0aAuBAGFOrpN&W&-(cdl#g&$p)CdcqV=qVM=8j+l8x&?9wN;p?NhpGBVTq6BnUkr zUNZDu-e*kz)R{&iD9HBdgxyILTGr56ipRW`ztDNa02Toe zhmWi#Mejk$c(a_%D&+g5<(BQH>+iB+Bwe;MBs!Lf4a8Lu8D8}0oP6myJj8Xi&t2xh zZ03rjXn2(=odH77ciVAT#&kzfU0&XlI<>{2oYKgVK^fU!62Xuve(FX-=m(!YP0@kvIZ3bOhL;#<&m zm0IwfZ$4$N_ec6Y~5cT6R5mlsRkKA zecbpDfqH|(*WW(LLH`-inJ1yfUOK{GmMS)uw z!9~J~iO=|G`=5^P1`4y|*#FpoQ|TL)ZQ-bIft9YAbhnh}8+t1F+!l`PeFx*o*&39x zlXG;Afr%!AJK!8EE~;1nCqY_S%l(H2fiTU%;UL;%b@J8Y+5|?EFdOn0{?j{!n}SKZk3RI znweg+;)7OFi#136+XMFF_&BYP4ouZKT3AyuC*8WCwDT@6H5**f773F=KOk~Qxw0)d zrPjy>$EJ3U&M%1*$@zTZx$h)uch1hH2VSLmNTv>uy6-EV$N#p$?_}p1wwjrkAKhCY z3(^(qavXpEL_;Qy%uy@759N(dovjd&rT_jh3j|l1vB?d0XqlrYPCw|~smcD(_s@bB zJ90ApLFLG{;|yuPr^d`==w!wv!vAasCq%0c!w02e6Na z-RZsx+TCx@vBb2NksTQ%PHb*3->wuWC6OgZiI|Td&y|j|0(harF!{|tWfMfG5)3-5 zW?c6?*Se+o>9-24p}ad56{{a|K$VAcXO-9DgC%v^SyIL)B+LWpm^smA^xZeM0vq8X zgW~$JS*eDXn;8XNR4>j?s^IrAKQ&TBwC*(ws3bzH1DFpx{#9O97)=XJOzK~(BKEyV zJ6Zka0VTo|u%*~-d|d37gjgCbmrLDbl_)zZ zA4n4E6d4H#iT{qL0X`X;dtj;g@0v7HLoJu0O1HM>JBoJpeOBTCkU803P3Y3O@^Evi zZuQ&yCl#(h6kwN>G~UQnw+dQ$97Pp7BEa%dH8$hZog}TQHK7!KDMiA1$Ih3bCRM%w zn>>C#4!SUv!6}f58`Q$^GK@^WtN#tDMr`QOJ|hE7rJ?oCKBI4q!+iTNfI+@gWA~tM zRN}ebe2harr5l@A2ht3Ovgy;OPqU1cx_*fYQL;MB21b0JkdRN4@>aJQ`=Hb4fLr@7 zQ;zI50XT7^`UNZIrC+@G-`%wR2+q|zmH=dk)v+fJxI13+saV_QYoy0ptP;|SL|F>J z+jQUQ>N^+kMKn;SDXlaCL15Y}<%_;|^Y@;(>}JnX?P!$z&*rP(s6mOi|1uxsaL|jW z0-UasT1w>QDJdyASjq#0l{A=N-a4AjP?z}IZ^^-nf5GD)3ge>T5^Dmn%AY7?bFU|noy_7( zVhF#*iS9+QJe(W##(uV5zQ*nx<$K?*yQS2m<)-p%w&E+@uVf_F7eo0$#*GT;eV`;Nu9e|jxnq&d;jFC3aS=hj8(tYHQ!3f->f4xRDRx}Qlp=SAWq4UgVBLsA{c(j-OUY|B8K617bNEPdQvu~16xBJl>dej+k- z{`Aei&2cz}iKJ|}RHLwCeQQethz5>Jx~^QD#I+vB{6>u~(RMS9h2q2!VVBYF{r9BR zn}NpodBr>>j>&$eF;?J-x?zL!(Y_jlj!=}S>rbrDDZ#mlJ3b$u(AJ4ZQmyx;iu+@U z9%tPCpnutF(?8DmHRB?)F`iKtr+r=-)P>hCUyrr_`6iO2Y_#;%?*1==C2k;q?Zv15 zaQa84otsD8Umts7OJ__J^g3aA{`ZI51V6t21Cr;u5v}1tVvRr%x_dV$;rvA6*lw;$ z-xuh&s{ISqe^rE=K9JM>x(~OunWwHpSuu8vt`bgv;0Ye|V0|}l`bX6S4fxj})E=aqCvt<^Mw+U4wJ&ue+}o*A)EC0!1b* z%?(_ym%9-n6ySL30qMAZkEcmo_NlZ~`8De>U>b0uK>^~D!{B8EV4gYteU=-<7?W8* zUao*u-rM=E`kpRdH6hY^^d0;9cD-96_xrGUoNx>okn>jLwp}g%Tt5jks;N*X-(YD> zFHenXbqrUB=L)Eej&3De~ZEYNAXg^ z2g|W|>PO;m2i$1=kLK-n{~W-<5dNF=0La&(MY3jEI;~b136y1;mv6@YdG45064Mq* zajY-X0x)W(R=B1)x=#Gh1!6<{#+JFod)N2mey`m^$xf04j*s`nanL4^tH5i%Viuy} zUoXI>%l4el+37&GVyu{x^~szc5!;<4!JT)st3&zu!m}Pj<_>cKwUn^v=;+GlKxYIZ zZ&8TF=lF=ETedyNC%Ty*BYyg{riwcwaOn-wBwSHnPjHQ84Kicdb*O23Y^eAjA!*Z? z)gZU6gk8DqA|TBeutO8(jsW|?Z9GO}-zbfZPp;(PFe4b2xpd`1wpF{O`IY2Ju!o1o zZ+NnU8y7%QCJam9G06jfco48iPMr}n!b`In>5^5hM@!wWbpV0F4rnNF%|JEF1qfnd zswG<-JT%J>t`Z7pA|Ie=4uMYG3ZVVH#aB`jbjbjI=m7Xx2q3y{qsy~~SDje3!m!cd z`R^W{n@!7`{O%IG>HjO)TMcO>-{Pj=ychl_tWU6n|Aci}4GQw)nA@S%59G$%_A(y*eAy|BEx46>l!E^Am{?-3#gg- zfX37pl(PFtg}A>s2I3fa3l6VBTqtgaw1P*@vfA-%b&%!la`0B~|F>)4+NSVvz~ohW zOxpj;HE?{}rg-VUo`GtbJEi8Z0``kKZ8d9Wx@7 z^L_!ZMQ>6Z|KlDxDuKsYYHuXtycaXS-D|@-*f6YF87($h0sqHYW3{4wz@fB1$DRbaP6jhB(1Izv1F8FiX%RE^82NVeswRNU}P7v4-n;ALUEMb21+P|V|g|Z z(XvUFe@W2$l$&=B0kaC^xm&kof}rOGq-nmZ`^%*FL$)qPzOMnUZIhno~)Q8>25k#aTqQkZIo1nlB}u9 zV9s%rf!BuOon#@hYGIIwJhH`aZz#kp}F||BPf0$gt82M)oP|n{3kouZv005gtFZ@?`Y;6)K-G zL^%EJq=ye5s>#IMG;&iuGYG*ld0fJAq;0^VgbbeBYMB)h?QLyE;}Z}#jj(Jt!eOH) z`yjM}u`ox3&k?YGB}F+o&EJS{@%ulBu)D*P=2krPdKwBLr{BPuwjht%=hX93d7%&J zL2|%=ICPdL0G;+)#Z;*tGAed->$L{|h2mK=<^9Ha1(!3<;5kxdxcB+~OJCRbxBB<1 zW6n<=*lV~bc1QRRWf_V_b9GZQ!C8uLDsAD*`L|nzKEHl<7N1+ z)nqky#C5)QmLIF!uR%e5wZ854d3ru+U9Kwf|A)unpZ0|6-}YpY0@12b0+2&RXi&L} z?g00URewa|H$~M>*7-TuH)@369#~dK5x2>Nz7CGK05j|SP{ptkGHyRWIA3pp-e(% z2_!%~H*}U)E$SNzzy;}7rTh5sjAI+t=Z93UTX!WhR4`(l%?8eoq zOr#H|oVxTV+~8mUq|49S3!^0w=!ekfnSLDwW=yAYmG!q!)xCDTYj*|3JRbR~KPC8J z4zrwW-X5Wkgm_%c*_%B*DApPZQiz~ho_{Oc(kP8}I&@%bNI>0Ad$ol@ug}%e%i_Sk z&CBzkGf~k&0#>jBoz?MdbC%Xsd-rap?I9hkfP<9$dK5B5kPD{(`7q)iQ&saP8{!pE zZ+$VZB(gX@E#!V~!ohO9vTrkz;>BC!<=YyyvSR6&;5L1lQu=khdg?7@6#p*(0J}7lV?7=Q~OT3!A%jv!?eNbVna)Z6^NgF>s>tdhyU_KO)zMz z^XZ9Ati3yT@IgdKs?9I5csST`So% zsVFIXmHmes#!T{8mF9pAB6l5DSp)#|MtB=Vj1d>A&*yd3Jds9}lQZLou z0WSpaBmc20Tn7;O_TkK2oPIEdeTb*0VShuazdfz?*#DWi<;NWnETlvm`IqC9qnXF> zt0b0FwdK-D?|yI_Xe&v{UJ8Et;)Re4XHfmT7{7|c#uzN@@#_RFla~xzBHL)4Hzwpo@5X*Jhph}6etzvp4m0nJjI;Q%XE7LSrQ0kcuXv|z z@zb}ncFX>#;S05+;`>RZD#_oNr>~ryC`8h-W8JGIEPWZw2`9eYmn0OH zVI|B0Zl5NO<8J81`Jo9bW}?l0EG^^Qk5ZFFk8MA&N3J9AYJ5CR&Zf$)nZa)}#>qyF zNw>(Wb#S(VFr{~Az|;$K4WJc$?my$sLm~e)N%ouLQhzbQERhdtWaQ(O<-#(TE-Y!e z79s}89FqBLi`l*yp*?AC#H;aM`^oaGw&6 z?1%Wi@MX)nlRVmtbTQp3P=Ia}HvgP)#sGKhM&*ca_{gt9b$0EXs5dm^u*1DoowcF& z4K7C#DrBtcc`9)xxhi<8Lt%vU;~F4kIT=V;4!XTqM@@!P2}{?+Tc}RihHmcV6ZL&lZr>m z?brNKO@61^Z%fY~n7PsO1?8$z4lRY0wkVmwB;5Ac7~PxR`=6iC1~tk+Xap^hRiwOF z9UpACES(k4GJM&5&qRG8)*-Mje%&!F*}^j}vY+jYs(H*WTfV$`-=DNklPWd~fSlF} z2AB~IiLA%kW=(I-rb^zS6R*r=?M>3Tgk}QrQpkFuD}m!)5tnjibE^~f2VSoYxAyvr z<7EbG&6?_?R2P}amz#XNOg#FH!Fg(-8H^o)I!!0d>W1F$SqWBwnYaFz@Y8X0z?Ez2 z|Jo1AIFYK^NbW}871D`S_@qN_WlMiP;~Nj zTndL)d3h$jt>e)Sy7{3OM+brY(()TgkB{G%nGx~Sn&Q=TcL!Y~e|`!dw9#SS_v~Go zsG~wW4e*CD{PwR}kCoW=U#sK;{81hd)s=UdznCG@MVQ(enu$!c=C|U+o$XSIkSBgE z3&*?51ScLBXLXIh3bO6)_s*yx-oc*hL9J#|^}Km-5X}+hU}G`?kX$J4D-P^vp+w+4 zB=&f(d1I37(QLElZ#(F;b~Bf;OyZp<;!ajJdYwa4b?@1qcJXrjN>|o@=6bYdu_xXLP)JgKGHR+n01!nP$Li7|Ls6H@0nAE(_9@^0Bq)^)KjfDAv67iVlkd6K&d&a zrNCS|=uG~B_|Uoh;m4H}BpouHci>}Z=V$hZ+`zP3C${~dHm>4H5Bd6Vv0{gUf5Xr4 z%v`_f68lT&@Hxf|6^1z3aW!G*s z=)qR$Exx)@Gy5`KzP4M7b-QxREgm=LJeZi~~orJu(}(3i5!XP&4xM zS0}?~Q8`7$p+r7&HVKK8GGpg!i*BobT|p1*^v8Gg`LqPx?_CAVg=~yqEi#-|GIq4o zP&F*!X1+w0L3A_Qgp3>^5k8GdvaoGVrkP)XvqP{0kxH%eZ~xWas({k$vnR>{6}fon z6!My0WOaJ4NpC^LZE9Q|-7`TA&u2x=-Wm;pMf zaC5prM@cDI5HI^CcjZ&wjkPN$o$dx?tz~7rYvaH64{}c(>IWdG~MXSEHogXaqoRJstKZ{ubV~ z01&Vaun-Sd+?Ba>Aa1?tyV6;zzg1~Vu(o6$71aRfJ;8?`5P)@@B%vR-Ai*$1mwSKM z^gR8jb9Q=D{E2h=IH>dTIR>tN76s3A)vc$u*Zo9)^=HcR$N7m$->e6A5T#zG<#mCe z_*+}+WN1q^Q=Gs$-GSz8YiMN~Z|cHrbAq`7t?Zmv(?FX-{J7`oLrEOn0n~#Ef2J=T zh)*J1JC#&dJoeF}m8_U9hN7*Yf}>AVHYal(!LHWQkaEeRS;l<2Gt%hJ;emxvNen&? zZ=FUmf5>QwYi`Is5h5oKbtEf=YYJMV;j2j;hR(p|xHcdZ3=?Kv8c>fK|bt-CftdU&% zlSH5M^K(3Q&bj;`gaM$Bj`moD*6}Gg`hj5i$bi)H0?is>(HTjnt&=YV^|#WKDwAbY zDBvU{t3nx&qHDQYD+>`{zP3`q$FvqgwOa3slZrd<*zc}9%A zqpaI)R~+1q&MtVFT8~p!Y}gRku6XtJ50gY6Z_3Rp5j3OuCj=hsPgflLs)g-mG6MJ4 zV_qSMsjSG63k6NBB8gZ(vJj|ElG@l${-OhqHVWQ;Sk418yk(!o z=qKys_Xx0p2b znlOCn>4zr|LO7BXY!Gwjr-$Dq?#M&M{UGgI{jsez1QSY&NE-Jk@{&Yc;^t4mqvx{l zMYXhBvX-%7EcGu~+{W_n*;0#Ihf6m=&t)vf`sgaHd&PQ^gp$>;bV?(M&N=&%t2cR- z_Os>4#Q)fQf*%QAdjt|3efrhSp)y8fwzbegswqdG#Y7$o8L@mrG?$u=#zA1+77nfSr% zuma}bw0~UCI~+cxsQx0xIoL%b^7VFuUmj6V`2m)f|MgBC8d|+Hc^VWH{bMX$8R(|f>}Qaj;U6lqA_sr!1;nlhIT~!I;9VS(3+Dl z76d)#n?_<(BS)+G={;%l>$oN|iKtBZz+3u!EnfR0dOHFo5^yxr%JT9J28kFH zrt3}!E~#7;lRP`th>4y@GpT!5#rG1v6729P_miCN_~zoemq-1) z6SZcyDLBpoZo;N&(@Xt{%1FDONyj>^&#)*>x!Y?3VO3tV|C-EhjZTzz7L|bc)hs^- zeD9$WX&?WcXCp;p8GG#vPJrrrvHOYOjdPiu=W<&hy*z_Y{8>XjI+5_oL&|4W@R3K|Z6@j@U{S^v z7Z%tA1$9ZqEUVEt(L3J*kA4Z=^e8>L`nV@Hq$i%6^IVREJA55Y{u+f*nuI;aPp^O6 zo21MjFGoIG?-Z7Ccj&8G0kiK*7U0HnmL}91qr7i*?8au&ok!gc z1#Oe=v`foWqjK{;!E^%P{pEoNP*D8F=s$LG7g87k*<};EYc=a5%bMzc+iJR`GQRWG zWnSp_p8G;9x&~-!+$ZO)_l2x@S`f`j1p}c|9-)n3rUDFyFnYd?YSC!nLJGDXrEpM- ze5X#F^g8~2ZFMnd-PBH29j)W#gMdSR$x2xUDQQj#_uukGun&Cbmq779XvyOyRa|tl zyx=8#Ah&HEniA8+S#VZ{THOWBjYWUR1ueaV3-U|wwOn8{fCdYh&U8s)LXp)oEr`VO zd*r*kS#niTV9H8qqX5-wSeX;$g;lwdbgJp|ALkNF<=VFMT_#|1$@pL^fdd6V{po_L zn}tVvu=Feavap*uR^}%4dDr|Gvxb(e_+a#5kS|O9?u^x5$TJBmCauYke}DwLK8|HS;?k#-NT^#Ja;Q`S&1Y z3do7cQX$ke2Eos?Jrfm{c^s3w9lP(-}(8$S_^xzLSL+}FQfDUVim&YtD;Ehe6O6ax4xIJe#UD55o! zMx*J3YR~!Sj3TgkKU;UITU?rFGimBs=a)ayl1USiGc(Yh_RGdhKRa~ot42lLN3Go zX+hxsnQ57(@&Q(-UStI^LwvEgaRQ6ua#h{p)cTQbK4@Q8@*;OkgQJ!tFq^f>5>FIS zrg%^}W`5E~i)A%WfmT%ia>JVUs`eq67}9P&!~S`@vGdS-{!El)j|8oxn9T#^J>8lT zGf{CNQ!r!VM_Tg>0gswy5QR|8BTSd=Y~1HtJ??$=(U&?d;TN#s^tnneaX;_S)C?{` z^4r$D?;Cyib!==blQ@G_K+^lf7ef}+ic*e!?6|@_?NBy^YGLe3_o86o!aCLg^sntm zXd=V_o5o}*5`omCcz%!F*FW9yht=yVpXq)%9Hh7({#3_3@Xk*D1au1mME$R`cZJyD zkD5PG<2@-&?tB7&DvxA`-OoTnm0Np)L$CG40O{&8|BFuxU)<{Y+GWC?jlDCL&+brU zUEyG6_OEx|vfC$CgA@lw^1Kj+zYHanViV6(64f%c-WjIatiJl{%~n*Ibfv|R!n7L* zrbn9DqU8aox-DSysk08InZ^T6hAXTW`%E$#O~ulq*_5pmjk2pm+2)1%k8i7v^6=&7 zJpt95D_X=IjK;y=8A*q$+Hp9_P*qDZdK#I9+VKVb;dTAlox)Wu4c=d8#f)Zr8mnc2 zbw$$C(!NV}2XhLRa!2c=x^{JJ!fAWseA#SX-|?sM-|<eH?sJ(d8HL-0;Xu=mr7?V>I)Yc2xRyA&Ee$ zl)q6idA`!mSO{$dgNR=S3QhR?4x)`3aBc81Y)X3^UXJVJ1oN?6KvN4Gqs;n)#fy85 z9U~$`b41JWLIgeym0H-YAA#$Tk1BPhf#<2ckpVo|Xm5>WIgi!o&pJB+Z;fP2&~8{1 z-;)P?ifvT(K>U71O9uCfmA9=noH!fU>tlgBtzr;&1FKwS;)W$99piPP)m-AArXem^ zP&hsC6|R4d6OI6nq(8LQ z0uHlO`R$jG!UEGt&3Uf@jSl4AH=Il$vzAne%i;tL#`h+_c-=l!>=j!*`rg7@x|rnd zY&tOao~PfkP1>XCAfjIa)7JdbB8Y1U!%yKiov@&1U_@kP zrpbNB%~EZS2DexT427%!`;ySU)aC>j6xG)&=kh2y5^;HoJ^~Wy}`%*6mD#TnN)2ITtiR^3c|+4K$`I(Wn5XycI3;0!9pgwy)t=t~>u6 z*D7J?+w4c&G;X|~6vW7z+zzGRm>&X?p5d_=U{aV+A0{iUm`waWl{E$*1R?377QzDM z>U-9CHDofZK!#VMQwq)6a6j2&|2@D+}LLjgkrud}SX=svHJkyvumxu4qEl!s4v8cv>F_$Fj=O{HI zCZ;DUnY-e8~h{*m( z?Ja%g;JiNCJD}q<`D>W?_fG_Twx&?=XR5U0eeL_e=h5mF#MCv^s~ZTKO&SD%U6g`N zN?}=uE}AY%ROD~je|jAmiL{nF-&<3>&e{VwB2@u?L6?)k3~8)yxF>;Nu9R9r;{Mtd zB?8pM;^Lx3D9v|o&xb{oLDghGtnHaFJtx2%!hJ}28kN{uTJbQqr@n)ZtdVKK6CmIE z4v{zSFD59)Ac{Hi4`D0SCWR8uR7vJkknyO;vj=x*P6w;r>N)uV$GB|LKnlxG9!sgE z5n!S3)Xb;6a6|ec&A|;Nz=R7f$j?Fs{a9<1jz`5iEf?H^98y5k0o(v>&#J`%9)g9FVumV%4 zEjvdrdeTOn{I?Hq`|FFlZCF=}oY_8nosyV;8yZSqkpGhn%+j&txYFh`wN_zLo3U}o zwhN8rt)G(nY>}_U*Za0=F|b=jWx+MJe!vazL@s|fY&g+n*HIaP5EL3KkrU7W(JJ_= za3AD-K#?4QaT`*>kWcV!V3CRGS`A|du}Mfk5Vu4W!+M8W#)5!Y8Xk8YkP{^PI;!*3 z0O?~;#559^hh8VJbosrl4Y+0-{HT43sJ&RB;tH92rc6L#hKNHSyI@6M%xB*(ASF_X zaT2DKCI!3P5~=|%gsAlN^h9sQAdOVKj1Is7*W{Sle2K?RwuMTp5lECfFgt1oSW!S}fdeV8pnwhh zj6wA`!}fcy;POmce@beh7bNg3IfUPew4Wsb)L(&Yf;&+(Lg=27Zv-wbD<*I<3_?QO z2B_QBuG()jXhAdwdz7@C_Y-ohabPDQ9T-pVX{id%2uN=I>n4#S{>*)R_?x<0b>CZw zPGax51^ll0VoqyH3qfe2C!m{r!uWMj3>)gPGIu4XEBp$tj^`dWO@H&!K7)vU0gD{}wuKKZYki-Coey%mP zVDL89@U<@lKMZUT88Ke?=Zm-|CZ?>LL-|Bxt;}|uM|cl4988Jc#etvuNU-vpn+-vi zEG+<(!jh{L;)pNiy-EB1+Qj`@UkO*P$Q!R#*)J$N0e7C`-Ub+|VmjlQx3%fdMA}<4 zdgb0giljp(U9Q4{!DYJ1yY2nFQ#@I{n+POp8A|R%jiJ0|^`7ZQSI0N=Ge-XB*xZwa zIS8cMW&d6qU284C^}fp=h;{*Rvp@%c}76RFDI-3WLI)Yw|7RJOMPT0UXd3N+sTuncy>9d)S!lW zi-;DaFEyGYW&UvSsz;nbD^QO|2#C1p1v!i+%vH)Aj;##&_GvLySG z#Mqa}mL=JDNeC(XR%FjoBKt0-EFs(2N}>>1BC=FunL?H<_c_&deLmmcef;kG{_8rf z<1o#8-ZSsl>wKN(^Z9tb1wk~OVd+=OV7vkQQTIGnRYlyf&t^%2f!S$`$KV@q;mp&G zEW=Q3Yt9|2#zQN=Xo1mN>6IL+6q^#M+7Ca)_XTqZRl%ck5|OJjAOdz!cG*JYi<}p< zGe{(2Yfn<4*$lr*I(F?Y424XJF~6xVON#;p;1K+F<&#%dI8jS~p0Pep=5=Okrq=fY z-rqkf#dC+IMQi!JgnO*J$`PIEwMe-Y)c%r6F+;N~g8iHkQkSWw1FR;W58tWjPY1u% z8xD<(M<|Sa#{s6;5p_5Bn%E$%(ue5MX)w1Az%uFz&Pnl-99|SANGJ`P+km`4l&5w> zvXEYR8Ux}*#l2A(o-OtM#H-kjnAZOippqf~2vA9f-7d4fG#HUU_|Ol^C!FO7Em03N z+i-+4GnYz;;Jx%58J(H$v#n)z4dSF{yY4-Es0h#n8G>}skSD;HOS{i9NBE+&7O8A& z?y179Aa&eT6n4goqny2!SQdypho_XHzm6!Tj^sY-`d6%)PZ0*=_SdP0V&YiY+irFn zbC&3G4>hv%i>Qt;<)4iAu5*=0c3Tf;XPm2m=HkP0|4vcYcFEq2XiNKp>x^-sC0rnn z?0VDwl7o*=J()CexkCfh)nj`LN7pD}WQse1NI~TnV2UD>e74eYrX*U%DYU91_XT_7 zEsQ@3vO;x~Tw9I5#?#-xjCA0VI&$^Nho~2j% z`XvDgG4fDUwASqG8YNQ3j2+IBiyNb2MDUh2tc1739d?=m0qN_nC(;ArNqERfUfEKe z>y0890R|->T0fY0{zyD1tr^Xsej1ELI&Golr2KCSYe_M_@^`4(n8dG4$Yz}KF23?r zJMCeAg*xnpGVe<8zV+~ z&@Qn=uma-G2X^u4WuK@X%A_3%Qgs!ZiwK7ao5@b!C*LH#B>u>R2!5_CBJt3UibGSU zU2-w!5~@_7iWL9KRz}UIlg{C7#TmB;=k4U6Tn`6v)6Q%ZMs4s;C#|;?=qB?~`pXud zQtEH4IW=6X*oI@Fc+?Te3f9xtQnd_Nd2zMyfRT1Af2^}krS+dOFv36gN>Xdp?)pLc zO+DH2ahBVTiA{)7<*#UbI1?fYevhK$^-BH#SyC!pzJ20*f2308y;LY`KHIs}>H8m2 zh`7$$M&Esd234(VT^+!T+!fx=s&tnKHL0=9n?jZxyW<^euas`AZs!MFD$L9rSa zDhR@2KEyl4gI(^R%el4T9NWh!{J3Kkk;?iX-kQ-PqwR)D-D75kFfL6dl~%%ZIm*Pv z7}=z3G5Z&q)p`IobP%Z9&p-Vl zI;-q`Q$o@!1{X;APGr!Gzs!aniOwgjF6I*T+ZY%#)U8$%5ECT|h64w>m(@NF1#hKh!LyBDcE1v|&RG$Me8 z<=bi0xQ1i1L9L;^T);J{<~}WLam?&k=!X9V{!0hvMjq}_>PmAheAn*+T^0UFr!yUO z>fJ5MnO{Aldu`8|@W$};O}~L_ukqZ(5&=AkCqhAgoGjxorXJMkJ=yfgQkTBe726h) z`-3CvpUw=mN0zDQ5DAXtew>4&uLIMu)cP4jU3*Q5b6L0So3mXX<%O zbVh?99GcWzG&e}*sCoMDpfIy~8IoFcep`x`&)1bH>s59)Zr$`FmC<7f3%U8T^10{D z`iE{v>-P#lJEAVkoVfjPX2h#WAiG5po=@pxEz%q+w|V{5?Y=?<*j=&;BJQ50Jqm>6 zPiL6B=f`YNW@mDRma-7#sI1@Ixrt5Gq%jP8KCY!|L+IfoDDEAyItkpUGyMINt8%%SwK zPi|Z9FM8auJNe$6*o6{NxnolKVY-H1Dtmo60$Z$pcyXYz z_2YYC%HUe`NxP?t$oE^6T+HlKXHF2lvN8C|bnHS5Bz_Xk{>4`5s=BvlB1#IYpBNKI zciR+NwvG04ExraY&#Sj@-#Ws>{ASpgoI|pnS36ZS`tjxWO(X<4RJGzBmD%K9LDZz? z^`ukRmeO_HI%i~2)2kGlbZ2)-?qrj-yjT+XS|2oX=O{ws_o`C^%>*4-Q}V(7*(1rX zoxwOy8+d<43wq(bzb&>!)oDari;Ua*7}qAB1;fcDyxgTtuCL09IMrAVjGNTo%fYgp zzE%-;?fpG1qhfKL`S$rKvOm+zAgJ;VOHx9(=NQz1C<&$$Y-BC>G zlA?kAU}WM*cA7LAw2@Js*l+REY7aK3n{E{@^k4tR-s8r<68bNZP%R1vd#NjQ4aCRk z1$;ouC35!X!fWV&lz|d}w31W%m{jftZ?1QeXse%-k1?Fj=ya>?4)raBg@w^GGnZG9 zUHPnoN;*QfA6`0`FWt%kKM(7E+13(?kv97PcI4LMDDbkrOC>J*fUgTKCUd)^lqzr0 zl1tQn;gro}=*|8~IQBO#AAKu>KyG<*AEy2xkzexx7D3~CujRaERKxexE=KFj44JKp~Q`KA2(O6*h}31T9# zJI)IXkCRM{a?a!@!aP4HpSw7}wCH&B{-5I5U75%?@Vl)Bn<7u%Gj+`Q2o838F-M9w zf`N)k$W#7OUWIwW$nC}}=kw!qTi;J)J@z~Ni}Lx$?CT%mY{tTzn3X^!w!9cVfx{2K zTxAH?`uFtE%N2@cvG;yF78}Q$OXX!~&4G^!Z_Nc%mZMipLYDo4zSX-H?@+}oS+5D3 z=3>E#>xVhmn)IRcnC|m^TBJmIcra=fm?kD~Px>xy7F7``rS|vo{(p>WtaJUSaN|IM6mN@(qI=^w?fT? zF40*R9KdR(59|8EmY2#qKG=NnJhazL!Ovsf64+2-+c%Si##wuUB^8w;Jf|yl9MC5z z)Q2Bf_p=ygZ!46$w+TiJIe#vM22o^z=760z^N2CYz{?W7tiqsx&F+o|=O3A;nb%#> zh5b@`dvrnx~Y_ryBf#X3nb^__Q@i_F>0%nxpfM1h4c6ySZ>R;o1;#vc4e zq;yZAUOBP*RTM|#=;)|wNy_hLpgej@`tk{4QF%2?bk#Lo`L0+Bd(+3esb8y*NF-Xx zr~8bH2$)4h92%?}xotqaJrU}n==T1EcOPvKdj<|j0=%MR++9$r`6axXfZ~cK|T- zkd3tV!5!X@CSi+gJpHnwsJ;Bl7GSPmyKwqwZBPlw2^n6~$vJoUQO+d>?O$$gY+CbA zef9v<3BM@)w|;VmGdl1+^`AC=Xk6kXY#zhYW9=_XOMcJqzfqFQ`c|QmZZxkd6v6mc z**H8A(6)t9RaYN`s@Q%&dAftln(k5O`Iw{YS!(G@0hF|6pa_0+>#D!vuhub*6q4;m z+d1Ofx4p`blz1d+=;CNY+CWShk#sI%kHqqT5&PR-aUp8b3?Neb2n>u2wHjOLIz59OIoMj&u`MBb6%SmH4LMhwcdLfge% zg*465SLZZSP;20yF??OQ7a1}=Vpl3tbM%c;(C*o@_fF(Fg6y=im2dr>lDl=`H*5_v zCAWFW}%X@f?zJysOqjl=}T?-9K(3s+5zKI|tFZIcI;p zYHRf>;|SsiZaoMdnKK6vhk&Hy&_~a!2XUcVU^YF{Nt~aUNd2j?Erm;K^3zW&LoOf+ z?!LJ^){_VXDBmdF`c9VPYC5?f%RQbR3r&EgN_Rj)Jj;DKGR_dzsng=oyus+Z`Y{V1 z>2cyknQiVV7KOli%P(a<*{RYPcd%3G)3z12r^Y`|eauzr(O@{YLi{}dKi%@m_38V! z#@AxM}Fe056^hs=$t-XOx3;)-wbetCBHbRLsPt3C>j`g%j#+l^u zQ2ny24CRKk8M5UdI3E{zYh>pZ@^eXGneoD=9{|?^HhHX!NgR%SzD4kuF{`sB(&*m| zt=$jr&&_2MihYL0@j4S&5?Nd-*#FH8;sdT1pO7kbnD|C8TieT^FlDE`KkK9zv^e&p z=7C~k%>A;lzL4+l)`f&`3;2d^@d2Av7sm0?xz(FCTkmScg& z4})Fo%+}X}#3kwDE9o@-v4)_nQ z5<%M?X8?!#*a29*#2f;{n!zYM=T_O^GAtr_hk}MMZ0fz1sasgvopQWV{_5-r3Y5tvXG24%4 z@{agkj(;ejn;6H13VPxaK@_h1+)v8K9_J^uC~$G-$s3e@=9y1cm$5|iW77}srN8n6 zasrB7(vMO8X&8Eje4ETbyN|XlN^axV>T8}{*=faSc=vrx5K8j#nB8P&fAhn`E4^L3 zOl%FHS2-L?`}oc`?Pw6R5RM(g>R;YuTTf~{3{o#YGAsA(uRq27aNFK)6z;cF zh0{&om%lXC(ya7l(to}1*|OZIGj=77u{YbYQB@o8-V^v?!yD0e;-PG^wnhK3rVz!)+}8zC z#q@{XH|T$yDMv{HY%Ah*FEfK}uSsd5nG=aOh>nT5`itLMV_E1D+f;Lasho)r8B!iE z(|ZA`Ek0QyZhe&VJdT=PdyYUw4|PPF&4@&28x#y@u2D+64n`)BbLDIP<_)oz#8)jn zu5R)DO&ePAy%t9se!bGXR@*oVK3ZF6d<~XJ?E}dAGjfIIGS(PVDj8*e^LlMU2y1wx zh%mCOLhF_70fVbzJJciqi?~F}S~>aTK7p#bOg77=%Z2}KTbUBgnLl}FR_YI&bGx|e zG*at+ATZ`Q+_s+wq*hKU%^{8=WK@Zyo&$^dtawS1u$F1;dUHjrWRc&{;O z+$|5w13_n%4o?p@pQZ4TU3{y}Se0WDyM%?9yzxIHd*MolSBCUVXI?M7K67J6wyV-y z>&wlveIRD!cYAhu?!yxrDZG0sPW&n~Q8G^1GiS-&FnrUfIglSo#5iktz==Ioo_z)(z3u;V|HtCd zutE$T`X8<8Za*mV*}Tlm(o1*N9&1dB_U|iEmPQMu`hOrW{EmsIf4uR9^*i3+!C+we z-2}GnyTQMfP0Rmy;7T%A{}29>n>Va!wp_?ax84!#CHN!On&HvGcl_N{w_L{RsvUHj z_!(pteamD~zm`Xzb}ad%|CX7V#S&!(K2l4lv`5JkBQE|%o$-Zq0s_WO?5MdL5nU$X zY`SH&G*}ed<#x4}GU>xmy?@V25LuyhRW-_?B06{B@5Ot6{%u{GmVtiT?LZ1 zGY-lE=QK5QtbFje;0!jVNAG5oQr;I_JTm6gTTlMH=)}e6>3pz9y zJ@ohyJEy)!mT1syu&~cwVb^;qCDn_b+V356UmC zeje%ET-2pOhYsn%p_c&n4iN6kwYHfgm@?d~8AUjIi>q11ui1gEgOxySD1O4(QQ8^8 zXIUit|6|Lre9XuL!dgGUiUnEqs<_TKk^#Zew6$0+hNpYfWB zevn+qq(wb`)GyTT+Zd&&QEr1Uq)TwZJJqu zD+{zSaWQ$xMcT*K1Gf5=TuJxGE2TCT>6AgsRov3nT(oe6&nD=`{w`CRu%#hN{BwcY z+1ZNhoJU8P>2S~y?63E#++)?2QhBlEH5En8Jiga*y3GC;#howLs07R1z@ zZqLzHq!=|Lt_KD<#i2u~Jf0wmq3tG|1p#e`b``0*t*K{^Oc$|MFbB-inqlo3X8*!KVg#LGT1iE(Txo`NwJrSdr z!IHPwha>KubAyLolQgp<+FY}s$oUKZ9@%Y+|p;O zFi-7$c70TJ&~^_?T<9Mr{gxgPmymFmSxOB{N-(U6W}Y;Af?ckWbl)7Y4l#fV>%^F2 zIdk%N8-OQ1Tc1aMmy%wv6$Uel%qc}x){Y5xk$=n&g}3Qc8)~Y>f14koc(yU=*KHRq zt1gqwOB?F*qn_9n@I`hzsWK78J~dIC5n)Y zWs!M85mu56kb)UNhRo6{)V!rgLAM=D~+}k{haujEcAy%-A61GK+|A<2ha* zM#NA~W6^$iw`=L#5qaToX41pVsdIgfdbD2&Muns3p8L{{w2v&SGZc35DnI^u6D1OHDNdzBYiswj4LkL0OUINPnoMXz9&E_u*?Xt!GQ zgUl7PoJARY(UZK6!{Z;DZbUG@uRN>3g>@)22#s!N9{3T|i|{sZfR4%!iImhQ6_bKgiZd(S$cB$cs3$moS!am}AgW3GEUkxtS{a_K+g$O*)}$J#_2oOMIi{S(*5 zB2drm*svHo)o=Tpg8c+z0E&{~EIsr8qcI?fW+aAxp!1DRxVs>AZdnw&y(ny8zvl42 zm zBloG*<^XeAURxfq&z+XfE5mQvJ*f7>yuXMPS~OUb00{benA|fDq4FU5y!-x+%k(Kv z^BGhxVk&=f(X6lftq%T`?W0YRUZjgw;(VEb%?<@O?#G3`K)YxWnO0iqmU_i#PWSig zpE7a@)HfzZfv_=m{~GQKb%xTG)S^a!d6lDi3fA-?iF}~TQTK@_*%S=>%BkJ~Z+RrG z(*z1A=ju6np8KxS@&po3<$}&@5XK>qpFK+Y@icwuO!gSoT^LQ3x#@G{1zLd4p1--& zz7^PC&u`4$>OE~%7fgKinew}57L;a2vJDa>P>cL%CeXm&bLH|PR8bx<^dj(Q@~^mQ z-8ZKg$2L*v9ty^%?UZO4BfZE#@qV2)r6ZWc2qJL`YZVaa5E5e%D~?s={b$P|8=_>fDs@!=s9&m9HCl7Jx5ogmSjjq zy=krqf6qf>T6iP&F8$!DZ@7!_i)jT~4Gz0qGjp~&oe?6Ml}oGCe4&BPyx3{jV22)C zo=#CX&J;PGNq2fpmq4#eP$w#y*r#`@7m2*3u9!tuBThoen0o4m4cCTG+YY<@b(=Nu zJKS&TW1^+9-hl5N!bzMw%gTlX->>(L@WkW1l$s)thrQ42=QMvK^3Goz*Vt3T8qn)w zlkAkref0fTn>RmKoj4J+(51YZHR*_0XpUL8Qbh?2qEw4Cx9N}ZhsW%$Sv6IsXi4Aa zNpVPiuqMCeAalQAzB%PpfL@n52w~q~d~}Eox6vycKP9oA&AvQNb-=U~oi&+|^<5el2m*^dJ>os~O9 z@xTpA#`^=3b)QgSa4Zv4I#DttG0hl;npFoPj6q@hG;H>_+PK!}nZh{Kh@^s)cBj{( zdf2gmoT|dCW|o{(kyeU&YKO{jDr}xHHL{uy;x~6WyN%Fv^1G6? z;_m7v7(#xrh8*HNu_IduD*E!&vUfe+Z_j8n`mHi0V#_{2RR_92dR!KMKT@ll?2|ivlwkz3`yZkvac?vV9 zXMJ#E3;&5rvG_P#3*Auo7PIs=>GzrM{lD2}Xe0_e#Om;<)g5!?_%=_9xU5CxwVYur zd38&)@vXg`T`7ctu<6B<=f3PGnY#H#r=|Y3zSHeLaaA0lSV|P@SCVm-t+ce0mgcH= z+Am?Q`~WMGA#}*q#2sa)szeQ-*G;iQGxGV5C!c_V_$MF|DI zpHe{O1+!V&G=jkK&;bGD3FM-sbL#qDeIaU1mh&OzSaxpcE7!!YZ4_Yzo7 zgP=2_DO(cSr<^s{i1j-2TEIN&dz$*CqlM94Jgi)Dh9&$Ta%pCTqgL*FJ(X}d7kH1Z+v;9}|xm5*{EXqLr+ zoM$x;?gZZ_VpbCP{s7Ppd5?C-l#12Yvva5<|EeTA`u3!JLCE{IiO2z1-6F+!LFmqgor31{^7nec%sHZ!|LM4Kkv2nZD`?zqyM3qV8-k@>?fm>};Kr240kcEJLWsmz zBXx&G3Jy2Rk!?;1)~g&Rt=xFgnqcL=OJ0??1chQoP_z3462 zopnT2xW~kLTK0C=-b#0VgSq(m0`Uv*%wh@FGSYX50zC)~^#%q2Cmhobj$XU=u~Iqp7KR zb$qP4Rr_#ipW3AVVde5(cEQ?;i;Wp3l@?_#4_mda?gQmDeAiWK&}j;6Vtwk8M9ZJT zVzS%}4O%pNZ$}CL+1u1!Own;9D>Y#aHR(m4EaR9%Aw%A1A z`dtQys3Qd8m7dIFNRn3N6#;2`)8Q16-d>O}JkipMxJ2GRWL&DR6t9}bjEzG;afn=7 z2X+5KrU%;||7?g0OXKojmvBI)yO#?ov&L!Wfk%XLJ@%=#L-= zxq4t9;(2#LFCFQGX=BFcB$sLOAbeCO^7HdiV}N~kvQNK9;J`OJ-ZHrg5nVb&x;seh z2MV<=U>;gNbw_$CzZ3tK3g>=F6oAqop?X;r>1Q07KnZ9w*!5KnUy_thXDq zC=g|4I-uGQAqr6X&$Bhzu?sR^4xQw=^Mbl%h=@y1K=QUB4*~>k(s|{PCM-1AbeE?z zw?a6=Rg!Wr=E_M}4QA}z$qJy?=r;Nz(}he==4}(Z4!s7#!~*0hIU-$t_#rnj$l$o0 za%Uqhd)Oj0Zln@dRtjX^!oE`Lnx7sjOYt#3h2P1Fh<4VncN+&+_4W3kWe=FcdUWc3 zP1J1x!?`Y@v1x>g!(g}Gv}sTUYeTjaa|?)^VmWRfvAW*o%I<{0!D=-K@PWu;>cT_g zN((Y1NHX1QD`J;OqHx)EpD&uk(OA+#DOPO;e)tL zPInab5u<;Q(eei&YgMq9fN}d?AAope(X`91qzKhQJk-8lqiMCu`q{sza)*kirZMR>YMS2i+afPC8dvTR|0fa94QhQLW=1*XU1dKP=M|n=o;-f-x?u3y_Av)W!$BGp( zS@Vx^mqXE#dtt{q1i1>v*Jlx4H;ts&+6kv`96CJ=wl}n5J+;CXc8+Ms1gUhp9+(@q z*9GzKR1(faOIyAM8EGVA=OH9Iq#dj~R)zU@5J=A|jWpWyTeS$jL9+g6QVfC#RP+Mk^+V&3L|K$1NR0oHmiAnhnjl-AaOBNAD)V!?37kHD)WdhzQ^w?W_Xj+k@O|8dUram;E$gBBfH6nk?YC(~0hI;?D3rYB$=%QP{5pGg>>rEFtxPI@t&Sjb1?%06=iTOG<+fU=yfBBqi0ePeujOd7aH0gZGv<*C zir4WRS`T{e3LUV2e~8sPlQyw>{bOs09%tBT5}JwX0Mq2X4nzYKY(uRfA+3pbPXAY4 znmP`RMDT`|9>7j6`l)6?6QHTt8MQ82@u_wn@w3%2xDd~xWa3K;GitzlYL#VSe4uO~ zh#s)}^I-jr6*D6b3#Gx%xhM;3Y9vd$%PH+<2$AWum@uSA-s9)NsN&y0VrQk2fIYlW z#pZu}3_i9^#meJyX(5>viA6l)tAD0q-GhyYueHMG=e|>0xZE3J_PwcugsGEFlbAxvKgj@u@0kvRXF|va z?MOl<&;UagljPa=6_Qtn%!)2)P|@9DXVJCL*B(2}(tq!y^>YUa8~O{0@$p3vH-dVp zdOh_&Hw;6I-ijnrUK=rcHCb{z1dNl#G(hH)HR-_?r6}$F8XPEiHm;w9W6&l56K{2H z-ag(2$M@g=0Ez@zOo!dtm2w^Ie6w`1LED&F?2?Xt=*(*+D(3z~2!F79N7CB{-67{3 ztTpnjyTqT@5w^mZ&;`^JV1Zvlu%AjTKN@@Yg!AZuO0MG?pO2O49x99zLTcmwhRzb! zX;Gwt2JSrAxrQm-_E{?PxOF*7qQ7tNyVp`rt*$;T!wd{dR%j*o&oZ=hS14CgA|MXc=^*HUiL1i>@hw ztiP}O@4Y@pgU=u$@Qopg)m?7kD3cn^oxGg6v5Ei?Z^~*%$JV-@6csrexHi}JpCBLA2%<^R3{Hz z-|mrGpG(nWUVNaZtx8lIkttcOXDXFuG)mv=hyKqyY#|YeUSoNauk(cw$e^ z#(LdS%lx&uTx50T`B*Q*{QA!3Dm&xa7p?!qQ-_9N@XL|@f${{yprrkaLku_|A`viXqw8+%!X!qXdvdj3Avo%i z8z8RoV9=D&FDLWwkB#vClA-W*Q^5s*w;6{oJ)PA?l<;>5iW(1i3_MdXa8sg0#m6Dn~onS(hIZ?1r^H zX+S|{AHD`{kaLg`Al|@!Le^UN z_L|Fhs@5fT&Bup@ry)Ia`CV{>*MB|jL8u9?Q24zUL5rxgwD8K7?(f8odqY}o*+rQT{I-hJv5nB;`5WsUhQZ>5k!IinkgH5RnL;~U zBviYKzkO_Ms5UQ$}enO9sALf5;(hO`O|M`KKp%EP@Pq6Dtf*Qs5tK;jm5-&R1 zprI3zB}vTMIUmoszFo0gd?4qyqO-TNL0NX{hr>UY48>wA8Z7)EUMX5_`E`zUGO9zv z5W2#!W^pxpxH^S_@N-kTe+mpH(CB|+D$;F|uQB`QvX z^@rLDx2OwNar~KYtiNp(6)V9mz9Q3U`k&t_xP&->#cfi4{`N_W`dp;6|I+nx{in3V zUyq{*^18iWFG`!6zrQ$E6LdP+qx!#JIIVy@Nj?oE1T7F97VEwapk^sd6*$HD^p|JA zwXVs=5dHhftD_cyD-)*(R%hqKKL{QL!Xg)kJ<5sipjN~rz;BTD`eCbDvX31emwHkK z+^M!d!i~_BRo1eg#Wo*UoA9D-=NEnRB9-)eiwq*3`)JWcb_9niJ-sZi`S%Vga(V)P zJN)V#2>nbGfpiwr3J#?&8~gyyJa=E*F&`Ssv8Fe$T0h6#DsN1-v>x-+A_A7V$E=45 zFuj=-uGX}^Wcs;xm<^m;SH>!4h+2E4-Nz%(oILc;UMfFWkk|Mth4pigaOlj#qwKXiX|-$nkE?R zJ@FtXc?Kb?33mHg1xa*Z@K=nQU&8sRw!Ru*l{G=*m2{E&+D?K>V?ht|>waz`K%jf^+zUho8!F z3UY~4-2lCR{zZBl-q$JTD_r4f$N^y~Ee|TzO1bsyvfhcaPCsqx&wN1-m6~g*ifNtl zoDTI=2aVC+XE~e|k?yOs3oREX7r`-l5@V~I_^|a)8&Ybo8TlJZU5@JssA3#2l~V!~ z%-n;Z*HuEl=L+vWS$=|KAYyV)&FdlVK`2r zgBI|x&{RNbpY~hr!6?(Y1xjg1o!3HrFBe`e&p8Vn`ZDmy2Y;vY(Ix^4ffD~|z9NS* zLrK@3b(;+5Ji;c=x(Cp}CasySco&LjlD|RI)Psq-SjO;MXkaSlU3;LBgrdT&miro9PZW73I zt<)4ELGFP}X-1tgQ1G9h=X3}PqeLlQ4YGo$EYni6+sr~N1vYKU`|K8>0rJ_8$MqtF&55-Hp;3 z_FG&X691%}2qH`0Biy(Q?=1jmp@M#xHv>!50nzaG&N`-suPv$~kOJETLt=ScI&TF+ zl2S{t=3R9_4K1q5db#Y*411U*;@_KNqlVJgI>gY$q7@aLFeFeO%MiudFV@xdCifJ1 zHA@150jE#id&rg@E1|z`bWDYey09;k_F;&P%(T!Hk)rPH#=nmN+5n{QOQJx6)?rahxO?(~0~x7!%^_B~A)zE$ z>ReO&_T~)LviZALBCY37t4SKu@Y==v=?=hx|AYbwsvYmI*^-`kOu4C|Sltuj7j7F~ z6_(X8>QwAbGCHVXpXKr4*-zfQn8dubgPZZpLq%t&f=aG6L1MN)v=Mg|F)M`hm*3as z8A>GR5AdSV&vZQA3GsTE;nQaFDn!O=`CQyf$(jKvR0(c~fM<+|hVn~AKh~k%WA*67IHsW6{8LLWE{(afwL@d9XE0oq5-( zH(d$3M?Q_dB`7@9(Y%ptKvWSm_*Ua4LP&&OPS`@OVzwX?qs(wy{1SKKnV;$CGRO&e z+3c2H`ER~ilPXaU`OwonfQ()?&yeQ63jyeMRD=NZao(Qdr(d!I67=;>L2Szv-q$9I?LLuylx8W2dII_HkDm#txe=Z!V$P&+ zRnoZ3ysw&cyPSt+^tq$NVK$eGU<|TN;(EdArA4$6JN_s@@6vGbqtik720o4_p8N6{ za=c;!b;o1f+ePci|0#5Eq+zhl8GuCm^2gYf_gUjL?r$}>(P7(bp9j~=o~7XwcD`~8 zTDLTPVuSq-nuZ@DnIrllhO4)ZAf5z02^K&<^?>;25VE%Bzv-N!NI4V?QgvW6H=XLs zIxf<8(I)44WSGPe!pwB={=1SPb?>=uC7`EBOx!+;-0C`Ftq%%?A<}B6*Xly1l@b$( z92Y8x=AIsYXlnGS{brx*gNy%e1@c%T^AgCVnflx_x;1t_-6-`&XmP;3K(D!ITKXT4 z`_#-Ro28}8Oe|@!L)k$9*KvP56)??Fq_bTUz&&4mMtvF@8KpW}7mtraGl!5cDt{$K zqmYccApC|Fw`lN^i+RiCGJoV%Vs4EmG;os#G>f#; zzJe9#Qb57WgfH!V>itp+EcDSUQ!?uAhZ_!(h?D+(M9}m|*z9X9rOJJeNe{r3hozMB zre*6$%R%698u zK4ejEO?c!^0>>W@+*rCF4fB1OBhQKF?_5BJ!EEVWq1NrT+iJ0l1x#K)YeOE1jxrAm zzN0?)mD7>ubG?q+ckyy&E57?qN6qz5NFZYHfa)yaqlw{|s_*S$hgaEE?LL=Z^fwr3 z$X(s?-e`svq#=k}EfU^g5JSHZTn{(1_i_e}^mzTo5INJV$j#L$K=EpiIvhA1D6Wdm zKO{71#lW_?{l=3FF_a(0s2^i|wi!lWIoi!eaf8LWXF+jlC)2ekb;)2^&UbjT?((?i zYO73Sl67UY@+FASQnJpLRcc6Ecl%E6&9GuGOk01g)==<@s$H3Efr+vT3R9XYeDQ9} zyHw6!o?DvbCX*)1U*E)cd|_6xslLih#VW6V=2RwaB;cOe?2oKn_+8)Dhk*e^21l`G zWDw5<^dV{frSX7JXtz3^ayV(Vn~@=Pg})}S|L3U`!ZGO5aH+Q5{#1&j$0s`_X3lEo zE~CH+oyCz54ynr%orc~`-e0KFM2rTVbRcx@S_9)P@@c64U7*sxME3WHV%&OHnLCp7 zU5TIGcy+)%xdNCj5OOkf>Emq(w3 z{g{9K#plc+IvjAH3?G@-`dkiaZ5Pd{oePg@&jo|kqbECt(nexcrFo)$*~GA@Y_TK! z$T@lpAc)@Tdy1SIzbSdVJ}@N9AcxTo4{-)`ipozcE<@UARzDnyOCflMaHt=IVZr&7 zaTwi|g7iY-ykEZ;%kxV6DU8{lzxQ~kCBmJG`79^xT*Up;&eC0P(u?1;Px2%x!Jv*1OuNN|@Plxj zB6&wJhAu$gycoXb0ZNf3EQJ3Q!gQX-FhVC?R4J|nPKG|yID{Oya%IWH!6BI;K5xK4 zoJuXUZ+*icwJtJ^8w8l5jEvv7o`BDGaY|8a@@#xY?bki(sEb!|9SYYI6|7nlvVl9d zGk?!|NK65;h=(-AzWiL8jLN<~L;gJ&PMHheD8DRJcW97*r!rTXKYV^VUG|1xnxN$i zL+@ca9H5A>+4uwYeksVmQO^+>?50PH!s}0j_T{yyD8&cwW=|Ewv zSHfotZ|lF~dJg9qC;;<-)e{B{=}V{Bg<8}u)1dhdPs5S%YnvkVQh5r_ zJx^)Ud?tIMdDY14tyG0|RIs514ZhWi2cde(BDJeFS=Dz5+daxfQe=0h{q6nwB7~}n z`S6*27$9fmlc*ZbysU^+OG=#2%invb3R#M!ZwkQrJOsyGj+`UZIZ)43#Dy9l>o1Rq z)5I|zIdWVw%>M@D;?c90o!~0rC^UO&7t_UGiziOqpX2Aebf!D@?w3o_oOtd?#ZMJu-enL8a`!oj zoNwU0gy1`7cSthU#T_4HmQC`7LU2Q7KeD~Slw#=%^sH*=kG9FD^Tr+-C?ua965!Fx zws1K}N{RlnS6Oq~q!RU@a9Z;`Y8(76rVh8C04xBVBDzZi@!>)>w~nVaU4p(Ljkyv} zHXL9`;p7nA*$$Sp&0+cm%M=W{nBT_Ph^=Vu?Ztw*fs0QsJwl_I1VsRO zDm@G-E79W4VjGQi_L4rii|Me552^#RyO|hQNgfjwuhDl8R(^SsbAbZX{YO+t41GEkMwNbIZSS>!+~}v zH!0$3E-bvg?b61TruxXdA^b%gvn~Jqn$}fBjwy0L&xH^cbL^Pg+A{`~g1u(U$Mw39 zDXYcdj%!i03=EERmsWLu1^x*?euIIP=jpZv?!~4yr$6dyXr~h9CR$)z+jnfia zKY^xyGkAa7Ih?!!$SX6la zMDk#0FPaPoHlm@#PuPaQd1h&n06fX9g*vT*9UtQxSnV5xGBCNszyE~w?^MlDTNn~n z=;wuJRO^L^UESsMn1b(0u=|+g34VqcmXPbzJk&Jpo(zK&KagC4N5j{E$jGyQ*A@1} z7zQC#96Ht;MG!l6A3_{@S9Deb+C|jSiS-|;F$Gq2wsg(AKVILxs9bN{XBd9>P4*dG z8G65n6BnutZqxFrnx{LwT5|ifGFhEz0$v;Eb2<4n6fa=-k>|pD_+n4$`<_lO-Lc5w zNA4Hz`hmoF9r|Mp7Q~4AN6h_CmA~#<7?TM}0 zED(RzvU!jy|8vy7J@N3-_T!2$)sN(8rx!5f?*uwo_@TomuJ(jCWpa*Ux^38NMhaae zViq#fImY7@>f;M(jw)W06t;eL{!Ckzpd3sA)}x~kECIE&0|GIyyLP%cVZtJ}WHT5% z+|DJ&#T5c`f%$Tn-rs&H+834do?y{0)_GSkWT*LM4O&+V?^2)Kgxl> zIU`5I;CeCsu-m}n$%4Z7k2~Fv(NycjHl@Y0be{+R7h7)~7G>AI;m!;L3?)O0fDBzC zC! z?)$pVi|(#N?Uv-WWOF*J(wlH|yBI9ez}WikzG3(s4jo~Yw|Q2K zrhD>K$@RIG3KM2S#gGR16Uc88m&n(yGTfg?8RyFM)7axIcOrr;FmD*U((U^HeHZ?4 z$OYS?@a7wgY*LO=>@vFKv8=z<=TNrcPp!S&WDL3%eBA9M`RWnVkt4V;;fxEv4iZAO5k-M=@>|yZ} zJH%}+hp{0w)^q-SRzvF$B9nFng9lju-rv(aiVJSq_nu3oMzMLhgpylJF?N1GE-DM*Um@bUskmx zwJ4a23|(NQjd^`{fBQ7l@TK+tZC!7$fTUSmaHOVeoxcQ4&OP(CI)~Mdntg5~kzrxf zH}w@k?Oc7AsM!YP1A2M~atX$RYaz>D;HNlWhPnZwLoR?pwZjP(ER~)oOs^7!)Zzh~ z?JbX@X-j2QcGD`W^y`cx&7~>*^E}FX)~u4fkxYK0fj!IrY0aQu14pg;VWB*8SkZq# z$bjJzCp*L|Yvx*aNqKD$rbxA@xqCVhnubIZ?;UIox2a00!pIoJ9Y!X~l*#u;30!o+Y1)jQnNs@LuPn+Vw z{nYwLTw3AQq*&+tJ$@oGix3`+@_a)?P0XjM&yPgAR(k0@KiLOIgT75+$Q?Uya=cb% z_cfS|#eA&jk;`uu&TNJLxq|{9hZj&fPmI{*+LBz7xCM-9LxvB4y0WGG@Z9f7r;($> zuN+xMqP>g|5;Bvu*BhTne{|uuJb#!flB#pV(6mMoaRNDgo+erP)6f>X&@N@ruK5gYDx%7=Yxb+y6qxm$n4x2e4u3H#&n-%`~mbi^pP*O$MYx}y%-WdY5wAC53isBwp7p;Q|Dz3r8lXq=?3Wh9Mfv_LyT~`#NQV zSedBY??>JUO2Q4&AhBn6U>haXq-)r0=;;TvCibBF>+;iYrG1_BnjudY;4}K4w}KI* zmGFBIIi#VLU=Aii(Nuxg25xQ7l&66C+Xpc1o_vGz`u)jHQhwtx9kjzb+JX49Sw=dE zQ|@6qeWUXP@kYwm6zsVnhm0SvO?iQ(LnKG#UG#2NQCw-$St!;N3M{#lbu$j&!2#r@ zAAl;g@B`pT#()POd#3o}d?To3J$4tM8J^(u#2b({3kC=(K$My(VAhAMR0H+;BzCqi z;&OShuPP-E+5>!w(C+BQ+(ewkasQ!A4Wp%wDz^Z33t;VSD}Xl(WjBKHZ&0lcA-4&7 zxDHHA&d$D<2ILljI$@~_9A0uQRc9J$KaC#U-6GwW(=aPWFV`5i<4Hf_=lKdg;b*&r zvEnBTSBT(cFNaMDTe(bfjL%=(_-_HM>oXw9IM}Y}PZGV}43-wX@pgM4NtR>1xZBAM zuQTG2qJTZ5dQ+Zk2q}@K*>+6l^&xUL4J)87aoS%aX}G>?Pk-AaSZ)5FLEFM#1=_)M zo;r)D=Sf)}JCnB>Fypc7JA-46Jh&)SrQqC|1%|cikwu`)3}pg6E&y;KY+gG%{7wYJ za|rxn1+s@{yo>_Dcf11*>Y>;&iEhdH&!ty^dR8FH9F>LQM&)vH1PTG%D@P{;fW01* zjud}(-nGJMZ2&3c8A3N-t7fC`2lfvEtix3231ExK0u_H25T@h%Ly~fS+}}!dUr%w} z0NCcOFM32hvjx7dU?zCCU=i8&QOqOh#?K4%@;_>SFq*1$v7VPN)Gbcuqtt94YaEddpq!+PI?fzCKCO?h#v4C5HC{B&IZG2$fg_e5{fSur9s zNfP>`Qrv}Dk*&-BS7aMxQWXj2M#$8#Gcy*1F~DvIbgGTz#lexR6u*^aB|Jw zIa0ItgX>SY=eMB=r;|>9DQ!3q|87%qb^E4&HEHup{(BAG)9YO|{j*~9C2}YqF_&%o z;~~s@@1Jw`q+q~c8oe#~>PR===i{UNC#60Uk^Z3zuk~tN?i4?*(-?g19kWu&%*+fw z9k#6P?L-;DkrXd;Njlc^H6{6ijaXKFBDv%03RLYdpeH0$taaTDKq^27sXbTk`#MS6 z-(tBo44eTuhaJ1xeno!*^}dq%K_!eA72N{@F0?PMD#7&fHQ0IlvbQ7gOa&$*ocSCm^u`Ai@VAjQ*E1=8Va zeYW5nutY>^7@eJMUAKo#NnFiKm%YPw=6OP&@kg}Q`_J_sQ+1kmT?SHT8=|+V#WeiQ zkAK=d$(uA>UU?0A_$cxJQ}A|4acerGis33iFG!7qdV(er6*V1bQRnKK-&rvGFnaLS z1x+ZmeQ;=|-n|X>o3?~qfC!*Sk}~gE_{pjn1d7_=TBiORU8$@Xe!BKg7l52UISUz3 zZX@|Z10R^5YEt{ukkKfI8~7%Z5PPMiWKd5nn<}cC4LAL?acl5lh7Pu!yGKycTQ#G2H*%p2wDuC zSgXwNgBlXpp0H;g<7ZfvyY@d~Uu~?|w~`feW{npO83SYl__@VrGH8e6_5890#^42{ zY@zgh1o;Ng&&~uWrsYuGgUaR$m|xPbc20vZ@y7F=hFo&=*wMQ`_xugHVZlg!6WNbk zQRN^bJxjdXXMFtf{@dp(k1P7?@@o0ti#kU?`W^5k-+_H_!t_vgaP^=Z6Wt`cPb1P?y>Af-vlIbRGrvKbxkQ$-Jr zMYJ)(Ws#Sx!IusS=|1;!{O><+ec9rTEIrv0#IC@q{v{{+(Q0BYR54m zNb=%5Jbd^gTusbPgqWoYa>dmJM;>CoPG9Dd$YgIczGXKwS{VBuEr66Ljt#>%P%TWC z70k>(U%i9@zOjDr!U$t=%ND{iIMy z4TAirla-SnQYHL-$qmX^` zq~D9AjpUgL7I>7M*;uXOnXRBQ`(Y^3NG{oJOI!(E6d&qAuyltbZp5j*iNY213d}!I z3X(%`)l@XmCIeU2aKZ#lL9#?Z!lqFVKI<)s&HhC7TcmjIw9M;5|JC>6J?KHf0RsY;hDIR{ z{fPkPLkHVy_Hk+(Ct@o}XOns@4YKG3!5yNkzYnR3L+^f)btV%Rh*G3!daFc+c4cvw zx=D8D&C#PGzn0HoG;&b{k*@AW6n@PqxCz%%z)mXw+7_8_e{qv$dl7ZMV#))l^>Rec zj2}WMI6^tadNld0$%W4DT)EtzP!Kv9k2FKN!S$wTPVVfEBmPkwqnSA0?*6MdzW-No zoOxgoeR0Rd@Q}g*KA?+!ly7k2)H;rv%h1^3>aTV?VK^xb7JpRU0+52(J|F1Hb5%g9*$+Z~RFlw|f%n@~NJg_TY`c4Z)0X%TW zjvv-_c`ezR{7PSdbM7IqFSUDjl;SqkO9{3H5t8ZO2wnij-0jXcl!U;UL{>Ki6xXg~ zMmA{;KtLJ}Bw~q>z=f2B9@cPrqhNCRyY$pnOqc_S-AyM}5M+@9&OIAnInpY}(r2&s zg30uQ7>_?Zog=%-BLk|(SeTo`c%DVzP!9VmP7SA<6BH}4IwO5cJInne)I_M zUrfa@cKuy{D&;K%mO``tz=cov_pgQ^4#A>hqdXSm3bl|9^|Sns0+~mrjD4X0`{K_X zuou{M)Je*N^pN(w>qas53-JsR-iW@zWG^1wd}S8-Hv}^+H-`5Ao!JUy`P_8_b@?`h zdDNZTR#%ID2oNdR29fO&L&qQ73s@pIL2Tu20YTidXe_Hh_zko=V zfm6qIYx$s-NWfJNi%1Mwy#m&>BR;Q00@*H>>FpI{qgL4iUVt|yON+1Q)G@sIA93=0 zqos=~_}(Aw(k2UAe%yjpgCEn1nD6^{{y?a49~{?~ItHK4aYRImx3BZvG>%9Bp3K!0 zX3>dLxWmVdg~xVdN4Vo2zs%c-z>-?5ntN#Wjoo;DhM4o`SSD_F4I5#m7wEbLzGw+j zk0tvr<#NQgPFlIaKkMby{eKc2--cs2z#AXHtB_5B58BrFZ2wok{2`ASM4qP$siG|L z?PlvohuKd>8JSw9Bp9LJdT+xdqyhBxErw*x)Ig4aPp=FE+Ei3Mng`PpKysz@>(?)# z-_GITnZaEHs(aSdU7&TLF0Ehmz!AXgu`c+E`UMwpS+G-FhkZ%71*1lTSHq=lEs!ya zDRbpn?m7tDv-LV7*)3V*|Ku@~s9yQ(^mg*Q3N8_QVVKo9Ea={G4>d@7#Dgwa zy^pfPZ=kMo5%}w%p1eKHxQYyD&9c~h(EKhgyYriFNd`xn=TO#B+bQ$N72Baa34>9s zhsK&^-aipzN2fG)J8#H#?_lrT8+$}$KfCcU%}Y>fXNJGiVSkvaoTHrZviVk%G^*@x z*F7tln2S3yQ&Bk_8SMZ5%OHdr6;=GxRJAGGLE7L(ZsKCp~B@(RKb;Kz-Qpe*)_7*F+P{ zS}66KAM)0_?+1F=Cfqc@CKTN)U8T@xS%|0x!)+DjMl!2&{pD^mewdCdxC>OepO>DC zI<65{+0G_`!{Q6!ArL2|E}}s2=V;natI}K@#DS%TKIotG$^)DNYQxb5+Bqy{XvqKN z76#0>9|EsxF3{B6bYnNph^o)}0UW>Yx>~!YB#3xXqyT@01Pd2?+sVq6CN6I#f`F(8 z?{3TeM%hd`Rk}~Rtp53O5`T-tCkTvI*@nR%xq zA}X4+i^I^Z@xM}SPSv~Vj>-QH%p;h<52zB%O)(K)l~XFJ`;`k@!C9av2rTyR#Y$># zyWT0)y8T+J1h%pCR6`9v$$#bBYs&_&jzP3&f8dH|F@HXAziFP{&an>s2wF1T34Cc( zfiz{eYO{XG%t^@ZF{d$ORdD_^V8ypvHU7T+M3>!ImHTO`;%!EyS4ybmB zD-e7(l88n##C!c~OUdkO1RzgAr;UNg_BK#ejIWT?J;88vAQD5trPo|s>3q+GEC|U0 zWwrLX07mm@!Rzjn3 z1cNUFl9W!cgnlsU95$^wx-O!~rRgC3%zL)Y_2;G33+1Ng!?R#q#wiy{d3nuu^EY_p zIw{t*@+&L^F}_C8gVq3>c+Fp@St>2?D^%WHdBxXs!n}xJGlpGNE~I63Bw&jv1G1Gu za{n@i!+O-CkO5lLEIjAUXm$k0)!&du(=?*TEd8wf2>nlPQDvv+;OH=l1JyV&e3CXh zJeaZL20D$1&6r(oQcmd8S3mBkCX-A!t3Yt@?zz$vvM*wFW+%x&;r0eVdV0gYo5Ar& zw^g6iSnIqBFf;}3?F(_j{`%)OX=b&*v=`q%1YN$oW&8j}#rdTG?CRKpc3%vj!Qu|I z{yGS^bU^$ww85bEISRSWz6hi&Q>-;Rxg(c0pR2rozjox)vcypx9l`5ddj|Hm*Nj1f zR~}89QF2MVB~z4L0PXtBss0j!hK-SY&G;a8pit6k@^qJu%LAQyJ=;$z5Z)TrMd5Uy zH_`w}f56A_#3e?7*O-SRqC`ClZ!v@Q#aWLVcdnMW@h?7D8l$M}U<%9V!(U~ywJ)>0 z@r~1k$Bt+rA*#l3LBxBJm(r0E^bgbXuESL zIWeZc{{Q6Rr2i!k|3?xI;)1nA>TcN~5!D@oe=g7Y0RAB5x`b!m!&m1ejj^K6mUc!9 zR`<{g;O%mhSHI=yN`Nuo0njlH0g1?tl-1hPwkZk6Un^tMj6QV2w%Cm44)%x1M)RXR znmNjH?t5!lpe3yq7*5M26Br(QYx&#KPqVbcrW@;^KfBp^_}%IE*`4~A%k?Mc;Na(U zHlh?jKlk#E_@N_fQP5sGXqk3j6}Z~ew@m?9;!>2fM_2emcG{Bh+|J}2dkxy5J8(ML0H{T*r+AJpZ`eA+f`!N zNo*!l_2PTTiRk71^3N_~3$!5aNW5!7C|Wd3y%^8nvLu(T)(;nB)7s*u5I zhY$s><~qA&Gap}sX-qD0rBR@71l6z`i!5D&=V2_ClGfl-+~1`6e|mN^H9E^$gYWU7 zcO?e-x~RVLkK`qDxM%*L<2QmZxfim z)78A#@J3+DQdL)1e+_z1N@W6PpuN7WgD`Cb9>lHLhMHM3fa~?v;J*a!<`$0m51__S z15NkQ>U{v(?L9U3Q9WCdH((h6Mo`f*?=+7k&}gth)PJWIm&BfC%46WWfQrJNxOIi= zbu$0x_f-%>(xytN69kSyvwYXk)^0!Nn^nQ!-Sr-sM7tn7-Q=pUExpu}wAl2@TvjhP zxzr{jfaZ>sMV3wt#hul~-gp!ZAOp)Zl2Rb4l?hWT1$+7Y{%{Zr3}KGtZ%QlWb88o1 zfhZ~*7;w#m@13s1D3$n%u^T6Dm4}TG@(19Q@|l3Kg8#?o8p`q9axu9o$8x$exlnlE z6BQY5;`Tv-Fy{}!pP>1&nXtI7wLwY-|_6u5TqyYh$Kr%^wb!3bk7+}OkMnj1pz8EAopR4 zGAKf5)`)JtfV_5-I2p%M)qDdJLb#3b*cidIVy3s@n|ncN8Z^(m!O$Wz_-#^o_$ph}QB zB=N4Tp?q`o0-wy8Eyu9=HON_E&u|7e_(P(kiyOZ{Gw6Db)V_S)K=m?C$hoEg0hg_r|ed^ScfKYUlc2`fdAamb%~= z@nRVV@f|Pq{t!O01Ag2O%JygL$=ZN842sy?0VC;MSHO4iFBR#;`Ey4+A&UNLlfeYq zudA(wr2iwRJ0FU#?^-)$Ll22(7wQQ69~3dBPX6~~#bH;ayFF@WqUjA#c}N*@9)Dz! z!XOmW$A(snb+7ONI0^iLt0yD_iq<0a#2||>1`-$Rk);UJaM1cy2bMHByJ!(C21Z1* zeT_6mf#pTbKG=;zgC+sjK(-7QF$>g|a*3it*+$1V2v9Cb_VoB6zMB;Jd}#4sM%{U` z_cE@*o~DHGz-m2D9i&Ud4u~AS2Sc9qozO2sPdztt65s?KwZ@%NClYgh7|4?GNjFa^ zLVvd`NRkohcOGU+;5MR4%-4_*sL*QQ} zg~B$YRm9u3#!LBx{v>i-2C+K=CPt>D38H16G1(JdzwnOwCMhEqz!Xoe#gYk$mhmVD@RqJ8**vU$3bW}EC!B^ENE*cG34IP%SrDA&jbQy zT#84+>m}<(%;nqE+`1D7D2l_CR(;+EN;?;Bs&cXVur(!VkX-Wi`jg3 z=8rUr!6c}FePpmUg)PEGNR`*t^qxxP!yo1qm_4A>c~$bL*HO%tS*>37WmLs|!i%2D zyVqu|AHMIKl2BE1^n4Q!@l|Ut$Qa)-mLYxyAE!Wy+=F)P6Z*gga$7B7KGh^Pyax4J z)?I4QHK23K)Cj$gms;*N_vvh_a7o`fvV5@9bjlirSPJR2v1Lo3Hvyxzwge(yGvjx+ z-wsi>{v@GW1A3u?sJ^uf>)v>^VjLYl+KDWN7ym$(KYt#t8U_J{9ZwK6IL zL)r=;6eTVKyru1q)HgZowOjYKlk9)ZwC&&LF{iLeegKIggZLfO2e02<%c9Z? zHd=ByED{JTs_Ku{VO7Z5Mh-@a$~l)G!D0OMwG*_09E)Uz17Yuyp0i^fQjashIFqF= zMaAUd?R} zGASZwu}T}I5YTBBxfV9e7<5zQRbAb$p99=mS1AWEgLtHnopRBo&+JFBCV?Hx^M&cr9HKvN zv<4=;&<+9IHC1sQ5DL`tV>QKfjx1SrMP`HoT|12OB1WJTYo3<93#21VjYCxX$RpVe zYm?389>3^e$4tGseb&B@Tr*Wjl8BV%#0!`Be&G1Ig5kGu`y2Q0>o&b-%MK)m%Y2td zVk22*b{^W3h%yoR1-eyXr@d?fr;Q4QdD3E$B}D21ptlfM?tp9K4>aO8FT~L43&(*5 z*A>%QNKk!2?s|lZWR<=MJ@kUF&PuyFIrY0wxst$-8gZ3UWBlr;ych zjEMRqU*$D`4!A!jQK9=l6_OK%=*b*~en5#l@ehZJ-0yEu z?RN?GEnV{gVx_?$wy^Do{zo&@ho&%da;U5couJ3S0aFrHgBWcSiGsa|(Dw%|{NI_| zbO?vy(D!qWSvuDFSD$fk5ulhCjdlipiWy4zE~%Gyh4u8iAP2C_8q zAyD>vtc^rHYw{I64QOGEAY(DFnIJ2W`>q!}KE6pkOxa*qeBod3b#x-M{+g1er1mJa3~^vlt? z;aSMxeWhi>oaqO+$uGMfw-NE_MMJvXmxK}OL-u}X<(uAw4&|1=MF)k8q=E1)(*r-u z43S=-sAb}BKyG0-WN-^A7y^-I!JV(cW@`|nM9sn1*u=vtue1%hs+2-I)R1@Z_CCDH zizBnz^cM zyZ)fE>Rd8}mo4ULU8*OMAevkimEaUc8mCOFbsv@ShlJl{&>sEl@%tbQc92P&g?OKz z$fo;lV@fY&AyH%aYi{D__6$P}sB_p*IA)j0Ib4Dig+Npq?~-;nDzAO_JAIU-eCQ65 zqBO4Z@fHvo+O_C3rOqb3c4tPQ6%DC!#b+-4Md$BX)r7Qe+D#dbUy_v^HtitymC);v zf=DqLG{{a02Cgif?9>+i0NgMPa101-E)dbL*L?BO-XhA^ zj3hN@U_vH_1K0oh7_zo@!S3Yo2aw2X?Q*zTwred-hYCkwHfSC{h5Pwj^`(?r=<|6~ zD6|aigg;;^kt>n1=C^^>FJfEEQDVqRujRR zwxiF|AK(CMCPRHQB@{XxsJ47@(lw}+Q?T4|X?nz9YlHPH;E`7HiemCSc8Og9&Qi?$ zbWwlX^jCZKxJdVVkD-pmpbWiwqM7Xh7irA`-5@%K+AJfwtnu#s1JXv@*;g8cLN>ED zf&ItiK445WIKmb4$vS|~4Bmzh6~I|C3BAq>LVxQuldIqEHGfQe+j8OVXmO@Bt*j6+ z)BXOi2R?A&{Hs7tw#^65T%cpgZgd^`$mbMxnzn%Hi4MlxV8f3lwxJKs;Hh9N2^_Oj4C~<(387R;J!&7HWZ4afc4p{(LN%nN?8XITf|E_`<*EnDH^m-sGdx$Lol2MzN%Lz9$8# z{(=s{0{qM>kT>bz@dMN?(O~ea-6DE*J_{e=hCTIhHi_@9=Od{eUfc<||Gxr`Clc^Hgd8Ss6EM2Z@%g zR{)-ycI&8oFO!CUjGh%eJDop{A{c)A{xucEA@)Izz`Ku}H?^I=kAmFu@6&RjEXtm1 z2l-C=AuE9^xi59=cvIES{?c>p3xocYcQamrgVtRxJy$=le)B*-(e@M@ke z5Q%~Th)f+cgG%=4U31(hs|fJ<$zk#c)J2yRI1vr&`s#-az?93S^M$SP<{3rxvVU`F ze5g|7$}7*ccOSTH$LPCrvmIk#u4!Gt zSDbbVD`Hi-UITZKi#qjg`yz|nv`=(ZVVuTG7V`U_nSLOb2=qZaL>KXEJsbmtt9_?! z3eea^=jqG}6X=oVNSWNh6-s2FBY(*(xS=EMt2Kv3N(Z)iJfB9h464fcDA`!qW)+8NDCMgEAKWertx_lQ4E*Qam%G>*UpCTK|b&4Mg zne9w97*6`!vs$o}_)G!E8dA?qxjcAT2 zA1;-=V>=Yi9?p3GTl|e&+VWpom3l9ett7-w^7(OU%qK%V4noOv@bu`6&H@PZc)Wi* zrzunN6=dUlQzA;ZK{Ro32%^B2jovx1gYitY{>;lfCT!4I62GypXfYUAe(0Tc$@{!1 zW7FjGp0rYalv`KJ^5bRZl`QZh$i%CD*Y;RSV30Lq){kI<3@WRd_cM(A1(Nlp>uS4+ ziPP>M=|&@O@Z$v1=`|PER(VL2f-~rKZi(;z<3M$IHP_Sxxpc2sdTw!4sVag@;`iYHLy~Fsa7;h46~TPs%K( z&8OLSz6+mth$>YZf;NhDdMG8locHOcL;|B09e=SaJn#id5=r`tV5QCfGp3SK|Bo?s zw8-2gh|>}G4>v1?@Dh(+ffg55`#gV9-jiBdI^`$_87w{czyOltb_syU-`?7~DA?9N zo?1JaTPqJeI5>C!bl?T+O#L8{CfU5z7nhlky7dvjl8{9$?jHL$)1RR$IV?lkRks?C z=d#}4b(~V6JEjnV>^h%=W;kL~%f#DUl`y(n=6t5f>y@<4E>Qf3o%4f%)W`=_#)jYn zJ1R+D)@;d)lWd>&Sg*|tkK(lP2>yWX_vMETt?5wl(^Y~b5##q7H-A(rPTtn}_3dH8 z&6GrTl~4SKH=ow~&Z&*5@&F-g;d~@=GQ8_qcJdb0a8S}6yUj>QQ{D_?;rQ$AEB?8u zbfe`sOe_JhfXIZ@h`mbz`YQGC8NFH-{=X(_wsN%VROKcm?}7_%{FgR{YZU8$)CMoL zGl67WYudjKX)5E5@U+@pHe>ZY!Gc8}^F^RuSKbEC20`!Mq&pP;gdN0tz$P4KB{hYf z0Am>$lm;RZ-RqQn8C5kb1sN}T#NxSxq>5mj{}M}YXHKJDh}zxd!^V@Ps9&@p??fot zePRxvfX7ijd-hCr_7F6DL#lz=UJg4agej+jSQ_$g_k1DJ?QVx#+UivV*HmWc0AxNS zSbnz2t0Czs?J^|)vuQan=sxR7#96~HX7VKohx?o?OSp~(QF%dD6UnH=ocClO*SNfy z;B*QO&X!l+#pkwCQVMRX(B{LOl)f7Ij1Skxxw=ZpXWpV z2|%6}6Kl{&d2u5B#7`Ojl5&i&{%tiG4Dp6xh&!XLZ+r6XYc(*~;epAZyX#$k6u1yC z;V&72R&Hom7{yON$jv9!;g(}XT;2D&8NHAd0NSJpqUhL=_Xr_=iir^J8xN=0ft~@tTDJi8PmmYfC)aINA{PtT;-?c z8i-|KOcyXFNndx{j|<1hz>Vg7HWdlU1KWgIXELvOy?lk%)c9ADGUW**DgK+hkxL~y zNOxQo78ablE0_Zt0H1t?L&7NN6}%OQ`6MM1cvkh8_lktf8z=L1d-O6p0jj5^D})1A zsZr_z&2HQs2dmfv6?Oo%Iy(~otKT1Eu<6>^`_e(WrU98sE9MqJ88`7a1Gt~gJ;r4y zL0q=>r6J&;C&#MSE&$|5Ht=HLQ$Z_1=*tNn%j4q@PioAEMm9sMtBs%!-X9~X;~ z(B0}@6OWCT4f(2VHO|wj{3yV*TIWr{ftvel?TZF`mPqET5S(}LY4z)9xaL>I^K3LI z1|q+pT(5P599;x%-C_kR)^DtQFo{u1tu|Z}vhCq~TrPfVXa{J0kVzE9s_}++(Xt#x zR8A31VCC3cQ=}?T0izTJEenkIQ?M%q`Tm1ANSi(pMG58Rlf2Rx z?y9f|?yiNPLpnBGM5WJ(REnf`)9$ZP3Un-DIN5gb1A;e~6$924jg&H2J6WA?=%#yd z_Hn+FP=kmoBM>nI#`w9dIOl~?O(m(gDU{83Pw@LvYA{c|m!lXL>KqLR8-7f2j!Nte zt2}rlW^p_IvDEvp^Q@F;#992({d)K5hviTL|E|hAAMI+HTMk=5vZ_-6(z_4ghJgqY z4%{$*v9yw}RZ!`eMod~yn0z1W%TgRDpjwgnKHuETb_=6}9F>op>xgU7<)^Ro1$#~x zy@noucQ@wW;<|zLxGQD?dUqG>($E8j;C<%uAcPMb>itPONF;&=E*F9r2;!v%7QTGo zzyx#80@`8kzyX|}iOB~!0V5}%sCinTTlx^ILQo?^d+{2r%ne7g>mD~wrg`tqA^9M>$mJ&Yf=?XLd$zAXtEc_%U9u;1Vqc1b-=c_ z{^qH7cDrG(* zC6m)?%-ZEg%l195DM~U*Sh1lk+sCV8DbYFB2Dm+`2^B{rT*-0uRW{!uwyI{74EnF3 zy-O&MsdNyi`FBp2@f2p7Wo9*)xq~pB$YsL15?`e@1D=gg$PzyF9qSC|;Wa26K)_25 z2u4ay!BE%#k&e92tNRewA5(I`R!_ktc))HJDO{An0Y|c%zzfr#A*TiinS&SYg0%!% zWg)llSNQzt0)ZYhSzX1@%5v3j^O3Pr(ejsw+|_UK1s~dfBhj_Jm%(MFyUJ z8uIpSO`WLpq=C!!#MgG}_Mf*mUuC7-g>goT@#^6w8N(_4lXXCd2<2chgIFl%BQG{& zK9#@x756{cU7SX;JF+~#u@!CdF(!8$k`#rJybnKIR>M<$^z5| z2xZSJEDN|W4^4hg%_WMpDK^H#%&^GD1K(#7|JbF)^i-PVY1rOZ`bI-Q)vaB;2i=$0 zg7{IggjRr&r1W|2o1`F9imfz9>w2G9opZ7 zyYAPS2dbU#vjwlldQ>&6^1p+4AjAzj5m)6}qPRo=V%Qh{n9XB!L;u44dS<@V7>!=+?1ZBjg(1nJjFtwWJ@h!~zqlL&ayM}T%51TX?Qlbby`d9}V>kHH0(#d}2o zhuJU+RtB@mJD5j4Jn&=G3nwGUj!Gy~&yu$#L-!Dwkms6&ldjOjp$CLufoOBTUU>Lj zrHVS2*?*ngbajWP^rXl{NxPd5(vtL?AP>-VVes{TB7jcBv55KuXMsU2peg18(psA0 zz@wa$*q(C*Dl@C%jb4Y0P{=wJ@n{^$tUD9UI#9&eu#0%En1f{B#~Tkt(E>4>ww1HO z7DKYJSDh3RA@zRLY2OfTJ}m7}Y?{#*WG5BNgsKu)cx3 zZxjZWZb#`WY$;ze*{a3X?K{i<@{nUB@b%2^dj;?a6;Tn7$C0MGf7244BFnlaXYC1F z?TOQiV{gvcF|>OMP(K!OmY^NvG0;yixBkY z?8hA@_bk^_%U^iUX>bH;+d!|UQca9SK`j8>Vu8)(!D)A;VdZa*8L}Qr4ylrNlKyIk z*bACR7NhFifXGVx+6@ZyTchQ$tI&QjbUjh5Z+)hcW%wA#c7JxDS2KE&`nE$Y%A2e^m1RjJ0n3*Un4Q7 z0`WU7St!Tng?)%Si{X5p%i$Az<@#MqYrULcse%L_oU;Fv`Ugf*_}gU17F!yPMXbPAiJiPYDy*Bg+WgoG4L%MnE}@B&ch8V zis&l8s6WkkvO z!<&1n_g(l+fKUxVKpvK*c^y5{{L=c5 zJWjqv46Y_*J5grLJR0;An+VzaxKir^=Lsj{y)^@c*NtaPypKL5#@~FJJ!02rJT72) zeueh7zjFMI&2jaBS7zY%aV&=7-!}x>8kE4Uj|=Oc`8jutg0_u~8y6w#97K{(86v}{ z0ng@2A5rrifsjdapv{%Fxk6*pVWAo_D^r{q{_Ij9rY4vfp~y)X)s@4=Nh3wzz;~8r z=h!bI@Q&5&_8ozFkJR5P-FF*4nMHd(dR1BlYGsy`_6FsB>WtKP>2wOSO}t9vV@1(^ z_*W+Asm#)ulG@wb4Q}%gq7#f>d|+L;>I39KA#dJPO@5Ujr8-SRh97J>I*82I>Qi_j zUrYY+{Ji!U0FPOLkJy!%`lm}U`r#+vu6><)CySuY)!xhdShuw@yz}$t7lauq?>-Ja zDy*8xcy9JJS-7;nr5;@RBEtj}L7}eIlcjmH`jWgnPPR)BeD?EWl_sQ~m{*J)`UPRK zN+R1IK=?b2+}EJ;y|0v1-|RJelQm&m{e;oSI}(UytMN;l3LcN&^i13JuQsWi7@i!x zk7|ixQ7{3BHQ#yXceK8(sTMOGBOnRhk)ay^`MY-v#2)mDzNlCM97shar6?eM zRQB}jJW#8y=PQ=$)G5?4D6k|cUF}YAZM)$xCbzXY93AbT6=6YAY9Yj&YI8_WM#co} z5K|Y0tJX&NJDCtC$aOn5s4E2)X!$@IOEv%Ia-uPHw-`A5^L3!5k6Yxxlj~z+|Cuk) zR(*ASY}B3qvuSki+pLXbcFv1w(&)$E+e(49cJgUI(WeCL`cTvfJD?IIFAIXeWKnPm z3JSK~mY=kZKhx7uYO^Hq{0-}?$hvf1J7C|Dn4v$87ODD z2VIvtN!sssoKBXN@v~iszuQiQ4eYWk2e2;OgJUD7*xa4k0ByF_Fp z>-fJswnn(}0m^3~fxhq8qPADj9XHgEa`0W00bnxjrfBelrPcu zUOa%T!(*bOwZw|uCmk$L?gc@@0T1{-8jV>Qe~d<_!{JMJ(14e5^R0G1^XBGe^lMG4 zP2p8)iLoibSJXxkzUEsS>9(5t3W6+0XI?h-cZqXB-l#3zVO{tP2e7dM?vV7!{rQg- z3I2a9)j#7D129G3PU>%WCh!RwcQa0QW7T9Br0s#2a7xH3bi9;uy8c13kalK2omG-1 z#N+pqULr+Y7?WFAUfIEL%)2bL}}K3<^}v^yIQrRL=} zZ!)38G#v=mQIn&fLU7aPn{g2sxFQBVqtNoS)QGhB=y0LcZ&p|; zLKgN~8Uq_py)Kxb1Yy zT$*95zt0}RNZ_Te{Uqr3vKp=1*b4E(rI!Q3(p zh^K)@6~*RhjfljIXH~pp~B%iPAVa198-Tp?%zuqY5WEJXr61s*GxS=*l4$Z zQT^&@erz2`p%Azc8kITw88!g%8=d@?+Q#q*YVQF~tr z%FF<;@qx3+ok@mt<0xk?Gx*?4*yT6}p1n(KCK9T!b({)!HQe3ZOLkUJizi%2&%Od0 zF4HqJUy+_Z1v$Bfxp~UPFEvKM0a9M&OGB(>WVRH;t-w#eF6lvoR;=L>i{}hQY{lBn z8oIg+-7$*yb}O?%LG=>ecfMCNxC!{%HL(JE7hreJhKUC%FgLcaDG2vX(K?#_;q`q0 z%WB!UX1%2+C=SZH&qU1vyW#1+GNe&PBO__y zah>QdWM2c-`Ny%bydWnL6&p*x_%x*_Jm=~wNEpw=!Mc!bQk>J*9*_Do&q>9vx;Jnm zx}-7x_T{V_NY&zPNy<9QssRCqnxRWR0|3go*JggXFaTOgXe`-8!}9pbwK$GH^%;q%*kYoIBHu&_u?&&Xh@J|!Rks;RHUxVgFYMb2IeWuPXGjEv2VqbLqB|Ku;E&Nr(O zixSr*)TaT}0WQ)L ziX!kVfnHPV@yqhupgJE7y2@5s6kWxjiWmp&d76MV_IUIw`hY@=6$q%``Qp3W$i%0p zi1ofr+cSHpuur(Z%EuEF=0k*Ej-AF^V3_KUc6Nlsi5aN*BpVv19?hSW7br52UbG55 zNzQ#>Iq}X^cr>4es_Ok?0bVr~gYbUoCXGjvE+m}e3T_#Hd)<>@Q=@&N^L_3B99z;fD#`FnqV59?Go^cTDc z=Q!6ZI!!K!;PB3=jNf~)&<3bSluGIaceN06xI3lB1z@E7wX7)YEl6jp7nChvCnlas zI}jTnB$K-Zg}V$~yx3<5$ruQu!Ux2cm#yNl2(ZW0R8=#hb^ z`d%hk8GuoQQG*9EMBWwHchMk!W_QoAGpnJB?7-nDAoZ0kw7mN&yxDDVxdnJ`I`gEq zbI``@beb>pL?=-^*i=ag7JZfbjA?;==xSmqWpU~J4bPnoC(XwNx8m64T>t=v4yIq8 zV4SYqtA?C8_WDQc{_6DvwFJUVBz9Ofy9=!!gRoI7{BGh@s<`$^1so=xA4V0xAGO%I z*AJA$y7vBnT0(q(|24awoHz_ulyGH$xjqzc!aQm%*MMLxu>3PyNN*xDyV7b!gS?V!1yJ|Wr(o^eCc6AAHKdSg3t?aOo1I9_? zC~6RFK|vn{#@(1@MyXavZ5WM&YzxXD5#O&V6A%l>K{oec{`N}fI?DOEDDs_c7mwZd@?twLuePX|qtWkx!1kicuIz^#@0mvrAGWxX zyTZ~q3GAR^*_sOv4rL#+gIzqob;>#2GJTmv=5|uM_HXqgv2|U5oR1s#iI|)hW%5qbj639EzqFKr3sS#1Q5+p*^rBxsuc z_R*xw!!LafVv9cPeQ$x|6=old@YdqO`G3qlI?3%0(O%KctA)#<|r z^^8IE<1p%z5g)BH6JaW>ut_+fr=q}d;H{9?2h%g2KW{J;nLCa1UwZuL*^T2}b9u$y z7D*lseHv{=*(^b7SK2|S4kyodsFpo#JYxTDuG6`^L^uvtSJj>i64k}!b5{3OdgGqj zAaE6k?twY1veydaHj(UAvpI&@Jdh}LbX9G9yC2F)a*TLKF*NYtjcd-`gQC#3ca`_< z6~iFj&%jbLU{H0lpeM+__~5g@p}gfA(LuhuvtYs^>y{o$t|lnWoJ!C$W6HkhNa4R3 zijX>ZBp;n)^9Kke11qJ~h-rbkuB#=$`(Tmlmdqlv;26tavAlXi`t|Ud&q{+UA1eA| z^S3MU<-kC_gG)gav9UPs$1xHYYM-EJ=_;4pVJ553_2#}>LDaK_vdR9d@t!829AS&qK;pZ8@; zP*jw&`2LOL^Am8+Sz8YHA*yV(D7T5gql#BBQPqxMR%PT7@$9Am%P+7Ll}!_#^p{?I zrPX7Ab|hZH(X@q%W0x(^ubf2qV0l~RZI2MLRla50{iTsY|Hpv zBpiR)-l3($E|1UU$~iJN1zSQR+KaJwsK4!&GIHkY^!p)FtV|$JQbi2bW(9+^oHE0v z-lbQ(NIfZV|0CfFF>1?0w_SeHtw)^R3CyE1kM&de8V59dvs3<=;%Kx|Mn@U2;{W^} z{%hpn9j(#N!pO;aThA#S(}0t_l{C2}WfT5h(eZe~`qcbeNxuiPPqW+t?}dglQ>4&o zRR-W7_SpQom^5x$IWD+cMoc zb3o1eHnE=MFvQy@hm<@H5WxHRgkZ0qE66&IP@wmw>mZe}H} z{pe{LAN;Oz;AkwF*@8?v6XtjSSZ9X-qVPn+V$5D#41t#wns7*D2{ku$Bx8t{C5&=l zF0$`aN!?V!pqBIe3(&|HsCi3@$Y>zVxyB*+rnEN)2)9#V=_ zkfhnq3Y1V~F^JEL=wuxZKdVLNV-c+s6}QPup zY1sGVOjc35*0l*BE<#t2D9Qe<3!i$2!)b6$f$7tkA-?-&X_<4Hfk6>gO0jpue%2Z% z+E!#_9L|CMf}VJYX`jeps)VpZzW5*=U+cF;i=VnIqKdx~=MFn*uTN6Nq#I1T$gb}E z`kbrHZ}4qydE@J{ZL=q$+agjhX>tMLQ3Wwubq@vyt{fKPT*Ja+rscWofhSg*v| zapKz`FitCS`mPW2B|Yaug0YU^^%XsD&|k_O+Jo0y(kGDo(n@>CmfWu z{=Y%C;zyjq#bQ;k)sPmoKqj)dWU;%N{5NZ%7|7aZzr{z>T){ApzZkHDiw6IXI8X_D zQqYriU3-jJ>3mcz(=2S&CnQAlNC8f}1MWOB}BgOAQdL8LfNCe{CcsGaUgc(J>&Q zs14~b`?eYD5e~W>_sZ3db8c%hdXo{#sBs8zHGvARLl0Io>eg}%Q-_!K< ztpqqyef6c`V~}U`=(r7q__ttSAe*&GODz#w%)MR!2w2uq!W1@iX)wt$$5Z zKU$+mHWR_A#D4iKemgc+%v4T=HNOAB>SWcsM#-_Q=+A|oT*ZxHxkJ{%Mw%44_Y=!z zQ3aNnF3MK8&%L6OqtHFuo$zMm#xIShsDi9J>^wKWt3~bvg>d$p@oDrOu_n{wIVB7@ zK>zqyEoq${sUi=jRBEf%ju%^juv$|~E0i9DxI`(}HP+|Yv%395=>ge)a-+=c;zN-t z@+V@5=;lp;Ib#5xfQqVXP^W9qEVuzNII37;jxx|(X|I>xM3oKH*Vo4?1u|b$Fr@qf zjPoqTD<_z7gjp1=4WnKK<1YnBEwo0Sfo9h;yQgyNi|(wTS)@1YGZC$BIGpe|-pntX zrVm_*`tvDLWS%42<}x+UH}!$t%M&?#P(!2Gi@30l|;TKgua_yzCg@ZZE)$>*$0HViv)@y#MGdaJy#=4b}MM~rM``5*Q{XBJ<*UMRA?nv^Mc@`{& z;Fdha*}!wS?3;v*qryBk7JwG5WJP@J5(c~ z7hpt)Mxu$DP?`{`YAr7|`B`aaFj<`aB}4ZbCTwuc>T~~YlC-w~Jv5sVX8xq&$1hT3h4W7kyk76Q z>zD+bMIim1(dI^gjwTGy~;5mbwAA&|ws>#yq>gL`ZmFWJg3&_dgFZp7#+Q zJ08?Idhx!@@rNGmxgc{h=d&wbPNq2`-R{WX~N9$2Fnl zP!nO|TxEedGDMAo!u(NH?)%Tyk)D5|6=8dn(@r1~U&;qk_SUi}IUsGd-+?iL@S99( zB}X<(pDpU#AMwR?!mOoX1~1D2>V2o6rJ)gaOupi!N$Dk3Y<8& zfTydGQ=Z%iJks0I&e5mOy0aP>neO|bVrayVK~Jg$qsB*A&T-SZm0`q-V#gvwi81@q-q|=5}hg z)>Mn1d!%w>Os~;Rb@0jzIe;i_QUV&Ya#*d3jpY zT>jd;J$m!&-CSPQ)Eou7v%{q)yeo`Kf2B|KJU(yy`kLnU2ABCqq^+WiVP^=YQsa@| zYQ(nW+#ectc2RJw>L?(0^yz&1`_Z98{(bq73Vbfc+?R4(1IaO;(Ldg^pTycM{!C0* zF;FBwTRv=l=l&*sFMUx#sga{AZ&MaXbdpgnAEe7lrjk+*?v{Wm(H`QNc2QSO1;L}g z2{n9^o?tS@EwVRwP{?#Nm{LWkUA#yokGJg&o~26(P-3{pMDQvZ9UTpYD4FMZ%&GC+ zOSB8Y=jCpjuDq5pi;r6t*0CI$KJ+(*8Pc^Av0g{^<_3%Z4{~%zT@`qS3LQ-GCdpMg zbZ13txG8`JN;{Z8?)_T1V>ag%Z(kQfVN(wtDPX4VL@8^jK{!Oo zhuuTq{nV702$720Sz5iXpJJ(*WtV9ukf$DmnBr6}*rZ$e+g`Yc3QN92G$aTtdr_zEIU-@*zh9BirUM4ULiBhnhbtVIOTmq?H@= z5kvU7r5T?5)Z6{6J0ocsejCTfcPBSy8L}zfq$eCuyDyJ=63$AIqNiW^h!p<*2_c9f za^u63poY7&a#Oen)MCzLn`3Cpwxb@6L84~Q#t96OT*U;@aM&-4CXtykv+>7qRbZwf zi8vJhW%j-R#Z>ZH+qNU>qES-cv5=U@Gw1XF_fbs*RW<*mB->?$B(?{Xuk{KUvnQi! zqu&R|ZmO)6mAy#k)?%A#fa=bLh+q4~2vR+QmoO&^?A?z`3YU9Z+uI`#J&D4CcQTUWuMGmIXkCAwiYDy^ zf>gZQM^g3&WX}UHXnT1x;kLC)*xcMM8dCDcR-R zHPj+GMQu8gS|rr|ff=Fwd-UxxPP?gPu(YLqYjpxrB}p9?stza%h!)$+ibn;ZBuXn! z15thd%*`3(pzJF~Y0?j%aXW(&;!cFurQ>Ib))cr|w}r%w7b<40Ihzb9q;0E7iDPzv z{ULe*bK{x;QypXi2e)7HKQl<9R*)Rv_q2w?A2$Zxe)X8sm|n{JTzN6e;KSaQO{5r|=^_FEtn=_zET{VeJw$nc&~M)Vd9KATxKVoVWlswmynOBc^YcYH_a7qA z(6-Lgh(yMMM!OYT6!#0%@DfAV@I)Dt>V*`_T? z)_`QeCCJMg?f264xB>Oy!)+c)(10&k;kh6sJ#W=9MQy(i;~Uv`XN|6S=p)M6PaXX4 zku--R=K50uG~C?WN}~SjAlSHj*%b67WR=%xOgF7%BB6Af9m<)N`9mxX;m&0DXm8;m zT}zapKNOp;m%C>-G&QlM8k&TK=Njdf8}_hbTjRu?XB3TZ#NOR5N>68xvov|{kQfnS zgBe#-Rn@SvNv+(pH&M*ggcLn50id4=OQpettk}P^N{LABa!Eo^ zP_y_;V!UW3BfX&#EkO^&=^y}z`eQ;(Nf}E}syxsP{PxK=LRWbe6ih!m+l%hJ{8ry& z0(vs(hg887;O?d1_?1LYNhv8qY0sp^(~^4sw=L|Ioz$t=&)w0Xs)NAYcJQ?z=d-Zr zx;MFlUS}9ojDk<4*iLp(Iq%($ZH!YX>7ssyTAAG9{n*m68^eZzA%JXu~1=teuL*{|K2Zw{4i|_LJILP{=Wq*iXcvx^1l_@-Q03~*JM*si- diff --git a/Decision Analysis/ImagesForSolutions/RiskCarLease.png b/Decision Analysis/ImagesForSolutions/RiskCarLease.png deleted file mode 100644 index 0e730f8f981fc177846416579b28e0008c2b8a4a..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 21540 zcmeFZbyU>R*Eb3{lt`;I46P_2NQaU#q<~6?bazOIz<`8wDlI7>Al)@|cQ?`v(jaip z;P1KXdDngKfA9U{uJ!!kk~QC%bM`rVpS?eOfA;wXDk@0f-X*__f`Wo84UM z@F%d6;y3@EiNKdgp=ijzz2OpG5Y=#FqaOh%gvgH|?Hph<U}x)Tv_BdI;hYXDrfYPj-%Rw$>^8bLV{*ZI>KrH42a_!dFamF3ZWQ) z6}});y!nd4is7e9{ueW?w{IEVWXT<5W4?_+N*OK)f!S6y3;blRJ6}z(Zy}V*a|k=^ z6MU_}zY?9d+Zz;!6yWKTnut@a-?Nt2^Jq}T1Kd7^3Z|(#kwzm z#=z&#D&%%#TD4byIW%VLPvso$d9|f$R$(Fzejgx0OD_UmDu=bwUwZ$(lL|EIFjCArW9y^kd38)?!RxrLShbey&RHKyax2GOTvVdO^oO(7 zH9Lj~I69eys+QK%dCwbH@*4#%6*~jiO)p?y{H8tESC`#gF;7Z{w%chudp6y4^7yw(>4ut{P$zTkWaD5z|-b2&%L_SO|uV!k|d*oN+=1{?V(hf zzj_5ANCuIQC5>b@R0&Kxm3h4O*amFuTG#+^q zkx0FQK}_!fW95AKjuA})x(5vRk2U=00ThuL_CWJ?J7BidA;^*1(sGf)fi-H)$%og2 z>5hu@Ws$-FGfn3}ilc@!Z|_>5$nF~KAyqKl3l&RgmFU(fg^QuhCW%0B9M&{QprUc915oNaYarD}=yb+msOH0-Tb)|5 zVc_3`Fwf}LAd>C{gwIM|NuS1#uVF%e0)#Hs(^n5Ie$_cAxi1_>DF}4V7zDAFhjSRT zacxq6)v^ziOBPZWaNd4YG3z`na0-MXSuUvAmC2Pd_1zs*%*d5!!~wJFd@~D)j3bx< zN0b#>ZHcwpLj0QRbmHS-?@C$_oB4f22$i79i<`d=sATh>E_aYyP5~5O4>Wez0Z(=1 zN*?%=-fD%f zY}$r3JLSZAyvIA!ysU=xS0|cLZx0UIX}bTcboU-h(Rh?@7qwGM|7tI>u3W?zu9r{X zDIQi3>`b}&yOz;k1H8yG`1aRd^%pW2_ei1iuY#YQTC-qVHR0zs$a5>W&;TnMgD%`d z)Lma}+5bIgmj%8!l1R(QDD#}!x8$IWq8m?e8~WV1hd@hJMTLo&N$y!E0dD7$U$y$2 zcY=a~jMfKI{R(y5cevwTde&>%wLY+4PxT+G`J3}2nUgF4s_c8`=g*%jnO}7{v5EU% zT;?5Zjy@T?hU2h>U+y*N^32$Zi^tP=97TM*xjJp5kYv((12ZN5WO`-wg`>$G9KL;G zG*{-z=lw!&UYsuzi(?RkOL5}w=Kd^*^!&R-W8cHk{!P9i!mCu|&&<-&QXTeCp+7L!r4Zg_5M81Rv}>5k z4m__9X_n*>^c39YZ|ivW8gA+-9S21HDnH#^&L`}#)ogP{jp1?nNu}+ zogT_blVaCK_6Ha%DSQ^VU45&Um)ps^)FEwWIr~D`4zx!&~FOQmQb;60r<+E0;o2MU!^M^3Nf&!(Kg`cY2fJNt{K%}Wohg<4jn$L^ zEw`Sn?!=_|_`Vj#5aYGK+MB@aad8xpUooe#+7o9m<-Jb*=}hmCY;04cFgwnro$5p0 z;opuL$hpefw}#vh@msyC`1p_@^-c<@u$<(qT8Y(M9@DhpUThdlmr9TzOaSW?&RV_? z!^37~WMuranqU*pT{l@`BD>a?BoDLS9LXu(DyWH{)|1DZM*H&ROHV`5n130sFIR*# z|A$?zr8?T$_`Lh?By2$h)CqoT<(75v;&#P6&RY8d;Iu~4FC=058%6*m)bFC;zFYN! zw&LxUb!T<(mQDS+v8WmmS;GE^?aT1{ldwE$t9lP3CF3$xjQZv{RcgkBFl@Lw zdA?lXc5FWBI4m!3{&H-Wh;i!hr002mN35pxV;BSCTG$dBcHfuX?xpXe|Bad8<4M(g z*Y8Bdqo|0eAMIzlfA_i~}|&Uf#a}VPaHQ$6*h49J`zW`` z*!j5bWBSl(Rb8D-CoB{D(nffnFGszW=}#6m=uIz&DwRqqV>d;9%TW59`IzCKHMEj0 z3IoV+hKr1$g zBtyJu-+qznaq({V%TsXiS1K~v&ToF`n-zI`oTuL|`JU3ENxa8JQy|oOLxG-i`KT#z z2V*O1>}Sy_&TZfbp(3db1sG-->;6-O9xk4at~mNP4~qM@yD?sI0P_g++QPcefS{EK zq-&p;_bV$Gi?|(K^U+fD6%?%isu&JgyIU!rFZIvYZyq#V5_%8ZA|SL|FZN4HJOZE~ zb^s+^^|H8S{CF1q$8^K|=s+aafr3cfB*(x9^{P%?Y7aZ@(7(l09|2P9X1*YMA;=ZR z1bhS^#iOZl-vXdSiA3fBv_netw?EB# zjxpf}R(J#?$_#rqr+GX5d@cSn77@tZdq|{*fqT0b)VPx1=d~i>=bz&$G1|HL!Z28X zjG;hAhZcg3Y{GacVhzt>vOAXI0FGS%#4yy(vd8-Gtj%GPJ^<;I9}?2}{BM@1<+DVd zD0L?W?1U5&RO<&gj$rksW9K()1f!M%H9Ufn;SZLiBcy z|79bY3J`X&BejGDv?O&eB9#0VbMYo|H1dEzlM!|c&Hv1C z-kyY24=*L)kKZFvEvM=29RI75x%mnJu2#%pA+&`6#nJo0q(TOS;z8u+_>(8pYNlApOYB>CZ`++06H6(93LDgj!--! z{go-Tyy=y^$-P2c5R^6mQk13nSzB@M)1i@(qYwxz-)J$+8UISw#Rm6Mz|h{!*~{7f{?^{^E=4M z$tW{=r_jey;C$K1t#ms^HRBHgvv*Cq%&J?bZp`fY>2^s;HD>bsh+E>{Ki!;WLmA%+ zd@%82YhLqbBI>#PsXL!(Uo1x{A0G`r<~V*A)+c}`gLzNQ5}4uIWuD%Rhg|h~R$NCV%1^4FP$aMTaz|iwxX-!J9kkV4|oKdl%ocW0QInbGpSX zgP{`RVu%v?|Bqyuz?@%hj@L^xQA9InjFmAm`hE)qHEjF{GYZ%xeJD)Ew%namS2ZE0a||?_q}MKa(;f zRhCB{!Aac3`v}&`3-c1&`L$8i{CJZgo&#f98c!{j_OP!pZ?a%^u2rRz2KXDEmD!C!(KaXxKw;yi{{LQ4*-aQ2C zxMdZ8`YUNA^|+V?PBTq>c(s6fHqNr__1;Z}VR}f0Wj8BsXa3ol!Q*LTiVeHV9p#Z? zqwPrauexk8u)3Y`*D_^Ry+2aAx@bJPsExlm^yPfmlAD_9jjWaYXKUM)3r>2#VU|n_ z??HHNj!bjT|2l|s5g3|f{sA*4aQ52H=bEH&KR(*Q<7@or zSGpD#zdPf$mX!Gy!1gaelI9jhePkxEvPe7jW0b`~qp30L$Pw0mkd(*3XWS3eVfw5O z0bD*Q8_Cx&;?h1?^zX7|RVLD6vWjx@SdEanJGSfAaF%v(pFSt)<$T6NpF)kj>Mimi z!JCgcZr83GIT9+>2W>^=+`6A0Kj+4+-nqV%t&nBwtjwQfV5r0bj)o`w^Y}w#8Kvg) zp@QuJOCR5nVos9qGWJ@ z+=EOji6yW*GxCoSxLjDb$9FOqSBHWcIb^R7ZRO^;?pJ=35;s<7-hb$JKKJ~k$xII`g7Pi;b~y2by|vs zFEXIb%eA3R69Kp4aStMHt7g!wp}E170PE$Qhds%^7%cu^Q!?hqE%Mj%HLD3akw&J@ zvSV+oWj=%Ir>oVxepixa^W?AyT;bB*lnK z3%Tw&E^o`&6v|*)f=z5|yy&Fp_`2d9d<*+wKYZS4%*YtVFN8BKflNw_v*oR`)sw7E z1V$jxX{j`SCL!TNF5eq0pM^2qHJ(2%xHNnj9&Xs3ER6o3iqQG5-H)V<7{5pErW{KW zaZcMs#rl5?H!gQ;R)3aGvs4+={|inDMF@*#5SmOXT%SSw>#R#c1r-F=FVszDZN5Hw z{^`mhCrJ>bz43R6q{9u1=cbzS4|WJ6B}|EEyX2;)eWE|vd2?u)HFRAG~M)wNe2MOGbFkU#e` z!5Y$E`oA+8oY(~wb{$K%`809=3BO%Q&zqX3V|g9cZfMq;85iPQlvNA4KQsO;`ez=h zn@Ibohw;#`-z?mT%P0G4bvpgJTHARtzI?N+S8z{Aw32u-rlYv$b{;;YY5I=)Ap?f> zMiT>HUaDCvLq=FK$7q^CJGWL=2Crtto%ik{PqYo5fZC&q={YOqazI`eb;XQ+q#~WD z^4-Wc8n~2?j5KYm@JO@@5(cL?K2;YOw2g@KMwL64FxdP98We(TF52HfFx+;=|FUqe z^WD2nI$WhR^RC>D;Y>px+>BlwcOZ9Yu9S5|d%1*oZ1?qHidvCT;@e=SS|^FRn$qd1 zoygMvIEm%L1tV{ylc1P;3@`bappNraaKp7)lS_EUr3oY3ZBqW>e}W4HbIX|JiY5(eHmu<$n(6|9F-E7k4;f2&wpZZjUUL_s)Z|HpAgs|5tRJhcGj<9LLQO zX=L&G4kli-?#;!xvXYYCcrfdj=s)0W-$CpxhYSXTUGWPlzjRpfg^$8#T$VyOEykX1 z5rY~vI`KFWCsiHVV(ulI1s(!Yhoy^|upeeT}6{$O=N zEhne4#7`F+e|`tCGkGZgrw}aN;3LHgC{MHL@_cPse~piz#8?cj!1 zv$X#oqlGZ>5sWW_6bjVit+yXjSQdIy+O-fC15U0B(2XWdQTv+<2VSJqE(@sV;CuQz zphBF|4azz!l9H0n@>FJ`@a`m9Bpn+6`VT%bI2ng9RpPMMD(=>u&P@<6bSAm3#wjZ+ zNB+rywsy1C$RU|dwFFR%RDBgnX*NC*@enYwWN;*hdCqWi3!cUv!QIbSzOH~GYtZb~ z-^2c|QLkT2UUOL~sj4zJT+Z$-Bdhj1?nmpiQB3lYphlSCi0p>N1I^nE84Q1}7uBfriW1C3h&RLAqqr%1-B zCxQ31MwvO|%F4mylfN$IXZ)9UtxYV};oR1!F>^NmCNA%KKz zlGRs!6xQF4c%W%W7TUN!d3M3TdCt|O8kA!< zrphexsIUt-RQh(wiL{*04mO*p&OXJX{HGTHkYpwmHf<0jMSFgIx!0R?v+w`%TTA3B zQTQ5?pxUpd6KykU_;huTU!UH!7V2;~C`A*aQ|FeSK18DXQI98%U9*=rA1SeM&rRZ;0fqb3%-^CY8Ov-qOJ2CYod4NB4yc#I*rmTo z5-Ek%D~PJP`eRM&Dx>X!{pFJh1N_T3MhLMaeYAa`p?&fjzYa=eTtT% z*bmcI6|F)trOg`DJjv}g!Xo-O1wjF>NKQ_cz3#2^gr5I5W7)54+&a_qH`k{VCTF~k z0VD+o?xt@cwZ4#X*n*2X!7WJY3s?{#*k7O%JuCFQxjy;9m4;r-nc{iv>cA+($dHzi zOO7Tc2sj%3*HvKejegage7T~Sn?}+I*CD-Y6E!3>pMq8KsV5t5u51nm1DTUe#o`$% zUy&AKv(X~BQ3Glv5l9%Dz(Wsr2Sn4#cOSejvkz`|L9@WsW3uu_x9MB7 z0)q^3)i{wFwLy&x>{kqat!9>oSpoL7Yo^Mf*N6NM8)308vmdvl&?%^wbB!wfM%U|+ zWvgO{O%#K7k2FnIFe8k@X!jH=k!D%m`)$GYdeZDi(!-kP*C7sroH4`-e6-G?lwxq3 zhAZdohu{R-ZMS$kjxQ9dyO;Fx1kEmiLz`d0WHO9DDqpyRN=?neZeqYR`@8-M=H$>BH^KaTXnQ zObIP);&fQW6zRhl1@#x^Zy;5)fhqSylTYV8J@feca^3%QGWRyvoly3Dw}1`MtV7O+ zQ?B3k8!#d!G2gu@gCe*eMAp8hMV>g#G9`%rkSgr2h|>)WP|44tz6}BrH2Sq9DWR1} zc*J|6=2yECh$}l~REW+DeV7nko%^YR+nztorwIZj2GG`1bI?SG;JFih4qq6tn;}_j zH&lN2&WKYyox7^xYR3k?Tl-L|Av#^199wZiH>c7bVeYO1|h?6OOE8-s9f`x@;tZF4jRp&8a z`Co2%;9c#1oFU$V%f>zp^ayhjA~5=`g39pyd$1YF~{n%kmFHkGzGxLV|_~+B4mD-dPRJ*-2KtVk z(+ZDxYgO8&(hB(!6Y5CZeaREJ#IPra!)368mrOQv2Kup{h)Ofzoy z?hz|P&)-74(Nv&t=o@>oGo6r+awaa#Zb=Y^ugx@vpV0EFYL$Fg)zZzMIiS$wqka(8 zMUUpcqFRp>o%E87#PBFS>Be@`siF@NFXAWy;E|0MVSQ%*rL`u|f0`v1Cs z)o22Dzuc)<`DPFr0g{N007ClZt|z}NANEMw_M%xF&io_Uc>1#!wQ(MxreGK7HhfZ6 zRV8^Ye|fUA5-yGx5yV!VE!`^#w@~IwI5oblCReyh;qU2~Vx7s^dR(5!n}-$`bAs6G zv5bU1L=F)P@sPHenSX5gs`34U$DiRMv_x8l6uxW#4Xajx9?;CRw6sAcdIUFl^^7j* zzrgV_?Mxzt@R1=rsG^%^+LGR&EjWVe!wiQ37?IQOsVB)lNAfr1>5EAzh!|~U2M>jH zWoj@vw+tR=m?;H9%2MREasLJM{|Z22mNTu`svdxYFE;FqocKW{;1~|7`?b=$JHO=t zKNZCDU168b_D`uvC=p(ZkNqJk!0>#<2&9SVtnt+?O42!Cp~Y=m{>LcHC5 z2EU2;1EpGSz)yP95(ps5EGLygjwnc^Ro^BoT=|iJ12tBVYOpv zWree*bcDjRSl#Cd3k&C=cgPG1hIsVcJ#0eb2X6oAOq78rTOC2z zda47!J3p2iTxr|$3RG^;#RPSSaMD&%3%hk-GbcislN^=X@R<-s_tdZ1Kw~4m`-?b0 z(`Si8so>&uT_t@2-S-Ww^THR%gS4m%=n*TZjxWF-c{53Ur-e`J2eBF+tq&H16vE_6 zi%4sXV09M**{IyhOo&Q1@DYoFh>{2p`{WF&T6UkMp=K-qWj=`Huf)e@!-O6Z0`i$l z5RG0cG#bd-CxmHu3X*1C*;p>@f=T&FM|^;LsA6l0!47{09CaT(Mb!V#dq($<$922+ z7n==8YR`TL6$4zF5`KkgT+I@?_{HvTs!rl*6l96JFD! z>Co?k=BUnKvgaA9zjWm7p_$|F6#2pYkax}~3zJTMF78$v1 z(;?UbY9e;eG9(s2y(hMv+Pz2aOQ+#rn&h9;h8t~Ajk)P4H5<9(I7tnvF`( zIanK-QC5t_LWv`AI$4Sdk;P|asK09~)UF<&9Ztjw~Uk%sQl%9VN zhGZ~3IN_SLE=Ai7H`jkae*78(pZY1qCjKetzx*nFVenaXAM9OwZP`a+N~UAi!&Nem zsd6ieaGX{j@p*iZ2cNH}hbf1WzW)P`d^bSAamBr$zGFg^2zr~0{+=DQt)_N^DnYEI z=Vii?qD}c|qxV*$QV#naoPs))FI`<3qvg|Is=JE+UY+6&I`Qubnf-G1e%o+W-lIgf zk;@(p_+%)1p~B4yd*l*$4NLMsY;Lqy3m0b2HD zrDIbQ6|q30?z|(BpI3C>i%ZK%;1GHQ$YDEuf_q#U+@M(>6wyqSf4dDyGk1dG8noFD zH>$=-AOD@oR*-fGlN;;sfJY`#9h_O%xsT}l{BCX<4R|3 z8a`%^F!VDZxUqvjI}pnmDv{#MsoB}tDZ>Rp7v!>$NB1Sz{!EMU0uGcyg%V_sZ@=fY zL)A|Cv@+2Q$W4Mxyq!`psa-_MTPdt>la^jcEwaD}G87W;(}@Zj-NQX(lOlH}Xh39J z&3vDd&38$&McOkGngD3GRlgOxx)0l}M7~>EyNehwCQP zo#dX*M%pbIruqffY^Yg-A{6}DDkbjLhni&~v!6;4mYL4iAJy}_F&RM!GB2Ij5$P)< z?=;O>GJ{Y*>1h@n`xqGycUJUG)!UjHE#Q? zjvxDmzkZuoBmW{1z%}A0(r} zYn_@0w^fYU&?DfAwEJ0U{fn+5Lk9~BfvGg&{&?J-q-yTL1yrD7tlr?hQ#O7tCxnt; zIeEOo(z~9&>@EQlxb|}bLLo59ZQ|ld{4j$M4-kr_Nf5k1rz^&_Hbo8b1v`$9EyZOSr2Qs3rvr@qX0 z%BvWdhn2l@6?qReC*Xl3|CXbA^Ydt>((P@$Q~FU&`!en3PI-5{8ux!%WIT4|(^OKkZy^lbR0W3fm8K7-%0Irn%YzfPJt zLk6gJ#z2j-HU=pr*vVJIE@OfWdBl=#^if1}TslGnve;V(4hb)Y~?_x#Ri@zNTuV+H-oAJ9qF^RFKFRveBd@DOD_;jdfhJzf?1yy}IQ1GroG-K2+ApgiFE}YlSw$zej+94eCIo^N|b zl7R(wcFXdnRli(D-(E(XzqjzqG?5!D!>=nHW5g#8$k+BGn+`h6Yl z96_YXr_1U2cm^EH)b*jvAj$2e3hpF?Jw&O&dPGI@Gj>G`ovuD;+*!U=n%`K9uQK(Hh+=-Ax&Q-(egRYcZ8ur{09~!a1#J1Kbc?TKNuo~PwPZM78rRL4z|8b zVEP3s`Cbz^OQK;sL+Eg96FW$zIZ3V)r$`1GLR}WrG<`AW8azFTbwb5To^ZAJaZ9;4 zudQp`6S9%$%Q9>Ee2K7?IWVKi)0+uXPZmuq6xt6f#PG8*4y|vrq2L zj>mrr6)=izv%Ey0CbQ;^uv>Zd4s_w)wr84t*{???p{ z!#tN@@n-3=*jV!Vtk1>)tmOVpEzJG^A*t@vL0bEi?TF9`m-x3hIhw1?yh_Cw0ZhVH z=@>^Yw-OJVKy^JKL*8E0cKt~J%b;xOhToMFma4uyp8HLq2kP9Cn}s-E`BuWEd#x>H zMnc5PG4AlUL$AgI7xG*8e8jQHu$hG&hgvlZBtG`$|9X8|K}g91_oV^TDLSenJk@iFx72c8U^a+&wt5J)E@4!3WR;eC1;zq9(K zy-&>fN0QG}!P*}TQNLgYYu7~G7w%wDBB~%@Fji_ZXuO~p>tDd8jj5yUL`Nj0(LVH5 ziJ&F3Vh?bHf4$32NUQ3S*wNQg?$r|Qwv8i^D_krq%2EK6mk-hUg^lZi5UJ$USs2yp z<&ud-e895W&9zzTpp(C+Sv|x|a-^2M^ghr{UAXL?b`H~<7TF~I7n<#2zc5xM?Up5bh`LX7*4XP3_NJMfma?I zZ!#J7jRW$7-2&#gQGor_itB(yW6g)x^l0!{o&G|Z^zse7O+cp>nm`nzv5!gD&U9*j zmDJ)dmoOa5P`N5Ge&`O4zW?$a1{-Ma%PtLx4}{JTgx>r_)WyTQ(&dAKGG2}3gs_5C zw}2{WC5*;WuS{j*Ork`n ztmrbnOeJPZV(+=p_u9&~Q0s7WN*_=OX>5Pa$O~!|^Dt9OQ}-8kq9Uekby3d^yno0o zGpHn85LGY4%`li;(xE9f{YWW2zh1(*M1sFC8ROT}h=syyKc`Ba%_RCL4kCtcjaxzU zU>`jDS-Hh|==ky;=x>R9@KCo%PcSYAacL9r)8+r`o6vKoScqtoBOiN_#Nx86MDu)b2@^@o7ZWWWo$NiK#oN&9C(!! z`dMmVb1eL(S7zlf|5 z<6u!`|3%sG7adT1c ziApB)x|=x{P9D{%$YFDYaJB5sCu9*mutaG$A@GH*ZQ*E^#-Juo+?(CIi?)@@{_@d1 zs?LvBtWV#)em=!UXyvn>)BkuB4L9Oj8GmnXOMR7TgSJB$8IhI){r16?)ik8=6lamo zcP~x98&-;<Oz7KTxal{1P} z7QD6VL_aAi)NYapHF-Vy6_SVGW>DJc%z*qL(Kq11LhWRR=A_;Kq4RX0cOpiB`qET_ z_7m|j-EsNDt!_1ajTfA35w2tno;LArUl=v09%+aN3Bd>)-&*odovP;gKW)Yl=ew^b zqs#6 zsz|{bseHIc54Bci#vi9yFENpAc{A*zr@!qB^1 zZVQz`x6vujbYBv&1ZXh}E_%8?toFxe;|}9IrJB;wp5+#&dN;Rq4H_QJB?+&IwdxZ3_ue$^pP_tD8$3a_X3E;_tT<<(xc$t)8r_`3uJj7 z@xHsUKHk@h;HeOoWwQtzcZ?=NDacYbuU)JV7a{?BYza}!ge24#ePxd^2^1T_vVt!! ze2!PN3jGZEYS4JjN4G$Sh9yXMNDT2~#eZZ?CH=AUmn;`Q^Z;eXJU=)rgWfW_U4ycm z!S{Zy<6!cL8L|a46aub9+^h0lUWlXJVAfI0!LSIOnD%E#Go*zvJkZN0f*+5Z5gGe_ z#aaeLidKF2ngjAK$@?cLcTMOi?oSI5S=gmvac_FG(RfE^3vfP3AAYDL*rhNm?{EPC4Xh85(>X0y#ZX!Xb&nurqjh@9>0!~IyCSw(RCsEVgoc`WYpX*)t9E7K7Ho#D^BGtRUdk>?k1nIX zEGT{?%h^!FZ(gvBf{E6b=>iwmT%$x$N>82OWUCj zf7LAxzV!?@8;LS?LZqg?|M7IVi$~cyX~Snm!E7y_w&XlET>TR|DMm!3MXNr%SpS|= zQqM>(crb#s6AN!q_U)FG*qsv<+ItvPO88%W{RupY&NwvSSd!imk5Ii$yx-I>9w07# zBwD}Q5o{ndlmo;d@#Ls)H?s$2*!FuAyY4;^QXD2+OJVGi6BZ}*k5^fjRjo@mUU;yT zgWIdUbEo|*Z(#E|-(|j`Rk7lBB^4vzTgt}_w1@|h+*G?b9oQD{!@-^EuKOkmuWVr) zQcZV?|AZ$~V>bmqLJ78f>C33}*Z^dk92rhy>L#sIdh*y?BKxaQz8c(q)T-iYzveqF z2BVR#Mh8-ZEg!6MnU14#$Ab(^;>8H;TL!tZ{8pxj%k6Z-t@EkFe8t)&Ey6y@9M?|R z31TzDc|U(TugAn@n}3M4e{OIDmCRdVps!rVq6$~j&9|mz|B>>kn%{seH`-f~dCZTX z+_%w3{P$fvMoCu5L{Gmm!9*)ROVPW8rg#t)vxzztX$O}JE@6;w@v}jc#PyuD8>qqhHReZDVv3{e1oBTFT?`I;|OPd*Lb~x;k`Hle?*3n zA^b*{OX*{k+-q)3?1F(Fjd1!%OO~U`aSP%HpH`_HaSnOp`aJEEajPU z5rO-gqI4tVNfiFR4;TtSKHQJ1JRBwwdtv6k-;_PNard2y*Ij%7r<;mT31fG#cODk*m)FJQ2<`gff2( z9&X@F>0eo-o76ZBzbQ;NFt#N>`N+ta_w{(l;Y^wOwD+cvF|urO0)NQaZ)xWAdMK2en*Y)l_Vdxj&1#nB`X$zt5?wR{*YvK z9kj?Q-|Y)@I1-naE7_pl7xI;T`OYV6P$Mbz%(!W$mzC3Q_|x@dC8e4#EU#142P0F0 zK=Up^b&H0!O%hj@LX!CxY)@o275NOwmg_<1W7Gs6Z5uI2;j40qy5zgZwnVS%ScrjL|il*=n> z#Zsu4ksFU%6QuU6bsQ3xp*@VT6fO2RIz@ZUNvEGT8?)|eQ&i_Rrcux*bfD~& z=Nl}ghh>g_18grvSqMGx2E;R{-YV($e&g@Vr>efmyeeXQE(r)WPzrgi*-ck=BD zD)=05!a$~uO3FGON?+W$iGkqYt``?Rt?`sRtn>ML8Q_IB=zcG1rW3Ki7`Vb8a+qHC zj`!&01tA1w7?nDTK8T6ImJxb1R42o&SZse5Mw%@$FCVB%LVj#{B`F9y;eyv^ScruX zA|x04{Ek{5Vp)Fnf>wb#u5m=LzQp+7ec>^3&DNy5^NE!|s(G>5XtFV{d;GB2rkK2Z ziCpv|zW34c+&A!~B$8IPl6z&$#FAVKUQIES^M?6N5q)k-K<;@2v?Wl!OKmtE5PxFt zQ|l#ImG<&~j4eGK%?NU2eE4vL+mInKgMlwZ9~#8@f)-*$c;UMi6S*+9+pU>7?T|%d z>qVOaTw4+R{pET*nb0rOB>cJWIhJV+!t@hANv_N|W$o7bjz=WWy6xp95c8bJ7>oI7 z0x}k}_9qM$Gnq~keN(uqjg15NJ7>4upL!{ z32uL=Py@AvaDFt%9Y3k5%7WWM4Tzv-a%xU8`kay6=ld6F9W%a&&gY%D@ zVrP%;pMAu}X4CD!{5#`^g;)4KWGB&~kK>1!Php|oNur9nSNms~(r`uGQ=h+)pn|N76sr-Xg}<o^*sylwTzY z@$XN&`k1NFNU1}5vQE2QDOW*MI_B|XMI#QYlX+C;i-Y4V!8Fd4#WI8ex2a%=;oIou z&hfxgSDH?v3dTqJjV zAYXB!&+mbJA;9Yg)^{0f9*>HVd&|-8M_e-S0VWt8dO|{tsbjSwAoV4`>>%H8geKAW z1kl4eaY0?T?@bC2sRpfZ|L317W@Eh<=fPvmKVPLV%PCW{J9`{j7C1jZb?mWHF&`iQ zHTw(v3sZjSrzc&WjI%$oS|f|T;$99b$DlSd9c=Q>h4;DLSD?klE(p)-tS3OFTVO;} z!Y=sz=MOit%@!i#k?Us`<`uX5xP4|pkatq6<_ETey`y}w#xb!enmKFCu~ua<(H7i9 z(N|v}t+6EL*v~9SFwVW7Dft)AxjMR~kZGhs-pME)WQ6-dRAFO=x?pei@lfBcrKEGS zD2?UTs9c8$m1l;%WIHS)df8>;G`2^}$Mpa+wm_$PB$1q&%9@;NnAlU9ck@+W>w%!g zQDw*+g;C8zi?~8IjgH#7h7pKU_zXma&LlnaETzGUc|*; zH?T>!HUj5ZpRjBmTa>H(ZO@tHLr^UHz}p@AU(`@<#NmwKB;@*^rr}Qg=1ZP*qr}^k zirsp=6tS?3;^NNNhY2UHwzC&85$4I=d2xCFUY3#+%og25*%|pRv=jm_DU}~4_kRah zNFZpl_kBvE0YN9`?}?}_<2YntSZi< z>+$M{SId(9J@tIyqf#w=?bZk$sJQRrCv727v2||JJAcnPw<;RAnL|E|@0qXlKKD-n z%UOo@i`@q~hDMABcn4b}1td*eoKVIx--P@Xyd|6rlgcpn=))^DWnz(qn8j~N^)mK+ zR6;to11wlYTN6b?cw3Gdlb%@x^P}cOGJ(|8!OaRmT&S%C$;NMg?+;B?Ib{CLN~lG! zypfc)jiYNj0c!x=C=%~iq91b}@-{@I@mOUXl9_z7gk>Bz)Bgmw?X@3ivL^Kl$O=$; zl=ciXe-w4uYB*mNAcr1d4Q<+ApAYFgr=xWm9aYXrF__JlcwJ)iW4yw2UI+Pl0b1F- z)|jKcdEYv_Efog7ifvKk8yJ8(C=CU4g@0)XqYFkBTa|O9iYJcDzQccv&fh!aqfm63 zzvsS}Ut;{w)fVezIoXR^(fhrRXWV2ysQzE`wQ5wDy!q2a_a1llrnf5=2GqRYJ>fyk zc7?C%OfCx)1RUIyzwJxpm$~%c8+d@g=5@=|^OSo!a#>C+a8XN@S3UCMZyrO!#CMI% zl3{mBr{7eW=d~d=p>N))z4wIuIlkQmjU~?nuJE{&bwNS%52z`=GeaS1EyC;FnIF_3uBQvkhOR<~QZ*yehA# zb=%{LVqU#Evn%HH!RDoxS1zArcKOO}=OC^A&P_KJ}8X*+fzKdL8ZhKNlwm8fiQ>PgGW9-Kx>OyL7Udm!I}> zU*Vc-S-an!iHZ$;ea+J_^3wt4w8<7WdwwiBJ=JRp_qu(zRF+No@>)G~7v~FgPN@}U)6x|o*>}RdlJ}SWa{U=&EQq_ecHEnxhx~~$tR1>E^<+PDhgbh z(ZP3fT12q6mbUjTx!bI1GG#Mvwp~a&Z+ks+bBOaa?}@G}U*|8K<=R=MdHth}(_HxR wdqBTH&-Z{Hy~kqX1UkzEayZ}6k$v!=@#rRn)oS-r-57wt)78&qol`;+0GzE^%K!iX diff --git a/Decision Analysis/ImagesForSolutions/RiskDatawareHouse.png b/Decision Analysis/ImagesForSolutions/RiskDatawareHouse.png deleted file mode 100644 index 8e24dfdf14050e395748b95dc281b2ddb69a34bd..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 53494 zcmdSA^7i>I_fl(Y?J^1fabZzvzGt>K@|S) zCpjtp6Z!|^>;M2a;Q6zsul+3c7ATs_Tpwd^1V8bJGxX~Tyq4tm&C-bKmzQ^47qi>( z*XR};dM;0s{>%|q2s8b3m_(_+ro(qvMZ+dbQ1$pG;ARq63^{PVnVfZA1TWTsOCaWD zQ$Zz*xa-p0=HX*tYmYzYrYFbdI$FwdJfMW}jX?QJtNeCN7zv4R9b1&aeM8FP|2||V zF(j(!|D_2_CKMzwq;$z|cj7ke_%-=oQdWQFaGA+oY1lX6D?KJH17v$+-QsVo+A)9mYD;gI3P!?+b-zGW)%Gshq$DLZd{~L0X>F*O3 z72rF2|Lx+I4r~I%k!iU5^?yT_@#CL3j#=2X`ro=eC^IF9jx2BfSdN$7T$H)vT2`3K zQgQ2+INOV<;OnVvN~8MD69TS7g7KQt_a)nEGL54r_;1(8lgk3vL$MzJcWyxvoGHJ@ zB%5i+MU=1 z|7UHFA1{~Qv6Ht4&&{DfTqdg12VGt^l7hLBnH*$QlAX7rR(w0HAd-->``f7fU3hHi_;3F2@HY~WUZhO@}Xv1Dd zH|TdF>U$gB&cO;0qXAt&m=C-?7e zOV>3F`HW|vPm&6rSr~8cy@zzG2X?o%aeZ^&Rrt@R>mTVa!D+f%4&Ik-Ki3Tyv!j-& z@1T+Xq`|UzG1qoIxBaIq_^oy!cgGd?#|zXIcJ#-|f)B|sXgpfPcCG(O`x~yeBuIv*LGxD| zG6;*~^eGqQ)xzTSLPp%S*3P@YgTPHWUAt@ZyIG2-)=D3&&F-zled+ySFTctst0*o7#*&O^3O=ul==EVcTU>+uS@h?1B7S zZ-o7RVLf^ig5La=Ji(`$ShMgSZkU-c%JLE&A!S-U8;9SQR?W!>Mx!o@QH{?o{ylW| zsZZ3dQ^}=1`P+Z@QHa9rq0rjpRbP%$d*tnWRaX_kthceq5o7k%tbua#%h{={pe3>( ztHxy-_xd^P%~|}-bTL~H-XK0$xtpoTBNHsQF#U(JxWB06!TPP8m6aUeOfvfG+B?qK zZ1py4%J=VhU$C70`eUvaE$E!~w0^++pmHw0M+tW{{@2I{xW%32l)C2ijhoNdH8=P{ zo+rSN_%8@FpYLR}ooC1h|Cj)o-F;-i{uk($#C2d2;&dY5nSp|`vzW5!JD+cYw<3eK z9&_bhM`X;e-ES(*CsRCxW&Gy2G`BoYwtU=jk}t9_|IT1sG5V&6_D_xFWlhFneU8P| z3JYc?Y0=^^gvBMu{wf7yZbY}4x!@f7*OkoF1U%G8l^IdwsUpGW1BJBb3AB$lRTyml zK}TE@XAIckF3t1k%efB!9%EvouJFuUp5PwdVdi~eP3KqM{Q*nSvBbLUs{9>{Lzy!3 z6YOkU>3TfTOy>4RY0#e{#PQo;JTl!JsFizhoU-cp&Zv~vjr^J4RP?)6t3SKvz z-!ZI9$KlW1?>P99p&$1B$GwZ^mFTBscpOi9xeNJs><@p(*6TENaQ;I4INEFTqH*;O zMpj|h7&R-|Fidv|2Hvu80Y^rW~fI&mlAGO$qnf({kHTr8tHY17P6%x^W44E{R-(mFZAne zV(KT^UR&PTh-xkRcIg7JVdov}?XFr&i(h|(?Rm)$v3^G>IVfPYb3J^C+h07;C8 zN_WjM0ZkIu5`2^ioV;O38cb|c$k{)-*Z*uIaN7uJ^BMQ|UF$Y{R=U5y!JEE8_K9B= zEavsFEf|QeOq~&tX90%=#`3RIl)u79eb_N=>-Ah4#CINtF$ zruZ`9f^mJXYsg=?%TtC)NYiP47zjW63&b=u^>1xN5YMG1@h;jn^N-F$l?&6>byMjF zgYWyYTgSg1RG(v>=A|OZ1@qKxTUNspbtS zU#_Z8j~c%_mC*)_gi5QPoHij%p2JbEvVJEm%zZUDI>zUxj2k&{CoAKnIWkYT6myNn zC^-JAW{Vn+{^#QIZ&pvp&33^>{><`!QN=@gGjh#xT~uAtmGi{8;f_XFk&z%N$$yJo4Heg24u1 zwuSIS;G5lN)`pSsDLj-n`S{TK-mXLazP)}=x8qnCJAZ@2BHTVyWw=tVHgMQqtl~ZN z!B@RP=5bxznr_zGZ^9kR6IDw|F&ANdO*0eenx1rR5&u3d>4kOG+FUF26f=bQiNBt9-}D2qwoB}e_Y+hWFPO*{iF4ypK$1SjJ; z@EhBI>G!``R0sB+~O7lDHlj;B2Eb}jQ|NjHoS8?Y)2*Nh$q5?N03jadw_;}W7b!dFx|I5-(^V@Tz z>9CDcEd>u0wx2fwcJb!4PItVi?Xs`!dVld?{>B3H9{&)&pg8&H%W<_3 zcaC?de|%lokK1l8C0o{o$k?kc(Z>qdf)0GjmxLUW=_VeX%Y3w*OSQx{I$n&>D!d=O zIY*59Gz@&bxVCV|Z3br*;OmE_K(zZHKD|h`++1>HqVNn(&iYONXXe_`%QBo(IzA>H z8#|eFf_m5&>&KB#ZTAp3$3hych^-?#VjeR#wJ!D17_oRUdF|*v=tGP^U$*F0pVrpx zAHIDadyOo{ShHX1w~D#1(kdA5d<@z_MF#fbtQBSJ;`hEr&VtOYcZ?86cBGlBQ|oqz ze*4arO~*>@7oWHuYvUtIZs{42oRp8CKFFS%oYty-$G|u1@>pq+{)KW-a?u`u>(|+C z8~R+X%{w3-E6YPSJGFri#AwVs);?HT8*{8E=lbnCV@Uf&8%98!E-w&@p>dzyt{P~W zYMhj$4_d;}bBSp~|FX$V-^J@yr7S>F{AE1@CU~OgLlVBqIO_JD4H|MT*w!>kFDNqK z@5Tln%gA9=6REkaKwQ>XOrD~X{oaL7ob!uueDS7p=|DR8XTeXNhruviID1+3 zFO3HHJ_hHuIWy{zduKJ0d0{}~=9lH(37Jq}yc?dm$YHOKxOB%OA=4CSr$vRJ8z}Ac zGHX`A7o%K|74XR@GhGbIFC1gT zH}jkIx+T^{oYW60eAF9uSJ4?`t+>$*#x2o)K&t9A_L3_S1Y!<43uW5;dwRv530D?E z_CNdk_{4*2qR}>ts4b?}fJqFV$lnrKNjyEAIc~i?i&x^ou63qXKMs-NOt>T82N+Y` z_j30FkSQz;y*mK2hr^>&ClzWD*}wCf$V13>!Zklbv>6z+hJ zPn{!HXOaj&@tPP`N@@;sjCDh;r`lkm(&MVs{gd>RH|Zzu1pjSjMSh z;Rx&ZMl#VR-Ni(O#T@Kd)a9`I+5C&eX^DRvVA8X^V24~?G}Q}OA@p9h&h3l7lx$e7L6LX|a5C0I3%)kqS) zi3~-pNri4NpjBE~L(p+IXT|ZXQGSsT4hSAq>x-U*U8*2HCG;JHj>f>J8y^Rn?h<#% z?zVwlf9$S`{c_OEE5sA+sn*kI%a`)XoT>U@#FU48S9U%_TND`>3jPirQQU2|7)_|a z=b0E3<9!wlL4r<*c|UO`f0-|lKI+mXFzKT>D?`47 zVZYkBg8K5w;xv>1F#3hMz?bNYq1fv0jE)ly?jaJwX9U@&0+Qi_R=E$@NJwW%;11bk zt%W07B-I4v6+jizqSFzIGPs0?PkdTaD_jDSy&5DRjeyc?pKxiMC@c{X&LSmz+65s5 zZnNSMeslfmN^#>%fJ->D!@Epgx=#<d7kQ?zR+8#I^qNSt$jsD)@>Cl{ANZh zWazs}B?SU}hgh% z+eDn`CE>F(0(&)LAOLR2nIs|V@LX>AC%?iHyZz6kffiv1_f>;4VTYMjgERR(0+JJu zSsR5!ej!H^z|S$Bhn$)}x>j8FVrc0M;uEK5lD)8}!~$G$(1nKNr~~%Bkt#PZCMZD) z+|DYcgPOW}e`YHz3+ZSEB-l+J%=eL<>xxwYk9St!&zZgiz{ zYVya4s<*b&r%d{b8b=&_2m-6GkRbM*hnZ%8ejvHlvjT)WS1FVssa2iv7%@iX*ohcy3NdB%W+{~FM1J2B{EL{ z?jLsk`d`$-#AbF`MRCXz{llaP6uq)hcn>5M6sIwajuhl z;6DOimb}6vZe7G6Z7O5;KBXC|I3(=Zo>iAD%u8LsrnaV?h!zNn`$9H*?JK`j4DhAy zoo9I#>aJR7Fz{lAq}DBNPU0(0TB+~PZYPR~79hXTI;2s-AF(~?ijdwXxZk5aIj@Tw z@pJ5MLA9zAFdmG5yxA?nZayE;ZFXK%X%fZ)d+Jf%DcRsuP9-0_rdd@!oq6ipwi~S* zxNEiui*jF74@0|OoI@)>!qIV84bijzBKL6vnk#U_<^ho z)LGT0$Vsp$$WXQS)K(!@rpQhbkb$kCe*qOB@^EvcP6d3%Hd$UGqd8Y`5%#bj;M#q6 zKSd9Fj}}XI##URICt_@jgW&5)ix3n#E~`Q9kVMG~whg{yhY_$57I+5p^0vAL6KSk^ z3*NTwM8LDKGMB`{Z~;XySt!X#bJL8N$sd=%$y%`2)D|yy2N~3uk;aNBU8@Z%otMw$ zCtX@iC{+E79n(!#IR}?jtb6kOwD$*Yg{*bG^zBJTHe9lXerRduW^48c0#<=wVPz?Fe_sr2TE6;llhqR#f+dJ@McrCp=%14&#B38`Nuc(Upqk!Pj7Qr3xvv9^Ds6Uz6V`Ui|< z=%1Iuk+wn$`6R3yQBcnx3Yu>iDLn=az9}K4FIrm0)sAit@;?(!%Z1`?7BNqG@h%wv z;J1*_M~a6UGmg}6K7Fe`MIK=H20kGkw9S^Yw+@FXQKK9x}IfVRgdZ2m6%@wTWf- zWnCW4Osn(W;)v4@7GG&#^3K6Ky|4HlSS@4TUi8RNu2oR9!?ytliL8SYH4@qE=PUr} zMuOrOVa|eXkV;Dp#h&)~Q&$uH^E+{HnT8G#wSvC%+QWwSc$+c@B}})eq~lAFu33X0 zgma;IHH)6pM&9ean4!;OlPqS)$6=btVNl@J;9%YDZXz@4z8Y6UhKQ?6Xf>ZiJK(~u zcEH$xC-VF?6~#9?Vs~l^;^HA$3dy&^FYr6*S9{t*mb#9;zZB;G+NM*{t)11m>fyCz z1o2Dm7_G-pv624ZJ3vXCvJwHvjXxrW@LTG7U^dlyFX%j&ds=N*{N6~F9V#h^SOW6! zR@=xTbph^j2-}`N^Ps$)tQwS<>--xGz9rJb&*&;_#E>OK>6H0Hd?ijwv2IM6z4|w# z=rN*?dN#nmsKJc)>~)w~6-qhddSjuFvkMSa%}Qt69ox-nE_X2zqt-U^d~WFTs`mk# zxJmVwQ}`>y)h~O}-c4#dVSzvpCUchy{AZ7?s|hnRlM(B;H_tp5tIp zYMU1|#iO;)O9aoeXW&3`rq41L4&HHq!N5ZFQx6y`i8Dj-h-pZMk|dV|(a0X@8$YhD zY>|d`;6up0wWLEI9#~$-%z)I20-v@N*o~F;(Vt}H9rcWGz@w3=;A)h12p1r1%udv_ zZ%xPX)R>s^_nOXp=c2pxD%NDSj99J7GTL5f!p z+prd{rUe4-_G{3$#NQ@-h;i)8RPr&^;9mD$6u&3R&89-gN-k01srquT-Z!2HcJX@a zE*lX5;#@_yKSFb-dPW>AcNm_dA*P@ky`b*c6K4or*c0<8T#~juu26T*egy*QgBqOS z&o4oXZMhSNyez;3!hVP3qJbu;TA#zkg44VC=3%K73&}ewNvwJE>U^fslgfd8dY_E# zjh(V72QFE#Vn{oGaSc8F$8)Z`_ny@}LO@r&39^_Kskpx5QfatEM)Y-Vpo%1DYZG{; zPk2`mKg509YSm)TH4WDD{bz{eoxF_d-Alt3vhJ)ruelsCI$H2_S3#uWNsj#sY{uf2 z+V~B&S3T>ExO2{-l-5S)HRS-W9-JWG$#8{LSw#b?{5Jid597LF;6npAq&?FYt)h*g z13CzXPe?EI3f0Uv7t{~%9oHs+`n3)RJcQ;MQb|wHRPq3yD%48*XpY!U;^|2&J;66? zX<1%bH;bmWYZ@z2J56vfMm5w9fsVI;JgoJ?``$Z5IzfNzUOtLU4E%SENEByUtDLWBiZ=|9Sk$^&&Wn4f{QFMtDtKVC-FFAt}_$ z%|brox?%Z^vz5v3ljm6BeYLYpv3p=Yl?b>2d$^?Sv+Dob3y_z>!idP|KI2pf#Gt9~ zUxR$b;jMiZ!lKt4=FMj=nFBvbE}n74wJ=c_4-3geP&@!5r<{r?*t(z_4iUG`%$C%_ zbXi4}P?T$CUQd0xEYaX&%{op>qNBq|rNDq*6;7{;?VuKa((_`j%ZjhY$~=&;OwlCr z9`dyV2claJaqnZj;!+jX;|n-iedBTvt%CRH&XWAKbAFGef1=aToG4}j61RsFZx9{} zTLWcGj=`ql@#`dk2zEXeV18aw!{j`osbEA`qD7h+a_VNK2ecxs+Ov1H=NJWX5il;X z88LuDJk5}Qnpjfx=HbkALL$7r=JetR#~;n~_Zb*h<6HM-04&vyPR8Ff^VUUpp3?;D zY_g5s`0bcyjYf)bXFtOJmN{YK&k^z;u*yvY2lhk}oA4rfwq!6B`tSn77S_R2INaB4 zeVZZR*QTK@Iy_jFAi1hT)S*b*J9uERcfuG1B25(IUv_)p*WF}Df#(J)P9Wd1Z=DA3-`b{q*;DmxpE4$zGQ#TH!g|CiYRnLZEt_xs%xg^lc;6MP10%_K>Ukn*i7?%s7T&CUKC>6L%~nmWdcoiI4mI1$ZKzstZRvF@9JCN~X*thWkr(!8f` z{l&V45-YZBA`Dm6=Hj-|9(ZhCn7*>@#m}M%%|rZJWCxF0IJgC>{_>acFq;hNq>>0| zmyH-_GZKuxLWe6i8C}9Spp&$&%XvWnES_75T+0ko7hvK_mO^ae;R#<|)tW;-jpFg@ zEo$`7#BAH0< zBpBm*%&NgirWmoj6L~2(C+b$sd|Ng}-ocRM1@h%B)o%bstJS*CR1i07^d_9aM4B1O z^x$&S7=72?;zle)M%12uinkRl$0QA3KRQiP%J=310kqG}2JGcbM@ zQDwC|ujm~H>VvL%)K~3X57<^wan|#F7NZ_W4);C_WL0i>gL5Eit4UMyq+vvtA$fcv zBv(CVq9Lh_@+fkM~p^ zvv{+gPM0LOyx?ci$(x@01zWxI2P|A~GYK5YUQ@p4o@Vw!|Aaky6D?B2oJn%)POUoL zQT_h*Yg~`eUXT1L*r%~84=V8Ht@l5rq_{^74YP8mqA(l&IhaIQhzCmwclJi8S`%Z` z-2mT9&ZG*Df39+p;0d*o57roye#0->=RP0nMUF9i$o@h_z4b_ikVwe-XYPF!eFaV^ z0Z_oY#{Y!E^~5wdMvyE5VmWi@8Js6RBfWSGZW0-Bt7_PLyUO4FMXbNaESkm&)G+$1 z3N(LKyy9hW&JhK$Ta8jjW)x{42uu3IA9=qUd_C&ybMA-uFj4@CX(vMo{(#-`Lo|_2 z*X;DZf7fi?xthw??0P(VeF{HugctKNz{6rQH)96ASgIN#>Gwy8Zw7+Yj%PU-IFI;3 zje%7a@f7iB@%#c|4#y!VTRvtLuUpi~LchF%{{!1EG7u5douheZUE zYFzkVKT5;H2VuRPbc2Vc6Co)`jcdru8@8ohlMP5y%puXEsU{4y)v%&aLlbDs_4G=u z+}H)ozBeE*Q6OroYtwgm@+;3}BILIYptQ1L?(4nI*EA66lDcBD>biS-XqRD}!$$Ba4D3<8o?K8dfP4JXQPduM_!= z><`!=cs8r&_}d{wKgzw&p4u)4p=E8qXLr)B4+15!qdpWwC!3B2!Ha4SSHEI_@N*%Jk9FcDmfid}Q_(5~1$x^gC|cce*5)p3%jby}g&@g@PXrzE$9(kLoh zU;0p5RI3Rm+>v*t63}1dw_C+3nD(2s5GHQ}bYWZrL?4GK z);LSmKBmCxkKzicxDKIT(+HkA^}!$5^0Qov+X=tAP5H!5>t#TQLrUgiQ<`=TVpcR` z?8C2KN(z@gYSD+R+D9hh41+60kT3BwFQ_!=>?ogvM5CWg+422si;;>n`$rdWha`70^=0}n3S*=v208X;hGH(Ha*Bjw9j+~ z1&|0e9xA+AZ*V?rOWp!rZ_Hc|H;O*z$9p)mUlpD)<@XeAhK{a7_tob#h&c>w+LW~v zc+z$rlV|`hE3>WrrHAGPJ6?WxpU6;I*k&`n2B7^(Vj#fOOfu{X%= z95jRT z$Gi+6H0TS(=cz}V^HNETTQoMpjS>3Uz@!kUkP0C|T(E%nuX`tqX&u`Os&S9(4d#YH zz%Q#wA!9^|F)faQdV^MCh8NV-F^=x1q(J#s8dlFitz_hkKGYPFMZa4sKJUDl%~f__ zeL<}ANv!ch>$W2?J?{`a)BPeLsBIv$M_UUNB z2+A+k_rek#)ix2rw(uIs`W0xpDk)6*Ahf|qhuXhb+-cP*xa(Oqe|F^&Ymt~{^j|3G)|Y{ycB8 zReI$CaZWK~qyglE@CXc(UaZl-Yu3Pqv|xPm$z+{PloY){DO5*YKL3IG`;joJvDYBV zZ5FSAJDmO~X>X?#_N6IjM>SfB_CZhKLZPe*r<%hmg=_qx$2Y&l`?IADD~%pUU7`2g z6T;z|>_-6F)bmzx-Ug+N?+Ief0wNvQIlQD}mpuOSi_1N5R-b|jl9Jp*S08k6l-41z zTrq;0mpW?LJGe;F8oAuFwiU(pM{gI$R$Td(b`r`SrtQ_XJr!<_{B&ww+KJcQD0O`& z!^HxE(hjH3c~-MVmpiak2iv3Kbcl-|;4*es;quWMya8kVELWDpbtq-hzUEep?;$ zJyTUUx)M=i>cx}gOiRNWDyFe)mi1nLF+~EDuC88%A4+rfUu!Sfa^?G0}a3AFPFX- z+g>pGwUoi6?^VJvw}0vc)f{QLjd5ubWq!$+x@=H8aizX?IgP#*PQsk7(J{AFT?yL! zobwyZ^4Lq--aK1rgk}&fHD&r&aA~%@@nT<=P+76eL9|z_b&8!-8K_m6NLWgCUmAKJ z%zT(sy<}e_H?RKGRB&4R^}T*)9`?0-Mcj?1X_A?P*-?X2;aPE<8EAFmk96H#e=qlS zF|V>D1??c#>>Xx4uxc99Lz=J*puZY;eQYc7^3Rv~c(r*j9F>YZRteJ_q`9_s=x4g0cCEzYdwm$`m<)Y9AwpgVK~qq^U+wJKN0mdqpno==Sdf^UZ7sM;8_8Gf*|%i?s?(1-A!A73 z6vEUqjlueKJ59Q#PqkDTAqf6h*Wi4j4L*b3$NRruWKT^bQk%Qlo=b4%_|cP`?Xd-$ zz}2;HOj3%8f=lMr=_oX;mdU4^>SDwR)y*IJLla_NM!Y5qIWgzsuf7~HM__I`{5mdd=;GOem(80oo$#74+ssfLD0WWIyrfiAKtH`tE zc6q6^Od-d;+<7Kl9&>i+d-8x#?9(Gg>*8-eoLw<~UP_Oq1MRa+S;{)$ zM!e`KDZX(qHg}hcHPFzBU}Xlko-mad8`NaOnNsU81l2LcPRQE*VyZS0lLM5@E%Kiv z$@uK^bK(Bt+_0bUIIuS-nBICTOig&{Q(4A4uu(?AI!iWhg4;O9HC}x>beLDIbYM|v zCbJ~a#|%e_nDZj%V#I=KfBz88!^{CxEivRLqmmxSGw#qKOkWnxS%O8Av}y#!N4I=u zwE{oys;hw&+~#h>!xM?n?bh6u-bX~)Lr$(WJ405vTn)}$AB^kBEqgLkz4$1vMBQ9# ze;+V5KQ`_d*n4M6wY$?X?VNpbXDKWlGvn!|3F>oclD!=71nAuGutBP zxi&(Ek+S}lqvEx;F4*p7@fUnkhXtIQ-8jlJ0DB!d93t4{cGWG6Z9i}`I9b& z2m-AW@~G+-JOiyD&j62xDd*`Ig_wo2@?#!#4D5N!@8&`Qt9RA?^nq>>GYWBUiSHsQ z%8(LSeY7gGVL8ti-sST1U}<^Jg6Y049hemSrA7a4mwL~LSK4L31n15wK=kt$5E+QDdnWlw5V z_jqE37m_DG4&82K(6?#5g9D64!w#Z#;jv)(yf{3!yy?64E1!HEx;PM|fYfbL= z$qxxbp^u+51kV|>K#4T)si&DGfjQ5T-CH4TpvY4m!+)G@-8rPMpr99;{>EQ&^r9Qd6`XU$8g5^U>Ag~YUo_`S^p zZBZ#U1DVQ~_Cfxw9Lz{bm{OKBc4~@Zpw?hWSg(g2f+IclRc)hD z?gP=RafWJjTj^JOwn{SNLri2zBfOz~ejiAc!IXaHr&ZD9bk2N4P}E6r?A@H)_oGrI zA^=^VL4#h8ni~)r>%&~hEpTtC^( zy_Q_XHdG0xM3RvDd`A=_$C!!

I>%P8UHkLHcdJprx zcy)K)Z!-LYpy<@#?RGyItFD{7jz3>hg^gA~9-;7>tM%QPAkXWwfW|6eAOOJheFIx6 z`9TbK;GCy0Gp>uVBqats4s1u{)BE0tFITiY2o!D@dPqdmOJFQDhcX{GW-*NSOYiu{ z7vt*P>QDpXLi9iZzm1oAENZfQ9q}r@eMka(Y}Ny?;%b#xeW4dSh%F@pR>rBJnqS_Zb;>L zw_T)&G%03*!_B*+5m{TK1GY?YP}gNI4!2b7uao{sq}GtwB+6s+C2#% zkfs>HvmkfMkN4Xv__-ym^yIZhVFXWV&P!>-gLaI#sS_aXfx_7a(PT>@5v{um2aoX) z*#N@dR6n!cDyG`6z4E2?n7YB=WhQ8vzIG#8fRFyNO4$TZ_qV-C=|dKcmXPz0b{ll& zp$HsR_fBeD0t1nzQ$hCTN%Z@zw>jgyGw8YS4I6z4%qH`sXK$W~Dn0;Tbcp7v;13Bn z!e_nCpCEA}bi#n}9@w_`(!GTwuRfJYc`P;|?o6v^IuYXK4u;O&A6I4k%qux@V-~JB zeysVfy3VkZcY#N%4{bpapPV`s)VTNzbc6Ibyd#`tG=-<$$+O(DL#_OfnIv$7TD=E9 zfoeb2Y>gg9{L+q3C~ZM~X|OcV@?JD1!ynKuc26&u{7J_htW2QpcZH@${-E<74Gt_p zmYr@psI8?c=EpBsolU6+>tSI%>kDgwXUW~Y=C8KwDOCPY08_VfdMejozG86KN#>6x zq*AIA_=7h>SEK)V;yeE4 zCmVM_VbMx8mB0*XE@hjBp=OeVoP*WRP&9{gP$f z{8zK;;-#G)3S_B0qI<3|t~H91UVSVZ3U4e?<#pMbw&fY=@wl>;XrDqlOC%8us%qDP zEy{^lf60)f!5OO1A$(HBClM}qnOt6HQ}C@-#L?-ItG)(z&J%N~Ua@-#A?vU9GZ$<% zxK&9S8$jfCT6UV7-nOx(;w%>w<>cO_;iDJ@=KML7)XOc$)iGLZUgT*>#4KRwda{)) zfYmY$c`(i;?-0yOCn}jC4^`J|wgJ=w&S`DoO4>`WGX^lGBKHjCB zjlX0+Vr{9L5Mndu#g}_Lt4{MJ@|2FZ04muJ=XNvJ_PMz*X$^Me^Qu+mVC&{GtQjaJEpF zUsh}>C1ff_R4nGh?)-JtuGW;?-?gJc-*bW zAw<;i>*Sxp1M*v{1(~)=EI9kqH>XvYVnP#S#*vpG{q0UVhjWWkVjeD|dv-s^z#hNzI*o5U#GL#Ww+vkz8(})UD0wJ zc^gyp10jo)IlqB?@_5fwQ|gC|V$8xXxVDITJM|%M281^M$_8svvg zs$b+UX4Q>7G@*eK8nori)P|}19JbC&HSki&>74dz^g*n>(6yPs{cYzW3)gH0#a*h| zbwb`ew80Wtm+bx8gZGoFMd(v}tDUNrzuSDXj&BOR5uVd|ln(224Kw74-a2+*CD(s} ze`T?+hyTFfH#GMpKmx8zXeutFHH=yKoK|l5Co$n%J@~Ns$)Ynl{%JF_qJBoQck&|vWGyo;VaSqCU}0@` z6T}1CTK(Cre87g8yagg!YH%KDuO|SC3L0heb6-0K=X5Jw^_t&yAYlIVXh4Bi@OJf~ zPL)X!VqWTCB8ap!T9@i24h~@BZ-+^(A`B-DTgo3j#`)7TBV(0 z%N5D$7am!x(Rug|r{J5!ytgqP-1ov@33T|bygMIMvZ;)!n_Xx_tl-=)w=!qquVJBK z#3|1vD<}4ffER%!_$u(v51Q9Vp5X6_Bql>91a?JmG4Gi(fId{EUC>`NV!YPfT0WfV zBOh(xEow@2DZx@eCQkHL(qkhd5<-bo7{SupdXr@bFdmvx_-Ok%Pp4#iDkoi2)FWGl z8~ItDay6@+|&B zLHZ-IQ-fK+Xwtn>U2X867BHTfhkP8U5MbQPtko{r#CL-*(xAACD&axgr3C^Y z01~s%9NA+4WQSt}wAV=hEjS@mBRMs203L+{v{%0BiJQz-8*$D2vGa<3wB++olKg$R z=Ow!Xd_%aOQqpVcwSFDVG@9t%3DupR>o`}?w}soBJ+~h<1VZV$rYQ@d0A%SNJ`1fC z(yfR`v~bZ<9=TSw`=wmF6wmfsr5tWy%%EP_hbxqr7@#1yUgI$!!+FA8QG|gLUngdK z^YPGK{@(E81kp@9m{-)>eK)kPH#u{9qvlqkI=9lnTy`7wv%2`V{oIMb(*v{8vu63- zPWM$DX?j3w_oVbEh^25>y}ix5XRSTO4%qb+!R3lRwwZih>(sMlSdaJEcwS8ie+-4A zR~(!N##q^C4%|GNj|`s6RbP{-IdJ$NKZx8 z!d~;hW`75Fnmvxg3qpY7kIG5{Zb6pTIe~Uj$+aVvi#0QkQxpprlLvqU8o(y|<~oNm z{NU%QMb8<5l1&3r$`x}__|})ZW`nrB_y4ySpa^bKAK)vNR zNfJOPP{gabNXdUF-6ci3xLMlq1>df^%OdJgwt3hv#_TudQrjGR!B{VXg;&Fv57=XS z34X0>I?L}WU$)cICbpQFuT_gr0YqeyTkGCE<;}KC{Vo2WU<}y6G`Bc{#Lw^~?UPYz z#S_b~>>(RltnQ{?mm~tV!M_-4%%jRMDMiuZpXaoI1L2|vu-4i>xr?|R-*O@=aIQ_;Ja4DAs%g_7D)i!mNB?Fa%kuo~GK1P0MVblI^>cmC z$+;nd#E>T816z|b+tDrRR3;`F#h0X%7D7h46~=NPFsl`Ok|DlopIvOO<{-aI$OV^} z3Qgh+K+TUo~@#Gmtzshgj4UC7ZWos{ZpSolyt)rL6TQX>Jv%V7ViYJ*qfYRxV+bO=IJ9Q%@+Wzm_EzG!kdSQS_gTsPzvi1`6ZU z&cyLvqlrZVseFfed)SZvw$+>F1+64?XLDy*Gf}wrsdY(^uM2mdYFSMmnu6NaeD|jF zdN3Q6>tpG}WF$jys{LaVuf9;Ec&0mFL;1l{N|KFHbt|8aCc4XPJI}sgu*%tJ+qDwd zVaqNVoW_0b|FInC@!WMJb_qC0_IqT!w3BE^XdjwTzO0>e|6yLwE4`75zt|Z+cIz^rU#|fJ1cuYHwfS zC;LkVYctO)*Gzu#wV9Dcw%y<@?{XQ>zzIU)3oibrt$ug+HCs!2r>%EW!<>>!e@o=l z?tjvyXC892R%#StN}lAf&cbA%`=b8$KbEeW|K8e|`3`o{`7uUZdG-Zw4HvLw9#j`O zLe|<{d-t@f{l%zHr|)mFCgcGop^^B#v^TfB4RW!lxDOq_Ym_1WcQUH!THIO1n-(%02{ zEF~uK&*qw{Mb_DeF3QteAG^cJwKqM!E91F8 z(vpE@Nd%wrXWrio^_x=65?G_9R{^g26#!Oy#x9-H%;#)lvGc*17wAoBkF zUI=osTyMLqjm0SSQ%sx|{p2><|K=pDO3L^R`9Y6M7z!#sLP>JOC+qqsSxxQW_U0bb zf9{uxF3RJcmm*ojHG-6%j;Kl;j>3K&t-SAZH?1w?A*HU%BVxwL-*qO%+=EL^5mUoR z8NFgaJCk|5wbd%9WobJbQn<}bapfS$m+9XAI>G(x921=@b~KqYSkpn|Y(=fti9gy& zNAYW~ai!wpH?ewv4R?!8!tBy$lFevgB9kmQO(lLs%lpCTEk;bg*ciRF=MpaeRjP;} zlyU$K-)$5g>D`)RnM^}~4j%g5W%HH(9)q{GsUYa|Mqo){d%(TYR8`e9_U$vo>qNDw zZ!)zJBWrBF8Ql-!fczHn{DYQ|9~en;m}lH`tgKwXD@%G|W}aaG4Y413@xcUxztaXU zGV)G0lVxAlo6H8kF{~&Myh`tFes2>{2cXG+qqJQ4c1OM<`x@-wv)~x6DuyI-JBR9B>kbw*|+IK@&l>*=)8pqw+Ps>}Y*iE<|hfiVf zuM}kuEk=$_&z5j_PoKA$aw=`%x6yb;zEA>hJ06pIpOLIrq$n@%wd|Y{Z5;)n6>x`V z8*#)Na!r;}+FPv5`~|9^8lGZPt2n9;`y1TXo~#wg@F>-&F5w7E#`bUwrvww|)9!>Q}$-6f~6Za%*u|X+|2_iY;esc55`!=dWAHW-H~q ztG0fMa2+U+tPNQuHWr#EUjb`-8dNgCZ)3V|5m+6hq-M5Qcn>9lXEp^TqP!Ix`wd>$ z{<{4Ig}O}TXnPac{_qvxTEbRQ^8B3y!b=;hImvg`zZ6({_g?$09hlzeot}UxFZH+N z?Sv@3BEu6ya+vyjWf(5@;}W#wWkQkuH_uA(gQiOY$9LTm%+ejOUlnj+aWUjul2uG( z-g)x0JNDt>&1M%kpiNyz{7E6(n$Fl0FcN4iYT%AJf46kKH`oQLh!SmN8PUGwCpPt# z<93AL><;W;J9Mx;)wj1i|Hucz zASsd6tr}jQ7J3+d)fy6Iia1!j!#d4L_A)_D4ewO$Ekf-eiFWfSrMw$#UgmAV$vGCJbI z`~-8w8~JU9m6ty_7v?znpZ%5wsrQn@*YU*k>@13{k_eEJ!iLSs5eT@rsw)K~h~hym z9KlHUV=edzvltlqL+`er@VsdxbqtsR%}etnPlF?u`Db焦wLF(6UohCVxg@cO zk&!~1KX#^2jli@pYvfa|3+d^|>LaB^ANK^J5Y}(f@UawNLdVU!6$?W7XJ`9Ja zOZr?5j@%6X^#&v)8?|mR`*|0~)4p^K-J+tQ?}%^3uCgG$XyB5Zvc^9Og(Qj{BnLR* zVsmQg-iKe%FI&{3-*T7vy9w8{j%7-ZakSB!c;{sGEC}}8johblr=7Dka95ar_*3XRVi zMHZ!hvGK^VV{wvU2HBE5bdy$$A#1JcQzX3j^NSA#nMAW+iZ6lR*S6fU{OABr^zsh@ z!rEL8*^5RqWV)9)ZP$d{16ilF12a%QE+X-|mWI&o;&?9Oyr5SE6Aw5LJqgJVR~bu} z88d=6Jrj;juIYcJzg$z7{f_|lz$=-_HgRmY+u^~yDNkJxFgbTO5niB(A)sJ#*%Dpy zLe`xxRS#V>?O5@omtmsuG`;<^rWZ>w#f}lAb_ZZYm~12%L9x;GF>Q=YM|pc>#ENx8 zCu}>fkFxd1WX)?ew{4z(ti{H7YJjkTu%(=%Sjd=YQlpy-fG&35sAICkvncX>Lc+19 zV6$HkN{#$RR3+Ij`O$AP7~Q8{3Xwwk1^SQ2V$=)OI>7P6zj(dZ`|OV^5Lmm;>cc*l za8}<^r!nB4nGH~wI}(O47CgdpnYw6c02Ov;!sKR(pz0jY+NZ4Kg)h#hgLinhXiXdC zk?_L+R9kzKxow!E&l&9!>b7C%wz}6NpED;H{f@k?NSm)wzn;K>{#36p+N?DLmX-a# zzTXjE)ubKQM|oA+C|f?y(m(y+6lu%v#qiQoVECJOI*)&e!7J5BZEu9e<-TDvbE|d` zP3w=##GTk~!wlQ>otpn9Yxm(ro{K-ap8nI~sNU%6wd2&)M`Y~4{Vzpr&}+huR{&gT z=^|?B>1{vt_v7B@5-wLkJQqPjpO&6+Yy$Ak{$JM36rcP5!B<-DJH7t+6dNqq0m9T( z$=^fQ_2I@5nbR})+twAT7PAjy5yk@I9$$nibKf?*>x@3onfO_Z%s%`PW4fzYv!bSz zcup?9&Ok8pIMjD{%5V2Cz8t@u2l>^D6yR)t4)6QM#Iy?T~b1V%3q_*66Un4)dfKU3HwfsBbvI^nJ;F;+r$ShSuRb2Ndo+ zGH!`A;mceCZkOLbetqI<0_Nvt&po{p`DmSkKI55@jZ#h$17As&EwT%ILuPT!Ip@}|25%RbO#^drujlA+p8soBcvH-7AQ-$aq#pJA4V$huj_f%i#hm6T)BQ5~^eAM+47}pQT+APSi?*It zRx-XhH)@nr9OPytEl?B}{z=@}P8M^mIZSGIFnzcvtK!DFd9A}G#p=_&HNjl_1qHvIaE8ctx;BGTozUyd8A~Dvwr7;((yMu-&|^06K%1$ zy3D%2{EN=x*^bn%DG!9CM0<99srbSWXpM?Czmxa&DLxs+u4s^fn+ikV+Gfplx;9E( zZaVCflEFH3hMd^;BZ;lXnNWK;neZM?8=0df#?~R{oC@j0U|5;T>;2}v8ve3}O&pt) zpD_+!k{DJUM8hm?mTfk|uof)$1PL zt(E#^f0lr`Uh)Fr|Ihh_X7$&@YMFy%v9Eh25s^vPvn48LP3hEph{d@Tb>wsMQ6iNG z^NnJeK@Ic{_>J$&`o8?6+8X~} z3TNWt32Q71eF^z zhg8f{MZ`@mQKWjoLJ-81qPAp&?vxPylR);iLtllj@1E2Jw#&sc+UuiiaI=e%dseri zP@@F&~TUk~BN@AAM1uF$(Qo zcjs~SJTed;EfeCxfyT|?jbZcv$P^Rr81!xNJJt1f7eekgU*3}cs_Qk;20MLj$P z2-I}4_Ls&-aeDVF$D{UNY8*X%SPI!*!8n27Ra&z_7PcFC#g(lpR9K%-d^(n(zeD zqi)5^-s=5hO6yQ=Hz(sT3jMH&pQ)t;9a#2ptNi;T{X+dV%TO>P^Z2r#V`$xVW6!O$j#rjUnYtWebwjYwOwpn9_Ord;7n@7V^5%1V%?dN-3 zOgP|c9V0qVJ@Mw7MP--o&V-R^CYB?fMz%dMx=wj2i{K6&S-HehkA>z=Zmat2eKI;< zjoJt2YYeW!yem`^p$cZ^tNv_C3nI7D8&}jgrfQ&(-p7mk%IaF!Rx199q>{uL{-nBB zzBvi}Al|rRG@WnMq^t9;yW#LpfTOvz;E>Sbm^rop_?k;0xmSBNRh2#mgOROipB+%s z0xLcc-d#=iNW51=Jsf|=G5xW+_U?`K$J@^viGdff^%8MdKYZ~+;5AnYDSF#BHUFif zs5>eBAwF6SLDNKoNZ0jf2kwI|kWL>(^yQ+AEW2g4d^Em-S(Hk+5Dv#em>DyH1f_VNZ`%+(t=NL`|HbK+hd(vQGjv^fKLZ=tBL- zhv%PkO+!@1>?A1A<<4N+U}Hh-)@O=wg%oHA_c2k$TYEMBV4DFpUJ^IE0&T^2dz8!5 zKXmU8#qK}&aO-wX8-$X7CwrR9Bf*0z8U9E=DMfhE&hQQD2(S?0JDu1qMee|}&cU85 z;{B5&?n~Rsk4}*bmuxHVK3|NLt zueN#rdyV;d98NH5=O4_7%7`OUxTiY~ZzDg|6c{{|tFu@-QDH5okMwxNvCm@wYf-9o`SW~u6vN^_gEI2vy%xMp zV-OoTxO-Ps+grAwM}hp|JUcv@IyV3mc%CLXdt?ybm_G@+La`!O^&zM4@6B2ZsZ+^k z%-)uCjy+vEACl%Dyq}vclfVxW(|p7-in}|kmB(wo1E>1b9Jy8Ge^oTnaJLy1_;%(~ zQlqK-&!)PpkRAk18Dr+-CEs;(rft<@(+*Y{7W9!l811h`<^*W!AokfM-6 z9YQO~UkN2nM7-Gt38N+XqpcyuB;T)EcE${`uHvJ0s&%~C_BhOcz}FFvD;^e@c(OTJ z5Kg+|Lrv6l<^P`T=i6)9$+Fa>rrM;FHDrxLib3q?>Awj;dQh&xTb}JTB3XvZG6bSD zAHIU|d8n8Y(xmxX?^Fw0V>e1>&*>bQa@Jx#9qkGAuV00+O8v3^pzyWhS8JfeHX31{ zhLuP)nQa4RR-YpLXsv{(?m7dPv*Fbb%4O}o+8I_tXLQ+NM9O;UWcVGaQM|^tMGXx8 z1`6rq9j`}{V;??|&O<~~DgSZD79F`&w*ozeX7)GjNQ3SB7Emt*NgN4k%}8ypeL*a;t9IX^P6ih zGFcz$;G5h|nurf{bHaLf6aueplml>2lEWzwWH&p83>J4A=i>@2OvotbjB_A);CIS(FyG)|QxlY6%2{hXxW7YY4pQDI z$JUU+s&Ni|??xY-JiTOsNn$DZ!#`7nDDa)?R7m5+DR59pQ6KFW-$fq&r-f0aJl>X_ zDmi)%SHZ#N^nPlB=mx3AbSur@V9N+FG{G+zj+xU{HZ3sTS_g&tAt)CM%9+I)idH}G za%>lE1%&zswzPU?{hUbB&TGvhqH{F|q8TJf=sk*3naq+`QSEV6`WTe5sWaI64ynaR zO(=M_9rAoTt(}uvaH<#h@@}K}Oi-5X!nl(xb%T;$5T|WHQS+~8N4?9Jz$M)Nbe~+m zaQD&g!xZ8mFX#(!{H%qKkeOOidz*~;^%-ANp^GF;+i_Z!_{JLAwD1(6WW-(1mqd1^ z9Mq{T_gK3GoLzh$QTY@8%gZ)eLL zD~pZhRUkJ5Ejt5+Vd6Vx>H8tII0m<&Gx#Tw^*Gah>jgz?R8z#p8t9>@c{F+ zxXRqW%p7tZu>Z$$s+HA1Qdsv@JF#2}#x8&kmxUg`@&1C)coZHdnXvrJlIO9yB)b_$ zhz!)d8eTRMipCv(%x1ZT_IMrWM)NRy{@{Ns;cvd&{pV8Kjg*2Bv=;_gbpSOSZmBntn2vCX`zr^-0BjgU*sbsc68Uq;Nb8KhrH<7DKim5C z4UMoqyO4y|?AXHZmZ)<~e9Z^%x7!Y{EfZ zi9t2j*V@_V$hkgSU_QduxN!}v`T51aK6#96VIoXs`Y@EUbfZPBeL23xb3xhmg_HBwP=ns$ujr@o zckjqwT@%BjXrVi5{#O&Md#u>bLK!qYvH#x-P*9%;X}skbPHjSy4@C|0QV)f@|LK|uvtL86pkJk~;rY4y;4X|SQg z?9+)DDWrmlK7!(!=G%~kh|p94<*^d?MS|K4d(GHjA%7-261;>4il%E%9#`m5T0N;I zz&|P8rbLq521x6z2Q=+W*`dL`nMw8WBk#;i2TDT=2M{xRQ|D(cKRyT7&f?*@kgd80 zeCdHGX2BTxhkKy`V3k=g#8xUc_II6%%*k5koEey2 z;m@#@H>1uV(J1@4Rjqpf6^TM80;*x4s%^h#z73wV7|lX~rCQclPRMhMC-gbmJZW}S z>bAEGHlZuEHX3_a^|Y)Cb9U13ygPdf&YCJoW!mp1BfZ_0>;8Ns#C52E#}j_4r^gE& z7zmdp9Y4-IZ(1<-m9fegtlf24(%K@E>b|N|cL*3roPM8C8N|jzk0i+#Y6nt|>9Vj4 zzx7KU7OFPO7&Zzs{$fFIMnHVSayfNJ>dS*RfGg)wHCBD?U?!Hy%gwfI!oGs&Kdx0v z*VDUB9zO!r?NDK)UvMs(s-7Ms4O%E>-))tR-9t)RrD}F;e7R)dBw(XJ^hwMBrHSt= zxk?n7l#UHs%v3?ogchycuYR+Xk9a1x<9!;f@@Oo2tM4*iQh{K* z_)1l}-T{Q0ld9$d#LgkrEnLMh>EK&d0O#lrNcK`sl&b{@524dqR`3({8FO$6K*vGa zh(v8{Y{@eEuuHUQsMqA{!~8#b-y!EZ88^WPVg)Bt`zj6LI`%b%t$65bF~z*2JrR|M zhoxOQBd=A+M>Sm*>%4aF9BsV*`8(C0QShfk{#xocGZ*MLl+>*7KWP8@Gw`YBMDk4r z(6we>8})X-3Q+)jF#&EO6nH30)1~ZCWcU!P99naVeYn)?mmzcH#ERGfZs}P_G)0nM!dK`X?^?Kd>@yYlUmyVseb0PJiRH{ z_7GXcMoR&HSz^U!3j}OR2hjD}sIjE{yrU*f4uUJ!t5*Pz z)sW*}&^5*jHsswlw~q3%hwvx+oQ&V}4O-3{-*aTX-Y)w2<(euo%fmZsQl0<&*2O$& zqZQ2R$Juo7)JU6W7*|Qf6{90MslYiFNh8UhvL1wM>t(AB0B&46jmlmwFhBq}_FF3( zwdgB!D})Abs|!iAkgX1Us!sdoee_H0A0v}Q5-x-AtaMTC0V1V-<3Z5*?;mW{U{lO* z9NmILX>iLhW1#ELOWI-XcxMn|gPPtg-8Z5tCe+~#L$YD}hQy(MniWcqs$-L+qF-7s zJ6SmWrF>IGo`PmQ5Cg(wDBVXA_k;OL8$6F=7=;=wroUXL3!9a#1xgEj-*T<+z^%^M z1(S}}>+ceYA!x5o+nu+ASOONeWS|_TVYSR1mrjvl1A-l9Wy0Cyw*YhOsNMV$7`7K$!L z{JRPAiuU_RS8s(~{_5xgf8e{qD8iyWX^VCtS4gXEU1>BFwHyId8`N9Ix!!jHhl%^y*Q{`=~>D8>404&!zP_U?^oT(^rQN0tkg!gzD~j_FtI7;${tB z)LxjnYX z0nP`;+rSwep{2vJY>nO^np^dA{+y=OBPZT_$C>(il}BPyN)ZoFJsgTd=t?Gti$U3z zD1(xI3s$G0s3&Przz8hENKH@K`DSj(lsurw@Koi2*z<|N zul%u+DdgbLN!e+@*|$mm;G;>vR4d;EObUENP&*&Xtz|as@USF;m<#NvJ8&Q$%J8lC zS)%bGegcDXVB-rZZ-x5w8^J$@8S-&&L_1@568TCbcb%)De{`!+f7ILK+{!gVp*MdV zzG_f)sxE|$?6q$(!p2C9^fhwG^iGER-;B~60S#T3gy1G$4QT>E4AbGp$WMM{hD{Qf zdjlcQ#d3HtCo~M$7nqcDl-YxFI5(IbGa(|U$)nmuAgfQlP# zSZ5=#*(ODm={Tva8n{39-8KOjoBnP)J(2TL_8i;|DhzZ3UiWs<$eb$f`Mia(uqC^= z@Tc=e@szA|^YX`F1D(p)z&X;KI&;9Z_CNVfVgpw)gu|>6 zORX`>@^##P*BC#cj2-qwmTT3usRR&=^@%Kb(-^_divE+*Mw=Ol-1Nsca&u| zC_1{|m64l@hSF7$bG`knDK}H&kQTj@1E>~4<;i_s@`fufxMS?-K$Zo-O~-%u&_? zY@sgV8 zF|6K;z5~UHvq+FFLgdigK7>b9{=n#N9%CXkh5VkW&YDy6r(98I^~@99mSwM{kOV(k zv=Sr3r6w`xTX;%T_y3+uD|$;!enPZgSYfMIzEhim<6D$Doq`>Zaqo0Yl3It)!IQ~^``pLrxD$aBj?wNU5KMkK`t*?BV%IO0Gn9>$Bmhq;IwuQ^X_ob1!fRFXJozu6UHiN^%*?#}K$JJ)Xxx6}hPyHRG%3*m&ysqdpEHlhgtj#Ne{c|Y-46Sl(b<0V z%^AZ`uqU}Z1uTW1H6p5|mT=!{){(81mQGtgaQ#xMehS-Y8u$^r1!;r;qj#D+>596b z;;WT4$G#?A#q1faUCatlAw_Qr>|z3?B{uD(H8NdD(|k4abH74*54Y1STw^=q&*))T z-rV5lp68Jr0JNzOI{hRfeWFfbJr+OjB?Ob7_H6d zFmF56+KWjQi&HLbJi){3{|T#dh!C0uIUv|n`4VWk@0j)6|Da2uu+*ak3NS%m9lLu- zjU3+Q8BM*)PQ>lHPrqdKwnV!>ut_KS)uH^Qk2c%M`P-8!%TI=>Mm<~LS(DPOOnzC_ z1OTHgJp{MZRo8H%E2&JRzIuQM2zJ`a=pcDlfE6a&f`d-L#zFKSqb`H-f5M#!PAdig zpz-wc$!~aTm7fB?Kdz!n9BW;;$42V|!#{@0WxT+Tx$$~!{KQLw{=j8Hl@g0||fK@ry zg#m95rs_QkFe<_Ca+%h10kJj9k@TN8!+3L1NY9bmIOfvYX^L0I-ecBKHj0atW<2UU zVLg77b}Ap{Fe@i24mcHwL8?PU? zdz3iXqmjObNZlid?K;!BDpl_QS}VwAmjLpP7IwT<2h&VvRlmF~t_e&z;M1d0yEt(KM%{tg{6p#XB@!501pR0&BFH<` z?*qXl9WY4A5s8C3kf_ao8S0m0xP8eYwO;4obDk&+V*Yv*+h)oZj+`Q3pz-umyrz;T z0Vx#ou*KQo4V}ZT{`JVurIWKAHZE;2Aw7;20L^av+zkR-EL({Oiu*m`<;m16CWZPE z`WP~Y4VRwd3p1>N_LoLu;xZJlSMlGsLjtfOKvtTxt!jV$ z>J^^+9o=k9&O`s8xsEe^=?BbEY{CItI9L}s-LR|Fb~zgX96Tr&B*Ho}l5exDPf*iR z`LU6?g z)D=Xl+gO`^jV*?r+iqM&7Qag_3Rb9ZJ7A{gI;jHvRM`7j$zDAQ$N5|{6qL}sOt5r5 zi7u&e?wGFm^^vyT{;;ewXH;01^#hAHdL(r@X9b7%#&lQM&p4kH4YefIC<(iI)(rYwI040VZbNvM3N- zOT&G9(C+G3^JMHERMy1>PTl+JtyCy9u34x&@VJtk6!p1k+N~~wjyJI0NmODUz!D8j z;mTF3xd8_i(D$VuYPwTkBv<^_+R~Fn!C&2_hYe0Cb-}{90|(^4)&Q++e(o7ZX)b_f z`R9c^_dPYJ)HN@DF=gA;7tR-dIB&&52mX|!`YxR{Ct}@dN}5h#H`#rq81Q6Tc82@C zQy8+c3-`zN06~RMfOab9dk#Wvg7hrvIMqJfCnQ*8vTAHt4CpiquQFM)?=*(To;MB& zj>kRow|)6aX?BpG;`ON~mc5`kqi*PK`z~=7p}%mh>R=n6L!|r~B=-#x-y> znwO}GW=86O-MjtlMLyf?sRU##L%xm^;Bp)y==+V<7LO>9w%xZm+j-xvRqwYO1semQwX7pfdThWuPFz5qUu?ew*JbX92UrvK-g>$` z^hCU?%pSE$KQgCNEOo1Ak4hqRTq8jc@GLP-{HA=|X;1Bj^XH`ZbEZWw^R_`t5;ir_?hy)79aV8MLUpoo= z8iPRk-%{~xeZ_1Flldy{Ck{pUO0+Oou>`d7X0ddW%@uw5N#G-D6ccz0*=TVyG3^3B z2Kx^1Ix3P^zjKb2L%}g7Lw{8tHLnnvbXUu6ZwT0|kr*?_4r9j1ZSi{cxlwdv%S+@< z)(+R&)$x{rh9x~HlH^$i?7U8q(%{k-dDXII6BEuY!ANM~;q!uRG%Al={-6g36#>V( zNSfT=A_>5S@(<=tJn(Efo3=)5-F1xj*;-kQHpo47jFQG--imt0XBgU2M1V{yc2#x& z{!zA-ido}_ybv+CjvA!#vF>2eZ@;yuzHlHFyFUd8i8##?>p}S*2t-NYd*HhV zwM;C`y2WC93$Qs?qcoW6?ZE+z;}~ULxit>#XZzm|^slKv*b)+{FsZEn5l!a^!d08t z_izQr`#~}fc|ArQ1;X>Z*;5qY|0i(H;s%fs#xxf8S1y7K1;ff%cj?olP2Nr7`~zMO z6)^(fZF}wRHqY_4*C-yh3+7`|9|astb|8x3{Y2>(U}Q)>=Ity-6a*S_SAc29;#jrm z33UzG+r1b|wd<>=Nm&PC`VbK}5Sk7>a~0MODi}J^X_lf?xiQ`bXgy@hSM(+>s-^2$ zU50^^vI+dCoPC^qyiTD z{X25~UsJBBDRU+w89?Oeh|N<{BVCD^!-5gwb?6&Pnq`whva!P20_af-N$c%mW=-EJ z{bskboGS@Oko>qwo(vkV^$%qMz&0)l2+v+r-rLHEzRUqs+6tyYuHYyd zb?Wt!2tY8Cv1KmPaI(Mx)Y3Mbwp0d9#6BizKvjH(W1w90 zyZtbaaLUE^g+l5hraHJk4ln1tBY%={e0b~)FjRtk<3*rh935e->owjeb9E>GqLhiS zz0!L6Mnh_H3Bhun`B#sEIWMtUCCP;>jXK*GJNhu6n98pyteqa$&#$U4ue#Db;t@#@sHfuJBQ zMW{YT%^92L-DPDKDp$wC_%we&<50&LUclN@eul3QOTDAzI{WqM+dW|;0lMG6-BD0i z@b3&>lZ3^Kn^5<*pArU0I$fH$DWwNRu-Ujh%wVXj$mPJjHXJsE#? zaoK>o?XprGYtVE6K0@@hD}y$n^Iu}IcyO3TJi5Y^3zV6;$RH!!-dgMzlo9If0EMfv zk3S_PY|nCV$H!nH_t3{p;M;$;EytE>2DVc_ggx*t`M&6sXH;(*XYZf0@LDqJ7A^H8 zDsxNkgLK3wYjM8Sa@gk~#8gqU;MLeiuTb=;3`0+XHRF_LcfbB~)UE@Fnla`&U2}Wz zmUUR{X@2|`(sL$^6HyZqQPX#I(PdYmFN&ZkFz90rhF{TLvbI z12kA_;2s+lh0nFO=PPcA`YWby04}a~f`k#=O zx>UC(>oWb*&e|Vv&Zm*GTp5*%r~X6V_rF!DdNjM!&*r8_1xC<~spzBhLx%_sozCBk zN1eLHl#Zzy+-%yXISDW6)?W$DPWwVByu$Q4pqjdffgI4%&!1LW|+h60E0|qJ@(>^3V>!pQ_<7ABt zspBl@Vn@PORGa7FO&DsadY8?_B8B@6*+wD(3ZMD2=qbDuUl>q z7x0f49J0*eQgdc^BO#_WW$oePHo5#naK*~7+#NV4Vv4uk>k%_ap_sZvx~AXl4VOSv z2zQ_vqrfnYEo;BC!pU(3*DtsDOrN738Z?%gmpr$JKEZuO)%0vZ2W7bRXy7}mzcsd{ zGz-czO+AT;cUc9$u6%W3L~#Vo1@`sl6|o4@)z7>d7(0Y*DO*d~-rs6O_t_l;&2L($nPdWa`h!S57r{uTB z;Dj4&Qj#*>CXG{=9Z}1n-&MzY&=V}?@DpA!I}4_^wK2KHn06(Adn60F#W#|4?-6p9 zEmVCQSFd8@=A&j~zuY%+g1hl!S!VZwo}u?8LMHQQ8N5B&(S$;$6NUQ!@fL3ECW5bk zD{!y|Z^1_nsvtijGoc3Uul^deeOk(6T9;;>C_f4(8=Vw1LHl`gwD;e?@+@vk49Q?) z)b!8&keHX*2@3A>D*`Lc0SWL2%E$fpUN8YKUTTrATH0^9 zNteSpwT(FRnZtVTrm^yg$I13z%$l4q`2r6k+f()_wFHz~>(&2!HLnQao9MlKzEhzt z(tHf<>02__6^4>83&hl09;XpDkD#c!gyaKL4G=HAaST5xx;xMqut6b-%H`T`4vqX@naJ+LOY_vRU z$@NQUT&IRqqjC4ufib#RIIo7MQt|My$kOs0s3<7X($k13dK)e|dd}2vxu*q+O|y;M zwnfUOW~RmFUoRAx14{?3kg_Qfp8udI~rM-J}m(IB$b8Sw-XYPluM+TL`B zo5vuQpJ8M;4B`y08C6DI{eLgOy;%ub@efM`!OKU>>GGPggcdz_brWViIb2n7D7oL> zwAKzP72u_^eW7%`iRnzoH>X(Fq#`)8Q%?Ooex&7&;M%z-?0#8>kXjsgGDB zYYRS{-himEsoC;hQvF98b=ze+ZhBkX%`~?(2QJm>0ol(3uRe*@P_5de;P>NX`W^0fR_1EHnfUKuX$ili6HU!UM^%oP4F`i=jBTJ3iNX>dst zD}Ea-nwfG~L{v%R9P7Ch-V#!{B>hU}#HKv|+otn2=~ouxagF+Cjo0v!^l}=sbLq#} zyJ?zS+1u;HY?AiusJoo7$9Nc|lq2ByNvK!oms(VF(fXaga&Fe*ml^g+sUGb}n1wiA z7rUPxzd(9(p=92=L?UdrLiQ!e1itW%=XrVV8}}BCy|Rcu%1p{wEWtrR`RcY=aRcmh z(T0)*c*LtA$^bW_Zvo?zI;ZVkLCE~guI@~MMTvicUJf+n{w%`!;FXc{ zyGB;_@4$lA7#P~g^|pP%+y5)UQ1j{me0a$ZVAs?Xwtt zl4zlyAL157-LU0eY#$`Qc%sJ5j>=rIW>8=VwW3_PXA1%)*7OtcBhZ>8P@v8N0m2ff`fp}z8$*$3(;nxGu_k!)Oj{_2(WzenpmiHL!QOpm6GLX&V) z7{p~mvfhtTjh(AE%7cCLzRJoa#!{?Dq|Tm?RxFb3lV#0f5dC@$bFx$dgu@R*BwlfoGF5?|LC0OhCz&GV zij}G=Awn#@<2Xvw!zh4#m%s=rpK@Z-Pf));bF!-v_fr)=O6P03$) zqw#wd|44ifmi)V?yXkR(rAzORCyAry&*Pos?k_dl9(ZKuKd3=qXf~L91Ch z${gdzvBpVa!opiB(aBH7J7#I_!Xb`{6X5(ZwQq3*EwMg$%Zt@Tiim+DT$47WkSO7i zC;{oC5Dv!BNbvZzpTD6xN;YZj)hhO0EH=VjQXpSuA9>R4%&S0JOt=}O`EXCr5u1&K zxlPRiXB~~)^zTRo5Sx1cjagqYdAvH1yE6?@CNpH4z^cUY2ouZ8cgu0vT3A-Pw@MqI zNz>`Op@sJvq6)d(=1cmJbZE6PiIS~Ti}-Dq;jVL&XbOUp1*BhZvix2Q_oIjAZY{(F zR^kVz9Nv4aUUIiAQ^t9I@BAlJW9&!wErs4s5$#@jRbH#iCzKazjG#J=orA#-t%e|by8zceh*P2N>EB(61;*!1bF&vD_D@4Gq2z0UQUZ2R1A zA09tTYvVjsD<}pE6-Z z&+~lte&3Pd_-r_6p)7~cStlrwvCtWoXfQDlB>9Gg1>R)p7?6GfH)~?sq&0HhoZK)w z$Be-M6la&lC##zEesHa#ONnCMGnZ#8C|IJmCe+=G$n{rz`O@O?&m8fKaosD9_K7qE z2&yEVYGyJCl(fGQB_#5t0_%y%RmzW@z`F?U_?BT!FrrDEkTnvkqF=@&Hzo&<$geaE zYj)P=;EM8A7_)N2aK&F`dcmJ7i~JQAiMk!QIg^Iz#g|6g(RQm(-U1HwJ12<`ev@6c zI(QLZ`w=e5lLZc$8uY}4W`g@G$~*a$oKHk4xqQ-i+y~3ni_9Xjsl8?Xwk_;T;giDf z7rD`kN?MvD2`m#H8WO*xuIzH57nF?Ax@OP_z zqoH0g242N{@H&wuJm~2$k;fXTi6u*lG>R0v1m#LjZ_)4*s0ZmcA z2rXJW6YCZJK1+LEZMl9s+nt*vVB3FrcJd@qcu+%%o@Al|5~idfwE*dmMvEt3OBLtU zWTD0-Far4^t-Rd8eCN3)q4HR_;Tpa^pd5t3v$*xy*(@OMB>2=WH%W;G=B|+?q9#MB zD|5A>ed;$J_T~6{dR$fxrt+j$shE))!V~KYy#~rsszG#(wW=Xkg>YB^S@3Y9%M|i) zT)hIqdlo!y5_4YrI7&wGC27~{nj}*xKX$h%*Q4;Z4^N7tedqczb|Y2h>svhz*k#jmX@-I*YJx~}gwA)Wrh*QHydFL|#| z5O^W%#BqC^={0|&#Pq9-59eu1)3yD18w|DHBT+2TtE|?fWb;-?MCgJ=bJv-9WJJ>Y z;{6Cy|HaU|sdvT+0nM!!M^aawBks8&5fN|8puuR;{nDHPSa4liRkk~TSh~$DNcGJi zw=5`kMwt<|uFLS0C$#^g^7V_wMu@&XV;>fypS>>^0cjAvd2RbT5NwlScpi3*ok;et^U5_LP_yx z1eVay_w_ zXcNv*=_$-g{s+6Zo}@?i+wxrWm7P_@^z#J%iCqfMvS!!uFv-SM{PV4>``vX7SI81m z;_945_B$0O?ek81NoSiAmDk>mhi&@U4eEu>WHa^PZphyIeq7l+1 zDzSDJU=c3Mr(cNKXg+N0G1+FBN*%`$4n8ti>l|AA>_F2r4w2=IFz^G%S9mYcr4NABR;Odtylu2uC zuVPxvNkzOG=9CRCHhN|*qnMc@W|#UtB3Upp_HXZ;N^sx#7BwlYAs*AJti)4Ok1Y2h z{8n0mSw!>gx7g#1(_nK6#vQ7!VLfjZu2Z)>zu*I3s-(>IW!w z5Z;TD{JadMz_M`$13UZC_0~d?$FCK3k`nT0sVJE2<-6}Fw%V;IGyTs$Q*!@_%1Xvm zhAR-q6{96Oya^*I>{u4N$vlrLy=2#ACOpwk zqQzSN>!x{HE8%$#@}qu#Q5MCd4{uvkpWmTqg6E~wkAFLiBa>g`Hlr_R-ZODGEpFrl z+uB%{9@-g?2FW0sUKM8Z{|I`!iR6P#iMSdNN~gRLsD%}vTN6zr0%3vTh+CBXw(iD@ zOmG0{VA$YGuvD~pJrB<(sbtExT{&F*4Fs;%! z$G8r78*VAbVL~49JR6Ipjy7M_?LVS-kuNIWF7Jgj#YGVd^S;~mmSq?gS5y#PimN4o z7am0GaZDZ$B7QyPh@>erdY61H%tL#o_7b-tEae9S_07nz*tP8XjNts}*`g)M6bBv^ z!=cl+@zjs`fvIm=Zs#c?+D{tns)puq`yQEW-d!8=pPj5OWHF#FoiG&U%?QrqzYC;E zXLo|CKK}aX*(_LWVHGu&R?uGDPY87HnPz0y&a!1;Oh5?;jbu^vfG*N>FQ>3d|9$pV z(qJLSCG~l=Y>CDqak~{3MFLyJMIX6Iduh)qd(`!;n%Eg&9zDT$pG&{E zq_T~pMJhzn1104lJ#A$d?^Phw1*H2KQiMl88N(ba0G_b5qjmWK?H%WodX&FlI zv$!OE@SY~RZpY9IMi;C$3|rKCp@qUyI!gQKGKlinYJ(P^i-aIANOLdLrmCCj6?h01 zPk^%R;L9C{(XSIytB|7BrMd9n_ z(htIXr@6`dj*W!qj|Rf~-ZbBBZzPXn${%=4`&a~`ps_#eFQ{WQ5l>AjJOyaLdiG8cs0%vk1+M7yxOe`}$eR3Cab(4`mljm0XS8jhk^ zFEfCNhB(G%>V|u$zNiVnC`osgU&d#aKG7-_6JwVUseL+c6s6A~82v+a#5wy&3I$Kn zNz^%8Kt^sB(ZbTCF^M-p)u-HAFlu7LEqbkaD=vWQILEaN93j=SE#o0`2pxj)^_2;X zlL6WWDLqtE^bNw2c@e?lyPV3NTARkFMiF8i;4h7lT2^?3d22LW2=!rIZzTZWUR09{2x(lXi>T*K?FO#qP#qU^B^rqB?kg%RUMP;hl zyDbf=#d>zjY!1F4LstjN{XWVXqy8ZH42?>f!fFra`>0VyD00z_sHp#|XT18B=O2oY z2|o3e>+mKfNsH{~<20x0>bDtZ#FcWX5+f&sa0X0R>d5=iaj48 zNJpYw_mtyJZd=Q;c-}ZYO+z>1qygjt%pKV&jm05`f(49k+WvX~--%IJP}Tx-aUx?j zEZIP#(GHGvTVHLOV3i&3;A+1gr?Oz08Uek-{fHS^oJ};PD})%Gmr*8_<$3*umd4Ku zpf`|(;vmE!9Onn4Q)-ThCUrx;q+&|y=#&Cbm$#REH+-p#u?K0Wf z^pYpHEA}OL{>L&Q)#oV34nBGj--<*ijD;j=@WV0*%J*aJw3SVQNQywbAKu!FuXFyO z3ilbtWT^nd#0NAbcrntBwT|Mp*%%UVxhd6GFLS`~&23oDwqT&PPmcL>*@oy&oyhrO zW7pDs;wK4JHKxUOT**znCb;vhk_<{SzO%NrQqrO!`P*gY%fQ;j+3)EkD~Pjj^e4&3 zG@sm6jb=Owo)Mxk6Cjqn(she8koMrYNPVs+S?4oR zpm6RKp=t9L+4aWo(59%c`sm*9PO&U&LKxfS?v^32?5D|g!VE{;$e1I?oL6kfB`)OA zJQ+WOaS*(NB-xC^fjZ?hEJTZ(_GXiw*HSzuZNw z7j^Fm$bb$1Sg&Kh(*1b>zmfKhHn5z~Y0VoZQAXYfL8nX(3^@SMB*}a3K_VaE_}Hsg zgY$=YNo7&?GzIIOa^o0hU~6@7M6tt))~tkPKZi2iBgCa28Yt>Zo&5YN6=Q8x=(x<` zk7Tl;Hs`wV)CB=DEFZ4M!FOpnpNbebKT$J_1;X20IS84;CgxFTy=+)hr0esJv2|_X zx6g;&n38sLRQbP3S|a995om3YgXAdKjC;UdRl>NTgEm#UnBgt&)S;@o8C!}pp>klc zRK9u-%<(SIIGi`0ZHGBX+yy<~lm&v~?d~2!x9q?|OKI{(F_0I>7%^?4TF;5{RB!!p zfs|QIv{v5j4JD(r#1)D})513*|A|0iTyaB8pbi4&VabXlvtByI~ zf$62Jn{hnd`iLrf>!h;1X_raE$RX&_JeqwVG1e6M5XZ-mcY@6w@+5Ub97x#6?E!fd zh@Y9c6ubT0r{oJB3s{fTMA2|_#lHxWU4wfh2y2^>@NlF_=P%NTdcOXa+fik^ZsC8b zW~7JiuYJ@RPf?ff;nk$+{cKB?S))OM4#Eb7u?!rfcYJ^_09tsu~6G383L?3wI zE|67dQ@_`k_ah+-he&R+$oP(YkTTNY>0P5LakH`HoYKf};4bzEjrh_^wIGyD-f1It zwz{t5N5Hs=Tb$)lh+Y*S7b^>mQwPI76I1|Q!|rfP<7PR6yBTjD8kc4DM*a=wwnRif z;mtWEydBI}tPBqB5X^J~3gFr+nY67(pWIl$UT*JLh=IxSpg-7Lj_%NyoRbc8KOrE! zwW0uWf~|lurAglAv`C0%b7>}R&1gaLh7A{nJfr~P>Ye2l(2F5zK#DdF^&`hsl942MJPyF8$M^&aItmr;EB zzCN2L;7L5+63)2ahU$^tY{nP#z*R4X-+x+#DX-)1ST2(!RlwE}N+>`YT&5Ydn>4-c zZ*2ZR_krvF2={zx)o3NXQ#;JUMChRjA zAl&zHx=qQa-WdY3#v{80&Pwc|OlCtADK3+%<4<-gk9R2K+rufl{+QAvr5{=T9xN4L zqo=)j<_-mJlIDwEih{P+sacw@mCY2>NvX|{)kVEG&U;NYH-D3nZ;*>qF9u}0BO{9k z=8V}@bVa=U1p81=OTHUDHC#C9 zJo>VSZ_rI78{`bq!x-&^=(=BwoezzEL4H2<;Z%Zl!g}9-M9-1sW=d@G7~>3JVVP-8 z#!f&OTzyXSNsG}Yki7*rk#8@kjOeTGzABThr)u4^G#=@+Qr`OP=u~M8M{Q1;B-3Mw ztf>E#i44>9uJ>D@jpL7kDh>;+S9B+0d!0bz8)wp8QKk5rd1fyk5JciLww>s9E%RHL+IXyZp zd&jF80!WE6Nv_eeoQFaR)L@_;-K0AO54tNv32gTrAss(Imh;7pIB6Wc#unK*6m8nc zjZZQ|t!4Csz$hR{nkMvEx=h*L>MaOK_7l$M@krRn4M2{G3Q8!D=nYrWTfcO zmf(0895(5yv7j*tyXxq+vZ&1}&ZSOc=`&UJDj5hDr!+a}e@lPuiV`17p@(0^O&ZZw zuCkdH9f|eJJZA+T_}cs|luSYd*q>4vz%!7xWL;0S`$IO;I&*sBbbmFa=)g&nzvO$; z;vL#|i3R`l)(zn$?@JF}3LvqQ{(VU0sGDB}RMRZCenYiF#fmXyBVJ3l&_J~2HM#v> zZA=7i`Lvu(T1pZA?9n!V(WWdX+D{(L`Tp%IArnkbBvNV-^?d+01oWUwL_s~7K{3PIe{!bdsq_2xCQ!l8WNhiO3 zPs@?y&bWn~>OM1fV?Yvv_V~w(fwYXI1c&dF>LOCl>EaZUoEi7_gRPGhp?anZ z=-iVViF-`pSNtPCUZRmAipaL2(GgADX#V$F09izVz}~ou(&A8Q94I$<3yq=SWq9)D z3vC<{BpSSxqYuYIANcqhZS@ht!`q)|bh7Q=3LhhiNP|Pk%JBbx?(6-w+V^QjHJ+V# zigmBvO9qWUfKgOALT6i}lZ$3LI#%8N%2uJ5JcAc?Yh*zYV z`SSL?=r&6&7Rh)~Mmm~u>|@|6~*`1Vok*YC6a5_cDW7<){I&n(Ov_1pue?P?dA z#$ss0k#NPiw<)84e4o`shjo5OqL}qmG>rT__M=*XH@TXgAspUsoSJ*#!DRgUHWm)S zi?U^OuVzen(bR#K>n_6KY z@A+CY`C>mi2nW8<=vGUl7U-`wx}r9!uw5C`qL85AGpi*4oA*8$TAZ`quiyBK+Gy%? zmfU!~-?%{GJowwbaZhln+_a_e1GVe4`FyZJ%!b%tNM=C$Es-aqubh_bJeVyuHzheD0fB z5=pb@u|Zk8{_#!2-R-rQD@xUfWTWEBmy$Ag7zI3>T-4>W8*@R^VLPV%pBN$6AQWsk ziLp!k&g9p0aD4~!>SBAV`z`mrVW{Y082uB)+6%9Nb!?SpNi5`h<1V!1eR8>!<B=2QDmbY2k-r!{Y;;IKN_Nb1>@ylEjQ@*;XqmANUZ+zJt*zM@vB78QZqZx6;X_wEZF z+VJBB*S&2j-;3XZUf2QBq`xEel66fyEK!SDHm%-E{5@P}eM;jKTR9?mU6*d((6<0i zyZD^wLoW7o?pf^+%nEmc2psNRNF%MJE)UH6sEb5$4D2|1vz(-@eq@ai_hno4Z! zqPfHx2zt$jz@M#aPF;rUW_1|>&HcIy12(TA^DKCU;=f=jZe<8 zLfT(z7d;iARxe+NM`(8{kirNxwuuNj8xMZ$;1(GC_Ph8UW}g#63~#yU;+nrcXgSck zgLVl_8U69=F+jG)ShcGMgJ+oC@F!O6in5LVz4*%2-@Tm?0m-|ISLZh;Bem{-n@)zE zUv)B4)cyauVCmN);M{eiPVutgUrd@{(lu%7N<4>1=D z_Z-H(*7f(tlRFBP?SizGnHMDM!kvc%QoL3om~RZ^^uz7Un2%NyHLk2b7{Qe^@ORn9 zLNZ$UM#TS^_?+qZ9S*j>5(qNJ?h3tlidq?K*Z=`>m{45Ha% z^;{Jyb#oYWeL3Q{Z>${=@|2`YeBN{Ct9||22WJX7f<}LpHw|XKD?V|E@>CiWzF|&; zH+J{8=WastjzNv*i(cu&!lys}Gsv+gt&%zjAYiaPVzqt`j(nQ_NJ#wsG-G~VI+?hf zzH_X!OHGpR?DbQTH69Xk!Q9@VWTdU%9brN+tcVIsTFI3*RO+{tjV!bN954Kw1*dqI zD9QcONX&mxevYK!rZrclv#|rqRLu#!b{-xz_olpgzG0_q&gC9)|0~vK4xm33tz|FI zM$WN`LB}Mj2C|oFyGBk%q*~r*Z2l@qxtC~j52N<2YjFth+|v3t&vhj}ew7KMGy796 z``fNJMNb}j`p8mk-(ye>Qt9L#Ll)6twL?lDVPt% z$TH$x>vhDrdMbCDlP2bt=+icHhPr8U^Zq z%n}0q_NoHai`;}>%?bGN!{G%tp7S8N{EuYu}ARk zv7sd8&jwdKIYs__iGwHq{x-+QRI1)X3$Fc7h24Y@`9pM2t{z~r2@Ou}D4e|*$ayxm znSdu3YGF^nFWcU4u5EX-_Uy9)^b+rj+UQL$ZtD)^EI;2UhlyM+!?%?oUfaOu zT$FHJmUaW-dc%Uv&08p%MwIH0!nKS!I^s*=vkC1yv|RcnO>9`w8$|)-ngq9Md1#Gi z4>E}nR35rEYYxFH@{OihIUIPoXM`uWs23~<`%{?u+xnu5_F2>Hzb3QR37eDohMH0! zc9qzHaFv!G7)9{mzkfuBpfla!$CkR}rN#N_xW)rSj&J~KXg`__v(NJR>jb!?7bb+O zt>mrqMHwf_O^wC zxMI89Ze2ur7aND%EA>+*UPCdYJnfXugFHirfpUklZS>YL0+WsoEw|sjZjO2ujt967 zB-A_s)*>$b2iqqJ`v0f1F5Taq+ply+?6+fbxq$I9(e^_ZU2$XaNs>Z#)9eji=#nQf zUTt`{vkvH}SS=XydO*9D7JRSwd=+5oFdL9oJ+&D_mZI3f%k~mM>^8AIQ)HtS_+!uN9=29P^;gy{(E7 zlG6OU;AUFBOPd7#vtjFKBhzabn@W7zuI87n$^VA>9z=RB`JC5t8aMD?+y6v)`}4|h z2i+2k_UntT-zivUmR>DmQ}-=7CVxhHwO%XhvK#dVc@pTw#?|8B~7gV^vb&-vv>RwGD08WE6C>cDdQ zfy{}a-;N~!8eShGINRG|eZ1PYNJ#X7KwY>k!+BU_QI+UpjeDUD(s!HNuV=x$H~*sp zT?vA5vbS7DG9?yjrc8Fg3=w(XCU(&DXN0iVt7As4VYlv2tgqr>Fa7(vA3oO&fF_Uo zfLU?ZDrP(^b|5ZfHAw15g-|(-(>_cyEA~^ht%jt2>kO+!_~x5_;{qgyNGelJ&%~qP z`mh6c!N59W?Sb{418#S*fFzZooK6$yzFXOI6L32FrhIS5QBpIOW?1}0wH8bRa@aKO zyT*+));d>NYX}~yvDKT}beeW50^EQEW}HA{gbgAU&iZ`jh&N^Rg~-CYkW7ztvh(ed z@~a?gCeAZ%o_Bk*H8Us7neMq_*Sl4>Ub@Ebbm-CO!(BB5!OMR?rk*O)q3I~}5BK8& zuJehCsX6<`uU;TWXkKCd5D;YZlEl$gjbu)>4!XT#?QGTq3W4qkHj0>gtit7<@fBRF+CHW_bcV-B1pgEKX;mnt$X+&JJrwDW_ z33;7Q9u6X$>!M76f!k7-x^=l{Df?RY^;n!rW0#l3)cYvpK8+OfC9~(*_L`r@$Jh>B zsreWRk+CV2l>fz2W@kbZRrIHj^WO^R3-ee{>uEmjXJ4%D90B=M$+@x?tn$x7_0@LC zwZ9Nf0S`ORsJiG@zLmREw_`7D*o8i7Q&#UKzj-^PcK6%B)dl9Dt^$-;iIT5RwXG}L z+C~Av%A20HptYbpF2)!2jzb z|7&3TuYUReMZb(r*GS!-YP(GtyIm@jfhb@Ft3$Zi81wV!sDT3XWWzR$4TZ30DYp^L$pd77>J@@F05~9`g?}Gps=LE5sk#Tza0ZnoOcqyS;&$Jy#hGu2U%Q0b4+Ou3 z2gLYs``7S%s^#t%_GA9fOfdq1pV6bwJR-oAefrOp%}#-j%q?Vk?Qa3{(fExE2y8%$>mTBK3>jZ{GYE=zc~FR)=9hoMU!t0z6F`6GKRxf=fZFLj^cZYA z&&MKmCl6Z5EqD_dwFDyZE)XYC9a5HFMsdtXFlUmYDqz2+_PaUS2O87)dS1)zo`XGL zD{uZz0-3AbuI_gz&WUD=?=6K7i_Yd$^ZDY=gOWE4NW$al-5xzs*aYEltPg-oVQ=h~ zm6h7f+^8#}@BO<~Bm00Nzj2$;RO|}C*GxZ@xji#)MGzQsnP+rhrz ztWBPv-HlUka#{0ABzwbq$*bPI>T&h`&Aj)Vm(apOTG`Nx78o(;WY2MD=%Rz~3HiZg zH5i#jpt6;%5Ag?n7RjePmjV4g{n)pwtDFLchNr4gx(a&TVyf0*NjRIWwE35=;iYlg zM{tivS=~xxLQPry`eV0I80uxqLk=+{b$_EavH&08um@5a{6T^S8og=Mf_%u3%^44U z_={})BDd7QD5Tj#c1~YAJh|{eF273^x7B#X20*1c5hfMvbZbQ(xhn1IZu=RsS&D&G+KZ+J+9l2E zyU7=5AOp!Y=*B%!^-`HCGj1jee^mW~gf0^#91e;M@9Nt{IHVUNxfKR@7BQkFx z(zuM3m#1uujtKYX`AUiy>Q5Ud0CALU-u_bZdU3ZX%XcjD>b*B;nD}Aa-&C}c%ovyj-pu%J(3L8PT75bS6u`WS9Q@p<0A>&ST zn9#&?i}4)H!UiA*4{n%Wb#eLrcI?5%G|||#nwGC77S}6Lm`tX5i>k?9Ipc+eAe+62 z=E&3*+02LOM4n>eSu9lWDpPsG<|D6VBz-Nx{SZ(#GcCenY#dg8G~h#8XUXK|55Wp7 zZ_-1O$$B?w@W({AbvD%W(`Z$s=^zchwIP$Z zxXn8$MyZ6hd#lHxuIkzH1b!xD^%{n9LwKX4-#{wC>}mkfr^z5QPhoo#xJJw1?lQ5g zxC3x`uF$l8Lx<)y-?I|aOTPpr3lO|nXIzFkO}zF5vKm>Vi)~7>6rgsr7JfnytbjrK zI3_flOi-z+5TKk%rk)eoqqMcP}Zmy(egzM$B!z}VUG?F*!~PDFsydG6L?|)@7k54 z{Y}k-Ux3l(I$`RumJIAOV?8IgXd1TAeky**!@TiDTON+IMFYiBGER~SoZ3a|XN@SC zT_q>^iR!P91|J-NNds$2#p9L?x5fG|V!+DUW_Gwv06j~JNJKBa&-|_bZk1W;2z6qY zPMK)G`p4O%;ceE_!=8Ze{ixL5%Z>qzUxlp%#51SmpT7WSmhaEx`*&t_v^ZrXXS`wo zpkI&*z3dGCX3AtsUEI=#q4Imw2jr;7ZpN>4>E5AQ_E5UH51Oa=Z8xpnHKsY-ImdxgYR% zkGWp$0DTp-dQYYmE!VihfDtTQZpiU_U^CoVzLoe-e;NausTxzT!~%RURQm40DQ$`V z8U`-d46Pay_``2_TcN#Dh-pmWr<7A}iylP}>d*(jVgua&gaah-C$z(#lvDX_ z0`Sir;guQ>M>B`^io*yMv?ewGoq0PNoH+ww!xDf!B$eL_4h14R&uAb>ShTfdkVEci<&59osVwn&vf< zXc}kz`;>co0J^hH{2LDF=r4;hT;agubeW;r`KU}E{s}iyx4|0n6aAY57c4INO@9)r zq}0tI--waUz)4*Y6c#so0YZ+KjyvI*IUYo;Y{oik;Q^+W2;w*atbCg@3&J)kH))>t zyT3M_gAuy4KAe4dP6f)NHbf7LJHv;Qa+~=#-d*jyT4q%>#_I%z(0=!O>VpU(tnrYI zi}yQE>i>=bnVpPoNc1(h5;(XLBj6%G$aFSNC~a~Zs(%3GI-SCW=Mkm^AMXBlFH0uy zd({d3qeswpN^-F0(;$ys09UtncW{3jw`o@lZ^T*R=SEr4<@f=A_Zakkn9wwh>^xgU2pdx#0CH=mBFWa=}iral{+ zA4P}ioc2A4Y>7x=2UAAQYU%IloOa@5ahy5_9G@x&h&#o1f0Fs_*$pDW+yc;R)Pnnb zTD*~7UJjVvjXkNobDgu>h#+H}2AoE4Zgd7WoW{}RpBLA1cgA%-DvK+SDAw}In*unW zIQZ%Woj`oq55=Y4C!w4-wyc}Kf-O-0JJzR(t+MEo+%x*X5C zn*ap_+MsZCE{*_A9mQ7s3AE6?idlgJ8(yQfTJ^I#Bcum-?XaP9}7EXFX`0iK0A(kBo+o( zTl?+RREz7fTOVV}#eJUe(Psq3)sAgaTwaXGXwjs5umj#vBL~KJ4^E5AH7>ujG}+@g zng_>lX{!1XZG=%gmCE}N78a;M0LgTWW6`f<$&s#W+Hvr^HXJ8P`-I0MDRNK;=)yd{ z%9Gz&J^;tWzo()NMHN?qr?kp3_bNg(`-)_Rrubnt-}p4s!r5LN@gj^vDkrp5>c#f! z@@9(aYcN9e--tOg-bQ(>gOGfL@dZB+>S}a2%qbJ%R{D@|0E&0qh|>EKXt-{&p;)$X z)DTBnon8t8bU_acWjH9)_`99}xUg6u`@0fy{LTaw&Mh^U)R1Y8&u<&H3h#Oh?d!WJ z0jnNDTNx5sI%T3GCN;w+{=`Bv@L=^D0~K#S5Zw3+!t$r3oV|(;oT1DR7x!8`xdpkU zGF&nc|Gw8L*YNV>B-#JCv~pM(-G^~>e2<=?SA)|2-ZW5KEyag0v|-fLeB1jz*T9_R zJ(ey5$X%?}`ZsY>3d}>^m>Bj zJqZ(|YPNYB1u_pgY(nX9?BRO zUQ82TE1(S&d=%R+gw&w329@kD&&n(PJ)A4Mh~L1VoV<{$dXstO7T)SGn54KODbQR@Aairm@&>U3CJ& z>322~oITCcRLL>+!oZ__@onT+vU<8_vIq701Z)tQ_J45%)ikwRZyxq zXj!&XY?*DSEOH?oBkXKK>US_flM>GSg;;Q83Kk+==$w~DDq z8k+|3xToITWe5ckFFW{;L8^C^1-fzHDgf@m!_#LR1{d4)HRlIm0Ki4Z^~nimudqr1A*=~x?Y^jy z1AKqNt4NZyAV>4gBOX&Wu2>TtKFL8|pB~XbTy?gD(Tt2~;ls={woPrqVQ7{qj1*B1 zS($pA3kQ1OdLn0l4h;-G-OGcUU8jGx?O##zoZLVns5Og<@7Wt1Pd(_oTkACy@Gvu{gR+t5dZT@knK(G9xrYZEW?9e4FLv{w5uepb zatm8-j#XM-(Ntz&GzyMIJL_X281O)jBLRB~Wn_0C7q>l>(rY_=2kaz!;+(Yh zks;1HA5X$8ob$_=p2nu41rSlX}5$e_nGPrn>X?&X1NL|N7cy3A;%--zm1*q4L zyNB8qLPk{#bo|qTyx_UHZiQ0CP#t@^)l6HA6m+K|*@C*gmis$Phsi(21-x5=bU2fR z)PT|2RQzl$kYIt2No6OcRGXtDe_r(`!YO1Yowy&7v|g8B6l@k7)j9qpItgIHNrJ`W(PtrGMb(tb0#Om@M8 z+CELPd0#o9OUog8KuciX;FvQ81hF~KklW@q&>=Q70Tsv08rTu55B!ecqo)2)ET!1@ z)n74N>xtB1Vj=a&98E?3-oj8+jQ5Wknur(T@z#~JWF(&wBieu6{6@2{K$DCTl0-Rg zC#~#cpY90w9^STIn_j(SZ|eiYw6IRaLbH$lSfu~W6#)M6=yC0?C^$*CVX4t2^$40cy)-5 zg;n>;{3o)q5l*M^;2K8%;kbsBU4#Ae5!M=Ek+QlI8jXAakvi;Xn1iVVXVtooU|t|8v&~rf);NIy9Fg<)jA-q^DB4@+6$9n zkI@poe9WC2t_X47QqxcRk^V_%wTw+~Ish6o+>C3k>8hvo(GgcBGqQp;IYT#v^+A%W zY-Q0C=IZDSCX4W*etJJdR30ag0yXGk0+SJ&L1sNk1FY{-G48bJf%Mui)&QvHKSdaO8 zO&Kg04Ic(NuBq-ORE(;wvV;O=cHfO-qV$^+X}>ho$YnG#Mz~y_gvaU5A5~l5CA4D3 zD*bXbG?~zq&Ztu^)X3E+RllyWLCfur@{gZrBcsf&xT%|CRQ7ae;-Bh}nvL29Fl8Q6 zm6jm-Cvm(c?~Ep&_jeTIaaRZ?DS+%UKmnyT(fqEhQ?6mZqQbKyG58HnJ@(hHfwulg z4n{@*1dIq;)_sekFEZcs)JzJF#1)|`_%F^x*z>IP?hc1&$9Ca-yKEVfeK124p z&X8xvLvlr+-!!IfoCL!}T3!EQrM6t55yTY-&Qtx49Fc*04i!!y}eo zKU(;*QqCzlQ4vBzrpdK>s-)WnCo@F0B@U<0kBM)td0>?U%LxTq$Rp&c?kq~f z>|>Ul;dpnW#Lnn=`yQ+fbB#%u<>EUpPP{w3m5c+omAj;E&IhJDv1gQB|HTUf^L{f# zCrk=4bS8=rG_xcV&oh+?eja>rR6K6YBkPS_1ihK2nf^I^B33~ftwDxVf%d?2{JWdo z;eOWh2c7;mQ#8RNu?m;p(VKuipQuAT#6EX7^?4x0|BV#fc=ER7>-XcI7db2UAlLq9 zM)#1El@jjxjyFP@j@^3@F`q1t2p?}sOik7e9xuhvJXZCb9>En^h5DKJrv)eBsXl3v z(ML`Ul(ht+rlbSTehNgy{EkKqu`KlV`kZTyPZd2sv-g!bDlA_ZL+$R|EZ75rOx?}B ztaH*$?%+Pc#44YO;7n*4p0k1=xZt9Fkd|0`3{=Fc3uquWDiFSZ+~0XoCnDkT?#mo7 zc{~B-a26sV%c}E!v=G&ga=XrVU9p(>=JB#L8Od(}ApP_|Ub%Wkn2>Omv-$Mnhrc*V z1Q4Y=ki0Egy%$D1n5%V2AF(__ND^aWaMeqVnAU++u(0BocLaHQOhF}7Ap#*!omG_x z6BxeDwaSKd`rJg1eX`E<_=cvIZfAvBzz`xnI2l(uTCl#{IKWh2D?o zRkT~h$xxzFnHr7rDVU+L!M4U}v5&-92^aE}62)O=-~Yr(QD&$&LHeLPtRY)MPqhPk zNFg!xI7N?KtthJTZEU)rEEphg$;VfpjsJsKHh^58@wvU`|NWLrV+PSAR5FzM58&bh mOl3o;>iPHE|LeYZcyHCe99ZpnPmXaDDqshhZTcrcDoQ%(F!VmP?}r<+@;8AE(yMMbO9?av+zpMaX7b50^O5Z#G?q3!!=JRId zUoQLjKncz&SB58kxcuK+!auA0gXUi@U$V=_!G%Pwa^L%JA^Cvc)Sdb-*?~QBkX;u; zt9qT5{x8wtU%D>V==?92#TwG_@UwJLT~q&dL;S3t7yddU!&eRIao1GpJv==m_EV02 zA=V1EhZqZ{{Ufg$nWVlqhpqWx-YrmTw^r`Fs*&2&Ns>p#Uwmnb`FDaPGU?@f3KIJX z{ex{b@)0)_Mr2{iQF@+KwW8JJ4~%~uNC9>)WjbB|{E^xs*=xZ>dg2+;%*3Q(J~2eR zgKU%cVRTKkb6A#|W`tb2J=z%6;c2AVx2ch7vVM@u;Y0L$SJR|m`$M>YDHJt9!f^Th zjFr*cp>jSkp1p;O=&+BXQBtaKd`p5?Pz|T@tOoeOs?@7GE~IPoBU9t`11tJ;s^6zk zg*}0@e+lgK_3y)U?&!J=2YH?)LS=U0Vx5;>WexpKGT)q5RY&zz^B%oED0yJ2g!(qg z9-J6L26u@Bbxs<>zAZ7AXm~78ACk#?bc5 zCEDeuvwBNP(uPwg7aB!+lINH3}kvn*_L;b#yr*A9>L>8FS`#_ zbr>0Ug_vvvP9)-1gt6SfTK{`raAtg;=`&uRn5f}-UoV3iPRqk~V%=eqBvoG)GG!F2 z^h^0(gJstItUe7)csOJO0uMR$j4=vHT`T%{k)-68t=dTg=vaPl*-rUqi41s~r?bkN zXc2<&+Vrl0$su^CROclFy2MAb2YsT=>HEDbZZvdD@PAsI>AMT!4%~qdLlqt>|2l^t zV4mp9qb)c8*bwS|!vxL%a?(50m)c(Gfh55Te>pdsyf`6m#r!zYPS{e^U`EEE23hKs zskODoZ#)uH!K#kUAJuvP!bd>3lzlVGO2A8bGj0cJUuw`b{#h@!8S{Bg>(Fu&M8dqQX$Rd;c#wM|c7S&7jK5tvBExkLkr7Jf8&=s6M!6lzB z`0tpQS~yJ~mHPCn3{yG44o#twdJ%$$bGclx^|iRj=-qlmW;sXS?9l3)k>c9P5{+56 zAH58OuD0RX2^Og%$VY$Q|3C5C5azr8qi1KHne4SHZZ;_kA+JJNTtQ+SHP6S4s?IDU zTOW)tyV%B4!c(xxaX}4jctNJpZG0TQx_;JU5iBCrNa06%ftqL$(WCs`1jfTgk!xB z!HN0!a#2Lp*_H^ESWEgh5no{D1PT<*YqVTF z7`x2g(DZ{EQ~8Z|=cDP%{620>0_DmHNX7dtQ^~VH1UbGZda68wchRd>Swy5J=kpT> z`9zDu@YG@j^y{FY9d{eod`D;3FHObJ;QXdiKCv>r>hjOV1F<_Er}p+3%%`8`47z_) zlBrfQ;2scMYY|lK5fwYE?b$7(rVwcJ8LfC$>?G+Vn4ssbu=+F7u4!*7fYN zt|>ee`(I3H>&jfUO+@bQ0!2wH#d+0i9QC?bPd5=pL}V*jV+alcC7y0CoxN%n(7Eci z>;5KwC$B9NwXEhn@0d|u50|Q#GtvMWRr$!^D(SD?>|@>eA#E|<$!@F(`YpZkM53=3 zWy@ypOi$BB_pT|Bomb3Gtj4T|Q;mk;4D{ZrHlBl@Tjx>FyTsP~QgLuiMGMj#st8>R z(&zPjYWE#Kn_9Io7umDxFv@w0^p^+!FAgv@j<@?QHGS4}Mb5+Rjn+(djV0I!(xWv~ z*VPTxgQG6BDQRA8SMw>pi};_~&l#C-EeATjHci%U3J?F>vfVMoK$5CRGz+iRimn_; zmAL)dfHc?+KSWyacsDq{B!umvg?dd^T99aMoaRT%EO}dgt-X4`9)YmnTdA;KovTQk z)34M1w3Mf_)ArqDNkP1_Kli+=$*8@So#89}=B{RV`4%-(N6uienbrD%+5?1&$p3|EEo|piU^^q&gsYFMBV5eU!NmL|72oWTVGHXO@}$27=~!#iC8(X!(I< zU;^BI9v*J~+cU`k&lE64Nq&qa-+6s)Q!lppY?LtYbB|liham171J|?TSpKb*(EeMf z{|n63FY7SbQ!v+n3CGoo+ux_QRz1g7wC#UNu&lrpQ~ds!?yOQUHVcd02vgs@0>HdW zJ1YQd`ct(4%WIrhwD^Cc0`Rnqc>LNgvk9vQTf>DH&IJw?Y24Bp+Yl#YHRxF%9{ikY zKZ~qr$54R>MjPHa`}=G9Si%bBOE5kWi1Cf!s1U|eeC=e8Zb(BF&f!4YzK@F=bu|KX zG$SmxN`=&sW4a~29*$d4#ZerOkDQ550I=c8vk4DR+`JOSXF57|&%w^{_iM5yP-4Qf z;SA$auLXqFbyb+M`w{gC8?jKcI#P{<<))qA*!f)w_|1v;3%MtLliApJ`%HOT6gyP1 z_H$(YUH{kN1GQ2M{E^JZ`XQEp#iw(}A93&$NtJQ4UzO&#w!K?s={KExnP=2#{Y;|v zv$Xgzzg;~C5Onts>7Tmddv!^&YQoZ_#rOHWk^`8Sg*G5|x#sSfZyzun-FnIu2wcck zN$c{7z-RCvggeKFyVxR^TwFXWW3FGO5#8mFdnAYkPpn|N^zW!08&HEC9)IX9Qm4Ey z7WYAlm{>W#y7vpuNTmE6J}yy{-v7181~c%mx8=9m&m60g9jWi9w|6PuKLpG}jiBwl z#<-D3EbZ6S6P}HOHwd1jMf%m@_(3?n_kZC**GM#pvq~cOc0HxvJfSl;e1ZxtW z>P2g9daTT!cUL@QjdmEluEM#g^7~)`D{==gGR!LFdGg?M1dmin)3;(M?XTbHwAz4N z=gE6uKsi`iOMxsjI{GWS2ynQjvb`6NMLw1Mx5!@{*;8+g1^Y!k{|VdYf{rr}IQe_=}95e^C$LUchkGsgUdbSeYQjoXX>3 zMGZnty2vY^w&ts!-oT`vvHMj2^uQ-}ze|+Fd8O8#g`trJ7a5LjLoXg4FohzFhXfwb zx`_Rg;POvCFHEXo0Pjw=f3JJTdH&!_ro3ci!7+o$1?MeCCI-}uJdX71yB#=k+PV*H zSoODy5mS8UCBS06X7Z}~eAVvq*mXon0B=R#MNzhS_jV<(dv1OZ$3`OAD52pmS})Jj zvONqEUAA+lx~UxTw^n}s3kb9nUlkphKm#_+cb#u4u>uco(D$WZlAEj~I7h_83NJ{& z-z2{1DA5;2^VeWIed}Z?1r7IPw%05gL$UBNdZ!dtpj3 zLu(rdyCu^P`@1^w7xMGR;$6{XvXhm4x$y=Fi0WENmjr=FoC;UawUDrpGJ#67gl?@3 zYiA!hL4Qa4?(3~Wb`4e*xY{?@Ex1iy+iHH9?&hDLCpld2vwzrpVa-vafJ0?OKoUx& zBo468pVFMm?xU_sW+qX@lf0_dpS;4Kq<8;V5K7JmM_o&n`vSm)seC-`{OtGc%OPy+ z4_yva9Z^@ZKc_>Ba!{3a;$N4ml{hRik*krfXA>i@FZHX-1`u6{uQ~K;-C5ua&;xv4 z;1C^YKQnCFv9nsB4!tRQpy}b~_a-5q{F)%oqvuA86>+iS4D%F{3#*r$bRfF3O4*u9*$id6bx_ zdVcwb1R6KsXM}+~RA~g!oGg1(gzM)$34Z~8GM7FDjaj6h(Ubk1==f<>rhE&}{j%3i zBX9kDF5}P8edc&v&PKNJ$l#!t{-&zN78SdS_zNXMs)rNp$7u{91HeXRSMIP%fQ87> zU&@Ssit@hS%5+;fh1cfFWbmcfU15GhpR630Z7ASr0ip<_^sRHF6>XwH!WvfW?szbY zZ(r%lr7y0DX|K(wj^CfiOF1pP_BFuXYh0itD98J|FV@0MSRpr+sqi4zH@Y(QWMA+Z%?ei4-{y%SsNYMEh`2UUVQ)M-gk;bPS{~ElV9@Ja z`bI~|!gDSTSzPk|V-oKr z#wxi#9>FtSjJ83ZZQT=dMFxa}958iO3&oJO$hP!pBme3x{a2@8Og42|_PxFGOKk&r ztRXoX!?k&sk>n~b%@nc7@zh=%TnFE4ts%z@u_x=;{^Qp|88?sIpwEB!G^Hyooe|%x zM`IZF^FL>Y!S*K)b<4FK(aH>5U9By*J8rD-e8?3&u)8OQ@Z2f=^mNIhJYP;*1PLjq zv)Iz^>WF8REis8M%Q^V+O7&pGa%nl>^x1ni|7Mt!L&(^-wtWvgN)7(75*aN0DWz^F z0J?HJxS?^*%)fSlql8l3YwiXid+_7z_KY|L1JfB|E@-)awhmu5*OL^H7oqrBz0OOa zeYd1z*cs#n3CXyOUXQmyM{BgcCVGwJ>V1N8$|~bRs|7P~@p#WJ1_eckSenX>ZMO}{ ztN$xGdW~Jid)9VrZtS*C!wVY0=|pKdo>*A~A!(ZG)^dbtCOR55XwSK=fut89gWU5Z z@VBjJZw(-i-q`@2*unz73(#ae5kW78C^qts^ZZ7=iQUqqY=>Sy?3F=_|uwy8;vS z`#GINb$FVgIO<=kSLBMFh&jEp4?dhxtuuyJ&&Jcxao%wrdpMXMy15G}s5NmmxGUB` zj!PEoX4ZF8%jv07GRBj-Je0qJm}KJ-9roOQrNV9(10}w-a=`(MhPuqbKWAb?bFoxj zB43vUjTz_*^IArmH6W`r_iw!@r_32pv51XQgQ6fZ?_mux> zdV42FI}~SNc*r0!JRQoOKd?+_$<+F;!p3?~o&b~YvcO(loq`L9@L$w27fB?eu+R;E z$zyGscTVIa_kAAZsZf_j8|bkM{YDrUFQlcak$XEnCg(RS!R0I%1grtD~GYk$TV0xmb*Oc#KUe~(=Zk%WFNr&m4bk!Rp>!)qjthNao|z4&x5 zgIb>$yJ5Pbhsq_p3?Df^5yO2e*-m-B1>R!StlUL@)fjjly8X-Cxnof=s{=BUj)Kkt zL-g4tigW!T$zN|1Ka2;tNXIc-nq&Kp9Knfv>4fMUyguN{ZuV5_9BuR)Cn{D|!2$LB zhac~&F}D&T{lssBUoK%%Y$cvQfC~5I$9oZQ6@=Rk$|E^-=adcZ-cL&Un+)5*NY)$m z=)wzE$$YVA^y}Ehuu!dIO%WyuuAmgfY9%uD(^&Jv`&Q)%wwBp3&x7kDN_9(dLaW|H z9()T5Ew(@y(F$p1RaV{9{FWNDE~MUw2)J{HWT?J=IxRgKNw!t2FN+6*P}ay1CD!*3 zu3DlQ3@hNmRccI?X$)_>SWztY!(8sw$s%|!@QXQ&+rE@AF|gcHSk^T5vVN+YW5ZRa zaPdcv*Pn308NfE$MzF~Pgjv2^B!yQ>?+`D|GJR1JVfmnK!~A2TOz0MSa^-=*M5(z+ zYlk`-_28A9nJ)!ihd^s*gxbfKvQ3=zQC_+SRSRi5W0jKc;3+r*b3OK7c30vlk}#iD zIN}9OFmwYaBFr#K<*(qC7OcuIW(vwr17&+Xvg@Rq9_+NpsE zLDcHahHt(4G8e!S3^Uk~K}pZ4O%I^KS_2-R@TS*ZXj>!Sswl{z#1tC33D;NI7$BrS zY-zdK%qHuD>NPLY)}COU{B9RJs9D(SA8QjDx8COJi$}#1N;Q)6`U-v=OA;Oo{z^R( z1jA5J8sVG&Ac%uESENd)|+zL%Dt+Xlp`9Uv+jdQ_G0%RUlb;TgYe zK`tMfpLh_%*Ogpn_8jDsKh_;6n>bQ2V;V({$`im@Ed$sb^E?wR3Otvx9GbM1eAxUgSG)WhDR$t%CIuU!*>OopQb5u#D*D%Bitbv@Ej zRXLKR;`K+#RiT;rGsAkNK4VYVnIea^%hKjC1P@Lgh>hem$pLBQ`%PL?#QdBBIn|+0 zm&3&Z$V>TqlAjHi@l8${W|tWUXdM!c1bAkTw0XKp>J_Qs-kI!H&Z&lBVNY;H#@-jc ziR9G0j*jK45U}|`H2mWSi9<7uiD>@k$`TlW@9JFuFvqSE2XEpgKoK3M7)PwMorvh` zwlnBC^{oaW@=z<<6oz}wX>n8{x?Eld!@1_x>~|`a3=NmNxVX_SvAi?igg2vLW|I>c zUy2puf?e33xF3+@#y1fy_hl-(Z-g2iOfRzl_dYzN&z%GRO=|-b9?uq}>2nD2+a+mL z2k)*#7UDUSR6nLV;WI$|AAtCUTpYBp)hJ~W-z)4a+gj{0Vf8TA4fX8))K?G2n}VpB z%ndw^2Q?VvwsKT%ZJCne!7dORJxCo9bb77yf+!;fP^z~1S9H9Vl)NTypIDqDI2dFr{j#so-XU_r$V7>AJLr&WFZD_cYeS3i%8Bj3s;j`z5^gr%Sf4`XV0TffyH0<6RnRCiE#Vc{eexe2} zHfx3kDpYjKKXZD}SPiW^L!f5hB~qs%kq;KABsW9PIV=!+>@8-c)()QMj@A~4|HK)#s%+W_tX4NhDn1ujd|6-_sziu3yxzUKB1s4BuD zM>az($R4aG(g?V#(jMCQTLlSc9O@Hx5iQ@wyYyNF{xX|y#Kpo-G^+~`0su}7prEksO{ zi4HtLWhSDAv(-A9vUchZWhL2VOf8Gj?SK zHSGpD#Hb}-MAwR2|Cb{3lbYjIb>MeZoL{J932Que+98r_X zTc+dc^SVEQIe*5x{Ygtn##@sh;XGgZb=CRHTzBgQCWVzB!-A^{>kmE0KxVeBcX@_z z=bT)}fn$Ks5547jQOuQrA75-`o<~T;pM-QS*bqf&L}3tn<(`%p+UU)EuOvr$MvU7g z@wqVOr7H*}Y)elN$NHOXd&o=fK5**j5+Oa*?yN?_dT|gjquDne(0_|G;OOd` zG_c?>-~i`T2GTo{kIEXx(?3b5sn=r$7%V!dF6Ys``GHUS`KNEL&}Nv(9mg_TlUd(J z#nqQVOt0mv@=*&*D6|@f+zcG`iuU6ap%HFt33mom zn6mn1At(N0N*0Tl=6qV`u!u>7H%rbIoHpOr;g+9P>jIZ_M<{uC2GFPwyjKjOVxV;2 zim9kyQ_SXaEmkvKc#AXeVrdke*i6eE3x5GzHLFQ`p}P`(u=GgnZO8b+4}PW!OBXIATz7ns%hcT^ zI^?SNvc)IIw$$C~56nvecV|33{?GSgvFI)0u0yWKpW(i8b~{E%f{7y032ptkV_svQ-Q0$@p)Z z`HhFEFctR8vZ=%D*V9z`(&GvYiuSYA;9p8;!{pg1A|TXmhj1JJs*&X)bF9Dq<*=@5 z0euf~epUHP-!IGjj?}8Ut@?TDlWfM*{^{Tg@D8Nf;i=30tXWxT91u78Ud6sNa+@gP zb)vfK^DwTPH&^FwM9WL9*$>QqjF#RZSbl>?2P_!-(bv>DW9yVaMXaY zMk(vtfl@WNul1c{u5-$So~2LquRCb?$gwNe>SpQRF4ZiZ3Qvr9#k#wwwN|6O4S8ig zg#V!QIz{7qyd1AX+0!;H!o*}`R~RAlm1Xv;d;FF52lv#<9&5+OXpi=?f#RVY@<301 zIlIm&1l~I2nZVX@V;;*uf5l#Q{=hmT3%QxG9y9@O)}$*U?P95D|E!XWO`B?IlHzkG zNsg>5Yj^m$#nL0vR%PP>zX{15GaBS2TcUp_V649V;fys>kzt6CP2gv(P|fx&PrSg7 zx6sYI%{uY&awb)<*!}0(6Lr3v(2s={8l(K$H>B;S=kwZ(XAat!)(7`zpUlH@LQ?g5 zFC4Gwb}m@cM;l^NY^?E?B{*Bp5*l?|oGXa7%-jzGSC4YCKt)7;x55;@mg~Hroc)mN zB3;DuNP}|oyn`}JC>hA$ZAUaRjc~M5nJ)<8lC8U1EO6C+jDYt?EbVhJad29M2Sjqn z0;Vocm&1#+HV;<=Oz)ztHoXCjs3FD+w)PI&w3B}4nkV*zeyJe`1&Ae9*$uIueB6nQ z%yE(Z#MJcPh71@4Mf4A$dwZWaZ{FX#bxX3=3;rWQ=Tp4~`he}s_^PnIYLa&vxe~4rB!!rAIv<->8!eH=iJhK{jO|QxOkyfy$5TU zmnKu|h<{#9?;&O|MSn%Dvfw0#=);69gMQL8R`_iv*OhY{UY&7nY3T^q5O}BmLv098 zUB{FRVQSGHp@jZEtd_yS`ZF?2c4;}{^3cS6JCs)U`f>5&CCKI)w^%<^J-$^89_zb( z=4ZT}eXp`;uHAU`O1@MeuF47SJ;9yf2D%eMwLg5(7}d(L(_U~M+e8$vx7d^*<1Gzt z*-i?G<>%@SXj2^ZlK}a>uLb8>F?pZ-SeTncz_l~#Y1C%(o%_BPnHJKQ=TyXZ@Vs<) zoky*fJE-Os+5V~Aa@PERBDLRTe=%SWe!jkzVKMZ4D7ckxD?|`;mqlgr?ghG8;xU?xnn`kg)S!V3v2_e9X!-6W22{`@xf0S4TmgIs$XqM*fl3y2g@aO3gJ20fX_G{gk@Wq{V)uo&WhhwlpMC<0gJ#Ar{2BP zNCi5YYeM3fm#`vt`2jHo32)~W#@eO8frYji_XH9HI=WXoDJK=oDHg2bGiK5{bF}Ku z3`vT&d9?27f9+(NU(&bgQ)?>2m=pz757jYIA08+i%Igup;CM7F6dWe4h_z-}&?+|^_2+E|^#NT) zf>@x1do-fW@08&BWX?2tbT=?;M%_~DnpAwtjx@9(A4R6!yFsA$GG;($e^{y=!QE&9yx{U-W(7fnOc;3+6!_Y zxi(a|9@AmCLo|i_Y-K^DdAhJOe*3J?M=rsxJp|)c3L5pjoLoQ z1xy9Dz0Y#|$}T@HlH^Cv)uX+g#}@IEs6Un-J>tkzeu={NG5|Mr!483w!u*khfGs@( zD8n_^besLprQ`oK=zzkeYnx(;;_;O~H*H7)J2+o;NB$&r^~>G-`th9{2xy|XFZWk3 z3=S?QMN4}fbC5@g=FGUrr#1#nkz!|I9bwy@21w7Z|!jw|>V z{=b#?vsWJgn7Xs+t95LnVfdTP($K^*ZiZ!#P_3Y&I?=plPDq$k%3sZuroc?>Bk1>! zzt{G^<$pO6Z;}2HGcy}#va=;PlI8naA0ipyQu7ct!K%z|?Hyh#1_v8zdR(sqn|ej^ zV`K((RV-T{*Bbm?$oGjn`zei4ZiRKfHGIWL^*F&=Z zMC|xu5zxS*wJc+ONMpepZlZ31`M~<72!GRZ^40Hx0ey-83w(T3sLd^j z_=Mv|XRJ3&1QOmFKDfkzQ_1dA83lchgIC#^jnQ{uTDV!H8Z;?X7EHPQ2E=DI z5o8{hza4i|VH)f9(q$#mK+~Ew=={+YdhqfjTYbq62Bec}U-~OY%N*iEB$v0lMxnJk zE3#Cu&w$CvrP|7!)O8!Qy&;S-fEFTiyUU*ZRdttI0_ltPO6%Y(iro{M0rG>a069Fj z-bG`r%7!J$PbJ{u(o<$;GBRB?$PPR_=OY!y()LQouCw~8m&O%T$fwkdpbJdX2jCz^ z8t?kc`j?HW66BoL@6$M^$x~6yPHaVSY{l4C8mT{R9ZT^lN0B&wIIf9ISSr$0CW3e0o z@|{Iyp4WkCeVl@*rK12wVgMvz2;(#nkh=SSHJ3n+i|X`+oXK1rC#d@v7&_OW*KMrr zH{8PSUvLle`gvc;O<%Y5oZL99#5y}M7{Zb(@NmO(Q8Cs}9g@AX#^*F-a4PLHQ*aiV zk^2AY{5k7_ZItO6QPRM&zW1<(hz1zJp_sW!*^4p#im)%wR3#rG4F`t2y>IP)-D-Ui zFf-J(TA|{L%wAggB7q2;lym%=f7B+FD+v-_Z1cSL`{!9sB4i&QQ!FEG_cT@q7A+P{ zltr=KWTT_9s4n8Djmgh(lc{bgHx{VqrL~eCQ{3L$a%|Mcg~1PDNsw?$b4i=#y;Gyc z?Gfoa|JhQ6*wpC7CW(JTl+QVkxvspFn2Z&g(xs@P73w8{$*P-SiG1fRlg?!1))vn$ zlVc>s$g%`tT-v{?!nihOZ5MB(>O8gIN*8cEIIcm@CEVZNwEiqNGsY_enwUmK+nZjk^Zj&^3@Z3 z+*RE@_?4DCT6Pg|m6VpEQNIec_VSHE;%7F?(j4!I(CnN(7_?fH&GG)t8sGZ{kKb)t9=Cc}YRGm| zID0Dp(=veOnLI=O2B^s|sZRs7{965MBZgrOAZOM3x`0Bfoo65gQ?}~eaT+Rl_=a}_ zZH?&V$Y|X&ps*-7*jF{1hwu$7j-HV%*kKn+U{HZ(i2h&Q8kfF{U`av6Y%Z3t6zUi* zmZMWblPTCR{r$@9w+D)mvuEIoQYGC}vp+qH#m>RB1QgOkGnK5p3%Fn2F`~n)>m51L z;l2BKc*e37ms1p#{?vl-Yv2GIx0Z!jv2dA7L~qWdzpT3v(I_z&7gLNfExP|C6WeeY z=q!38nbxV%`oMRI%cM;e^rxXY6>i=%2K1hU?8?kl#=Jk?NJt9Yv)PK_9JXyMj#U{} z$Kq&#tdGF2)ictWy)b87yYzaL<(!ue%xoZG9hC?ia9Zv9`$eF83yWB+?a}9k{oMff z*N9D0un)-8g{jSQaYlKP(_ZCBEpXQa7z;1(y&?-cA0W+6tI^w6Y>nxZj=ruxo$*!jI?|?SjekQr9K1%XP3&SD>|H9wR0w+r6)Tqm9!mxx)xv4W()jd8z^~Dnu%87z65S(c+EGnf+Gw#PfOn9a-NZvLX&5K+_EN* zNTRkD?hm`#M@F{*M~Nn0Dpl1&{MCIzoPE@VS@|6X*W$m8?dAFnsABU#eh?bC8#d-Y z&-%S5IiBl&8%=oq-Sd{$AL|6(S&WO0YUvlYMfH4oY;q;hiS9-%rh?fqL1IZ@u7TJ= zGCl#K3F219Z=>s%=$0a@Bmd9YGJc*f?oUx#l{*i1l|InWa>-hpc~vdQvv$J0h_Lzq z{iP2fKIv(5Uwpr;t}1k4p;4dyix*U(I*O6gTU53)BaufzzjiS*e<%C8oH^M>{CtU1 z#wSp;p}u)iG7hhfT#SQq9qe{ZkJrXdt17;0M8hC({fx1(X7lZ`x&Z#0;~MqWd^EU_ z>Q=Mg0s+(vo3c>gePfO_lg>-bQO-y|?8L#>45C?cvTdtljBO1+7M)50~H!^(QA}3 z$aB|!eEd>UaqQdEN5?Y7h*ct^)F?)9P|B*l{-U{It=09n7hY2A$|1Ekm)IE;ynj!d z&??5h#p0pfDLrgsh{*0yKmv-yO3cup#fW4B_S@{n|I6@Ohlg>O=eKkfmkkp3 z!{H@XG|ked2uN2c269oiZ!qJ);*9j``ho%l$L!f7;~7_@o&0j?(b!$vlR9ES52lM6JAAcYDB&E@-(~kLlWqXVwh9> z-UETWpNaFSsSlVU=iYqVpsPnFcB-N)#0%v1QR;ybY8ejv331n%O4ELHAp66W_5Ik? z+)w}R_5dA?e_E}W34G^wdD}o;B5Ffuwd!(jvBiA-fd)}qa+^1S*Skq3?yXMVHJ93b zVeB}J6E*q|#%C>IGh@BW7okySPG2}K($tw86=_DszyHAJcj4VKicTFw=B-{x+>Xi$ z(?XX<;&r|AfY%Gm1sYo}s#JoxqMcrKyTVxn`?Tv4%EFxSU`xt$5F1YcEd4vI^m&FS zOKEQ3@rttrJMlsLeq{D~25u}_4JPxz$J?w$qFOPT-eNMumwM(67&<5fvn~o<*6E=y z-5+JIebDr;4^H8<22m(_IY*nkTApl99oIm;YS20(5dvzU7DLR`Y%YqnZjPFc!-C%# zq^o|s=8drbmi>ab-`@Um*6M3^lgqy?<1>iGQ6>-w)-;!yzE2IELx1~NEl&zB*nCpf zwZB=EMX6JTarRE-<=Wc(z{{?RW?U$7GD(ia9Fdt`FsKo`^Q2i0ayuOl=8A3!mfdOd zY$S6Wk&CZVO$XyG_J-Z~uOjLgW?nzl+b^FeH{GAvAuQtzq6^NuBaPll>$9J^kJMGU zqnTfwQoi0TVtb8tzWd&CcUBgT`o!4ikQH;+r>mg=RxYT;O6dj7hHV|t%MW8>y zukuLskpin)reYmP=LE2-gSii0_E2N#tt&e^cUCGi!ob?r8$9>naQx* ziVVUP8j1;`Oz=)RQ>2r;rCOh_*uCboKuA{r)(!1BGVs6?c=5%7_>+5crSAY!c$d^RkrJvvqoX{BhELsbNB2SwKG=6 z+1wQmt&u~_HC0xiO1`;c;xkZL1%2U%i@fIf6?2H>wvePC%Ti@R!jj%Z9*!ATL^J*N zy^Ywp7-}qUa7hyT(5FWHk*ejh#$zG7bT$?xLrel6+U)BcQkf5Gu#bG^+btJH(a2}V zy#U~|eW~c4rEHfl_fqA?%CoA@NRY#et~}KFRiY7xvJZt3?P;=7aO#ByZ%IWXvw4wu zwdn&)r1Ikb3=S;J!y)Xop;=AtPi9S5H@ggCUq-p8*-|=qQtWS8a3J3aMvf`>qeBn3 zDnCHhy3XaRmwE2(j2f>hI9GF@ayWL@8;3KqW(0)4IC0nI!f^LDeQF6M^^$p?dRdTr zm01vZ?@w3Gwx}?{4g&FAbh03vVjBtMNp4loagi&_G^~&YBU>9q))pj3CF(_i_8^o9Id^@yXGjw(Hfpqb#9A;|wKMsY+I3Dz9ZQ7jLI12Y046*5r z@*DElZV~2eu@8~E_k`6|Rkq9xzF$#4px9qMlO^x{9ex<>o`kZL)Ax}h@RzdD&n+13 zVfDgj8*0@QR&0N|F~7ZCogqBpFzKSwx>ySlOZSux*oh%YT8;7c)WTNve0*ME?f5&f zi7T*UJ-p^H(&?BNGydKD!f4@1Txe$21>yu|5DyxG*~00*Th-_GZ%js5!V>7CD3Y|F zEJ{~3Jao2= zd4vDB1{IVV`iUtp&c;#Ru_J#xvmhE1?>ZgN1=Y;QV}o?3ph|UiT5k(n3aV$sU7Pf(enww=8oPcG0! zTKg_9Gd~X9zxoYc8pfZwz6{3ZnL(G0gT@fYQl_B~YQzX;C`X{HZipKE`W8nWK_qVf z=qL4ymtz!k?9LXxokmM9nrl?~ll))<`j6iZ=y%k7x6Qw^q4liWqIf=mDc$15)XmK0 z#RDsz6x!d&AO()d__?0p1+31I;`f(qV77N^R6mF+XE?jH5eoOcs3sKJ=^!1Ud&_y~ zyWO{ZD-FI+ZqoLXcc<_?2-`@wd)vM8^}}?)JR&v;Ud=wbye-w?DJN*{q;FesTy^uT zIj*|JgF;}B!DLBAmYS6-VeiLNtXjhRsXO&)#)KCWH=>LzhFYxRb86S@)jf4i!T5%( zk`kjJKZVPUCm_r@`J$sb{ayv2No2yxt$7#w!Uq$*EQ%{SoY96v*N`}~?VT4};vHi# z8~r@B1Yo`p5FVMqbgO;S{nE6b=RlWE#G8`c66f0f->?E^iNHHBYEQil!ct4wq?IbI z;^hJZ`P#C)9;uf+)Qf2o^G)&iGy7G_P6=biG4?^A^{tpT=!&*qg~7HOe-?}bqE2hw zqor@_tyDDXv9Ow5yxVW!77x;I1E&}_BUC2Y2K~qd*FjhHfa=B5+N{Tuzv{d0KVg+A zQEK-Fces0J2SE?*?Q}(X$L{QJ>cvXy#=A?zzSo2`cN@JqW^vkLn{y57!k8-9 z2E3`~;EG=FS6uhQVIO|EK*R56GUzBac2Y}rS)rUwN27+6U~_TFGIZFZ4FCbB+U*dB zguAhg0oI9q`8Njaf3#nnAj9S*&;#*d9WURxo5eKt2~2pPZL=fp>N5nvCH1NWc%K$0 z1ff(}uF?zKbMfmZ&VIDDIYUs)>kIFgiwgK+az zCCGsJ9Tsz7wDlL17+dIOzcR=`-yMA0=d?IvXOBBykIwwMRp|D`yUEiP(gF`!h6;A#ZHffekVfYKrsxN=2wb6y7Sk61&@#V&@~U}rTH2% z-n$SHgr#@YSt}R0y4U4NuKg>|1$3xbv1xueasAMdHpjsBU3PzVaE6?yF>1G}3-xCbv-g)H8F5 zIXUs(7h^5TXFHd>f@3?6 zwySzuCh35Gu6HT^B2qUw{%vu%tqg%E>=J!JX+Vt}z;Bm zpcJnjz8#Ujoh~fUhJk=HGdR$N5oP`7(05Gj+wH-;ePf9doi|Ud*1w#yzsbON!&!xM zKRay}+oRm?2qtqC5uxPXHf4C@WVV$DN9k*%??vVwl8o=oYwVB&GrWv!Ao&8QPA-BtVrR5 zq^Si@-IbD4T_1DEYi3O6dFoTn*36>}+?*obj#uf5bStWnslyr`y@`;heLod$VF~q- z8&LCY$ad$&6yPC$1h9hiP;WsDfhBy3Ii0BxI~d+F6SR(-%h0h>j8Pb-b(b&D85`){ zE9vl7Sf8g}4u_9S81H-r!b~7J%C9NAVTIWhk?>2HmtEWzxJoR=bXQnOohq)TP4U#L zbO@rTX{_pZ=B?oePUf5yo>>GebwRs&kJL!Z)b66!YwkM_T0EC}TFxW^N!?+nTu-|d+NK&4MEl^Q*&q?jyrAU8D023+B2+;4}(%a6V{|R~G zrILH9v|M_LUnEmR2w7B8vE) zA|gjOAx?V46hcgQv~NQZLDeGkwFOn3$Y&UXz*Lklu}!d~^9Am*Cr;iPOb?D-I`&Ng zKC%CVV~tRUfDN7KR?&Aid(NO|kRxmM1D-iW-*k~}!d;z*V-NbS$w@3Jzz>9evVQ1g zJDcTUpgLuwo9 z)iqc?q4@IX9V%CqLGl@w@5Qfo)07ikX&1#76GAK*RL?1AANq=sN#nsPhHTgpCpWUp zubP4v!yFtn^7vc^l^4n<@F-G%GKQ%Q5=$4=!^%W;(PXPi!)IqD2Z&~p-HviQ7tYzC zyB-QqQ7KPZ?YLH&d^xw1<4?BN)@txEL+&+k>l}!iHQL~aw1SopKxXBVEF$4?bh0M3_QoTikc_ecN z6B*@Fxuv&kGTDAwhnQOkWAs?t+=NuWX4|6+K0SYGh~v9gnYp7ku1)@w(xNX{o6Sq> z9b>}aLT9CQ;rW`3zyYTquU-H4-L3Q%@V*h&5?g8`i*NtO5lwsFkuP&CT5?bo{9LQQ zSIjA~L`X$e76B1!DEakUL* zyv&B*7E|x6i2J$olRU=Y-85i8Y^|-WEbCgS-*eFQLxJSpqTT@uD7qw7&zw7K2q=H# zI{1ec?i6;YJKT5MW>eniCwyiytW-LFOZW>aQCLu1?-t=A|9-_-@uH)r9LQavL2L1d zx4VZ`%-6?&&t5zbCguUJRfwMWA(FGC?aig)1#Rg#1OMKS09YzOdGyX1LotvpJ3V$K z1Do9Yd^71_$bF-}YL?7dAz1&m*v6yL*)lal6-g3$WBN9wOz((5Z*KaWWkigXvUOm#m>Fu&8lRrmjSQOx3C`WIUIfz zo1xbpZm}YI1Co@38m#MTAs*m3tN_kzxatDtck#rK9_&MEgm?xUQh&ao{GFiwxOTU;Du1DCh<`r^rX&pjI&%}8+7Uy&W0S03rK>lD1rcCT;!g0y~sfzn{e^i zdg?-s9#hcW`nb=Zulfy|-f`@T)vk+sobl!;{arZG-ASdpT>|nE9N-NYsi4ofCoDB* zb#0$h7Q91@w@VtGsOp*u`_ZRpd?4(Bl)%@36z^w{o=G2??c3=3SmxGTwu98u2O!AH z`TPwagJ8{9u`e|7<$aco{j_=ZipPfn)BR=pA@z6lohDtMJ98JzeB?SFLff6T=cbx7 z=H<<{iuWkW?R1g&f5d{gQq?Hg+Qo51ukZz@G2wRbkp+UMwNf}B- zq`M>rP#9q7?zsC9{`9-wz5nn$$}nf2y;r{LU2CsiKd+P(s6WCbA4tESzo7*Zg<;IS zmfxge<}vrm5p6yOjMfJgy93732FomV-nv_k>+>B3miS)lb^2xYd)F&xkT=xEM-6qT ztv>U|LLjVAYwe6s)WE*}HB_=nhzjK{nqSL%RdR1-hoU&7tdxjdwGX(yR}{yzPNf*g z^{K$CAlIjS*-g7#e>uUWg%06n?8|(gUR}T6o$uEMS6)K+X(J6%We#ayD^w!Ic;QH2 z)OOs!FP=F(F$<>o+?8_nCIF$$mMu^2!crwC3C7#DxJRccO!eV6TwM3}IYt`5Y?3t> zh=@1r$AQU6IU9+}*bfbC8fh<>LQk{}4lig~x{J>}Tmv=`MR?LX#17S=f1fvW12OBD zM}F)%!{KwE;0Rj*)HFfa{oD^JsIpu=X$2+m3@d<3aGc3xK<#F$=4ckTYlD`k0ob%; z^hy)IN+L%wOvLI`pHnoP7MEI@pV@x4EDkX{5p#Y#r(E{n{w-}s4;V*^5#K+JG zNAuMWs?QuFriO+?Ltu|$d{ztMq@>$p^?k%CAN84ApMDvQ9JsVm?ybzS|M1;@;jo4t zBeiR>mpq6n`pc=NkE(W~RzRxrhp~S^5%zU})1}dq2ln6azrfymiX}4Vmi;iN+AeJG z?Au5>VYNlP9_u+qiwyegd!McIEhnTNw>Aa_6p!FEh z%AlFFo4Ocp%-m5iduwOAsXTr-9BagZ9#zF@yU++u{$bg&M!HU`VJ&_pe5aexJ6rWa zCe2gYbS*F4uj*pXGFJ8Q75ckt%Q?xX221jurm-9gDsaQVl&Mo0iJl!&jLu6%D=lD5L4XDoeAkKy6&uyFxp|K zhE(A1h+R&fkbCjYae%06QRh1z1f(_LB#s^4E&Gz*vhiAHZCbFiQQ|KvtJ=0oo=qb8Q$$*IAgbR)TSr-_z zrcz%5$e;xRX+h3jxpehLQ1SJw$^=usj;H%1s_Rxc<1?<-WqEc11qTrvo^{ME+Y%sx zDh8ngw`&|^QI4c-19V}d^>=D*p#KSjwn*P*r=t5pAhSaT7l&yBX5|2cypkq!i3Uc*++N-YmjgiE-pXCqjA><)S! zV;@;zke91~)8Km;iVmG3<|pBLP^Hrrq&I`cSq{3KY3ac+j{SPDJEo(i!8mlH(v= zn{DQSmnrt1DoL3FxWxU!6Sy1S4FM`_3n))@Fip^oUD%h|6}K&&vGHeKTeQo{ojJUo z;sNRG-IrJqo?sY40@(VNgPQNFf41uk2u1ktCAlDz*Mq~$9(@Z;*y52N!>B9P_ZXem z6JRT^3z82AgI6UQTA8z*iAcky8sL^;*F&cIaAz(FV=ndtVyOxG(Y}>L2ME|ldw1r_ z$Zr{aA#_<#)4Ds_XrN`qbp=Q(mFS@n0Ys_R${CVf*JSBgyH+G z?&ZFH`UU7N5JfLfGYMeB8NU zx26X|t&`sDLxf-!>ILGxb~u307+-GJC|+(D#y2&}1_1wtkngK>d|vBsa__H4)0xI` z+17LAC5E2Y}6uC~NG(~V?N$2o- zcgqyFeeMi$E7yEH%~=w$v~rd-mC5ZHb33A9b93_wQmaVG%0>l~BnihP%TCb_K1Qut{F;|+ypY&ajr}T6p3o(^#Dw14jTgEt09oy$;|m8& z)of*S8Z^o(X%+8iY^I)fbe{T?@QUvBtxk%M;U4T)lN?N8YRd{=+!w!^$FiKr}`d-Zks9SF6HfZ9eWaVUi-|Iglb*RSEZeXh}T?mB^z+9FYS`|^img#hPv1%)1hEVbF)N&zqrmStr@dLU(fL*P@< z*Db{Er6h;`>Tl*5tdjC2i7kqrac?kYtkRIL!;DSnZFzbw^u;APAlWJZ?20KP0JdgxuR+5oo*;!s zoC{4*2Gvp9lmkw|MgBH3t52ueVW(Wa&xN0=X5(Z_lB~2g)goFUQJXJEHgO%WPrMl- zcP?gReR8cjTff{79NCm4GSd$lxaRGRS5Jx<~XHpuBLuUB;Q5c?Af<5R{BCy%gyk$ zO`u>Z+D0}U%Rq?jllKd!uKWiVEIXm`cyaq`5Z~0j+BR$BYsxL zaN}1#q_Xe|E6S9qx|dPYb<(ZzIS&}JQq+A0V94;t&klVyN#6Bf=>2}@sN_xPb}=|{ zY@?yMvQVBFDwtEBt{COvWcJ(MTo4KaNM5KcAK#Tey)0e#Xa`4XXl7ZLZu;J8S_RTN z&qS}0y+DzADMTb-u#pAiY5AEKXNx{zjw2Lsbbn6@*wh#W?NZ~FdvM2dA+O&dBoc(b z?y983xQ6rIcT)^3_+{X8EAjgN*VUJcYfG2b-Wh?x!w{ilC;1i`TBVZ{Hev>bDxNL0 z`-aOR4N#aZMmBMU4Ek7@i)b-&xkW(HzZzjL{W@LX{1j=22|;nL=A23|CbAq-(6<_t%~m_t;o~wj zEA75pPG0~T*!Mk!s15o-iOTY_KI)f!Ys1Q9>XsyjG=Lh1U!N6}xAh4s%6giXrKmP3 zKBwAO_u4huTjICJ>xMsFuT+4y)%g5wSQ=14*Rz_9qELdD>T-L_wqk`MqRN$CowPZ@b2^9J%8k+HhtFTac?&=TW@YkPqAG@ zen{yIDY(g#>3a&#MMV73^vz^nYb_D=?*&PZee|$TT~7NfRs02q`3(-vGpR84OgcQg zheVXi!zpRDpYu(Raa zaUL{(uu~O2mx|#LBDV|uNd0Lb=AcwEO+HOK+GFNXwG}nL>5i8|hF@ou)!rLTYKA}B z_!)#PwVsfbf8pmlKhTb%z`Qi}Hu{*!7x!#sscLD?L%MCC#qp<=1^=*P#}21?-+k+k z9!2)LgH&1+o<+Amu>}QW^b;HMj424_`GV6TwW5a&0OAB;&Ylv zMRVrCd@vsJW2^=j<*o7?T8gLG8Bi_bwpy->u5T0X40y=dqj%=~G*EXtECvV*#-^}y z5~xJFQ^0JDV-rQA48jfZ=|(Plyo>k`uqTbZTM$+Zd(#^i%H26{Y~WDaB(UbJ8%Ten zl&;(1zMY1hy;_jc=HJ@_(;`LLrj_Rxsj}#6m#mUwsQR;hG_07@|56=Ts`Bb^A0Hq_ z7ublBWN9Sa6XQ0BjN~X6ys<=@zxMxpNwOzZEeNIIhsz4FytKpgomdJ6{I;lJ*NNZP z2D@o7>s6*ZE{$`JBLx%r4Rt~1uhVusdZbl#dc8a`nNBA3OcmRymGPCCoD|-z%Bp$U zoS^JGX{L?{vfLEE|NV7k{g%h5;Us2^k{%cx1ia|I|N9D2qq3y_sO}Bvobj4O#5ipi zN)+jTOSy5#pjSHRrDgdC<|_fD@*eZ~vxuGywfwQBc?+ly==&q|sS_^1;ZfuB0h@oL)Z`pQ`mNVBtS^Y> zbQx3DITe~FIXw6~?)n}8t%J>DT;5-O!=$6pC@Pz-y^^QGso-7V^J1`UW~st~;d8A1 z-BmYztM6tou{PTjANBTe3@L*k(uV>z$?qeGaY;*L zo4#KZrn!8|TPTFp^PnPKzYb9s(b=@*m|;5hL2NLwk7~0gvU(zmVxY-U{(--sf#)*U z1r_Sf@uykWbZ9U0T`h#;JP4c*@9Rycw3p==^au)NzLQpA!{n3`#DzV;D4(P*J5~^3 zS}Sni@ZcH>b(za0I4?mkrENR;=g9oz(6DiUeTXDQahStPW3LWU+dm=r4K@%ur^182 z()tQ#5?WwQe???OC8;_DrW4yPPsDkc#PvuVAQ+qK1`%}i`9{xFMCF6u5%1$5Vn(|a zNK$1uHu|g>NbKL{iftjEE4dO+&f0j1&UN6rqV4=9*#Ssvpl>W35cXx?su>@%4MK zhuJ=h;du!R5q;y!`>f_1dco?6?<4ahLv!s0)brU^_P2?AT%-q&!w_F#B@n)!okkly z0fu-UC&fF8gClP%v4&fPzGs(@dCq!5GdK!G>a+iKSL+~Zf3gTMte%$dHQ@eHl)}Sl zalI_C?9ESc(klC~9F&SbQjk55MNEJG&iQ65Uv=4ies}cGFRnxEyW66kX=p}{!D&kG zO`-%$d~FNyfcuy`6a z^PX8xS*q1Xnd*>YLM04)5H*qrPJHUDdFDcef41_ccgwmfzeIRkPmfXfk*QZ&xct_W zPNL2#&rn?u|2DQQTQEuY5eR(e`I@@)dE{9r$#DSNLxFB?%j&+wdlXmds%leN{#4h0Tg}o`icZ%;G{)doYdh-) zRO_7PwHaF*Tw4qUGahDSX3F%Pwd*}?J(0G?S<<22b>{Yi)AZ{;dNNm7f3Nc$W7Z&d z`2|Ww%-1y{_-^?Oi7H=d!&`Tn8>^-G*>VgKfwhFsS zX4LHTPH03>qguc7ERp5yHTOYD9nYX};1nt+JnXwlm%qDmH8Ugz;kA(MZ$N)THe<`3u4F@AbM zEG;cghESz{Qhehs{!;5J`sHqiI$A?qiu1ugOvxv*vEwJ@Ml(byOoq0LDx@*uu4gfU zAEY=Y+4aJaVUkkHjd%Qi_nXC=Xog*2*Fv^Zu=soL^l!@r;Y^2onY}EatO@J99rk)U zd2KT#V4$HXZ@#&R3H7PRY~9*nt8K`kjeG7Ek|p#Hm0b)<45jqkCjzi=%5El&R0Ixw zR@K)kR|-t5c3_n~Gxo%2Br(NttyppXDouQjCz-C*eOS1SU`5+q^T2I%-)q5;~-D#{$Xome45zQW{)9O zxYw<4P{vW;l1AR2L9Gv^l0c_UwB~HI`^O$ZcX_z+0?*}#MbJF3mGWM5D|%KSdbXfW z!jz?{r?x3-h;N3IGK4|D7q5BviUvU!-}GeOZoQOB%atw-)Of&&!!P_I`y-U%a2u{G-a}2{msWBx~2cNTbC@%}F z3J}FH*YKljd64!st2vO`{XW5Diud+VVM}6UW34W=^>UHk^eG9$g$BH>jcoY!`(qY~ zo;y7|u1%5?uPP&?tLv*&B-4ERJ5)becTHV$Z^^WDgkWb7qfAGHjXsYlY! z2jeo;p+EKusBs&Juw3oAIZuvxR36REW`NQw{cl!+*n1$nZ?vo!07Ko6_(=p7s%oL4 zqhmRVPlkJlPCSrJ=_mT5RZQ##u>#d6*hJ2FpGWsXNtylqp=ph5Lnin9+AigLh?!4# zjRD>TSK2F7IC8xju9K8Ih^gYjV_ao|g8u4>x`=NI;;#=C9`C_DDbHkRa`2`wxO+1_ z=h3y1dTGc8o(MIq68nrH!40;Y#=YX0hVMEaJ2v?$rFo&){u%d*G-yj+^|!2jZre_} zF+y1Jaax?DNY2UP-UEUam=LG-VUO;SVWyb`LhN8C1%QtGQXv(fU z+Vj52S68>K>wM3oU+$W<9Z3-fn;d&~b!?n!_$W!#>dIwDe%pweF9or;g*MIV-kbz+ zAZEOHL%3E4f`rC}zr^BA@lE~U2tqbWo;aJmPU-+N#V=~gPRk0WZJ`K^rdutW?oYNx?UP5}q}v-r!psxD{9w?`bv6R;p?l7SG`RL)H)Bb0A?h z8x`>@>o_~Cv5Sl@>KCmVC zpe>o~F$FV~Mni<}F$!CeDB}Ys#FCrcpybjwl%9ZtEuiCYr{$F9<$f*npSe z#>I(Gmv%jDhfFS<`oe6(;x);AH=~mk4*}%<<={I`YS8B_LqklQdCah?Enmq{fe$0S{QYVmkNj?nirE!XH?B@zX-q0Tl(nY zN3zj+>IJBv1IfUPav)Am42&Q;`vshkI4l81#J6BmF4Nf`Y1d+Ig_j1e=8edb!!4u2 zCTJ)66ED~X6Y(mBaFMl{M6D#9=54ahD;Ix%ieydSm)2)Eb_ws~djrAuwrjCS04v9L zkp|o2!s5Qys=olm_*Vp@xl}?vbzv;C^+>LZyd~!jkG7*-XLk{oby>g@-JtUXWchIJ+jN{{81YJ%FQ~)dfFeg zqBkGYNekmzaMR5G9)5O7i*r|)5FBy)@70qU#y(VcwKp1&#PZW60bhDBCAoLoKwo=B z2u`WWto~>|&$+bwecrEX>=(jKQ1+)-(gq0+yW|cSNLSA#|KQaZxvP&qo&{g4sqyOR zag(I53piy{$pCYZab}*9@}-JGH%vzgQHq==N!p&_aTU`|lEGC;JXjX$x7^2MKan*s z9Bz}syrlIBDd=oIYK!+cB*Rk^y*=xv3Ci)#EmpI$W9O?o9X`|Y%{ z^jEQzDnZ;fu@4Bv5k_oZLaION>oXj^p|BWeoqPAj)GQSLMJX0RyQ2>*DE2})LNX`e@_htM)o0SO}QU@BEc3Kr0TUF5|%C{Ev>{#<~@vfrS=+9nWH)`X4 z>6?NDWSRCvmcyZRae4ZV3*Jp#U%aWW8#q&+s&9bM@*S+4lQND$#a^}KLs5=Hp(?vN z(_E4%B-}MSZcT}%l zOFNUZx?UYakBIo@?znMp2;-k&S{I_1T$aX9AcNswy)`oW%J%0SQf-9g&%j7pAEWZ3 z!`THOa{CBM;G~gFjj0#$g}}MJUXR)LzS)nL9a-OPo5LxeKF?nxQ_CD9tajeoT&?yo z>26hxjH?uV!Vu$j8>OU+%(n)ypmr8g7A65}-qL*y`t)$gHYEZ-VFDmyN}Ye^IPn2g zBSJ+a0aV?q&jw?m5EW&en`EAM>x=SoO!g7674rtq)n7KZW^1Q)2DW1Ca#oeO)(2Pz z2cNFW=(D0o(@Z^=6~aWPi|W4K+PQFFyKR1U13<* z_Ta4D5AW;1e***w_gh>}{8Wq2%DPRsdpWNOi)IAH^S&h2j2sG?jOp{ALpXS^_zF7G z0cpIxv~>H}7HmTE-4gvQ0nxvL45-_N*@yiXr*pVJZ7+Y1?-k;u9wxi2l5K!|7BR(N z_4xcuBK_HM&<2qtY;^GkB-p|Ff~Sv-vnFJmXV9h&_%9;CdPJ=&clor>YuetAyVWH3 z#VSm?sH$UE@Ynby9~Y(=*=!NaI|sdJna%;c)O@aLMjEt+19_V`cHl1hrl8(&_pvWD z!L#BjaP2cdAllaG@uRV)=9yXCoNqk}jPf zD^IzFFBSt-&a5(Esi5!-haotO)@QFeftA|cz&60yt6aac z&}GFpAU5zsp;sY=-Y4h8#e1d=6k4Q`{~R=_?FrN9TuAj%G@xQ*i(${Ug-JXmVOStL zK36xW_+t#Uy!rBim)(%?hb~bOULIQ?CCU**vmaNX$Y8&vA4z8u_99G@ z-p7e5i&#bGzG}I`cDF4Pss9fT9z}!FNwrB3R)Dn%(@24rIEDFkn-%Y&8hD8hNQd{( z2)z1Rqx1D6<#QfViQ-`_w$I&B-mmmX(EaSi)Wx1cC*#p$$<9%< z85_=~%G&e+vn!dqE4N?h{Yh6r-dU?ustSh_*%RN1(61P@+(rtNQYs(eBYqbFlur84 zzgFoIz6((OGdpMR2trHp#EGWdYNC$UXf>#cvP|(C5??z^otOJB7&B>oe4~0x`{9KI zK_;I#!C#C0Yv}AoUf1&>AQy-ZJn%yZg&x=)d|h{UQVj<_Nts<2Nr$XyuBzxo#-6i! z;u!g*%8tV`r$OaNr0_C;NR8@}NxT%6fI?U1WcpNs=m z_ohV$&0*6;;gd10kpR!kMc6(lFreCVK|+Atwqru3g_h?CewJE+m+(MS@6BbXGaRfz z1WF#?kiGtJ|{>YepuDV1D7&Us- z8*{>O+Ff{aF`0V)r!%gMY$-M*G9sD;skxmq_Ovuy6#@Pt`goblDbsVk^Hi1)TC3lc z*%q#9A67bzDiPo+as{DjnR{; z=A4a%$h(CGrLdyH1=(w%={raPAHGhY-Oz58fod!>?;3`}?;?mzJl?Qft$~O!yEN?w zGYuE&#)}9ilfqXL_saa4Yp>6+tPC6X%B@AAI{X$)qBUe@)OfM8aeXFIJ$BOPJFC5| z&txU|55xJ&d$kO@Qea~P>-EaZe^qZfzCqO+Yfo=Y^_Zhf0KzN8R3yh&@{i|f?%`L7A&*gY7G4JTAVyN%?R62Z8E~sp~m8iHl zzEv3dgn7=*plXWW!S=0#*7}FH-7JdNZ^n?xG{N-}gE!Ci4J34Y2?y7sHU$cDX!CBE zsyUTL%p*IM^V}@^JFQbk23GiJ&L7p>FVca;_L<3ztEX|kGC-k-&ZQp^lW08u%W<3> zec>Ula<4k`UWS@nwo``n{%)~vQ3QlU1gB zkHRvkDeg%m$20!!{;m zXrLFR?r|BRhrWLS*0N_Bzp5EkLXrKrL$f1wa=vjte9U1j)u_a(yqSx%xlr2+l~Dd^ z@%T!)4^YCYsuB2MtSZ?5O&#<%8lW%KGf{{upA4S%atwbpMI3q`?HmAS1vr6hj3s7 zyQAnAQLr#id~u$`j8j(lpvDWhpMIxXkM2?`1cQQvJ8Q}Vcpwq^*wejP^`dH2TiN+N zhTk0$bE&$&qRzDhan)T-y-$@?;3lG?_2nMa|33$SvN&WDbC@uly4e&>N<>3$6g zFaK`L2xFX_tnR!nH=CLa);{ijTt8o$dm(#loTdlfLMh2>)4`Cvl3x~qnGK~IVG2DI z_s%_9vB5ZM7l12A*XKVth;CV_Q&ictkOK%=ufJhYI`Cex zxP3$WEtc9F_UkngG>l+1ZEvaC4h72XW|9aC$}+7yS8$|Iq$EmD-2?CU(?U;7TBNH- z=Zm(PDFuX2UKHC1olWUL@A#yLzd_SyYa1A>XwCE5XOoz<$yutUE@Qu=U2(ijerPm; zUGK7nYJGG)L%z@p|;ro2m2uD=}dHWn8wgD6< z!()mL2i}3oyQ9xm!%#PGM~p=Hma|R!gWf!EZEk|yJjanD??fR*eZISkl%-vIJ{E|g z-EmW$${M0-wwEgt8?v5uXO0^~5P1A$X?J^ilehG;sU~D2ZWR*pR`SDYD3|5B0`=Eo zwM;8*U48`eOsw}C92&jqL@3PB{;tQiH#1_<^mNM7T!?WYtU;#=PERn{ytI=NI#L8h z{Z5%K@vB*boybqUvA<{5XLlHc(JeAcWPTSf1NFyeCl@^ocosE<9cAOIof@)z)IxqM zv-*gXw(UF2Ch797@#$3BR!V9ee9A}vQvzZS%^GxF-kLw(3H$0cBimY@5A=Mn;i$?3 zc2XeFduOPWlRu@dv&;MaFU`&>kF=@4eo$~~Tbj?Jlq9Mbs*W{!@M_+Q_ z%K<|gA!&<40$iD+=}kmpgHJC<$?_c}GblF%cjV27d$0XQ#Q<*$UyWq|gAaw&SX!SalTH6b`D#1&!yGA82LiEi(@~k}?W1Nw%hI`Xr#9 zCT%e}?y(Mf+4W2=4+Qz=-Y-?lVo7wNnpGMBR^!BdR1jZXtMPKTY&p1|0BRSQ*Onb5 zbtsjw!L`tY;#kj~L`U>@6-o4~gFxbz5eozEP3QIBr>q$xV3tbhpwGO^M&2mbTG8H)Yp+G3u|I7(W&ryA+F19Cj; zV1;FGPVb|0Y=|EtY|kl5o@Or0tPd#!AN2z16FS8nW`l-#1V{f zz0D}@%78L+d6Fl$U27%biW6ipAib}Th?x7lDMA8>a4k63s<$2t+GYB1Tba*!JE*O` zF&se%7Qwpf=$`oGyPGp@Oa>ZO_N;f3EC!9%D&See8)Rm~baDV+Zca#TuE3Z;grYEY?+m^%dvlGl|x9f1Q&{7A< z`lpqB8VgI@SMLf{xcAi(*|+K;Z}G-bf3&$5ZYbc9(~rFy-F3lm4~ZCTnvS?BOe*5@ zE6U34EC8%49oJqhE9c}ZSGq+niW#aOTGvY~Ns>$1fCsUxq*ru~ibv>?H(yxdt(i$= zS60hxpN)`TZ)!=*P;b?gPf=ey|2G%BKXtBv@_*`F!jnLoZ@PSnhQiKKNxuLFr7le2 zLH&n9MoLb_H0qhcg1*t9Y+ zl>oz(O~IlIt>f3|1qOKYZG%|hzfK}nN`cON$-%vTef8%zgh`owjIT1{{N-(hN8kB+ zi+(6i_P+nQ&o9j|!K-)9tHE5c;TKoNb-}Kr?r-ct=I(l>u=!iC&)Q3!o$Yu@3I_K$ zKtLWcHre)bz-uPm)6}4(Cu><`zZ4QQ8B$*VsBNoQ)T+o z$hrQ5;0##LHfKiIn1Z1}DZIxJ=-4c5!V(XM8Q4Z&hpuZ-CLoMY0IqRYr`lO3iLM%J z3=oe#U+vkF&Y5jWW_?CYU3|svoZem8VczmAPL@;6=Vek_6ys2!YUXZGO7^g+MhTp- zUlK`s>a%#f17#0)`t~6E!=!frA?58AVS~WocWNq1dN?_Q#$^ zx;oOcG_=g}E{t(8RcEKMlE?mIPv77^cT%{%E*g}0bX|2Y`7CVP&!gBXCARYfTsg48 z$fbu~fx;K@L9C8{#qY)uwEV(%KDjgT1&8d=jWf!DO-6;D*%npL)Nf~t5Ak%SxNuo& zS0ObVJFZhwN5|r5XssJy=3sZsa3ltU>vv-`U zGOUQZEj09zKZ|3r$a>8+*48jUE@ygoweLXD23U5-=R(#W-1Hut&q4{ z{)j=xjd{T9W&A#gKb{O>sh1M-kD%$}x>qiqviz&8ketZ}LoeWhUt?K%hy{o<{1R6m zQzuCu#BjJOrj>5}KysLVZ)~&Kn{M&k#tn|4Z))oICmS~}44Y946MedsSeCskJ{h9e z65wgu95vVUhmW;-hAC!sNUz`CJIb-R%!aOVs-^f(hz?lghwBQ3)q_18#(8?ymu zE5m>qs2d=i)lH8=RS~g8Tfxc{8t!c^?O(F1%a$B(3h)_HSL7hdx}?*(T?jUa_bM2& z{bKXF9~L1v|1YCXCpi0|2{mF%s+*dR<5dV%4&-a*`k@HTMyFM$@CLM2s&Qg)!>z8GwUQAP?PZ>}>l5DrVkr zgc;8a@XUN9N1G48O}r`Z)9LPqxySL3H}|m5OIa#Et-M!L=9JSR2Ff{T2QuZP4^_kE zYV(}sk#_< zIhDU>igT%)eFGu)03V51&I9)sb5p-iJo)g3(zPb1t4w6A(*BD2k$QFeAE%viUE-T( zH$Ud>&*}-uAjGLPeR_4(26x^&JV?WxurOL9N+{?V?3fhqh&@}pi4<@Jb{MVjrtQ+= zb0CC!zA|A)i#W6ZG#8g}V(=<=o-H|iqdO?!K#o~JR8+toOS-e|wqu1kSTnKauay&I zt#n2JTB}x|{n|dN(`l4%i#%V_fWL9ll=@ak4_0X*Js59oA$fw>#*jx&}7jnnLvV z+U9Tag9M@i6j|0b14ykKfr}`!op!Lw4u>t=;e#zzsBMg`6Ujgx5{z1#>6vvAox^Or z3+K2VW*VEgFl=~gwdmdgav2;8gQRa`{KZ7tQC!H&VudgqBdmuAB^EXrPE21ZRCFxQ zh->=DKxraY7)WgDeM$$j)AO3sxQ^UfvvQ^=*mZDy)#6Qnkhe$)wRDsC+C;!cy=WiG z#54bxMK#k__~1hLg`R2i{t3q%L3p3Hu1QbFu13tg;i^q!W$tNF-^LVl1~E=Q6q&9M zxt)b<=kX!{kRxUYfwNt7*A!*=CX@tzT#t?&Hu9aC&oX2ag|~&?p{V-ws;|h)S<7SN zVyS44$#mKXtUFQ_roD3}b%w|1lRySvCbw&NBtVXM2>L*)OiQd;CA0N~U8^4V9y)XC zp^pKguw%zorsvHJZm9=nQpr1ZG?3|JEng`7q;=HmNk&>O?(H{Kb+eJ0&*5cja`(ng z;OM)y<~w%+-m!W$V7-R5RO$zxwfj-ASlXg4%w9Rm>7Fy2*g>g<jp{E*-aLy*T2|-Ydx-W{wJYjOi9>TXUG&oq962`U6m*$ zmp6G>t{;8c)WLD66_&_Zy44-|Hp$a&@%;GjJDr7ghj@)oHWsUjQJ~HFs+j zpGSRll+*V|&TZNhDkRrk*Nezs`O%m>;$0%xnd0j~*Iot`1xNMk>S@kMz)HpT_{q+8 zc=O50q4?2UlHzw(J#y5HeD9@P2`W2~vA}mx)6uTkTwOS*(B1#ET3ymuEURxy+0-?v zvfav98S*5O;K!cl8h-~(#Fg`p*=Fv_kt07xEaG-e(E5~Iqa>xbN4X*Rm4t>PU(4be zD@KpKq_*1{wqj9KEz13Du9?nzeH&TXZ1PhC-Ty$84UZG7?LNoJB@joNGwOpa|16)k z)$+@as_&#sHyrPuZ|45;`yd3J``RbQ_}zltcJGHv=gHLqnCO`pqMW`AwVE5O7H-&M z*fzQ=Zgd6Cfg~r*s#aF#Yi<`=Yt!_e=QzObO3X))82xKX2R~RDe}QbuS;CjueBqL! zs>-%6K*EhVej?A>PG&f4#@*6 zz78vV-WVH^WcM9%o4*aPu}jNn9o3%i6KoF=8 z%^NGloK*RaG_v4gyKnb%|BQM$N9%Y;jC#sjaCJ(POF3omFEE~$xuQ3$e-laq1)rr} zJJI1oqw+=6Pb`c!>)7GckZj3wF7Rr*hJox~z~-&h2Z#`PStH=ijy&WlQ__t7`D+># zAYsD*lHhx~pDP;w`6j)|k&~cb{Ra9p)uK3VcdbB$<^-L;M#n=BUVJH>o!VI6vtkM| zz-uvGM@Ic8&Px~|TH}?0f(VTP&8tZt$QX}AQT@HUU_KYNd|s#VFEJ2^w3-55B4@Ie z}3xhTsR#q14B({E!Bm#@E>2$2o3wJves}B_RHm z6(TAW4>$LMAUMA7kF`BKlX`(armh9s#$Y<~U6|qnqR4mR#*X$+R^zN8>Qq2NATAp) zQo{aS)PD;<%@c9qYDUka{KNKiq#aL8{R@{$G5gsRv2^f`^|~8xVtIhp*fm6-R9p{N zix(pNJ1eCV?SH3$p0B}3l|0xZ#hDkQ!6EoYqDjd?6zr{CW|#RF2%EcYb^mA%)XBPa z&sq?#&J+Ge;{`*gTg->Je4d?#f?(xw@DL{#+Ex&jL zdg5PHm?M1r^gk!k|JR9#d;xW5(gm@4NWI44!H3U@+dck7WBpt_27qO@96>j?sRyYE zV><3XY61Yd|J0<$5#&DgaSFI;BGEGX#ggcHsM(>+nwpb~5!<7ll@#|+FEx;Qz?_ka zP`y^>QT1NGoTlbI55YFzg3*@<|HAJujHv?6k7z>ifyG$xs(TW$HUGY92_A@5=>~&l z;l`5+O}36B4i?6LsSEx|+4-~_ST%M^I_*EJrWwQmFnU966P*4(3w9Q#AB-rEpyWwd z`d^>v+jfduSdFWs0y13SL}pgjEpIyjZjE@W_L(&~XZ7q<3WFcSz{5J?0VEwEz5e^vWimd!pR%awV(uPX+?UAesFs ze&xRaUXHi*B#M*~5bt<|VK&$xh?=3@~0+fMI*{1ZKrGuiO63C?ND zC6k=05kIl~(7#%`|6#3HFYoyqhM?vC-NsjYpko^pZ0C=;5l7M$ZFj4YjH=>o?;8fvrzRxP5&K0ljCKpcmARmohvxBKcKrr_}i`%D|)RhrJhXj9c2miv2uCOYVn%fS>NvUc%@uNfL+ z3!!EjdbZXoGyK*r&aett@tn2d$dlLnT}8$vJ7^I+P7=tb{8E8@LwMMazfYE?`BbYu zl4dP~pJhiOZ7y`$c3Gfuu*Ce8R${r+BfEsPYzRz*xg3|1!Cc3WZtvt!C5>0&w7n*U z=zS6@*atn^yW`i*^-uy4KM&5oZ7{e!2wS1S$p=Ebq`xT!BudaI^-l*5WOU!$_B(0y zGt>LK)sGYkCTz{B?RIR;N8knV+?5lOHS)ykwCXx52kV(dS*k25?gG;qbI&tu65BA` zN&^~s)J80|PJ4ih(m3+XXjqV-y~fKg`gn-rk%VumB~2!8n1U!DLt8k*Bd5*+>E<%1tiDo$Nq{noMJ|1*yJ&=K9kS9SNvynf%Yb9(?7p0pXBfWph2sS`0ny8iQzJ5h4O zkeGN|if1CH#t|}%7u@Gc*25zAJTWR|uZ^2C|Vx%gUzu!pSDk$>mUn6*nc#_w* zw~U3O1s20|TpV^JAWv96+KebbycTrB=ScGj-HU9O)l zY1B^BeaxrZw!Esf$)A#?+fWgEfKWayU1QVZ5^c^LWe(F~*RNs)bP;xtY%wIxZi-CI z^;_^D%JWvGjLI9Gz4|F_Zx}-B7q3?Z>#w+evO$N6?0bNhZllKpAv(@VCk5De3}~_Y zs{p%pNuV@fUrQt`LnCT4)uPpCQW;p{3g@m$2bJ2Ggu9XgcoopZ3sMaeRR(MilU%OC zBi_JKVo66}+~{SLi5H=g7ySwtDNA zJ>!L@651VGTkHIs(6LKrhBn(erkfrgqFpa?TUUhRnd#MLl*o55s)fX0P>}7vd zY@r0T@STQv2-oHCVIioIg7N-h2GnR&nmVkeKqd@80f0rp`J%`M8>0VhRpU0(1|ND)WmOU<_W61%3F(UuhCrTwrbyPeX^ivPDO1 zmKVe=$QSBI06s+VbOpIj={dWfKdcj9!{s6xbTqWv*0Q@E4qFd)*;2^Lhps*l^c+;@ z_;fI%Twr*qv<*~86~W27GlL7Lf$M$d|0DPx*PD!IHmgYstKM#paRf+&iN**#7hn;M z`Nlp{&$HSF1qTK^Qvm~HuDH)Lwkm?LD%MCqg(8F_=g#Q~%Kos~{E@8! z{Qep!uNgq^mSz@QB#yI6qlN$K&m@jRrTBd5o+~D~JD&d`z*Dt&5^Z~>U-4i@m$Uw0 z4qXuDaQlIH&}H>R?&k3iNDF~|ixih-hnxpowlc0Z#nF2)fYMex4V+;LRI~2K#F$?M z1_Mj&YUOnhW2e-bF#l~hF5bbR-mTE3(%Lq#t^!TT%e?^`jks%Ld4tPEfIg;>!1*9b zaA>)5ZIb^{N5Ss|BY^PH!zGZkGfC24^3!sqk^8^$U|ijvR$Dgi<~78FedW4cQu-GA zyk$tSYdX~p48c6Zvn8Ez8st)4$5@1#9kRynC3_XHcYTU0*9N%w28{YeU9! zY|S!3iF}PYdARmZ^ixaS5(k%z21k4oi1+f{-~!`Q{ zo&G&tJWWG@fG&rW8QGh5a)A2hBPK%^ZZ%eNmQsy8M%YYAfs1+>O9Egn4R+|Ma=GS5 zn7(~5F5LK(&&EZOv_+%+tVHpfatV)aI|lhC4c9)lMA~3lkdg5HCfuz7M_a-7*L;;@ zBkSt}xuw27^E}WtWggD`uk(gJB*Fl;qW;SFo+m&BaQwet{96SM?LLU}@iGhKClAg@ z`_B6qd;G2VhjFvt5J=)8cC3Sq@W3*@i5p4%En$a-ev}t1)H`LZ$_S8o?0=B_^8w*o z1Qy=EUROsmP!Dx7hQDgjytD{f7nrL_$`^pAn-9qRcOzdQ|0KU)ECAmf3!6;E*Gsgc zD&QG{=+&w_|JyS%30UQSvZKh}!$~IFWQM0KK` zoD=rt|B|aOANs%;0Cqr}kJP3|gn}^vIQMQMAJW_dJABGb5A2@d6Xd_Bi-WZA%DIhW zxanGN>ht#&y^oTcIl!fBZvf8It^*(eERingR)Jzm5^&Cz;%iP;JXtd#M}Bp@L1^h=D`qr;;<@1Q0efT-@ZDqxbxJjWqrPBs&>admx$+S*_Cc0HS|%x zBT=oX(n*~D(X2C9B<1tk-kfx@Pp?KJ_Zx8v$N6TZoc|Y<0qT6_2Qqn0iUH?t-F<@h z+t-l;(yZd=?)h3Tev_#j7)JDZz-t*u8Z>FrI}(-W>Y7Cc)>kTuJ-4mGR?&4)S5LH} zfkz2xrRe*JUf{%aWXm40ft;>h0t$^*AidehNCMI;8Me~jf+IQwz+6nOC=JPhEVXhG zq?;B{u!}8rP|Ieqt&)k=Z#%3IG+_~i;=KPekv9=uB{~f9LI(nxz-)+-4U9=asGR44 zK|Ritkj){As=t{tSs)B29hc7-O-h4Vz|C53G@cvK6_BrT5jkLx{)%fl=-bBA; z#+(9c@dC50CJIoo1H}r^MsEbr9_CT=d&R=f5NF(Q8Yth^V#k+imiq&3U7D7?v(<%~ zWvYw9_4z)`bxlXFo2M=(F4v!T0hp@697=oTCRf;1N>ZPe=Box>m9+sm28#(~+bjm3 zVweY{P|++vyAiW1`37ySV}yCYT}F*Swx2K%E&}EB*!!E^pzA|*WW7zSA?%1L(a{(< zIWrSTO@EPRnF3NRNS0PE(G)MyEsvEPGijJyjYEjFXIH|Mr|NgXYCPpMR}=6d-_a^+ zLbe>206LKdZLb8jL_u-cU;{RN`E=pEV+-9FO!lHFP#ni_#}Q1pKPVrtL5G@2Do|AX zT-Lw$QUlQajlVC=XOfl=CH2OGdVqQ;pOa+?WSOj|M36k0q1>e9WR~!v)FpLAU6^>8 zPI8pw13%G<5?6882#ox)w22=1Z{#`lKjcp$%q6et<_DNc;E}Z+gl~OE4N!gyaov(2 zyETuKkS8svu{wqwkrEv2)H|;bRe5LUkeNZRG66(&3+0O+a!1v+(D|;k*(Lh!OzCvZ z9)nHDR+AzUoO^Uio49}-dOn{=%~*&PFe}iB{yzs6y#$pBQ;4|1OouYW8Lw0N1>rVZ z)ijf!{PwoN?tM=Vio<5^uM>_tGfu?|%X_{3;?v`A)5PF^tv&POfB|sl03KPhM;Kr_ z?YJMeA+Uk6-;?MB#cwC7i8`C-6h%*ne<;thS!cIu&M7|e!-%6*viHu_UB24s4eME* z093K$6Q`n@zp+J1Wmi5k<9g_k>Bmi~FVB_YfuamJ86X++))FQF7`2#>$cix#85%&N z@xO$D-!Ud$-48;?bUW|DfibJE`c|-o%PY0GyA1A>*}$fdtZX_ zl`8aAtx*a!x`queH*t%#{7xQ1Kt3V7(e(|3*?#m$F~|SyDIlcn59N?F)zyFx8mgqE zX4?>O1N)WkNo&NP&}?_3I8lTaMM@{J_Vy>PQ^84~y#2R+v^|&li2m`d-$w-C%>^me z>}Y_V`G4FS&;i9-d6QLdHKYimKe2kP4>4p`(@>SOuly2P$|Z z@L=noQtr=IW7MjDXnL6AZkLS|O*X_pujkk9x?X%m^WWM40F5q3PF~O1?#a3+d%Wl$vnW*97?UyMaAOu9AKX=#d$;)f)CqU99LgU z0aaGE_T+n56Za5Ep!N$~ybIJ3jIgr-7T~b;&G~Qam#;8vWC}5B!(o^7`iUnPG`0C$~qk0HAIa!hjF|>l~c2 zj6dHL@b7sOp^esRr(fZ6u9EU!Wv_G_kKm1eaqczAaC5vxj~`4V-*6B3LlMWRU&9$z z9K&@w5j5;w%cjLVmq05y85mZS4+Mm(WiPjFpo{!p%ZKzq1R6HL^2EYEy*X*Iurh<+ zCD5dR=GglMudkomuHO59(t64y;`R7yG@6rwD~Zg7Hdq#A1C>?ln+=NK5L zf5f`(q*5@b_i+wJ?M*Yb7qklL{V@2OZ4QgYWh+>%8NBOZ>PUQAh1ZrKvxfpI&A^6! z*GF{!jn*M+fMG|HUs2g(X#&iDnLz!`#ofg!HM{ZMel)W3jzt;?5^dOFrUOe)s#7$^ z2%mKP4KUaMkd(sTK5t~eQGwB$|Lr6EwHPSs!eW$uYqCL~H8$rCS|FU8LngC*ceN9$6N_6wUOCPG?N;t_bvIjJ{9k&*d z|E?plHP!t^%frKTfW~2ppE+z+B+B1-qs}>~KG{(+!Py4D!HG@nr=Qk4T>{$Q{AK`R zX-!{zppOY3=zZqP|Bc{rQ@+!L6)jR7?k5XboC-kKTPLhP#j~CIR`C=62GP-9LX8x5 zB$K}u7d_9`BnS~{luoY{DV=1f>e^)dppxzu`Lzu+(dHKH7bh66ZPWW6Rju-pd@a(--y-&Ru2Qa{fsVZef z+K=Hk*~zx@KW5|jK|>>(XdBMY{$+o{^FH^SsJ)Z_Z8cq4*qoOb@C_Z{7Lo{R<_5=U z6kJ!~xu98&cNcj~wkGsYAG{sLjhB_C~zjrxgO|9vN;&mwD~dfp&Pu zZP5UlzbmBJyBo^8Cipd{95-XP-yC?kW;UF{))~q2bXM@I@3sGJ4e8C@YxU_&%NZTM z4$vecd$u*W6T;5%|4bHWeyR3#TrClGLmEV{b1ZeJk%lBeSTT|OZ+-{Kg_%(4f6|in z$!BQ^Eua!7Iwlrhcy+d(@~^a8XJ)&Yu0*vwU$@bTUd&KFN^SQ<+6PDQW_o)4qfC>1 zBt(L6j>Qtq_p9eMaa;QB9YADyhSO+g8wFfXju1b3+s8eGb%C2NZ-e>QQwoW_xbacm z3YtgyjXuZtwEx9;TvQXFD`4`f49!MmN2RDhV6L?;o{`Ad%LeHCINffTG6~|f1g_Bq z1R8C2fzu3HtE^KUfZXjfAmc3OJua*8a#6eqN|iW(xyJ#{GvCo)QqjNJT?3e5Td0Yr zf~5N!$K{cNhdXMM0ZiT&mkM1zr?)KBv_l1XlGM%iMxiYFx~FO-6tGXHxb!bcS#L@; z#y{M+krSIU~7x|gxG>5mTtq#lMWf~C)m-J{#XM9U+m8BZ}#W06*_6K9ITEL?t zFd#_Z;(@}g$lrTI7fta@NwD6!F}=xkR=o>X@`3YT$H91D3HML5@xp{aqB;GyiW98* zPZg)aQ=xKj_o1Z#5RBW99_-)6jzztGv^R|U%;jZHQXUH%p6qE%ukQ1MB>VQ^P3`bf zozgRZL*0nLuJIUl&GhWkbhU)}{wwKHNPpjcddNyoeg{6&ae-Dfg`2HGz*@h~mx^qu z5ttcH(|AYf_U4`Y`LR2AYCx-Qy?<|$P!`MjtnlmkK7CD;@Zkuhh}u;Kip+Y+Mjdf4 zXY~Yxg>LUtLkBGOn`D&DzXv&;pw_ulKe9YGC{&rH{+l|_e%OlSo-XaKXa5x$LdA^? z4JU}(#_H%&QP+BIzSj6<^QrQ^Qst9tzO`WNmpZ1F*%U6HNf=nJqiKMn52tzW158#L zc{MbkeqoQQxNvkh?dHyZze}4i1~cL}R6{YwgP2Fr@;_MW$nk>q$gWjc&K)v*9}{I`2rmrqd+- za}R4AiwZ6!$NGW%&HC35a|1=D2!$6vJf{^py4GgR;x$?noqEIot*kg$fj7xWj!(0x zg44qFbs`|$P7pJb*H%gUOTA6Aw-QURJ>y%Ic&WCh(=zC(wvSbBm0fOX?PkT3kO+Jc ziWav@udQyXUybC!CQPa4g@fC;d?X-F#mwHj90l99E2PF(ZFVU>&+quxz4}`D4bjTK zRc^3#*!eEfhqwS-jKZI+@4a9m37f_hmkVAt+DIQ%DUDAE*`+}9dAss=lXin--1G_~kZC3TC~W=*ML0MXXp_`q zg(dv|R@vf8mKr=H>-XNP_l1}w@G9dWKr(0~@yzG-Y7~?Aq^*)yj0i*Poj-ZA@C=+> z9QCB$Wu7$N{a;~c zg#@D}Ooii`S$7XXB+!T{-0vBPv+(I_R7njCr5b~8_GX<0W$UbDz`Dc_V?I9Wvb!bKeg1Fk5lk`uTk9hS zbsQ$n@wftizkfgX3*dJ)E}QJMh=Fo=qA~Qylc0T_iuFp@8nt(?`5yj*H^1BWC1o~+ zb|MsqEGg-=^^UwZVE#m)b>?{}<^?bnE3%xRm;jJjI+fb8RKbH%YMl!NKEE%Wi7Vot z|4j;Dy@BDVc7DCNtqyi~TJQyWUcyGoo59tlKO<;8YJ2@;(6A#?1`1B&wx`#HpX-1iR;_K zD|Gg7=0LWAR;C>a^=;#VaH{N!bnTGu)?idSh=jW$wNDMg#^$wdM^u**;kFI^ZR*k z->BtLovaJ#G~ABdC+X>J$pPT;S?M;MfzQgj{kPIh=DfGvp4HJu%Pf++@E~~7Fr7va ztZ`XHlvGBGQm3|Ll35ZR0LpyviqG@bC%228x!F+~tY`tqpWV3_a2ZXA`DX%m9~lUI zCOi!RNwt<9FdeK`xUgi*qEiLDp~u#Q8>c*J8z#$Il|uLm4p2-C(LalI`5Xze7d=it zF7s{4@tRe(3pj1Yhj!|Xj%P}^la~ABEu7B2Vv3u+*$c|k`wzGKmBX^o&`3|VT}kim zOjRPjF^-iV-k&D+(WSO*qk4^j8N0&QKTlMNS;#i?bayb$nHycl| z?B*|t0@MqZ7cd) zM5vv6be;=Y!ZXY>46wp2dLi~Dh8<#sKo^45R%}ad=nRCY+F4I+KqvClrnk<@TNK5D1OCY;;XMu`f?`13-`;+6^mAiq(sp#OcC)kUOZ_nw zi0fami5ch4qvHs_OjGx(*|{&o3#?Jz{CeuilmXh$Q~wt4B;HoUZs@g>0?oH8GP~TM z8Ix7bo709Yn}d8ibQ$5sxs6nb(<2@7Lx{h5wU z$?;To=?<#c=HsA2AJ>gEcrf(q`~5m~5+-1X#luw_VtLbE4`~+vQD!NIM+LIYX`n)j z_En#|8~7KDP8u-qIA&9WYosHoMoAW_h?b&uh2jOT-F$o(_ zw^!>3FiSX3vX@mEt9zR!3M-&@@O51Bom5=5&OhUEBl(&2+M)?sKjQQEU&a6fa!re@ z*={;)({I9n0UT1LX-7Lg+d|9DZLDpsnAwvx+sUF$`9ZmrFYko;`#`!QDp_9VtPTA# z%+0rfM(b#2>l<8=4O-1eiWyvKVY>=$>X#YPOVl$h@*+Q#+>qU;2VHst{88QGpI!-;9@>^jk+~%PE7n6aZ_y|O#!upXZ zPX)MwVM%jTtimm~(zP~rP^x{jaaN~i~U)WVItP^PDP*;I_!c2>=d9$jj6X+}jh zDXO*u$ z`1?c(*#K4gsMfS!PlR_peuC=n+y&jWfC~9@Ip1v*5kGY@?e6@A@SU>7jxvz;ET7qq@Gv0QEDdfLYn+Cx zM})^A%D0pX*o{ANW!N2_^&OU+Yu$TX$kblFS+w;<6#uy%l&D1-cRQx=OP0){PEFX( zNx$xnl3C>Hp}r-J@Rzn(nB)C2!p#;~14_9;qebqpncG;AopHq;O>t*A1FW>Lwrxh5 zEe);}4YwdHr6|mYD;8S3Z9~>&A4vtfL|yOHfV^gxPLp|exs1-(_iB7r#sT*HAU+2H zN>$@+IYfe+B!`Eb7e@Bvue4O~E-)aVBE$Mw)ju%9y+8mAZ%bI+FXnk=Iq~;skJE(4 z$6qnE7jG9|EouBbij^eb)7J&`^#X3fD=&(1?whqpu5ZP7y?(T&^DI5;CO~bLANSDI z%tr6o(ZVIr?oNyROSu7h0MMD7#VY-XaDx71T=ZUr%L0nx4l313=zB)DGwB31nw)wB z2R9u~izaMP9b?LY`QlP(g4k-Ar&^ix@^aIv3q9P^2^w$RyPzINeYob!iB?WYtw->oN?Fc^!nBr15sM(k)rzU&q z7jkm)1D8&_zn+rfC#CglJrT~g-TBnVSEn2v_?MYK5A~^RoV$OWl`OzJy0-4&@QK00 z&e&ckfh0S%ZBKHiejC~FbKu~&`xhZx2U`Q{K*Y6S?kx1%ib%&t{X|& z6J%LZulCXRNgIG#lR(@US>Q^_M9$>ulSxK-WLjkt7} z;`7V4v!yQ!iz6z9pHw*;_DqWMnRMwwLeRjjp92wmv3-t3LaOv`f1ycPudV*D5|SC{}(tDMiy@Gb`1Xi{7O@Yj$eH}PJ+-7UXHDP(j-`KWGLBnx~r^A|)VAo?BTknX4 zz>U?-cwLU#UCatCSZm%ZvU_w8)!VuQrd-V_YAH-~zJ^CMnYum2V8V!3-?(h1X;>ti zf(%PR;oD^XYy33&5f6C1F}mWo`4BiCSOyd2$P>9{gu>DHtJbI@rZakADQVvUDj}n3 z#QHweFmJ?)FP^M~xMw#}+X00uj&#_h+g={uJ4+bkX1Oqmr)}q9UJSQYlWrOakS&!I z((F(n$4c?3B{t26hW|_@$*RqwvkLWZrc>q-m%E8$6Tea=Nd1_2x~ImXMqrDQLD`}| zcV;mNV)T>d+cDyl%Oa^JwC&yef}UV7zLfKFoG1H-vv$e|500GQ*=w3km}CenLnv8a z1UASS80ARPknPYW;rDTLYB(c(Hl^y=EDWDO35~`fqM_*t;YhD9j|{SxL_{$VBu+(g zu|gG2MZC3GCFs2w4#H9tM|(o7+E`2?CvG-+h`$N+t+v%?%BOrO`$?D!A9IrW z3(c=I?+D@w%a4c7kKe?P*+eGQ%1W)&l9y#CpslA4I(|&oadhwX>>>wq3snTJ9eLS9 zJgIOtY3Lhz?=2`6=I5WpCrjOyeR}g6JB_3!_+Kr6%M1V9Dx<5e*PQjEpbjQ9GRG_V z4StYwgQfc~o#@apahPsW9-cuKwNcc;-oxWMsH^T+MmO=FIQs3!b4yvtK@r19!@;FY zNhlY`zklSdJbe%lNRO#2 zl{_gPXlyoQ>NEE3NR0maYEf!?^KFMEgW>>Kwm`NqP>E5TKXCBqLV6m@yw2J0nEKQ= zocMxrUPlTu!bvcz@Dn1H;>7xUbIFnv;Jv!0zAj&upCV~E(?fGSxR=Q>PdU{IL;`#I z-v(!2WA;ae`NMNE`DD=1D`ne1Y!cd&r0?Y^;rU6Mt&ig}5{-=4bz=*cW1rPYzZolU z{1%R#$RcP*@|w;>&7!v9QyLGs!?t2j&S+1t-=2nng@ap6#KPS%0kS}}m8}63|8m84 zqwdk3kIx4Lfw!(?<&-oeQaofw8eAB#g}Zc|49@ho;1?esJ&y$EI&&GG$hza!0bOtI%W05(ybXR+>DHxZLnR(w21}{!m zCO>rwR$reQ4V;A$&p%@9bQT`UGAYtyPO4^G9;nFmCo6kL&YX-MIkSuT++~r%D1G#2 zFQN+w6IJoEoO@urzIq$$C2qR)-o28AV#2Bw(LGXz@@3UYmlZv*9nEcT4Opu|)ET~u zO0hMI-7;`BY2vZl%@Nfb8~(Eo$5?^8sfXcxul~0kz6i-!koS;!#~+)Wq+BfT3gx=u zny&|VX$b>B37<^-Ud=x!2wB%4Pk0O^3V@j&i?Y6BC;k`+!F7T7Y?a=@^AWi6EHX0K zY^9mLb=}v8<-yCgBPOh!RoSAEvx2EJ09-ug!{{tX@VzmSKOXw6-1l*r;;S9 z>*C@f5;N~LGYmejwZpUIKA?Wfl=(&YVI{kN+t zVdwr1<3fpWye=|lC~O3k_*dd)v(8K{4lfH~?shsGIvqH={R=JfS-wdn58e4y5el?tv>62{*5={9ceOf~6Q&Bo^P-t zIsSlzEBbS`0?~lA#gTSiwX*y{Zg9|_b|j5aS0h)CpRP{#X+bL0HgQm8@G)2Ol6%Dt zF_C=dY3nJvQE`|d#`Q+gbIB7*^}~tU{OwJDcyj1@$T63j*!lYK%j?^9*M7GtNpGd4 zqnfsscS)yWQIYRLmm;7SCpV2n*R)b2oC$kYO&Y$Bxv8K8<8A$6;+3M!% z>JW93{>(N!(F^IlP4-HaJJ>Z9??oLnHU}>-r;=fJ#(0$4N2i88bodv2ad|kqR)3T< zlPH!xC_s+Ggms048;*fDX?E#gR+VgG=|!0NJ2fb5=WHsYFyzMzjJe#N?3FJ;bRe?; zJ9@On<1W=4k1S5kjSd3Ar{26PQgLHhbiTXxpCNSbJjS|X&9~I@OjswloS1_ux2EDV zMqwCs{NEQ|JbVkNKHRjho?|G1)QG$)YGLNQX@+DVY@Z6+KqZ1;v^#?G^YPa* zG5<`}GD`x>IF{wZGOl~uXg-wz!gCXt1HWC{+&(qy_soDbc)W{BFeslbohS_E09BgB=$$XW{Rw=bQ zDeZ-zYU8EdGtSqfg?&nhq!8wd581TY8@@Oy`9V&(&=@(#IM8L#kB83r<;6+^Vn0@@zcgeCm10&-2`G0=@a4DV(@dGsFPF!tiMhKf z$+;W_rY8PRi8tt&PrAq9w+&A)=7$B>KY|MHOXy*_in8g7LC%=`ywY=X7oMrBVi`!P zlR+i*Of$WIdmW`ahC^hPHR3%DUFOrDadOB*Lp&Or2H=u4`J^(A1%t% zqvKMoglsjcNL+2^4LQ*w9o!7I5Qz;9M9`}7ovZxy#%9yEu44B}7E4~i z@0wEz&^K=W%1M<;pfIkq&0z*Nbe$A65fiH=+zgBvM^gKAtO!6GKi=tdg5G^Qb%CBx zDUTRdVL~X2r^#4|^tRXvd^Npsynh#`rcSFQq5hJfS|wg&>O#2LJO5BUw7s$fq?|nv zv7ft_Jo1w04EbBhi=e~)qJfEap(d?rncQn&Qu?u8IQUezkpAhSVXUhd%Lj1|_w(1N zPYXNRhX-+4< ziguSj4OS+=md|54bvbp`K}@6fP8j5D$rJxLV7qR)%Eb1>HeqF(98cgoNDB&wzu|4#bzxii=U zE_uGZ}8?X|h>VRe#Zpfqj zpq5H^a79HIbjyj-7Y%QWi*LBmVGA0kN_2juVsNlejC*0&U0bA~fJQ>B$-_V?@k(m! z@p!{H*@v9x&Q`t*|N8;i$t(WzZFu*$2RPnqmAZs@$~qIvTD(2d`rEv?81O#J0K++$ zR>sIN7XsqSmhjouu2E@k08bQb*t6+7KcW3OO^0%QS?qvYz1ML2q*QZl-NFM|>%;it`BgAHM;+8ABEhJq!sKh1 z7B8LMNGtC6wzxcR)?U9Iie)2EH)C^`s>k&1z!Oi8=AjtfLXmifZ_p#q@7>Zw0!2wh zqGqRYi0V}{MDi_I$EQ2RUW!InFsk`jEl=0j=tkIL72>h7Y>tvEV?EjY8=Ejhmt!Cp2Ei=?^>kAHa) z%XsQiH|-+1!Z;I?V*nVV=_n$~CU-V-Peui*Tu51cm zQMseaTB&BeJc;iYY5C(yl7lfPMFK{HvjUtUx?}pZHKCfid3P7p#&KKCg8UCc8fbpi3D;ZNZ zH$hXeA!On4NK}qT3WfL2xUz$hZR-^i@Ipl1z1jMVB~L=61cQ>3@6#wpvEq5C&KG3N z25StxwaEp1U7#{2qR$c6q&|Tf(t4MzkJr%q1f1h84E_HkD7qT8DzwL%t(tpH zPF{YsPpZ7Mq{%xxa&trGoCcc8uZI!)xj+Vsw&X;es9sOO880i3)Cy=H=fpO2*Nw#W z)nAg%5u>7-e|c0HXZSHjZ6lrQc8i%al&V<`D!9cNK~6^+!|XAEM!h0NI)BkZW@Jn4 z18ekk?j;&js=MNZMMJPI%ANd(rZ^Z`yD^F+n#<(hn@KoZbI zDM79%#Us6DzL~j(MtB5c_|Uknf^?JZ120s*fN6St;a`i&lA0dX_XiHb!|;O{zH|$P zir_3CN(f+=Ni-aDVvKOX4>6u%c`M)_*jXuQ(qKDs=Sb-S`I#Z3LjegvNa}h@E|4f zZ9}6nNf~KN6|vaA1|P@dBNr;A1hX~&c$?6um96|h#c-zxkgd>#_1jwCC6iFWGz?E zeOEw*dhbLskR)d9(Bi81vdZ)(icqYe68~JZb?R&;#hvh&vuN_~d@kjKJ9P%FzFS$| zh+0NQZoTuf6-WgW{DXy-Gop5^2S3GK{V0+=qeBwvV#o6bL`#a~MdBw@mWyN|B?k}L z?UCm@UR(+zCLa8xJomB;dQ=Dw%Lla542x~8qVsE45q8N&E^a+oF7WV* zK8A1aXncE3X`@sgc68xvDi;APHj@ylh3jABT6T>5KaBM?HMWN z_=UJG)K+e(^bOO&GVByqwYx(78nX^Ki$N0~`(bT`_AAw?M|(hC)I$RGU-0o468S}A zhzvEem&6(*n_qss>_9o7u&YiMPl!rL^WJoaqIP0xR}1Z%1ACwML#J1%%ZrK6Ng9Ma zqW5URbk;*>Nd}$m7Akty^@@)DVC1~e!aKRHO2wacu88%~!MIt7{LpEK>j$>;U+ZF` zl@bgTso`!Esm-K^gEx#5pPY_Gx}?>Bla;zZ^_4A|__YBysL3ihxIx_sFX_C^BeK;yhm}+F?Jr+hik>L``R~_<#=Yf%|)@(x3yv-(q!oG1=5NIQw zHR4Vv%`W{6Yo1#vpPswtENI}}&_xBqzy~oCYlqSVQ#X1PL|gSvd`z_<9&Y&b2*s<6 z`&E}@RKxK9Fq7X;g-(Dqm|Sf`=XWfGGCxf|)omlNwwjq7LitF*@uFBJn~6=OtUHCn z(8#W8#{Gw&hp76Sz`mD3c??0Z z>Y-o+f1??bl>k8P00ZYaOSYPnA6FN5BN5lVOp3vMb@{ZzR)Q*&x~vn1Udscah{jw4 z?UQe^7jbH_B87M}%}CF5#)8?Y1p}*aHT*0m3QX)-g;ZTGnFS?8S=WLIRb#~oG?Bg^A!U8lLIMqPH3Ex~8&=(|>RxID-uPoS-!uM*5ay!U zY*1>aF_h?M2MvfruTk(IY~yIHYMuQ0qA@&Nk5&=q;$DkWBotyiO(`5(KDY<{$P|7; zz8p!j;tN{sr3W8-^fkbpS85+0S~o8iJK(7HogNq|R$Osqddq*mI;J`)vA!3087;5| z|F)E7;!XBox4aGeZ8xh;z3gf>80TC!KLQBy!XwD zEX&Q*wbGWKY^OPVayf{a`mL5K5(~-8T}JvAX{K8>E2z4A_W;&J2!}sDDw)Nv8(!6| zQXF|hAss?SL!%AaO~~_gKHQc|6SS4p@j^Rsv8;k#tGw(>_745Nt;8}dH#ZSpCXIYI zWMV9Ny8yMhr#PD)O&A6-#~&AGm~_%W;>(wGe-hUZBOBs7fTXHCy)MIr^-%I9SodXt z!sgCX58seo+Eu55P`ca}>WO^He`O26bH0Z`WKuM8Tbue~gFP}h;W&6#)e#nGySq?_ zezB2+Xq9k$6~fM_QK}~l;JvrYHDX5TOY!vIr#m_pt-{}d=JbZXTf5pW%m$ho=LB0_ zp2QJmx=<>Mt`$#N^(U-KZdhMuaBJ$LO0bV+St<9H#__9 zBir2lmFJ34fmnMnQl26@@sb>E;S*^16etwsHP) z)h+uKO3i3HWv)ILv-l%>(tXNYU2hSW9Mm`Y?AX=d&W~_xkHg&XVS^QfNgd+0m#Azd zTHu_DT;?yD>wjbzY~E0?*u}AE#Qw=8Di`jZ>_dqnp_d10l_Ec1Cfsi1Gu{?0Hkd=Q zP)hpitu)8Rw(VQL?QlkVn=XCB+TbLgj3>7u_-b!ZKcrjRDChIC0GhvX=0M>OgSKB%Ib3ii#e{Uo0TJ(?`J&rEkN#mL!d~|Ye7`};!P(W3_~~I#U#!ZkJXcXiTvKNDo$w8XE*}vUb2UG$MMKp zCd-zDAg#x?97&Uhdb~~As6PrP_ArPHir<)Z;X`#AaBM$tX;@JxPP|;F#cptY1u`w% zyb}>t8?0rx7@$oxP?BYzWn9&>Dq_dxcFLT$Qa5b{Pp($kU-yWrNin^ z^3{S@Rfe)yNU6SE^r>DS#CZEw0Rwhwx(<`ch94r;O>I*$Nc+`_DREu4KaUB@#kcKW`^hqoKu*laniEqN%037$s>#Q z(^rx5xIz?Fn+?Z}CMHBuXJIis*r3L%0f|$5 z9XcND`wCI@vk%~*Hd#(JX|hS7Oqms>VuEQ}0lw73@G5{zX>fWYs`)|gYo*WO{6kd0 z?@RVv(L{LuBPrmIY7kW?IqU&P4vy<%hg`ul^plRQ!!OlEmo&Mo)r7~aA(A8Nla>v3de z*UV;r@F=aqqC--x@G9+^XkXj5;>{QtqW0kv8^C(y=ZOG7$sf?M=_#nfFNi}(D@g*V z?%Om!v*@7UG=ftCRHpX#uinz*`l1J%u@36*4GdP_o=G4$=nAv1Qk#UhO9-PH>Q$UhyMA=I~&&cLZ9!L4hO!=n%{G_?Lol9g;|?@r-t-#YwFcHoF0gY{uqry|Fzjl7(lo%cVmg-r6BqLKWkkU#4*R7yJCYI)TS`CgYDv&;z+V47 zR#>IQxYa;~yc0@|{Ajvj9zNN{7MG}N)aRWNz{>%tIzlhk&I^FP57LcbHT#{!FofzA zH$3XGVmt2CUMMVWQ4a_m`Lw3d-$<9*XN#k!{o?AUwTi>B*F8{gPt>AmwS6uZ`i5w<&IAM z5$5qyJ9myfj%O>EN3Az92D^|uN`hB$s_X(`Okqa@s=u1mW)L6p<1F4LyYxwJ#0p!< z$hdO3Ctyr&F~5TRMcWCL5P5{*<?RNxZ=-SeT3 z8hfMdLUZr=K*iMViT86#<&B2rt`@>G7v*hIw*7%tfa}lakCXaA-pzGBN_N%43YGG| z)K0jVTJxvjb5xdK*VNV)k=o0>D3lwO6%nT5ukNi!!QP^P`Vo~zXfiYfcd_KoV5*95 zY1gcKwO)sAZcrJ_QncQb?7M(&=vNAFdr|g@QzT#8`M`i|LYk>rqZIB;`ywdSR$siD zQs4hi$G9Eo>pTpx0XPB=xfRT+%In40?U(6k4?35&xyYJRB}1>yMC)*iuxFm%X|Ny4i_3 za>rLEDw-N=JXS+1Hum>BKD8#Y^#NJ!yeIdvo#}w@Q40h=i4QU+J9?8^Hxfg{LzNQY z7($XxTcZLx2{GRD(w~2TAw#G_5U456KncH~V|2i8OQB;vG{g;mjO%@oxe)Q(IM_tonIHLecm?$pN6 zFanYw6ddG*8lETOZj^F-0Wbq}&v64n;f;AWQZjxc++!0dRWqOS4WU*Q@t3Uw)c;2e z#N+UT`CLbLH}pD)`EmLKePV6G^wJkcGPv0lO*C8zR)+E)hAPVa@?lb;LBn%RGf32m zbgAP`Ose*ydlA@pZjjy`O^^2v1o- z7ySjQ48Cnq{+udEPATlz60<|oC#Px02dEL-i~uYn@OT|FiFM6-ZEhWZYs5xm&)(-r znb_{SeAnxPP5jsRI8agg5=gTgtEeo=ZCjyQekO)*ZG6nPySzUHHCA|*pgzYdvE)U0 z=ZkMx$(}B>=@I=8ePZ6Iv^pMmON~gMEanl2toJ`>WcG3VuI6C#qo5prcc$BjL5X2Z zC&5L45FtpgYvaX$n^*hFg7e#H3%KkOXYdCdUCZv|*-$mHIH`sD%Y;ce8(w_J5Qi2E zNg83?;g*7TI0#x|mMH$sB+e%KO0P<4?9Wd=T=VSbTet02&KQZ-Rbg-D;%)$J()Zhf zy{>A$0Ht&Xoc1?A7f)!Px&Q{+?V1zRW$u~*48D~TD)x>@zO{@fH)U z3hXN!f-&1Po8MUcU{cd7%Z5u}&Ij~ZUQ8nQdxtn5yMd=Q`L~kWbdh^j6};CLEARWN;^Y zTb2BpapU_Fa45P${hc#93I?C=h$X}(AY#dTA?<8)iBA-~Gs9ENvm>ebsPA#VOV8BU zsM#-@i??(w14~*mGdI^ggF6>Er+c8sHndBaJxpKo`eC2Qy7i%Gzkrp%D{_H0Os^>c zmVp6*XzrYGqOAg6JK_k^wtq9P1`wSwH(y?DTU|hWqaJYM@4BO77zn8aZR{!Iw_Cp^ zAXc}ayYWDa)kP8JxV9&{S=5z4BEd0>3OGGM(`%zj7rZy`E&2sg^ z?g`=EyRQ2C&8;W~;OP~woxrcW!fGE@O_H6xSqt@hKg#Pisahm2)bgBHt-d)YeZ6uJ zZ1(O?{IH0jc$wqS01gSV*|Ovb4bF=a;)PrirLt?!u*onKS#r~4G08jKHSqTd2v3$1 zpD2@7xUUL1_FzZLa&-?Y-;bzGU%aL>rJ+}7h6th<6wNKxX-4&2xkd^iAB39GW$HU~ zIDWZ8n3D741uomKUwGumF3)qFq8iMm=wL=X&Ax5zDnfK*KvJF3_DrkVnnfDUzCB!) zB^L|#XRlbyp-m8aH@RbhNFAZ${wYwu{dTBwst+HLZ)-L>{CHwQ_T$B4%$dgdf}x}yr~s4z?#!lh_9K-fMGA?sXbjNe4D=E5?SXp>bs+KJi5943A{;MYK@)|Ij*^}5(#3N!mNvf2s-+zjHl$Lv$kzg5UW{hb1|50_7 zaam?(TXo&dmRv`Nju+&pr2?eRiz9 z*1kLNHO|#^@}2)pO5r7i216|yRxq+2QcI2J;)&N>4s{LZTQsI`YEQK9n9fMn-as0v z^TD6{TOKc|+&;NqmT9?)k`YBqP6SLlwoA)(bqvieoOZ@zc5v2eaMe|AI9%HGmpDXY z=S$D=bdFyms2(%IHa?WVYmqm7*z%QGC?Jwqg6g9V7fBORMG3Adiwk0}kbATTS_y)P zaf6!B;$y+a zrECGv*C;Md+~3=AV>D;ciKHaa_*cqo*}F&smD3IT(+GHRz_A{|m-_g=e5h zSPWk9W?yJDTyk6bA0;wwwbYg+Dcw023o#AqNZd5OC1Q%_upt>bb$+wlk?NBc?L4Wd zv}b?J6Lyy*p34B-+=^1XfpoYO-Oi750lJHv{7Cbp&*qAl=SJUo{0r@B1U@z`$sK9N zK{a&QUFy48;Y& zF`X7G#IEO?qqebUIhwog3qE!bQ4iL%j;OzuJ@G6BlV#_2^&`8(t`fpG(pR#?0vT-- zKzK0StYhS2#KqF%fo)xUi-Zf1qQqAUBZ9vIi(Ridm+%o=Ci-{YC&WrBq=_HbOp4?k zcSnmLhA=-U&i?5J^d^q^iJZ9T#_Dq7V|v*$K1|>2Qq+11mAe~(cG3T*c3|<>0f_^HcvA2}w?~vs!=D%3DOQi^^*2r;&!8^+hud$edcgZQr3Rvi->=yXy+37+lB?v(S`E%17Z_vQm zT0dUyFmMd|G9hN6iP4DzrD6yPP@j842S48ezJZ3lT`DILTHW zHXpXUDP+G1QAR|sT?7q#-$9vbD^6oVarQQFIz>+31RNT6#87N`bI~lSIlkfEP5dA$ zv5)DK2DX_fZvW$idzL2CfU-)z@wlPUEmUVDho<<0!RyPI@ka}axEZGfE z@d7Ik9jY-W^w>Ku)xd& zD=}uJRH@|G|DaT*WLlP@eA6gc|DV~xry*~Yvd*te#$5-X+32f;F)%xI#HHW3AL2zb$R=|sc-0|&LK*C+KtH1#7IPyP9;eHrRU(3M>MlW{`r|V zTp_g~lnfIpIY*|8X-_jkI5WFh*6NPY?6-=-orZW`cUyH8J1H- zC6&w=Zwftaudn~zy#RhX_eCyd=XVK%&hsg6jbz?ApFDgu-g=_o4bB+*M-t~CjKlE%Q`RM_mOfGhDNOIhM$P9EwfOsOZuvf#6qR$Q- zSH+MB+BYz*m8ytUQhM?KE_T~?0YUq6uQC3bsf6vjgy|Hq2y=(mpjF1crlu_UXUyUiyV#w&=WVrriKGW$e@iv}`x}?1&S(r*gSP3cb+HCAb<(`%scPLQGD4`|>D7ejgxzhj6$`lvQ z9s;!jg*{(r0;AdBXaS5q&C8CAsw6Y2>b(^eKLA0fkq5dma;wyx@W{Re3_{XN|>b?C( zKOS7F?NQmX@`D(W*n@uvn;o$~{WO#^SpHzS(=pOXT-VDirL-?;=)ZK>M8HQ%$u2%! zA%Bk-kNLrpi)iss_k5KNaHUz2-kNGSHlzI=(x}Iu;gSajBz14*PgP@?Pt*Ku8*aXs z%0nTi254HDd;8N~eU4Apl`*htEvr)SfG3=8!sFfb7(x0v=3pM5k*mCcqr69IfOQL?i7lj5}+e``KD0dOa44JVJaIT zNlBX4#%eqI1#6i60n@U*Wm$jUQ7SzJE}sGj_qhB7>iT@`T2HU2|4k_5-3IUctl3Hxj+wLPF@drSp@jw#0<|AHrF&4;Q~?;O4QBa z6+(l{wa-127Isdw99?Xropc&lc|VT>S!lsHO46(X_4&O=r0)HP_L5oN=;(BkRfh^k zf30KAOw8}?>Mo`E6EHdqp8KCxDn_RzxtEQ3mWtD<$qf@Awcxc6&yxT`=R9U$c7{k1 zFomhR%j=muuDVv$Q`Znifvj^?v=x3rfl9Yy7gI!C5SdD0637+kEY~Ht~UDl zvK(>CI&qsyzcu8VTDa{~z<=&GfxHQ?`(e>+%skuv&M$6G-5B5RFsFbbs0XV@*;RG? z!}{hAOHzmaQE{S}e(OPGSqXP8X87wea&BASwBAukV+JbJ757kd1Ut8=XN{km(6`rW zxK{yxM&zA_ek=PW{2=0DxWt#S?3AKS9lV1}&vwtL6wAvmvG!@vuK%g!GLig4;l>nP zC!B(1cFiT+?Z_&M3q5kZAy@FQ8=IEaKeDkh7v5N1hcaRESXA*76@~a^K@}Ry%ePH8 z@?yAH9E(WS>-Xfe`&71>NRB9;x@;{Te>19clvpLw@VYBMRr;H>`0;7cb-n@;L{1Dl z!)VJ31|R~NF34Ns9rVN>LbYs{Ez35*Wrb#5Yf(-`^pq&AK5<~RJBr#Sxj`OeT%jp`A{2{A#RKcwcme(A%e{6vE_r^aXl zF~{|!O-X|V+J^4GP_(vcxZg%*J<=Gt)6f|rzS$USEJmi@BKo`@;G)Z}VZUknQ^$Ys zrX=;K0yU$7Q|E{*e)gNA+sqZBeEUNy!(~?Q0?Y_|d3s z1RoWnH{VY|ue3kUz3cLKLYR#6-6QSPYbnaw!2@0dx~uc6$(B#S)ai4PD+te+r3J_P zv^t&bkch&6byC+k_h90Il%stfKd;>7os3hScOgf>YtQ(5c;1_gpt}FGut+3G_-Kg| zbOgvuG!G+b zj}Ukap!5Z1210$tO4;d%NcuE4sk5Kg*fWd@ir26pc8}2o`i;lPX6x)vE*FSj?@sL2 zFcM~+4cr_3S+e!;lk2pV%y{7IUP*I+y5dsc;8k5=Mx`X7Hi>VQz;-Ke7*$HVMJgu3 z0@pF_R!2vLb9?1a$3#@=Ov`G>Xr}#b2NTW$!=&)Tobq>^qLf>kwIh65Ag+JC?8X_W zJ?`cYwE%BiUCqJI)~>9pY@a-gWXamo7Aj~W_%GjI+;4t~x!wUXQUDl~Xw0e8YyikD zSn|ze%4@43w}w5>v9Y?f-w(2+$vin-G~tM3Dlr}9#6lvcW-HF+*?zFWtLpVs9E+q+ zq(egD?-!LegHDa|f@NlRXl_iXBZehEs8Mz=2Lug(OjBdcSvBoBA1$OZyHtW-H7OMM zCa052=xjB`XDK-)w+OKU(UZtvAmdAdR#`T!0AiMEMN>(G;3TE&6M?G-{-3^`16z0M zXf?i9q%PSmKJj1NU04%I36b+J=+Q2FXeN@9qAu19COtiYrhPF6nuQp%D#ftZa^Ho% zaM`qV&(!T^Dn4v+GbRO#+t`HL+UR|G4e<()kTeiJFP#P&VI6UkPMX$p+j{YaIjbuG;(W$kScVW!$n%}kZX+j_Go7tBNov%`|kp&~_<-xCqAz(r!U$q>Z95Fqr` zmN1rFE(dEDTM@^HD1N~SB?G6+O>^_$E$+0YQ#A}-RzWD|U=y?tE1eR{%(ma8f4u5r zEPuBdFu!mn9D&7xonoX2jR}L!LIIp7qSOlH%<>Bjjv3@3wDcQn1Zjkfuos$d#NfGk zue>CHIJTb1;IHm0qtttaIV>9DcQ9LFnK$yw5oR5WDd=+5pvE{CLb}=(i7CSuxwgjA z!b{E{+RRL3b2KaZ4H{YfVm~}xwqN%jA_5IEWWMOdit7kMgq_HGMiHNqy0xJoQE&mk z0#b=AsPLf+qU`R|V?Nmo$<yIm;E3tC<1Ev?UDgqkJ0;B;BC2^z9b5+ug%S7_RhpqMms?ou04Y zJMDo5s&PNnEjXE;Ly1?Xx+Cgm0OySiJEO?qM$qg zl(5+E&VS+;3R#ADu3V2m4f+Nc-PJ*@6>d|^0nw4|2{HiT2}vEqe3xxEMile&$}@u+ z>|tY-O2&oaC*I^0-!lGl1N{Sl{If7~^Oh%z9kPa1H>lfVl2L@=yN6mpaLGfU{v4g` zSHLp)(E&V&&bA%&ezCS>l$!BsOma0qB)*jV=-kwe)!|36ZUc)Tf=Wa8;02(tRS1IY z-F2f3Q?d$_7Z&jd+wC`LWht%|{3^){O*}X~O7;E+e54Qb$t~Atec9+wUVoPJUyCr% zzban)D@N>B$qnr`18-&<_Hc3gRmO`Tf=er3wli(ejhE69zUFPtq{~$!$tCYz@{s!9Uljv zsNNqfL^t`i_OrE(SD6Qj$}in%H2GY?lR+c;9p=+?@mC6U`33{L5f)*P3Q_gu`I}ik zKzw0Gjzwt^;3PJDJOuXmRzPeJ+YW9vC51TY9xhuqTaGV&}c! zo!D%qCA0W%c7~ENDx8IOcMwotoEg7w{kG6P0gCwD{BnV)s%N}*F)X-b+~^R#{E%x8IY1p84HEj`!6Sx@2bmm2)ECm2_2oUr`+v9qZ5te)GIzHss?3DP z)A`}cG(9~7Z+^-d>}~&a=^KPWAvy0vA*Ci4H7qWbeu`1t4NGPf^&$p{JI#W8udJg^ z^tbp#@G|A(D`V7kDz+hfLOoo^pg_yo-%PeYCyGO)(fgwI0jf^N+^?#PwG7@p&4~$zHeDGva?JbW8E~yIKyxqjl{Y1$jD=~c ztf+=*s%{Usbps91-b`8N#mket8HMfMI>@vFaip-??ODRooz@a)9TC<7qgtxJUyLMlb-ikNE61)}P zAtVfcc52F|g8Tu(jBxJyiQwz<0?89sR?wHr7XpXz8E_X+9o^WNabUEkzKcBcNd>V5 z4H^pk4*-}HJnZ{waTtvLx26NDQyISfSd3$(gmH>=jmpc4gVh$%UZk6;7;tIempQR_>i`ZfsS-Jj<99E30LVuYHu1q^C_7-hXQ_l zH$li+i>+8p(bDFWmPC-MqP(us->~M%&}+i>W599Y0us)gb;>bhNAE_Mk7RY%ja3s2 zz%b#cT*4YTBJezCwnmyu-}&@+;vKe=b*I7x0(32(sJTFob=yb7vYIJ6=RGLlEwA_@ zb0wc$3#3vN+ge`cMpAyp@YGQf#T0I zkvg5LN6$ys_c>dy8X-Aa?^-0Co>utQ0GEB5WAg(BN=l5f{!=%9eI$O~l*%Tzc#HC; zASF`4n#W}j96)FjkA(q>piE}an$%hOtDpbG3pQTKE}m%LUL5@GYM~u_HhyGjSy*42 zwZUEWi^{X<)2gp?DBhA!_(X`0B>N>8hqyX2R$kbIu9|PcVd@ME{im|gRN;5OHs$#R zi4<7?OU3+(ub)c}I=iJ^12}$$M-j@={?g4Fm!;#V0CmpalIgBhYI-ce4Ufto9a14K zjDQD&&2}XrZN+As;!}r%ptEqcT6Y?6r6Hg*RycmYOl&qeBw9vI%mc})oJWV~EDT;e znU?_wmaJtNTn=SAhP}tj3-k#4WA+*&kX|zi=|33-5$xiZ@StFzj2a%L7qSC&b@Yru zb!XCWg7|r4v=;UavAYE+;~$V_Td77ulc#ixIj{jgp?b>WaqTN@r*_~UOdM+rBF4vtU@T4RhsBE z^hd&_BB5YbzWGy8Y~z*cv0yb4pcKxb6?5Ja6>l)&Ejbl_ome_rGUNzT!Az}Yrsi%C z#cK~qrwVB=%&b98!73`p$IAP zBsfDS1$UI5?$5-RPR!Er?h!g(I(V|t)F)@7Y-{8hyO!6~(A3w=UpghF!x#vdGz{SP zt2TcX2a`a9LgmBEYX}gvOH6OMs@MFAMu}D+z~2IH`jG1rUh!p}*5QQ&%ybJ{@(OtW5?zX3B&tTkphsXdcQ$3fOY_kU#kf4sUR8AiK z@s$=V)DHK1_&b!;M@uH8{aMMhhcKR)3I-PF#+SZO#)NHmW0ypUZ?O;o#M8Mlm21~> zDFM{ZXPpeP7J$jUks|`!qYx>af^pIiDYn5}e9r3}ge~hyj1V?dz}M4nhIKtSutlBJ zS|#VdpURho5YAtZ5j;uy1N&BnOYjDfA4bi~tE&Z-^ETkI0HRyPvL$rt8oL-C0A+??A|vG+Zq_(&FK400 zK8&Wy#S0!jR{rd@+fQWb%uHks_u}y}3Ey%8=*$duMeQhEp!jw>a62Jo&>vnnV@E0X zrD&!G2c0rFR`oHAjaQ)+40oW))W! zSPJg?tSnCgpRzTTRmST|dUh1X>VeN@vCz6TX~w_W8!>>R0``{3;a*Bc3aC7x2TF;8 zF@>r9#&^52WrF8fh=U7(nj_pqz6lncMI7`E0!E~}*|V~QcP(RSvvFnbOyQlB6l$v_ zCWTT+oP)s(f7w(~d#Mz9gbQk&0XT&bZ3ag%A79Y8z<^RNfJA;KK>-?wnIw?Mzr{O5 z9!IUscQG?%K^3R=PX4Sk(h>PHSWn-q5h@Y&b3*gPlq)JHQ zhY@S02Yb@iOo|{9+g#%y{tUMNWGpqQbW0pcb6)?^0*qRE`n{GCm)*HP1Ztg^dwMag zA=q&zgv_1ramkkh?=n_H|E~|Pbr74JaOr}4;tP(xbVJ+s$ugL#&9~zhMNJ{$H-?x7fTdF;^xu|Q;2~z%c6pn2K>Xs!r4@B|v zO8K!in}_ntxFAh{oSg&1h;@OMpXR+2E-)$r%D%tW#U`Rw*wp`ZY67h8cN2dgki5}* zbzgv7g`n5}2_?{w7G4>!Nd(-2vCS>_N9!UM3@5j=v7!8L5%p;{yyn?`@%?`I;d0 zV`y?9ToS$iB)d7ueo+}lq`cWC*VN_2dMaNwTDi%|)b|HI4u;rc_=aBL%=4{Mf3wLv{R2)gwh-vukvx5)GK{9G0nhNdQ`| zS*gF%6NbKe&G}o8)79bHmzD|H3q1mS=MuW$RfK-K4<^k=>6KK_ja-qMT`}4|5JfZN z!Jv;~g9Abk?74M8W(1Y47owCUxRIchz&>+V5n!l?Bn$25aY}-Ul8c2?+I!(y4XtEC zVgVL(x3jyQXqUAB#2_H-1(4PYkXy0(gS$v23-*vO-z-HkLVKPb z1C;>nQKny}c#Vmma{p_Bj~X4Az|gzluoN*Ng!^ty3NAaes;b^jS&m)E3hf0=Qt9^=MmPk%=fuy8o^q3qIvzA=^4N9m zfbt<}`<>kRcGBI?`puC+Vm}a322>#^U}NBGMqBBFx`9L+k((c-pOIpFAEDW8GX#Vc z#}0?rMr&G=DB+vT53X;X?r8_r@CNn?8eC__;O&0)^#}Yi9U!qEz#4OZt+%(TM*P_F zdR?VcGTC1%-FJI?l><5w5dli%5+6B`5LECC*M()<7~m8VSL11kzQSJOe`(oJ%`UHDT)0%I8`U2{zA*mIicP{HkXPpG1~qFcn^F26>C}^Y&c~T zzvTp8os@B7?c(cxO5d)1m;EOeKy*OJ%53l+6!*RL`TAW_lwcB{ygOw>e8aH-%R(zk zlWIXJX*c|vJWA?FD9#@sV>?y@=FC#8Yr8xW87htIw z!bo%`bmp4m3cc5%Nl0FvcpsPTs6e{{bVMAwzPCESew%}D=(QCy0Ve?N^Kf}Qlt zYxxi?FV?rH5^rxNW2dh%+aSmx8mJ7k*$CjGu~js7hNEL+QZQF9pC4AaEMkTuQ=ZnL z_+BoRd*KlV*z;_b8Wiv%W`W_0jFTSyAk{3YfgPhAQqeZ&Lk(}akqe*`WB~ccJ$J~2 z8oat^2aH$u{ATcnWG1JOl$AF5ET>%-3uJmz7^V-^q7${k)<{tQMWQQRsEDdFX;oor zY}7J)F^%ZHrqSEcGE(~+5{9#62}!1tO=wZeJGd7Bk)GMb1N=`|7#NVTVOmV+g+kFy zwD>l8GQ#~fZV-4PY2do0_+f7TMeixn4k8KY1m|zB7i=B!rNZHG`)`Vdl9=tQ1j~6m zUE|MkTK;6)Az%{ctFg#Li%Oc6o5Kb%t7s5n~35gyB zg~s)k1x(;182Ql?6G7Au5QmADx#bEYd3WtXXUn}&tr%iMF^Nps0{Mbc$Osd+D8t=F{`N}ZtCCu||L7$B5jjp; z9j&_VZM--w#1gEYnmG{O<;`irr^JAIvuL3&l$OR{=2mL|M-}g?*QV$gt@K=ipZ#o! zxl>?d(r^hc`(D6tVwo{$9t}|BLac9(sQ(&tJklz+o0eTDIFIa!^j`D67g7@wJGM%S z-wKx4cDXvh_VFPcY14glLX68Z21!VhP|`z8FTF*gAGM?5qZM{a1R7bRWm@P-lf}G~ z4i{YGv8T0&Qhty{0KD`G530z3L#s8i6-DOj#6d!@Orh|egThJu5GUj6g1NgO zog_%O7&Tei_3*vm-|L_vc+%tJs4Wn8Z-mMNY&IV46lykNP@FF1XZ5j>Rmx}S4os*g zJ>6+cQ_*;j*kpMTjHi~CP_dxwLmFf%16yG4M;4EN?Oy<}@dyZAflP=9Gv!1tNOR|= z@G+>kPzEK_(=j=GUzigY)&JsdC8ukT6JoyITC0qI<(@ zq6e@JTVDAN$ghz?Zc2O%^bohsIjk7NAN(je+^1<_w7z{`aiI z%cd7)M%$ue9-6rUDUgvAG zZPD?Sp3Voa42VgSf7iRk{;?{mXhCornP;vgxS(%6-2GI!428U%I}X&c=I(39ZzmSAQ^=#jnem;mq!CiBk0MUMn#ik2q65sf;#et&8xG5{>pqcE z*e(^SC;YRLuiwGqr^_1c@ze~|TTXvKjx{T(F9BIz+YhtXEU!*6Bb57Zsp35PX!T~) zaz=BF)w`y__o^D3q6`<$H3KY1*xU4BsQ_Rq9+`^GU<)~H;C-=K#Y;-FU$8rtFEc9k znB{KL>|$W0dK*)?-W@fPqYttV#}-}R9)b`5HIf7#+3a~>vbHM~OR_b~nl_kgi3Zdf zVTsh{APFhI@3DV_ps!N#rJUw?B*da4l#LV@2x7^NLp;m4PwvWpb_<;%vvku=Zl|5) z@$>|h;6nD&$u(ri6dw!y*9mZjZF1|3-=Y0=Z^}9VD)%QrQfa5ot+Yi0i2=P+;i2ur zP(!@BIM=?vNYCQ3e-j!0SKID0xlkJZUEJoN`2VeJZu5f8r@O1FsSf!%qe&zNfE7@%G3*SndR-B`Mzhh=8m(|R1gpWIvEmh#sjw?SUYtbWj; zU}$oJbph`7eVqyekbxQ?hAENn*8sZDemOfKKQZ!O0VgiR`5xGo4erU${&$f7yyhfoCO7gw z*Ad7H9Gn~6!3jSj7`tw2d=9FJeL!F+QRv&T}ycG|K*D#wh#K@n|R_HQJ zeQiY!KXf$GnL*MZIbYv-pHkQId#8!6&|!9>wfZaRULv;YDNMKLCZ(lE{X>8PBRROT znk8@mPtbh_PkJ_@O17s}f&5j{u&_p+v-=+six8#%Ulh=EbvIqjIHhNHb4A=62moHO zUm;%BWhF-i$TUCG9$>Edo0vSJ`${>4*uDGIwpe>kZ9jf44A?V2U&eP%UfZNYyt60JQRt zrW1qTf4160<4gAB{Hn5$DUK2FS$l|1%ZJX}pG$2$V>P?nee{2^s{H!i{30TRwmZ^F z?>XRxp;z5(&i?_U{Okcm?fQ$?tF$j|fq-ie6#s6~R3K*z4bTZty`p~H#+~9fyQ<^3 zKdX1)I<4xAj5Tta!<$%N#cM)isF}X>Tn2fwfF_ZIftARbu>^49fF@Bd1kfY~IC!AB z^?ttY-Ov_E<~dr!E!D;1-Jf#4@psv>YNK{u2z$m?-QKB)j!UM3?}4fclAN}q_CnpT zJyGBQbH{vr0sshNy>h!lkP4oa-LcSq1gX#^*T8G#(%0N=FwkvyVf<|$Y~&!5%{t0W zvO)Mo7AVZ??`g+m@_vi73xSTj0m$Iv&lVAuza*mrgLRQwGbMX~vDu_loKkTT zIc%6g+$1K)J%3Mz*cLYUU2%1KvxHFDsbm~+{=qgnISpwtNK^o;ju0#d-)R&s31GR7 zTJ#tV21q9kNmA|-QKp_k#J|n-t@|O|@&y}4PMKyR7CYbamq+_-x2^#y7i2|k^<>}k z^T=`=C!w-O^KD2s;bP`mXdaBVTpLWR#@RaqiSg_O^p?% zO^J>1mm0D#R9;eHED^Eklhm1^UfE?Sw%ECycP$U9?B-9+qOmWj7lMaDAdE~fs8nSk zBK(u8BmBegFb32%{2Faz!v`Oz{lEx0`Zln53;sELD0qhGq?oUFJ+5K${jM9rwZ!n1 zu8S>3EN0dF!5%)C2z*4mz%S7VfiGZc(7VjGRBU(-L2iAsbKkJiw1?D5V7KQ!^YtyA z_KIbS1txACkwZS*Vt-UT4~$8$GF!iYa?8yqG@?FvG{4U_HelRZ*&5D|f0K3l=|n;f z8TD?h&yKkT23IIn96BE_q2R}+%Ar~f({J!_(9o9%S|Mylu!W>`N^=ARLR8QMOBPjV!|`80K|kAD)33P9h$fJvsJxHmCX%xm zQ@(5W5B{?w1TrM=_%WT;WTzLssAIn{@1J@^iVH}~cUB$jkjQ!kGRf>n*PJ;|>BI7nw;8<}cR7f>0(tU1`XxSV~AH!DtKj*uuim#2McdFgf^IziyT<@)(&kKi|z zg^o+%TOA2WXGXqcPI0E9wzg8aJQZTzRrCdZ3qPM@FVYn81E-UraYTg25L)eT*6<=| zz&#iyR6G*T(6XHShYLUy@1|@mpGFf?Fkp<$@Oqdut2iJ*{kM@bKDyZqKY#VIV%}}% z(P;k4-(N>wZt}av-?r4_z3Gh?+~$hm(qz`vm9yl541*pQ)RyiA#Ul`i$JP8N4A#PLjt zmlmAxv>FbUTZ{hrJ&a7hSOgZKtxY>Hrj=*N>oCV@;?F`;_Way*cb^X$dbsxjNS)`i z%2OJj7^B($ItKB~@p1d;o@P_cxviCTs+o}beiOljnOp}#>qCJ-n!e+dm%t_U5gMDV zE`k%T-H$4Q)?$A@3=9hKje%c3D&usn9}?W7)AQS(pL2Y_!Lb%r6)G&^$EMt%a#L|m zP!!i>?K#r@IhW{gKSbF+Fjcj8ydOgx9QAF*k85KZOHB%tDmgwNC7G31@SU$dT)kLC z-VpBcf?v6lhPFpq|7F|2+pPiSi)-7Bg;9>{e>sTAAm|Ooj$$)lKjk(}VRaYRGnv3Y z27DDXC7GN0uN|&O=+*v`zH%9?B(;qvi&IN7f`T8p)DXaBWln3e8R1^h*%B10O&XYQ zN;Zc#KxH}q8~F((tO0*IR2ZU??az?|w+iDn0}MjNi(a7(9MXhrA=uE9?wov)6Jh%J*A!dp}G^xYxHN&^DO3Gv0k!*jQ32x^CI8cnw1S01G|k(Up>uV$Eo|e3}Tv9KM*$&g~5G$ ziH7~Q-+5o1?Kerm`zdQC2Nh@TdprjilZ}|y>ofbcZDu_%gq8Fl?v8^2{j+zOSJKYn zI2)US(b^|D{yB+S&L0fC&BUE9Wh&oQ826}|7CwoJ=~VwjsCVqw*6Fst(o1y^cfDpS zTcUT%J7y0->}mM3kXH*4B5wo3TtUS6WB{Hl^px`?xRDrcSXdNS_t>}a-2FxS#j6X2 z;4k-JfDb|t_p`JHhfwit;X{@~;+szMUSxn%$Hqo1n;|0KubZK;l$VxikEG9Ixi71U zmP9c9R$my|!lfxSI{cSuy*?Ka6R>{;*6BPyLik5QM=0a#($4l2Y*lk+!8gQH9f=0@z3_YEd{PX7B&lAEVFDa!`GT@aNiSs2S+1Q1IA&&qJh(GNwj+pc{cBX!XV{nf59y za5djeJauADeKopDYN1N^ulpRKC(p_8QAh3Xhyj=# zqQV)!5I8mF`=R$ezVaak*WXq?Y3tyYs^Q&28EF+^UlARBQsQAs0qoOn4$A1aZ9d(c zi>R)b71v`I)68Q3HiDts)l8Rk{Nr)M_|eJg5W>e+!_srpJ8<#Ca^|%)HJXvDX}z;I zOiRrzrH`PU^73WHN)yG7r_UPPUAJhr-uJnNNIGZ6=k%(r|6 z5`i?G@PRzw5Deb=!@m#){@R4;_rq^M>TE5X>~lVi66M~g%4wx{PA^iy7reqTJT)=> zP~bqN7ZvRCh!W7+}k@bVcja=vqYo?k^V2>HZKW31s4P3e%pJyF@C=QSV z_Ed3atI?jIC#kD?K|HWu9n_4Tbm~!6f9|NCJCq4BUGj=l!nZ441DBNLdgR-|`*&{% zyrl}rFC_XN6}#i0>GRgDy{gAA>#$cu8{s(}j<#+4MdP#|TYe6gWe>5tSF@Vw{eOfp zevL4*BZ);he(fMO<|&MC8J0(LorN|_Iyz?(M{2;(c6<{hXRJTVWr^~8^t_EAT%k{U zz`Rn5i5l=yv7}@pg}(Ah%68woY_rJM$*u;374~lUW(4zv)klgo0@F@}F;;?ecF(cz z%Cez-Bgs6rEhd9zKmX-(guwGqfm=sQ#EvZm-uWlW{(ed+7hQbJQwwXrM#~s>ZQGR? z$r3X}>4Y&r__K^&)m23gJWJ*mSinuuTv2hKM526ul&O&`V?;Q6*zyG!!HPoe6r;0b zJw=V{#uT}^G`b8&9I$0j+{#DCI$nrcrO5>aygxqhdY#GY8;6?l{_ij}fWx5nxz*u; zIwwc<*Z_4O>V|IAl@_Wc)=PDB`VgIb4*GR3FgG&tws<260!Nl7cbj(bi~iYt z{o2_y>-^^2sy@CUmp;?vjeM>&e``-`qCP$4^BfgPFKhcRI`~~!FZxK`sK*V-t)fyU zrrT^?{U+VKi0zQ62Qt^y+vbC_r-CPG!ukQ{j9>2Z`olu?m!yp=IPN``wY~jD(_i_^#%&Z?{gZ`kx%PLTRve(4vL&V_maR(VUUj z>dI*S^NYSzn2AT%#r3tR>V9i#wGncjq$SLREYqMd7y&)lrAh)Rp#>wUCllSBNPJAL zqJGm!tdjDl(`|7|jX2fKW6Jt)DSbFSE~yK1_PUg3Ha7ON{#v{8Bc)$z>MiS{U)GIg ziusV!n=$BBAXCJZt`m41>vqiB>;JcKO>pRZhJ&Fo8iN_oUNWwRJ&#JCT#WOkn5!_S zcfXttGyF#^-p%UA|=l;6UwYiCe03Cf?LQO1%}Y1CLIwz^wr)WDfBg* ze_ol5cK*JkdEf0b&keRBctd6RkiZ-bf&cd^t)+x~aLAeI@2vL9ZJk)zfnJ3c#WYvz(CukHSM?bJ@Ir?8 zKyGG(xjl%tBrclbOHtTgdJ%+=^}JioC)Uryru&Bro5D!J3yWJehx`O32!896;dm== z=1EJ*t4G3cU6lo3XIOs5PA{|@<(_mO`d0S$J`@9-!MMa1n{+0DxEa?*_vy!1&nUx# zq{77BSMta>p4(Kv!P}gtXrg@we&D*k>n(Jq=1SKIW=5sFVicmUxiP_N=^tOEr>X!>Ku!%~upIfY$>*b-EElI@u3XEkD`t z?T@+Q^!{wVF=C+?_SyT<^RDJcHHD7+SGHL_=%V`>>ntyxE)j4m_}(-r8TpXaqVgrO z(aX2s9%_AzLZ(CS9IgLy27XnrP4o_e`^Q=d78E9{yM?n-@iacr{d(zis?e`#1{-&o z799E>bNUJg%DH)7u~OwH#anj|TH?3-vYzLTDhdUavs0c zpmPGmNeYd=gyrw53R5VTew+^0lWU@?)z=1*zX5Y4zE`>Xl7_IuB|jbJ1GN z(#U!9gj~Su<9+>Mr5TZ5WKNDJ)`R&z9i%bCO8!${U_x#VZ`ZjnOnhaCDjTu5U`sF1 z5S?RWh}z0{({s^%vg8L83m^BdPN^qk-Kn}7eFeA4uPJ41?_Sy@Bfai`E02}Oo(bb97LbbHrfKc(8M z{cPeBXD`h|E>3PiX30 z#lrrHHZ^J@LE?_nW@O>oRr-|YhGsfpISA^Ulthp)&C{t7?e|RGf{G6t?+;tvulXzf zzJlAGajLKBDiA`qQ9sstG&r0^F(5sHDwGe+&YhTxdE$;g(AS4c6ZwwlVf`OpZyA>5 z*1Qi(3epXdf^-RjfV2oG-Cfdxv~-K2bW68%cZY;@cXvp4$GdLSz1_e6bG+X;_;B6p zT5HzKIp>@+*QZ;b0rxz``sGJ~tE5h5VHQ0)6txg zo@RtK>C=S$D;x#koxu5v{PK7D7&Rp5!=7KKIt^i z*-GmO8nUDVA96`Ui@iZ2W#7!NXfWq@_u(BQ4gk|RQCe6qW^9xn9$oM_8Qg%od#V#+_6{_lb?x!6g zcIu4ub~&TlaZAJeTZVH>PTXH;Od!akR`Qf$zr>HB%%yY5xFP7Ew6oq%Y$qX?&$ zg-h{pcWpK*+O#?>v6ob|VeTuoIBmqpLO1wgRZD^;BI3gA^9tP_Po_dX`;dt1Qm z3@eXj{(Z&SULlgnA|Yn5mfA_#q9rzo;b=9O;~)UbXvT)SliFVV*d;r*lCR>^Cqski zHz#ult*eLXHoVX@K{p)&5j=LSFFdah+8Z{P86yv3)g3qE>&Y7&iD%ZiRt#T9cYXN9 zvOw4(bo_GXv`R+%2G;1Y53z6Fg3&rs?|dqcmh1SH>5rHD*fQWHhDtkb)FczFIY%w5 z^RGK<3s&%glnyjHigzQ>gr5fplpIH{E#}I2LebGD*}Qtdnd%{NL2c0-WqYPP?G}|O zCZoNjcK&SzX&qmsi@=AWd=>7EbNIKDi_k>nQ&c%SzqawuEw`7hKNyrNEe#-p5 zbYWT2??xq;VNER32@2Ik(Stk03|=TY5|>@+%WMB+$WJDrfR@jL`9Sn$LIdX4ku)yA z{)*mT0l-2Ei{0c8j4X3-40qr7t{v`frg%fUaqi#>7rtun->GQhozfszZ z>@R#rX_U@-K4}1b^r%K@o!9y&gD0)#crCOd>#4_;_lLF{iJPybo2Uk}K52`wy#+0K zF0!Xs3S*0_i@uQ`9=@rq#DC#t-T5b@^VojSKGj}g$6Qt2?%M0P`+nzO$mPoRI=48J z!=$3A>ExOnX{+`v$#Rjqs(zt3eBA+ET{%O`Zse_Oc7WLxPr9#qe~E9_WtS<_s6#vy zooS|x!~>ao2i3=_pDSn+>GULBV6^5KX-U^S-0&{ouJpL7G5zJ7kq$C*)j}$c+LzPy9`b+o zSOmlJnpR|g;Wof!!YAtY)8t&8EIJ!2Cws5X5$4DEeyMD$$!Wkq?7RPE7v+GC;v~1p zKI4RTmmCw9@ zY9D6!QyH=fO?lRHM>MPO0(qVLFwVAH8{7puKbRNS6V+I4t71*e#_VOXJ{IUvSlV*I zrtGxo?F?+IxLw=>m`U-IesA$3+bJKtWa4@H(AeTXK59M+dTmj!-)c!?+R;H(fTG3o3N|x|8SR9yq8D)R znYkXlk7xxv}zgPgK2NA5(B` zsCFpn6|lc1O zd|Ib**#i~Uhx@lvW_3lEPu^!~P)m=|CO7Ex4$Or+71zIuRQ$hh19c6Z%)z8{Rgc2? z&_=Z^v|>D&tWU2&ewUzKkBwmidg&w|uPyjw*+F(E#z_b^{ow^mWoY7Q?_5RmULAr$ z)^>Vm$Ix1-BNzWnVIc8?cC$+`X2XU12)1V>)WqRZ4@98F^u$%QF@dQCYp#Ddo&)sY zwqudcxvivQNv$V%jwG`d5y_n~EiYx-8NU^|vxMA-*i4SIZ#+6HGZ#)%@x%DabMti}DL` z!0QSNkYuPju9BsbPNtlG%>{&+RZT0>x>i}jP|nXT4oZ8;W1QFh>Jb(TM9Mnrij9kKkKZB)FBc16atPP&Pa=_{F~f;%y&p8RNF- z(I$HQd+8FD^Y7oTl3X%52STPK-H(-}Ji8SsyD%}@H?&I}6LctU&oJh0N|dvx`M*SR zyf(rCfPPK?UxzN!_yj6C*dgSs{|wf^|}>$kKj zbmo{59j{V%s575^#bd9<9!6M-eJ=>2jW@5+7k zU#WG5NHdla$7#|McJk@}?@1)-K(j3JKO90em(6!pu2B>>FWXj6rA;s2@_B%I9U8Wr;p>2>kpv>%nrKrojw%`n{qvm&baC=z=}P|5zv2uoc_`L zhxA%dPN01Ih~&FwGe5MJXBwhcg7Vsy8xixf>)7Mpb5FLeiW+-!YKore3ZbIHXT94b zwx-&lG9*1mVGa7ICZpc_?2qSbog+xt`DA7a6^HVNCd0+Re-wD^YHyOrs)T4IG?%{9 zJWzZkFA~6bDBV#jTihNF6*-p>w%PZ%CO<(Ws7IUjcm<=0KINC^OO*9vwV{B|>_+b1 z0nF(k5`o&Vvs0iIY^;%XMdmuHl^FM0DTM*>Ns{yMH( z<3(u3=acxxI0alc-0J3SKi?J&D~dTl=N|Qb^RD0*@o6B{LNZ5l-e~O>15iA!hXVj{%QR%GyQ&%cBvK4jv#Hog`@>)HY|CDo0k$>N{!<~DD z2j$Ji&4c1+Hl+q0okZDNVbIuxz8+V@3#l;tLR84g^aj38J~IlpA9!Gx?3E`>2O`nq zzte8=%9fGg*vP4_IqH*RsWW>o*vlybcqleJf4t*-wu*zs_ICB-2& zpMjNa$7_>k9L8?K)6GU-gXFY#zy+9I0s zODJsAo+-fOZm_D@z5`isKQyCEG!z{YnGFK)rw7nk1V7J|rejz(_X;YH8ydE3jb!@@ zQmj`@GaA*tCMID}Q1OV#1s;EztI8jV;m+`HWRu4#BU79i#MyH$kmag>!!m>&m#-cz z^ZsWCx(lWGieGhNQng!j!$Mk;2>#qRB$JD9o97fvQNOuH&uO^j71}hsYf@HL(p??a z^z|uQ+p81B_bU9#HiCXU9Rp&^We58-Oo6vEgU_#J^S+V3&^o_2``j~s>ky<#KXOMj z%)nkpGF*bv&AS)#o|QgJ{B8D2ehu~lvz^IGYLRG7xueXA+iioX#Iq*Noi!PDPU%4?6chX)B6OF-h##kax0$eyf! z$S-)$EyVVKZN3UUPwU9xr0qE$w4udgySWq%b_VyGJeQdl<{LNunk89NECL25vL_(B zAO8mUBD<3i?FdrCl^wdWgBNA+QIo~gAH*Wcs@VN;l!uwHl}8Mj?_8R#HI;N}RR{ON z$9mo>qGS#{rjo=AN^uodC z9PhB_hSLDLJ3*JJ#TM~R8lJM9Y#OR7#7Hef{BsdO04syVPb&V((+18qmkyFQSMKjp zU%8!wDTnQ;g3Yb$g?fbiL71O-58^f(?3voKzjzsA$q<_gqrcz~)J-5>&r14=Jp+QZ zyqXj?zlSOH8#X)S@~1%pa%!0AL{XlV%bY#;4h;DnhYREowGWXuJnDA*d_UGI8ns2p zJ1HwSPm!iRw8Ko~d-k~|CkKYk^7WrP2mv4XN!C|J-8ga{&{YT@XDdDSFQ3gDcN>hT zvG%hmEf)~b1sZiEMW}^zM7QnEBspfe_u#4wT6w&lwmp=>u{~{6DYBvK&q;ZGVMM)( zQyJrclK8QA_~FO%%!6l<6;|eT_=kmL1 zYsmzt*tktcn=-IrB%X|T((_CGi5M7od1^u=#4(^+poRB6W6P-7zNi%Kv73Xm#( z_abuDgITZpmAZLqC3BEw$Cc4#H%k@8WB8KaDobGQQsbI={&7Ye%_-r3v;cwIjS~*X z{C>s4K%BrL0-LUOA2uZTPvrpk5J7Nc*1`8X3_!{OhZj5sM(Cd>r28}m*AqTlmQA5$ zbV@NQYjgZK{NdHX<^j#vZkw>h_E|I4&W3`h-LDvHsTz)69q;2K0JzL+1FE*Hc6_8O0l2sT!=W3?%sI z%2HiRrh0W|X=B|_Go@u#Qy-GDVxSF$vg0@mqXk!(GNB97p07#nh$zq>7;iVKF|vpd zm7&n=m}TtVlY-R7e&0VbW^gtKn2Vd>Xoen4i@(Mlo45`9M1At5@r4QMXNi5B$amTi zjy4*l_0afXL1G*k5k$HwUXP5|+otBW&U?;Ix1YGUx)hCKLgWh5&)41w@5sbCzvup% z$ajwbU5TEx@QzhO=c^}ajSKj)`KNyE0WC!hR5e4q)(}_wM1hRzXM%OO#YEP1%;t9M zTY*abASoXygGR9%{+R;8&>%6!44j}7f{T`S74k?(g0tZV?!1(P`6JL-EOn>Tj6FE zhq}s!MA4fsPg$*m&)RlgnS;C7WZKj`GcuCQTgmzFkAg%L6b&^6A;owBPcyvc{eyC0 zwY*}|Q+Xu06>8E5HQgiS56-FbNr%KxPxnH`6>ZDZuZdXRRP!8ED_*Id|IULh{qJyr z6@@n7>1~KY%5v^^b%5*r=RC1rc|c`D?-#KE0gOL%JV%e$G)Ac6dmGt~f*e=I0vClo zvkPeF)ZVujdGk1A=E!l&{w=5ttF*~OR=g}?CB4s}Mv62a58HnX{TkvqVubc)wuqRM zkTlQ!bv*sZ4}6R$6Jqpbgs#^VL%tmYF%&_q&iooCo%u@q)}+!S;d1M}J9;2LZjig;;p`3mNFf#kFxx9D$Ew3n|0@Ba(WwE(J+V`= z&<);&5GNS1r^J^h!TxkWsHb5LM=%%5KHs#5M`O4uGBo#G?GcCl)!~JL!qLHZP#jZn z0IC&JJ`%pDAv^DY{J0_3&yAJAK3~M$Fpt3WEP5*TO~b%s|QU zkw@hg8`^NY92@>SikshsuYM~Yei@2KGFT4*-H!{%t$09YIsXH$ltEi^NT{lHcgegn z?A{omG@3xp0po)w(6N)TjW>kJXE%vBF>miXos;YKzt3T!_&2q;e8#7?tMMF?+Xo~F zZF-R9^hSF9Wgp`Wz&uWFk*lD=)s}*DtHSrLpTadY)E=IJ(Js4fl2UGdi}zAzIYHJT z>O?llYOB<_Jaq`cTXH=RpLm6?hONAK!p65Nd_uxPm zoj-uf?hyfd@lNw&UStz{Y6Z<0k;MpsaoU8Xis=IvXKSt(79_(G$?6f+Dr07ut?AgY zSND)!%9vQ4X$M!04*LSN6LRhd=5NvvHH_tX|@>i2%P6fY?qZa88+8 zX2@RE3JdF`SXvZq{roHXKS*HX$9$h`_LmIR&q39sK~iJ5zROz@+wO~Jy4OI|NJx=zj*WY>?11CipA!_kYwAiH0B-7 zdj(@`(tO1LkFoqNZh$gwHZ)YL_?vGCVs)Asj65?)Q(rJMAYSzk8I%c*o@*m)r5e0Y zEN(yV>=?_Q>JiG0-jL1eayNY;l`gTJrmJ;oDp%n7-#H;uIwU7#-}(sXcZmD0^)uZ4 z<5VFJ|D*o`e-;+r3p!QBpO*5L=U$CuvzGNVO1!HJL%`6+omh$;prKPjTanZ3<9Two zqCcyHxRb_EutHV2SUm_+iw<2~ak}q7I)|$YUEOx|z&ci2O$1&kk@urxo83H+WN0n- zMwsYHq^|WpC;Ng1Ir@K&N(l>WqR9~vh@O^8o`7R2+-nI-)!><3%iaALw>iqY%27L8 za+aI-MwCBnP_FPuAE6$z;y`#tTBg+&VrYT^PwHRe4Ik0A-Tw{Lemy(~$U6*;p zvU{oeU5=4If@Dhdq!3=HzrUcqgvGLs4%&SVwRx-!&r~Z*y&4*|{yB@bQc(w5p#W?e z?&n)LM}LJphf16#2<}MVw?UxUi7#+d_4#}GUm+3>%uXUN@Xy9u*x>`|>x}EQ#jkAA z4`uJYe*4iOVj#Tz^i3KR`AbP)!pIO=9%NqZ>R{z1jwgtP83s~^G zoe;|xz=A1|)>jj==W#q}8L7AqLaUy^z@>kbYCCSBk<0;HhkMTgU=OAD zC6nosVn3U_7|I8oZL#T-^_j1_aX1dPE3L(twNNbF{Y}OZ3*b3~9w~E>|L2LT5LbOJ z+JXo|dEn!IqfPR6b=di;gTMXMmXi-bbo3eZ30srJ=Owu&gBE_@Hm~8w*jCIRLWRYW z^cO-iL8PO)36RZKnQ+NFKGf4*lz8{DextgkI@KXrmqxjk$mAS$X~MU!QOMt{z~DAO z#^tu}LC;Z*VwPXo%!?hd|jN&{1V1p6UU zvI(T}J!(`HQ67M6w5ur(vzJFj*n*cAyvo+GFHJtSbub9>B}u?6&x>ZS?0Kapi%CTe+|EV^lS6^-*<>i8=Sz3 zpHBqDYek7P9_A#g5i@SrwzCndCr55a+Us6dNpguWEvq5$k<7l568|w1?#!jdys_i? z-F8kSez5Gg_qnr2=SZs}kv#o3H4dR=EwLUMY2?|w$%efbWjjj2v}eHjc!LO{I5iwNi6i5c zAX-zmyn1b!_wo&MDVhr|W2==gX^|Ig&bPFTh1F*KE2|Z0qDn{fw*+rH#S=d9L@e*I z2B#?%-_M+cEp2L?ygsg1-AR8;e&JTy-cgD~-BMc|iP-Za)uf}-?o=eqXRv@$YwUSC zwY~gzVc5Ku0{aaxua6rMji@~uYL zDI;$HbWo&^giED8>kf~LOK!pYfx)w+pDN*)=jqn;vZogFLqayeaW}8Bl)5U?$FC3b zO|XQZ6(+dH9SzV%6Eq9XPEnLWWdbHXk; zD&-{kC(?lZ>!t!3z=ZJxK&t{!W>7PPSJlefz6sL2Rq;JqwM>sSnle7G8K-mC|HOxl z$o^XJlQe+K+d_(AWH^3wLobALhF?@&4@RLlbwZR+RR78`P1-STugi%4GY^%qw87zd z-nh$~oTv(?ltVdT9+nbYX5{RV&V;Y6RevF78PHM)@SP3Bz6ygI|3DJslZQzcn-_dn zmQE4Hf#l}Gdx=JC-+S2Ip~xJUEm}xZ*+j45hc|-CajfB0A7Ca;I_+~@x!m9d9LAL= znhh#`cZDogl3M?QpT-LsF6Gm0{w|C#?9|%+ zB3Pq)W;nB z0Gqi=6#v=AD#$*&s-}90e|s(Zofeg<2H$g8B$@5?W6or^ml|yFyJ~@{ERl-N8~7?n ze$S6SBdh#32y4MsdI4Du_8Q0|#_K%Rl!eMh3ri2lYcz*`*zhk^bWN45?mjw@9XZZP zy(*~YtX^M|?OZ=5AWWKcJ(kW5RLLQzD7RqrH(?uGcT~xFV-7{fMI9Y&GLZ!nRqBql zNJ_a9Whi_4;;itka_v}B7{cHRGk;XsXs6ZRyG#ZFbeF*Jk~}`a6444!hQ)XBC^+X| zXDJu>XC#K|<#Y(%V&IwKZy$ckXX`#g}~vtGbRD zYaRtOOSLsdrRmL~pZpeAgB`ixzeu`ypq-dE0@f+p>wW~CA7wmzQnb6`kYph5?@BSm zg~~J{1BV(76`={a7&2Iv-#{jOA=M^A_Sl3}YWjhwiHJ!)+N?BeZp=A{V2%f_17~IStzf7!8*ke!?KT-AoDx{i#IPGa8B0oZ=0NN z_T$fv_MY)bbP+HdF)jN1%yW7pv;7r*rrNmAJC6HbcjR#mNiF&Ne4he}VoRej1V*7c zXjRtf0q{c#&`KFgz4N+FX++Wm);?nRWBR4z#1T)6s*|Cz<%GpjT=uOI7%;x{Mm$de zZl2q{;+{8HJuZ z$5Xh>_oSa{&zX-5Y20cmi903&m#=d=4|OZ#`-r4_gNYQL-HZn$BoqOm9TbN)LUUBG zZ7>x53`Ekfa6F}FeYmstUYVco?NQ6bU&NOOva1Uxsc2jgcI?sp|Cgx&6b?|I?9+v@m%Ikedfp`Th_UVu5a@YP6 zHCMga!GBc2cepeR5&QtFm>ncJB(sMSMUWAmY4Bt>8ly*I+)~4*AT*{v=oK^xpSb6bR*1CMJ_r ztTOoaUd*{NdxyjC7PY&}>H&QY?1heBEEm%A(+CS4h@KRR{F{apZkcK(98z;bMmr@x z#|;&Qwbz_T9cEVj2Fqu9Nvk0|xUm59BQ80d&0;rdOHikcAX*!+cTI>Xygj%0az)UfJ(;iSXY@$A6v^1@xtnzA2W2>iYG;}P$_(BYx?WX^Mo)GItDEHKQr!(ZZ)8XQc#FFeDhA8ZaZ^>>_jEz1?Z!3R?a(VhD z`cbCZ+*Xj|;io757~I$Tjbas*K1R=L-JCHLwwR!UKlSk8q5hS>&1(Qx&NX(pY66Us z{=vtW@y&;^3Dez5vRiBym8~!7do$;S5-V*nH+#(lBnI{^VHX7;cxOanhVY zH9?pmQ88aiyV)G7afA^=5b9Etg?SXSAI5~6g%@Zjg5@|le?GZ<{Px?*95sg30Di40 zSKto~CD#*T7}GbhpKpNg`%jL7tpG^S4-blYA*KNXYr+sqWA~%wt(t^63zR3hL-Pwy z2G1OyvAx&p5-6{PnMvb_*_!DDqRBCCiskP=d3#IM!Y|gz@;PPa(_V6W(DB{fAF1~l zpu<{C`s*d_AYGv|e9xr-@mVP9$)}F@W;4yQXL!!R>7H7I#hW1Ug}9!_g|{L!^|wZ! z(ofA5H*_^Qwuu!DAF5eY{C(G@{=MsEN5g+(WDhUkvRBB^Lc74t+Y%BurD_QD>`Sq* zB)yE{F?x#uHM4xUTK~N-SeV$i{>yi6r1 z*U^W8nWi4xN9$c|_~Gd4UWQMc9%yK3$@pBc@J6jy{b8M-gRWDK7QR9a<^RnDmqo!Y zU(pnyLUtJo@$nZPzLiM-(T#2XZGJqCNyivtSUbHw=(|)t=;U$E`i+P@G2_-(1Sdl+t?enx0VU6W?8ys!Cml>yxPI+8Tr= z-11RuE~dX?J~1RB-beG12ZA>uah=?=H*O0){A_-@By?>~^>C^I<~LbDGTdrpX2vh7 z`rkWnUl4+AaW>ag13bq+)bfvi{b!#!i$P8ic=f*O8F0{4aPJRg&YjM5?WTS{<5HID zEQVeZqI&dJkD;%ECx}ADbsa8%J79&mO-|9}R!Ueyd<^9^KyZ$C~}(Osmr}ogcZ3 zm(tIg_9Ft_PWcf6C*EHOg#H282VoafNkFR?2qfnD6&}k~!h5t`#hum#ms!s&xz1z{ zw^o}AZR1isJBQ*MuYt-TN6pTEl&PS~@RRLc&sEOk_Cv0}(cBOO3p^J;xx)f;(EM?T zt-+e~Y{!n>%yaKi)n!i|<`x5C_MCcf?HXqPfru@c`Dvi1q}ybO5EP8I-10Q;fW@z+ zdh7$=MqttQ6>OQLXHqUs4umA>X{(v5nk`sE>c>q< zlZ*@h<={9Wy_~(L-Br5abVOj^2c4Jw=1?h0me?3*_qID$5bDmCY2xZgcZZDd{sM71 zZ2#IT83jI? zZ*aigNqcOHd-!7rra!y(dX3oHKSM8CajOBtclXvYG$=PE60H|C=1uhXJWjFynrxc{ zC~xSQPw}m*=GEgEbtM0ljW9q0YT7rhyZemeS)_~C(F6o_T5pQquQ|uAQ;8=2qT^TD z(EoD6nl}Fvq%~TBMO#lBbwz+Q!;b7%r6KVf`%sajNV2!REq4@ehKh`5$^P2jL*JfIkn~D345u^Q+ZR}X<-BBzK-Fi za#OrGllIUX=Zb8{GInEg$?JajwKkBh1%)*x7{`*yBkuxHmKt?J>c3!P5)%YV5kP+B zoj}rIy5l$=PF6Icz3fDz5X&LabyHj=5=z)! z>6ok|Ylzq8zipn8cRaka>BUiTg2F*YbEbU!e;Ecx`yUVgc_=7!Lu$W0yqHp;rO#3c zs!T(n0QOWQqY<@NY%zFq*3p(@RODU1TI|!=X`}9DNzjK&eZNBI%{U1V+%B(^CslH+ zmT!9{jBF4N@lO3lgb;A7BI^+piPiK+3jn0>i#Em(%czE~=D5JIW%ivg%ka~Dl+a>* z&lBX!{%FyUt?77&bAL=&>^xm95@`|E+sj|M)7LuwZ_DNb8&Vv!)}jhFM2b9kj|TC3 z7uBMcSg~O%O6M?ETjZ=2CRCf&YEz+w<<%%+54kw@i9kyd0SzUlTM0fDXdz?Zw!Ig2 zV)3H(%qCSGB1--&S+iINA3wjdVWP5@3w-dOH`1{JC(0nz3kA8S%S?NU-p+cOc6__j()UX@HD9guRR1cAJQ-U%n&DShoz9s@b&#e55pTp zBv#}pNRAH)BH)oxs-SoADNKnoV!8+_!sTJOeh#8dU}K_N}KV&Et?qZ!@D(AODf39OJRXx*Ef3c{`S^N zK*s$f#dF;7VhX4-^-HQR)33m1PfAi1$Hx>>f#7_7Ct}?8xOAh1@ZaRS9{0zDT%#u( zNj#^g|Cxiqr%zs93#%44{D}niyNd(+OPx_nBqV#rv(u$bZ{IpNtfPmXYzb~e(7$T1 zx&O1MNWg?nL;UN<*aBwX;VhV-9|5wZX6lvLw7Q}DPs74Oj>fcKO_m`63WuEc`NL>k zrk$qYIu}Q5voX}x=XM`Wv*f4c z7Y&;(yxKula7c!bx zTeQtH2hD6BNE8VWSjueOF8sdu{g~J6vSM2;HaQOTEGx_ua&Py*0U4@}swa0C_0spz zJX{o+G-2UKbW==>^01kMEmqaB1q}(in(`OnE9Th;{8#rligM`rDJdQaBJQPWRR$++ zaBWmZFrnO9G_Z5h7!K>)&DkKs1Gay50=cm|_o4M#S<*nyTYt=3@esca$&fJL))UzJ zOCvbcX@rrOaga?fJ}r{}-0B4V7Xak%biBF)fHVhQbz@0b)0&!j9I}BDP}G>O8XU1? z>zp1P4p8{PXD;$xWBY85nf_of_7Edkso~POH~2E2c4l#78-=+@B*+_Ofdu`YzTpe_ zb`la!j~2;TG8>VfxK*iHaR_o9(<+V;QTDTf2Mf(y**ID1cv{SLu%}`X^NTxy!=_{5 z0`tw+mo|aQX%9LJH0jGjtJc_wwC}p)pMh8G7U>FvxVb1L0Y=gh`tNlEw1r-8@9SE? zVaka6_SVY7k+VB4jW6Fn)7gd3_2tZ*1kEM?P$cK$TY&0nry|3&Z@ZeieZ-}}on)~? z;npDk0=S9%;VRmOvw3$F#wGZP6|2M6&bs0U|ST zAFi+6c1NB?*;ZNSXRSynf8Nu&6Y ztGWBFg~Z(F6lUGMUYsuyUu4Z@|L`zDxaCYBJ3Oh_XhcNEmbXx|lmF?*?S#LNa*vVJ<4j z>rlWAho*Ps<9}nt9RAod{6U_Twi;OqwCXWT%NAlPl`=W%L90EoN^X){hMhn*?oKMZ$f*TB%A_{pD(sfO$ag$@SbmUJUl03ULhDK}DYYgX4NBlgTV*POt!w+PVTz2o!U`?Wdr{5mu ztEMh5cWR0GCFvHK&mjNww!L#aFF_;=ds2)A0Yjr0{dnI@RO{hpU7S2@sa77Rx>1KF zlcK*KutoBc4?Kkb@^1v#NO=xF+LVHN{Rl=0Tpo|=#yZ6u1*~MF5vib{G1T@icn_+* z#7OqT&LgbpI~Ep#9TSUvi?}mMK7D$0(Zf;Z-PyP8e6fmq*vtKj&qZZ(r7;-25}P^y zxXhXV%Hxc=)L!n=^@5fs(YZINBBi^}w#3~%@7WL7YUGFE5s;Oy13uW-0tK>eJ0`NA z%j1b^gj2cDG9|g0n&%>H_~e1)`_D+^`4$19y_-lg*L66oHK(B+K5F7x+vMg03?^aVktrD}E5=qc88@&P`R z#CLum?{s$P;oxa%kjzyp-r>^#BHLwihAMh-`4+1>G10)~S5EomPZ($*)Oq>gp^)<5UGftB;^fF!ABjXWz$ld8c5@0%;TE3Wi=egLwV3rE&yp{z z9**qWP^+;6C~SDxwm<~~Dy5EPWwbrSq0+rUX-J@`q^GsHIcjIz8=!WN0SEyi+2##d z!aHd)K_WpX^C6xQGDR=eV=@>;o&%$Cn=sLfdc5=Wz`5rksmaJvX1m9HVmJ#dV$BNM zHFhzTWv0JNV&4qE+1!tC<(KN6?F5g#-i7+opln`y#VW_FIp{=gu-YReYgM9s5_-Ol zkzd|l|D`$AN-tcqxFs`#fZOch&h1f{($u~E-JJ+Jf)P?eNImh15;#S@m2ptSPVzuO z@<&nq48Te|OEZKD5s8O_sD|4P4$p4tiM@BF^BbE>KXYZH6`V5gVR2Ly0p@A=+QEPP zkiu<)MFVF6bYC&>myy;K#A9%EEy|9Mpa5m!qBfvWWwwoiXX_8)o;Wsw9&~ja*RH9=|8_ z>$YkA3FBaNiq@$@iGgT>$)18rShgA9Y z+u4eB4nZV)@vM~0<|AXfH>VA+R7ziMvICGP90HHx|G$=t3Y$OeC!A>Jrx0}2F{8kn zZ7Y-^HksHo`MtRNxp1`UMkJEDqP=7Xh3jTDs-oTZLK%U?#wqSdpxY6OiPY58kQwN@ zpY`)+h6u$S4C zbs>)X0^FHYLT)E5R>|D@jQS=!^ZqU$78QPH!EnQAGuoHi7njcli*=PFM7zF<9Jk%I zxcNgwDJop$cacsMdI-&|RU(90G*96u+oS$Fb1H-{QVaQ+;q>f=X!K<+o@h~ij@?}s zfXQgj5lo5bXG{=6p3IK#*BMHBnUpoPF*+sX8X>Nj8ZDYH-ri^gxGrYKGXO$@^I%dG z;bfn~&#OCf1hg0v1-gZfc|*~a$dt%az{Rl(M7Zpc=^FLEoIH-Z?V+8lX76nG2#Jl& zHtFQQonQ5UQY(mX*k*SKBG4O_f2C1_YgJ-oT6T;jin?O<@eVgJ&;qleEc?X_(mzq?AMvc*W+I9E{4KvL*v99}(~vXr`#&)fUTM_>PT``!BTk;1Sl3xVt@>2Byll^jZ3 zTL<1YIuf7`nmD#Wr!t=nPqRszJgaI$D9N>(OlBmHt~s&Y2Pg0;CjKGq{5z=ZqbU3q zpCy;q-1gbN5ZrCha85NwcqAv4(9+`xQ#Of5BT#0DvbfqkupvFS|AK<_X)NTnwnsv! zGhJOuNZ<&hfUpbQ=-k$~fA7BP+sE^m~!km~# zc|3*9Bq8Px9RE2K;`Fmac4|uu1dYAeXDGrC**o#H)D*B&z_&lL)oYEU&)lx8>L)jq zq(N4g*4-^fSARJ{I zN9NRnHk_LLE6=5hCWWv>BgSl70dzjoL)MM+iM8k32Me72-{={MKZDtx5jc5U2Np+8 z*>Cc52pjBSmIFmpAtP}DW?Fj@u_Cs7CJmBuy(=1uW5sX*R{Pj(E`>bHw!POaVky>m{(fz zvzw&(%_QvaGy#pqkT*)#6Z&Obkik%_Ax=t*hOYEsHQ5it^D?%wi;s08ki|M?n=4rr9!dU8|7wdgoK?@Uew6&uOCaSLV~N(4zR*Q zH-kmbMTRZcOywJ93O=o&Psr~h<|+p=nJnrqnLwVJG4kxmbpk%zd0&aunk6I4 zn&ON}kkXEcW1S(=iaQ9z2S4Q-A4A9Xk_z3HO`)@sdFw^K}}6;*Od-V0y7)>7sI8;o3-ASM@Oi$z@rvK;gMxZHW|UOZyzOQ3uj2!PhHIJZ zg*z}YoTZk7#X9Yu&|Th}X+hh#HZ2nf%05QXx=$!W#_Wlcfi@pM!%s6}avrX1$F!oT zPkvbJC;B$~({bX5jah?3ll0SLpw`wI^h^vNo6DVfh%|XRGz_|cjg_9Um3UCVWn#Kt zVOZHDPWMI&D_4r3ocUbI>_pJVN<6je#Gbxg!OOd$+Zuf^+_E-sFFTjEDloxdTNaJBbHY z!1=KcKd6Gn7cYWIVMU<-_fW$XsLRC|i1M?jr`pSZgg>$3shFvr0Fx9&M?&2|_4MV+ zNquh9y$F`c5sj-4^`yV8NM=GZ1Cl_&%Lyo;jk5t zW->osu(>@J&Z71xR4I0Gan6-miY=4$|4joqqdkz7I`m#T7bMExID)~Ik_eEYa9~EH zd~)?cpPX=REM6Ct3@4%=0s}Twb`cyvrRN8nY{witZw{JE6-qUp$}emCDII8S|Kxop z$`54N%Vv#&{^*up?nSh-<4}Hh{&p-Mv~g%TKmp1Iikvw*dup% zk6Li|%KuzvQ)xPyM>QwA7DWbrROK#5RRh>n+|Pyw;;>L@KwWOZKA++xY;IGlR3O&k z=@{lxcePx!c(&Hh2br777-qr(+4*O@Fmi^JMr&0Fe}LGb?e`pGcUFsBGGk&Q4 z1VtyLpgI-`(H>O~ZOJ zL8S2i(qDH5L5WUbC#2X>PPnnCUb3(oeTfm>v)BZ_X0Mscxokfc!4v~Tq)1!;A6;J= zR@EAHD+o%60uqAcM!HKvO1gW~rF4UIgGhHvcWoN!2I=k&0qO3ByEt+_Ip4kadG-%~ zsB5iv&pGCpV~)Ak38-j|UFWBOFNl-ESndlBf0eot?8q{bgi4J|~m4}c*-$&P_^_836FDBk`Icquw?Cpc^g zx5@QKPx3EJX3mL0AbN)FNn+j{>5_CkW2YhP0_>uta+P$!AewYhu<90HpKQ889|Zh? zP=&EIAN0}hn=rqQ^T1I^LW0$o@Pvqj1cy0|qTdPnvjckzFq&8%zkhvBAi;GA zK?HGJzhak@m9LO(=9qrpID) za7rJ&Jc*^b*k2AoIl9`z*2Y0V=M8hckuDa)WUZZY7kredGis zM<;H6j>~0#X_`3^kqwO;8cs7JiDT%ZL41euW<<)u!fv44%Hk7hu>!QnlCjY37i3(v z6D)D)hmTIXu^e{aY=5!pWJ`;!H*95PD;+ySauZwdNYq^AWl3 z48(LSLC|2c;gxANLajb%u&g|qStT9E;SjRMC7k@1`c}8Qwx?lfXV=@xe9=M;-BB{m zrzWh?wB~~xFG--B2nRopOu*GR;U>Rd|8{U|io|96`3tIRBi2{u7-&mE&zl)F}40v{il1~R}Ry^ag2 zPil5ABau$&CjZz^3Uz;H4RHaw^N@bJSbErS-W6h@|9B@56%|g z23CUYE)nFr!Nl(fL^C!xl`AFF&#U{5(Q=)=_%D-db2Otmrlw$6`lyAQF5x=yS;5L& zGJYxD!8|t9o0`X0E?BphXA0gvF}!0f(e*Nw{9fWvBB{pR2bu>r8!n+T>NUO0ny$Sj z!$?n!V07STCbx8}Q4IdF4fT-sQKkuT*#uC_uiv=oyk1S5DxxyU;jy{>^hU)j4(Y-( zSDteFcYfrPD)bvT+Hh2GQSF*tbC(^-Ps)h(?6b4NR;g4{d8^;An!7O$n-CAm6S1ok zFITs-=IHYkj>J9QIB{wZW%KA#g{%4e`$+CEFdkK{m~ZUP^{)xiav4gm)83DX%kXnD zT8j2(^0W#0Km1K`sb3RY*$4fF#E>8)lpH)RCx5{${hYW6c?#JV3;y`RjkJi z-~YvqgH#J~rb++dxeyDD9}>>qj0N2C{7YC0?cv`l52yoR&wjXjzH-Uok|oZoMsK>I zkF;*{&Z4Hi@6nA?8qHr5mr_us^F*N&Hb^}nRXZU;?OgYrEp4p@n$NDP>RfyxYH74L z;zJbu{4Q~cS{_!nQ>|OmYMvX#Ue73(vNR`SUac(!4Htr&n$S=v-;ju1IBON&z9YLH?$nopL z^)U)$Idx=XPYCWp%L$Z-+`2DQe?IQ$sG-nNRI?NX{;Kd)hI7wP#1u+fA_jFIj;NE( z1MkD#s~PhQI7I+PyM(>hT3&%STsoX2YIvbA@~Bwd5FNwI6B+mT-TZ?Qy%;)8|E z424MBth^h;L*Z)>g6eR7wv)?sZZU~oHpQUm&^6QyCBwJ2wSAb)wKm{(_p!-4wp+}h zwa7Php;?*9Fidazq|~KYoJ2OI8z@i_j}AMK$FD6N85cjM-}vmB=KFXR<>keD+1nB^ zq6cJlBG3YmbdipGc5=`GA)*E$ySBJzO_T*B! zUo!U-{!b}@dP{^%GHv{7s_|LrPB~2;rGGt*;TR?t9)1obZ<3Wg=!f4-wrC0rVOOFb3X!Z0E(Yci8!T!F7Q10_`ROsJ*s^8z;} ziu0a%7)MN?AFxv)TmO>er%nz}xeT1ljjLwixgr>iW8onA)&8!zn5FD_a+t`Xp$D1s ze2v$V9ovSe(hdaA^(_9qDP zQ||5Lf3Zg^52iwc+cV^)`8TxuGHP?Y=P!dA_oRqIP(3*Sco>}!ceKO-&N?EP+!)QfC2e&QZF_A& zs_uD`sqebLvm7qbzd+|+4^zk$re|I0%cCfz(ToU_+wCu`I{6(2s>+>VDLQMq(=g3C zm~Q#uMs~*;t&nZchO={E8J!(k{!X{s71G7_rI1OxC?=C}>J5(v#oIwvufJhq63b)4 z%h3Qg9Sp1gl7OBq)1s!P%i5zT-d1Q$@!ACI=|FT3Oj=UM=Z+w&G`IsSFyWHgJj2`} zF69_+ho~#C_XV!(^iDectnA{T7KRhe*~R`N>XljEzq8 z6!O^Y?^xz2mZp_v07(}V05GVx^3^2&X89BN$tO@#8cu@^U{;&Etp1TQRC4$Lej{EZ z7sR)$3?W+3(8e^dvEaz=b>H02;5{QGaUKuVPz3umNr~$Y2|`sXn{JHlwX87ZLSjiVy}(sW2Wvh zc$wxbzR-V`;nY!?Jt7DSEvFPJNbWBeYMO`RZ*9~1dj3q?)F8A!UD1-#gSg--#kEWH z)Z2Tl@0&YXR#x(?A3!sI{QkYTO^AT#^s{3`^@5QIg`&rc;SE7sUQd`JGPb3_#gWWx zI#tZ3dO<2#_iPd`I68yX9fpB~&SDSp;%+94ow5KFaZaYJ5HBi-7ls#O1Z3#q@5?O8 zP?|Gl`4m~&aGEvz4SJ{|blT*Nbd;EL=p;mL`LPU@5nF;9g~Ie+Hi}__g~`L9!xA|S zA%3L9m=$f?%VugOjk`>v*`I_9xkiHj-*hj6k({md_~@j#Y&7bU2seLX=pGAY?nj2H z=p@i;g$R9#Ag7DqkZMcMJxU`Z#xEMhOkS%xRB3s6tDN9!@yssmC&OGkZ^;&A-OMhK!r%DofrZryZ`c`JPKcn6hKDOmPiTw~)oUKeL= zc8gTuCZY~qxKS_gC2t1F8%HW%hWVZb%5W`=ej=L&=f{$JOFgape40Dg{hg)fYAHtY zCv*E-fD|sk1ElcvisK_-CWUE968!9IkXyeuE|5rCsG0^HUABn`@JL(U)`k#rxr^20 z`Q%SQTn?UnR7|n1+cW z$Q#AFh~B(Y7V5&$%i$q*$**6v3gdN_vOKG#Av$o3g~Zm}vfg5eQsWh1{}Agn%z7_0 zo*iDEo)NTf>{s-SCn=Ws$^k=i{z?@Kw58d_uCxh2MxYDr|3z97Q9{XK@%_f9Ws8R^ zfEI~P{QBty&=!Ji=(b;k^x-R31mf43mk%>&#B}kl6;PD%;D&YUOOSX$v_E-ZVJNwk z8(?*I2CKA*$Hy5+yx5?G&v_k+5)Hhp1^uo-cteGhnvGaTG?yilTC!`R51o_vtUs8C z*z0lwq#~}8E$XVY;A)Ze%ENJu8&in%8&aI-b=tf<#I(v8_2w*Jnu}T?1z88hMj7at zyGE}bx6C>1(f|YACQbOicqkuq3H-r1$lwEp@B10QE|Cp5dvxoL35nYDBg%1N*~vvP zwzbZQd3zaYw{I>K^A!c`K*7{4Dl=qU^OEhSFGM8Gf-yZe|H6BtHWyBqzIM52Vfmw4 znc$_JkxH^`wMfBvBwKp+yNGQ#c>tj8ZBDX7?<68m`LR%eFjFpYVi-f35I$JbcmwSR|+_Q7de=X;Ax3xkiSw07etdj!FFqw#uo3Gz72cjl)tVe4-j3?w9Lc(R>RMQ%VwDD+p@M1Tns$VrT0%FD>gU zn#?;d@{RjqX|W9J7reFS2CuWmmGmQMI(z^dqT$W>0QS^=eN@LE3kR^x-H*XOmH5 zp{|eU0cc*y!nDCIC?P4eEKIjt(K5iVGgC4$o;tQW&XY@H1-zShgmkEb1jvN!uOyIh z=f=ICZM>6fD}agiHDBL~$>;x~z^j#TPF|lMn`X*j1ZhOh$}i}bw=L-@YeeVG8Ag{N z4nXZ$YGpz#wu83gS8t)2StWW0QhVx^pUNbZ;Y`cs2DgUqz0s<(yH36#ZwpJorkHge zgkFv%mmbI9hye&GpW5Q@yo&TU#PMSux7G~GwMJQFX-QG6#B28u#<>N20|LNE>VLYH zC-CdHm#(m*MABek^5G)u9w=?yeW6dU>s;W@W8h8yilyvLE& z?4;1(%~V~X`sCJEhA-!;zt*M&%R7Gt`3EpHI1*E)iLJ1oOX+e4IjSkoeHxtGQgS$8 z4ffHL!;bhp5dTV-zuP$;fq8JD(hpTx*B9u~`A)}~qoKi)@L#z8a$al(44*9LC|$syZX>TW!T3%rGYQnFFWZydN(Cb_8odwjU=!T#K*Iyk!#53 zn8q_1BHwk)KtshYaWWe`*L$`nYL~F8>rxCff}M?fayt)glXgBaztmKVy3#ThnY8k9 z!I1u=j!YK%khFpCw5Yj371Jgu#mo;uX&6H5%pt0>0dLx4I%Ol~dX%GXE}C^5bb?Rq ze;Zw1@KpbZsWQ!6+jgI2L-tlj9Wtjbq^p$A8b4!+4X^YLO4+LT%v_8xJ-bZ8HYt8M z#j_uu=h~iJ+HWv&yfqKu)Ed_`Y%N``TFM<74D2kt{9B=TpjH0#4*V`J$(0P_w|SVv zM-Rew%G7ZZJNw097*Mmj(GFW!2_>hD2#>dyqRHKUd=s`IRr!(iQUJ1zy24=$BDiZ< zuW%u35x|bGLB|kio+y9&0*f;$wo8}-tAKn&I~Lnmg2h}-6G({|QpJC}zxxvzjBuv{ zT?q`@QXvaezK)0(?mI-aVQ#?ivi{K6QfS}^VxBGzY|Zt~#76Lt=gyKM|A*pbiiFpmsct=HJ-& zJwE^2!$0(#^DknS&60-3vNH2nZ>H-?XvMDY3x!b_OX7T*gUKLZ7S32TtwT-NC77$f z5vZ}n?+kWfLLH0&^jsGaOPt36R)`YnWdlG~$8T*_g01fcsz6J9{zq=W4u1Kvdex_% zHX)34tV9-gYs+l&{J|UR+ky#O-$I`c%&Tut zDixnu_sPObr<9Jyr)vKF7PWj}Kue$L7CTAu(M_vul+i0um4<6xZN}v5_*j2A>%{Vt zyD>igxIBzxWoPwP{YJ^2KtWBI{5HV|E!X6@bZ1?u6wa|oJ>cLSm*nzjrutlQ^|JJP z*y42k=1HN<|1F~k6LkECfEw3tjXYs|I{!8MhjH-P6124cYZfIIPW4JIe>pZcb_Ud3 znv?kU&x33oJ?P@XJc2cnNYfs%&9%cj6agtkh98i3FVw}?Q7TKBq0w?ob_5;p9%Ty( zG`xt&`RTESv%?qCB;q<@JBo{-!H0D1A76R@m2e^ig;eZgXc3T^`=H2tFXp;DhZEn z4YRnlcYnnKN@8RZqr?|eje^deZZd1|o6$K0{s*UCAwnXQoT(0Tu5!L|Li_=CHW71| zO2~6nXK8sBj_xrmu9zV7AQ-Axck#QO`^3;rW16Mf{vBwu^NdeWYDl>04GftymM3W9 zL7@KUik&vlszu4oLOv|K2ny5DEFn+5FUp%pk=R?>hR7#eN}`b35t0!5jRa4n6T0hX z#)xH+^2Ts}2*?-$5CHO6Arzv&9DD}E<>u;^GIpaib}++sp^@K&UOAUcO6hc7`tqZA zafA8%dglVxGR3TMcm5V+RQ^h* zg9{t}O$3lB{}oJmph*akFV~aKR}Il6=NfaZ8WmO`+A=-!p$a~q1oiDC7BWW@&XEmi-*E4 z4lD&_BTvo0N-uEir;-F9nrE+rOb&wnF*STbGf(7mnoKp zS>Iz1q1Z6+e9PO*)o862CU-rJ3k9rwM^|j%?*!1Tzp>|3D`SK-# zW`g8z$fD9=dAvR|(;A!~tHQR?TuTCkzouUI%3mAXMhwYRrs<|E{V8kxZP;cdWHlFN zB8o%DCp*v6<%q|n85asB7y22X%O6UK=~uT8;)a7z4z0A<@W0BG|w?@$sw$ztC1cWnsT-hE3GJFRHCqQepFmbKK9woc;2WMh_* zXHb(bWRttVR7J1SRu`j9THE7jJy$`?Z!aF%?uYn+OfjHU)ZmAp6>0C{Y)j$m~g)fb~%i^-kunt$OQ~DnXHDSzRIl}w3vR!vCW_lhT zxI?tOIQ8bPcN?p+(gwPRFZlCuDpDx!)o9i?6O{{1$R?bE}ciJ_?Ji3dCf-ITLrS7^)-w*E}S?$CoI*K@*VeJDc9c($V& z6r}id#B_RYM$`Aqh2X;}fCQre62!)_o;?mzI&zQ6Z}!e8Ww?m_I6R-f$kx=?^G7yK zq}e#GDVqG)4H4flE;f5+CLom4zq_LWyUahq6}N(XPGy0;%kPtmL!sFD`eQu_!`Q%= z!cG#7YNFQ5hb&plgvg?=Q@uxz@ z7IcF<(xU4LVJTG^)YY%PPwP9dx;;%8e1{!cDY8uxXi z@4e@7hmJy01BE=EI;7x3O^Lebc3O&aRlt^7MOC0%^!kKsm3RE%^eGEz7#yM)JZ4p{ z-rhdqJ3nR-N1`?{C#^tUPkZVa^7h4V>scPi*ILm-Iy^%K!i5ERnAHZT-A9S{PU{Oa ziY5Jb3!T^ZqNi{;xNt+3 z@NyN9_7B_l)P=AtF==$AU^0*w{#!k?>~JM^Hf{@c^3ihgciPu!A8`TqA-IGpyQiL~ zh3#WGSL_qc6WLID&+1^M^cB;006UO1x*+}*Hv)LBUSb9Mtm~NvAU@H3urF*E#}FTQ zCM@X@n6mv)KMc@pzqHrbdIB8J;GLET5H-rfrh}M&3nc+m#A{(;(U!{Wv!$Mh4+m6> z0yQ_fn>`Pe5-fmyo}bX$vQFX_7x-f_|Cjl_R%b-7OvhQaz_d)&58nRTbQqfc#>L<% zfY>%iCsaY2>_|dbZ}ZCaF=LFL`(yyWdJxk~6#gjxbtDMHtt+wr%|(kjRCNBUlZO2R zve=W)dU*7Ey{>_n5Hl&b8{Gb z=Ke37>Q7g%FK}rDGSI^DRPC4`j`CgO?Co*y5VJzKIYcrN+jFB6$k@dt3m2M|R4s7d zf&f9_?4K@dBni`@?jct{e4HLspE;Bvlb$-?L<*zNwZCuHIA{ zEoI5j(uL2WbcASUp02A+Ri(90i){%g7V|-fw&J;1H8KhWe2>fJjlm7DjtVXx#H`(B zxdO{$#&g?)_FpepU>4;%7l!bl-yY+Ihk=-)zfi;aa5xO_7#c!HSzBzC<4(E~NtjSA z$v=tVr=}2;(Y@%L>~q&S(2;szjfu(_A2k6PRR@<7U_MXp5zIpDIP5WknZW#Jai`=9 z);=tu4yB$cFL2l9a;5^Q3XYp02|a)QX`EL(QO~^%uRjA z(<}PB&%-5B%;Ag!Z#<*|G+HBeC}u%QFbifV~$aph>1hELfW z+U@oPt&=-cWgpPLaj?h-WN5anEnVn+jT1Wt&a+$9=Or}Od^Pl%&%^~vpamEcKP+~l zaX6n!W66~W!-_+=HJDvHg49{h_P-uF%=nv1*G}ebjF&2Sh~n{o@b|~P={;T1m3f=& zV)6E&E_-WwB_@;<&S`b7lLKe|_WsOmwU1*SpLzb@o+JtHCV)RQjl;crN4z*Q;&hNnCU|>~mCIdmv?JJd z0^AFN%2|`0!f;qo#5A_8p8t9Qh_t-}UV2QGKikSegjx?aa{MWaM3=xP6%{sR_|#N6{DbL^{@j`WQFv+{sA{YtT!#bQc>AG(F@ zc$XM712nBxulV+FG>^a|+&P>tiZJq0t*Qq*DbLwi+qh%XCbAvPo$+`~? z35(ueZ?}+m;byL6;jECE8&;Wvjq~FjAoIIiV~4Vb>z$Lqf25p}kTbvKfp9(f}t`(k=g{ zn)SU@bto!z(iPvwPp9AQ2;g2EOeE?yc5!hcYRW4)JgC_E(6)ygJHH)BqM1@9Mz0%K z2-=WZO1E4;MF9pXg4X!X-!MfE(liw4JC}B;d*1t03Ps^?v0X|fyE&rta|qXJ$BNdJ z+3X5*ZtP(Rt-go)%b7~RhKejEyJYMt7?kldG!`zXbnrlWku>*8Jf^)SiT@po3Y5vP z(8^%08l!9s0`+D^S6xQx(1vfMQU^_8gE%g&Pw7r3XEW()h*>k~8hawWkaBH^7%wwP zvtDD2m5|N>G1X9@GlUhxRt@V=&x>Wh!Y;W1ZwJ|^+U6= z>s|_X8CUU?aKz8>ofaj)S*E%r4sjk=7>thu$3vVlqQ?a$E<5al&&33Kj>g`8kX)~IET4rCqmAY;5f8j2Ftax_E%c&=?_`pBkp z7jq4G161?8;S=io@=K|f^eQ1peFJLSxzKqzQ`h`#YZ;7&Z;dHHrv1r&D%IsiHGKG^ zIB21M8ZFCSH9M6A=y5$a6bJXCG;kk+@9gx6BJ7~Qn8e`sH>WG_lYwI@9dy*oGKVA& zbaz#u90mvAobjZEEq*q;9*vU!MO+!s-f3moa4vi@0cZT z9QKLck&;sG^%-3fb0o|$t=^uV;h8jC1{|tz`8c09w6QEn^??Sl;N>?Fu~a-MY<7)_ zjVMn_M*|vr`n>}BsoOj!pLZ93y-+(aJt_*ieX*fpu~%?2i5y2F*xhoOdLwJ(Fk}*Q zZ?1`Kq(%7C!li9xhV0-)lm0LUD%|$vrGxz=vg$GW4jBcL$Y0fbIEOJRt>YbK7+Y?Z zFVm9TiG0ZunI~6vGH@RlN1{m1T>{wB#-j{}T{Yej|MGmA9wkgua^D5hZCtIyCWMiA3tX8jXW`HbtEG@9xUODUdKGbrcA{-Q4;U+lw2BY zL+kes9S)-qCxTKX=JDuOFppjXJ!-s*-$0Y@&NZdf=UFmuHlWgH5K6+Ah~7%6riAzF zN3~?C>&&6G4V9-tvfFcogu5&m!cBUc4cjv0N9*3l!gjI;ftF?cmqLopP#{(HpTpNo zr!K&7b#F7K1KNfqzRu;xznH8=4Ny7u-kuZ!Zkq(S?P&8D{m0EFaN7(5`h&M%C45KO zpV=|fk%w^=_TbjsCtn>UcrRL#*au{c4h-&lct>-Co#q@ls!X`rT$72Qxydi4d8LWs zcJVXL6%?rASwFj=H-3=95Rm4 za}}~kX1r1mx67YJ&S3~h61CwOZx3fK&4`svxfHWTQ?qw0@%MBV+WYw%?*^2Cb+#kSS^M725MK6(_i~ z%;4nb@*2EYy7e_WjHB0c>;$aGBlJW)M0Z)1n#efBeC1Ms86_P%n4y5q@bG!iTcAUl z!>N@rx?G672KhQ@TX`9wZN=Zwu0+6dH_j(W_`V<347s4XSQA*V=K(UHDFB z!qD$R5dm0UftIIv%)!ZGx>mZd?>-o?Jlo)0S+1xv@d^ znFFhnmcqz}o_5Ju^3zF+3w_EdA#=&G8VoG~d&BV2bMO=7=9I zJ8hW7IN^Lj|3icYkS;?{zB&f7+OIK8-y9a;5i$D!=FK-)q=2Ic2qz0aj>mM#T^E?6 zqcMbovfmf$$vIEtV^R^<)1GitCVMX)EgQlPuGQV5+xowBd2WU;?``dv>3KfK^>eug zTcI>Mstk(xvKfq~dUtyayN{D|>7Z^LB>X)k*)(puK= zFqVQcEmGqh35bJ4RJ(afqE=g}VAb0^jd|GzQHUR5Tk2U6pGUWrPJ-6c`!e4|d`Loz`tb&pU|Nxl|k+gbO}Sg8b7L zLT(f_=iP#ne=5a?)BciU6oDpH?)_4E3ferLZ1EX9tQ>k5K{ ze;HjLjUSuqFB1a~q!_8RyCihT>yy0sH_7j}zoF82MNQCf)&#tIRrqtLIInxn;fR&s zJdu3=K$!eIS^esKUC)^mRFM&MW*%^_N*I$nBnQ)eP}yYm@Dy%(28@zQJ;Z*aJcb^s zWcPf&6Dez$e$J|NRwq`f%%`(#2bU4&Wx*z~iTqhNxO;3e=}A%5HD`ub7jA2=O}S2P z6trS88^?|Mks*k_HF68gF(}e6vG8^rM;Fcye^afvU~z&WTI6a0by?2yJ=xDyqK%^$ z)tu0C-XQ}|>9I7G1McOp>7=@#q@y{21x!*fpQPl{GA|N1nA6C3>%|8*tj*;#VxN=H-`UF4L9eN)rifSu(&+G5~>9;atn{_AyS4A%{Yb zFQ4lJUdV5UR|iK*2`=`}6^Zr&gfmE&aJoQC=|94QGv<*7foc024JY5J0SABx1M@}~ zijjNbfC7$<&42!GOS-MjSA=EzNHDoc3{C+nmJ?C_NQxHqv#5$Gqxu|P->sIC`_o1Z z?jSo`Y8ei4G9z*Io4uG&uN50*V7_ZmvSB=?s(3ljDKm6DG47hmuP;(NxP}OLyL+L1 z2Vqf*#Q|bLb)>P5{^;iK$JP7o(dP1o!e4mYhUkk*))Vy2YVoh0L;#E1{XqcE2Tb%Z zbq&`OuSGBZu9w4JMqop4QIlcfWMq_2iJLx`i~J&yT*16HuxCLIlAr1xu078@Wc^2z zSIFCEI)HrTR2S0knx21FS9$f^q#+JfqX3753 z&dz-2G`U~tsSA|3o=gA+%>nsw(DiumLjXky`o$o{sA8no#FVKQK|DG6^EC<NCPS}1Flq3{Zc{MSu8}rF}#<-FoU}Xbf4*zR7hFa_hU1|o7r?vvG?OU8S zp^%+?KLle9BPIwo$nSFfPo_sT!()F=MD zZfDUSKcFRlKc6`FDDSQVtOfi*@6l_~? z?*Xb6Qn^TnYx8X5=^G}A-5+^9J~>MYEh!Gb5Ut`~zo(uB4LsKGwJ>4sZDrP%V$5O? zZe2`FEf1g3LO$Z!kvZJ!AXrBuyqJH@%u{MvgNgTE=3xGgj?~sA8HlC6quVocyPvS> zNx&*SVBLY(h*o1X!`#{0|KLR;F5erE5CVj$_p6EXA-}Fzz{`LyV#y#RWN~RdGP4MW z2fBj){+8xQ26!J&Xns8Km60@V1Xgx!jes&o`S(s1cvNE0L@xtdetcsct7=MmEt97- zMYT5d)7?w|t_hg5QV10g8F7j%l2VEZi}C{Pi~P^uIBXNrM|Xx4ydc>csBubV6kwD} z<9}G2p(?n0Ci1K3{IsYZa+bxs`E{tM{?mFijufhky=xaof9MN`W5^v5n~==@t=;3)~qSfd{Wn>!3(EwAOd{6}rr zH6<~xDj-Iw!f}B8;W;wQ8E+46PAUv6jIb-)*d#xmsu!;={Nlxda_{L?w4*(Rr=WgY zgl$*7U>!;QJ8Y#c;ia#Huh5VHJ|tRsPVdP)M3yDH2e9ubA>GHh71%oR(WRS`;H!Gy zrdc{;2v@FUe>~cr_8MNPEg`}{2_>*#+NQ{;qU<9tB1-e_?+FhO|6yErD>hc;!`Hy5 z+zy^cGJ7>PU9M5ZFLtoY|V{ZoL9wL(){3MuVUAp?Ca1*c&ef(VW@Hj7PzrI%;maS4En43@bJzkrj ziEOCdB4axFjF9sVthXU#kA|7fGxOj_-FSLz_)DRet6UZ9NY6nt^C~G71MhVvMdz$4W}H31Bz@ylJW#hG_kuYO3^@uX6%SpxkM z0&q7KUm`f3KaS!)RITUS@%1X{xPgh+41(1Ui;`H<;&5DwR|C?UG8+u0Ve5Z3By*b2 zG8*)`eCnz|r&M7AMvG1LdByLUgr~O3msTt@I$%7{R$x$z^#IP0e{s70;qiskk%0@< zR;}XTh65LBKU2%-y(o->j9t*bHUhWTK4*M=C z5~=@EpYAQD%sRG_NGduq-fy46OL(}v%cNP}Ru{eTkbRAZVH^(Z!)D1dYu*&aOo z`8FW`5XYL`4&K1-FaWoCjX$xcB~7|?8Bg=9i&7Okyb{5E zYS@!o`#rh`cNkgt1YjzGG?6XPZvUr2gW-qXfD2@$Ll{6Eh6w>Mo-y!AsgSd!A1&SP z{=oT1emPy83jtF|Y?`m5-cn>jUI-6y2QdlhCxv~pOv;p5ZpJM@TX*PN_(({q?^K7E z6bl0g)32Z&#m5tPB|49vpA-l6deowP=6At#{cdHjPT~{20$K|DELEru;PRW@!t}w> zo*A`WrR|1~c17ANZOg29u1KGxh{CwdxgyEegCDH|jwq&xs*`RTMh=VYS2hkTUoJlv zbxbjCxZbB&_r}o8OO26oA&v_WggzAqFqd9}!7 z*U3fx#=_Y#Y$enx%d^PQjJ)f?GmK>I>bQdqE8@zsKyDpo5_C~MN znDN+Q8EzFvkk_k%F#}YEP}BPfS5WZl$H6a5a0dTkwidyd&r|*_;Il+5=qc~L2{N^R zu8N*>IzJtPlo~J3!ji9G)oV6A=WQMi$XBSv#K8Y#vhm&l<8dz^Pjt`sEtseZ_D}vP zL;WoiY}E$9|3f3B(Y*bu?CYgO9Yjk?5o2_q>qkp9(3fTr0d&?nzxwrmzT`LeXWiUc zngHx1iSa9N5^&K&@x9D%E*-zgzr?Xlg4qtb&x=~ir2ovlAonZiw>B~<3|w+z$_M=; z!q!vo@neYg7Q2dJqn9vl?tPA)z`x`qumrxSN8|JF0q)F*@&m7zfw?Z6K7In<Al)wGlU0)8dmknzN44gj;#J)gotaJXgE z04t3c@W6%+RxFQ?6IfDr@2MliUUswB4*Pi2$9%rsxOT9dS?=q2%PNQI%mMk#6Lf1~ zN0Vj+_?&Lc2Q^?JI`6dqNdB2nTW5vo-`;Ejo3gUJZ~F4Mg@XY<9o;=i(QEFP_)iG% za6<#UA9kM8V+B)zkc~}wIh28&{8WG{slj*1elFepdHV$JQ>laO3M{dd8a$h)6RqZk zs)e`yfV8x-Oao?brkCPcStij4`V}`I&=^qCB=gYmPz-dVAMzVC8e**H9;o>{;{^co zSFgaN;R^WM9lFeq&jIW-0OBAT@WV!}ETC{c^8BF|YeSEdNY4dT`v8`&UjoC3E8_^P z7)?%N^B;pgGyhsz&#xo#isWQDTWs3#gv6gw*V0sw+KPI8# zAMJiNSuz2?mM{g3LK&{m2Op`{KyY?`cV~u|4;x4a0FxhVq^Y?u54UfWuyNAQaZxT@ zUt1WMD>I5owDlsJC(4r+P8Bl;@WUD`7~Q-4f@ST@-KY%5o=ZC5TJeO+0guot032#{ zrD%?1Fd#Vyu$1?1^R@~&U#)TI`pRjL_L|dUzH}H~ zrTZ!x;=^z1ON}URmn4|>Fhz6+!RE3_)CPRMg7R)&G61d+00L4ut*-srd$7O)zXdQ( zCygTk{Z7mB9&=}-1_}T3Si(eF63}DeRy_doA#b}FUr|jJ8Z&cLUjb&n9|PBSNllN9 z@zZMbRV*luS%s+l`!1lVE zRUE-M{*NDA;2y!L?-6{9%K`iGDZc&Z5ZPrsjer+_b@3vu2EP4WRAY^LXFkG&?GmD zMta(oZTep?01~>u#Fp>UR_v6IoAbL(@9-;X9a6E zV%Xe|R|?w8QIT-0Hup>enBx0Nh8PZbkKqIc1EYfV`*hLx&g%Ogp3}>B|9uNthP|<~ z4}TJs-?X`Qm4qyUt&3n5jVxaX_emg*Dwrl9BQL&&XDoelChgoY;Kjs;qhC0y$&vwY zfX#PK=&{7?u=NK+)2IL-gLLjzC?u(#KPBqGZLg3APpiwxmlOv0y z3daSeVefH26F{`z{rcbUMo`I4NRvF@jTpe2BK@rc)BA#i;I1Xy3wCtg z@~E)Y%LisB8obCNd!AhS72oKc%y&Ax2PG&Jf&Jy+DG+BrD)pfQmE&Cn8iS+g49R)r z&&X%E)`H#2OUmm2-*LCRrzB-4Azl$p($vgOG=fRQ(Rn(Ay}d?S&t zHEyKW+>x&)U^93_B>Tcfz;a_H1@?t((FE~a3ID&P^&@|NW`=uKT#>%v^{^ppH=1?j zlW=Pfz*B?+0C%h>``KeMK>)@1(9N$x1f6OXn_2IM9Q!NgJ{^eA0#hdqUoG7z>&CJ; z`3k4aUa9w#=WmBl4j@K@58VXF0x%*DHjGW$6SF3A1FI(`8DM-F#oi&1bLMLxhga{@ zhhw&y@;^EJFQf<~7t4EWJ`hqultt{bcR=|}6C4LnppN_gWC2#n1@pMhywhri(Wy`J z27X0_*6i_nxJ#>c&KWBR1l4#RVq z=`p1E4=XtaMRSl3o29mN#z;rW}2xFIOgYS zuA~1Jj(@4ka?g5Dv^#dgx}jLJ998tRi%XA`7HEtGy5xI-Q3Ot_ngT{WeFvHSFM)8< zR>8T70+44I2@s+|DP){4dylK3jb*olAI&|FKluKu_LVFDz}R~rf92cC69JRyd|r~* zzkr-+Ub?K`mFW`y+NWPtWwrlFi4Jy`C$Ob7FuSKpTG63^?Cur`YR+m_tc+3~R{eAzx4=(ZwjPI z%HJ^3Q)<3(GB*2J;Nad$w`4VTDy!A_?OBNJ3&54C!H9R3KhH%+=fyj+w}20f4tC- zeYBb*ZImlx*WU#t{~C7&a=NHxT);t#dF$rErUvcRKoyIeW=S;TTe}%O3ko?S zHsnH`cK#>zIzt+J(sUvlpH-keu0A<)QxQJ%Q1km__VFt&K(LN4{D8CdM5fDKB*3g5 zZnw;tBTAMY-G`F|oLn*bG_Q<#lNm%b^Jzw2r}Yv)AUQcT!;@i9CT{-n-7CSEZCxK>3)*e20QsW#MwIA{nSr)@mREYfV55s z4g2sicozsS;1 zry>3i^ql^>Q}&mRDt<@HLc#t|nb;X;3!6-3}(?$a%D#JZ^54vG|p zv{>sPFs}}*TCKD!9CF_;T0LRGp1Q6P9II0($~e3cW@FYS*Zi-}n!NK*wcAYcG{gAH zYq|@S{2WMDkfmI|P__U4Uvv}e{nr9u&$n38j+ZlaXTatS$I4=zp>b&@;7$T7sXBvu}FCmnD`Ew6? za(aOIU`2!OPSRa$yto3jHYQgBly74?klc1|ODW4gS-QkT-cVGV&4Xpzz>qN9+Lu(~3w4 zfMmsvW+bSuSalt4J709N0HeWpq#pV=hz(NBZp)lYY-0K6QI`)MHJmo}rqtn}UDs_Ovb5=>ZN)|JH)-AL=cP9&5}o`y`+) zV5Xce9bsSQOQz~|=iU`ul1%_vu)8@H+F+}8u9Oei1?8WbbLpdP-mf{N zDK+Hn_w!19EK_uhoQ3LtA!LY9n6&%|?tEew+OcExb;KmQc(`;RHwy&K5qQ#YS*=|Z zX2k^zzC67)D2#KL(AY50&K@>+8teUvO$3jEj^jsfsq62y*1|Eq)z9T&p!4DIoqqn72U4INoa4oXYG)dE`XBfat4tSAHG2-SatTJ_-eD|$J-)y4)qlM(@>w_X5-&=D(HP=_a zk^s_*&82V65t&!qRR(Hml25W~e}NQo&!R0anyk{^Umd_}y<5VwPBy8=osq(j(h0 zx=Xg3OkVE6nZ()SZ#;ams5?7am0!Cr<7#xmLf2Yi^~V2TA1IZFB1z$Uj#QDKvhVwU z;p1#+U&;}_vIxr3?z4~a2~u*?9M~16@lqbm4l@?Z^pZWPl(}`^L72JllocCMsIvZL zcKbaz=hM9b+sq8VWp2~JPtAs$&L0=79SOjKb1kEPuq4nS1<_WyY0^eNSpUR|NG8d| zOJ@Jc5c+U;%<07IHPOvTo`Mujq%rf!aOFJ~(zYtGj#2NPK)a#gfQSAqaYyJmb;t+$ z)0uUBsl~@OzU>e^hlIkj_?dW(yk(>G&<{^@-iN)9`T5l!C3)K&@wztsO?o!Zw$c5l zL6!Y_Bxo1f2<{Zyy$(b?F>ShAsk);WJ9%RUoSWU>JC0XAQ?iNF>F_Dbxa$KY0EN)! zzwQ1(U)oUjLdcU{^6H(jPOPh^Zl}CcqvcYY8L8P^j=K#;X&*E(lag^J>q5vAG_chy zE=oz90@9C$(IMv^AIRedHY0Mp$YO%E*H||`+4#qkgL+&z97PcUF)Kuhr8cX_{p|r1fxuH`;&!myWWZ^k;UG zTCo5~0_gY&%Y(!sfr|5Q0XtQ2P7~g}pAUcdZaTI!YM$iS0E6A)Bn_)>QD}P1D2Cca4f5$XaFZ`#g~}DJ?aW?qD9p9Q)+-jH&r{C7%;D@TbU=&lfF2T}v}7UZ}ARYq*Y@7^@A&;)|Um8Z+p za+!}uHp#@55W|M()#qF_zXT%XPhFN~XcpIasixKxsl!NVmr5DOvc@;)CTukruvi zzbbwQQJQaJYS-5cciF=^vb=2`dUDvG%(UI1n>gBg)0?BwtnLt=R? zt%%icc+)G*>)HJ*fD7e)8;+na`_Je?8>sqg-3k5pAd`q*rFUZ~=VxzxuJgbwN?516 z_RXQyQfquEPsmrI88wNaENS_%PHVLTuXhWEzUN6osKTe1ns_Yk1(els^2m)V?pDUh zVZx}-GJ@Etj)Ey^aAWTgQ9g*iWAQT;WG7^4{`}%@o={ZEDbU&_Qr79f_oW zP*3WZUqJYZ8CA>P`{aYdau&N9#6I@}(aF0{KNLSHdgjen{@6LkFTRhWGSW?0UdiHV zN;wREC0a%1sYi0Ep*+Nb6mYS9XVo!)0D%3h6)@9c{spMdBQMGm@YPITio6P#J%T_h zbo4o?%IL{I13d-Oqa?tn#?MS2$kCCNDOnja3%8oKbE{yj4%c<%>L&V%)9UpUz_UQF zDLqK4d^7<1KrJ(wv$2CJa=B7ga}&;-zdhtS;=Ynrf&xkwo^`K?a!=Nyn+q={|3Et* z++S{g_{fo`;a1%u*&Ny65bY#B8Y3#u$)0B^Lr4OLgloq?lYA z5zJKMn<&Hq#?n9|(mM)+&xM`UMsrm*?H`ZL&0X7v(V2{9-ou{}Ls?lIQk_Z%SGyrL zo5`O5Lrmp;7GB;0OeS_K`cIR218dB}t9f-{zbj>W#zabiMMpb)=%PwrDbz)D*)EaX zU^AmlNNrbP5F&Qt=58*~ryzN#GxQ>U^!c4Ff^b@%8sb+Z(`SOJl(P@|78WXFa|c`$ z_#Ax^A2gqJTI@mIbtI8bo{}dTX4G=_pD)xVZ|aO1s13D6M8iN3O(0ijiEoZf)Oq!+ ze90@euW7A(R&r;npR}&zc;bcgMn7zd35R)<()OZtY}{dguO&julY8}Hj6nn2tEp%! z?|^~ks22~Jo7>VBbw?*-TU?-rZ_CV8IybpX!eYXr-X0f+`WLz1TH#Cq5IbfgaqcmN zEK)OYwlM27`>rQ2B^G=ROvD8Dskm!fh2_fjtp^Ad9tu-B6@fR(9$J;RnH=XNon=J+ zBBEh|A8+3*FjWXUqT^4;JqJHZUqm7ORzflI@cOv82C!?*Eri>1&OtfRKDg5>@oU>u zi418YZy$TSG>)>IfCn?CTT2x37K5a;JsHySG9WA(n73Boj$-|W`dRyJyy6y9v)AUn z>2h;Ba;v`)2q_JRnPAiB!iMq@^OJ^wWFFDSei36bg>y=XXE~7gaj`bRE127fG7}V7% zTn)w1(4&o~d~{u!@Ofc>wA*q@p6Ot^Wo2H4_SE@LqETj6twWbzc_?_OWwIMKEbj_m zvEftC`)f^uI0#FVU@nvVpiW}nW$*GS*~y!QP*-wF-91!W)a*z}$Bzgt!jiVV1E@`}O<#A8&-ld^;{NOEV50PP$yrY@|_qKA$z5HvAkFO&Wmg)i@Jm)dx@I+P=gdl7Pcg9vL4kN*h__!XP)v+Uq#7`v`K4EBd&lW z!9JER7_WeHYltF+72YS5=o&Q070PBUwv_2UBeDMNM|5JvK0g6XYV{JuqogCs5m4tIMB4&dzQ43<+{2 z(e=DWc50&g{VxUG(TQ9rp6lePGrv@3p;;rTRQ)pPgJJ+Ef zGmmUCnWw%gcH)=7B109L$O_LFBAOC7kq(m&C;4fn*)*M11kOgs3lF3dM>*|I zMS7Pa>Dk`bPP?Vet2Na{>OI2FUXIGkx5SyuR*$0TUafl#bsV@eH(Wj#bDq38+u@B4 zE?2EqIv8g-j57^A9fr;RL5F>;*=p4b?5LanG&4??(;oevL=$({b;q z&c&(BI6@`hOw>II)YtgjMObTPv9t4DD&&z|(l`QGqR}eRnJmf-)zAu^qqJ5|=;+2Y z)mJiYoW2%*st$u#s9NQy*udC-+%Ykp4bGzb@HAt~S~c8nXMiSBfrRH;NC zNK{*?_i0Nxj`up3ftfYh56ny7d@>7-frOZaDEhQ3DK|_0tF-}sq{YB02*@;FSaC20j*oI?u>C$!!bai2P&^w69^VG7{=1qoSn^1_k=2fj7b`}F;k-9?Q z!!v9T|5FPPI7Qp<++)8(t$&UWyQ9-%F=dRe2I0_`KN~bIn(v9Lp!M`H@l%=-livIG zV34%$m}cCgY@VP4-9P?{MNCE}j~YE7;P`51=c-}m@*T9Ept;7tcdnr*;grtxpV?&` z-gAT>#n`*ClG;5_Y7vh-<&et57` z^h+enIE%moMBWP?NvDWs5%@Q7d>p-{kds%x*_aL z7XnK=I9cn-U}m9V1DLfrVG9=F#dj>n07++sE65H=AfK2MwdIMv9`w#*%)~_Ry#jRIT|on_^O9y3^fn(IFY?f5ty zEZdyxCM9GX(YrU_uFGxOb2VMBAzm5vmETkJ#-}$Q_q`57=Bm>}>lvE1=J!W>2#8z= z)XT%AUd6^EQ5$@ENjXbmbHtpsM#Hh=(xYa*$$2DJG6@k)aDSX zABho(R$;w6_0x6t-lB!(cfb1}NW*gjxI@kAXbF|CuuWQEC)^sSE{uYoZ$_zWw#Hm| z9!s-Jn;!-0AMt0}G+cv=`P;Xr+>l%{erwCHO&%o&YtLL!ueLg`#gf}V3qKyo%%n)|%RvY| zBKrVtj+zo$bA;?u8F4E27*J?(avfU8s_%|c(}Wj5&SqRDesLhq@v)Q-%ZTcS-TVJ> zKk#UOWP-}kobq7(J{!hKA#J4gdTw7^$CSmr8jrPr&QW32q1*vs=X{NsmuQ1I33%aJ zrkB@>(KvK(s;3V-T|->E)aCkIv--@0zrG6PHB3azozO5mSp7cAmm%biW&!zlnl%sF zpe{x;d_Rb$SsORHJ>tpqV0tmcxb<#KYFrj+%!I0vWS0%r%I$acvB1zdAn6=Ul;e zNQts&^#|9%yIK4>)qHcF2lmi=!|FT4xXxmk+*L+L?aBxk$sHAUC+`WPFn0$V=Cj@; zF(1cXSdLmy18(vH69^^$VVeFoeT+$b2P#Rq-2+)%$7Q>v+pfY)D)zx|6YCvh2D6Z6 z6J9Jy=VtVf!rrdyb;$csVJ>aA&0CCw9~^z*`dH&JB^S(^SW^UMx6hq;wY{bRK(du% z7jEmQ9GM)azC=ip_^0~5{m9jjQP$#^hb3E_noU2x5<)r$66TioqEuA- zEiB_KKE-YcI1WFhELrAx!>%+rl`v8gBccKKpQ{rstpCohKWQ9a;a;~Hbk;tDOr{5m zmTz(7>;~sGfH9pW6>`#6`p1Zrw)NZZ$R5QYwR)Er&zWF>Q4XC{=~%j&12(J%+X}dS z4*k-DyKBsL1i9u5qCcId*O=0ux8$U=Jcjh_aBdxzP>!NORI*!6?*~JUFq|etduFmR3Ghx+dtrFKJauiI_j^4@8oAs zp9#(KhScY$YmS-R?C!`p*j8!im&n;z_tv@-rEpFd9w+L4G);UUg~M^a>-;w}!wkb4k&;sOrNKtNOnDl4ONR z_~s#{VV|KR>#w|Vv-KyF`TGBR-rK@exYnGW1zhLu?QNV4p7rFBSH8 z89|vTftsI#&9!}M|Z9x^}xiNen@C$ zLqY73b4u9?r)chE_&QzJwRg+%oish(NXmqd7?9>#mpi|GA>UN;myUr58~>rcT({6v zL+2vS?rBWKfYEw?Ih9nV*wljHxNL7_=(qhf!J+N=0YmhOxpBs{)8r+;l=-7`% zpK7Ie9rC&3iMcA$z^7h!*C{tyqg02ovL}x6+Tg7?QA6V>(H;e#_EHkn{{}~Rw8qT7 z`xW`%T?cZ({KH^!(;&{SUXNQp&3%@^9zj7m!hIH>>OHDC>4mR1MKuH+{LDMWaj1h^ z)C{+6eXW7Q5wOgD&ew0D+I-Cf3SSexK&}^GwKqZ?QTjciza4KcS=!R^-R$J&BTN=? zS{|HBmgJ0F?o_$~A)VV^^sXDn^R$kUwP&#hWAGq_sr`)Sm|8#X)ZR#D;t4Z~lb%B) z5Ccn>6Xe6P5*&y5o6?vKgdUzR5_XQv0{Uy8KztDK1mIq7jvs{>gJNW{@u^r~=J8th zdodg^Zl~AubHcT~^aC1a+@{h-*u;-ieK26I(Lrx7$%`6(nbAo_USNnrUXDxh?3O}5 z1%pvYr#B8qHvjVbrUQCVCSiK$)FTzoNp|$gOC%qsdoJ6?k)8PJcUJ<9vlEr>w|H-B zF)$Hf-Z&V)1F)jp#=S^j2ISOZ_?lyZL*ayW(*)<|(LqjB{Y{8x{K{yASK3P7b4~BK z$$Ft8aP-}yW{Z*FI>RV84l$_R-UK>WwmqdGBMui68&7TX#^uX1_5EZ;-kPzNo9J|4 zA4!oZ`FV?fs(iP?=>dnrS!u6e?Bgm!tGJiuKN{-g+EaF?n6!d?$Z+t~bTFhC0?V%I51}Dd+P~Qo8k(tef1rQ)%TmHU5BY%k8zBx#z#$K~ACY0*X8|rl ziYVFUw;q2R;*;x#&N#y9Ijm7w+jf5DV87byGNPi_>( zOj_3VJW{k@xA#kba_EP8{^G0oAtJ^3ZI*au!MaOsSHFNb_<$ z(VxS&D8PlJff9{nI;$D1N!*Hsk3#zc>_fI7TWz)!ziCKe3oLbT$UqW;#h^-|Z@#1dB)5y$|g@~xWa?L~s z4y14OeIIUdn9S*=YL-`$3^K(ta8|&DFT={be8Qr{ji#?10SXn9W$O1?FtH`ojEAOz zw+;vvNqGXY%+~^cARZ!=@hs&`VO33w*LBneF&e1k?D&C)W*3 zs@#JdZic8kT{zhJFF5YxydIVMa$@InJ|fuCkq z#}rEk#4;s`irL#q%wX@GPc=aB&fVv{m(I$@@B{GzIR#o&*l+iQ2#gMQkOVc_4tNO2xmcG99`D?yk7fmvHC%9Ck`*(YAht`?8+DG90 z8nhwqr^UhCHZiaBISoifO&WDNyo!4$WHrt_)YFNuJ~04%U)G&4N%z}-`JvG`7;}oJ z0bPg6b3TT~aPA$ZJ!wzjwA_)P?$m}Tb_mBNH(^u^#Er?73-eq_h&7lo53=8;zo@x*(AV|BFXun5~ z>N(#3$V7rihKU9KWZ$=X>(X6v;!NP=xIs1;5AEl-?K8f+t(weA$59l^@n<77nW;YK z>`Y(LIFnqNCUFY%5e6Pmd+(Br(uT><*3m-#6)${^%$xn6bMVDgqq3{gvEkeY8@HIf zDY55XVOsqvBHF)tU!#lR#WV2@(hboDOp*0=*san-oxN`0TAYe3e6&w2YHO zJXry3V6dZ4yUhDGtxF$%r1#@z^=OgD|M zVH#@DIcBT!(;}fpx(j7nlIVLBFk6)v^yA%y2wuI!B*Z_T{#bc39yAVKT; z*KL*2oV#c}AU5`w3F}^=V2mWnQaS7(A!l5?s@guE?I4TcYfK8TOc4A_{3TlAnP56Q z=Iq!YIAFq~1^loAzTMr=nH+Y?>UJzvMnh4|-T-De6yHmNmjT!=&@zv}CCflge!J8) zCun>txPzLsM^oQzXvyrbOgyPuzmsybq}4!X9po1WDaO|@N`HiW6|!~IySz7M;oT)gF$9@*`vUF{uDHw<>o!E z5L2GB^W#Wn5Ks*A{oKJkqS{(FQm<$lQR~F72QwR3E$1BBRPn)J?;A((Xo(|$o0Z%e z8Rfln>IK3JUU@Ri76pJheboBH*_K)rAItJz#zeL1O`J#{JetipxUKtYURJlzR;h`p z87?fju^c=|afDP1pE&f0_2>8{M(Yc|DEA=!x#WmqNqqNx& zCxVr&=9L-s*Ohjkr(GHPzG+z-{F`HZhi5-IbnhM}Sc|&qoYlTm={Bl<03ZS}@l73a z#{uO*)r5=fR!0-pKKM)m`x{-88YQ}Pb_u#4HmM4n+HedlRxJo3_Z-6RmW!^;-C@r; zHK${c#K~|_W2sA9WJcpD;j{(LKchtY9A#fOYOm4LZY^IKHV{h^H@9_7KfJQ_a*aI8 z#b|77u+hZxHVU|492CRFv3+QAO@xdBEWflK#n zl`3Umxu|8V6*2-?q=(?P{2`XSH)k?j2l<(m`fY&xV|I!{{iy71+2DqIg3i2?l8Xfk z1E1g4^TpqG%&Oudlj00d$Q0T7>Tt+rQabms$a-{Ot=7aIwG0t-x<8b&_*U4x^@m$N zPhGL6xr$sa&KwE|bC^Gkmip)Hm&XD=8MTl*ch_CJ%2j670UH>)ni2!Eh5)d=D{Up5 zm*mw?4TPH$eRqOU(R-Q%oV$|I*C?c2V22HVF+>vEU>A5zU#zS62PR)a8>=$1Rr!#B zQheO~s7j>Ht>B2xG-K18TI%TVllpR&p+$;7j-54M?CHIaL8twpAt1n&f9Gpi9Kx@K9g6QoIjK ze#?qCY=~YIu?RjKtkw`ENYVS5sZ`}Az1-=co7TfL8L@0snxkafFVLmJVW1o}MA*_% z5vkt1;b4%>StEkl4rvf8Q+D&@Y3lWEo+MJ-M^x6_-AF~s54x=DRHtHTA^}8e`Id)T8K^@pFSI8?bK8?p z1Lp(N7DMC*TR*g1m&QYblu6b2vgpna-H=VK0@UIUo!Q+wif2x*v>fX5*7e71w1%pa zH0uae37$_eO-QPY9!84PxFv4})k`}bgyXY7_!`PLbw#msX#ulMs7877k~zTUW=dVr zq7Dh<^3y`18)3Fbi|Vi71~&>;ZZHf7E8GB~jloTRO*u@k>N&jjDbE;Bx)j+n%RFWH zp6BXK|1L-OQfUFowB;aZ8JcdDLEPi%?5)Dv28#|ZO6!I83FFVsYF$*m zz;8HX6TpBM^Ab>sO;o-b42We zi@hd=CNyNlHbfqNbss{%tyFRU+-s+LK0F^S$siIEX`in-P80@&v0EeWaf$KxE*t@; z*;R_m$0aVR@&U9-s;d3CfN|a?O3Yb#x}vYLz=4ocU(#vco&77p(beeskC_1QP9uCE z+C~{Yx%T*I2vXd39?^jykG7qjJP#^k(`Ntrx*rp>=HiBr@k_-o-7qnz(F{unwVm8_ zE7$;qM;JLGu|c()G*NDJF2u&Z&@h9?(R9sCcI$ah+%w8kG5{NDAXv)D7k2`Ud7c@y znBs!-^SBQKU6z|SNbm%KL)>?sx4!-7Au1YYuQVv6Y(&^Tfw8KA9eQ7@t{wQ7Y8>{H zgtX8>Qc4hZTKt~w3KS3{z+P}EmvTeq-{U5Cv@=suVRl?d?rLxG%Re?v%Zp>SK1!>a zmk714H!J4eQru9dxj#D)bKfq0D{rpa#?ugnkha?z=^4f?=y0S&ntk#p@`Raw$UNUK zn}F0K3!n56Vd`BFWOuVf@Q-IVdSMAIZJ)&BG&kRgLeQ?bO+D04p0d4FXb>qGc~#ge z|9Gihw^t>bb6>RBB#TYFcAV=3&_~cONunhtLd{Z*X7sD0&GKzzKB zn25p2_ifafUzMf%C5qaFwc19y6j6!DV%UTmq~^)a@Ug=)$2(YfRTnIm@Hfjb`=Z^4 zI#OY!!F3=vyK8w-;KOO%ohpEh`ld9z)4_=SBdt3$qE0 z4!#7#0Iu*JsSfF3;Eo>u;E2AzUlW5#9NB2q$k?}pAuX1qHM-4w-k|jY9ac@#eo9}p zTYz(9$<*z2$)5&7u|UElJ;fPj+b7g+2g=Mzg<<0co{ldQL=M(S=O}@kP&L&f=qIOB zec!}tRJqxH2YtDo+@AF_atgCUyaOYE9_L+gmvdpj_Gu%rP-0$&D(9ZBEq>)hYD30J zj7AS&N(az5Ks`Jkkp8{H(_sF?s z*J+N>Q}AoaF)vLLurK)wuL-^Z&lrgaC)aFkzba^vmF?8N7r2OJEFUQDdhl$B5>j8@LzUx0G+0z0-82P z@R>&4ts%C`JN*v?z2EED_CR;9g=5ZHh)fNRebfhNOgWUQtlVm5pv=Cbs8QI}OqK&~ zQcqyRunUgB|APsRz%VRKU1EPS3>85}o^)pA{{o~gEd@*!%M78z7I6iVyJ&ipoPN-z zySCAhqV9`HZ3SC{Ll#-_{};{KjD@dV*a{$)s9TN+K*m#VFw5-;nYuGYVxOldPPPW_ zSC3~5AXMNTPe}Z96i-U<`^8b|TUoM#zG2o#2YnlXK za?t+0XP;movK~EnISMG4zpkFv7zbctt;Y;QAO19R7jg5*|I2dN@J36BbsePI@^kfL zEq@ROz*IOGNz8vzA6rr{^?SzWtxlV@c^IR?1NVxe@6E>hcn^UEYp?#jkpo>2ZuU(; z-O6OLwk3vyD#V>gpVVSyJ)y0-c>1tw(Vah;%a@o~?uHsVpS&wc)eNx1Ph$#cu!PM6 z|8EuQd@bu*6%eZV+`}Zi z1SMT?10KZpa_s;y0HPu6q+hHjU_f3Z3)jf}!7;>mH!(HN{N`zOWI(`8;zXsi{Y7eG zxtp}8P=WhV7ZA!8y43kETBQQN=FARx({!K?aL~QtID$XS6tFo}tc(-ao3s1>m!E&Z zGtm^ZsGcp^)~nnXKH3!>k$}JW#YY?mfDz&RuW>X0wx`{VqxyRZB4CNlfVX}CMbsWc z_x@ryV^`peY{2x3#^4K8av3oD6(h6Jf!b4~Zv;Ti0Ir0*Yg_t_?ELc`=m)mkAz`8@ zk9iWXLS8BK`JY6<#4b_tiE3a=hyK6-P&on&A?ok}GA{p%KvaZbTjq0L%X^0aC9(8ql;H0Npz*`DT53o- zf#>@jI_OaS{d-1&*zm1NAZ8%#hG{Ru*z9K8Z?gxBd|b8cXaq)pCHD2>Kl}G(lu72PGiK?UwqFq&~n3vOXGoa zed;7VVQC1!E-Q&-tbdcP5sYc4c~+4U6yZ*;8dVxIm$a~9P*?0RQP7ZM)xK(c6g@n) zB*z@Z8fxwOB4haLTENF>%9`Ph_UyWwWX>}7{?H3cuh{Yv$(^dj!>pZ}J#31`?V{m) z5~=s|85Wpagf}|qZz0gdO4c}ItX!kN679(%tU~Q5h?+Vx4Fah=DvNXHZ@tB8PN~={ zP#YqCR?z}QpN5Y8%&e_(^w+QPnnZ0MzFvqHh!>|N8n&I;-xN`K5s3?2$vo}o)xSv| zMDN|-IkaV1B&%B0{O>_7R=|NsRTHFAH(it9~e}&S$ z0-YKa_|AJ_pLd_uK>6KkI}>wYz+28r`YejI{zq8UXdT;A>Q$rI2R(*S$fLMzRe?P> zu2iF4#abujF|V^|Yr)ML)AFf_)cAh`=U#JAm)Vv=B!|6by<~IGUa}a6YGE?#3b;Mh z7Kqf_dWeD}mYWo6L~wv~)0gxc$WQocIFsQ;w12OS#T1sfB`^~MZKf;9p^|P>#)a>k z_iyGzNg#mHR_*%+Dc48RjK*uF45zp9`%jXwz<^DbON!%E+&Rq9(>S%_hqc)pWsQE# z%>CHsHsdmywfqu2RByt5Skj?sk<8;>>+|gD3ll6brl0xKzZds|(C+m~TZo-s@3nZH z^F~w17`1FR$W4}t)WkuYO!B8Zeqcjh2OS7yiDqiJD5qijtm(7d@kS5z$xfU*nLX7~ zN&0NtF+DW5;-acZu`7IHkLYep)(hn5+~GLa_id6?f*t%v;(y<%1Y>H$TLC7M$bN(d zZl=b$AaP~(ECbj$X3A>jLYBH*vwG`LWJ`NaH)(8NB0mA}sL`8E8t2u# zp+A`x-&c{cli&NzE=lo-tkrRJ1*VGeOf8nzn&-@D)v=)ToKQ>$j~us(TC+ z1&v&0ZkE(cTZOa$Ri&Ih68!j>2wGv{=r?~!B`6geC^G~K0t*$K-KfL33pCITRLU>~ z)!jI8?}@YkF>jeWUi>l+`FRnpgzcPlvXtKY{Gf6`qfL~$q!qup`|R0G;U!Oe#kz1X zLBpA&&eLq9zW2scldE;~t|g1SXV!ZzzC!1qZbcuKu%pi4zn3S*uR@5TEL?N!)L~sl zV6Syijez;?#hhH#hT*2~!d{!=^ba!<>IE|a;9>&$ssT%GC zR1)Nzpz&Hv!x5^wgW3Y6E!$<}!e_}CFltqp=wE&d?T>Ma{ za;ue)xz1V5a)sOD4ID85EcM9iRF$vin0aB7AH?^%=c=m-ip?}AzN!7TK#>TaLD*>) zbB_?s_|PIG=jjgPTn})q7VJ(ZqL?hg$t>=dGD*KI77$1sz3T(u;*z;}_0d->3QoxZ zdv4znpN*ncf9%(JO^xGL=IoZ~|IE^_c7m{waWDhP%C-YHBl~TB(5|n7sfS@E&+>RQ7v49eLbELIaCut^gsnOSU!s-zK*dXJ-vT4G(FLPd|oy zXHlrg^$rOTUbDYr5WV~*tSyV9W4cym}$vJ-NAhTEl}zJ^U}2 z=Hf+-m+ez@MYYAos+(_b`wI)TXUin@2WVCeEsxE1sG!?f z(55y2?r^@eqTtb_ZUv$iz`9#f9Ivw&2rE?H-yLsFU`JLbrT}>k9#^zBqWZ5D02)PMzVVfeD2p~bP^FtAumWi*+}rV1wq*u?L93Ux z5S9Zkh5J9y4s7D09FPnaIHrJ6A)hjRe#Bqr$=rWJb13qU>afNEfTgV6q|mm37?A9w z$H)KU3uR$Z;;UKs<rkVY5NvkHyaQ-@PQ87s73OJq)y7usN@#hzYjCukP+D$7V4+~f&-t&L__Scw3Sm3q?z_L+jz|FcS)OqTO|HyeSQKJB)UcDGS z#$BZKdd>_Y6A#p%KDT8R14?=W;LY)Wa~yCeDj@Y=()+B0>~F^afK3Ac7d6ktGVgM} z^4~uz3J3g9Dr!bOiN9QU;K#g&0E7Sk%l)ah|Gy{ZIgu`s^RCrLLo^2PPhMI@szB1% G@BaZlH$XT5 diff --git a/Decision Analysis/ImagesForSolutions/example_1_solve_2.png b/Decision Analysis/ImagesForSolutions/example_1_solve_2.png deleted file mode 100644 index 284279246de2577f538423d6716441ca7d7bc22e..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 47075 zcmeFZbySpV^gpTyiVBDzAdPe*(nBga4Bb5_B`u9Zi-Lq8Ln$yI-QA5KUD6FA-3mhu zb>C5s=Xid<8*AM^?swgF{$afg!@HmT?0i0Z?ytL&SGCxG$q zf5E2t^5`-g#EC;DDRb#ECceZUKjhY*-TL3q;k-kWz0mxD+w|Yx$Cm(z9R4rs`X><@ z1Hb(h1k=ghZrXsd_$!a=`~RY8Knw7|;P>Pm_B$dSuW1Kb28KXR>j%~`6O38mf4=&Q zF|c$zJUmIsrW}d$m)A@7!-R2SGbw%QhP~#oauppZ|76#<1ygQakevqSn%`4wo2o?u zmh(MjNp&Jt?U=U4GvYVPmRJ7Vf~LzD^ez;<(WyGj$b6I4b4Q4)6xz%Ee}GcA5o{EyBTM82c`!W8!le$2sq*D0#iH0=2{RSOr5#vwtbn3b1qs zCHA}5F=DVr6Fo~d=jx}X_lel#BT0FB3?*&<_4Ri2*ArS`+dJlL6LvGzC!{eTt0N@B!ZKHRB$=UyJZ|~Nb;Yc@UWGGLcAhMAyEfZq3F*-ncDgR%F{K>#K zO{u4I4c~7ZJ4$p}WG_rOZE`8LJ;Mq1@J}TzGW1Og+xq0}E8&UO?skOH?SHxnKOKP6 zplIGR8hjH#6}Ycv3jeVcG;L_kaFpDzKgk0m^U~I?{lWU{aKHwRs)pDwDu5j>M!duO zbKk3O0Iz2gN6;B3T>?{{*jSSO@$b)G0G~2R`Ek=2`vXtpDwYI){{1cR=`}3>WEy-$ zV0i<>X&iqnujx6kyaWjT>}uAw3I z$MzebZ6^A$$!F}B#DL5vUz7cz3cm3G(N97!=@1ggdA~U1dx=?z{fX;DrEUC9(v9qF zxJGUa{YU`^n9o{%T~!v00yBXfQ)L{exMymm0m}Nct%BuE=T~UewKk)QODnpXaXm~W z`-~+*Gc0eZ&hKB2NjD zOIJdq?FKQS2*~DRC|d%%x5LG5RKlwFS?QS|tvQ^KL5?E0X<2ez{|Imb~MiVSCELur#l+DDstF>*7kX=!q;RwJI~*|HS#AyCv>CPYmu zX5^lOVHB{mUu0VC%&KkWdY%q|i|;U{h6 z@RRLY#}8S|Da+1}(oy?kkP!$M5yF^TfAiT;P%*N!58iY6iYJs*^(&i%8dJkLl1k4w z2_>@9$KAcyGS|yc$-~Ofsa~(&iA8A=D>VvjH8?>%dS4E6TMfd>9w>MiPzTf0x73@O zj+H^({P55uru*pm6#Kruz84?z^n&sp6Lo~;8jSPNZ^eC9;ky6_U8`2pFNaUk$s9Gr z2^kdA3Ej?X40Y;@&^w&tB4X7&+4?p+QEIk9Lnp6;A`G}*5A*ZL8>!;U84`Vwrc`9EPP^8H?w%*vCIdy|}J;x7KvzmLEvgO<{qsYC{;Pk7=`_veBX*GD%Nc>q?)X?N;Xc}q3-|_g_ z2Vav&(4;)mwURjxW%$M@M{Hl;qSS=akg||;NusA(T1vI@>YmTh!wOtd$MHfZwQvzN zwW+cQ({fKR*JF^1!RgpJNWVgEK2KMz#M`U-DvUHnX;TA)S}n5YuAM;=)YPQPLej%1 zTc`+$Qqh8_Nh~8a^t15MVQXnGyz#V5wU>9z?TOa_v|?Dp<5ONQ%bj|WjTX!JbU6;6 zT`pMAz^9LfX_onAt9S(p)&h0qa&5i1r)n7ulN*_1+%9Pz-RmhAJ6=}q5P_9$_#2PK ztxj^Y_(|(bo3)&ST2c>4U{RaL!c>SfS1qePvW`pR`au@X-yNe|B9*{%q4lyZgXc&T6iOD`pwC^1wO*VA~d8And`Z(1*(I60-e?_06x zmdYG(>d>6HUAs_BQ*s{mSfPxb2j7^qD_VSM1W!A3zg|f(Ua5?C=gtv7>nJ%1$>~A- zWckq1?z5u&o+-OM4&0lSn^Zh9$h-dKnX$~88&leY{eqJ4($ZT~X|pX)`^TW&+qcA{ zu6SIz@Hg~%7`6Y2Q0@37VKbSYN~KYKvpmk)%g6)PiK2%$Ec&8Sq(fdD=oZW1T7H|b zXsCB%E+zq-r-u^^N7*=6ugm!~l}E~6a1+Y85y#QuQGVx)NNJ)3=8=pf6@?;`&ZW6N zlFd{qx>M?B@!6Uc7#y8W`?A@C%9E$P?1ny=j6}OF$9DK9U9eCq-ZIcT7e+h19y__lnF4q6aZsiC&!iz4f4O!%A=;OVK3JPayr>SFlY z*QpY`wo+r-dS{Zh%~tr1YVzE$)^w$tD@4inwR}+&M>&;XTax$EWCONeMIdF1yq-u>Z zTPIyU%N$3XYobckad_;}F(K2{FvW6BWm__YL7`CxzkdxbIU}jhiGGK5w-$4P*vv|~ z+iab$b*_Ez+-jJ>1!$lyV(F&wtd0<}66@4*80tcR$G~Ym#xF zPrjeY97Vu*Eu`Qg9fgsuzVP`%sp3Jrw>^7Q;flS00q9#E;{z322@0j^-4St5CbQ#M zl};i==-T)3P~RmZSoV7(M`HFhO;>hUQp%LL9@+g*x9pzwpM&Nx!$5y+nlA*CB4SwR zX?i1S+_MGuG8n(UQ0c7L#2-Ehd^|otTt09Ak*g6Csc*filI{2rD-gF>Nn>s3qkLC_ zUAh2a!P&UUZTq^qjq)+ml`PfECZD?zB_sWhIBtiStI6K_D&gH=qXE57RH*a#Zlu_J zUb1|c?nKW7L;qWoK(JbSaWZ(-Z|$W*;7O)@(5%LaPrBZc>G6I6=VQu`XCHUsO~1%? z;{>d@W^oi6&G4@mpmJj?4wbk=%Wdm%j$Ms2iwM|Y64oO@Mwy}SSg@qip*|V(nr~mV z)SSd9VzKdPEp=h_lQ!ZFGU+H%3{SY3!m5^X#?IgFkdP6|U#zONS2{ev`r9nYF~a26 zpAI7W#kp#SudA9t{QJdY7iHdHoX_^9h0PATr|NZSx;ic3xHLy9^-vV7Dn{)2oDQf+ zGx3)s!dN#M)ROIr4a(uc)H)5i^yzkl?0vE1^N(TcOam)2=W&($mU}$K{2MPu31PoS`L)#$aVdIMyw< z$g(?5Cx}<;-(u5+tUAXqB+Kuu2t=M+twp~lV6Wco?4^|AO246n+|4Fo%HuhG`dLWP zw25@yi_-a9b8oe@<8;eVnmg1IBVPtq(&LjAzuFtg@|P-H!q_HxW}qg!Gge}R;ML@h zP=na=8Z3Pcx$WFrfQo}5>`MqYwinQ4$s-DZhzQrt{9Q^FL) zzNyaQ)Ll~Z%tgW9zTx(n#q-v%w6JaKjV~YJ7iWh7cGfwV+9Nbn^F869QFN+TxgdXn zS#aL}=y?0qf@22Qjhe2vv{`)pB*(%UCn_Jle3A4{S85$x>P9e*U7aSu6btTiwoAT?64QCaLS&>zzkbUdIXtK)b zC$3h*;VM8v`qI~c%H^_`RHad0+1SpV+=_jk#dcv({JM1n$Z)-k$(*!c&C9@$bRx4n z+x3xV!`_0~?(DE)V9r{&zE+svL*ynoVCFN`zjN?ut}h*c0<+2NkS;)TPS1AKHvFz(eA-f4 zUmYsq&*}9(gS_gBPA?X_$0j$x^eBJqWGhNYGlZCkGluB`-yp2c! z0fl++Y*=QmXe2}b4w9X%Gg-yUD3>36-ew=UxNfzRBpv<^DxX6r33|8)HLA|ZPjGYI z`XKq#vz@+0Oe~pSOKe&s@!0!K=+Wd+c?2bt?^Vg-%HI+_z!rRvO=v@C?6v6@BSu!I zP%NCiAp9{$;Sp`MgUOug%*QTH7t~naKq{{IuC0-Q`E_mHmggU`sbpcPBLM<3WW!B;c@|bYO+E3K<+dS8`6L3r)+K);ZtAvNk!GiFtxFS zTc6X*vOz&l3$;@x-$`WF`i+X9H~$IJeQYVpn>#W>Pqjce+ixOSzG&$Q6c^k3N$hMw z^~g*lu9ra`zkv70ugh&_jr@bSJ~;<_Yg&EYVi`>BSbwwSK=jO1%_0y4_dIN;CO6JG zU!YdooAtO-w5ha?d9q8tHExn#0D2*+GjZDQBR?NX8bG~f8l@yZq3fuD!F1RwfNQ9s zo~gR#<@tiB77m))u7MnQ9wL&vVLJ_M*|JoYD@aS>*TCVC>S@Za&0?n2cMBevzNC^|IJn(0l=0lHI`A?uscY8-}@}B ztykb0+5|hFALw>^ZE%>BNO81x)h&ei7O!%dk0v_9SH*8dr_o#Hg-MS=DmK|YNZ8*h zdYzEfWDPgeo92qzy&w{XgBUhOI|F9xmn0s3Oy*SAtB69G5jeYoKD%ZEJZ@jjypB}w ze&2AQ-_IYDCTcS zb!FTS#XQ-i;#@n0imxkeShgx3VP#*eWx@y3z)d$j+Kn$xx;G3M+R<*OmgJ`dNh9=-aL&qc`M z$y^y^k#pU_xUT-WM4F=O zaVDXRHHLpXd#qcA4KJ@-y`I>?msh>1BUoF1Lmi)Vn^eJwvs%~A0Hb;gB}an&a!6_r zVfvG3R&K@hRa~F_UA7CgGIz>6cG;Xc0vdhB~xZ>-`C$3?&Z{dgaDm ziT3_x7Yy1pHM2Vw&U3p0a$%+vW`&gE_VET6qqGB^>HgA81B`g<>>L~KgyEub3n_mC z8h)!c1R1kaV{fh1I|mbU;=Fs@Hh0d5GR-h<4dZe_2DG3s3uZ3P3X{8mqc326F(NEH zM=NI^m9_>?F0GyUK2dcQId})8;ccHaM~9RlD3(l2XKEm3rN_#r_uUI49<|3_&;4*_ z6*SWDhTQAq+7?1w{KJ_%0t7ZR(@7>c;r~Q?@DT;%1zgWj9LgUyiq=Y8W#^NrH_q&l zVuD&-Wzp4+^LtLXv3Q`&ARNKe;^<{|=-#)g=-ol7g^2l&WVwb6(gB9kk2qJ~nN=4) z<4P#7LDh*sZv@LX;t!4)P1Gmi?3it*6+b&kqxy}#0>ISQnBj?}c(zvSQMn*grtu*C z#NJlrlcVUb7b2`_8S-8(gBp&m-;~$=8JRe1*;mI{mI$a7)NE$ir9+6p^JSKfAF9Sx zM5`ZO>C|e^W6Dl#?q(CF^5Uhr9R*;AX-VENg%oo3?6h#dvG$L#93Q7sxI1pFt*I@v zkxTm|(-X1Dq=F}lm;tDUmLhh7@!9a1x|xU3TBH6x30>p#NUNI9$1vH(r7{`E{%S>z za*O?xXK)ZYHB{cWByu(}%{{wXtF$r=J%5f6IT&GOnO!*y3d@;pct~`NjKNb&S5xDy z{ReR6CwNneFPm_`Ix9^g28CLD#w0rtogm0d!WWQZwXjSkFhftogV%VidGw(_{Y4-( z4h|}c-Ahl4U4GkR2OKu((b2d%RET8JF$*!YiymnZdtW)r3iCIW_e96Qv8356SaG+` zdy5(sYOj*+o;Be^uf<%cHdSv(06oc=&m2qCfd&{3(`F#&>0OW|nKy;ajvHvLRNE63 z_q6Re-qwogayD{uh%TSeNYU*}4_8fv#eg(>?d2%d6+n`|QG)v%U#8Q-NOQQ8I;4jIPJHlOWFD$|_7D)eAPYy5#+|LszoE5Yr% zDNK#J9QNl2W9FY=_J|T_$I&g7oot@PQ**}!7F;@iWUb!LT55O@b$X01(eVUTUP`Rj zoBE}vQ*f|qJT~sV--Q<)bSPlb<#5PJhqG8FAGoQiSMX)0f;AnpyRb;)&*jgy-10Dq{-z(8+%^8WtVfSUL$`S!WA?d@|wT{fC-BQ zGTU2jmetzlOe$14A8Y2;tnKa@TXz>O7xYFt$&d*IG(NP2pZZR+3mKUufrJh0qw4f1 z8N}2PyXl9MogB>9?}i!CX2b?d>ouI1)J_W=D7T17pW7ymR%D3e$9S22f2EW*Z1B6F zBB<3Q1g4A@0o%^#$MxH?QX=AH_n82bNgyfTA`v{8w=5B}*hvnH8inB(q6f^huh~ z*%qk{IwQPZ8i+V%*nNqDue<@1V-y@MF5?Z>OYh&;f1stGiL;{$$@kW&qFddMR%h$- zS`moN^%yQ479;svURAO*IbcMTd2d<`NNY-A01Qtf`(AIbdK$ zw)NJEpQ<1&4a^`*kxFpTI&bza|D{>rkX-^nge^h4AUW^2Z&YsMm9vym)%s-b_3)&$ z8&*isWvf>x+Gd3NaTygie@l&8?oDqHi-vGmq<&HYGU?5{H5L)S$iV(6v-rJRng#kC zn&!8*$Yxv3tk&vHVB!3UbpnfZ=7WtE$QXWIGM%>}1zsk}JFlHC91m2>7x%5hct>8H z6Rf&K(~yaImoJiR-Gt?zgI1Dn#zRWkJr1_H`HWfVerxAAC;mv9(j<4goZ)`C96O{8 z4hrDTEmZW3#|x(*y&nzYs-uYx7Z+Q-<8P~BuocWkzjrWY@~A|53z4c!u*bEuwPqr# zCVQw~^4Q--<%EWknO(F(=fZ0=Qdu6>pUCa-A+iww%%3p{Dt?)^Snk;5tG$KG#*qCY zkIdmky628XX@&fS8wq*F(QD9y(>TI)VcW?P7q^Inl!J@!P*}#{*s)iK!yrwmn$E&Z z%H--r-;?)sp4y*LFqSEma^&VP|NF<~vJ8KN>GnW*M@WI95|4rzz%9tER?l3lq9;O+ zjIrv$C9~`kjT%;SMkPQ=>AY5&A!RhtF?h4Tn+FM;huWewO3fuMTp3)PWvh4U2;bu8 z4k!DY<}O)BjiWJr1fS?Dre^>&wiF_yj~l%rI;@B^Z!iy;EtE+TS%S`Px}_yd6vRwq zJW;!tRo2F2Z-E`64hBnYSLu5~HLD$G$U~%f+4)b1rg>1tpD=a9ET1Km?CWAK+?~dsW7(Z=aXK z05M%KizP+L*^bDsdm&Xnd!rAt={A!e8#S^FbjdCb;`6Wa+5zR*7Rq^EzuVBl7>fp| z$=y-6E5hKDtC|Y8Tvk_ny4b`E1q=>14BG_{qB4!4#G($CY{!ju6M=}6G&A9)oQuTKY?ejRe**lk7Hdi#A5I%`!ojU5%?}Z>*+0oqjGGZw%oQvpHpT`o=T$I$>JM zq<9bkIoj1ZWW;{MYU>%Nt*meS^z0)>>BN*ulUZ+Ppd3=hBL1 z%*E_P8Ks7T5tl7^V;-(xiswU;5?tEUOK~z^t+`H)cE3Hef64`mw7l^<^|=IqagV02 zOi_F5?6!sR4O<g#=$`h&e`wy7wDZ0W+R&onXr@RhH<3?qJHXLHy z)M97A2t{o}29FhTsPTGsWHqvQKWZGXvY#dp7WaH8 zDZS}(GQ@}tsl&IS1)E070f$zWIfxd`bLVB^>Lt+yZD|1P((2n%nNp*MaowxWeCs1L z-PU(SOox?PdCn$l?jb{zSlxH#?1)4gOPqfSMHDTRCp8P-+s)7iMk~I%0!nalUgpED ze7EU)$5z=9KH!b%~tXiS#hG~a|6Ygv2Y9$j#)E9iH!`SsPLv1^#E0fD;qI=5b zTxt7fpO&45$h65(qt_|HF*I)?hQV(oYHi}i8mr|R;XxCu+as{B#f3Bu6JdZdKGJ1u-1V zn$b>1m%UKz3o`{#pEiK6dYARwkAF;3{?=L<=Yn~6FA+gkI_%AJ4Pxaet;?HNtD*G9 zXt2(G?y{xF&Ye!KNw=(|jPgO#LDBZ$3CRp+eWqJUEV&g#6jr$}CQ%l%{xhB@3sD?@ z9js3G*|f`}_re%iwjvcuM{&L@WYZpP@uY$^hvY}!JO;Yg>CQU`ib|FgY``aYLGFz!U^L>3<8BKhDAL*&k zwE=*YFaGeuu0UDq6+ zF5hG9Mrd~+NG+szEjamqY~<6k23%AY-1aoB$qcA*Wf@!kNEVoIPS+ln$UvaZW7=sZxRxL~NR+1~vy8Y@s z(oK8GSd7Z$5Bd<~&(dlNDWjWm_D=Uy^&N?~$FrCosRhE;eE~ z1ab;3;zkQLPa@8nm)fO;7bkYcg3l-08dnR=8|v$ws==feHCk{G3dIn=yOa>&2c29^ zLU>ALBxLhj*v)+iHZ?yj_xtYZ(o-W=b5^RWZ#D~BaNqCWZxBzK^(>>9VLlpIb@Q%M zn2oRL9R1AUT~@0BF=;W=kFfk*dwv~(R+G=qty<={Bm;q+Sszy|f%=GU;xAj8UmKv? z)mzw{~&3g#OglS75j%Wt9&o3ja2z1OGD2h@(gxh-^hUDKCSR@~(XnT*rE^Q}0w zAQG398w0%d~+%GzpCt4ji(W0Ks}vPb#9F!g4gXm+EDDV}Tf2 zHt0D%1_(DkIQTCk_gw&Jy~G|s7n~ze4>D~A+9NY5ofO6|k3xzoW?f=8`+IRu;-0Z) z@LJNAYc$I-z3RC$6$xThjn3u|DRA8%F%OWQVMe#2&@w7c(5h&ZKm$Sz=OJal4`g7U+^n{B4=0VQFn1SCOfITM2ZT5t$1ADdP_s|yqc21?BjHsv;6_7#j7Mb1!r z-T7=Z{^qnWMGTzVC4N2+Nzjmk@OV7`yri8$&a#40kEsyOwpF!|GD5$lgHMxfa`_G9 zEA59^R@}2w6U$aMS&RYoNH&hMQtj@Ep z;MHzVYOmc?gKl`HH%uQ}g2TuxB5XR(Hj+%s>vGIxf>-OkK?2!~qIz1fg!*In^--ZO z{%&CNrNoGd1i9ic&QEG&J|W^TU_Nd=GWXsi!+ z#`1z~hXT~o2)1R4`5(hUqtjJ4fEwJl8ecJlZC5a&fqos`K;w_Pp~%GMLQtM4pK|b2 zSCVr*Vd*t}j+m&DeT>-iW6n9oMHtU6rN=o622y8I&0VFp(p(!&shO;*i%Cm=RuVt9 z16>Y8uhaNPa_{FW3+S&qZ;`@HfZA&bXpc)5_8$d9a^x8-l%piO9ot?UJf^$ ziD!3-4st{*jn1Cehn`!WCDSWqbt7XP#}ZVa=Pr7ZU`57i!mf~{A16h3NuUQv;A;mv zJ~p5zEsB0WgNIPF70x$Z=z<{$QfjbASI_Z>*s~#XNu3HoM;y z_rc;w?xg(Cx)O3e)VRu^lX{YKh1`a9NNc(4RewM3)3Xe9@~)W`eq4~2 z;d2Y`Ad#cvq}>5z@8z)u7eis8g^oD>H}A}Uww=9h1f26xyYFop;}D=Qps!;!Hlf3OHZ`dw#_GHulVQ4fc-tHD`2njg4n-vQD$=?j^}mZJSE z4JR#C36_I1?Q(m0-@;MeU*ks}?AG!H z6xU7cbYvyH+%H>S0FT7_9P8TlOy}6uumnC{(CW$x+Q1oG_40l4oW3^uvii@)M?Y-9 z4y3RLJm)2c((S1TXSsBaE`x+^<^+t$RRjgCJ9S% z#*ktK1)-ZmlN!RwtaHcTA3V2T&yXBJp7*lJCeXl+qu%e%@5C=1goi?zL|ws<>h&X- zd0g^eDt{YL`8XAB70ez0GvQv5w#B3cJ|YaF8k@X#-`+4W;S6abIpn4JWWgc&%YAjE ztBCFPd-mtvnHIWWyjSacdgb6<0q=NvZEcSWc37H6RyT%s!5>9a+aX(r%Rddw4sb^c z0nFSonC!rTwAi)z?DQvIh1VF_L#IJJZ+QADBk`pUmFDBRbR5ZU34tz7fU8!D87s50NP zEQ<|m=A<(S+vVZ>Y&8bj%z=aJ`IdvV}gpwx!d1YmNitQq=6Q$R+!0u5kVd(h4Lb^=BF-_z=)H z!jz`F_(kX^+$`Q8z|QDhs`wHZKmWVt_4xe%QO)b|iji)SSbycmk_$MSq2Wq_%%Pe8 zqFh}yF`7G|*$i+!x0z&ud@X?u%;>DTbh#V&h<(T*SrNl9P%*Y#_{OdBg2TpvlP@|f zzZ@!`0cbUW@xhnSHm$f)&)ycmk|2a*uj(3HqwkQqI^0CZv5p#zpH0k7TWAtg58J|j z@q+&v0eIMP-63^%4A~iR&59Kw>YV8krJ7Sm?bvUeoa$`j-&ZRWM&-7JDznoM@{H~% zsjZ+LTeevK_}vNC2V*}F=PCg54cmCs=6f3(7`;$(R~mjqLk5saNtPoYxbsx(NTB8X z!4{cm$Ke%W{q-lE8J}9YYtudO85SJAleh{#1Ib_u+o}anDcVs<7di+&c_^@uBWjK<8yZe3*TkTln ze7)WzH_~y+b2oluciEoYOMJ{@a8ZQ|h=T5$^10x)uhi<6!<$CU}iW-sAj}1k-S=h`quj z{^uDc0k^l?969Yz?jnEWGQJW$fV=#ZkbrmlHTv{BE;w`(Lk~Ts;x~k;L?xykW7{Xr zn^!ZUW(HVcOu+HRAY#x1>Df{)*=Nmo<^i&|94fbGM^ZX$L;J*XV(PqmBVv~Oel-LL zqFdvK=sq3c|5f|DXN)!tEMCrH&EKf_egtrc(Rw5JkTt8`yeFpL+%_8M5#%>G_yvr| z+jbqG^xa50S*$LoFVZbwK8U$M3MSkKY!kEMls^#{d}~1ei-|MEF`v)_5|R1r?Efli%S$z;Qbd0g+| z<*_!w&qF*jbnU0Fg;v@OIjvy))SCoOz>%)qe&YGtZQ~aK zF0~zlEOwmrzIhvQ_0}0ffS6HD$(z%9^_Vs9lZJ!9)1qhX$s6zySO!sx$7`cOqBjqK zWVuC+d&YcjVFNr;Mi1##)~itG^y;j-_I8NhwSt%XSJyGk&rT3b5mtams-Kx&7ktjJYaOWnlPYq6|s;oRFh&REBw<7qPIq(DHYf$5i*^OB{@JYVK|USw{lD` zE?fSBOC1F(boq`?p|bIg1MMjr3j=4}(K8#J-;6jE%blvalKQ4;D}iRSoK+wh>Z+!+ z(qEU{VMsf?v&*G4Gd?kh`PZn5IPmgmJZyIjK&ND{beB<}hXEoUgO45>UM$ldTg_HT z;=v|{*wzZru<$DADsIGje%eBv1sD#csbps9x#IyZG+#fqZyjFiA zWejloi1dfgZvRpNAe|zlds_35W)!Ug97;Yx?0}j@r0z^t`+PfLBt05<&~hozaQIPy zDEDb^I1mf44k{WJj3Bb_YRwEPaAkK2ZkPYt4$zKzl?yOHDqy@CCGH z;~8dzJ0u+%3uK$kFLLpCsgwK&V}9=FP#FmFqQ$=gFwHHIaTD_#0M7#TKL%k4??F5v znFpI3iZQ(1Iqc%N>ja~W?LRvtd-)W$n)`GgtOxU}CKb#M>)LN`Li0Qg_cm`?n;ji# z2DpOw3s@JfIftU&S>pc;nM~+N`RLBwD;U3rqnKsUZ7BijSOMATa;aVH(lsm78IIkS zZ}5ao>zVq|edW?tmct)Y8r|PNvmglCzPX z%1Sp*0hR^mn7o=Sv=QA$!1Lf6g#4^DGQ1;-XJol&i(Dh3C)5<`HZ{V%fm%I4`^e`T zp$jA8V<+dHu)P6CXF6-yRAHfvP~4yTf=1V?NbtX90f8|5YK)~2P@xK=Yia&)ifMQ8 zG~4s&WcdT*S~j@BOjUm`c+nTNo^AsM=g^p-+}N371@$pur+9Mr1wcYfe*>qWGz z@r=KdJ+x(8q0sE^S~BqedFZr8pI;d@aPC}o0togzS0(q813r>UX)iCvXIASj{J%zl zB8A0`7^|@u%mZLqc4uT(omzAJgXxy;U}gy7FWbXIC)RHz?&Dylpo8sXN?D-9F`7H! z>Him?&2b@v-Y>MX4(*FKZku~wM^7C*mhAtufX;65R-G+%C6a9T9&RCcv>4pAfXyo~FRSMQ_Wp$1JfIIPw7 z!~xwWzH;fa=udx#P4o5xngZ`Pg{c$Zp^nAyyfe@wc6Q3c*ch08wVn0ARPKMd!lzvJsm{ehAgAMgKQOaz^MMLsrD z!+s5{iBkedm+Q*ffLi4=Q`6pj!#nOLKbCihj+)AOcUfwS*V6v#1;F^dl-t+84U*la zCh;)vU1?dkY!3Uu`tO0>CNW?U2NQ!2FwC&rEteAihjIQ4MFb4^7vBN4J7yBO#1BZN zQabcIExPTf3Xon{d`hd%?fdtdVt?Sj5-))*k^#V~MB*>U-<;jwQ=kPS@!Ng-8Uh|* z6P|8}iGk*};6HBvKh)~~Wc!~c|7W-Vd8z+=^8cJn<3FGLpHKeJC;$J!Cx?Hds{oL% zP(-;jFkZ+&?z$ZfT!)fwE>kjGs0s%0=FyV46wtNv<}(tpzMRWI@U7%`M>;rFbe+0* z4D0+a_oj@ztK}=?v?woR0l>yBiW|0Q?BO@SQ_l$~jZyghJtsJDlu-)4YT^)gsb6;W zb>6rdjei?^Bn#_%!kn_aNKQIfd6XSTPGFAJRDYvNP=aiu0fV*coq!S9^u^%8ld2lW z6WurIc%6u%o-A|=^-DB{WWch1@5=+=pu&0cZi`DfK%xMT+P_lQcV*#QlfB|B^DWPV z%sbJWw}c5$5CplhCG#O-j(yWQMb)7_@kz9&9_PY}ZRxN9P^;Me_XQ%@=#Ce|zdK&K zBY-0W=m9%U*F6jo>ZNO6fhGsDB6+wD$C(Fz)V-Bf#$t7yIw+^NLt>9^>D2l&uQ3MA zJR180VKpUdeV!E8pI0q?;R2RBef^(UdJ`lU4H#0;HtpRO!Ed~%?vAAwde(Hb#~KY! zvk!+28gdj4daT)KdW`fKlKAz3~#K{!2x6!%ZAbqbU7G2lo|3zmo{;$WcnSZZ7G*tZ#qx4D_#Q*LB3;Xgh{ly zhwCvKbFx`|?@oc~Zu#a4$goDncZKf01}MU5w$#bg^?jic(!68mth9butvjkK=0(cc zZhs{)`Wl|Q-orGd@Ke`AZg>uy%{BU0Z3*wG5mTbfp{@EhV+Sx85-HnYzyb@>omd?C z)!kt>_SO;&yvyAMcI7&u6=U2}G$zCGwMQTkeW+DWYCv!T+j2L#-@-mRewLdN40I*3 zqnp)pG8m%C2funcmq)~^l0{E8UN$eFC!i&;(L$m9KNHH`*QJSx`C*s)c}~B0?Z4_{ zv3+DuQ)lDUfNsnlxSr@QZ7(6R^3je!#=8}1$ZeuoVDN3)pv47+nH%H}f|$#EA(38k zc{XD0({Xt74V3gul7oEcuWQNj04S{3u00xC5GV(RrM9$u5n%*0q8+2lIfb=p@A0BR zZrJ4=kWI}zSGcW~qS(dQz~kCmN5b#oBc(;EpJ>(JO{64YQ43C82py1LCBOsN#*AbdW2Hv;Z8^^a{`` zgS)%|p%Q|?Q?qIc9>&0J06hSOm3>tN&;t_#{W($H-QjGNYmjcx+HSX@p~AJs!pYR- zzy}_~>=fplLU)uh-|W1jXE=cz?gT9k=KwPm82JPW z9yNUj2vJbeUR}L+*+@_HjzR{3%jLvyHMO(Wkn`QvMkFXBOvI!5xc7xWgIwDTtjyU` zkHd<4SQcKX24=o+ES{V`!U~Be|J5PGDCvXGJ9Xgabrb(L5@cpLGqVgslGZmF zi~Jbp$~<1^Xz!n59ILPH_&nMnmY;s;;F3z*@^kc@9B1pt>^bg2RDrR7l@5n!{CXu) zVeGxbg@an7OnTOv_W=O<KQF`o8k2qnBV`Ut}AoUK=m&8b7J_6)I7CF0?P zD;@99Z~xy`-d@t0#N=)9uSVQ z$Lo^{-U=|1#`3Hw!uQQP%^}|#t_&{rfdjgMVP#+-Ba^6JV-rqrjbAfz#^Mp z#sx9Pq4E9@!M!(`K%o0RoN1ql-V&MBtNZ0$Rn=2C_u@~CwL5d-tXM)(rmS9%Mm`Rv zgEdLr^kpHo(kHZMntk2kg^}$IdJL#s+Ka(|4E2`Pri%hbLNgCI1$u*y_s>!Q><}C! z$D_;yu(AG<`To_+8)#a~!P+DpFQtV7RDO1BLn`hx92_bFmKl7@aH_&6;MCp10-&~+ z60Lu8u|PSd8@NK`D(_U5d7QimC5H<;V@ZmT(j>Z}uMS;?zo}}9hm8qoWzpf@*v%p}y;(lp-4OX$DCI~|uqRN6XH%5+>~-_8(QYrlV6k?)bJcdEtb%W8 zO)Q_Ci!a38mlq8;{;rCnJ6A=~t$=^90Zfxg0aIm9u)l_$gh!(IQc6`F$CgJ%V((Kv zfkozZPp}Dm9t#8fG&AnN%!MH*kn22sJ&{%$992UdyS=|<;;6i; zUTLJ=UV4kVaq?UFTb~uwMnWK`4QDTV4;N$P2ST)uyaFh%2)uz91hi@ik;%3Dr zC;WVeJ*KnU4XeIPbHJjY!efB94qE)d=jUdVik%@dvv1N#_EgZoS$Uc z0Nvrb+k&-02I(<+4BC0dEBAl)rG4=MUSCD@M}0O{OE%!uLm?@&mf=UnY(+t!arUo6 zm6}&gLnl%M7#mRHH*sTecSh6-HtptS`CzBoXDhc@m~V(o z|0o}xqkBLRzQ22;|I8HA{d5ZXiNt`h;((4-`cS2|cN|>VCN0!dm4nYFd`^HWu)dbS zl!nf}MZqjbY@ML;L5xsNT@0w&+B9j@5f#DLVihR=1DhW}_s1A2>q$0o158m6-na_C z1SCm}5^vw9n4u#}&6R6XdNY&=lMZ`Nk77@5i`;vhPE?z$E;$)`VVciLwt*HUp2Ro? z5X%zuuPHv4T7JO_uf2b3ab*m2FUG>i%8juFy#L9ANW43;KZYs_9|K(wu2WH$Rt584 zOtc3VN=Lb%aN}ykS8B7@JJfcxsRe|Ov3xA|%?|Q93 zE~Y7``9!ajpx)_^x!YkcoOxxuM%{xNi45}_xZS!6cxR2-E$B4w!O z8vY$q{8v68ae1XnWqldAx!n4uhjT7q;<+6_!ZzX*LViDgDfOs7z`pCIN8NW)d6o=a zBpvi84)%ZFGBOg2K(XdYvFh8Wj6(!!>@64meW!$ihfD4+8k*nMZVmB>y`;5AurM( zef5s_J-BPtXWG_p`J;e4u=A-g=kEO9BM`4sdXt+lK6(~P#a7E0?b7b6&-tg0nGW^n z26NJvo+2}gZ4C;UEPCZ@l(>L)CHu{0%E$wnaHc@>@=Qf6+C=4=BN)4?3JHFy%Bie8 zZ6veVE0CqN(Iw_0hruMUwf;pB8s?_q~ZCE1BF@`7E)*@%0I^$$FKq z-~>tB>gy9>uUNv3_lN!n2F%6W)S^B2@N~_<&0>{tH-lC+7fzo!U89o+J=q;bpA(~2(2h(ba=dI6q*P5$_Pd} z)eY*=&Mf_^Ni_i<{@EzJ1;q}`Af+^iOB#M#(q=cTQyZ!-U6?XgoYgNp2!eItvowez z2%sA;>5&1HvUgrOy{tKUiQTV$^Di=+?B(xVG>?q~y%S=HNIpa~9dt@Bu~fc-ipI13 z7C&?RWTIc^R*({cxe$2vw)h8vqI*|w0{`UZU<&OEcURGc(a+qC1(?E|$?g5ceany{ zG`x)_B$B;~`_JweV}vJ3uNZK=&NWFK07C^^$EI+vtdA^~gPwWN&o*@NSvMVE=_|D* ztHF@Rtvvv(9*aus)jFBJ8F$BwJT0Ro>DVP8#y}4c{~E+~yFboOJNBXHq)8&R^Psrn zif0P&+H)C+^lld}kaq3@OE)A`+Ucs>^F?cicP)apd5X))0p!AGS;+Z6vTpm|GOy>5 zD{3stRQ(;ZU!pe;ax~o|aLOub*GzA4EXhr2D97`wx9|nWLHLdrFg-lt2ZB=S;or+3 zcl6t9Zrdfin`IR_nm%0!`ZH}Z#gcDd;^Z==ETS{hv!~+g22e)pvRR|2%}OOb9$o{Z zH;R*!B&odzU{Y^~Zp)SzTy*`SBtD{X<9WcTN|V}`N6!O0+4;IvFqbPPG{cr9ytubj zP)uUjJ;TFr`f{nFne9~fn=CS#Hvn3p@AB&g?oNbF%1rOTUG5C$p(H?D7*T#u4>ufD+-QiL|s zBj%VkRYDkZau>YyoK3mCsl3yQn3cCSx?2|t=WJIXdz%-myd}Z8$kx3Z9^V5ZqEFg( z@9G`wM!GjV8iu6Dt`I#3XTQC~S}w|eN17^ZSIM%EQvSP#ZF@CBe6Kd~`qi<6AVYWw zfET>J8`cYhNJKTYfhN_NZ4N5v{=*J&zH0;{zeAi7aN(Pq(}i!PDmv&Jsp-d??}k=u zn?FJ%hfQ-na#$UfX6dx$twnZvp9(GXh(RexY9L8q+YVP^?STd19iY(5*T+^L7oZ*P z)Xk4o4G5~xtEdwG`BW#H9~XV%Ih1W?s^5)CJPYOX|Ej=GP|e`&5HcSgpCl- zb1xe<d*sum7(&T!GresZG@HK(Oc&7-O`L%3@6w0!Gv_yRhQo$eAhD-*sAGyw)* z+zU85BE!v3)V}8@^CY8Bv|+KLf9Bh@3Vo>3V#QMA76)}WuMO@U1mo>oeGMeQNM41v zK{SfU8<3D(ZX<&u5bPVf#*PJk=xdtJ73@%rHK?lt?#IE70>3&s-F7woccS!V&X@V7 z0N?*$0SYt~GTP?KvrBltGrtx+le>7nA1F~2dMjPT{#Fwo)+)-ORv8H zly)bs5fiY%hV!S7+0!}`X_S+9$IWJ{iW*kO>qP4(de#)~i`&(7%NSD=5b5NRx^Hi* zWy6S*j};j)X2`v>$D7$>&M4fq{=)R-Pq3-o#U`r5?^;W&EYN6^zL1FErnBI@Y4gY1 ztBC0*1%NZV6c#Rjod#bns>fAouosg&H|Vh7kJ&AaE@F(mkJORy|Mpl|WN{`hjI%oEQzdGag!g-ImZ zBwgeF{26TkgwXzMBe9xnS##l#rGK4$15S>4TE4H%x46R+dCKku#>0TJv%VgVkOL>$rqb6thJkSn@r)+vPM=)Kk3;SeJMNm#0a zrT+c5y3R)~#wnTa9ibPTY=W<@`pI^i=bGFo3M9{vSFv7SIy*jNj9dC7>O) z157`QZmo@%UPrE4p6xFjKC4pi-QLmS5t_QO<-l~zm9mH zU4?W%&3l)IHOK6Jy}(usfC!4)4YXKR&e1DFba@iHE&_b^7ai}NFk4eFuhk`WU|~7g zUHTcc7k&Kw+XHiw=^z8^a62NVO~Bm$Jslz1H=5eh{P~8|2pacGSN9m#O}{l@?>|C?9xH$O zzFVeRAzv!M8&5Ec(X*O(&{9(paQIPcgA_R2s=m2;$_ngxC#dT-eJ@$Hs12Bh!ylJy z9*+M-;&yR&?`*WisWM~?992_9)E%&@7Xrx-q;iYK^^I|*9mdXd&6mV(ci2*Y&P<@1aZivo#W`MDcUUM=N;i?#my^U~7q|GL zkc;((yhHAuj;K**2k0P@wW5cAk5Wnxnv14l!(kV2UWw)Eqx$#?2001FlW_YuZ*J7S zC1lr88`NbZbNgdw@B9|*xcdt6vc;c-V=`~<7^X)vYT3AQrbcsHBu%u;0AcJ4i)KzV z4clWiANw?=U=1hUwZR6NJrf)Un**VWu#<>R-C3(xQl&=*9x=s(j)l^{81N(wBKJ%$ zVA#1uf0ETgsv6~>&9C6`U9yadO*4_6+p5*qt>3t1!R%~i*Th0@t<$~+ojDc=(vs)SEN zUOaGPVh~FcjfSqwMe_8{eGJSyK}I!NU9vW1XkaxlQ{hEEtj64YwU>19M2MWmz+HOr zS&0ALp{4bqy+aPG8%6Vvxi22ifd?Uva+5L3XiupDdIz zMk$3@tIrLPYgdq|tTU!s-xf$h4~i0XT1Q^Bg8LBZro ze4^-%efwZg_Aq`nnn9>t+5ZOCWMY(u69BAQtC@LEUzrx&J6j@q>k9kxNu@WRR3 z+>Il4ULh_VbDW+@h_|g zH&{f3=vQadEXZ=y>M677!O8YjSr2RSFHB#2UfUcEgkaWCOW1}v0a3-LVN|WU znL49NqQZ&tFCBqg&e|MZm)fpnnRMAE0ML`_atql%HJh)VYw7(iB)4IROvASDbNbXY ze=lO0Ezl-DJE$l5bRWh`Mq;;xk$GHbu;$HYcg0rFRR{5WcjUJe@>E6#fMz&zG+T|&9^9CA_3XnZG4ZNJ6qy~s8VM(X8Dzig+r4G) z72?-Dt(>LWu$K8`Vdj}n0>X$;N)Aq#o&FIruLwQikQ9hDNGV6sIT4(A&82bntEDxG}u(Y3^jzf7)E#iYk*_xG}V}x9EwW|@~#Xz)jDOB*8 zlfjo2!Vw!(t42PfuO%hW$n@yhJN2`Bt`KMR5oA4^aKMWMk9_m$8(7WsJd1MAY#PaQ z*0^r52q#Dkv~52#5l_kRWlfwlMENDh;MEM&{tTZYt#kqrSg60InYL+m=V9<7PNZtg z;#S|2O+%a!E56fX2O!Pkc_8e0l?+mTM_Z7JzDO99`aev_aT_sV#w=P~vS$^Um z(|s--hbEO4FtK4|Fi>1e|bka&hDNP0`Bb8@-!Lr?F4-p|v@K1&-5D7mUROM-J1n zkP+z0nP?k~{6md129<=x%_CGvVGz%bz4#3s6<8@F+;CIf0DmGqUIg2~kQ%^G`!3!G z@lL)Cc1mcmu?vfrMGj>nIJ7aleB^r)79xb03@ArmP4s|SMOD1X|(K6bUP`^8Gl4k6lG6CgOEq&~7>K9^8cU>cv zIJ=;FnH5VM53F>EE2E;rbx926M~=ZKg_4bUZ`IkXtSlz9Y%~_Y6(rmAy^UPohxT?M{6qZUdqCu_2T^{;Sz14O=C(%a_beB3m%6~j4<`ZH@ZR>D^ zx-HV7wVFydW1(T{ErF@3eTT)4ZS_9N^-q}}|J5Dj-ZR4mF^N5GOLalty2CE%xMGfN z!*X4y|D4qlWCh-JomdjapmpR8PzsC1^Qt{3OWT9Kk%#U4=}-fu*CqCdfHOxI#ax|* zjO*F^ja_Ow&`o{_t3)7=sC^&-G5^Zg`TWTpLx-kMurt(7uebcDs{`bL{+=-oeG!i* z8B`f5-F}Zzj_Wl{U%UkrsupK%#b$G?&&*}tP$^da_9PYmflsMMm69Z`$rf9%vXj}t z89wZI(D3xw?5+Z+51L8Cnf|K^_y}KS44vW(1o^g4B;1`qqpe|5H33%C;$eaEAeg?z zNC{4aIxfN|g;5yKhdvnI?0qns6-RYXMA*^Gi}O!9FvY>^kqRwZS2f zkL*4eUYNDVLo4gFNf=S9o;|sxC$bM)pUsq2QOrLgBd{*?O@D^J9&F=GWX>D>)0j|hbdoUz zuE=szZPM8cK!x0XTVt`2C)ez9_Vqly!}`4QrY8ESrsfkVt~dAtg?3gWx- z)jkoBafBZAos6e^&=a0JqJ01gO8iFhK<5{UhU$m)cCqBKy9_L|E9M3w`3Z# z4C@bPwp^FY5?RMc5&0M)B@!8N$cpO+4g)SdITU{Gr8A(n?{%K0O%r(KEH7}vC0{qN z1LY;P6%UI8jT*@PRX-nn2H zQ)qro6DWt~6CtZh!b0b&wuAV19&qXKx&8Of_JJq!G^`@)BQ^;>`zi#a<5WYM;ubA3RhLWd;0(g zRrj}?fSQEt|W;^ zWasvP=kz@NEjC+zd(e}`P@F>e|zK9X<%(zK!SIFt+t(jSM7tV ztykISq2=ZKM*%bqFFc3KcGPZp0iN5>W#Wq{hn>%rfh4;%>_^1FbMfEi!qt6%9?!fN zsSQ@W^o?>8Z0S9C)i;sThl2Zorr1vqj5pegj69JOkk6kAyTf`KQ}VBF{QhR!oRdI8 zS>Zjem4Sy+zB@B{nlibi(+*hMA4gtxZ{7NK|Hdld9B)e!12+0dj64~iJp>9jtl9|1 zwCh>4(pF%VF8~wIh;|&2fdffqhPBokf#>8tj2=MD06qTlP%~hIfB1WRGuYB!{8xzY zHE*6>Uko&*wcRz|dhr7pX0Fd}-ix9*-tcM?{Hns6*TZ0d8)Y~^(Mfah7|8zFf^%Kb(d!AX`!k`8&`9VDxec^ zyrVq$P^;t-d{%UK)wr4gE61N6vpEO^(|zn^cc!>O_TiV^Q_X54Ponp(ib5~;4(o8F z#5!))`%(%lVdZbW1AG|F0_Dzmx$5zXHqP+*-`u*IFu;LWi7j1DK*IyP_|6=)+q7yQ zQ6Nlz6w$5cI`Ir$P)nL7nOp#lIV!OJu$cHQ|C{(5@e=D87lh5$b4~uN6_8LBrQ{&^ zNcy^gSKI8|s?)j&RFv{@*J>_I+;xT69h2Vk2Plxng*~)deqUAbe`OBfk?0a|8YZ9C zSo4eCtg+^QG^sV#tg&Xz*Q~kWwFtEqyw~!YwUmz{^S{f6ADQBu|APfs%Z%5GhP8TX zt<+qr!sXTuDE>LUSt~WyO3k%WbFI`|D>c_j&9zc3Tq`gCzbr3G9b+*`hbmvr!-C(-6!P zYiAH>ZU+8T^W}h=OcWF#s5Eb_+gK(Iq8Otc;96Q%p_o75TAr8G%cQoq$+p4Da%NbQ znrOUqz~?tjF9w#3h?iY&Zx$`^=3;?-|N0j!Q2m=tm&D+1Nv^|5fw9NZ$EHQ#DTj0uf-Q4uQ^#)h}P->Rphmtkwk6eYi1UI}RFCBcc3lOT7xf z>Q$)y@F4ep1Q%`zzebd}eud_QoJ(biQR!H8q+Qa0R91JUc8U$wRLs|G2*{l@R6eevA2|8Qx|as6UJYmRFzj{G+! z{!i9%CAFTgL!e~`j^$Q48ZO&X1!2B)srmM(Xo{GPB?!1nP?v_vCBC3IMU!s6;(@~x z>UPZ=AlC_`(!Li$prPdW?VrLi=nqf~rpvu8+HQ#dGCHs(+s0{{ID+Qr3d)))N^kH@M zm1(S9et@wVBiDTgRiQkfUD&tcf*C!wJX#G&>a$-A0NLo5n!oa*}>Qyc7>5VJ5c=0T|7X$l=H-9qYV_vUAb)~LYLcBFLB zXbwB;rs+0E=xj-?VTvStz{`PP%fT?QMIB{!9eKkxJREilhMwTnhU2j6F++^2ktcax zc)aD!ub3Ke#u7u-OI+$kLoAYH-L1{o6DaFgHN2Rfw}N|h{?Heu{HML{s6ey9An8wK zksGWT14TdEeuQZfxP81g8f zf{TkIGpwk5oGW=jgM*u`yO2}!$Tr`7JE#@o8qz2GP>jJ121ArS<-wr*j=a3o?*5o3 zD1-lm%kQ3{Q9>pH=-$)vpqk0J4hg%l#$aO!)#Z^QqB!iKG<<+u<%prCvA&JxMiQiN z@H*SWJU*TC)=6V&bw4l&=&Y9~C_>_tYgoGRo3{D*k;0PZ!;5Bfip$sx8aCaOg~iM) zjG4+>gNDsmwZ%+to$;)tx^hca10Szt3M+G- z1)F~)WbI3RtQZSp(cIB((|zs;ea6)Sn#he5RjEL{I2I0L5$kn%UD!t)^9cj*)InRI zj=%8FlG`6uU!j}W=G+I~(oT-1iI~Yk#0^vnCH&{^je#CvJ^F3Bz_5&r14H9|Xb^J@ z&~dj(%?*p*-w`CZ@QN=+jqIHa=wKNj4W(Q#iVlso9|Uj}c%NX#g52fAkDvJNNr$cIhKVyOKCC!*-43OVCVs<-#2c=%n zR6H;Fm%w6!rm!&exo3E3e{D0LubvlRmojDLVnl!Okn>wEzwWMlLqC=~ZJ=aVaPbzq zzsMEY9!S`22wHv9biv6_4vV13LvTkubjAVSZ1T#5EZRH>%QGLY>1Y@3lTYmcPO+!n z$b{7e11?nCU&A%+#(N#c>b?7r%UH z3VEiJSSp%qDTSEQ>rxg}4R z(eF;t7zl#26GVtptugIq2Q6?2jj|>{Gcixw0 zZft^}V@0eS$_(64f7Z3x5_|>QaK1RN>(psea71u$rAR07Ri^6GAEmx=OSq=Z*VJ}` zfZK@)A;dy`$K4K#ih>*`)cI<<(yZeN_`m^a6v-JIFOBrH`HDz@H4c#J9T2hS&heO! zm6SxXU`=~*k}-|Z1r?f7E=Ex7+NABQmKO8*YJ!pp(xEi>IwObZP(z13k{!PsNZ9@X zG_JUIm+jO$h_#6eHOz2ON^%Ogfqu6$tOc)mYLcQ1;qBnpw49Z<{FihcLQId|fl_c*xOrRLP9!1=K_b#7 zniSoK10Jin`Br<~q83k$AxmHjK%uQoS{fg3a4-D^&llH)%>VTiXPqf~I*$LR!u_{k zw@rxvE}r* zd7)g=fB_=Q((~KH4V(ZBLHErPV%FRD!>M!>Zl5w*9(qHa8hCqP+w4$KdB?i8rWSiD zXnX`su0L#=TkVIg9~6i0%dxD)Cie;NeH$mMAD|XA?WhB#8w_A8 zpF)QhvTePWwXLKJpzP00*(>mKdT;D}qCZQ>1uy&PJ+rU(PMxyFAKBb$_(R{2I zYLUuW64&d3CMU`bY9`G(PEI4|?g3+3U@wv9#_SUED${b@>fYHC`1eZJHL0~UKvuausQbgLu6~-VS+q+Q#CSK3t zxu8#{w%zdC2j%AN$AH(XWJeph(I?tqSV3A(e(WZ3liNwoj9N9)(o$=Xg!?e6zbkoo zDo_lrjK6*ACx>%LrmDUIM6G9KpDO3X3@Urji+NypuMWd#L?!SjTAB2<{G?Mn%4ei{ z7@keuF>rebZnt<(SZ>Z#my~~}6jdk}(R2(&bHJ~VgB(UWxoKz7T){hKgi5M@`U|N` zKj<9rbeH(|JAeT04Z^H-uL7#!G_{Z-=`N-lkGUO3Fr28$N7Y*P2GOalO`V#muXFr{ zrZ=!C^O>PaE41U7);bY&6G^Pj zYmCAoFr0;COH#y`Ne!jdI6;$oke8h;BZ2jnu3l!Llly|0PNooeLYo9gn-rX^!NiCk z7g64`KQPl9A7fE>!jE7Zh*K*jJxd#vhU-veXR{$IpH`D}v8(%}r9#Ug4dz8}fY5x~ z;ce*iIOZ*AEc`n4Y7RY+Japr3^#n+XhQ?;Cei4aDa3NY5ZDnEt37oOX>|)}$IZtAm z%-&S};=AIwm0qtlQK(WuEGQ$5%sTg&xyF?`w#Dai@>thR81p#?g>@1S8kTJSiSf^! zxG&|0S($eXwk#;U zy)Du|kOc2)Dx!TYeiW#kX`~Up@7zxu?UDcmtpjk9_?onl=k)7-;1;ZhA9GzV(|eHz zdOa_I9Ozq>l-h>YD2HGVF4?wCsGBNS2TV!2%c79|OG+J6OxGCY#Hgx6KZ*(5iRl4S z^;O#ZHHAv?6Sd{)@vlb}Kmd2dobl6)Bq7q~bDRbj>`%<+UW-_R=_SSA0Y0$`Q|NOF}pqkPf=QdPHXKJdt+`imx>YDQcmhCg;` zxa&38WsuwjZU`H}5lM0Tz^wcLtl9~+=;Uy$_r-8fV_1x`m39^H&-8BLUrk-9Nv3XJ z(&YN7$R%-}S~4QFHKE+<6^WJF{^f+q33wiBAsxHd-5=|t`L&uZp0q*#%ng^Zj+z2P zha;`S_kX5y1{tg!t!xU80q{gV#H2}>)c|u-$0Nm>SC0%G#$rr|7rICSio;H7JavpA zyL^JkttdZmtMO{)mrE@$59Fv$;(rnf_tF8{m{z$GsRU?`&rXuTa~LO)ygkQ(jby~U zGf>WqCgcYnp9dEz=lcWyQJuftPTIBle3+i2MP(&AH`rCb%%t zxhJdeGrJCbatAj|7;5?Vp>hAb%ti;?vltzGQTVf2{T7S_V=z_{F+D#=`*rJ$xT7CB zN5b`frf1871-M=!Gjo%EA`=Y6F$8yB(VHDyezGtyssRVCYmgJ}i$5l&o diff --git a/Decision Analysis/MarketSegment_Problem.ipynb b/Decision Analysis/MarketSegment_Problem.ipynb deleted file mode 100644 index eabff0d..0000000 --- a/Decision Analysis/MarketSegment_Problem.ipynb +++ /dev/null @@ -1,148 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Investment advisors estimated the stock market returns for four market segments: computers, financial, manufacturing, and pharmaceuticals. Annual return projections vary depending on whether the general economic conditions are improving, stable, or declining. The anticipated annual return percentages for each market segment under each economic condition are as follows:\n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Market SegmentImprovingStableDeclining
Computers102-4
Financial85-3
Manufacturing64-2
Pharmaceuticals65-1
\n", - "\n", - "a. Assume that an individual investor wants to select one market segment for a new investment. A forecast shows improving to declining economic conditions with the following probabilities: improving (0.2), stable (0.5), and declining (0.3). What is the preferred market segment for the investor, and what is the expected return percentage?

\n", - "b. At a later date, a revised forecast shows a potential for an improvement in economic conditions. New probabilities are as follows: improving (0.4), stable (0.4), and declining (0.2). What is the preferred market segment for the investor based on these new probabilities? What is the expected return percentage?
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Solution\n", - "\n", - "a.\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Market SegmentImprovingStableDeclining
Computers21-1.2
Financial1.62.5-0.9
Manufacturing1.22-0.6
Pharmaceuticals1.22.5-0.3
\n", - "\n", - "Computers = 2 + 1 - 1.2 = 1.8
\n", - "Financial = 1.6 + 2.5 - 0.9 = 3
\n", - "Manufacturing = 1.2 + 2 - 0.6 = 2.6
\n", - "Pharma = 1.2 + 2.5 - 0.3 = 3.4
\n", - "\n", - "Pharma is the best option = 3.4\n", - "\n", - "________________\n", - "\n", - "b.\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Market SegmentImprovingStableDeclining
Computers40.8-0.8
Financial3.22-0.6
Manufacturing2.41.6-0.4
Pharmaceuticals2.42-0.2
\n", - "\n", - "Computers = 4
\n", - "Financial = 4.6
\n", - "Manufacturing = 3.6
\n", - "Pharma = 4.2
\n", - "\n", - "Financial is the best option = 4.6" - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Decision Analysis/PlantSize_Problem.ipynb b/Decision Analysis/PlantSize_Problem.ipynb deleted file mode 100644 index 03abc02..0000000 --- a/Decision Analysis/PlantSize_Problem.ipynb +++ /dev/null @@ -1,93 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Southland Corporation’s decision to produce a new line of recreational products resulted in the need to construct either a small plant or a large plant. The best selection of plant size depends on how the marketplace reacts to the new product line.
\n", - "To conduct an analysis, marketing management has decided to view the possible long-run\n", - "demand as low, medium, or high. The following payoff table shows the projected profit in\n", - "millions of dollars:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Plan SizeLowMediumHigh
Small150200200
Large50200500
\n", - "\n", - "a. What is the decision to be made, and what is the chance event for Southland’s problem?
\n", - "b. Construct a decision tree.
\n", - "c. Recommend a decision based on the use of the optimistic, conservative, and mini-max regret approaches.
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Solution\n", - "\n", - "a. Chance events are the Demands, which are [Low, Medium, High]
\n", - "_____\n", - "b.

\n", - "_____\n", - "c.
\n", - "Optimistic: 500M
\n", - "Conservative: 150M
\n", - "mini-max: \n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Plan SizeLowMediumHigh
Small00300
Large10000
\n", - "\n", - "Meaning that 100M." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n" - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Decision Analysis/RezoningProperty_Problem.ipynb b/Decision Analysis/RezoningProperty_Problem.ipynb deleted file mode 100644 index e69de29..0000000 diff --git a/Decision Analysis/TwoStates_Problem.ipynb b/Decision Analysis/TwoStates_Problem.ipynb deleted file mode 100644 index 44c25d5..0000000 --- a/Decision Analysis/TwoStates_Problem.ipynb +++ /dev/null @@ -1,76 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following payoff table shows the profit for a decision problem with two states of nature and two decision alternatives:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Decision Alternatives1s2
d1101
d243
\n", - "\n", - "a. Suppose P(s1) = 0.2 and P(s2) = 0.8. What is the best decision using the expected value approach?

\n", - "b. Perform sensitivity analysis on the payoffs for decision alternative d1. Assume that the probabilities are as given in part (a), and find the range of payoffs under states of nature s1 and s2 that will keep the solution found in part (a) optimal. Is the solution more sensitive to the payoff under state of nature s1 or s2 ?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Solution" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "a.\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Decision Alternatives1s2
d120.8
d20.82.4
\n", - "\n", - "Decision 2 is better, at 3.2 profit\n", - "\n", - "____________\n", - "\n", - "b. idk if we took that" - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Decision Analysis/VideoGameProfitability_Problem.ipynb b/Decision Analysis/VideoGameProfitability_Problem.ipynb deleted file mode 100644 index 071aabc..0000000 --- a/Decision Analysis/VideoGameProfitability_Problem.ipynb +++ /dev/null @@ -1,127 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Video Tech is considering marketing one of two new video\n", - "games for the coming holiday season: Battle Pacific or Space Pirates. Battle Pacific is\n", - "a unique game and appears to have no competition. Estimated profits (in thousands of\n", - "dollars) under high, medium, and low demand are as follows:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Battle PacificHighDMediumLow
Profit$1,000$700$300
Probability0.20.50.3
\n", - "\n", - "Video Tech is optimistic about its Space Pirates game. However, the concern is that\n", - "profitability will be affected by a competitor’s introduction of a video game viewed as\n", - "similar to Space Pirates. Estimated profits (in thousands of dollars) with and without\n", - "competition are as follows: \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Space Pirates With CompetitionHighMediumLow
Profit$800$400$200
Probability0.30.40.3
\n", - "\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Space Pirates Without CompetitionHighMediumLow
Profit$1,600$800$400
Probability0.50.30.2
\n", - "\n", - "Develop a decision tree for the Video Tech problem.\n", - "b. For planning purposes, Video Tech believes there is a 0.6 probability that its com-\n", - "petitor will produce a new game similar to Space Pirates. Given this probability\n", - "of competition, the director of planning recommends marketing the Battle Pacific\n", - "video game. Using expected value, what is your recommended decision?\n", - "c. Show a risk profile for your recommended decision.\n", - "d. Use sensitivity analysis to determine what the probability of competition for Space\n", - "Pirates would have to be for you to change your recommended decision alternative." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\"Image\n", - "\n", - "\n", - "\"Image\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - " " - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Decision Analysis/notes.md b/Decision Analysis/notes.md deleted file mode 100644 index 82074ea..0000000 --- a/Decision Analysis/notes.md +++ /dev/null @@ -1,199 +0,0 @@ -# Decision Analysis (Without Proba) -## Example: Pittsburhg development -* Plan to build one of these three projects: - * One project with 30 condos - * One project with 60 condos - * One project with 90 condos -* Future event is the chance event concerning the demand for the condos. -* The financial success depends on the condos size -* To solve this, one should do one of the following methods: -### Payoff Tables -1) Decision alternatives (How many condos?) -2) Chance event (States of nature, i.e. Weak demand, or Strong Demand) -3) You then create a table with the columns being States of nature, and the rows being the decision alternatives. Like the table below. -4) Then based on the tables, you can apply 3 different options. - * Minimax Regret ; Regret = (a_max - a_i).
- For example,
Strong Demand, and Small Condo, will have a regret of 20 - 8 = 12.
Weak Demand, and Medium Condo, 7 - 5 = 2 - * Optimistic: Takes the highest one from the Strong demand. - * Conservative: Takes the highest one from the Weak demand. - - - - - - - - - - - - - - - - - - - - - - - - - - -
Decision AlternatievsStrong DemandWeak Demand
Small Condos $d_1$87
Medium Condos d2145
Large Condos d320-9
- - -### Decision Tree -1) Decision alternatives (How many condos?) -2) Chance event (States of nature, i.e. Weak demand, or Strong Demand) -3) Create a tree, where (Check slides lol, I will not be bothered to write the tree here.) - -# Decision Analysis with Probs: - * Expected value: If you had the probabilities for each event to occur, then you mutliple the chance of X occuring by the "profit" if X occured. - * Risk: Probability mass function, for example: - * 8 mil, if Event 1 occured - * 2 mil, if Event 2 occured - * -4 mil, if Event 3 occured - - * Sensitivity Analysis: How much change is required for the optimal solution to stay optimal. - - -# Decision Analysis with Sample Information: -## Example: PDC Management -* Decision Strategy - Metric 1: EVSI -> Expected Value of Sample Information - * Done by reducing the branches over and over \sum(prob * value). - * ***In this example, we took the maxes. -* Decision Strategy - Metric 21: EVPI -> Expected Value of Perfect Information - * If you will what probability will hit. - * Done by 0.8 * 20 + 0.2 * 7. We got this by knowing that if High demand occurs (80%) we will get large complex (20 mil), and if Low demand occurs (20%) we will get the small complex (7 mil), - -# Computing Brach Probability with Bayes' Theorom -* Join prob: prob that A & B happens at the same time (AND): $P(A \cap B)$ This equals $P(B) P(A|B) = P(A) P(B|A)$ - * If A and B are independant, then $P(A \cap B) = P(A) P(B)$ -* Join prob: prob that A or B happens at the same time (OR): $P(A \cup B)$. This equals $P(A) + P(B) - P(A \cap B)$ -* Conditional Probability: Prob of A given B. $P(A | B)$. This equals $\frac{P(A \cap B)}{P(B)} $ - * If A and B are independant, then $P(A | B) = P(A)$ - -* Bayes Theorem: $P(A|B) = \frac{P(B|A) P(A)}{P(B)}$ -* Bayes Theorem Final Form: $P(B_i|A) = \frac{P(A|B_i) P(B_i)}{\sum_{i=1}P(A|B_i) P(B_i)}$ - * *Assuming the all i in A are independent. - -# Utility Theory -* Utility table is calculated off the pay-off table -* It allows the same problem to get more solutions based on the decision taker, risky or not e.g. -* $Indifference = ???$ -* $Utility = Indifference_{current}Indifference_{max} + Indifference_{current}Indifference_{min}$ - -## Real estate example: -Person A is a risk avoider. -Person B is a risk taker. - -Payoff Table: - - - - - - - - - - - - - - - - - - - - - - - - - -
Investment dxPrice Up s1Price stable s2Price Down s3
Investment A d130k20k-50k
Investment B d250k-20k-30k
Do not invest d3d300
- -Calculating Utility of PayOff table: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Monetary valueIndifference value of pUtility
50kdoes not apply10.0
30k0.959.5
20k0.909
00.757.5
-20k0.555.5
-30k0.44.0
-50kdoes not apply0
- -Replace the utility for each item in the payoff-table the quesiton. - - - - - - - - - - - - - - - - - - - - - - - - - -
Decision Alternativeprices upprices stableprices down
A d19.590
B d2105.54
Do not invest7.57.57.5
- - -## You can express utility by $U(x) = 1 - e^{\frac{-x}{R}}$ \ No newline at end of file diff --git a/Integer Linear Optimization Models/BankTeller_Problem.ipynb b/Integer Linear Optimization Models/BankTeller_Problem.ipynb deleted file mode 100644 index ca1754b..0000000 --- a/Integer Linear Optimization Models/BankTeller_Problem.ipynb +++ /dev/null @@ -1,145 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Northside Bank is working to develop an efficient work\n", - "schedule for full-time and part-time tellers. The schedule must provide for efficient\n", - "operation of the bank, including adequate customer service, employee breaks, and so\n", - "on. On Fridays, the bank is open from 9:00 a.m. to 7:00 p.m. The number of tellers\n", - "necessary to provide adequate customer service during each hour of operation is summarized as follows:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
TimeNo. of Tellers
9:00 a.m. – 10:00 a.m.6
10:00 a.m. – 11:00 a.m.4
11:00 a.m. – Noon8
Noon – 1:00 p.m.10
1:00 p.m. – 2:00 p.m.9
2:00 p.m. – 3:00 p.m.6
3:00 p.m. – 4:00 p.m.4
4:00 p.m. – 5:00 p.m.7
5:00 p.m. – 6:00 p.m.6
6:00 p.m. – 7:00 p.m.6
\n", - "\n", - "Each full-time employee starts on the hour and works a 4-hour shift, followed by a\n", - "1-hour break and then a 3-hour shift. Part-time employees work one 4-hour shift beginning on the hour. Considering salary and fringe benefits, full-time employees cost the\n", - "bank $15 per hour ($105 a day), and part-time employees cost the bank $8 per hour\n", - "($32 per day).\n", - "\n", - "Formulate an integer programming model that can be used to develop a schedule\n", - "that will satisfy customer service needs at a minimum employee cost.\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# UNSOLVED" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Sets and Indicies\n", - "\n", - "$\\mathcal{T}$: A set of working times per day. where each element is represented as $t$. |$\\mathcal{T}$| = $\\textbf{T}$
\n", - "\n", - "#### Data\n", - "$N$: Column Vector of the Number of tellers required per hour, where each element is represented as $n_t, t\\in\\mathcal{T}$.
\n", - "$f$: A number that represents the pay per hour for $\\textbf{Full time}$ employees
\n", - "$p$: A number that represents the pay per hour for $\\textbf{Part time}$ employees
\n", - "\n", - "#### Decision Variable\n", - "\n", - "$W$: A column vector representing the hours being worked for each time $\\in \\mathcal{T}$. Where each element is represented as $w_t$\n", - "\n", - "$x$: Number of $\\textbf{Full time}$ employees
\n", - "$y$: Number of $\\textbf{Part time}$ employees
\n", - "\n", - "#### Function\n", - "\n", - "\\begin{align*}\n", - "\\ {\\mathrm{minimize }} \\; {xf + yp} \\\\\n", - "\\ \\text{subject to} \\\\\n", - "\\ \n", - "\\end{align*}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "\n", - "\n", - "W_t + W_t1 + W_t2 + W_t3 + W_t5 + W_t6 + W_t7 >= X_t\n", - "W_t + W_t1 + W_t2 + W_t3 >= Y_t" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.10.10" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Integer Linear Optimization Models/CloudServices_Problem.ipynb b/Integer Linear Optimization Models/CloudServices_Problem.ipynb deleted file mode 100644 index 799f7aa..0000000 --- a/Integer Linear Optimization Models/CloudServices_Problem.ipynb +++ /dev/null @@ -1,215 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Galaxy Cloud Services operates several data\n", - "centers across the United States containing servers that store and process the data on\n", - "the Internet. Suppose that Galaxy Cloud Services currently has five outdated data centers: one each in Michigan, Ohio, and California and two in New York. Management\n", - "is considering increasing the capacity of these data centers to keep up with increasing\n", - "demand. Each data center contains servers that are dedicated to Secure data and to \n", - "Super Secure data. The cost to update each data center and the resulting increase in\n", - "server capacity for each type of server are as follows:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Data CenterCost ($ millions)Secure ServersSuper Secure Servers
Michigan2.55030
New York 118040
New York 23.54080
Ohio4.09060
California2.02030
\n", - "\n", - "The projected needs are for a total increase in capacity of 90 Secure servers and 90\n", - "Super Secure servers. Management wants to determine which data centers to update\n", - "to meet projected needs and, at the same time, minimize the total cost of the added\n", - "capacity.\n", - "Formulate a binary integer programming model that could be used to determine the\n", - "optimal solution to the capacity increase question facing management." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "C = 5 # Number of data centers\n", - "\n", - "P = [2.5, 3.5, 3.5, 4, 2] # Price to upgrade the data center\n", - "N = [50, 80, 40, 90, 20] # Nomral Server increase\n", - "S = [30, 40, 80, 60, 30] # Super Server increase\n", - "\n", - "R = 90 # Required increase in normal servers\n", - "T = 90 # Required increase in super servers\n", - "\n", - "m = Model('CloudServices')\n", - "\n", - "X = m.binary_var_list(C) \n", - "\n", - "summation = 0\n", - "for c in range(C):\n", - " summation += (X[c] * N[c])\n", - "m.add_constraint(summation >= R)\n", - "\n", - "summation = 0\n", - "for c in range(C):\n", - " summation += (X[c] * S[c])\n", - "m.add_constraint(summation >= T)\n", - "\n", - "summation = 0\n", - "for c in range(C):\n", - " summation += (X[c] * P[c])\n", - "\n", - "m.minimize(summation)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-09 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 15.500000 after 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "MIP Presolve added 1 rows and 1 columns.\n", - "MIP Presolve modified 9 coefficients.\n", - "Reduced MIP has 3 rows, 6 columns, and 13 nonzeros.\n", - "Reduced MIP has 5 binaries, 1 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.00 sec. (0.01 ticks)\n", - "Probing time = 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "Detecting symmetries...\n", - "MIP Presolve eliminated 1 rows and 1 columns.\n", - "MIP Presolve added 1 rows and 1 columns.\n", - "Reduced MIP has 3 rows, 6 columns, and 13 nonzeros.\n", - "Reduced MIP has 5 binaries, 1 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.02 sec. (0.01 ticks)\n", - "Probing time = 0.00 sec. (0.00 ticks)\n", - "MIP emphasis: balance optimality and feasibility.\n", - "MIP search method: dynamic search.\n", - "Parallel mode: deterministic, using up to 6 threads.\n", - "Root relaxation solution time = 0.00 sec. (0.01 ticks)\n", - "\n", - " Nodes Cuts/\n", - " Node Left Objective IInf Best Integer Best Bound ItCnt Gap\n", - "\n", - "* 0+ 0 15.5000 0.0000 100.00%\n", - "* 0+ 0 6.0000 0.0000 100.00%\n", - " 0 0 5.5500 3 6.0000 5.5500 2 7.50%\n", - " 0 0 cutoff 6.0000 5.5500 2 7.50%\n", - "Elapsed time = 0.02 sec. (0.04 ticks, tree = 0.01 MB, solutions = 2)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.02 sec. (0.04 ticks)\n", - "Parallel b&c, 6 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.02 sec. (0.04 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=6,values={x4:1,x5:1})" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.solve(log_output=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "objective: 6.000\n", - "status: OPTIMAL_SOLUTION(2)\n", - " x4=1\n", - " x5=1\n" - ] - } - ], - "source": [ - "m.print_solution()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.10" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Integer Linear Optimization Models/Component.lp b/Integer Linear Optimization Models/Component.lp deleted file mode 100644 index 2470ba3..0000000 --- a/Integer Linear Optimization Models/Component.lp +++ /dev/null @@ -1,137 +0,0 @@ -\ This file has been generated by DOcplex -\ ENCODING=ISO-8859-1 -\Problem name: ComponentOrdering - -Minimize - obj: 12 Amount_Bought_on_period_0 + 12 Amount_Bought_on_period_1 - + 12 Amount_Bought_on_period_2 + 12 Amount_Bought_on_period_3 - + 12 Amount_Bought_on_period_4 + 12 Amount_Bought_on_period_5 - + 12 Amount_Bought_on_period_6 + 12 Amount_Bought_on_period_7 - + 12 Amount_Bought_on_period_8 + 12 Amount_Bought_on_period_9 - + 12 Amount_Bought_on_period_10 + 12 Amount_Bought_on_period_11 - + 150 Whether_Bought_on_period_0 + 150 Whether_Bought_on_period_1 - + 150 Whether_Bought_on_period_2 + 150 Whether_Bought_on_period_3 - + 150 Whether_Bought_on_period_4 + 150 Whether_Bought_on_period_5 - + 150 Whether_Bought_on_period_6 + 150 Whether_Bought_on_period_7 - + 150 Whether_Bought_on_period_8 + 150 Whether_Bought_on_period_9 - + 150 Whether_Bought_on_period_10 + 150 Whether_Bought_on_period_11 - + Holding_0 + Holding_1 + Holding_2 + Holding_3 + Holding_4 + Holding_5 - + Holding_6 + Holding_7 + Holding_8 + Holding_9 + Holding_10 + Holding_11 -Subject To - c1: Whether_Bought_on_period_0 - _bool#1 = 0 - c2: Whether_Bought_on_period_1 - _bool#2 = 0 - c3: Whether_Bought_on_period_2 - _bool#3 = 0 - c4: Whether_Bought_on_period_3 - _bool#4 = 0 - c5: Whether_Bought_on_period_4 - _bool#5 = 0 - c6: Whether_Bought_on_period_5 - _bool#6 = 0 - c7: Whether_Bought_on_period_6 - _bool#7 = 0 - c8: Whether_Bought_on_period_7 - _bool#8 = 0 - c9: Whether_Bought_on_period_8 - _bool#9 = 0 - c10: Whether_Bought_on_period_9 - _bool#10 = 0 - c11: Whether_Bought_on_period_10 - _bool#11 = 0 - c12: Whether_Bought_on_period_11 - _bool#12 = 0 - c13: Holding_0 = 0 - c14: Holding_1 - Amount_Bought_on_period_0 = -20 - c15: Holding_2 - Amount_Bought_on_period_0 - Amount_Bought_on_period_1 = -40 - c16: Holding_3 - Amount_Bought_on_period_0 - Amount_Bought_on_period_1 - - Amount_Bought_on_period_2 = -70 - c17: Holding_4 - Amount_Bought_on_period_0 - Amount_Bought_on_period_1 - - Amount_Bought_on_period_2 - Amount_Bought_on_period_3 = -110 - c18: Holding_5 - Amount_Bought_on_period_0 - Amount_Bought_on_period_1 - - Amount_Bought_on_period_2 - Amount_Bought_on_period_3 - - Amount_Bought_on_period_4 = -250 - c19: Holding_6 - Amount_Bought_on_period_0 - Amount_Bought_on_period_1 - - Amount_Bought_on_period_2 - Amount_Bought_on_period_3 - - Amount_Bought_on_period_4 - Amount_Bought_on_period_5 = -610 - c20: Holding_7 - Amount_Bought_on_period_0 - Amount_Bought_on_period_1 - - Amount_Bought_on_period_2 - Amount_Bought_on_period_3 - - Amount_Bought_on_period_4 - Amount_Bought_on_period_5 - - Amount_Bought_on_period_6 = -1110 - c21: Holding_8 - Amount_Bought_on_period_0 - Amount_Bought_on_period_1 - - Amount_Bought_on_period_2 - Amount_Bought_on_period_3 - - Amount_Bought_on_period_4 - Amount_Bought_on_period_5 - - Amount_Bought_on_period_6 - Amount_Bought_on_period_7 = -1650 - c22: Holding_9 - Amount_Bought_on_period_0 - Amount_Bought_on_period_1 - - Amount_Bought_on_period_2 - Amount_Bought_on_period_3 - - Amount_Bought_on_period_4 - Amount_Bought_on_period_5 - - Amount_Bought_on_period_6 - Amount_Bought_on_period_7 - - Amount_Bought_on_period_8 = -2110 - c23: Holding_10 - Amount_Bought_on_period_0 - Amount_Bought_on_period_1 - - Amount_Bought_on_period_2 - Amount_Bought_on_period_3 - - Amount_Bought_on_period_4 - Amount_Bought_on_period_5 - - Amount_Bought_on_period_6 - Amount_Bought_on_period_7 - - Amount_Bought_on_period_8 - Amount_Bought_on_period_9 = -2190 - c24: Holding_11 - Amount_Bought_on_period_0 - Amount_Bought_on_period_1 - - Amount_Bought_on_period_2 - Amount_Bought_on_period_3 - - Amount_Bought_on_period_4 - Amount_Bought_on_period_5 - - Amount_Bought_on_period_6 - Amount_Bought_on_period_7 - - Amount_Bought_on_period_8 - Amount_Bought_on_period_9 - - Amount_Bought_on_period_10 = -2190 - c25: Amount_Bought_on_period_0 <= 1000 - c26: Amount_Bought_on_period_1 <= 1000 - c27: Amount_Bought_on_period_2 <= 1000 - c28: Amount_Bought_on_period_3 <= 1000 - c29: Amount_Bought_on_period_4 <= 1000 - c30: Amount_Bought_on_period_5 <= 1000 - c31: Amount_Bought_on_period_6 <= 1000 - c32: Amount_Bought_on_period_7 <= 1000 - c33: Amount_Bought_on_period_8 <= 1000 - c34: Amount_Bought_on_period_9 <= 1000 - c35: Amount_Bought_on_period_10 <= 1000 - c36: Amount_Bought_on_period_11 <= 1000 - lc1: _bool#1 = 1 <-> Amount_Bought_on_period_0 >= 1 - lc2: _bool#2 = 1 <-> Amount_Bought_on_period_1 >= 1 - lc3: _bool#3 = 1 <-> Amount_Bought_on_period_2 >= 1 - lc4: _bool#4 = 1 <-> Amount_Bought_on_period_3 >= 1 - lc5: _bool#5 = 1 <-> Amount_Bought_on_period_4 >= 1 - lc6: _bool#6 = 1 <-> Amount_Bought_on_period_5 >= 1 - lc7: _bool#7 = 1 <-> Amount_Bought_on_period_6 >= 1 - lc8: _bool#8 = 1 <-> Amount_Bought_on_period_7 >= 1 - lc9: _bool#9 = 1 <-> Amount_Bought_on_period_8 >= 1 - lc10: _bool#10 = 1 <-> Amount_Bought_on_period_9 >= 1 - lc11: _bool#11 = 1 <-> Amount_Bought_on_period_10 >= 1 - lc12: _bool#12 = 1 <-> Amount_Bought_on_period_11 >= 1 - -Bounds - 0 <= Whether_Bought_on_period_0 <= 1 - 0 <= Whether_Bought_on_period_1 <= 1 - 0 <= Whether_Bought_on_period_2 <= 1 - 0 <= Whether_Bought_on_period_3 <= 1 - 0 <= Whether_Bought_on_period_4 <= 1 - 0 <= Whether_Bought_on_period_5 <= 1 - 0 <= Whether_Bought_on_period_6 <= 1 - 0 <= Whether_Bought_on_period_7 <= 1 - 0 <= Whether_Bought_on_period_8 <= 1 - 0 <= Whether_Bought_on_period_9 <= 1 - 0 <= Whether_Bought_on_period_10 <= 1 - 0 <= Whether_Bought_on_period_11 <= 1 - 0 <= _bool#1 <= 1 - 0 <= _bool#2 <= 1 - 0 <= _bool#3 <= 1 - 0 <= _bool#4 <= 1 - 0 <= _bool#5 <= 1 - 0 <= _bool#6 <= 1 - 0 <= _bool#7 <= 1 - 0 <= _bool#8 <= 1 - 0 <= _bool#9 <= 1 - 0 <= _bool#10 <= 1 - 0 <= _bool#11 <= 1 - 0 <= _bool#12 <= 1 - -Binaries - Whether_Bought_on_period_0 Whether_Bought_on_period_1 - Whether_Bought_on_period_2 Whether_Bought_on_period_3 - Whether_Bought_on_period_4 Whether_Bought_on_period_5 - Whether_Bought_on_period_6 Whether_Bought_on_period_7 - Whether_Bought_on_period_8 Whether_Bought_on_period_9 - Whether_Bought_on_period_10 Whether_Bought_on_period_11 _bool#1 _bool#2 _bool#3 - _bool#4 _bool#5 _bool#6 _bool#7 _bool#8 _bool#9 _bool#10 _bool#11 _bool#12 - -Generals - Amount_Bought_on_period_0 Amount_Bought_on_period_1 Amount_Bought_on_period_2 - Amount_Bought_on_period_3 Amount_Bought_on_period_4 Amount_Bought_on_period_5 - Amount_Bought_on_period_6 Amount_Bought_on_period_7 Amount_Bought_on_period_8 - Amount_Bought_on_period_9 Amount_Bought_on_period_10 Amount_Bought_on_period_11 - Holding_0 Holding_1 Holding_2 Holding_3 Holding_4 Holding_5 Holding_6 Holding_7 - Holding_8 Holding_9 Holding_10 Holding_11 -End diff --git a/Integer Linear Optimization Models/ComponentOrdering_Problem.ipynb b/Integer Linear Optimization Models/ComponentOrdering_Problem.ipynb deleted file mode 100644 index 346dd48..0000000 --- a/Integer Linear Optimization Models/ComponentOrdering_Problem.ipynb +++ /dev/null @@ -1,257 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Morgan Inc. is planning the purchase of one of the component\n", - "parts it needs for its finished product. The anticipated demands for the component for\n", - "the next 12 periods are shown in the following table.\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Period123456789101112
Demand2020304014036050054046080020
\n", - "\n", - " The cost to order the component\n", - "(labor, shipping, and paperwork) is $150. The cost to hold these components in inventory is $1 per component per period. The price of the component is expected to remain\n", - "stable at $12 per unit for the next 12 periods, and no quantity discounts are available.\n", - "The maximum order size is 1,000 units.\n", - "Formulate a model to minimize the total cost of satisfying Morgan Inc.’s demand\n", - "for this component." - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "P = 12\n", - "D = [20, 20, 30, 40, 140, 360, 500, 540, 460, 80, 0, 20]\n", - "\n", - "init_amount = 150\n", - "h = 1\n", - "c = 12\n", - "\n", - "m = Model('ComponentOrdering')\n", - "\n", - "X = m.integer_var_list(12, name = 'Amount Bought on period') # How much to purchase\n", - "XX = m.binary_var_list(12, name = 'Whether Bought on period')\n", - "Y = m.integer_var_list(12, name = 'Holding') # Holding\n", - "\n", - "for i in range(P):\n", - " m.add_constraint(XX[i] == (X[i] >= 1))\n", - "\n", - "for i in range(P):\n", - " old_x_summation = 0\n", - " old_d_summation = 0\n", - " for u in range(i):\n", - " old_x_summation += X[u]\n", - " old_d_summation += D[u]\n", - " m.add_constraint(Y[i] == old_x_summation - old_d_summation)\n", - "\n", - "for i in range(P):\n", - " m.add_constraint(X[i] <= 1000)\n", - "\n", - "summation = 0\n", - "for i in range(P):\n", - " summation += X[i] * c\n", - " summation += Y[i] * h\n", - " summation += XX[i] * init_amount\n", - "\n", - "m.minimize(summation)" - ] - }, - { - "cell_type": "code", - "execution_count": 107, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Component.lp'" - ] - }, - "execution_count": 107, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.export_as_lp(\"Component.lp\")" - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-09 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Tried aggregator 2 times.\n", - "MIP Presolve eliminated 14 rows and 3 columns.\n", - "Aggregator did 12 substitutions.\n", - "Reduced MIP has 32 rows, 33 columns, and 119 nonzeros.\n", - "Reduced MIP has 11 binaries, 22 generals, 0 SOSs, and 11 indicators.\n", - "Presolve time = 0.00 sec. (0.07 ticks)\n", - "Found incumbent of value 189300.000000 after 0.00 sec. (0.11 ticks)\n", - "Probing time = 0.00 sec. (0.01 ticks)\n", - "Tried aggregator 1 time.\n", - "Detecting symmetries...\n", - "MIP Presolve eliminated 2 rows and 2 columns.\n", - "Reduced MIP has 30 rows, 31 columns, and 115 nonzeros.\n", - "Reduced MIP has 10 binaries, 21 generals, 0 SOSs, and 10 indicators.\n", - "Presolve time = 0.00 sec. (0.07 ticks)\n", - "Probing time = 0.00 sec. (0.01 ticks)\n", - "MIP emphasis: balance optimality and feasibility.\n", - "MIP search method: dynamic search.\n", - "Parallel mode: deterministic, using up to 6 threads.\n", - "Root relaxation solution time = 0.00 sec. (0.06 ticks)\n", - "\n", - " Nodes Cuts/\n", - " Node Left Objective IInf Best Integer Best Bound ItCnt Gap\n", - "\n", - "* 0+ 0 189300.0000 390.0000 99.79%\n", - "* 0+ 0 187278.0000 390.0000 99.79%\n", - " 0 0 26755.5000 9 187278.0000 26755.5000 9 85.71%\n", - "* 0+ 0 27780.0000 26755.5000 3.69%\n", - " 0 0 27422.6154 10 27780.0000 Cuts: 24 22 1.29%\n", - "* 0+ 0 27776.0000 27422.6154 1.27%\n", - "* 0+ 0 27754.0000 27422.6154 1.19%\n", - " 0 0 27427.4359 10 27754.0000 Cuts: 5 24 1.18%\n", - "* 0+ 0 27751.0000 27427.4359 1.17%\n", - "* 0+ 0 27707.0000 27427.4359 1.01%\n", - "* 0+ 0 27460.0000 27427.4359 0.12%\n", - " 0 0 cutoff 27460.0000 27460.0000 24 0.00%\n", - "Elapsed time = 0.11 sec. (2.50 ticks, tree = 0.01 MB, solutions = 8)\n", - "\n", - "Mixed integer rounding cuts applied: 3\n", - "Lift and project cuts applied: 1\n", - "Gomory fractional cuts applied: 8\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.11 sec. (2.50 ticks)\n", - "Parallel b&c, 6 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.11 sec. (2.50 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=27460,values={Amount Bought on per.." - ] - }, - "execution_count": 108, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.solve(log_output=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 109, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "objective: 27460\n", - "status: OPTIMAL_SOLUTION(2)\n", - " \"Amount Bought on period_0\"=110\n", - " \"Amount Bought on period_4\"=140\n", - " \"Amount Bought on period_5\"=360\n", - " \"Amount Bought on period_6\"=500\n", - " \"Amount Bought on period_7\"=540\n", - " \"Amount Bought on period_8\"=540\n", - " \"Whether Bought on period_0\"=1\n", - " \"Whether Bought on period_4\"=1\n", - " \"Whether Bought on period_5\"=1\n", - " \"Whether Bought on period_6\"=1\n", - " \"Whether Bought on period_7\"=1\n", - " \"Whether Bought on period_8\"=1\n", - " \"Holding_1\"=90\n", - " \"Holding_2\"=70\n", - " \"Holding_3\"=40\n", - " \"Holding_4\"=0\n", - " \"Holding_9\"=80\n" - ] - } - ], - "source": [ - "m.print_solution()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.10" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Integer Linear Optimization Models/EastborneRealty_Problem.ipynb b/Integer Linear Optimization Models/EastborneRealty_Problem.ipynb deleted file mode 100644 index 4b2dc9a..0000000 --- a/Integer Linear Optimization Models/EastborneRealty_Problem.ipynb +++ /dev/null @@ -1,106 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Eastborne Realty has $2 million available for the purchase of new rental property. After an\n", - "initial screening, Eastborne reduced the investment alternatives to townhouses and apartment buildings. Each townhouse can be purchased for $282,000, and five are available.\n", - "Each apartment building can be purchased for $400,000, and the developer will construct\n", - "as many buildings as Eastborne wants to purchase.\n", - "Eastborne’s property manager can devote up to 140 hours per month to these new properties; each townhouse is expected to require 4 hours per month, and each apartment building\n", - "is expected to require 40 hours per month. The annual cash flow, after deducting mortgage\n", - "payments and operating expenses, is estimated to be $10,000 per townhouse and $15,000\n", - "per apartment building. Eastborne’s owner would like to determine the number of townhouses and the number of apartment buildings to purchase to maximize annual cash flow." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Sets and Indicies\n", - "\n", - "$\\mathcal{T}$: Types of investments
\n", - "$t, t \\in \\mathcal{T}$: An index in set $\\mathcal{T}$ \n", - "\n", - "#### Data\n", - "\n", - "$q$: Money Budget given
\n", - "$w$: Time Budget given
\n", - "\n", - "$H$: Column vector representing hours needed per month for each investment type
\n", - "$P$: Column vector representing Purchase price for each investment type
\n", - "$F$: Column vector representing Annual cash flow for each investment type
\n", - "\n", - "$h_t \\in H, t \\in \\mathcal{T}$: Hours needed per month for each investment type
\n", - "$p_t \\in P, t \\in \\mathcal{T}$: Purchase price for each investment type
\n", - "$f_t \\in F, t \\in \\mathcal{T}$: Annual cash flow for each investment type
\n", - "\n", - "#### Decision Variables\n", - "\n", - "$X$: Column vector representing Number of types of investments to purchase
\n", - "\n", - "$x_t, t \\in \\mathcal{T}$: Number of types of investments to purchase\n", - "\n", - "#### Function\n", - "\n", - "\\begin{align*}\n", - "\\ {\\mathrm{maximize }} & \\; F^T X \\\\\n", - "\\text{subject to:} \\\\\n", - "& P^T X \\leq q\\\\ \n", - "& H^T X \\leq w\\\\ \n", - "& t_1 \\leq 5\\\\\n", - "& x_i \\geq 0 \\; \\text{and integer} \\;, \\forall i\\in\\mathcal{T}\n", - "\\end{align*}\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Sets\n", - "Types_of_investment = {'townhouses', 'aparments'}\n", - "\n", - "\n", - "budget_money = 2000000\n", - "budget_time = 140\n", - "price_cost = [282000, 400000]\n", - "time_cost = [4, 40]\n", - "limit_townhouses = 5\n", - "\n", - "revenue = [10000, 15000]\n", - "\n", - "max_revenue = " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "maximize " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.10.10" - }, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Integer Linear Optimization Models/HartManufacturing_Problem.ipynb b/Integer Linear Optimization Models/HartManufacturing_Problem.ipynb deleted file mode 100644 index 8ef440b..0000000 --- a/Integer Linear Optimization Models/HartManufacturing_Problem.ipynb +++ /dev/null @@ -1,119 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## NOT SURE ABOUT THIS ONE'S SOLUTION" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Hart Manufacturing makes three products.\n", - "Each product requires manufacturing operations in three departments: A, B, and C. The\n", - "labor-hour requirements, by department, are as follows:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DepartmentProduct 1Product 2Product 3
A1.503.002.00
B2.001.002.50
C0.250.250.25
\n", - "\n", - "During the next production period the labor-hours available are 450 in department A,\n", - "350 in department B, and 50 in department C. The profit contributions per unit are $25\n", - "for product 1, $28 for product 2, and $30 for product 3.\n", - "Formulate a linear programming model for maximizing total profit contribution." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Sets and Indicies\n", - "\n", - "$\\mathcal{D}$: The Departments
\n", - "$\\mathcal{P}$: The Products
\n", - "\n", - "$d \\in \\mathcal{D}$: An index in set $\\mathcal{D}$
\n", - "$p \\in \\mathcal{P}$: An index in set $\\mathcal{P}$
\n", - "\n", - "#### Data\n", - "\n", - "$R$: Matrix representing the number of hours needed for each Product in $\\mathcal{P}$ for each department in $\\mathcal{D}$.
\n", - "$r_{dp} \\in R, d \\in \\mathcal{D}, p \\in \\mathcal{P}$: An index in set $R$.
\n", - "\n", - "$H$: Column vector representing the number of hours available for each department in $\\mathcal{D}$.
\n", - "$h_d \\in H, d \\in \\mathcal{D}$: An index in set $H$.
\n", - "\n", - "$F$: Column vector representing the profit per Product in $\\mathcal{P}$
\n", - "$f_p \\in F, p \\in \\mathcal{P}$: An index in set $P$.
\n", - "\n", - "#### Decision Variables\n", - "\n", - "$X$: Matrix representing the number of products for each department
\n", - "$x_{dp} \\in X, d \\in \\mathcal{D}, p \\in \\mathcal{P}$: An index in the $X$
\n", - "\n", - "#### Function\n", - "\n", - "\\begin{align*}\n", - "\\ {\\mathrm{maximize }} & \\; (1_{||D||} X F^T) - (1_{||D||} X R^T 1_{||D||}^T )\\\\\n", - "\\text{subject to:} \\\\\n", - "& X R^T 1_{||D||}^T \\leq H\\\\ \n", - "& x_{iu} \\geq 0\\ \\text{and Integer}; \\forall i\\in\\mathcal{D}, \\forall u\\in\\mathcal{P}\n", - "\\end{align*}\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.10.10" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Integer Linear Optimization Models/InvestmentNet_Problem.ipynb b/Integer Linear Optimization Models/InvestmentNet_Problem.ipynb deleted file mode 100644 index 7fee4a4..0000000 --- a/Integer Linear Optimization Models/InvestmentNet_Problem.ipynb +++ /dev/null @@ -1,269 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Spencer Enterprises is attempting to choose among\n", - "a series of new investment alternatives. The potential investment alternatives, the net\n", - "present value of the future stream of returns, the capital requirements, and the available\n", - "capital funds over the next three years are summarized as follows:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
AlternativeNet Present Value ($)Year 1Year 2Year 3
Limited warehouse expansion4,0003,0001,0004,000
Extensive warehouse expansion6,0002,5003,5003,500
Test market new product10,5006,0004,0005,000
Advertising campaign4,0002,0001,5001,800
Basic research8,0005,0001,0004,000
Purchase new equipment3,0001,000500900
Capital funds available-10,5007,0008,750
\n", - "\n", - "Develop and solve an integer programming model for maximizing the net present value." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Sets and indicies

\n", - "\n", - "$\\mathcal{I}$: Investments, where each investment is denoted as $i$. |$\\mathcal{I}$| = $\\textbf{I}$
\n", - "$\\mathcal{Y}$: Years, where each year is denoted as $y$. |$\\mathcal{Y}$| = $\\textbf{Y}$
\n", - "\n", - "

Data

\n", - "\n", - "$N$: Column vector representing Net present values for each Investment in $\\mathcal{I}$. Where each element is represented as $n_i$.
\n", - "$R$: Matrix representing Capital Funds for each Investment in $\\mathcal{I}$ for each year in $\\mathcal{Y}$. Where each element is denoted as $r_{iy}$.
\n", - "$A$: Column vector representing Available Capital Funds for each year in $\\mathcal{Y}$, where each item is denoted as $a_y$.
\n", - "\n", - "

Decision Variables

\n", - "\n", - "$X$: Which investments in $\\mathcal{I}$ to open, where each item is denoted as $x_i$.
\n", - "\n", - "

Function

\n", - "\n", - "\\begin{align*}\n", - "\n", - "\\mathrm{maximize} \\sum_{u=1}^{\\textbf{I}} x_in_i \\\\\n", - "\\text{subject to} \\\\\n", - "& \\sum_{u=0}^{\\textbf{I}}{x_ir_{iy}} \\leq a_y ; \\; \\forall y \\in \\mathcal{Y} \\\\\n", - "& x_i \\in \\{1, 0\\} ; \\; \\forall i \\in \\mathcal{I}\n", - "\\end{align*}\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "I = 6\n", - "Y = 3\n", - "\n", - "N = [4000, 6000, 10500, 4000, 8000, 3000]\n", - "\n", - "R = [\n", - " [3000, 1000, 4000],\n", - " [2500, 3500, 3500],\n", - " [6000, 4000, 5000],\n", - " [2000, 1500, 1800],\n", - " [5000, 1000, 4000],\n", - " [1000, 500 ,900]\n", - "]\n", - "\n", - "A = [10500, 7000, 8750]\n", - "\n", - "m = Model(name = 'Investment Net')\n", - "\n", - "X = m.binary_var_list(len(N))\n", - "\n", - "for y in range(Y):\n", - " summation = 0\n", - " for u in range(I):\n", - " summation += (X[u] * R[u][y])\n", - " m.add_constraint(summation <= A[y])\n", - "\n", - "function_summation = 0\n", - "for u in range(I):\n", - " function_summation += (X[u] * N[u])\n", - "\n", - "m.maximize(function_summation)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-09 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 0.000000 after 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "MIP Presolve modified 13 coefficients.\n", - "Reduced MIP has 3 rows, 6 columns, and 18 nonzeros.\n", - "Reduced MIP has 6 binaries, 0 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.00 sec. (0.01 ticks)\n", - "Probing time = 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "Detecting symmetries...\n", - "Reduced MIP has 3 rows, 6 columns, and 18 nonzeros.\n", - "Reduced MIP has 6 binaries, 0 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.00 sec. (0.01 ticks)\n", - "Probing time = 0.00 sec. (0.00 ticks)\n", - "Clique table members: 3.\n", - "MIP emphasis: balance optimality and feasibility.\n", - "MIP search method: dynamic search.\n", - "Parallel mode: deterministic, using up to 6 threads.\n", - "Root relaxation solution time = 0.03 sec. (0.01 ticks)\n", - "\n", - " Nodes Cuts/\n", - " Node Left Objective IInf Best Integer Best Bound ItCnt Gap\n", - "\n", - "* 0+ 0 0.0000 35500.0000 --- \n", - "* 0+ 0 17000.0000 35500.0000 108.82%\n", - " 0 0 18480.0000 2 17000.0000 18480.0000 2 8.71%\n", - "* 0 0 integral 0 17500.0000 17500.0000 4 0.00%\n", - "Elapsed time = 0.11 sec. (0.08 ticks, tree = 0.01 MB, solutions = 3)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.11 sec. (0.08 ticks)\n", - "Parallel b&c, 6 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.11 sec. (0.08 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=17500,values={x3:1,x4:1,x6:1})" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "status = integer optimal solution\n", - "time = 0.125 s.\n", - "problem = MILP\n", - "gap = 0%\n", - "\n", - "objective: 17500\n", - "status: OPTIMAL_SOLUTION(2)\n", - " x3=1\n", - " x4=1\n", - " x6=1\n" - ] - } - ], - "source": [ - "print(m.solve_details)\n", - "m.print_solution()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.10" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Integer Linear Optimization Models/KingInc_problem.ipynb b/Integer Linear Optimization Models/KingInc_problem.ipynb deleted file mode 100644 index e3caa1e..0000000 --- a/Integer Linear Optimization Models/KingInc_problem.ipynb +++ /dev/null @@ -1,80 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "King City Inc. manufactures machine tools. The\n", - "production planner who oversees the production of two of King City’s machines needs\n", - "to determine how many of each to produce this month. The two machines, TopLathe\n", - "and BigPress, each require a certain common component. Each TopLathe requires 10\n", - "of these components and each BigPress requires 7. Only 49 components are available\n", - "this month. The sales department requires that the total number of machines produced\n", - "in a month must be at least 5 (the number TopLathes plus the number BigPresses must\n", - "be at least 5). The profit for a TopLathe is $50,000 and $34,000 for a BigPress." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Sets and Indicies\n", - "\n", - "$\\mathcal{M}$: Machine types
\n", - "$m, m \\in \\mathcal{M}$: An index in set $\\mathcal{M}$
\n", - "\n", - "#### Data \n", - "\n", - "$a$: Available components
\n", - "$m$: Minimum Required number of all machines to be created
\n", - "$R$: A column vector representing the required common components for the Machine Types.
\n", - "$r_m \\in R, m \\in \\mathcal{M}$: An index representing the required common components for each Machine Type.
\n", - "$P$: A column vector representing the profit for the Machine Types.
\n", - "$p_m \\in P, m \\in \\mathcal{M}$: An index representing the profit for each Machine Type.
\n", - "\n", - "#### Decision Variables\n", - "\n", - "$X$: A column vector representing the amount of machine to create.
\n", - "$x_m \\in X, m \\in \\mathcal{M}$: An index representing the amount to create for each machine types
\n", - "\n", - "#### Function\n", - "\n", - "\\begin{align*}\n", - "\\ {\\mathrm{maximize }} & \\; P^T X \\\\\n", - "\\text{subject to:} \\\\\n", - "& 1_{||X||}^T X \\leq m\\\\ \n", - "& R^T X \\leq a\\\\ \n", - "& x_i \\geq 0 \\; \\text{and integer} \\;, \\forall i\\in\\mathcal{M}\n", - "\\end{align*}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.10.10" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Integer Linear Optimization Models/MartinBeckCompany_Problem.ipynb b/Integer Linear Optimization Models/MartinBeckCompany_Problem.ipynb deleted file mode 100644 index 1463c51..0000000 --- a/Integer Linear Optimization Models/MartinBeckCompany_Problem.ipynb +++ /dev/null @@ -1,181 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Martin-Beck Company operates a plant in St.\n", - "Louis with an annual capacity of 30,000 units. Product is shipped to regional distribution centers located in Boston, Atlanta, and Houston. Because of an anticipated\n", - "increase in demand, Martin-Beck plans to increase capacity by constructing a new\n", - "plant in one or more of the following cities: Detroit, Toledo, Denver, or Kansas City.\n", - "The estimated annual fixed cost and the annual capacity for the four proposed plants\n", - "are as follows:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Proposed PlantAnnual Fixed CostAnnual Capacity
Detroit$175,00010,000
Toledo$300,00020,000
Denver$375,00030,000
Kansas City$500,00040,000
\n", - "\n", - "The company’s long-range planning group developed forecasts of the anticipated\n", - "annual demand at the distribution centers as follows:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Distribution CenterAnnual Demand
Boston30,000
Atlanta20,000
Houston20,000
\n", - "\n", - "The shipping cost per unit from each plant to each distribution center is as follows:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Plant SiteBostonAtlantaHouston
Detroit523
Toledo434
Denver975
Kansas City1042
St. Louis843
\n", - "\n", - "Formulate a mixed-integer programming model that could be used to help\n", - "Martin-Beck determine which new plant or plants to open in order to satisfy\n", - "anticipated demand." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Sets and Indicies\n", - "\n", - "$\\mathcal{P}$: Plants
\n", - "$\\mathcal{D}$: Distrubution Centers
\n", - "\n", - "$p \\in \\mathcal{P}$: An index in the set $\\mathcal{P}$, where $p_2, p_3, p_4, p_5$ are proposed plants
\n", - "$d \\in \\mathcal{D}$: An index in the set $\\mathcal{D}$
\n", - "\n", - "#### Data\n", - "\n", - "$F$: A column vector representing Fixed cost for the Plants
\n", - "$f_p \\in F, p \\in \\mathcal{P}$: An index representing Fixed cost for each the Plants
\n", - "$f_1$: Equals 0, since it is already built.\n", - "\n", - "$C$: A column vector representing Capacity for the Plants
\n", - "$c_p \\in C, p \\in \\mathcal{P}$: An index representing Capacity for each the Plants
\n", - "\n", - "$M$: A column vector representing Demand for the Distribution Centers
\n", - "$m_d \\in M, d \\in \\mathcal{D}$: An index representing Demand for the Distribution Centers
\n", - "\n", - "$S$: A matrix represnting the Shipping Cost from each plant to each distribution center
\n", - "$s_{pd} \\in S, p \\in \\mathcal{P}, d \\in \\mathcal{D}$: an Index in the set $S$
\n", - " \n", - "#### Decision Variables\n", - "\n", - "$X$: A column vector representing which plants to build
\n", - "$x_p \\in X, p \\in \\mathcal{P}$: An index in the set $X$
\n", - "\n", - "$Y$: A matrix representing the amount to ship between each distrubution center and plant
\n", - "$y_pd \\in Y, p \\in \\mathcal{P}, d \\in \\mathcal{D}$: An index in the set $Y$
\n", - "\n", - "\n", - "#### Function\n", - "\n", - "\n", - "\\begin{align*}\n", - "\\ {\\mathrm{minimize }} & \\; (F^T X) + 1_{||D||}^TYS1_{||D||}\\\\\n", - "\\text{subject to:} \\\\\n", - "& Y1_{||D||} \\leq C\\\\ \n", - "& 1_{||P||}Y \\leq M^T\\\\ \n", - "& x_i \\in \\{0, 1\\} ; \\forall i\\in\\mathcal{P}\\\\\n", - "& y_{iu} \\geq 0\\ \\text{and Integer}; \\forall i\\in\\mathcal{P}, \\forall u\\in\\mathcal{D}\n", - "\\end{align*}" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.10.10" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Integer Linear Optimization Models/MutualFundPortfolio_Problem.ipynb b/Integer Linear Optimization Models/MutualFundPortfolio_Problem.ipynb deleted file mode 100644 index 31b00d7..0000000 --- a/Integer Linear Optimization Models/MutualFundPortfolio_Problem.ipynb +++ /dev/null @@ -1,196 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Dave has $100,000 to invest in 10 mutual fund\n", - "alternatives with the following restrictions. For diversification, no more than $25,000\n", - "can be invested in any one fund. If a fund is chosen for investment, then at least\n", - "$10,000 will be invested in it. No more than two of the funds can be pure growth\n", - "funds, and at least one pure bond fund must be selected. The total amount invested in\n", - "pure bond funds must be at least as much as the amount invested in pure growth funds.\n", - "Using the following expected returns, formulate and solve a model that will determine\n", - "the investment strategy that will maximize expected annual return. What assumptions\n", - "have you made in your model? How often would you expect to run your model?" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "investment =[1,2,3,4,5,6,7,8,9,10]\n", - "return_type = [\"Growth\",\"Growth\",\"Growth\",\"Growth\",\"Growth & Income\",\"Growth & Income\",\"Growth & Income\",\"Stock & Bond\",\"Bond\",\"Bond\"]\n", - "return_pert = [0.0670,0.0765,0.0755,0.0745,0.0750,0.0645,0.0705,0.0690,0.0520,0.0590]\n", - "return_type_int = [0, 0, 0, 0, 1, 1, 1, 2, 3, 3]\n", - "\n", - "import numpy as np\n", - "def create_dummies(int_list):\n", - " dummies = np.zeros((len(int_list), len(np.unique(int_list))))\n", - "\n", - " for i in range(len(int_list)):\n", - " dummies[i, int_list[i]] = 1\n", - "\n", - " return dummies\n", - "\n", - "dummies = create_dummies(return_type_int)" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "m = Model()\n", - "X = m.integer_var_list(investment, lb = 0, ub = 25000, name = 'Amount Investment')\n", - "XX = m.binary_var_list(investment, name = 'Chosen Investment')\n", - "\n", - "for i in range(len(X)):\n", - " m.add_indicator(XX[i], X[i] >= 1, 1)\n", - " m.add_indicator(XX[i], X[i] <= 0, 0)\n", - "\n", - "for i in range(len(X)):\n", - " m.add_constraint(10000 * XX[i] <= X[i])\n", - "\n", - "m.add_constraint(sum([X[i] for i in range(len(X))]) <= 100000)\n", - "m.add_constraint(sum([XX[i] * dummies[i][0] for i in range(len(X))]) <= 2)\n", - "m.add_constraint(sum([XX[i] * dummies[i][3] for i in range(len(X))]) >= 1)\n", - "\n", - "m.maximize(sum([X[i] * return_pert[i] for i in range(len(X))]))" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'MutualFunds.lp'" - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.export_as_lp('MutualFunds.lp')" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-11 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Tried aggregator 1 time.\n", - "Reduced MIP has 23 rows, 20 columns, and 56 nonzeros.\n", - "Reduced MIP has 10 binaries, 10 generals, 0 SOSs, and 10 indicators.\n", - "Presolve time = 0.00 sec. (0.03 ticks)\n", - "Found incumbent of value 590.000000 after 0.01 sec. (0.08 ticks)\n", - "Probing time = 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "Detecting symmetries...\n", - "MIP Presolve eliminated 10 rows and 0 columns.\n", - "Reduced MIP has 13 rows, 20 columns, and 36 nonzeros.\n", - "Reduced MIP has 10 binaries, 10 generals, 0 SOSs, and 10 indicators.\n", - "Presolve time = 0.01 sec. (0.04 ticks)\n", - "Probing time = 0.00 sec. (0.00 ticks)\n", - "Clique table members: 1.\n", - "MIP emphasis: balance optimality and feasibility.\n", - "MIP search method: dynamic search.\n", - "Parallel mode: deterministic, using up to 4 threads.\n", - "Root relaxation solution time = 0.00 sec. (0.02 ticks)\n", - "\n", - " Nodes Cuts/\n", - " Node Left Objective IInf Best Integer Best Bound ItCnt Gap\n", - "\n", - "* 0+ 0 590.0000 17087.5000 --- \n", - " 0 0 7382.5000 4 590.0000 7382.5000 4 --- \n", - " 0 0 7322.5000 1 590.0000 Impl Bds: 4 9 --- \n", - "* 0+ 0 7322.5000 7322.5000 0.00%\n", - " 0 0 cutoff 7322.5000 7322.5000 9 0.00%\n", - "Elapsed time = 0.13 sec. (0.24 ticks, tree = 0.01 MB, solutions = 2)\n", - "\n", - "Implied bound cuts applied: 4\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.14 sec. (0.24 ticks)\n", - "Parallel b&c, 4 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.14 sec. (0.24 ticks)\n" - ] - } - ], - "source": [ - "solution = m.solve(log_output=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "solution for: docplex_model19\n", - "objective: 7322.5\n", - "status: OPTIMAL_SOLUTION(2)\n", - "Amount Investment_2=25000\n", - "Amount Investment_3=25000\n", - "Amount Investment_5=25000\n", - "Amount Investment_7=15000\n", - "Amount Investment_10=10000\n", - "Chosen Investment_2=1\n", - "Chosen Investment_3=1\n", - "Chosen Investment_5=1\n", - "Chosen Investment_7=1\n", - "Chosen Investment_10=1\n", - "\n" - ] - } - ], - "source": [ - "print(solution)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Integer Linear Optimization Models/Notes.md b/Integer Linear Optimization Models/Notes.md deleted file mode 100644 index 7c5bd45..0000000 --- a/Integer Linear Optimization Models/Notes.md +++ /dev/null @@ -1,12 +0,0 @@ -Types of integer linear program: -- All integer linear program: - - All decision variables are integers. -- LP relaxation: - - Problems where you can turn an ILP into an LP, by dropping integer constraint. - - If the optimal decision variables solution for LP relaxation are Integer, then it is the optimal solution for the original ILP problem. -- Mixed Integer linear program: - - Some decision variables are integers. -- Binary integer linear program: - - The decision variables can only be either 0 or 1. - -ALWAYS USE <= OR >=. DO NOT USE < OR > ONLY diff --git a/Integer Linear Optimization Models/PoliceSubstation.lp b/Integer Linear Optimization Models/PoliceSubstation.lp deleted file mode 100644 index e0cdad7..0000000 --- a/Integer Linear Optimization Models/PoliceSubstation.lp +++ /dev/null @@ -1,20 +0,0 @@ -\ This file has been generated by DOcplex -\ ENCODING=ISO-8859-1 -\Problem name: Assignment - -Minimize - obj: x_0 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 -Subject To - c1: x_0 + x_1 + x_2 + x_6 >= 1 - c2: x_1 + x_3 >= 1 - c3: x_2 + x_4 >= 1 - c4: x_3 + x_4 + x_5 >= 1 - c5: x_0 + x_1 + x_2 + x_3 + x_5 + x_6 >= 1 - c6: x_4 + x_5 + x_6 >= 1 - c7: x_0 + x_1 + x_4 + x_6 >= 1 - -Bounds - -Generals - x_0 x_1 x_2 x_3 x_4 x_5 x_6 -End diff --git a/Integer Linear Optimization Models/PoliceSubstations_Problem.ipynb b/Integer Linear Optimization Models/PoliceSubstations_Problem.ipynb deleted file mode 100644 index 63291e6..0000000 --- a/Integer Linear Optimization Models/PoliceSubstations_Problem.ipynb +++ /dev/null @@ -1,253 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Locating Police Substations. Grave City is considering the relocation of several\n", - "police substations to obtain better enforcement in high-crime areas. The locations\n", - "under consideration together with the areas that can be covered from these locations\n", - "are given in the following table:\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Potential Locations
\n", - " for Substations
Areas Covered
A1, 5, 7
B1, 2, 5, 7
C1, 3, 5
D2, 4, 5
E3, 4, 6
F4, 5, 6
G1, 5, 6, 7
\n", - "\n", - "Formulate an integer programming model that could be used to find the minimum\n", - "number of locations necessary to provide coverage to all areas." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Sets and Indicies

\n", - "\n", - "$\\mathcal{L}$: Locations to open a station in, where each location is represnted as $l$. |$\\mathcal{L}$| = $\\textbf{L}$
\n", - "$\\mathcal{A}$: Areas to cover, where each area is represnted as $a$. |$\\mathcal{A}$| = $\\textbf{A}$
\n", - "\n", - "

Data

\n", - "\n", - "$C$: a matrix representing which areas in $\\mathcal{A}$ can be covered by each location in $\\mathcal{L}$, where each element is represented as $c_{la}$.\n", - "\n", - "

Decision Variables

\n", - "\n", - "$X$: A column vector respresnting which locations to open a station in.
\n", - "\n", - "

Function

\n", - "\n", - "\\begin{align*}\n", - "\\ \\mathrm{minimize} \\sum_{i=1}^{\\textbf{L}}{x_{i}} \\\\\n", - "\\ \\text{subject to} \\\\\n", - "& \\sum_{i=1}^{\\textbf{L}} c_{ia} * x_{i} \\geq 1 ; \\; \\forall a \\in \\mathcal{A} \\\\\n", - "& x_{l} \\in \\{1, 0\\} ; \\; \\forall l \\in \\mathcal{L}\n", - "\\end{align*}" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'PoliceSubstation.lp'" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from docplex.mp.model import Model\n", - "import numpy as np\n", - "import json\n", - "\n", - "### Numbers too large to solve.\n", - "L = 7\n", - "A = 7\n", - "\n", - "C = [\n", - "\t[1, 0, 0, 0, 1, 0, 1],\n", - "\t[1, 1, 0, 0, 1, 0, 1],\n", - "\t[1, 0, 1, 0, 1, 0, 0],\n", - "\t[0, 1, 0, 1, 1, 0, 0],\n", - "\t[0, 0, 1, 1, 0, 1, 1],\n", - "\t[0, 0, 0, 1, 1, 1, 0],\n", - "\t[1, 0, 0, 0, 1, 1, 1]\n", - "]\n", - "\n", - "m = Model(name = 'Assignment')\n", - "\n", - "dv = m.integer_var_list(L, name = 'x')\n", - "\n", - "for a in range(A):\n", - " summation = 0\n", - " for i in range(L):\n", - " summation += C[i][a] * dv[i] \n", - "\n", - " m.add_constraint(summation >= 1)\n", - "\n", - "function_summation = 0\n", - "\n", - "for i in range(L):\n", - " function_summation += dv[i] \n", - "\n", - "m.minimize(function_summation)\n", - "\n", - "m.export_as_lp(\"PoliceSubstation.lp\")" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-09 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 5.000000 after 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "MIP Presolve eliminated 2 rows and 2 columns.\n", - "Reduced MIP has 5 rows, 5 columns, and 11 nonzeros.\n", - "Reduced MIP has 5 binaries, 0 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.00 sec. (0.01 ticks)\n", - "Probing time = 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "Detecting symmetries...\n", - "Reduced MIP has 5 rows, 5 columns, and 11 nonzeros.\n", - "Reduced MIP has 5 binaries, 0 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.00 sec. (0.01 ticks)\n", - "Probing time = 0.00 sec. (0.00 ticks)\n", - "Clique table members: 4.\n", - "MIP emphasis: balance optimality and feasibility.\n", - "MIP search method: dynamic search.\n", - "Parallel mode: deterministic, using up to 6 threads.\n", - "Root relaxation solution time = 0.00 sec. (0.01 ticks)\n", - "\n", - " Nodes Cuts/\n", - " Node Left Objective IInf Best Integer Best Bound ItCnt Gap\n", - "\n", - "* 0+ 0 4.0000 0.0000 100.00%\n", - "* 0+ 0 3.0000 0.0000 100.00%\n", - "* 0 0 integral 0 2.0000 2.0000 4 0.00%\n", - "Elapsed time = 0.02 sec. (0.04 ticks, tree = 0.00 MB, solutions = 3)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.02 sec. (0.04 ticks)\n", - "Parallel b&c, 6 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.02 sec. (0.04 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=2,values={x_1:1,x_4:1})" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JobSolveStatus.OPTIMAL_SOLUTION\n", - "objective: 2\n", - "status: OPTIMAL_SOLUTION(2)\n", - " x_1=1\n", - " x_4=1\n" - ] - } - ], - "source": [ - "print(m.solve_status)\n", - "m.print_solution()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.10" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Integer Linear Optimization Models/ProductDesign_Problem.ipynb b/Integer Linear Optimization Models/ProductDesign_Problem.ipynb deleted file mode 100644 index 82a2ddb..0000000 --- a/Integer Linear Optimization Models/ProductDesign_Problem.ipynb +++ /dev/null @@ -1,218 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Burnside Marketing Research conducted a study for Barker Foods\n", - "on several formulations for a new dry cereal. Three attributes were found to be most\n", - "influential in determining which cereal had the best taste: ratio of wheat to corn\n", - "in the cereal flake, type of sweetener (sugar, honey, or artificial), and the presence\n", - "or absence of flavor bits. Seven children participated in taste tests and provided\n", - "the following part-worths for the attributes (see Section 13.4 for a discussion of\n", - "part-worths):\n", - "\n", - "a. Suppose that the overall utility (sum of part-worths) of the current favorite cereal\n", - "is 75 for each child. What product design will maximize the number of children in\n", - "the sample who prefer the new dry cereal? Note that a child will prefer the new dry\n", - "cereal only if its overall utility is at least 1 part-worth larger than the utility of their\n", - "current preferred cereal.\n", - "\n", - "b. Assume that the overall utility of the current favorite cereal for children 1 to 4\n", - "is 70, and the overall utility of the current favorite cereal for children 5 to 7 is 80.\n", - "What product design will maximize the number of children in the sample who\n", - "prefer the new dry cereal? Note that a child will prefer the new dry cereal only if\n", - "its overall utility is at least 1 part-worth larger than the utility of their current pre-\n", - "ferred cereal." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Maybe correct?" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Child | Wheat/Corn | Sweetener | Flavor Bits\n", - "# | Low High | Sugar Honey Artificial| Present Absent\n", - "# 1 | 15 35 | 30 40 25 | 15 9\n", - "# 2 | 30 20 | 40 35 35 | 8 11\n", - "# 3 | 40 25 | 20 40 10 | 7 14\n", - "# 4 | 35 30 | 25 20 30 | 15 18\n", - "# 5 | 25 40 | 40 20 35 | 18 14\n", - "# 6 | 20 25 | 20 35 30 | 9 16\n", - "# 7 | 30 15 | 25 40 40 | 20 11\n", - "\n", - "Child = [1, 2, 3, 4, 5, 6, 7]\n", - "Wheat_opts = ['Low', 'High']\n", - "Sweetener_opts = ['Sugar', 'Honey', 'Artificial']\n", - "Flavor_opts = ['Present', 'Absent']\n", - "\n", - "Wheat = [[15,30,40,35,25,20,30],\n", - " [35,20,25,30,40,25,15]]\n", - "\n", - "Sweetener = [[30,40,20,25,40,20,25],\n", - " [40,35,40,20,20,35,40],\n", - " [25,35,10,30,35,30,40]]\n", - "\n", - "Flavor = [[15,8,7,15,18,9,20],\n", - " [9, 11,14,18,14,16,11]]" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "m = Model()\n", - "\n", - "X_Wheat = m.binary_var_list(Wheat_opts)\n", - "X_Sweetener = m.binary_var_list(Sweetener_opts)\n", - "X_Flavor = m.binary_var_list(Flavor_opts)\n", - "\n", - "# Y_children = m.integer_var_list(len(Child), name = 'Child')\n", - "YY_children = m.binary_var_list(Child, name = 'Child')\n", - "\n", - "m.add_constraint(sum(X_Wheat) == 1)\n", - "m.add_constraint(sum(X_Sweetener) == 1)\n", - "m.add_constraint(sum(X_Flavor) == 1)\n", - "\n", - "for child in range(len(YY_children)):\n", - " summation = 0\n", - " for wheet_opt in range(len(Wheat_opts)):\n", - " summation += X_Wheat[wheet_opt] * Wheat[wheet_opt][child]\n", - "\n", - " for sweetener_opt in range(len(Sweetener_opts)):\n", - " summation += X_Sweetener[sweetener_opt] * Sweetener[sweetener_opt][child]\n", - "\n", - " for flavor_opt in range(len(Flavor_opts)):\n", - " summation += X_Flavor[flavor_opt] * Flavor[flavor_opt][child]\n", - "\n", - " m.add_indicator(YY_children[child], summation >= 76)\n", - "\n", - "m.export_as_lp('ProductDesign.lp')\n", - "m.maximize(sum(YY_children))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-11 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 0.000000 after 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 2 times.\n", - "MIP Presolve modified 3 coefficients.\n", - "Aggregator did 2 substitutions.\n", - "Reduced MIP has 15 rows, 19 columns, and 58 nonzeros.\n", - "Reduced MIP has 12 binaries, 0 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.01 sec. (0.08 ticks)\n", - "Probing time = 0.00 sec. (0.02 ticks)\n", - "Cover probing fixed 0 vars, tightened 6 bounds.\n", - "Tried aggregator 1 time.\n", - "Detecting symmetries...\n", - "MIP Presolve modified 12 coefficients.\n", - "Reduced MIP has 15 rows, 19 columns, and 58 nonzeros.\n", - "Reduced MIP has 12 binaries, 0 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.01 sec. (0.04 ticks)\n", - "Probing time = 0.00 sec. (0.01 ticks)\n", - "Clique table members: 14.\n", - "MIP emphasis: balance optimality and feasibility.\n", - "MIP search method: dynamic search.\n", - "Parallel mode: deterministic, using up to 4 threads.\n", - "Root relaxation solution time = 0.00 sec. (0.05 ticks)\n", - "\n", - " Nodes Cuts/\n", - " Node Left Objective IInf Best Integer Best Bound ItCnt Gap\n", - "\n", - "* 0+ 0 0.0000 7.0000 --- \n", - "* 0+ 0 2.0000 7.0000 250.00%\n", - " 0 0 5.7610 8 2.0000 5.7610 12 188.05%\n", - "* 0+ 0 3.0000 5.7610 92.03%\n", - "* 0+ 0 3.0000 --- \n", - " 0 0 cutoff 3.0000 27 --- \n", - "Elapsed time = 0.16 sec. (0.56 ticks, tree = 0.01 MB, solutions = 3)\n", - "\n", - "Clique cuts applied: 4\n", - "Cover cuts applied: 2\n", - "Flow cuts applied: 2\n", - "Mixed integer rounding cuts applied: 1\n", - "Lift and project cuts applied: 1\n", - "Gomory fractional cuts applied: 3\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.18 sec. (0.56 ticks)\n", - "Parallel b&c, 4 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.18 sec. (0.56 ticks)\n" - ] - } - ], - "source": [ - "solution = m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "objective: 3\n", - "status: OPTIMAL_SOLUTION(2)\n", - " Low=1\n", - " Honey=1\n", - " Absent=1\n", - " Child_2=1\n", - " Child_3=1\n", - " Child_7=1\n" - ] - } - ], - "source": [ - "m.print_solution()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Integer Linear Optimization Models/TelevisionShow_Problem.ipynb b/Integer Linear Optimization Models/TelevisionShow_Problem.ipynb deleted file mode 100644 index c3e2950..0000000 --- a/Integer Linear Optimization Models/TelevisionShow_Problem.ipynb +++ /dev/null @@ -1,206 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "John White is the program scheduling manager for the\n", - "television channel CCFO. John would like to plan the schedule of television shows for\n", - "next Wednesday evening.\n", - "The table below lists nine shows under consideration. John must select exactly\n", - "five of these shows for the period from 8:00 p.m. to 10:30 p.m. next Wednesday\n", - "evening. For each television show, the estimated advertising revenue (in $ millions)\n", - "is provided. Furthermore, each show has been categorized into one or more of the\n", - "categories ­“Public Interest,” “Violent,” “Comedy,” and “Drama.” In the following\n", - "table, a 1 indicates that the show is in the corresponding category and a 0 indicates\n", - "it is not.\n", - "\n", - "John would like to determine a revenue-maximizing schedule of television shows\n", - "for next Wednesday evening. However, he must be mindful of the following\n", - "considerations:\n", - "\n", - "••The schedule must include at least as many shows that are categorized as public\n", - "interest as shows that are categorized as violent.\n", - "\n", - "••If John schedules “Loving Life,” then he must also schedule either “Jarred” or\n", - "­“Cincinnati Law” (or both).\n", - "\n", - "••John cannot schedule both “Loving Life” and “Urban Sprawl.”\n", - "\n", - "••If John schedules more than one show in the “Violent” category, he will lose an\n", - "­estimated $4 million in advertising revenues from family-oriented sponsors.\n", - "\n", - "a. Formulate a binary integer program that models the decisions John faces.\n", - "\n", - "b. Solve the model formulated in part (a). What is the optimal revenue?" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Show | Revenue | Public Interest | Violent | Comedy | Drama\n", - "# | | | | |\n", - "# Sam’s Place | $6 | 0 | 0 | 1 | 1\n", - "# Texas Oil | $10 | 0 | 1 | 0 | 1\n", - "# Cincinnati Law | $9 | 1 | 0 | 0 | 1\n", - "# Jarred | $4 | 0 | 1 | 0 | 1\n", - "# Bob & Mary | $5 | 0 | 0 | 1 | 0\n", - "# Chainsaw | $2 | 0 | 1 | 0 | 0\n", - "# Loving Life | $6 | 1 | 0 | 0 | 1\n", - "# Islanders | $7 | 0 | 0 | 1 | 0\n", - "# Urban Sprawl | $8 | 1 | 0 | 0 | 0\n", - "\n", - "shows = [\"Sam’s Place\", \"Texas Oil\", \"Cincinnati Law\", \"Jarred\", \"Bob & Mary\", \"Chainsaw\", \"Loving Life\", \"Islanders\", \"Urban Sprawl\"]\n", - "revenue = [6,10,9,4,5,2,6,7,8]\n", - "public_interest = [0,0,1,0,0,0,1,0,1]\n", - "violent = [0,1,0,1,0,1,0,0,0]\n", - "comedy = [1,0,0,0,1,0,0,1,0]\n", - "drama = [1,1,1,1,0,0,1,0,0]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "m = Model()\n", - "\n", - "X = m.binary_var_list(shows)\n", - "XX_violent = m.binary_var(name = 'ViolentShowsMoreThanOne')\n", - "\n", - "public_interest_count = sum([public_interest[i] * X[i] for i in range(len(X))])\n", - "violent_count = sum([violent[i] * X[i] for i in range(len(X))])\n", - "m.add_constraint(public_interest_count >= violent_count)\n", - "\n", - "m.add_constraint(X[6] <= X[2] + X[3])\n", - "m.add_constraint(X[6] * X[8] <= 0)\n", - "\n", - "m.add_indicator(XX_violent, violent_count >= 2, 1)\n", - "m.add_indicator(XX_violent, violent_count <= 1, 0)\n", - "\n", - "m.maximize(sum([revenue[i] * X[i] for i in range(len(X))]) - (XX_violent * 4))" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-11 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tried aggregator 2 times.\n", - "MIQCP Presolve eliminated 1 rows and 4 columns.\n", - "MIQCP Presolve modified 1 coefficients.\n", - "Aggregator did 1 substitutions.\n", - "Reduced MIQCP has 9 rows, 13 columns, and 27 nonzeros.\n", - "Reduced MIQCP has 6 binaries, 0 generals, 0 SOSs, and 0 indicators.\n", - "Reduced MIQCP has 1 quadratic constraints.\n", - "Presolve time = 0.02 sec. (0.03 ticks)\n", - "Probing time = 0.00 sec. (0.00 ticks)\n", - "MIP emphasis: balance optimality and feasibility.\n", - "MIP search method: dynamic search.\n", - "Parallel mode: deterministic, using up to 4 threads.\n", - "Root relaxation solution time = 0.00 sec. (0.01 ticks)\n", - "\n", - " Nodes Cuts/\n", - " Node Left Objective IInf Best Integer Best Bound ItCnt Gap\n", - "\n", - " 0 0 49.9443 0 57.0000 1 \n", - " 0 0 49.1803 2 Cone: 1 2 \n", - " 0 0 48.6679 3 Cone: 2 3 \n", - " 0 0 48.5700 3 Cone: 3 4 \n", - " 0 0 48.5025 3 Cone: 4 5 \n", - " 0 0 48.4856 3 Cone: 5 6 \n", - " 0 0 48.4767 3 Cone: 6 7 \n", - " 0 0 48.4741 3 Cone: 9 11 \n", - " 0 0 48.4741 3 Cone: 10 12 \n", - " 0 0 48.4741 3 Cone: 11 13 \n", - " 0 0 48.4741 3 48.4741 13 \n", - "* 0+ 0 45.0000 48.4741 7.72%\n", - " 0 0 cutoff 45.0000 18 --- \n", - "Elapsed time = 0.10 sec. (0.40 ticks, tree = 0.01 MB, solutions = 1)\n", - "\n", - "Cone linearizations applied: 3\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.12 sec. (0.40 ticks)\n", - "Parallel b&c, 4 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.12 sec. (0.40 ticks)\n" - ] - } - ], - "source": [ - "solution = m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "solution for: docplex_model2\n", - "objective: 45\n", - "status: OPTIMAL_SOLUTION(2)\n", - "Sam’s Place=1\n", - "Texas Oil=1\n", - "Cincinnati Law=1\n", - "Jarred=1\n", - "Bob & Mary=1\n", - "Islanders=1\n", - "Urban Sprawl=1\n", - "ViolentShowsMoreThanOne=1\n", - "\n" - ] - } - ], - "source": [ - "print(solution)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Linear Optimization Models/AdvertisingBudget_Problem.ipynb b/Linear Optimization Models/AdvertisingBudget_Problem.ipynb deleted file mode 100644 index 72d4251..0000000 --- a/Linear Optimization Models/AdvertisingBudget_Problem.ipynb +++ /dev/null @@ -1,86 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
Advertising Budget Allocation.
\n", - "

The Sea Wharf Restaurant would like to determine the best way to allocate a\n", - " monthly advertising budget of $1,000 between newspaper advertising and radio\n", - " advertising. Management decided that at least 25% of the budget must be spent\n", - " on each type of media and that the amount of money spent on local newspaper\n", - " advertising must be at least twice the amount spent on radio advertising. A\n", - " marketing consultant developed an index that measures audience exposure per dollar\n", - " of advertising on a scale from 0 to 100, with higher values implying greater audience\n", - " exposure. If the value of the index for local newspaper advertising is 50 and the value\n", - " of the index for spot radio advertising is 80, how should the restaurant allocate its\n", - " advertising budget to maximize the value of total audience exposure?

" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Sets and Indicies

\n", - "\n", - "$\\mathcal{A}$: Ad types
\n", - "$a, a \\in \\mathcal{A}$: An index in set $\\mathcal{A}$
\n", - "\n", - "

Data

\n", - "\n", - "$b$: Budget
\n", - "$e_a, a \\in \\mathcal{A}$: Exposure for each Ad type
\n", - "\n", - "

Decision Variables

\n", - "\n", - "$x_a, a \\in \\mathcal{A}$: Budget per Ad type
\n", - "\n", - "

Linear Function

\n", - "\n", - "\\begin{align*}\n", - "\\ {\\mathrm{maximize }} & \\; e^T x \\\\\n", - "\\text{subject to:} \\\\\n", - "& 1_nx^T \\leq b, n = ||x||\\\\ \n", - "& x_i \\geq 0.25b, \\forall i \\in \\mathcal{A}\\\\ \n", - "& 2x_{newspaper} \\geq x_{radio}\n", - "\\end{align*}\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.10" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Linear Optimization Models/Bakery_Problem.ipynb b/Linear Optimization Models/Bakery_Problem.ipynb deleted file mode 100644 index 53782f7..0000000 --- a/Linear Optimization Models/Bakery_Problem.ipynb +++ /dev/null @@ -1,275 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Bakery Problem ##\n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FlourEggSugar
We Have503020
Bagels Cost521
Muffins Cost442
\n", - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ProductRevenue
Bagels10
Muffins12
" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sets\n", - "\n", - "$\\mathcal{B}$: Set of bakery choices, aka, Bagels or Muffins.\n", - "\n", - "$\\mathcal{I}$: Set of ingredients, aka, Flour, Eggs and Sugar.\n", - "\n", - "$\\mathcal{C}$: ???.\n", - "\n", - "## Indices\n", - "\n", - "$b$: Index for an arbitrary element in $\\mathcal{B}$.\n", - "\n", - "$i$: Index for an arbitrary element in $\\mathcal{I}$. \n", - "\n", - "## Data\n", - "\n", - "$t_i, i \\in \\mathcal{I}$: Amount available for ingredient $i$.\n", - "\n", - "$a_{bi}, b \\in \\mathcal{B}, i \\in \\mathcal{I}$: Amonut of ingredient $i$ needed to bake one dozen of $b$. \n", - "\n", - "$c_b, b \\in \\mathcal{B}$: Price of a dozen of $b$.\n", - "\n", - "## Decsion Variables\n", - "\n", - "$x_{b}, b \\in \\mathcal{B}$: Number of dozens to bake of $b$.\n", - "\n", - "## Linear Program\n", - "\n", - "\\begin{align*}\n", - "\\underset{\\{x_{b},\\; b \\in \\mathcal{B}\\}} {\\mathrm{maximize }} & \\; \\sum_{b \\in \\mathcal{B}}\\ c_b \\; x_{b} \\\\\n", - "\\text{subject to:} \\\\\n", - "& \\sum_{b \\in \\mathcal{B}} a_{bi} x_{b} \\leq t_i, \\forall i \\in \\mathcal{I} \\\\ \n", - "& x_b \\ge 0, \\forall b \\in \\mathcal{B}.\n", - "\\end{align*}\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "import numpy as np\n", - "\n", - "costs = np.array([[5, 2, 1], [4, 4, 2]])\n", - "\n", - "ItemToSell = np.array(['Bagels', 'Muffins'])\n", - "\n", - "revenue = [10, 12]\n", - "\n", - "Have = [50, 30, 20]\n", - "\n", - "m = Model(name = 'Bakery_problem')" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "dv = np.array(m.continuous_var_list(ItemToSell, lb=0, ub=None, name = \"Pounds of %s\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[docplex.mp.LinearConstraint[](5Pounds of Bagels+4Pounds of Muffins,LE,50),\n", - " docplex.mp.LinearConstraint[](2Pounds of Bagels+4Pounds of Muffins,LE,30),\n", - " docplex.mp.LinearConstraint[](Pounds of Bagels+2Pounds of Muffins,LE,20)]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lhs = dv @ costs\n", - "\n", - "m.add_constraints([lhs[i] <= Have[i] for i in range(3)])" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "exp = dv @ revenue\n", - "\n", - "m.maximize(exp)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'lp_Files\\\\Bakery_Problem.lp'" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.export_as_lp(\"lp_Files\\Bakery_Problem.lp\")" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-09 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Tried aggregator 1 time.\n", - "LP Presolve eliminated 1 rows and 0 columns.\n", - "Reduced LP has 2 rows, 2 columns, and 4 nonzeros.\n", - "Presolve time = 0.00 sec. (0.00 ticks)\n", - "\n", - "Iteration log . . .\n", - "Iteration: 1 Dual infeasibility = 0.000000\n", - "Iteration: 2 Dual objective = 116.666667\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=116.667,values={Pounds of Bagels:6.." - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JobSolveStatus.OPTIMAL_SOLUTION\n", - "\n", - "objective: 116.667\n", - "status: OPTIMAL_SOLUTION(2)\n", - " \"Pounds of Bagels\"=6.667\n", - " \"Pounds of Muffins\"=4.167\n" - ] - } - ], - "source": [ - "print(m.solve_status)\n", - "print()\n", - "m.print_solution()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.10" - }, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Linear Optimization Models/Diet_Problem.ipynb b/Linear Optimization Models/Diet_Problem.ipynb deleted file mode 100644 index eda386c..0000000 --- a/Linear Optimization Models/Diet_Problem.ipynb +++ /dev/null @@ -1,227 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Base: \n", - "\n", - "Minimize $3x + 2y$ \n", - "\n", - "s.t\n", - "\n", - "$2x + y = 4$\n", - "\n", - "Higher Form\n", - "\n", - "1) Set / Inidices:\n", - " * $\\mathcal(F)$ = {1, 2}, f\n", - "2) Data\n", - " * $P_f, f ∈ F$\n", - " * $C_f, f ∈ F$\n", - "3) DUs\n", - " * $X_f, f ∈ F$\n", - "\n", - "___\n", - "\n", - "Maximize \n", - "$\\sum_{f ∈ \\mathcal F}(c_f x_f)$\n", - "\n", - "s.t\n", - "\n", - "$\\sum_{i\\in \\mathcal I} p_i \\; x_i = d$\n", - "..." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "m = Model(name = 'Diet_Problem')" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Units of protien per pound, Price per pound\n", - "All_related_to_problem = {'Steak': [4, 3],\n", - " 'Peanut_Butter': [1, 1]}\n", - "\n", - "Protein_demand = 5" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Decision Variables\n", - "x = m.integer_var_dict(All_related_to_problem.keys(), lb=0, ub=None, name = \"Pounds of %s used\")\n", - "# If we want half, or part of the pounds, we can change integer_var to continuoues_var" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "docplex.mp.LinearConstraint[](6Pounds of Steak used,LE,6)" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x['Steak']*6 <= 6" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [], - "source": [ - "# Objective function // TRY TO DO MATRIX MULTIPLICATION\n", - "m.minimize(m.sum(x[i] * All_related_to_problem[i][1] for i in All_related_to_problem.keys()))" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [], - "source": [ - "# Add constraint\n", - "m.add_constraint_(m.sum(x[i] * All_related_to_problem[i][0] for i in All_related_to_problem.keys()) == Protein_demand)" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Diet_Problem.lp'" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Export the problem as LP\n", - "m.export_as_lp(\"Diet_Problem.lp\")" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-06-15 | d64d5bd77\n", - "CPXPARAM_Read_DataCheck 1\n", - "Tried aggregator 2 times.\n", - "MIP Presolve eliminated 1 rows and 2 columns.\n", - "MIP Presolve added 1 rows and 1 columns.\n", - "Aggregator did 1 substitutions.\n", - "All rows and columns eliminated.\n", - "Presolve time = 0.03 sec. (0.00 ticks)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.03 sec. (0.00 ticks)\n", - "Parallel b&c, 4 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.03 sec. (0.00 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=4,values={Pounds of Steak used:1,P.." - ] - }, - "execution_count": 75, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JobSolveStatus.OPTIMAL_SOLUTION\n", - "\n", - "objective: 4\n", - "status: OPTIMAL_SOLUTION(2)\n", - " \"Pounds of Steak used\"=1\n", - " \"Pounds of Peanut_Butter used\"=1\n" - ] - } - ], - "source": [ - "print(m.solve_status)\n", - "print()\n", - "m.print_solution()\n", - "\n", - "####\n", - "# * Optimal Solution: [1, 0] \n", - "#\n", - "# * Optimal Objective Function Value: 3\n", - "# * Apply the optimal Solution numbers in the OF.\n", - "### " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Linear Optimization Models/HotelRooms_Problem.ipynb b/Linear Optimization Models/HotelRooms_Problem.ipynb deleted file mode 100644 index bdc721c..0000000 --- a/Linear Optimization Models/HotelRooms_Problem.ipynb +++ /dev/null @@ -1,105 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Round Tree Manor is a hotel that provides two types of rooms with three rental classes: Super Saver, Deluxe, and Business. The profit per night for each type of room and rental class is as follows:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
RoomSuper saverDeluxeBusiness
Type I (Mountain View)30$35$--
Type II (Street View)20$30$40$
\n", - "\n", - "Round Tree’s management makes a forecast of the demand by rental class for each night in the future. A linear programming model developed to maximize profit is used to determine how many reservations to accept for each rental class. The demand forecast for a particular night is 130 rentals in the Super Saver class, 60 in the Deluxe class, and 50 in the Business class. Since these are the forecasted demands, Round Tree will take no more than these amounts of each reservation for each rental class. Round Tree has a limited number of each type of room. There are 100 Type I rooms and 120 Type II rooms.\n", - "\n", - "Formulate and solve a linear program to determine how many reservations to accept\n", - "in each rental class and how the reservations should be allocated to room types.\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Sets & Indicies\n", - "\n", - "$\\mathcal{R}, |\\mathcal{R}| = R$: Room types
\n", - "$\\mathcal{V}, |\\mathcal{V}| = V$: View types
\n", - "\n", - "$r, r \\in \\mathcal{R}$: An index in the set of Room Types
\n", - "$v, v \\in \\mathcal{V}$: An index in the set of View types
\n", - "\n", - "#### Data\n", - "\n", - "$P$: A matrix representing the profit for each room type and for each view type.
\n", - "$F$: A column vector representing the forcasted room for each room type.
\n", - "$A$: A column vector representing the profit for each view type.
\n", - "\n", - "$p_{rv} \\in P, r \\in \\mathcal{R}, v \\in \\mathcal{V}$: Profit per room type per view type.
\n", - "$f_r \\in F, r \\in \\mathcal{R}$: Forcasted rooms per room types.
\n", - "$a_v \\in A, v \\in \\mathcal{V}$: Available rooms per view types.
\n", - "\n", - "#### Decision Variables\n", - "\n", - "$X$: A matrix representing the number rooms to offer for each type of room and each view type
\n", - "$x_{rv} \\in X, r \\in \\mathcal{R}, v \\in \\mathcal{V}$: Number of rooms to offer per room type and view type
\n", - "\n", - "#### Linear function\n", - "\n", - "\\begin{align*}\n", - "\\ {\\mathrm{maximize }} \\; {1_R^TXP^T1_R} \\\\\n", - "\\text{subject to:} \\\\\n", - "\\ ({X1_V})_i \\leq F_i, \\forall i \\in R; \\\\\n", - "\\ ({1_R^tX})_i \\leq A_i, \\forall i \\in V \\\\\n", - "\\end{align*}\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\"1xR RxV VxR Rx1\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.10.10" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Linear Optimization Models/InvestmentPortfolio_Problem.ipynb b/Linear Optimization Models/InvestmentPortfolio_Problem.ipynb deleted file mode 100644 index 292f5e4..0000000 --- a/Linear Optimization Models/InvestmentPortfolio_Problem.ipynb +++ /dev/null @@ -1,55 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - " \n", - " \n", - " \n", - " \n", - "
Investment Projected Rate of return
\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Sets

\n", - "\n", - "$\\mathcal{O}$: Oil Investment
\n", - "$\\mathcal{S}$: Steel Investment
\n", - "$B$: Govermnet Bonds
\n", - "$o, o \\in \\mathcal{O}$: An index in set $\\mathcal{O}$
\n", - "$s, s \\in \\mathcal{S}$: An index in set $\\mathcal{S}$
\n", - "\n", - "

Data

\n", - "\n", - "$p, p \\in $ : Project amount
\n", - "\n", - "\n", - "Oil industry will recieve <= 50 K
\n", - "Steel industry will recieve <= 50 K
\n", - "Bonds >= 0.25 (Steel Industry)
\n", - " \n", - "X2 <= 0.6(Oil Industry)\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Linear Optimization Models/M&D_problem.ipynb b/Linear Optimization Models/M&D_problem.ipynb deleted file mode 100644 index 4ccab00..0000000 --- a/Linear Optimization Models/M&D_problem.ipynb +++ /dev/null @@ -1,109 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "M&D Chemicals produces two products that are sold as raw materials to companies that\n", - "manufacture bath soaps and laundry detergents. Based on an analysis of current inventory\n", - "levels and potential demand for the coming month, M&D’s management specified that\n", - "the combined production for products A and B must total at least 350 gallons. Separately,\n", - "a major customer’s order for 125 gallons of product A must also be satisfied. Product A\n", - "requires 2 hours of processing time per gallon, and product B requires 1 hour of processing\n", - "time per gallon. For the coming month, 600 hours of processing time are available. M&D’s\n", - "objective is to satisfy these requirements at a minimum total production cost. Production\n", - "costs are $2 per gallon for product A and $3 per gallon for product B.\n", - "___" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Product Aproduct B
Time Cost21
Money Cost23
\n", - "\n", - "We have: 600 hours
\n", - "We want: Minimize Money Cost
\n", - "Given That:\n", - "* A + B atleast 350\n", - "* A Atleast 125\n", - "___" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Sets

\n", - "\n", - "$\\mathcal{P}$: Products\n", - "\n", - "

Indicies

\n", - "\n", - "$p$: an index of the set $\\mathcal{P}$\n", - "\n", - "

Data

\n", - "\n", - "$t_p, p \\in P$: Time Cost per product.
\n", - "$m_p, p \\in P$: Money Cost per product.
\n", - "$a$ : The least number of products $\\mathcal{P}$ to create.
\n", - "$b$ : The least number of product $\\mathcal{P}_1$ to create.
\n", - "\n", - "

Decision Variables

\n", - "\n", - "$x_p, p \\in P$: Gallons to create\n", - "\n", - "

Linear Function

\n", - "\n", - "\n", - "

CHANGE TO INDINTITY MATRIX

\n", - "\n", - "\\begin{align*}\n", - "\\ {\\mathrm{minimize }} \\; {m^Tg} \\\\\n", - "\\text{subject to:} \\\\\n", - "\\ {\\sum{g_i} \\geq a, {\\forall i \\in \\mathcal{I}}}, \\\\\n", - "\\ x_1 \\geq b \\\\\n", - "\\end{align*}\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "name": "python", - "version": "3.10.10" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Linear Optimization Models/Notes.md b/Linear Optimization Models/Notes.md deleted file mode 100644 index 558dbfa..0000000 --- a/Linear Optimization Models/Notes.md +++ /dev/null @@ -1,81 +0,0 @@ -# LINEAR PROGRAMMING (Polynomial Time) -- Decision Variables --> Continuous -- Constraints --> Linear -- Objective Function --> Linear - -IF Decision VARIABLES ARE INTEGER, -THEN IT IS INTEGER LINEAR PROGRAMMING (Exponential Time) - -## BI problems: -- A- Stochastic -- B- Determenistic - - a- Linear - 1- Linear Programming - 2- Integer Linear Programming - - b- NonLinear - 1- Non Linear Programming - 1- Convex (Solvable) - 2- Non-Convex (Not Solvable) - 2- Integer Non Linear Programming - x- B INLP - -## Special Cases of solutions: -- A- Alternative Optimal Solution -- B- Infeasibility -- C- Unbounded - -## Convex (Linear) Combination: -Any point between 2 points given by: -Y = Lx1 + (1-L)x2, -where L is lambda, any number between 0-1 - -## Lets say: - -Maximize cx -s.t. Ax <= b - -## Change in A: -??? What happens - -## Change in b: -Each constraint has a shadow price: -- Which is the rate/ or amount of change on the objective value -for each [1] unit increase in the right hand side of a constraint. - -Binding constraint: -When the values of the optimal decision variable values in a constraint -it will exactly be on the limit of that constraint. e.g. - DV: a = 2, b = 4. - Constraint: 2a + 1b <= 8 ---> Binding Constraint - -- Non Binding Constraint will always have a shadow price of 0. -- Shadow prices of constraints where e.g. S>=0 or S<=20 is called "Reduced Cost of S". - -## Change in c: -Allowable Increase and Allowable Decrease: -Indicates the change in objective function coef for which the current solution -- will remain optimal. - -HMW: Apply Allowable Increase and Decrease + Check built-in commands for the ShadowPrice. - -- Variance of return is the risk -- The more you increase the projected return, the more risk you get. -- In portfolio selection: - - increase return without risk increasing above a certain threshold. -E.g: - - Minimize the risk expected - S.T. - Return >= A -or - - Maximize the return expected - S.T. - Risk <= A - -## There is a difference between optimal solution and optimal decision variable values. -Optimal objective function value is the evaluation for the optimal decision variables. -Solution refers to the optimal Decision variables values. - -## Generating An alternative optimal solution: -Doable by changing the Linear program such that it aims to maximize or minimize -other decision variables. While adding a constraint dictating that the solution -should be equal to the optimal solution. diff --git a/Linear Optimization Models/ParInc.ipynb b/Linear Optimization Models/ParInc.ipynb deleted file mode 100644 index 121122b..0000000 --- a/Linear Optimization Models/ParInc.ipynb +++ /dev/null @@ -1,258 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DepartmentStandardDeluxe
Cutting and Dyeing7/101
Sewing1/25/6
Finishing12/3
Packaging1/101/4
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DepartmentNumber of Hours
Cutting and Dyeing630
Sewing600
Finishing708
Inspection135
\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Sets & Matricies:

\n", - "\n", - "$\\mathcal{D}$: The departments.
\n", - "$\\mathcal{B}$: Types of bags.
\n", - "\n", - "

Indicies

\n", - "\n", - "$\\mathcal{d}$: An index in the set $\\mathcal{D}$
\n", - "$\\mathcal{b}$: An index in the set $\\mathcal{B}$
\n", - "\n", - "

Data

\n", - "\n", - "$a_d, d \\in \\mathcal{D} $: Hours available for each department.
\n", - "$n_{db}, d \\in \\mathcal{D}, b \\in \\mathcal{B}$: Hours needed for each type of bag in each department.
\n", - "$r_b, b \\in \\mathcal{B}$: Revenue for each type of bag.
\n", - "\n", - "

Decision Variables

\n", - "\n", - "$t_b, b \\in \\mathcal{B}$: Number of bags to create.
\n", - "\n", - "

Linear Program

\n", - "\n", - "\\begin{align*}\n", - "\\ {\\mathrm{maximize }} \\; {t^Tr} \\\\\n", - "\\text{subject to:} \\\\\n", - "\\ {nt} \\leq a \\\\\n", - "\\ t_b \\geq 0 ,\\; \\forall b \\in \\mathcal{B}\n", - "\\end{align*}" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "import numpy as np\n", - "\n", - "m = Model (name = 'ParInc')" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "B = np.array(['Standard', 'Deluxe'])\n", - "a = np.array([630, 600, 708, 135])\n", - "n = np.array([[7/10, 1 ],\n", - " [1/2, 5/6],\n", - " [1, 2/3],\n", - " [1/10, 1/4]])\n", - "r = np.array([10, 12])" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "t = np.array(m.continuous_var_list(B, lb = 0, ub = None))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[docplex.mp.LinearConstraint[](0.700Standard+Deluxe,LE,630),\n", - " docplex.mp.LinearConstraint[](0.500Standard+0.833Deluxe,LE,600),\n", - " docplex.mp.LinearConstraint[](Standard+0.667Deluxe,LE,708),\n", - " docplex.mp.LinearConstraint[](0.100Standard+0.250Deluxe,LE,135)]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.add_constraints([(nt_item <= a_item) for nt_item, a_item in zip(n@t, a)])" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "m.maximize(t.T @ r)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-06-15 | d64d5bd77\n", - "CPXPARAM_Read_DataCheck 1\n", - "Tried aggregator 1 time.\n", - "No LP presolve or aggregator reductions.\n", - "Presolve time = 0.00 sec. (0.00 ticks)\n", - "\n", - "Iteration log . . .\n", - "Iteration: 1 Dual infeasibility = 0.000000\n", - "Iteration: 2 Dual objective = 8424.000000\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=8424,values={Standard:540,Deluxe:2.." - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "JobSolveStatus.OPTIMAL_SOLUTION\n", - "\n", - "objective: 8424.000\n", - "status: OPTIMAL_SOLUTION(2)\n", - " Standard=540.000\n", - " Deluxe=252.000\n" - ] - } - ], - "source": [ - "print(m.solve_status)\n", - "print()\n", - "m.print_solution()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.10" - }, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Linear Optimization Models/Transportation_Problem.ipynb b/Linear Optimization Models/Transportation_Problem.ipynb deleted file mode 100644 index 33b2c80..0000000 --- a/Linear Optimization Models/Transportation_Problem.ipynb +++ /dev/null @@ -1,41 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Sets\n", - "set_plant = {'Cleaveland', 'Bedford', 'York'}\n", - "set_center = {'Boston', 'Chicago', 'St. Louis', 'Lexington'}\n", - "\n", - "# Data\n", - "plant_supplies = [5000, 6000, 2500]\n", - "distrubution_centers = [6000, 4000, 2000, 1500]\n", - "transportation_costs = [[3, 2, 7, 6], \n", - " [6, 5, 2, 3],\n", - " [2, 5, 4, 5]]\n", - "\n", - "# Decision Variable\n", - "# X_{s, d}\n", - "\n", - "# Maximize_{X_{sd}, s \\in S, d \\in D} Sum_{s \\in S}(Sum_{d \\in D}(C_{sd}X_{sd}))\n", - "\n", - "# Subject to\n", - "\n", - "# Sum_{d \\in D}(X_{sd}) <= P_s, \\forall s \\in S\n", - "# Sum_{s\\in S}(X_{sd}) <= m_d, \\forall d \\in D\n", - "# X_sd >= 0, \\forall\n", - "# " - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Madi/HWs/HW1.ipynb b/Madi/HWs/HW1.ipynb deleted file mode 100644 index 3c32a1f..0000000 --- a/Madi/HWs/HW1.ipynb +++ /dev/null @@ -1,283 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Mohammed Madi 20200386" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## **Problem Statement**\n", - "\n", - "A company has ten employees, seven machines, and thirty jobs to be completed. The time required \n", - "to complete job 𝑗 by employee 𝑒 using machine 𝑚 is given and denoted by $𝑡_{𝑗𝑒𝑚}$. An employee can \n", - "only perform one job at a time. Similarly, a machine can only execute one job at a time. A job \n", - "cannot be divided among employees. Also, a job cannot be divided between machines. Develop a \n", - "mathematical formulation that can be used to obtain the optimal job-employee-machine \n", - "assignment if the company wants to minimize the total time spent by all machines to complete the \n", - "seven jobs. Generate different scenarios and, using Cplex, implement and solve your formulation \n", - "for these scenarios.\n", - "\n", - "## **Sets**\n", - "\n", - "$\\mathcal{E}$: Set of employees that work at the company.\n", - "\n", - "$\\mathcal{M}$: Set of Machines that can be used.\n", - "\n", - "$\\mathcal{J}$: Set of Jobs to be completed.\n", - "\n", - "## **Indices**\n", - "\n", - "$e$: Index for an arbitrary element in $\\mathcal{E}$.\n", - "\n", - "$m$: Index for an arbitrary element in $\\mathcal{M}$.\n", - "\n", - "$j$: Index for an arbitrary element in $\\mathcal{J}$\n", - "\n", - "## **Data**\n", - "\n", - "$t_{jem}, j \\in \\mathcal{J}, e \\in \\mathcal{E}, m \\in \\mathcal{M}$, The amount of time needed to completed job $j$ by employee $e$ using machine $m$.\n", - "\n", - "\n", - "## **Decision Variables**\n", - "\n", - "$x_{jem}, j \\in \\mathcal{J}, e \\in \\mathcal{E}, m \\in \\mathcal{M}$, Decide which employee should do which job using which machine.\n", - "\n", - "## **Linear Program**\n", - "\n", - "**Objective Function**\n", - "\\begin{align*}\n", - "\\mathrm{minimize} \\sum_{j \\in \\mathcal{J}}\\sum_{e \\in \\mathcal{E}}\\sum_{m \\in \\mathcal{M}} x_{jem}t_{jem}\n", - "\\end{align*}\n", - "\n", - "**S.T.**\n", - "\\begin{gather}\n", - "\\sum_{e \\in \\mathcal{E}} \\sum_{m \\in \\mathcal{M}} x_{jem} = 1, \\forall j \\in \\mathcal{J}, \\text{ Each job can only be done by 1 employee and 1 machine.}\\\\\n", - "x_{jem} \\in \\{0, 1\\}, \\forall j \\in \\mathcal{J}, \\forall e \\in \\mathcal{E}, \\forall m \\in \\mathcal{M}, \\text{Binary constraint.} \\\\\n", - "\\end{gather}\n", - "\n", - "## **Interpertation**\n", - "\n", - "The assignment matrix is telling us which employee should use which machine to do the task, since we only care about total time, if the same employee gets multiple jobs he can perform them in any order he can.\n", - "\n", - "I wanted to try to write the other objective function in which we care about time to finish, but I didnt have the time to do so.\n", - "\n", - "(:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "model = Model(name = \"HW1\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from random import randint\n", - "# Generating random data\n", - "num_employees = 10\n", - "num_machines = 7\n", - "num_jobs = 30\n", - "\n", - "t = [[[randint(1, 100) for m in range(num_machines)] for e in range(num_employees)] for j in range(num_jobs)]\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Decision Variable\n", - "x = model.binary_var_cube(num_jobs, num_employees, num_machines, name = \"x\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Objective Function\n", - "model.minimize(model.sum(t[j][e][m] * x[(j, e, m)] for j in range(num_jobs) for e in range(num_employees) for m in range(num_machines)))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# Adding constraints\n", - "for j in range(num_jobs):\n", - " model.add_constraint(model.sum(x[(j, e, m)] for e in range(num_employees) for m in range(num_machines)) == 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'HW1.lp'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.export_as_lp(\"HW1.lp\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2022-11-27 | 9160aff4d\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 1206.000000 after 0.00 sec. (0.12 ticks)\n", - "Found incumbent of value 59.000000 after 0.00 sec. (0.18 ticks)\n", - "Tried aggregator 1 time.\n", - "MIP Presolve eliminated 30 rows and 2100 columns.\n", - "All rows and columns eliminated.\n", - "Presolve time = 0.02 sec. (0.71 ticks)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.02 sec. (0.98 ticks)\n", - "Parallel b&c, 16 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.02 sec. (0.98 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=59,values={x_0_0_3:1,x_1_9_3:1,x_2.." - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Employee 0 is assigned to Job 0 on Machine 3 with time 1\n", - "Employee 0 is assigned to Job 2 on Machine 6 with time 1\n", - "Employee 0 is assigned to Job 3 on Machine 3 with time 2\n", - "Employee 0 is assigned to Job 14 on Machine 0 with time 2\n", - "Employee 0 is assigned to Job 16 on Machine 0 with time 2\n", - "Employee 0 is assigned to Job 17 on Machine 4 with time 1\n", - "Employee 1 is assigned to Job 4 on Machine 5 with time 5\n", - "Employee 1 is assigned to Job 5 on Machine 2 with time 2\n", - "Employee 1 is assigned to Job 6 on Machine 5 with time 2\n", - "Employee 1 is assigned to Job 12 on Machine 2 with time 1\n", - "Employee 1 is assigned to Job 23 on Machine 4 with time 2\n", - "Employee 2 is assigned to Job 7 on Machine 0 with time 1\n", - "Employee 2 is assigned to Job 8 on Machine 3 with time 1\n", - "Employee 2 is assigned to Job 19 on Machine 1 with time 8\n", - "Employee 3 is assigned to Job 21 on Machine 5 with time 2\n", - "Employee 3 is assigned to Job 24 on Machine 0 with time 1\n", - "Employee 3 is assigned to Job 25 on Machine 2 with time 2\n", - "Employee 4 is assigned to Job 26 on Machine 2 with time 1\n", - "Employee 5 is assigned to Job 18 on Machine 6 with time 1\n", - "Employee 6 is assigned to Job 10 on Machine 1 with time 1\n", - "Employee 6 is assigned to Job 13 on Machine 4 with time 4\n", - "Employee 7 is assigned to Job 9 on Machine 0 with time 1\n", - "Employee 7 is assigned to Job 11 on Machine 5 with time 1\n", - "Employee 7 is assigned to Job 22 on Machine 6 with time 4\n", - "Employee 7 is assigned to Job 29 on Machine 3 with time 1\n", - "Employee 9 is assigned to Job 1 on Machine 3 with time 1\n", - "Employee 9 is assigned to Job 15 on Machine 1 with time 1\n", - "Employee 9 is assigned to Job 20 on Machine 1 with time 3\n", - "Employee 9 is assigned to Job 27 on Machine 0 with time 2\n", - "Employee 9 is assigned to Job 28 on Machine 5 with time 2\n", - "Sum of all values in assignment matrix: 30.0\n", - "Min time: 59.0\n", - "Solution is correct!\n" - ] - } - ], - "source": [ - "# verifying the solution\n", - "obj_value = model.objective_value\n", - "assignment_matrix = [[[x[(j, e, m)].solution_value for j in range(num_jobs)] for e in range(num_employees)] for m in range(num_machines)]\n", - "\n", - "sum_vals = 0\n", - "for e in range(num_employees):\n", - " for j in range(num_jobs):\n", - " for m in range(num_machines):\n", - " if assignment_matrix[m][e][j] == 1:\n", - " print(f\"Employee {e} is assigned to Job {j} on Machine {m} with time {t[j][e][m]}\")\n", - " sum_vals += t[j][e][m]\n", - " assert t[j][e][m] == min([t[j][e_][m_] for e_ in range(num_employees) for m_ in range(num_machines)])\n", - "\n", - "\n", - "assigned_jobs = sum(sum(sum(row) for row in matrix) for matrix in assignment_matrix)\n", - "assert assigned_jobs == num_jobs\n", - "print(\"Sum of all values in assignment matrix:\", assigned_jobs)\n", - "\n", - "assert sum_vals == obj_value\n", - "print(\"Min time:\", obj_value)\n", - "print(\"Solution is correct!\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Madi/HWs/HW2.ipynb b/Madi/HWs/HW2.ipynb deleted file mode 100644 index 36900ff..0000000 --- a/Madi/HWs/HW2.ipynb +++ /dev/null @@ -1,497 +0,0 @@ -{ - "cells": [ - { - "attachments": { - "image.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAGrCAYAAABKV5HsAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAH4eSURBVHhe7d0FgBRlAwbgd3evO7jm6O4upZFQRFJJSWkJ4ZROARH0VwQEVEJCQEC6u+Pohuvu7q1/dm+Au+OK4xa4433+f2Tn27nd2dnZme+d75sZSfnSZdQgKmL2NzIWHxERERHRu0wq/ktERERERFToGDiIiIiIiEhnGDiIiIiIiEhnGDiIiIiIiEhnGDiIiIiIiEhnGDiIiIiIiEhnGDiIiIiIiEhnGDiIiIiIiEhnGDiIigUzGDYbA8fJa1Fq/ga49GzyDv24jWHUdiLs+nwGQz2xiIouaWmYd/8Gdh83hUwilhG9kySQ1RoAu34jYe70CltEruNEhY53GqciqWB3GjeA4YdDhB2PTBx/Rg21PBHKKF+kPHJHSliCWF5UyGDw8R8o/WVjSFNCIY8Vih7Oh/eqU8InexfYwGr6SThUPYvgIeMQlyYWvxHmMGrVD2a24Ug8sgvJCbksEZNasOzUHPpCvUQdcQHRp29BldcClDrDtMNnMDaTQp18H3EHT0OuEp/TkkJWriOsWrWCUUlX6FubAUmhSHt6HnFHtyMhKEmcLjsSSCt3h3UtR+FRfgjrccBRRF7yEMd1RK8pHH5bA6vYVfCZtgKpmT7vy6QVu8K6jkuGz6D5vSVAGRMGud8NJHmFvbyeSixh1OxTGKVeRqy7R+Gvx+J3rRd9EdGnbub9PRcFul5mBZDtd58WD2W08Bvwu4lkn3Adz6cMhr22oUwPG8Qs7IDQO3KxPA+vuI4TUd4YOKhIKljgsIDl1LNwqmsgjr9MrUqE/MF+RG1bjpjHkWLpO06zc1wm7BxVuxE4bRYS4t61n/RbDBwSZ1jPPgiHSvcR9s0ARIXkUnMo8SVKLZsCEz1hPUi9hrDJgxEdmntNQ1LZDWXmDIahkGHVUf8iYOxsJCqePWkJ4x6/wKV7I+hpXjMtFopECWSWFpBKJcJ7eCFu9WgEn/cT/yArKfS7bES5/nXzHThUlyfjyc+HxHEdeaXKmAR6n6xH+YENs/8MajkU3vsRsWoRYnwyBP1qU1Fu5gDoq+8h4rs+iPRXik8UEvG7Nvb8CV6z/8oSEosoXS+zV5bP736N8N176eogDwMH0buiyHapkhkaw9xIxj5h9OqUPoj5fSj85g1JH+aPQMBPUxCy9W/EP4mFXrXP4TB7B0p+WvP11y99G+i7lIO+pZFYoAMlqsHISgLlw1NIfIthQ2JREgYurpDlnOeKDIlBHVi1qyGO5cQCZu07wyBrg5mWBNL6bnDu2QiypJuIWt4bHoOawXNEMzwd2QOBe9yhTImCPDa3Fg4VFBcXwv/ZeioO/v9egUqthPzi/JeeC9hxVfzbd40cqUe/ffEZfhiPoHWrEOsRA1nZrnD4dirMzDJUS8MfICUqGaqQe0iNZW3vBQPI7MvBwMH25Ur8O7vMMn/3fgvHImjNMsQ8ioK0bDfhu58Dc+v8RWoiKrp00sJhVrcTFnZ0Qe7dtVUIuLAHP5yNhKRUM8zuUw0lNLU7RQC2LD+M88npUz2nb4UGLT9A98aVUL+cPUoY60EqUUMlT0ZwQBDu3r+DPcev43Loi8OnUqeGmP5lbWi7biqCsX3VQZyOz/JxDSpi5PiWqKWZWVUCzmzdjm2+mo21BKVbdcfkptbIWp9QpiUjKiYOocEBuHDlLm5HPjukKTCpgrFjPkS1PPqqq5M8sGb5adx+lYNQEgt80L0z+lQ0ET47kPzwBCbt9hafzIHEHK16d0evMvraHZQq/hFW/n4eD/L1vhJYl6+HPu3r4cNKDnAy04M8MQZeHo9x+Mh57Hsaj7d1DO21WjhqeiBiyheI8Mtu7vWhX38snEYOgbF5FBJW9UHg6SDxuQKoMBFl5w+G5OCX8Np4SywsZOXGo+z3QyE5Ohhe66+LhW+aDEZ9d6H0p/qImv0Zwp9kPJJYtFo4jENuIMWqDozS9iHwm6lIyCkT2PeD69JpMIlwR7JFfRgrdmZo4bCEhdsxODUAEv/ogoDjIdo/eU5iBpl5GpQFWBiSZj+jwvh2UO7X4TqVmwK1cNRB8qZP4bc3S2uOXlWU+P4f2JaVI2FFGwSejRef0LGi2sIhrQm7JZthI9sIv8lLkJxh1/PuyeO7l5aC1bTtcKhphOSNneG3P0B8ojCxhYPoXaGTBgJ9Wxc0qVUZTXMdKqGWg6G2Eiw1tUe9Z+U1S8I+U2VdAosKH+LHxW5YM7QVOtVwhr2JJmykPyfVN4FL2Qro2Lk7Vi6eiJ86lMSzqqjEpARq13z2fiXhpC8+kZHUElWeT1MO5Z4fZZPAzLFMtp/jwwZ10KVdC3w1oC/WLf0GP7Z3fv6e0LNCtWz+JuvQpJojrF9l6Rs54/Pxo/Fzj7r4oLbmNSqhYSlz8cmcSGDbqDOmdK6BZs/et6oDrJ59xFwZoPrHg/HPnC/wVYtKqOpoCSszU9g5uKDxB20wa9YErPisDMzEqYsPOeTXf0HAr1uQpioBsz4TYW6RrwX29kiFFUkzi8q33YWimEi6gJiLgYB1W1h96CQWZqUPoza9YGKYhKQT+5CWddFL7WFgK2zfVGFI9cuma546oUBho9hReCDpSbiw/hpAZmkpFtJ7QeWPhBsPhe9eBn3n0mIhERVXOgkchcm4Qlv8OuVTfORkoK1TaanVUKSlIknYywsPX1CnITgkGini6JsgMbJDOyF4jKycR5PGa5DZVsOk6SPwXWNbGLxC3VdiWR3j+9eBfQG+ZbPanbGwTxU46IlvqFZBLlc8P7lSomeBRr36wq2ByYvvpdhQQ3V/NSLdYwGrVrBsVEIsf0Yq1CdrwKRJD1h3Hwmbj7vDrLx9puUgEb4zkxpNYFpGc8Kv8D/bqjAVxk1qNIaxs4U4lUber5WTHN+jemXIsn7nZuVg8kFv2AjvYdv5C5hXL6vNKS8xdIFR9cYwsjcRRvQhq9AOlp2/gk2jsunPv0QfeuUaaefDyFaI3RJD6JdNHzepURcGpi9/EolVTZi1Gwjb7kOFCn0j6Ofa28xAeH3hO/h4mDh9ExiY6XizJWxHko/vRqrSFKZte8Awu7cz+VBYNcoDsScRc0GoMGeljoUiSQ211BHGlVzEwjcov993RgX5m9clsYSBg5VQ+YxGWmCEWCjQlFdpDJMKGU84NoZ+BWHdqlAyfcelWY/a5nc9KgRSYZ5qfAyrT0fAttsgWDVrlPe6qG8Ho/rdYP3ZCNh0+BSmVcpDlt2BL9OSMKrVQfitCa/ddQAsG9TQnvfznJ6j8LsUflM1q0LPUBg3cIChZlzzO6tcJn2abJdZBvme/ze1nKWQmWkOmgm/k5RnzYjZv7fNp21hkGlWZZC6NIZ5+8Gw7TEcNh91golzPgKrxAT61YRl0EVYx7v0g0W9KpAVZNf97HvtqnmdPrCoUS6b30ouy7FZPeg973oqzFONLumv9anwu6vknK/tP1FRo5MuVdbthuHI0MpCVQRQRt3Dyo034PfSu6gRH+iBqwEp0KvaFf/N+AAuml+l/DHmj/kTuzQt6wZlMXHhCAxwkaX/AFXJeHzxJFbtv44LvvGQCz9jc8eyaNeuHUa2tcSV1Wsw53IMnrV+ysp3wra5bVBe0ydK4YEfx6/BP1FZZsSoAX5Z8wVaamZW2OltX7gYi+5rDldKUb33RKz/zFHbNUz+aD8+X3IFEWoJ9E2tULlBS3zbux7KGmrmTIXQ43/i07+eQm7RBCtX9EBTzR+pYnFq+z4czKYbh1oejds3A4TXEwtyYFa+OeaN/xit7PSEZaCGXKESdkSa5SEsv0ub0GLZHXHKLCSmaDV8HJa0tMGzzKChjLqMceN34mJuTfESc3Rz+xYz6xqlv2fwbfy4cjd2e6QIldu6mDi6O7q4arpoqZFyfw+6L7iA4EJfi3Knuy5VL0hbLUf5Ua2Ba1PwdOm+9EKrxrAdNgs2DcoIlfoMC1adjLRLixCwfAfSFBLodVqL8oMbp6+3mSiRdngYvNZeyedriWUvyeU95GcQ/NUoaE8PkNjC5LPZcOjaGgYm4u9IQ62EMvAEIv+ch6gHUWKhwPkrlF76NaSHpyLKchQcPhR2pBIVlOcnwmPZMeEbz0LiCOuZh+FQI5sTN1SBiP7+Y4TeMxe7VF1C5N/xMO//CQyNns2JEO4iTiF88TeI9s1yxL9ES9iNnAnrms5ii6aGUDmJf4DYdW4IPe/z8vxkVZAuVZpuNnMPwNRtDxxqxyH2h88Qcitjvyph2bf7HWW/agblgUHw/scMDstXwlKdsUuVFPod16DM4GaQygOQuO9/iDh0FClxr98KlWuXqlf9vjVe9W8KqUuVpEQdocI4HvZdGgB3F8Nv8aYX63t27yEtA5t5e2BnshnBB2xhO7Bz/taj7LxSlyoJZNWGwvGrr2DmbA5JxnUxyQvx/81F6F53KDOtjDLo1f8aTkO/hEkJzXb0GWE+wy8h6q9piLgRJnymEjDpOgsOXbIse810wYcRumQKYgPkgG1/uP42DabZVI7VYVvweOz3uXwvrzj/hbacc/7uNb8PaYV+cJ78LcysIhDz4ycIuSH8xnJ4b3XCfgSN+Bbxmh5Rlg1h89Vs2DYom2m7qVbFI+3qGoT8uRbJz89le9GlKnbVj1C2mQqbynaZloEq7CKi1s4Svo9gsUyQ47IUvtd6wvc6LMv3qlZA6b0LocsWIi5IXC65Lkdhm+q9CUGLd0Dvy+VwaFrqxTZO2P6nnp2NgN/3F4+LGRCJXsrkhU2dGoUb1+7i+JWswz1cEcJGzhUGCew+aI1uzuJGWJ2Ce7vXYtiK0zitDRsaKsSHeOK/TX+in9sqzMsQNgqdUoHk5BQkJCcjOiIYlw/vwd8PFOL8S2FtZ/ty9yJ1GgIf3cvms9/FiRt5hw3ISmLA0GdhQ4W4p2cxfbsQasSncyaBdb2PMbm5tRA2hFAQGoGwV1kwMidULy22KKmScGL7LuzwSISwSUWsjzsWb76B9Iv3SGBQyhVVCnKEqAhQhfhDqZIIdYKSYonwiUvUhkklM6Sd/hXBiwfAe3wneM+bisgHCdBv+h0c2rsKU6mhvPwD/OZ8Cb9Ve5CmVEJ+fq523HfOYAQdfPAKr5WTXN5j/k9I0DbzmcD4i9/h0qct9GPPIHLFEHiP6wjv2V8jZM85KO0/gt13v6NEZU1rhig1RVjTpNBrMQ0OdZIRv20aAhaOQtD+m9n/VtWRiN8wVPu5gs/6Czv9IMT9MVgYF+Zj7iREeb1ITBL9ZsJOtymUJ2fD79uO8Jz0pfZ1VTatYTekX+YjmKaNYT/lf7CpJkPyoXnwn9EFnhO/gP+q9UhKqwjLUctgVz3DfBc2VQjijp8U1nknmH/UIfO1+KWVYNWuiRAk7iHmxK0ctmEqyI/ORsiJx1DpucCsx1KUXnkSZb4TKkrN60Nfc5S60BXg+y7Q3xSEHox7bkfFtReF4RIqbryNSiu2wKmTA5J3T4bf0gxhIyfCPkAtF5a2TRfY53c9KgTSKl+j5HcTYVYiEgm7psLPTXjPyV8iYM2fSIxzgXnf31GyV91MO1NpjckoOfErmBh6IHb9WPhM6ACv6SMRvO8qVNbVYFJB7EJk4AzjmnUgC9yNiJWj4Tu5EzzdhG3E3mtQOXSEw5De2ss0I/YIwuYJv6l5MxEbKux3Ig4gRDOu+f3/8nf6a+Xglee/0JezDAbNp8Nl8rL0wW01Sv1wBOXnT4GZtRJp55cg4lmgz/jeg5pDfWUZgn8cjoBlG5CkWT+M6qHElJWwa+gE5Y1VCJrXDZ7jPoPvktmIuhkN/cbfoOSUsTDO2gojsYHFkB9gbfMIUauGCut4O2EZDELQjhOQWwjbpW9Wwb5W3i0k2u/1m2Ewkd5B9J+j4PNNR3hNG47g/cL35doLjpMnwuTZe+e0HCd/hbCrIUIe6Qen+athXy0UMb8PFOapE3x+/B/iwzTL61uUaJhXl2mioqWQN82FyQRN6pXFs1MqFCFX8fNuH2R/8TwlIiLihMrBG2TogLIlpOmVcqHKoUhLy0cQeEXKAKxbfQhX4xQIdt+HUQsP4FJc3slBYlYZYwfUh7NQS1KnBWLT5qvwf5XAIZFB79maoU5GZHTmI1lpMXF4dhEUiVSYNmNlrDhJS07vQqb3og+E2mMNAiZ8At9VaxB7/TpSg32Rem8Pwn9dhsRkYxjX+0BbOVVHP0byA3ck+WnuMSD8TxhPEsY1ZSkh6SfG5ve1cpLjezzyEIKSMEHJfrDvXB3SyAMInjsOEWcuIzXED6kPTyBmy1ghqByCwrAGbPr3fVF5kGu+aylkpgmIWzEMwbt2I+HWOSR6ZejukokcCt/r2vlIjRJSjhCy5b43tOPJD+9AnqRZgCKJBPLTUxGwfgeSfPwg93dH3KYZiHoqh6RiK5jaPPuwMhh2nASrknIkbRkG//VbkfjEA/LAu0g8uQQBP6xCirocLLt20em6p7q5FXFBSkhrfw5LbfNrOknN3rAsowfV7e2IDcrlh6UKRPyaL+A9fx4iL98Xtk+2MKz/Bey+/hvllm2GQ8uK4vajkBTk+y7I3xSIGqqEYMjDAoUhQPgufSCPioVavxRM24yCXbc26RXrXKVpDiRDYmIB1TkhCOe5HhUCaQVY9R8EI8NgxK0chMBte5DkK7ynnzsSjv8PAXNnIj7KCEafThbWV/EDCIHUul8fGEq9EP2/oQg5eBIpQf5Ie3oWsRuHw2dSL/hvv5Y+bcodRP7wMbxmzkTk6dNI9vMVfj9XELd5MsJvJUJSqSVMNeeQKcKR+kiz/Xgi7GuEv0sLE8eFwSOnyyoLCjL/hb6cpdAr3RzmjdqlDw2awcjRAMrH+xCxQghNKw9C8fxnlOG9z0+B38rViHU/j8Rb96FUCxXxjpNhU84IigvThZD6G+LuPYY85CmSr/2L8CWDEHIpFNLyg2DXsbz4eiKJASTJZxE6dxTCT10S1vEgYRlcRdz28fD77T/IZRWE72xA9t0nn3n2vSquIfx7ITQcPYOUAD+keZwXvteRCNh1F3DuCdsWz877ymE5+l1A1KZ/kKwUloutWthGjEPY6WvCPPkixf0PBG88JNRorGFSu5b4OkTFw2vtQvJDZl0Tk6aOwOrpmYdVbh+hYW5HxmV2qOSSfmUlzdHC0DsPcC9TjV6G2p9+id+zvO7qqT3wqX2h7sa1pM71MGlUb8wf3QeLJg7Dpp+GoX9J8fpVajkePPRBxk4XWlJb9J7xPa78vSjLsAB7B1XUdjnLS4rvOXw77xcM+eU8HqRkqLzlyBjNvvhMWAYySISt3dPDe7DO+xWjmCIM3mEqoYogkFqjRfOKsHy+SI1Qp3lNlBM/ujImBiHF9FxliYVt+rkQiZo76b2gTtLEXgkk1hWEUNAe5i26wrJBSWH/oobEyh76r7D6FeZrZSaFgbBzN9JXIOXoSqFSkbVirLnk6irECOuGpPxHL92FVx18FDF3Mn/u16b0Q/yZK8I7ZyBUylO8NScNl4CejbhBkJaFWYPKkCRdQuy5QKGuYJRpQOgJJPgJQaBiE5gUpGddfinuIubUbaFSXB1W7eqlb4uE+bRo3xF6CEX88aNZutFkJw2K+9sQ/vPn8BzRBQGrf0fs03CorerCauQfcHpeOXldBfm+X28deTVKpB4eD58pvcThM3iN+gAebuMR5WMJs24/o+SAxrnvkJ4t6/yuR4XBWagglzMEPLYi8kqYWJhB5CFEHHsIGNQQKtPiuRTObWBWWh/qJ9sRfT/rVbeEgB4c+PyjaKUmQKX5MIZ2MKjSAuYfdIFly9ZCABMCvFTzeV5juRdk/gt9OcuRvK0bngxqlD58WU/4tyW85kxBxNk76QdHnnn+3r6IP3kp8w0ZpWWEeawOifIeoncczRBSRJpWyR3bkaI0grGwXmcOyHKknliJ2PCsf6SG8voqRD8WKheubWBeKttrXKfTfq96UN3ZhdgwYf+aabskQ9q100hVmcCoRr306XNbjpFe2oMx6pjziL+VeTur8nqINJUUMktbsYSoeHidPUi+SIysUaN6BTSqkWWo5pR+GdycSE1h+fyEUzUiImOFXVZGEliXLJvN67rCxbjAtbQcyaxL4aPm9dG5eT10bFQZ1W0NxT6XKsR7nsHyk1GZNygaEin09PRgoJ/NkMt2LTM14gJD812pN6/VEW6tbIWKqhrywIv48T8fZL3CcJ7UUTh6zgMJmg8kkQnb4QHYPP0LuPXrgrnTxmFZJ0exIqxC2IPHeFwsA4cMBhWqQ0+qhNwnvQuUlsQGxh9/j1K/XUKlVXtResovcBm7EE7DR8DMSvhSpUKMzO+vqjBf6yXCOuboLHyX4UjxDBTLslD5IsUnSngPZ+g7Za48qMN88u7i8qpU/kgLfLkdUJWiWUOF0PXss8pcYVBC2KGbtYfzHzdQeVOW4e89sKugL+zk7aBnoctNmAryM/8iMUEK/Q97w0zTZ9KlG6xqWwD+uxFz+6VDDLlL9ELiid8QPKML/P69DpXEHuade+Z+VDXfCvJ9v9468vpUwipxAhHLfkB8rDAvbQfDPD+X0MvvelQIJI6uQsVfCF4+93PoTy+sI16PoFDLoO+Y3k1K4lhK+zdK/6dCubYoFxLIqgyA49wjqLjuNMrNWwWX8T/AafRclKhTAhJh+yt56QoQ+VeQ+X+uEJezWp4MVZIQrDRD6suv+RJVANKCskwnE5arnbBdjHmIlJz6CIfcR6qmF4Bdqcz7WFU8Ur28xJEsVKHCOh4svL6z8HvIecec/r0KQaDJYlTMuk3SDEvHwVhPAqm1o/gXouyWozpRWI7CypEUl6VeI9C2rAu/A2nO80JUFOlyb/161ClIShUfC0xNjIRN3LtEqNBH+eHgrq0YuvAobmeY17fGpCJGD2yMUsJGT60Ix471x3C9QJfsUiP45G4suRIFTRdUoWYHl+oN0Ldzc3SpaQcTca1RpwVg11Ev5HXqYJFkVB+WH1YClIFIuPLsxFx9GHZdDteBn8Eg/ijClw2Fz+SP4TGiBZ6OGo3o0FdJXoX5WtlRQ63SvIZQMc+xmUSoNGi7iwnJIlPNSHisSNP8t1Cp1XJNY2A+KDUXRRP2ydcR/fcihK7PYfh7M5ISCnsus4g7juhLQmXEvBWsWlSASbvuMNLXXAp3F1JyqPPkSR2HlIPbkKSpcDhWhGGh3CixIN/366wjhSjpPlJClMI8lIZhPkJN/tejQqAQ1sXnyyAHwnOaC2iolWJC1/4r/I1+Pr7Y0l+h5LQpsHSJRvxWN/hN6wqv0S3xdHgbBBzzf/3fYEHmX/RGl3MW2b63pn+SpklRppfhpO8sJMJn0fSzVGa5gqUQriV6uYQJzfIRXl/zFjlSaZ4UguSjLQjLbnskDmGHM998M/vlqKPfEtE7TOeBQxl1Fz8tXYtxP2YZfjkB99w2ZspoBEaK3XqE2XStVBYOmTYyStw5sAXjNa/180lcT8vmByxsdF7sI/VgkN2+TNPaID7UXJXlpWZakfzpMQz65keM2R+o6e0ikAhzFYWzR2/haU5NCMpwbJ47DQ36fZdlmIKP1+bn5O9XIUGZdu3R3Ulzkr0aqrhEmDf+GNOGdMfUXjXgKn7TUpMy6DmoO6Z8VgV2OW20NVSR2Pfbcnz15xkcexAE37AI+EVpTigWCcvK58RB/BNQ0FrXO0xqD7OBs2HlJIXq9l+IfiR+U3p1YdW2JiSJpxD2w2xEXbiEFD8fKKIjoEw0hizjnZKzyno48HVeK18USPXxhlpiDeNq1YR1Ihv6tWBSyUKY1BupAbntaV/Nax9hVnggNViYH0MjKO5sQfTBjdkPhw8iRdeBA8lIOqa5RK4xTDr9APsWrkIIOYOY8zm0COSXVNgYaZaTUgh2hfITKsj3/fbWkUwMysHATlgY6ngo4183aBcudcBj7VXnZJUbwSjbLGQAoxq1IZPIkebroS1RB3ggTZn+N4a55id9mLTtCSODOCT8PQohew8iyeMJ0iLCoYyJg8Qsl5OY8/kjK8j8v7OUwnYhSFgHLerBpGz2AUpSoRGMTYU9YNBj4TcrFmpITYXPWSf7dVyvMkyq2Amv74VUv5zXcbV/+vcqNYhC4uFstkfPhgt3xb8gooxet2qQJ3VqNO7deohzNzMP528HIjy3uoI6BpfvhYiBQQKDys0wtI5phg2GGlF+T3Fe83q3g/BS92OBKjYRcc8OcwiVyFqVXr5nhFml0umXzdVQJyHq2dnQWaUlIiQkHJf2nMCx6PRpNOenjO1VGbldS0It1CaUqqyDEAgKvZ4k0bYCpXfzEnYwNmXR+aOm6KUZWpR7fi8OiZEjWrdtiu6NSiLP+9kJFYDbJ/fj2/n/Q9dvt+JYnCbMaJ+AIuwaft7p+fJ5K0WaEfSq9oD9jK1waVMGCNmHkLU7X3RFkJhCqrkMskLTLSDjFyiFfsvuMDXO5ueUomkel0JqYZ153SvIa70S4Tu6shuJ8VIYtHODbeWM9/4QSCxh3GMSLB2lUN7ajfjI110hhXU6JVX7ujKLXGtZeVMHI/78ZaikVWE9oL8md2Rm1QJ2Y6fCwrnQbgiQO79diLkvrOkO1WBkpoL8wlYkZH/1igz0od9sJkrNcoOJZZbvUlhGJp/1g6mh8FE93ZFcKEceCvJ9v+l15GUSu8awHjMNljZCuPc7g4TcTsJ/GyKPIvZWDODUC3bd62a4PLOGUPmsMhL2rUtDWGERe0W8m3zEccRpzt1w6gn7z2pl2clawKhJaxho68vC3xtpTkKSQ5WUpSna8TNY1TLLvM3QSoJKc8TL1Bqy/PS4Kcj8v6vUIYg/cw5KSRlYDRihDRaZmNWHbf8e0JdEI/H00SwNcjLot/gGJapnDXFmMOriBuuSMqju7EHcS+d4ZBBxDHH3hO+1TF/Yf1wly3cjhazuBDgN+gQGhdJiSVT8vG6tRodU8Dh9CZcS0zcAEpktuo4ehG8a2yHzeaISGNtZZ3vXbnWsL24/u+6+1BjNe3ZDV9cX16M0cqqDSX1qQ3NwTUMZ5Y/bYbnvVNUJ97D2sC+SNZNJZHBp+QmGVs6lufodJ7Esiz5f9sGi4R+hbY7dGfRRo0tX9CutaXoXloEyBgc3HcaFxPRnixypKyyGrYLr9D/Shxl/odT3O1Duz4soP2c+bKrbQHHvTwR9PwPxGfsKK+4g8aGw87bsBPuxI2BRqx6MqraCZZ8VcP2iLFSaeyxouydkEB0ERZoQAOuPhMOnPWDZ+WuUaFm5YK/1qqL3IWzDYcgN6sB2+ja4DhsJq1bdYNX1GzjO2A7XbkJlKPygMM3+Qugto4IiIgQqoZJq1n0qbNr0hPXn42BRuiD9kIWK8OklCL8TDVktN5RatBz23fvCstXnsOm3BKV//A02H3YSltmLyxXnSVoOliNXv/jOMw5T52W6CtVLhAAUd+wENCe3quX3EXv8hjCHeTCpD+ue3WFcYxBcF2+Gc/8h6cu+yzdwmr8bJbtUhyT5DqK27Sm8nkoF+b7f2Doig2Hr+S+W+cwNKL30GCr8uhYOjV2BqLMIX/NXHvf00AGXbnCammFdyDCUHNkDBpJwxP39A+IjDIXwtQZlps2CbYdusGw/DHYj/xTGR8BIPxBx639AXLS4gNRBiNnwCxLjTGHc6w+UnjILJT7pCct2Q2H/7Ra4TvgFJQe3ECaUI/mOO5SwhXn/H2D7YVMYV2oAszYTUHLaOBgkRQnrmZ5mN/OCKhzySCHYm7VCicGDYdl2IEr0/kx8MhvqAsz/O0vYLpxbjLBLwZBWGgXXRWvg0KOPsF3oDZu+wrq1aDVsK+hDfvEHhJ3PcjNOVRRSPKSwmrIDriPGwLpVF1h2ELbJU4V1/PMGkMacRNjfu3Nfx4XtQMzGX4WAbgmT/htR5tupsO3YXfheh8Bu3D8o6/YVLJp9BlOHolsfINKldzhwCL/vyOv49d8niNTuhCSQmpVB//GTcOjnMfhtYj8sGj8YaxZOxdHFH6NBdrfgVgVi32lvJGo3IhLoO9TGzHlu+Gf6IPw8dRx2LuiDz55dCUstx6MzV3Azz14DangdP4GD4pEQiZ4DPu/XApWyq1dJS6DvrAW4tumHl4eN8/Bjs8LcMKnwYMcytBwyE82zDm4HcUv8XMqoa5g4fCZazTsFL7UpOg4aiMmd6qFj64+wYExLVMhmjTAo1xpTPnFB+j2LVAi/vB/LrifmXel6V0nNYVDlA5jWFodaTWBcrgxkaX5IuvQ3Qhd3h/f3/0NCeJbuHepIxK11Q8TNUOg1HAfnGZtQZs5yODQ3Qvzv4xGpuZGgqWXmS9kmnkTUoTtQGVeD1YD5cPpyBKyqORXstV6ZCvJz38Fv8a+IDzKDyUfj4Dh6ARz7DoVlFWOkXfgf/GdNzf2o3itQuf+NaI94SMv2hP3IeXDo3hMmJQoSOAQKT8T8NBjBh65AadsS1r1nwGn0HNh36QCDlKuI+m0IAg+/QhcQqSUMq2X4zjMOtepqb7qWG9WNbYgNkUN1+1/EBuZjeSVdRtii8Yi46gmVZS1YdJmcvuz7D4NlRSuoPP5D6MKRiMixP2ZBFOT7flPriBQyl4biMm8Gk6pVoW+mFL7m04jZ9i18vxuDaK8CnXD2WiSau6tnXR+eDZXKpN89OmwfgmaPQcQlH0irfwG7oQvgNOwb2LSuD2nQQYT/0B/B54PSX/CZwK0InPstou5EQq/2FygxcB6chn8D61pWkF9bhdBdF4SJ1FBeWICgHWehsGmLEuP+QunvN8BlyKeQXJ2BwH1PoNa0GJpn3AjEIeHARqQkmcKwjRucRnwH2zYNxedyUJD5f1cJ+/S43wYgYOshpBk3hNUXM4XtwizYfyaEe0NvxP8zCn7Ls7thXhpS9o5F4M67kDUcDvvRP8Bp6NewqmkDxe2/EDR3MmKDs2zvsxPwDwLnTUX0/Wjo1+sPuyHfC9/rZNg0LQPV/fUImjcB0f6F21maqLjQ+Z3GFcFn8ZXbPtzK5besn9OdxjUkxqjzaV8s6lUZjvm56L4iEKtnLMMqX3GLI7NHz4nD8W09y5wvMapWIfrBQYz58QwePj8DOsudxu/vxqcLLiBUDC/OHw3D1kGVYK6ZZ1UyLv/9K8YciYQq453Gc6NOw4nlczD54qttnMxaDsaJkdVgIOyscr3TeAaSEs3xx/+6oL4wT5nuNC6xw9C5kzC2YnplSxV9FePH/4vzGWdJzwXDZ4/GyArpNwJURt/BzOmbcOgtHw0r2J3GC4sEEuuyMHSyhyQtCKlefumXtcyRFFL7ajByMgcSApDi7Z9h+ld9rYLSzENlGNpbQaKIhtzvCeRJOngjIczpl60KA1OhMhX6GCmhceITr8HQHoaly0JmqIQqygepgRFFKuxKrCrDuHIloYKtD1VsAOQBwnIJKeRLDr+kIN/3G1pHijITFxiWcoVML01Yv58gNTzPvnXC918ehs52kCT5IzUgMP3c46yM7GDgUhp6hqnCcn8AeUIelV+TkjAqWxpSdSzkvg8hT8xHZVmjAPP/ztJsa0pVhL6FsDeM80OqX1D+tp36NjAoVQ56smik+nhBmd35n3kStts2FWDkXAISZaJQz3mEtJhiefkUokLzTrdwaKmTcWvvWvSftxObboQgJts2T7XwYw/E2WMHMW3+eqx/FjY0lGHY8cvv+Pa/u/AUNuKZ/1qoFCWF4/yBLRi2JGPYyIsaQWeOY3ew+HpSYzTq+gk+tn6tw9FvnjoCBw5eh1eKCmpFLK4cuIirmfKPDJU6d8XA8s/uOp6As9v24cg73/Sua2qoo72Q8uCy9qZbee/kVFCF3UPS7UtI8swYNjRe9bUKSjMPD5F8T5iHR490V5FUxUPueRWJd64VTtjQSA1D6pMrSLrrjpQiFjY01DGPkXRlH2JP7EK8+9U3EDY0CvJ9v6F1pChLCkTqo8tIuncj35V1dYxn+u/bJ4ewoZESjjRPdyQ9uJt32NBICkDK/QvC9PfyHzY0CjD/7yzNtsbnBpLuaJZtPsOGhjwqfVk/8Sxg2NAQtttRT9N/Kw/vMGwQ5YNOWjh0SWpig2oVnOBiaQJDpeYu2LEIiYxGUEQCkvPa4OiZolyFUihfwgwmkjTERobh3tNgRLznLaASAxNYyVIQnecCfHe83RYOIiIiIsqvIhc4iDQYOIiIiIiKhne/SxURERERERVZDBxERERERKQzDBxERERERKQzDBxERERERKQzDBxERERERKQzDBxERERERKQzDBxERERERKQzDBxERERERKQzDBxERERERKQzDBxERERERKQzDBxERERERKQzDBxERERERKQzkvve/mrxMRERERERUaFiCwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAwcREREREekMAweRICkpCQnx8eIYERERERUWBg4iweLZMzGiX29xjIiIiIgKCwMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHFVvySA/cPnsEx897IEElFhIRERHRG8XAQcWMAtF392CV2zDM+O0kwi1qomnTCjDjmk5ERET0VrAaRsWHMgI3107E+Ck7Ie8wC/PmDEe7Os4wlYnPExEREdEbx8BBxUQ87v01BYs2B6LGhB8xul0pGIrPEBEREdHbw8BBxUKS+xr8tu0J9JsOw9C2jmCjBhEREdG7gYGDij5lII5tOoxgtS2afFwPcZcP4cCuvTjn/hSRqeI0RERERPRWMHBQkacMO4/LD1K0jwNOrMehG54IuH8Y66YNxchh83HSX6F9joiIiIjePMl9b3+1+JioSJJf/gFfTTuAxFrj8NtPveCo7U+lROTJ7zH5++NIrjcRvy7uDodc+lnNdpuEm9euimM523v6nPiIiIiIiPKDLRxU5KmSkpCsksKqXAXYPg8VMti2+AJtSsuQdPsMrkXxRhxEREREbwMDBxV5UlMTGEslkMmyNGHolUYpVwMhkUQgLEwpFubM3MJC24KR20BEREREr4aBg4o8WemycJKqEBsVicyxQgoTIYxIYAwTY4lYRkRERERvEgMHFXlSuyaoX0kPyY/vw0suFmqlITYmHhK7aqhaUk8sIyIiIqI3iYGDij6ZK9r37wj7kGPYfSzoeSuHKuYyrj80RPUe3VHDQCwkIiIiojeKgYOKASksmo3D9G+aIGztZCxctR3HDm7F6vnbkPzpLHzTowxvBEhERET0lvCyuFS8KBIQ6vkEQUnGcCxfEU4W+etKpbksrsfjR9i894BYQkRERESFgS0cVLzomcGhcj3UrVs132GDiIiIiHSHgYOIiIiIiHSGgYOIiIiIiHSGgYOIiIiIiHSGgYOIiIiIiHSGgYOIiIiIiHSGgYOIiIiIiHSGgYOIiIiIiHSGgYOIiIiIiHSGgYOIiIiIiHSGgYOIiIiIiHSGgYOIiIiIiHSGgYOIiIiIiHSGgYOIiIiIiHSGgYOI6F2iTEDY05u4fuUmvMKT04tCvREQr9I+fhWqpCA8OHMN/nKxoJjK9+dMi4K3+1ncC1GKBYUjJdILD92v4J5nKJIK96WJiIoFyX1vf7X4mOi9NdttEjweP8LmvQfEEqI3L+HBDqz6aRMeGtdC3TL6iPJ+ijC1HSwTI1F6whoMr2sgTpkHZQhubFuN9VtOwCe1Kcb9txjtzMTnipP8fk5lMG7t/he7tv+HW+FW+GjRNnzdOJ/LMjeKAJxbsRB/7b+LKG3YkcG8UkcM+m48PipvrJ2EiIjYwkFE9G5IvoaN85fjpsMwLFo2D2Mnz8SsFavh9pktYkKCEBn5CofOZY6o19cN3eoUQqX6XZbfzylzQp0eY/BV5wpCJCgsCbi3djH2pbTGyJ9WYfGPM9C3pQvkTw5g5ew1uJPeOEVERAIGDiKid4D80XncCAXsK1WF7fMtszFKd5iMiV+URWJkNF6tt44UenrvwyY+v59TAkNDQ+G/hUMVcgwn4rpjqlsvNKlVHVUbdUDvWYvRr44xlEGncfZOmjglERExcBARvQuUCiFQKOF79jAeJYhlWgYo16UrKipi8epncWSmUmjeIxdKOeS5TqCCXK4QH2dDJfx9Lk9rKJW5vIFK9eIzqoSl8dIHFsrykbry/JyFQBFuinq9WsA6415U5oTGTSpApkpEQsLrfltERMUHAwcR0TtAv3Ij1BBqrwqvbVgw6Wec9k4SnxE21CU6YWC/qtBXxcPr5B9YNLwvRgxciDOxwpOqCDw4vAG/juuHkQPGY9vDrGdOq5HmfQArxn2OPh3aotdnX2LhBndEPa8PKxHlvhE/TZ+FlX/8hXXzR2P810tw0jfjEfokeO75EYsX/Y6dW9dj1Vw3zFi0CwHPavVJT3Bo6Sz8snoT/vv7Z/z43Xj8stv3RaVfFYenB3/HsoVzsXjSUAzrPQI/b7+FaM08qGLhdWYb1s7/GqO+/BFXQ25hz5KJGNujPXp26Y8fdj9FapInTq90w9iuHdCj/ccY98NhBL4UbPL6nC+T+53B2m8HYmS/vvh66nIcuRWSPs/KUNzf9SOmfjkWK076ZRteDGq2R/PSL3fQUgmhCbJSKF1WTywhIiIGDiKid4F5cwz+9gtUMgMSHv+Hn0cOxtw/zyAg47kAUnOUa9MPzRwjERwYjkRNE4C0BKp17IdP6xggNCgUcVl78iif4PC/nijb6ztMnTkSzaxDcHn9TCzd4a2tSCuD92HZnLUIqjoEI0aOxPAZbmiaegCrfz/yvLKuFELQio0paD5+DHoPGIbh4z+FQ0wkkrWXHFHA598l2JbSFiNGDcbnQyZgRGcnxEY8C0xJuP/XVKwPbYnh02Zj2i9rMK2jCud/n4Zf9wcJ86APqzJloPa9i8Cw2zi47RGceszCkvXL8EXZcFxavQALlx2CvOVkLN3+Lxb2c0Xw0d+x/fKLQKaVx+fMjn6plhgwsDFkIQGI0KuEpnUc08/xkDmgUmUzyF07oHerUvk/70MIVo8f+MGofhe0K8PAQUT0DAMHEdE7QQrrxqMxf/lsdK1nD73UIFzfNBPfDJ+NA5n6WMlgaKSf5VwECfT0cqjgSl3RdvRYfNy8Puq06oOJs/uhkl4CHuzchbupwvOpqVAY2sHJ3jT9NfUcUMJWilQ/LwSJNXWFrw+CYr3x1DN9PqRWTdG+jSvS31EBfx9/xPk8hLf2aSksm3yK5q762meVgfuweZ8M9VvaIzkyEtGR8bCs3xClpPG4ffgkgtUmsCldGxWchOnVrmg+tDcalbOGsWVVtG5eEbLkEJg2HoqPqjvAyMAalVs1hoskFt6P/DMHibw+Zw70q3TDx3WMkXR1H04+b7JJw+NTt+HcrlWG82nypgw4gqMPy6HH8I6w496ViOg5bhKJiN4hxmXaYsjS9fhpSndUsZIixf8k1kz+FlvvF/CyRxITmJq92NTLSrdH86p6UEU8xKNABWRlvsD3O7djcns7qOM8cXnXP7gaoALkaZCLF03Xr9YINU08sevb4Vi44QKCU/RRuUNHpPcaMkCVhnVh4rkFc0dNw9aLgUjVr442HTRXhFIhzv0KnqgS8WTPRmzf9Ld22HEyEVW7dEenuvZQiu8hkWrijkT4N31cs3syNjYS/pVA+qJQeDtD6EONpITEzOe05PE5cyRzQqserWErv4vDu+8KUUOQegcXHpdH8ybm2knyRRmME2uOw2b4NHSrUMyvDkZE9IoYOIiI3jVSc5TtOBELfp+HThWMoU64i51/7Eeh3K9OagPnkpZCNT4ZSel9oqCKfYCjvy/A8m2PYNmiFxqVzLxrkDp0wujZg1DbLASX103F+GHT8O+NCLGFQQq7jm5wG9gApiHnsGX6YIyfsRG3tZfxVSEyPEqYriQ+GDkRI8ZnHoZ/1R6lc+l5lNMVpTTlanWmuPGybD5nTkwb9UT7ilIEH9uBi9EqpN46A7/KH6F2vm+lkYwn/yzHrTrf4esOzoV46V0iouKBgYOI6G1TBuLgqq3wyXIgXt+pBYZN6o5SQg021eMBPAvljuES6MmkkOg5wtlRBlXoCSwb44YT5l9g1FefoGqJ7BKAFNb1hmDO2jWY+Hl9mIedw8ap3+Gf+2JfJaFyX3vQUiz7fQa61rNAxPk1mD9lLR4JT2u7eiU/wkPNSFaKOMQV4A7q+ZP5c+ZKrxw6dG8Cs7hLOHDgCW6eC0SVdjWRv3YKOQIOr8Qh/b4Y27MiNG0yRESUGQMHEdHbJrMRKvH7sP10ROZuQgJ9JyfYCFtqqaUVLJ/XmzXH+DNeIlYNuUKTRtTC//KgikdoSByM67VCQ2sVPPf9jTPBJVCjYRmxgv1iDp69VurpjfjPUwGpeQW0Hv0TflncC6WVnnC/GiA8m4ILm/6Bt0IKswodMGTJWszqWQ4qr8u4EQg4li8DM1UwTm06gOBMLTTxeLB1Iy5G5znHBZPpc+a1qxMCVaveaOOqxNPdP2BrWG20qJBL08tzSoSdXoWdEe0wtFd1mIilGmmep3DRI49rBBMRvScYOIiI3jp9ODrJcOm3edhxNy5DlV+JkHMX4Kk0RsVOn6Cy9jxsGewdS0CqfIILBx8hQZGEkOt7cOJOHNRCJTs8UNOFKSM5FBnqvWme+3DCpzq+GNYRtlIVkhOSoVYG4faFh4iXxyPgyh5c8VZBnRyPhNR4xMULr6Z4irOHHyC9jUIK82oNUNHCBPbONtoShccJnHyQon0MqQWq1K8CcxMHOAoVfaOGXdCmtAyJ13/H3NlrcerqHdy/cgTbF07Fv+rWaK1pvoECaWmauRYC0/OZVyFNrglRcqSkZGjaET6M5uOoX8opuX1OTYla+3pqtQJKRTYhx7AGOnevB8NIfxg3+Agl88wbKkRf/g2L1npBP/ESdv65ChvWpA/rf/ses5c9hGWp/IQWIqLiTzZmwjdzxMdE763Tx44iKjICPfr0E0uI3iQpDEKv4GyABMk3hPBwzQOBXvdwdf+fWLcnBOV6TcHEAbVhrq04S2FZ1lGY7iwunNiJXduOwsu0BbrVjsJ5D33Ym6RB5lAZpawNYWYsR9CTyzh3/C6CQ33x5PIRHL6Qimbj3fBxJWNIhPBiYy+F54XLuHvpAA4dvoFYl074pJwPzl1xx9XTfrBt0grloi9i5+6jeBonvHuCD9z3HIFPmX4Y2ru6ME8K+J7fjAPHHyFemLdE38s4dNQTrn2/RvdqlpDqOaBabTtEP7yF+zcv4+Kxgzh92R9mLcZgTJ+aMBPCzt0Dm7H78D1EpMQjWWkO+5KloHy8Dzu2H4VHZApiohJh6lQKzvL7OLRlB84/jUJSXCIkFk6oWd4x78+pisDDozvw767T8ItNRmysHIbWDqjoYqld+ukkMHNW4PHhFDQb1w2VTHM6gyRdyv11mDfrHzwND4LHvbt4eDfD8NAHFh0nom8DGx7VIyISSO57++uoPZuo6JjtNgkejx9h894DYgnRm6WKCUSo1AlOFkJlNswLnn7hSJFZw6ViRTiaZXMOgjIeoT6BSLEojdJ2xlAlxSPF0BwmL02qRFK4H4IilTCxc4GjrfFLlWBVcgQCw5Qo4eoAY82TqniEeIZC6lJOCDBCQVoa5AYGkCZFIDgoBtISrnC2Mkz/Y4FceF7fQIqkCOEzxAohpmRJWL54WqRCalQAgqKlsBaez/DnhSTvz5kX+f1VmLmrPKbN/AjC10BERIWEgYNIwMBB9J5TxeLSkhm4234Jhtflqd9ERIWJrb1ERPR+knvgyNLp+PGnP7B1+WxsiWmLLrUYNoiIChsDBxERvZ/kwXh46TzO7/sbO67aovuYzsjrCrpERPTq2KWKSMAuVUTvJ3nEUzwKUMO5ciXY5vtGf0RE9CrYwkFERO8t/RIVUbMOwwYRkS4xcFDxolJCqdBcZ18ckoPw6FFIlvsSEBEREdGbwsBBxYfiMTYPb4tu7Vq/GD75GsdjLcBu2URERERvBwMHFRsJl3bB3awDPu3ZC120w+f4bOBYdGtgIk5BRERERG8aTxqn4kEZiH0z/gflqMXoWurV2zN40jiRbj0MTcQ/N4LhEZEEK2N9fFbDDu0q2UImzf2O3kREVPSxhYOKhbT7/+Hg3SC4b1yB7fvO4mlEmvgMEb1tu++Godf629h5Jwy3gxJwxjMa3+x5gsl7n0Ch4jEvIqLijoGDioFk3Dl+HuHJ/rhz7F9s+mk6JvXrjzlrryFaJU5CRG+FT1QyZhz0QHax4ujjSGy4GiSOERFRccUuVVRsKJMj4HPjNM4cPYzTFx4jRmGIsr2XYOHIujAVp8mJpkvVg7t30LNvf7HkZeYWFvi4azdxjIjy48eT3thwLVgce5mThSGOj6ovjhERUXHEwEHFkBLRN9fjx1kbcD+1Bgb/9Ru6ueZ+XocmcNy8dlUcy9ne0+fER0SUH2N3PsQpj2hxLHu33ZpCj+dyEBEVW+xSRcWQDNZ1B2H8kPowlnvg0eP8nc8h09ND+UqVcxyatmgpTklE+WVnZiA+yp6VsR7DBhFRMccWDiq2VMHbMH3AahhO2IM5nc3F0uzxKlVEunEnKB59Nt4Vx142pLEzJrUqI44REVFxxBYOKrakxkYwkFrA1jb3I6xEpDu1nM3xVRMXcSyzmk5mGN60pDhGRETFFQMHFVupT54g0KYJmtQ2FEuI6G2Y0LI0fv6sEuqVNIelkR5KWRvh6+au+POLajA31BOnIiKi4oqBg4o8ucc+/L5wCbae9EKSWIakR9iz7TFqjxqK+rzRONFb16FKCWzsVxMXxzfCoeH1MLKZK8wYNoiI3gsMHFTkqZOC8fj8PmyZNxzjv/kBa1f+jF9/3gdZ3x8wuqUdV3IiIiKit4gnjVOxoIwPhOdTf8QqDGHtWgFlncyR+4VwM+NJ40RERES6wYO/VCzIzF1QqV4TNGxUFxVeMWwQERERke4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBAREYlUcQEIilGJY0WRCknBd3DR3QdysSQn8igP3Dx3C2FKsYCISEcYOIiIiLTk8Nw2C/M33EKqWFKUKEOuYMf8IRjadwyW7ryPNLE8K2WwO/Yt/wYjPx+Mub8egT8DBxHpGAMH0VuiUiqhVCjyHvJdGcj/kc0cxXvg4r5jeBz9po7wxsP77F6ceRAtzD3RW5bkjsNHPRF0YhcuvbHfQOGROTZGz0m9UcNALMiBzKkBPh01Dh3Ky8QSIiLdYuAgEknEf9+MBHif3ow1k3uhR7vW6PbRJxg5ZgJmTJqYPkz8Gm7DPkffDq3Ra+o+oVqeu/we2cydCmGHfsXSnxZg+c6neBMHPVUhB7Fm3hL8smQHvBRiIdFboUL0mX24pzCDJO4SDh32fyO/gUIn1YdefvbsEiMYGr7ZrR4Rvb8YOIjeCjOUb/slhk/oinKag4wmjfHlL8ux6Nff0offfsfP63dg1fzOcIICijwOtub3yGbupLBt2Q/9eg9E7/bloItjn8rIUERmCBZSu1boObQPvhjYAaX1xEKit0Hpj5NH4tHmu/6oapiGxwf24FFe/apUcshzCcoquTyP0KLMtQVTpXrxw9e0iL60GdC0kooPc6aCUlEkoxMRFSMMHERvkcTCAqYS4V+JDLKXfo1SWDfqjo41LfPX+pLfI5u5kDk0QY+Rg/FBKX2xpBDJvbH/x1W4niSOa8gcUL/PaPRuVQo6eEeifJM/PICLJu3RrmFHtG9kAXXgMRy4ECs+m0XSExxaOgu/rN6E//7+GT9+Nx6/7PZ9XvlPfroby+cswPotW7D1l9mYO3EBDvq+qPSr4h7h2KpF+Hn+TMz6qhe+GjUfu29HaQOFKvYpLm5fjqXj+2L00vMIu70dv00agEGd2qLflzNx8GkKkryOYu13X2LAx23Qs/Mg/HrE7+XgoU6F78ElmNq7E3q2b4d+g6dhq3vEy6HluTQEnF2BOYP7YkT/gZi/ci/uhaS/qjLsNvYvHYvR45bgnD+bIono1TFwEL1lOYYJVRIS0srh0wFtYJXxl6qUQ56vA5Z5HNl8VvNQqV6uhORYKxFeM9f3VkKe3cypIuG+ci423oiHWizKLOdqkFKuyOVZQcajwIo8piXKVjzc999AqU6tYSuzRtPPWsNOEoOrew4h6KXVWQGff5dgW0pbjBg1GJ8PmYARnZ0QGyEmaYUn9izdgNQ2EzFk4ED0GzcBHZxiEJksrvlJt7F5+kqEt5yAb2YuxIJVC9FGdQrrZizE0WDhzfStUaoM4H/PHxG3d+O/xy7oMmM1lv8yCKUjzmD9oun447AczSatxtptv6FnqUCcWv03rmUM8gLVk73Y41UBn327AJOGt4J1yDn8M2cu9vrkFBgMULLFV+jdWIawwHDoVWyJGo7p7Zwy+2qoYCaHS/tB+MCVTZFE9OoYOIjeUcon/+DvA6HikUslotw34qfps7Dyj7+wbv5ojP96CU76ZnO2Ri5HNlUJfri1/0/8MqE/pm+8gwfbZ2Fc94/Qb8I2+Mb64eb+v/DrpAH49q97mU48V0bcwH8/L8CKFcuxav4YjBs+DZsuhjw/qqqMdMe/30/F4p/XYMvvc/HdsDFYceTZyeup8Ny9DBtO+iBN6YnjP83F0oVbcC8xHgHu+7B58USMHfMHHmV8wyRPnFoxA/Pn/IDV/5uFaUMHYerCzbgVLlaWlJF4cnwz1swcieHC3z7wPYW/Jn6BPh3aoU+/Kdj9IDl9OqJ8UIWdxHHvumjf2Ew7blTnM7QuJ0PavX04/DDrb0wBfx9/xPk8hHeCZlwKyyaformr2Ean8IVfQCz8HnogUTMutUb9zm1RUltPVyJY+P0dljVBM/skREdGIjreGrUblIE03h0nTgZCbVICJWtVhqPwcirXtuj/+QcobW0Ciyod0KSCDCmhpqg3+BNUsTeGvlU1fNCwFCSxHniapeVB6toJQ0d3Q5N6DfBh7+lw61sNsoQ72PffLXGK7Big4mfdUNM4Adf3Zwhbafdx/k5JtGhpx0oDERUItx1E7wC1Kgb+t9xx+3r6cP3sbqxbsf/55SqVwfuwbM5aBFUdghEjhUr2DDc0TT2A1b8fQVSWQ/o5H9lMQ0JYGGL9b+DSrQCE3DyA6wYfoE3TanCyMkC8v1CJCrmNyzf8EZ+h7iL33Y1F41cjof1EjBkzDmNmjEcj5UVsX/AzjocLb64MxtHFM/FPQFX0HT8KA8fNwujmqTj+60qcitTMnCHKd5+G3g2MAVl5tJs0G5On9UXVJH8ExYTgwbnrCIjL+Ibe2DdrIjbHtsPYWVMw+tuFWLh4CJwf/IV5E5bikuY1JYawLWuLuEcPERp4Cf/uDEHNr3/Fr0sHoULsRWxasYuX+qR8UsDv0BHEN24Fp+RYxMUKQ2IJNG1VHQZKf5zefQHaXPGcAao0rAsTzy2YO0oI8xcDkapfHW06VEg/78mgOurWMYXP1smYPGMdrgamQL9aR7SuICQO4Xd+6+pDqBIf4tCmv7FdO2zEuaSa6NitK2rZP/sdSCDRNH0K/3neAio1gbGRpv+lDNLne24JDAyFZKJORGJSlg2BiRlMn0+nB9d2bVBZT4Woh3fFsuzJnNqjcys7KO7txcF76SexpN09hafl2qKhuXaUiOiVMXAQvQsUYXh87jTOnzqBs8eP4syxk3D3invRPSg1FQpDOzjZm6ZXQPQcUMJWilQ/r5e6fOR8ZPMOLMo1QLMWNWErU0Pl3Ao9u3ZA1+9+w89zuqFGjQ/wYZs6cMi4VVBF4MyaP+FZ60v0rGGSXqZXHh/164K6NSvC3lAzcQrS5EIAcHGASfrMwc7eFpJUX/jkUuuX2VVDo1ZtUMMp0xsi+uQf+OemDVr3+hDW4lPSEh/iyy+bwijoMP7edl8oMINtmZoo5yBUyAyq4JMxfdConCMc6/ZAy+p6SPN6BO8CXxuY3ispd3D0VChSrq/AoulTsUA7TMfqS4kwM1Aj5sJunNJ0dXpOCruObnAb2ACmQpjfMn0wxs/YiNuR4jRSB7SdNAe965sj9PxaLBg2BAs3XUeU5mnh9xQRJYSKkq0xePxEjMg0TMCAj3K7WMPz6JGZNpmooc6SN7KS2rjC2UICdUqWvlcvMUP9Hp1RThqAUzvPIEaVgrtnvVGxbX0YiVMQEb0qBg6id4DEoBLafT0ZYyZ/h6+/m4Zv5v+CxZNaPz93Q1bmC3y/czsmt7eDOs4Tl3f9g6sBQg1DngZ51pMi8jiyKZVKhB++BJYl7PDSRa0k0swbhbgruHQjCS4VK8NQLBLmBg5tvsHcH75CXQvNaFl89r/d+GNmB9iq4+Bzbif+u+APlVpzBZ/sz9h4Tng/4f8ZpODepZtIkJaAnUPGvuJSmDdsjEr6SoTcuCqWPTsKLIPseV1MH0ZGwt8p0pCWRwWMSBNwY8/vwZ0KY7FwxUosXp5hWPEbhre0gST5No7se5z53jZSG9QetBTLfp+BrvUsEHF+DeZPWfv8qlZSm/ro8+N6/DTtC9SyCMXlP7/DvPWay1XrQU9YPZMf38HTbK6ApYyLRYKu1luJPqTCD0XPoaRYkDNZ2S7o3NgcCZd34uiTa7gUWBMta77YAhARvSoGDqJ3khSWDXuicy3z50c8VbEPcPT3BVi+7REsW/RCo5L5+/nm/8jmy5ThQQhPE0JDDgdXn1PF4smBFfhl6VY8tW6JLh+4FmzjoopHdEwKhJlFUmLmmpfU1Al2llIhcEWLJUSvSemPE3s9UK1jU6SfvZGRORp2+QjOMiUCjuzC9ec3w0nBhU3/wFshhVmFDhiyZC1m9SwHlddl3AhUCE+fwr9bPaCUmqNs+7GY+8cSdCmrhO/lKwiCM8qWMYc6+Aj+PRj4/Bworfg72Ln5NGLyyOgFpYoPQlicCWq3bCaW5EJqiw8/7wRn5SMcFIJTRO22KJcx/xMRvSIGDqJ3lXkV1KyS3mlaFXoCy8a44YT5Fxj11SeoWuIV9v6vcGTzJXr60IMKAU+fZHszQW0kUIXi3OJRmHvYAp9NGI6PapQo+D08hEqapYWB9jVDgjOc16El0fZdl1iXEMeJXk/8lS04FFQTjWpm31lIv0prNHKRQRV5FnsPvbj0rMLjBE4+EIKxhtQCVepXgbmJAxy1fQAV8D55GI+fP10dtatYwtjBGVZSY9Tt3AmusgTcWu2GxeuO4Mad27h+9G/8PH0j0KoDSmp+PIq09CvRqdUvulWqhDJNc6Y8GSkZmlsUcs2IWjNpZnKFMCfPpMJ7/yH4VxuI/h3s0ovUwusphL9TCNNlE3IMavTAp3WNEB1ggrptSxf8N01EJGDgIHqbMlYocqSA576/cSa4BGo0LCN2g3rxV3kdEH2lI5tZyJyroKw1EH12Kw55ZewDokTkxc04fC8Fyid7sf14EGxqN0IpsdfF88pPhg+nOf1VkmdfcyNUa1gTJqpw3LvulfkIcFIIwmOlKN34A7GAqKBS4XP8VyxcegSh0Tdx6O8DeKC9wMELqvjHOLdjP+5rr8qQjPt/z8GvW90Rrlkp9aJxacUCbN53GpeObsVf+yLRdMJotBRPOpJFn8Gfi/7EkTNncWrbChyJbIGRI9tpu0ga1hoCt28+RnnDYFze8D3mjBuPpf94oMzQaehZ1QjK4Js4vH6/9qptykdHsH3/TYQkB+Dm7nU4+UR487TbOPznbtwOTEDA5X+x67QvlKpI3PxvE07djxCSQm2069UMzl7rMHvGz9i4/i/89eM8bI/6GFPnfY6ymqtfRdzFyU1/4ISHEuo4dxxYtxs3/LP08ZI6oXmburCs0w4fipfHJSIqKMl9b/+86itExd5st0nwfPwIm/YeEEveDKVQKZj81Vp4yhpj7L9L0d5SfCKTNNz5pT9m7Y5GhS9/xuwBZRB7Yy82/O8PXE1ogUn/uKEOTGChfxqLu83BleqTsW7pZ0h/qVR4bhiPBbdaYeaPvbWVDfnd5fh6wg5IevyGZaNrZrrhnvzhKkwc+w9Su/yClePrCs/J4bXpa0z98z5SrWrioy+6oH5pQ0TfP4krye0xYWxzmN7+GaMn/YeYygMxb/FAuMZcx5HVP2HTxQQ0mbEdYxoAxpZGeLT8S0z/T4JPflqLoeV98Ti8FKq6emPDV6PxX8pnmP/3RNTUpKnke9g84Rv8G9kEE3+fg5Z26UeN/baMw3eHK2Dy8gmobyGUKX2wfcwgbIn4GDO3fIv62iQWh6PfdsXym/UwdpewPHlVHdIBeVoa9A2kSIoIRGisDDYlS8Ly+SkOacLzBtCXJiEyMAhxMlu4lLR++XwpVQqiAwIQI83h+delFN7f3x9RSlOUcHaGtfGrHl+U49HqCdhffiEmt8t2w0RElG+yMRO+mSM+JnpvnT52FNGREejep59YomsJ8DyxFds27Mb1kGSolWHw845Dmr4NypSxzXLXbaFCYy+F54XLuHvpAA4dvoFYl074pJwPzl1xx9XTfrBt0goVba1gLPeH55XjOHs3COF+D+B+dDeuprXGiEndUN5Yjai7B7Fr0264+8cjPiwcCgNTWLqUhLWhEiE3D+LAtj247BuHxMhoqE3t4FjeBSVrNkYFWQAe3bqOW1fO4tyZO4gv3QOjR7eBvZ4wdyUcIH1yHjduXcLx3YdwJ8YF7bqWh/+py7h18RQCSzRFsyolYGMSA/eT54T5PYFbAeaoVk2FOwe24fB5HyQkRSJWrakYlYe9tSNqNKsKqcdh/LvTHZFJEfA8sx0HPStiwLSRaKTpTqYMwZ3/1mPX8aeISYpHssQKTqWtEH7yT2w78AhRabGIS7aCa6UKKGGc1wkoRK9GJtMc8ZdC38QK1jYW0Fyn4AWZ8Lzwj1QfJlY2sLYwzr47kkRPCOK5PP+6tO9fArbC/Bnrv/pvQBV7AVu2y9FuaEtkun4DEVEBsIWDSPC2WjhehSo5AoFhSpRwdYD2YKUqHiGeoZC6lIO9SYajl699ZDN7qpQoBAXEQM++JBw151lkpEpGlH8olHalYKedFxUSgjwRLnVBaUeT530306J8ESK3Q0mHF2W5SYv2Q2BoKvTtXOBsm7+/IaKCkXvuxer17pCUKQv9+6cR2nIRpn3mzPM3iOi1MXAQCYpC4CAi0qWk8wswetZhRKkM4PzRt5j1XQc4s3WDiAoBAweRgIGDiCgNkU/vIxglUaGiHW/0R0SFhj0UqJhKQ8idi3gSkek6R0RElCMD2FasixoMG0RUyBg4qFhKub8Bi79dgP0Ps97LgYiIiIjeJAYOKn4SbuKfX3fCJ5W9BYmIiIjeNgYOKl5Ucbi+fgdUTZpAc6sGKhxpChXuBMXjbnA8FCoGOSJdCYpLxY2AOATFircqJyIqBlglo2JEhegLf+CoSR98Xs0IvPtC4Vh3JRCtV7qjz8a76P33XXz0+3XsvB0qPktEhSFECBoj/n2g/X0N2HwPH626ga+23WfwIKJigYGDig1V2AlsOm6HXv1q8ITHQrLygj+WnvZFTPKLc2HCEtIw67Antt0MEUuI6HXEJMsx+J/7OO8VI5aku+gTi4Fb7iMiMU0sISIqmhg4qHhQBuHEn+fgOrAPKhiKZfRaopPk+ONSgDj2smXn/JCqUIljRFRQ/9wIgV9M9i0Zmi5WW64z3BNR0cbAQcWAAgF71+BWtWH4tJy+WPbq4uLi0KVV81yH98k5r2ikKXM+X0PT6uHuHyeOEVFBHX8SJT7K3vEnkeIjIqKiiYGDijy517/Y9KABBnxaCjKxjF5fbmHjGbmSLRxEryuv35E8H79FIqJ3Ge80TkWbKgJHpo/CEeOmqGz54jRxVfgtnLoQgBJNPkZtJ1NU/GQY2pTXE599Ge80/jLvyGR0/vOmOPYyfZkEJ0bVh62pgVhCRAUx94gntt/K+UIM3Wra4/uPK4hjRERFD1s4qMgzcSoFk2hf+Pv4PB8CwuKhVCuRFK4p90NkInP1qypra4x2lWzEsZf1qOXAsEFUCAY0cIKRXva7YwMh2H/Z0EkcIyIqmtjCQcWS3H0Jhn93CjXn/Idvmud9FjlbOLKXIldi0p4nOO0ZLZak61LdDvM/rgA9KS8+TFQYrvjG4ps9jzNdEc7SSA9Lu1RCs7JWYgkRUdHEwEHFEgNH4XoYmohLPjGQCPmiVXkbbesHERUuzVXfNCeIB8amwsnCEB9VsoGRPs9MI6Kij12qiChPVR1MMaSxCwY3cmHYINIRQz0pPqlmh+FNS+LT6nYMG0RUbDBwULGk38AN604czFfrBhERERHpDgMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMHERERERHpDAMH6VRyuA98PD3gnXHwCkaCSngyLRpBXi/KfbxD0suJiIiIqNhg4CAdUiEp8AYO/jQBE4YOxnhhmDjjL1y8F4h4tfBsagR8rmzDL2OF50ZNx/rjTxAnlBMRERFR8cHAQTokhW2d7hgxrgtcZeklspJN8HHnBnASxqXmFdGsRydUtbZH4/FLMP2rFnAWpyuotAgP3LtyAdfv+iJOIRYSERER0VvDwEE6J6vQEo1LpScJxcNruJOgfShQIGD/P3hcZwLGdCoFfbG0QJQRuLpqLEYO+hoLZk3H3K8H4Ksh3+NUAFMHERER0dvEwEG6p1ceTZqVgiZyqBNv4Mq1eG2x3Hsn/jjugi9HNYfVa62JCvjuXImzFoOweOch/HPgPywe2QhGAUfx17pzSBSnIiIiIqI3j4GD3gA9lGv+AVy0iSMBty9cQ0KaB/YsP4tyI4ejrnn6VAWW8gBPzT7H2L4NYGcojOtZo2rPr9CutBSJwYGIVqZPRkRERERvHgMHvRGy8s3RUHsihxoJ109h3/rluFVrLHrXMkmf4HUY1UK7j6vASBxNJ4FUKoNj9Zqwf83zQoiIiIio4Bg46M3Qr4jGTVy0K5w69gz2PmiCr/pWhaZBovCpEOt+AA/sh2HC4NowEEuJiIiI6M1j4KA3RIXEhOT0hxJLNOjeBaVf6yzxHKSE4Pa2+Zg+/yhijdRIS8l/fyqFQoHL587mONy+7i5OSURERET5Jbnv7c87H5Duye9i7eCvsTtACADGH2DcPz+gnZX4XGFRBuHq9r246e2J+9euwydaDsPKg7HwtyGomEczx2y3Sbh57ao4lrO9p8+Jj4iIiIgoP9jCQW+E0v8a7gSntzboVa6PWhbah4VL5oxGfUZixLQlWLZxOfrXMUfakx347/zz6/DmSiKRQE9fP8ehdNly4pRERERElF8MHPQGKBHufgN+2rwhQ+m69WGr6zXPrBq6jegCV2kSQvzDhTnIm7m5OXYdO5nj8Nu6DeKURERERJRfDByke8pAXDr3EOm34DOGc2ln7T05dE2/bCWUMpLC2MwMErGMiIiIiN4sBg7SISWCzvyFX92+xT9308SyRNzctAB//HcL8SqxSEeUUaGIRGXUbWDDFZ2IiIjoLeFJ41T0pXjgzI5LSK3RHq3rOCD94lfxuLtyCv4xHYWZA2vAWFuWM81J456PH2HT3gNiCREREREVBgYOKvJUEYexZMQPuBBlCJeGbdGkig0kKcnQK98Jn3WoAFNxutwwcBARERHpBgMHFQuqpGB4PvRGjNIYVs7lUKakpdjSkT8MHERERES6wa7tVCxITZxQsX4zNGxUFxVfMWwQERERke4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBARERERkc4wcBAVY0qlAkpFxkEJpfhcgcR74OK+Y3gcrRILiIiIiHInue/trxYfE723ZrtNgufjR9i094BYUgzIfXB5+3/Yv2cP7oQpITFxQaXK9pAlRSMqVgmzUrXQqFMvdG5ZHmb5OvSgQtj28Ri58i5c+q/GL8MqQyY+Q0RERJQTtnAQFVf6ZdCk3ziM7V5NGwyMGg7D9/9bhh9Wb8SK5W5oJrmCrfNGYeryi4jJV4OFFLYt+6Ff74Ho3b5cwcKGMgLh4QpxhIiIiN4HDBxExZoMJqYmkAiPJJIXP3f9EnXR3W0w6hglw3fPHzjgmb8QIHNogh4jB+ODUvpiyauQw2/XYmy4miSOExER0fuAgYOomNOEjexILcuiVAkZoAxCoH/mwKGUy3M/1yO7FhHVi0KVQpFlEhWiLy/H0j+vI4GnfxAREb1XGDiI3lfyCETFCbV/mT0cnDTBIwK3Ns3DgjlLsXHdCiwdOxhTlh6Gf1r65Mp4P9zc/xd+nTQA3/51D3JtYSSeHN+MNTNHYviYP/DA9xT+mvgF+nRohz79pmD3g2Tt36Y9/Q9/rD4Bv1QlfA4twdL532PXrRTtc0RERFS8MXAQvZeS8HTXTlyPAywa9MRHlaQI3f8DFq8PQMXBEzFo+ARMntQSqYf+h3VHI6CCEjEB/ogLuY3LN/wR/6xBRGII27K2iHv0EKGBl/DvzhDU/PpX/Lp0ECrEXsSmFbvgrwQMKvbAhIENYQwZynRyw+SZM9C9jpH4IkRERFScMXAQvSfSvE9i67p12LLmJ/wwdiCm/+0Hx/YTMGvGp3CWAampchiWcIGdSXonLJmDPWykqQjw8hfihgy2VT/Ah23qwCHjVkNqBtsyNVHOQQKJQRV8MqYPGpVzhGPdHmhZXQ9pXo/grW0KISIiovcVAwfRe0Jq4YzSpUrCpVJDtBkyD7/u2In/Te2OSuaazYAMpT7/Feu3zkZrOzXivc5i/9bzCFKpIZdnOL9DIs1moyGEDe1Z6TLInp8wog8jIz1AkYY0nrNBRET0XmPgIHpP6NlWQdO2H6FlqxZoVK8qnCyyXmlKhbiH+7F20Y/Y/cgaTXt+CGduIYiIiOg1sTpBRAIVwk8uwrffHYT5599gwMc1YasnPkVERET0Ghg4iIo5dZZ/s6V4gsMbjyHUti7qljZML1OJf6EupD5R2m5Xwsupc73gLhERERUzDBxExZoSSYlJ2rAhT4hDck7ZQZWExGQ1lMHuuPIoDvJ4P1zfdx6+QuhISYhHanwsEoScoEpJQZrwaoq0jGeCp0GuGVWrM9x7Iw0pyZpzP5RQiflCYm0NC6kKob4+SFXFw+OeJ3hhXCIiouJPNmbCN3PEx0TvrdPHjiI6MgLd+/QTS4oBuTcubd2IrXvPIyhBBVW4L3zj0wBTV5SyN858Q0BZCdhJH+PKlZtwP/gfTt6MhlPHbijjexLX3S/gvJ81ylp64ey/e3DZNw6JkdFQm9rBsYwEnnvWY9fxp4hJikeyxApOpa0QfvJPbDvwCFFpsYhLtoJrpQpwcDJF3OUTuHLpFM5d94dpnTao4WiU440JiYiIqHiQ3Pf2z7WnBdH7YLbbJHg+foRNew+IJe8jFVIi/RCutIeLvYm2+VMVHwSfUCkcyznCpDDaQ1OjEBAsh20pBxizfZWIiOi9wF0+EYmkMLItA1cxbGhLzJ1RrkIhhQ0NQxuULMOwQURE9D7hbp+IiIiIiHSGgYOIiIiIiHSGgYOKlZRILzx0v4J7nqFI4tVXiQpEmRACr1uXcf3mU0Qma0oUCPfxRcIrXyFZhaTgO7jo7oOM1zUrfl7hc6ZFwdv9LO6F6GADpYhGYGBshqvFERG9G3jSOBUPigCcW7EQf+2/iyjtHl8G80odMei78fiovLF2ktzwpHEijXg83vkzVmy5C+OajVBKPwK+HiFQl7BCUlQ5jPx9AmoaiJPmQRlyBf/98Tt2nvREapMp2LjoE5iKzxUn+f6cymDc2v0vdm3/D7fCrfDRom34unE+F2ZelNF4enwbtm3eC9+687ByYgPoi08REb0L2MJBxUAC7q1djH0prTHyp1VY/OMM9G3pAvmTA1g5ew3uaI/QElFeUtzXYOnKa7AfshyL5nyLMdN/xI8r56KTbTRCg8IR9QoH5WWOjdFzUm/UKKQ69bsq359T5oQ6Pcbgq84VIBOLCkWCN64fO4eHj+7gvn8iWzeI6J3EwEFFnirkGE7EdcdUt15oUqs6qjbqgN6zFqNfHWMog07j7J00cUoqKLVajYCYFATF8lZ9RUl4Qhp8o5ORpsxPNTQNTy9cQTgcUb5qiRc7B+OyaPPNDHQrm4io6FfsBiTVh977sJfJ9+eUwNDQsHDvPWNWFvU7dsEnH9eDHffoRPSO4uaJijxFuCnq9WoB64xrs8wJjZtUgEyViIRX73hOGey5F4aP19xEh9U38NGqG+i69hZOPIkUn6V30b3gBAzacg+tVrhrv7s2wr8rL/hDJQTH3CgUQqBQeuHSkftIFMu0DCqiY5cqUMa97m9JBaXmPXKjlEOe2yQq4XnNTexzoJLLkfs7KKHMZQKV6sVnVAkTvvSJhbI8PoEgH5+z0El4E00iemcxcFCRZ1CzPZqXfrmTgrbiICuF0mX1xBJ6VZuvB2PaAQ/4xbxo2XganoTx/z3GwQfhYgm9S+6HJGDI1vu45h8nlgDRyQqsOO+PWYc8xZLsGKBiw7qwksrhs30qZv7vKHyTxKeEXYVtx5HoWUVf+GHFw+vkH1g0vC9GDFyIM7HC06oIPDi8Ab+O64eRA8Zj28Msp06rU+F7cAmm9u6Enu3bod/gadjqHpGhMq9ElPtG/DR9Flb+8RfWzR+N8V8vwUnfDK2TSU9waOks/LJ6E/77+2f8+N14/LLb93nlP/npbiyfswDrt2zB1l9mY+7EBTjo+6LSr4p7hGOrFuHn+TMx66te+GrUfOy+HaWdB1XsU1zcvhxLx/fF6KXnEXZ7O36bNACDOrVFvy9n4uDTFCR5HcXa777EgI/boGfnQfj1iN/LwSPPz5lVGgLOrsCcwcKy7D8Q81fufX4yuTLsNvYvHYvR45bgnH8uCYuIqAhg4KDiSRWHxw/8YFS/C9qVYeAoiPhUBf53xlccy0xznHzxSR/I89VVh96kn077IjEt+6Pr/90N0waSnJh9OApff14NpoiHx575mDTMDRvP+iFTRzqpOcq16YdmjpEIDgxHomYdkJZAtY798GkdA4QGhSIuSy9G1ZO92ONVAZ99uwCThreCdcg5/DNnLvb6pFeklcH7sGzOWgRVHYIRI0di+Aw3NE09gNW/H0GUdhVTwOffJdiW0hYjRg3G50MmYERnJ8RGiIlI4Yk9Szcgtc1EDBk4EP3GTUAHpxhEJostOkm3sXn6SoS3nIBvZi7EglUL0UZ1CutmLMTRYGFZ6VujVBnA/54/Im7vxn+PXdBlxmos/2UQSkecwfpF0/HHYTmaTVqNtdt+Q89SgTi1+m9cex7I0uX1OV9mgJItvkLvxjKECctSr2JL1HBMP3gis6+GCmZyuLQfhA9cuQ0joqKNgYOKJWXAERx9WA49hnfMd7/muLg4dGnVPNfhfXLGMxrJ8pwDRUSiHNcDXhxFp7cvJlmOK76aJoecHXoYIT7KhtQW9Uf+D4tn9kYtO32kBV3Gv7OHYeLcXXiaKafIYGikn6ULjwR6etlXjKWunTB0dDc0qdcAH/aeDre+1SBLuIN9/91KnyA1FQpDOzjZm6a/pp4DSthKkernhSBtdlLA38cfcT4P4a2dDyksm3yK5q7itZgUvvALiIXfQ4/0rmBSa9Tv3BYltbOjRPD+P3FY1gTN7JMQHRmJ6Hhr1G5QBtJ4d5w4GQi1SQmUrFUZjpoGHNe26P/5ByhtbQKLKh3QpIIMKaGmqDf4E1SxN4a+VTV80LAUJLEeeJql5SHPz5ktA1T8rBtqGifg+v5D4ucVpN3H+Tsl0aKlHXfURFTkcTtGxY8yGCfWHIfN8GnoVqGYXyJHh5LT8m69yC2Q0JuXn+8j72lMUKrNGMxbuwbju9WApTQZgad+wawp6/GooFd8MzGD6fO9jR5c27VBZT0Voh7e1ZbIynyB73dux+T2dlDHeeLyrn9wNUCYT3ka5NpGCgNUaVgXJp5bMHfUNGy9GIhU/epo00G84pNBddStYwqfrZMxecY6XA1MgX61jmhdQUgcqhjcuvoQqsSHOLTpb2zXDhtxLqkmOnbrilr2z0KDBBJN2hH+8zxISU1gbCSMSWSQPp9/CQwMhWSiTkRiUpZlmcfnzInMqT06t7KD4t5eHLyXqi1Lu3sKT8u1RUNz7SgRUZHGwEHFTDKe/LMct+p8h687OL/S5SfNLSyw9cDhHIfth46KU74fajqbiY+yJxPqYdUciuOdFYouezMD7ZCbmk65f6/PSM0roO34ZVg6pxvKGquReG8zNh4IyscJ03mT2rjC2UICdcqLPkmq2Ac4+vsCLN/2CJYteqFRyYy7JynsOrrBbWADmIacw5bpgzF+xkbcjhTnRuqAtpPmoHd9c4SeX4sFw4Zg4abr6ZfxVUUgIkoIFSVbY/D4iRiRaZiAAR+Vy2U78Tx6ZKZNJmqo88hu2X3O7Jmhfo/OKCcNwKmdZxCjSsHds96o2LY+jMQpiIiKMgYOKkbkCDi8Eof0+2Jsz4qvvKPWVCFMTE1zHIyM876BYHFSxd4UTUpbimMv61S1BBzMDcUxehfIpBJ82cBJHHuZg7mB9nvLjjLwP6zb5pklUOjDofnXGNOtjFApT4HXw8fI6WyEVyLRh1RIrHoOJbWjqtATWDbGDSfMv8Corz5B1RLZdM2S2qD2oKVY9vsMdK1ngYjzazB/ylo8Sm8QEJ6ujz4/rsdP075ALYtQXP7zO8xbfx9p0IOmp1fy4zt4Kk6bkTIutgB3UM+nLJ8zN7KyXdC5sTkSLu/E0SfXcCmwJlrW5O+LiIoHBg4qJpQIO70KOyPaYWiv6jARSzXSPE/hokehVJPeO//rWhm1smnp+KCsFeZ2LC+O0btkcGMX9Kv/cuhwFMLG2t7VYZjDDSNkNkIl/sDfOB+ZtfYthA5HOyGQy2BhZZ1hp6GJ6BkvMauGXKG5OpVae1GB3KjigxAWZ4LaLZsJYwp47vsbZ4JLoEbDMkhvn3kxD+mvlYILm/6Bt0IKswodMGTJWszqWQ4qr8u4ESj8tlNO4d+tHlBKzVG2/VjM/WMJupRVwvfyFQTBGWXLmEMdfAT/HgzMHKji72Dn5tOIyWuGCyjz58yD1BYfft4JzspHOCgEp4jabVEu+1NiiIiKHAYOKgZUiL78Gxat9YJ+4iXs/HMVNqxJH9b/9j1mL3sIy1LccxeEhZEetvSvidW9qmJQQ2cMaeyMv/vWwJrPq8FI/1U6rNGbNK1dWewZWgcjm5XUtnj80LkiDo2ohzI2ubTS6TvDQXYGf8zfiAcZ77ehDMKli4+hMq6Cdp2qC/FDQwZ7xxKQKp/gwsFHSFAkIeT6Hpy4Ewe1Kh7hgVGZK/ZyRYaWkVR47z8E/2oD0b+DnTCuQnJCMtTC+9y+8BDx8ngEXNmDK94qqJPjkZAaj7h4JRQeJ3DygXi9LKkFqtSvAnMTBzhqb8CjgPfJw3j8/OnqqF3FEsYOzrCSGqNu505wlSXg1mo3LF53BDfu3Mb1o3/j5+kbgVYdUFKzKivS0u//oVa/iDsqoUxzEok8GSkZrvSrkIvBKmtQyfVzaqiRJvytWq2AUvFyyjGo0QOf1jVCdIAJ6rYt/UpdQlXJidqriSmVPLhCRO8e2ZgJ38wRHxMVSSn312HerH/wNDwIHvfu4uHdDMNDH1h0nIi+DWxyTdenjx1FdGQEuvfpJ5bQMxKJBKWsjbWtGs3KWMHZkt08igIbE300Lm2JD8tZo7K9qba7Va6khgi7ehxBkiTc2XcItzz84HP/Ao6uXYlDIRXx2bcz8HltC/F3JIVlWUck3ziLCyd2Yte2o/AybYFutaNw3kMf9iZpkDlURilbGxjL/eF55TjO3g1CuN8DuB/djatprTFiUjeUN9bMkww29lJ4XriMu5cO4NDhG4h16YRPyvng3BV3XD3tB9smH8Lg/lYcOP4I8cJ7J/pexqGjnnDt+zW6V7OEVOGFy1t24czjOGHWEuAvBJZTnqXRY0wfVLaUQs+hJqqXiMSTW7dx98ppnD50BO4B5vhg9LfoXsMcquCbOPrPVpy8F4bUhEQozRzh5KrE0/0bsUd4z6iUKMQkmcHBtSQUD3Zj585T8IpKQHyiBOaOrijr6Jj351RF4OHRHfh312n4xSYjNlYOQ2sHVHTJ0G1RYg5HxX2cSGmJ4V2rwiSPr0xLEYR7xw7jwL97cTM4CSkxcVDpSyAxdYGDJQ+0ENG7QXLf219HjclERcdst0nwfPwIm/YeEEuI3jcqxAYGQ+rkAnMkI9zrCQIikqFnVQrlKjrDNLvD7cp4hPoEIsWiNErbGUOVFI8UQ3OYZJ1WmYRIf39EKU1RwtkZ1sYvx39VcgQCw5Qo4eoA7dOqeIR4hkLqUk4IMFLI09KgbyBFUkQgQmOFkFKyJF5k3zTheQPoS4X3CQxCnMwWLiWtxe5ZGahSEB0QgBhpDs+/rnx8ztzJ8Wj1BOwvvxCT2+V8/hQRUVHDwEEkYOAgordNFXsWv826idaLx6MWL09FRMXIqx5+ISIiokIi99yL5TNnYcVf6/Dn3L8Q16YXqjNsEFExw8BBRET0lsiD78L9wikc2bgJN2z7Yugnr3b/ICKiooBdqogE7FJFRG9HGiKf3kcwSqJCRTve6I+IiiW2cBAREb01BrCtWBc1GDaIqBhj4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4CAiIiIiIp1h4KBiSIEY/0DEqcRRIiIiInprGDioGFEi9tFhbJg2EKPctsJbIRYTERER0VvDwEHFRAL8rhzF5XsP8eCOP5LVYjERERERvVUMHFRMmKFU407o0LUzajlwtSYiIiJ6V7BmRsWPRPyXiIiIiN46Bg4iIiIiItIZBg4ikUqlRlBAQI5DeGioOCURERER5Zfkvrc/T6+l4kPxFJtHfoV/4z/F3I2TUNtALM/DbLdJuHntqjiWs72nz4mPiIiIiCg/2MJBlE/6BvlML0RERET0HAMHkcjCwkLbgpHTsPPoCXFKIiIiIsovBg4iIiIiItIZBg4iIiIiItIZBg4qXtRJSE4W/lUqoUgvISIiIqK3iIGDigkFQm4dxt41f+FcsBKq6CvYt+E/nLnph1RxCiIiIiJ683hZXCKB5rK4no8fYdPeA2IJERERERUGtnAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQEREREZHOMHAQUb58N3Y0FkyfKo5RViqVCoN6dsOfy5eJJZRVcGCgdhnt2/mvWEJZ3XS/pl1GVy9eEEsoq8N792iXkZ+Pt1hCWW1YvUq7jFJTU8USoreLgYOI8uXhvbu4cuG8OEZZKZVKREVEYO8OVqZz4uvlqV1G61b9LpZQVudPntAuoxOHD4kllNWWdX9pl9GThw/FEspq5z+btcsoOSlJLCF6uxg4iIiIiIhIZxg4iIiIiIhIZxg4iIiIiIhIZxg4iIiIiIhIZxg4qJhRIiH4Ce5euYaHPpFIE0uJiIiI6O1g4KDiI9UbxxaPxIwV5xCWEgePnbMxefKfuBmlEicgIiIiojdNct/bXy0+JirC4nHjlxFYeL0J5qwZhxrGQpEqBIenDsEG+RAsWdITJWXpU2Znttsk3Lx2FT379RdLKKsdmzdp/+Uyyp5KqcKurVu0j7mMshfo749LZ89AIpWiR5++Yill5H75Enw8PeHi6oqmLVqKpZTRvp07kJqSggZNmqJM+fJiKWX0bHvduUdPGBkZaR/nR4u27VCmHJcpFT4GDioWlL6bMe2rP5Da+0/8NKQCnmWLhBOzMHzhXTSevxnjm5mIpS97FjiIiIjeV26z5qB5m7biGFHhYeCgYkAJ/42jMG5dGNos3I6vmxiI5YAqeCum9V+JgLbf489pLZDTcZ64mBikpvGOrERE9P6ysLSCoaGhOEZUeBg4qBiIx/Fp3bHsSln0X/s7Pi+doe9U6hks7TET5237YvGfI1FZXywnIiIiojeCJ41T0acIRWiYXIjPpjAzl4iFIokZTM0kUIUHIUwplhERERHRG8PAQUWfOhmpKcK/EhlkellWaaFMTyaEEHkqUhViGRERERG9MQwcVPRJjGGoOTlDrYBCnuUSuNoyNaBvCEM9sYyIiIiI3hgGDir69BzgYKevbelITsxySpI6CckpakhLOME+l8viUn4oEOMfiDje1iQbyYjyuoubV2/BOywJ7L2XnVREet7E9YuX8cA3lssoD/LgO7j2MILL6SUqKJUKKBXPhmSE3H/ILrM5kEd64PbZIzh+3gMJ3HbTW8TAQcWACSpVKwOZOgKhWfY6qthQRCQBZpWrozRPGC8gJWIfHcaGaQMxym0rvNk1LRNlwAms/rovhg0Zjdnffo3xfXph8o8H4J0sTkBQRlzAunF9MXb8NCya6YYpg3ph7MLDCOK6lL3ke9g6exJ+2fWAgSMTBTzWDkXPtq3Rrd2zoSOmHYqFOQ8oZaBA9N09WOU2DDN+O4lwi5po2rQCzFjjo7eIqx8VAzK4tGiFinqR8HwQmGkHnfLwAXzVNmjYqkGOl8Sl3CTA78pRXL73EA/u+COZ17TLLOEWNi3dgZSW32D+ypWYM20ImrnI4XlwCRb/cQOaU4veewov7F91HOZfrsSG/YewbcdKDG5oguBjK7DlfII4Eb2QgLsbfsEBz1Tw55ZF/EUcuGyGVj16oUtPceg1CEO/aAjNvV5JoIzAzbUTMX7KTsg7zMK8OcPRro4zTBnI6C1j4KBiQVa6C77o5AS/U4fx9NntNFShuHDkGlS1+qFHk5xv+ke5MUOpxp3QoWtn1HLg5iIzFcKOH0R81+/xdc/mqF6tJuq1Hwy3hcNQ01iJkLPHcT9NnPQ9lvrgIUx7foueDRyguUOOzLomugz9BK7SeIQGRvEIfiYqxF9Zi/3Kpqhvyd9bZkoEHz2A6HZuGPv1OAwbKw5jBuMDV9am08Xj3l9TsGhzIGpM+BGj25UC76hB7wpu0aiYMEf90QswosotrJ7/F46fPoa9//se+9O6wm1mD5Tk/uj1ZbniMMkRYdoYXZvbZtqQypw+RIMKMqgS45HIPtMwrPUJ2lXJcvxZKoFE5owqNR3An+YLqqjz2LTfFN0GVIMRf2+Zpd7HwT13EXJ5A9Zt3ItLjyKEXyBllOS+Br9tewL9psMwtK0jf1v0TmHgoOLDsBw++m4lvv+6BRzNbFCp51wsWToM9Wy4mpMuGKLaR22zCbOak1qF4OFaFqV4ZbSXqaJx8+Ad2A2Zjj61ePz1OVUozv15DLb9+6MK+3++JOXmUVwNTULQjaPY+9cSLBrZG6O//Qs3I5nqtZSBOLbpMILVtmjycT3EXT6EA7v24pz7U0Q+a/UneotYE6NiRgZTh4qo0aA+qpS20XbhIHqTVPH38MTfBLU//YSBI4vUEHf8t2Aclh6LgaE6DansTyVSIuTwH7hSZjC6VWYIy45Rk8lYffAQ1v2xCF993grlbZQIvboeC75bhbs8FQjKsPO4/CD9rLGAE+tx6IYnAu4fxrppQzFy2Hyc9OcVGujtYuAgIio0SgQdOYAnZfthYAcHbmAzUAZdwIE95+CTIINBqjfOr/4W8zc+YrcYgdJ3Dza6V0Pf7uXAi+nlQmYM24of4tPR87H0z5/xRS1zyD12YtN+v/f+XCCVrzeChUxhWKsvJk6bgtFjx2LEzN+wZEpbmAUexZpf9yKUAZ/eIu4PiYgKiTL4EP4+YYuBU3qjLJvXMpE5f4DuIyZi4uL1+H3ZV6hhlgrPnVtw+X0/Oi33xN6191F72GcoyRaxfJPZ1EXvqcNQ20QOnweP3/vgqkpKQrJKCqtyFWD7vJunDLYtvkCb0jIk3T6Da1HsfkZvDwMHEVFhSH6AnSuvoobbd2jtzNM1c2NatQ8GdSkDaVIQAsPf58OuKkQdXoMDIUp4/bsMq3/9X/qwYh+eJKmQ9vgA/vr1F2w44iFOTxnJHJqifgUZ5CkpeN87DElNTWAslUAmy7Lt0SuNUq4GwqoWgTDeHZHeIgYOIqLXJffDiVV7oN9nCrpU5B0B8qaP0hXLwFBqAlOz9/tyTGpTJ7iYRCPAxwf+zwbfMCQo1VAmhmnLA8OTxKkpE6kRDA2lMC9h+96frycrXRZOUhVioyKzdC+TwkQIIxIYw8SYlz6jt4eBg4jodShDcGHNZkS2HYvPqmW830sqvE+f5p3Zs6VEdGgEUKkx6rzXV5GTwrbNBMz936/4PuPw4wg0sJTBuN5gzP7fL5jWv5Y4PWWS8gSe/jZo0LzOex84pHZNUL+SHpIf34dXpv5laYiNiYfErhqqss8evUUMHESUN3USkpOFf5XK977rQiaqSLivmIFNXvpIvrwZG9eswgbt8Dv+WDgJax5Zv/f98lM9j+HfTftxLyzDXRDj7+DgBRm6ju4G3rON8iT3wNH/fY8VG07A93ljTxKe7tgKz3pj0Lcxb+wKmSva9+8I+5Bj2H0s6HkrhyrmMq4/NET1Ht1Rg+eV0Vskue/trxYfExFloUDIreO4euEgdu68iWiJPer17o/WDeqjSd33/S62yXi0fgLmbniAxOy2orLK6C2Ej77l3+fEoULkkTmY9OMpRBu6om6bFqhoI0Fqsj7KdvgcrSuYidNRJmnXsKKfGy7UmYf101vw8t6pt7FxzLfY4ZEEfaf6aNm8AvTjoqAs/TF6f94gw0nS77sU+B78H/639i5s23VFk1IqeJw4jtBqw/D14Caw5SFmeosYOIiISIdUSAp+jKc+0VAaW8OxbAU4W/Lir/SKlPEIfvIEQTEKGNq4okwFZ5gxaGRPkYBQT2FZJRnDsXxFOFmwKxW9fQwcRERERESkM2xgIyIiIiIinWHgICIiIiIinWHgICIiIiIinWHgICIiIiIinWHgICIiIiIinWHgICIiIiIinWHgICIiIiIinWHgICIiIiIineGN/4iI6A1TIiHYF+FJKnFcJJHB1K407E0TEeoTiiRx7ySRmKFEGUeY8RAZEVGRxMBBRERvmBwBF3fg4M6dOHw9FApNkUEZfNC7Bzp0+hR17ILhvmMt1v91DP4GZdG0+1AMGNQSLjLtHxMRURHD40VERPSG6aNksz4YPmcMmllJtCUSs2po068r6jgJqULPGZXLGkNp2RADl67ElKEMG0RERRkDBxERvR3mDdG4njk0kUMdew93PeTa4lSPHfjp9yC0nfc9ulc105YREVHRxcBBRERviRnqNK0DE03iUAbi9hUfpPgdwC8/nEflb+ahZzWT9MmIiKhIY+AgIqK3xrRBM1Qz1jxSwu/0Svzw/SE4j5mPL2qZa58nIqKij4GDiIjeGqllYzSsYaR9rPT3hPHnc9GvriV3TkRExQi36URE9PZIbVC/cVXoax6rExAVkQJeOpGIqHhh4CAiorcn4QFOnPWGWrs3ksPj8kVEZLk9BxERFW0MHERE9HakeePgop/w+AM3fF5V28YB+cOLuB7JxEFEVJwwcBAR0ZunDMG5nxbgbNnxmNTzAzT/sDL0NOWp93HtSjQYOYiIig8GDiIierNUEbj62wzs0v8SbkPqwEwqg2PTJiijvblfMh5cuIxYJg4iomKDgYOIiN4cRSgu/TIZP12ugi/HtoCtuBeSOVdGWev0keSbB3DST6F9TERERZ9szIRv5oiPiYiIdEYVeQEbpk7F2nOBSEuOQHCIBC71asA28jy2r/wbZx+EIUVziSpFGO6fd4d/oiXK1yoNMx4aIyIq0iT3vf15BUIiIiIiItIJHjciIiIiIiKdYeAgIiIiIiKdYeAgIiIiIiKdYeAgIiIiIiKdYeAgIiIiIiKdYeAgIiIiIiKdYeAgIiIiIiKdYeAgIiIiIiIdAf4P/eARDkwwxx4AAAAASUVORK5CYII=" - } - }, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Solve problem on Page 740 of the book but make it binary instead.\n", - "## **Location Problem**\n", - "Let us consider the case of LaRosa Machine Shop (LMS). LMS is studying where to locate \n", - "its tool bin facility on the shop floor. The locations of the five production stations appear in \n", - "Figure 14.9. In an attempt to be fair to the workers in each of the production stations, man\u0002agement has decided to try to find the position of the tool bin that would minimize the sum \n", - "of the distances from the tool bin to the five production stations. We define the following \n", - "decision variables:\n", - "\n", - "X = horizontal location of the tool bin\n", - "\n", - "Y = vertical location of the tool bin\n", - "\n", - "![image.png](attachment:image.png)\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
StationLocation XLocation Y
Fabrication14
Paint12
Subassembly 12.52
Subassembly 235
Assembly44
\n", - "\n", - "## **Solution 1**\n", - "**Use calculus**\n", - "I had to brush up my calc skills a bit Here are some good resources for that:\n", - "\n", - "https://www.youtube.com/watch?v=Hg38kfK5w4E\n", - "\n", - "https://calcworkshop.com/partial-derivatives/extrema-multivariable-functions/\n", - "\n", - "https://math.libretexts.org/Bookshelves/Calculus/Vector_Calculus_(Corral)/02%3A_Functions_of_Several_Variables/2.05%3A_Maxima_and_Minima" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "data = [(1, 4), (1, 2), (2.5, 2), (3, 5), (4, 4)]" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "def f(x, y, data):\n", - " x = np.atleast_2d(x)\n", - " y = np.atleast_2d(y)\n", - " sum_dist = np.zeros(x.shape)\n", - " for x_i, y_i in data:\n", - " sum_dist += np.sqrt((x - x_i)**2 + (y - y_i)**2)\n", - " return sum_dist" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# def not GPT written or anything, i can do second year data engineering (:\n", - "def plot3d(x, y):\n", - " X, Y = np.meshgrid(x, y)\n", - " Z = f(X, Y, data)\n", - " fig = plt.figure()\n", - " ax = fig.add_subplot(111, projection='3d')\n", - " surf = ax.plot_surface(X, Y, Z, cmap='viridis')\n", - " fig.colorbar(surf)\n", - " ax.set_xlabel('X coordinate')\n", - " ax.set_ylabel('Y coordinate')\n", - " ax.set_zlabel('Z value')\n", - " plt.title('3D Surface Plot')\n", - " plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAGlCAYAAAB3IMYUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5xjd33v/VYvozKj6b1sme3dZXfN2tjGBR4SA4EnJrmUe7kmiYHHyc3lJjwhhkDiEMgDlxviJCTYJsQhIWAwJDY4GOO267I7vfcuzWjUezvPH9qjkTRN0mh3Ztfn/Xrtyx7N0TlHGul8zvf7+34/X5kgCAISEhISEhISGyLf7hOQkJCQkJC4FpAEU0JCQkJCIgckwZSQkJCQkMgBSTAlJCQkJCRyQBJMCQkJCQmJHJAEU0JCQkJCIgckwZSQkJCQkMgBSTAlJCQkJCRyQBJMCQkJCQmJHJAEU+Itx5e//GXa2tpQKBQcO3Zsu0+nYGQyGZ/73Oe2+zQkJN4ySIIpkaKvr4/3v//9tLW1odfrqaio4Ny5c/z4xz9ete1tt92GTCZDJpMhl8sxmUy0t7fzX/7Lf+G5557L67g//vGPufXWW6mqqkKv19PW1sYHPvABnn322WK9tBQ/+9nP+PSnP83Zs2d57LHH+LM/+7OiH2MrTE5Opt5XmUyGQqGgqamJ97znPXR2dhblGP39/Xzuc59jcnKyKPuTkHiroNzuE5DYOUxNTeH1evnwhz9MXV0dgUCA73//+/zKr/wKf/u3f8sDDzyQsX1DQwOPPPIIAH6/n9HRUX7wgx/wne98hw984AN85zvfQaVSbXjMr3zlK/zP//k/ufXWW/nDP/xD9Ho9o6Oj/Od//iff/e53ueeee4r6Gp9//nnkcjn/8A//gFqtLuq+i8n999/PO9/5TuLxOAMDAzz66KM888wzXLhwYctRcX9/P5///Oe57bbbaGlpKcr5Ski8JRAkJDYgFosJR48eFdrb2zMev/XWW4WDBw+uuf3v/M7vCIDw6U9/esN9R6NRwWQyCe94xzvW/L3NZiv8xLPw+/2CIAjCRz/6UaGkpKRo+y02ExMTAiB8+ctfznj86aefFgDhgQceSD0GCA8//HDex/je974nAMIvfvGLLZ6thMRbCyklK7EhCoWCxsZGXC5Xztt//etf58CBA/zVX/0Vbrd73W3tdjsej4ezZ8+u+fuqqqrU/z/++OPIZLJVacQXXngBmUzGCy+8kHrstttu49ChQ1y8eJFz586h1+v5zGc+g0wm47HHHsPv96dSno8//jgAjz32GLfffjtVVVVoNBoOHDjAo48+uuZ5PfPMM9x6660YjUZMJhM33HADTz75ZMY2r732Gvfccw9msxm9Xs+tt97KK6+8ssE7tzG33347ABMTExtu19HRwb333ovJZMJgMHDHHXdw4cKF1O8ff/xx3v/+9wPw9re/PfU+pL9/EhISayMJpsQq/H4/drudsbExvvrVr/LMM89wxx135Px8hULB/fffTyAQ4OWXX153u6qqKnQ6HT/+8Y9xOBzFOPUUy8vL3HvvvRw7doyvfe1rvP3tb+cf//Efedvb3oZGo+Ef//Ef+cd//EfOnTsHwKOPPkpzczOf+cxn+Mu//EsaGxv5nd/5Hb7xjW9k7Pfxxx/nXe96Fw6Hgz/8wz/kz//8zzl27FjGeuvzzz/PuXPn8Hg8PPzww/zZn/0ZLpeL22+/nddff72g1zM2NgZAeXn5utv09fXxtre9ja6uLj796U/z2c9+lomJCW677TZee+01AM6dO8enPvUpAD7zmc+k3of9+/cXdF4SEm8ptjvEldh5fPzjHxcAARDkcrnwa7/2a4LD4cjYZr2UrMhTTz0lAML//t//e8Nj/fEf/7EACCUlJcK9994r/Omf/qlw8eLFVds99thjAiBMTExkPP6LX/xiVXrx1ltvFQDhb/7mb1bt58Mf/vCaKdlAILDqsbvvvltoa2tL/exyuQSj0SjcdNNNQjAYzNg2kUik/rtnzx7h7rvvTj0m7r+1tXXd9LOImJL9/Oc/LywtLQlWq1V44YUXhOPHjwuA8P3vfz+1LVkp2fvuu09Qq9XC2NhY6rH5+XnBaDQK586dSz0mpWQlJApDijAlVvHQQw/x3HPP8cQTT3DvvfcSj8eJRCJ57cNgMADg9Xo33O7zn/88Tz75JMePH+enP/0p/+//+/9y8uRJTpw4wcDAQMGvQaPR8NGPfjTn7XU6Xer/3W43drudW2+9lfHx8VRa+bnnnsPr9fIHf/AHaLXajOfLZDIAOjs7GRkZ4YMf/CDLy8vY7Xbsdjt+v5877riDF198kUQisen5PPzww1RWVlJTU8Ntt93G2NgYX/rSl3jve9+75vbxeJyf/exn3HfffbS1taUer62t5YMf/CAvv/wyHo8n5/dDQkJiNVKVrMQq9u3bx759+wD40Ic+xF133cW73/1uXnvttZQwbIbP5wPAaDRuuu3999/P/fffj8fj4bXXXuPxxx/nySef5N3vfje9vb2rxCkX6uvr86qCfeWVV3j44Yc5f/48gUAg43dutxuz2ZxKix46dGjd/YyMjADw4Q9/eN1t3G43ZWVlG57PAw88wPvf/37kcjmlpaUcPHgQjUaz7vZLS0sEAgHa29tX/W7//v0kEglmZmY4ePDghseVkJBYH0kwJTbl137t1/j4xz/O8PDwmhfktejt7QVg9+7dOR/HZDLxjne8g3e84x2oVCqeeOIJXnvtNW699dZ1hToej6/5eHrEuBljY2Pccccd7Nu3j//v//v/aGxsRK1W8x//8R989atfzSkiFBG3/fKXv7xu+4cYfW/Enj17uPPOO3M+roSExJVHEkyJTQkGgwAbVrymE4/HefLJJ9Hr9dxyyy0FHfPUqVM88cQTLCwsAKQisuxq3ampqYL2n86Pf/xjwuEwTz/9NE1NTanHf/GLX2Rst2vXLiB5M7DejYC4jclkuqqCV1lZiV6vZ2hoaNXvBgcHkcvlNDY2AuScJZCQkMhEWsOUSLG4uLjqsWg0yre//W10Oh0HDhzYdB/xeJxPfepTDAwM8KlPfQqTybTutoFAgPPnz6/5u2eeeQYgFdGKQvTiiy9mHOvv/u7vNj2nzVAoFAAIgpB6zO1289hjj2Vsd9ddd2E0GnnkkUcIhUIZvxOfe/LkSXbt2sVXvvKVVFo6naWlpS2f71ooFAruuusufvSjH2W03thsNp588kluueWW1N+ipKQEWH3zISEhsTFShCmR4uMf/zgej4dz585RX1+P1Wrln/7pnxgcHOQv//IvV6US3W433/nOd4Ck+IlOP2NjY/z6r/86X/jCFzY8XiAQ4MyZM9x8883cc889qX7PH/7wh7z00kvcd999HD9+HICDBw9y880384d/+Ic4HA4sFgvf/e53icViW37dd911F2q1mne/+918/OMfx+fz8c1vfpOqqqpUhAvJqPGrX/0qH/vYx7jhhhv44Ac/SFlZGV1dXQQCAZ544gnkcjl///d/z7333svBgwf56Ec/Sn19PXNzc/ziF7/AZDKtaTVYDL74xS/y3HPPccstt/A7v/M7KJVK/vZv/5ZwOMxf/MVfpLY7duwYCoWCL33pS7jdbjQaTaoHVUJCYgO2u0xXYufwz//8z8Kdd94pVFdXC0qlUigrKxPuvPNO4Uc/+tGqbcXWDfGfwWAQ9uzZI/zmb/6m8LOf/Syn40WjUeGb3/ymcN999wnNzc2CRqMR9Hq9cPz4ceHLX/6yEA6HM7YfGxsT7rzzTkGj0QjV1dXCZz7zGeG5555bs61kvZaX9dpKnn76aeHIkSOCVqsVWlpahC996UvCt771rTVbWZ5++mnhzJkzgk6nE0wmk3DjjTcK//zP/5yxTUdHh/De975XKC8vFzQajdDc3Cx84AMfEH7+859v+J6s5/SzFqzh9HPp0iXh7rvvFgwGg6DX64W3v/3twquvvrrqud/85jeFtrY2QaFQSC0mEhI5IhOEtDyUhISEhISExJpIa5gSEhISEhI5IAmmhISEhIREDkiCKSEhISEhkQOSYEpISEhISOSAJJgSEhISEhI5IAmmhISEhIREDkjGBRISEhISRSEUCuU92Wg91Gp1QYMXriSSYEpISEhIbJlQKERrswHr4toDEfKlpqaGiYmJHSWakmBKSEhISGyZSCSCdTHO1MUWTMatrfZ5vAmaT04SiUQkwZSQkJCQuD4xGGUYjFubiJNgZ07UkQRTQkJCQqJoxIUE8S0arsaF3GfQXk2kKlkJCQkJCYkckCJMCQkJCYmikUAgwdZCzK0+/0ohCaaEhISERNFIkGCrCdWt7+HKIAmmhISEhETRiAsC8S1Ojdzq868U0hqmhISEhIREDkgRpoSEhIRE0ZDWMCUkJCQkJHIggUD8OhVMKSUrISEhISGRA1KEKSEhISFRNKSUrISEhISERA5IVbISEhISEhJvcaQIU0JCQkKiaCQu/9vqPnYikmBKSEhISBSNeBGqZLf6/CuFlJKVkJCQkJDIASnClJCQkJAoGnGBIoz3Ks65FBtJMCUkJCQkioa0hikhISEhIZEDCWTEkW15HzsRaQ1TQkJCQkIiB6QIU0JCQkKiaCSE5L+t7mMnIgmmhISEhETRiBchJbvV518ppJSshISEhIREDkgRpoSEhIRE0bieI0xJMCUkJCQkikZCkJEQtlglu8XnXymklKyEhISEhEQOSBGmxFVFEATi8TjhcBiFQpH6J5dL924SEtcDUkpWQqIICIJANBolFosRDodTj8vlcpRKJUqlUhJQCYlrnDhy4ltMXsaLdC7FRhJMiatCPB4nGo2SSCSQyWQpURQEISWkkUgEmUyGTCaTBFRC4hpFKMIaprBD1zAlwZS4ogiCQCwWIxaLAaREUiZLfiFEgRQFURAEEokE0WiUaDSa2gZArVajUqlQKpWpxyQkJCSuFpJgSlwxROFLJJJWyqI4CkLSxiNdOEXE6FNEFNALFy7Q3t5OaWkpcrkchUKREYVKAiohsTOQ1jAlJPIgPUoURTFb0NYSy7UQBVT8r0KhSO1bTOGKAqpSqVLbSAIqIbE9xAU5cWGLa5g71BpPWhiSKCriemRXVxd2u31NsSyE9BSuGF2KAike0+/34/V68Xg8+P1+wuEwsVgsFdFKSEhcnzzyyCPccMMNGI1GqqqquO+++xgaGlpzW0EQuPfee5HJZPzwhz/M6ziSYEoUjUQiQSQSIRaL4fV6iUajRYv00lO52Y9np2cFQSASiUgCKiGxDSSQkUC+xX/5XTd++ctf8uCDD3LhwgWee+45otEod911F36/f9W2X/va1wq+LkkpWYktI/ZWxmIxEokEcrl8XYG7kohfAnENVDy+KOThcDiVws2uwpVSuBISxWE71jCfffbZjJ8ff/xxqqqquHjxIufOnUs93tnZyV/+5V/y5ptvUltbm/d5SYIpsSXEdGg8nuycEsVSrIYtFoUI8FoCKv4Lh8NEIpHUOUsCKiFx/eB2uwGwWCypxwKBAB/84Af5xje+QU1NTUH7lQRTomDEyC09qkxnPYHbLjFKX08VU7fpApoegYrtK2IPqCSgEhK5UZyin+S1w+PxZDyu0WjQaDQbPjeRSPDQQw9x9uxZDh06lHr8d3/3dzlz5gy/+qu/WvB5SYIpkTdiClasgl1LUDaLCPMVoCuR4t1IQJeXlxkfH+fIkSOSgEpI5EFyDXOL5uuXn9/Y2Jjx+MMPP8znPve5DZ/74IMP0tvby8svv5x67Omnn+b555+no6NjS+clCaZEXiQSCWKx2KoUbDYbCVwsFsNqtWIwGDAYDDtGfNIFVC6XEwgEUqnlUCiU2ia7yEgSUAmJK8PMzAwmkyn182bR5Sc+8Ql+8pOf8OKLL9LQ0JB6/Pnnn2dsbIzS0tKM7d/3vvfxtre9jRdeeCGn85EEUyIncumtTGc9wfR4PHR2dqbSoAqFgrKystQ/nU6XtwBfSUQHovQINJFIpARULpevWgOVBFTirUyiCF6yCZLfdZPJlCGY6yEIAp/85Cd56qmneOGFF2htbc34/R/8wR/wsY99LOOxw4cP89WvfpV3v/vdOZ+XJJgSm5Jtb5dLb2W2wAmCwPT0NMPDw7S2ttLQ0IAgCHi9XpxOJzabjeHhYdRqdYaAarXaK/ra8mG9FG4ikSAcDhMKhSQBlXjLU8w1zFx58MEHefLJJ/nRj36E0WjEarUCYDab0el01NTUrFno09TUtEpcN0ISTIkNEaPKeDye4fm6GemCGY1G6e3txeVycfLkScrKylIuPaWlpZSWltLa2ko8HsftduN0Opmbm2NwcBCtVktpaSmxWCxV1bpTyL5xEAU0Ho+nRpilFxGJqdximTlISOxExF7Kre0jP8F89NFHAbjtttsyHn/sscf4yEc+sqVzSUcSTIk1Wa+3MldEwXQ6nXR1dWE0Gjl79ixqtXrd1KpCocBisaRKwWOxGC6XC6fTSTgcZmhoiJmZmYwIVKVSFeX1FoO1jOTT30fx92v54EoCKiFROIUs1xTyHEkwJVaxXm9lvjgcDsbHx9mzZw/Nzc1570OpVFJRUUFFRQUej4eamhrUajVOp5OJiQl6e3sxGAwp8SwtLUWp3Dkf6fUENBaLpVyQRAFN98GVRplJXMvEBRnxLY7n2urzrxQ75+oisSOIx+OEQqHUhb4QoQyHwzgcDuLxODfeeCNms7ko56ZQKKisrKSyshKASCSC0+nE6XQyMjJCKBTCaDSmBNRsNmdMPtluNhPQeDzO4uIiTU1NkoBKXLMUZ4D0zrSvlARTAlhJwS4vL3Px4kVuv/32gsRyeXmZ7u5u5HI5tbW1RRPLtc5FrVZTXV1NdXU1AKFQKCWgAwMDRCIRzGYzpaWlKQHdSeKTLaDRaJTR0VHq6upSs0DXciHaSa9BQuKthCSYEhkpWHHtMV+xTCQSjI2NMTk5yb59+3C73UVfl9tszUGr1VJbW0ttbS2CIBAMBlMCOj8/TywWw2w2pyJQo9G4o8RHFFAxrSxGoOmjzMTfSwIqsVNJCHISW6ySTezQAQmSYL7FER17xMIecd5kPoRCIbq6uohEItx8880YjUa8Xm/RvWTz3V6v16PX66mvr0cQBAKBQEpAp6enEQQhFX2WlZVtu4lC9vu1VgpXrFoWI9BsARWrcCUktgspJStx3ZHdW1moafri4iI9PT1UVVVx8uTJVHSUizVevoK6FQGWyWSUlJRQUlKS6gH1+XwpAZ2YmEAmk2VU315to4TNInuxQCh9++xh2ukCml6FKyEhsXUkwXwLIl5kxUgyPaUnCtlmF+9EIsHQ0BCzs7McPHiQurq6jN/LZLK8I9WNKPZFXyaTYTQaMRqNNDU1kUgkUiYKS0tLuFwuBEGgr68vFYWu50JU7PPKZ9vNBFTMGqQXEUkCKnElSbD1KtfiXTmKiySYbyHSL6jr9VaKP28kmIFAgM7OTgDOnDlDSUnJqm2uhMBdyYhPLpdjNpsxm820tLTgcrno7u5Gp9NhtVqvigvRVl9frgIqjTKTuJIUx7hgZ67LS4L5FiHX3sr09bK1WFhYoK+vj/r6etrb29ctOCl2hHm1ES3u2traANZ1IUoXULVaveXjFlO80gVUGqYtIbF1JMF8C5Bub7dZb2V6hJlOPB5nYGAAm83G4cOHU60cm+2nWGyX+brIRi5EU1NT9PX1UVJSkmGikK8L0ZV8fWsN04bkZ6O/vx+1Wk1TU5MkoBJbpjheslKEKXGVKcTeTvx9enTo8/no7OxEqVRy5swZdDrdpse+1iPMzUh3IYJkD6VYQDQ2NkYgEEiZKIh+ubm4EF0tcUoX0EQikYpGRSN50bdXElCJfCnmPMydhiSY1ymF2ttlu9DMzc0xMDBAc3Mzu3fvzst8vZhsd4S5GSqViqqqKqqqqoCk25EooMPDw4TD4U1diLbr9aWPaxNFMX2YdjgcXtdIXprEIpGNFGFKXFNk91bmW3kJyYhpcHCQ5eVljh8/noqk8tnP9RxhboZGo8kYKRQMBlMp3HQXIlFAxZl/2yE+giCsuhFab5RZ9jBtUUClUWYSbwUkwbyOSO+tFC+ChTT8A7z55puUlJRw9uzZTaecb7SfYrHTI8zN0Ol06HS6NV2IZmdnicfjGAwG4vE4Ho8Hg8Fw1Rx8cnF2ylVAsyexSAL61qM4xgVShClxBRGrH8X1qEIuVIIgMDU1BUB1dTX79u0r+GKXi8Dla8F3LQtmOmu5EPn9fhYWFlLrxYIgpNY/r7QLUSFWiBsN05YE9K1NQpCR2GofpjStROJKIF6kgsEgP//5z7n99tsLam+IRCL09vbi8XiQy+U0NjZu6cJW7Ijwer7IymQyDAYDlZWVLC4ucubMmVUuRHK5PMPGT6/XF+09KUQw13oN6wloOBwmFAqlWnUkAZW4VpEE8xomu7CnUMQhzyaTiTNnzvDiiy9uef1xI8FcXl6mt7cXtVqNxWLJeZLI9RJhboQoPBu5EI2OjqJUKjN6QHOpXF4PMStRTLKHYqcP047H44TDYTweD2q1mtLS0gwfXElAr20SRUjJSsYFEkUlu7dSbFnIR+gEQWB8fHzVkOd8/WTXYi3BFASB0dFRJicn2bVrFzKZDJfLlZokkh5BGY3GjAvnW+Eiut57nu1CJK5zOp1OFhYWGBoaQqPRZAhoPuvOxYgwN2MtI/nZ2VlMJhMajSajSjfbB/et8Le/nijOtBJJMCWKwEa9lflUpobDYbq7uwkGg6uGPBcjnZq9j3A4TFdXF+FwmJtuugmtVksikchYwxNTkJOTkxlG6GVlZakI5XonF3FQKBSp9wWSVdFiBe7MzAz9/f3o9foME4WN0vRXQzCzEY+nVCpTRvfpw7TXE1BplJnEdiIJ5jXEZr2Vcrk8J8G02+10d3dTXl7O8ePHVzXUF6MlJF0wxaHSFouFEydOoFAoUuOpxG0NBgMGg4HGxsY1U5AAer0erVaLxWIpqHJ3p1PoDYFCoaC8vJzy8nIg04VocnISn8+3oQvRdggmZKaC14pA1xPQdCN5SUB3HnFkxLdoPLDV518pJMG8Rkivgl2vUGKzyDCRSDA6OsrU1BT79++nvr5+XT/ZYkSY4lDp8fFx9u3bR0NDQ07R61opyJ6eHuLxeMpIIT2CEsdxXQ8UQ7iyXYgikUhKQLNdiMrKyq7IGmYuiJ/ltdhMQGFtFyJJQLcfKSUrsW2IKdhoNLppb+VGEWYwGKSrq4tYLJYa8rwexUjJxuNxfD4fkUiEm266KdWYXwgKhQKtVotaraatrY1oNJoSgImJCXp7ezMEQCwiuda4UilntVq9rgvR0NAQoVCI8fFxfD5fykTharx/axkmrMd6AipOYgFJQCWuPJJg7mASiQSxWCxne7v1BFMc8lxdXc3+/fs3vRhuNSXrcDgYHh5GJpNx5syZNVO+hfT9iYKiUqmorKyksrISyBSAwcHBDBcdi8WC0Wi8Zi6cVyPSy3YhOn/+PBaLhWAwmCrAMplMV/z920pku5aAioVwYgQqk8kyBFSswpW4ssTZekp1a3X/Vw5JMHcg6V/+dJ/PzciODMUhz3Nzcxw8eJDa2tqcjl9oSja96ra2tha3252T4fhWSReAtVx0EolEqgLXYrFQUlKS0/t5tYuMtquoSSaTpdZA13v/0m38siuYC2WjlGy+iOubIpsJaHoVrkRxkVKyEleNdHs7yC8aS48w/X4/XV1dAJw+fXrNIc/rUUhKNhKJ0N3djd/v58YbbyQcDuN2u/PaRzHOaS0XnbVMAMSLv8Vi2VIPY7HZLi/Z9OKbtVyIxPdPdIJKbwHK9QZkreNeqch/IwF1Op0sLi6ye/fuVUVEkoBuHcl8XeKqkN5bmZ5uyhVRMOfn5+nv7990yPN65JuSFY0PzGYzZ86cQaVSsbS0tCPaQNYyARB7GK1WK8PDwxk9jBaLpSiDoAthu6eVrEV2BbMgCKkK5uXlZcbHxzNuQEQThVyE52oWG6ULaCwWw+l0ZqyBit83aZSZxEZIgrkDKGRu5XpMTU3h8Xg4cuRIqsgjX3KN5gRBYHJyktHR0Qzjg1z2sZU1zK0gWsyVlpbS2tqa0cM4PT1Nf38/JSUllJSUpNaQr0ZaWWS7Isx8im9MJhMmk4nm5uaMGxCbzcbIyAgqlSojAl0vgi9mSjYfxOOuNUw7EolkjDKTBDR/hCLMwxSkthKJtSh0bmU2Xq8Xv99PIpHIecjzeuSyhhmJROjp6cHr9XLDDTdQWlqa8ftie8leKbJ7GMWUnc1mIx6P89JLL6UqcC0WS04WfoWyEyPMzVjrBiRXF6IrmZLdiEQikZGuTffAFc9L3E4S0PyRUrISV4REIoHNZsPpdNLW1lbwOtDs7CyDg4Oo1WpaW1u3vCa3WUrW5XLR2dmJyWTi7Nmza/ZAbiaY+YpDMcwUckEcBK3VanG5XNxwww04nU4cDgd9fX3EYrFVFbjFvGhu9xrmVsl2IYrFYrjd7jVdiMSsytVms8h2IwENh8MbtrFIAnp9IwnmNpDeW+n3+7Hb7ezatSvv/cRiMXp7e3E4HBw/fpyJiYminN96YieO/xoZGWH37t20tLRsuPZV7IhpOyIwrVZLbW1tao5lIBBICej09DSQLIARTeS3MkVkuxx3ruRxlUrlqgheTIEnEgk6OjowGAwZPbRXOgUu+i/nSrqAZs8CzRZQsYBIqVS+ZSexSOO9JIpGdgpWqVQWFDm53W66urrQ6XSpIc9TU1NFicLWSslGo1F6enrweDxrpmCzKbZg7oQLj0wmS61vNjQ0pApgHA5HxhQRUTzLysrQarU57/9aTMnmi9hDW1FRwezsLKdOnSIYDOJyuRgdHSUYDK4S0GKbKGx17TS9cn2jYdqigL7VRplJA6QlioIYVaYX9uTq/yqSHuXt2rWL1tbW1Jcw332tR3b60+1209nZicFg4MyZMzlVkV4vEeZGpBfApE8RcTgczM3NMTg4iE6ny8vC73qLMDc6JiR7aE0mE9XV1cBqF6JwOJwyUch1DNxmFLvYSBLQ7eeRRx7hBz/4Qeo7d+bMGb70pS/R3t4OJM1UHn74YX72s58xPT1NZWUl9913H1/4whcyBk9shiSYV4Hs3sr0L0o+IpdeaHPq1KnUOpFIMStJxS/89PQ0w8PDq8R5M67HCHMz1lq/c7lcOByOlIWfwWBIRaDZ0dNbIcJMPyawSriyXYjSTRREF6JsE4V8xS+76KfYbCSg09PTeL3eVA/o9ThMeztSsr/85S958MEHueGGG4jFYnzmM5/hrrvuSlW9z8/PMz8/z1e+8hUOHDjA1NQUv/Vbv8X8/Dz/9m//lvNxJMG8woi9laIoZhsR5CqY2UOe14ryihlhxmIxOjs7cblca4pzLvu43iPMzVjLBN3hcKyKnkQB3S7h2o7jpn8fNkKn06HT6airq8tYQxaLiNJdnMrKyjAYDJvu82q3s6R/58VCJ/G7Gg6HCYVCyOXyVUVE16qAJpBveQB0vs9/9tlnM35+/PHHqaqq4uLFi5w7d45Dhw7x/e9/P/X7Xbt28ad/+qf85m/+Zl6tY5JgXiHSnUU26q3cTOTS7eb27t1LU1NTQebr+RCNRrHZbJSWlnL27NmCGvmvRB/mtY5arV4VPYkCOjs7SywWQ6FQMD09nfPFf6uIf6OdEmFuxFpryD6fL8OIXyaTpaL39VyIEonEVe2tTScej68yhRdvWuLxOPF4fN02lmtVQLcD0WXMYrFsuI3JZMrrsyAJ5hUgn95KhUKxrshtNOR5LbYqmIIgMDMzw9LSEqWlpZw8eXJLX9C3eoS5GTqdjvr6+pQF3cTEBIuLi2ta+OXjoJMP2yWYuUaYG5Hu4iTOURVtEJeXlxkbG8tIk4vvYTwe3zY3J1Ews19HtpF8toDef//9fPjDH+b+++/fjtPOi7ggI77FlKz4fI/Hk/G4RqPZdBZuIpHgoYce4uzZsxw6dGjNbex2O1/4whd44IEH8jovSTCLTLq9XS53hOuJ3GZDntdiK2lQsUXF6XRSVVW15YvzRuYH8XickZERIpEIFosFi8WyI4thriYymQyNRoNWq+Xo0aOpIdoOhwObzcbw8DBqtTqjArcYQ7S3UzDz8UnOBblcvqELkfgeymQy4vE4oVAoryrmYrCWYGazloBardZti4rzpZhrmI2NjRmPP/zww3zuc5/b8LkPPvggvb29vPzyy2v+3uPx8K53vYsDBw5suq9sro2/wDVAofZ22YKZSCQYGRlhenp6wyHP6+1LjGrzwePx0NnZmaoum5iYKEpqdy3BDAQCdHZ2pqKDqakp+vr6VrnprHVRud4izLVILwYTh2hnW/iJBgAlJSUZ0VMhF9TtTMle6XXEtVyI3G43Q0NDeL1ezp8/j1arzUjhFuMmZCMKiW5lMhmBQAC9Xn+Fzqq4CEWYViJcfv7MzEzGLN3N/j6f+MQn+MlPfsKLL75IQ0PDqt97vV7uuecejEYjTz31VN6D5yXBLAJbsbdLr0gNhUKpIc+nT5/GYDDkdR5yuTw1yijX8xZdglpbW9m1a1fq7nar4iS+/vSCksXFRbq7u6mvr2f37t2pKFxsJXA4HAwMDBCNRjGbzaloqthuOjuVjd7z9Sz8nE4nY2NjBIPBjCHa6910rHfM7YowryYKhSI1nUYcqO1yuXC5XBk3IelFRPleUDejkApdcWLMRkPfr1fEjMFmCILAJz/5SZ566ileeOEFWltbV23j8Xi4++670Wg0PP300wVlFyTB3CJr9Vbmg3iXbbVa6e/vz3nI81rkI3SxWIy+vj6Wl5c5ceJE6kIsnlMxBVMQhFTUfOjQIWpra1PrM7B6nmW6m87k5CQymQytVotMJiMYDO6ocVzFJtfPj2jhJxrsh0KhlID29/fnbOG3nYK5XUO9xRu17CrmdBei9DagYroQ5esyJOL3+/Ma0bedxJEVYYB0fs9/8MEHefLJJ/nRj36E0WjEarUCYDab0el0eDwe7rrrLgKBAN/5znfweDyp9dHKysqcr7eSYBZIem+lmF7aykWnt7c3JSaFkmvRj9frpbOzE41Gk3IJSqcYvq3iexEKhejp6SEaja6KmtcS5exKSHEtb2JiAq/Xy4ULF9BoNKm1zysRBWwXW7lJWc/CT5zCAmvPsLyeU7LrsZ5Yiy5ElZWVQLINSHwPR0ZGCIVCBUXx6eSyhrkWgUDgmokwE8LWre0SeX4VHn30UQBuu+22jMcfe+wxPvKRj3Dp0iVee+01AHbv3p2xzcTEBC0tLTkdRxLMAhDHPm11wojf76ezsxOgoF7HbHIRzNnZWQYGBmhpaWH37t1rnncxU7IXLlygvLyckydPZtyd57p/cS2vvLwchULB/v37V0UBuax/XisUQ7jWs/BzOp3Y7XbGxsZQKpWp1pViHTcftiMlm37sXMRarVZTXV2dciFKj+IHBgaIRCIZJgomk2nT/RYimJFIhGg0mvcSzVuJza4nt912W1FqICTBzAOxt9LpdNLZ2cktt9xS8Jd+fn6evr4+Ghoa8Hq9RSk22EjoYrEY/f392O12jh8/nkpDrcVWU7KiowlAa2vrhibt+e43O4220fqnxWK5Kr2MxeJKFTWlW/iJ1aPiBBGbzQbA+fPnMwqIrnTbxXamZAs9dnYUL3rgOp1O5ubmcnIhKmQN0+fzAVwzgpkoQtHPVp9/pZAEM0fSC3vEAp1CLsSxWIyBgQEWFxc5evQoVVVVKceSrbJehOnz+ejs7ESlUnHmzJlNF7u3EmGmm7QDeVX5bnZOa7HZ+md6L6NY8LGTuRrinv6eVFdX88Ybb7Bnzx6cTieTk5P09fVd8Qki252S3WoWQiaTodfr0ev1a7oQTU9PIwjCKheiQtYwfT5f6njXAokiDJDe6vOvFJJg5kB2b6VSqUwJZz4XOHHtUK1Wc/bs2ZRwFcuhZ639zM3N0d/fT3NzM7t3787py1roGqbYnqLX67npppv45S9/WdSoabN9rbf+6XA4sFqtDA8P7+j1z+1omxGFK9vCT7zpGB4ezjBAt1gsOaUeN+NaSMnmw3ouRKKAii5E8Xic5eVl1Gp1zqPgxJaS7brBkFhBEswNWK+3Mn2wbC4f+PT2jZaWFnbt2pXx4S+mB6x40Y3H4wwMDGCz2Th27FiqkCEXCknJimujbW1ttLW1pZ5fLBEo5OKa3csomqFnr3+K4rnd65/b5SWbfczstTvRAF2cwhKPxzNmgBaS9t4JVbJXknQXoqamptTN26VLl3C5XMzOzqbWkcUofj2zEJ/Pt6bF306lmE4/Ow1JMNdho95K8cuWyxcvGo3S19eH0+lc1b4hUuwIU0zBKpXKjEg2V/KJMOPxOP39/SwtLa25Nno1I8zN2Gj9M70Vw2KxoFar3xJGCbmIdLYBut/vT71vooVfuoDm4hK1ncOyt0OsRRciQRA4dOgQarUat9uNy+XCarUyNDSEWq3OWEcWv7eFtJRsNu4KkoUwv/zlLzOe9/GPf5y/+Zu/WXe/giDw8MMP881vfhOXy8XZs2d59NFH2bNnT2obaQ3zLUYikSASiazbWylGIZuJijhHsqSkhDNnzqxb2FNMwQyHw5w/f56mpib27NlT0IUh1wgzEAjQ0dGBQqFYtTaa3odZDK7ExXWt9U/RDN3hcJBIJOjt7b1q6587JcLcCJlMhsFgwGAwpPxb17LwE9+z9dxztivCFD+P25FJEL/jopG6KIzpLkRiAdHg4CAqlYrHHnsMk8mERqPJ6++02bgrkf/+3/87f/Inf5L6ebN10r/4i7/g61//Ok888QStra189rOf5e6776a/vz/Pd+PaRBLMNMQUbDQa3bC3Mn1Uz3r7mZycZHR0NKc5ksUQzHg8zvT0NKFQiBMnTqQa2gshl6Ifm81GT08P9fX1tLe3r3nx22g/hQjDlYz40tegGhsbcblcdHV1UVJSklr/FG3UduL6Z6FsdS1xLQs/t9uNw+FIuefo9fqMGaAqlWrbin7E79l2HDs9W5WN6EIkTteIxWLMzs6iVqv5yU9+gs1m49ChQ9x+++28/e1v5x3veMeGVbObjbsS0ev1qek5myEIAl/72tf4oz/6I371V38VgG9/+9tUV1fzwx/+kHe+853A5aKfrfZhSkU/O5t8eivFdcy1RG6zIc9rsdHEklwQ+zkTiQRarXZLYgkbp2TTvW4PHz684ZetmDMxr3bkJc4nbG1tvWrrn9dChLkZ2Rd+0T3H4XAwNjaWasAX36tCG/kLZacKZjZKpZKWlhYeffRRvvWtb/H973+fhx56iOeff54/+qM/Ys+ePetO4liL9cZd/dM//RPf+c53qKmp4d3vfjef/exn140yJyYmsFqt3HnnnanHzGYzN910E+fPn08JplCEKllBEsydSfrcSvHikatpenaE6XA46OrqSs2RzDUC2UqEabVa6e3tpaGhgcrKSnp6egraT/b5rCV0otftWq49a1FMwYTtNV/PZf1TbCG4lvo/r7RIZ7vnhMPhVPQZCAR48cUXV/kGX0kxE7+z2/G3EW8O8j223++nrKyM9773vbz3ve/N+7jrjbv64Ac/SHNzM3V1dXR3d/O//tf/YmhoiB/84Adr7ke0mxOLwUSqq6tTv4PiTivZabylBTPd3g7IWSwhMyoUBIGxsTEmJiY2HfK8FoUIZiKRYHBwkPn5eQ4fPkx1dTVut7soorKW0C0vL9PV1UVFRcUq156N9lPI74qx/ZVmo/XP9P7P9EKYzbgeIszN0Gg01NbWEgwGCYVCtLS0pN43sXcxvfCl2NWhhXo+F+vYhdribcW0YL1xV+mzIA8fPkxtbS133HEHY2Nj7Nq1q+DjXc+8ZQUzvbcyffZcrogiFwqF6O7uJhQKcdNNN+XkrL/evnIlfUTWmTNnUimUYnjAZu9HHGw8NjZGe3s7jY2NOV9sNosw871o7dSq1ez1z/RCmIWFBYaGhtBqtRmzLNfLPlzvgikiiofY/J/eu+hwOFIDoNNbL3K98djsuNdaO8tWjNc3G3eVzk033QSQqr3IRlx+sdlsGZ7XYuuaiFQlex1R6NzKbBQKRSoFW1FRwYkTJwp2Q8lHMMUU7FrFNsXu50x37bnxxhsxm80F7acY7LQIcyPW6/8U2zDS1z9F/9tiTIgphO1s78gWj/TexWwLP/HGQzSeKNTCrxguP4VS6Hqtz+fL23g9l3FX2Yi+1usNgGhtbaWmpoaf//znKYH0eDy89tpr/PZv/3ZqOykle52wlbmV6SQSCcLhMBMTExw8eJD6+votnVcuQpdIJBgaGmJubo5Dhw6tWWxTzPaUeDzOq6++isFg4MyZMwV5ixZbMHdqhLkZa61/imnIvr6+1PpnIpFI9X9eLRHb7ghzI9JbL4CMwitx8Hi+Fn7bHWEWIph+vz/vKUabjbsaGxvjySef5J3vfCfl5eV0d3fzu7/7u5w7d44jR46k9rNv3z4eeeQR3vOe9yCTyXjooYf44he/yJ49e1JtJXV1ddx3331EIpG8X9u1xltGMDfrrcyVQCBAV1cX8XicXbt2bVksYe0CorWOKQhCRgp2rf2I8ycLfX2CILC0tEQkEmHPnj20tbUVvK9rWeSuJOI6XvooLrEQxu128/LLL+e9/lko2ymYeU+7z7rxWGv8lmjhJ1YuZ4vj1XD5WY+trGHm6yO72bgrtVrNf/7nf/K1r30Nv99PY2Mj73vf+/ijP/qjjO2HhoZSFbYAn/70p/H7/TzwwAO4XC5uueUWnn32WbRabUowJS/ZaxgxBTsxMUEoFGLPnj0FXyDEdGhtbS1KpbJoEx02igwXFxfp6emhtraW9vb2Db9w6WYBhbxG0bXHZrOhUCi2vPC/nmAKgsDMzAzLy8uptKRWq6XTYUUpk3GorDrnfV3rpK9/hkIhBEGgqqoqIw2Z6/pnIeyklGy+rGfh53Q6mZ+fz6hcFitwr9UIM9+in82+K42NjatcfnLZj0wm40/+5E8yzA6ykVKy1yjpKdhoNEogEChYSIaGhpifn0+lQzs6OjaMCvNhLcFMJBIMDw8zOzvLwYMHc0rJiBeCQi4KYi+nQqHg2LFjqfWMrbCWyMViMfr6+nA4HFRXV6dEQafT8URgjr6gk2/f8l5azJZV+7seBTMdUbxKS0spLS1dd/0z3Qh9rSgq32Nul4FAsYV6PQs/sXJZJpOh0+mIRqP4/f6czc+LxVaKfq6V0V7XO9etYIoiKYqHUqksaH1PFBK5XJ6RDi3WeqG4L7G1BZJ3yqIRwenTp3OukEsXzHxI7+Xcu3cvgUDgirSn+P1+Ojo6UKlU3Hzzzanq5FgsxqRtgTfe6CBMgv/6y+/z2ZrDtFRWp6ZjXEtFP1sh+3Xmuv5ZqBH6dqZkr6RQr2fhNzU1RTAY5I033kClUmWMfivGTNqNKDTC3GpbydVGijCvIbJ7K9MnjOQbEYqjsRobG9m7d++qitQrEWGKKdjq6mr279+f1xcsX//W9Cg2vZComO0p4rksLi7S3d2dEmUgteahVCp5yWfnYGk1l1wLLCUifMM9zv/SaJmZmQGgpKSESCRCMBjc8TMtCyWXv1v2+udaRuiiAIip7s2OuV0p2at5XLFyWXS6OXjwYIZ368DAAHq9PqOFpdjWh4WsYYp/40LbSrYDSTCvEcTeSvFin25EkI9gxmKx1ASO9UZjbdXOLh1RfIeGhpienubgwYPU1dXlvR/xteZyXtmuPelfyGIUD4nnI1rpTU5OcujQoVRqOf0cBUHg3yb6mfa7OVVZz5uOOYZ8Tn5Yusznzt5G0O9ndnYWr9fLhQsXUmt6YlRV7OHG28lWjdA9Hs+a/Z8WiyXl45rO9Rphbnbc9Sz8sq0P0ytwt9qOEo/HC/qsFtJWInFluC6uNOn2dhtNGMlFMNcb8pxNMSNMcaisRqPJyXJuPcQU52aCme7ac+rUqVUXgq0WD4kIgsDo6CjxeJybb7553S/9hcVZpv3JSrw3l+Y5XlFLMB7j6alhAL546naqq6vxeDycOnUqw5s0GAxiMplSF78rba12JdlqGlwcs1VaWgqQsf4p+rhmr39ey0U/hbDeOuJaFn7i+ufg4CCRSASz2Zx67wr5nMXj8YIKBa+1NUwpwtzB5NpbuZnAiZWbQ0NDtLS0sHv37g0vJAqFImPdsVCWlpaYmppCpVJx+vTpLd/FblRNKggC4+PjjI+Ps2/fPhoaGtZ9r8TtC8XtduP3+zGZTNx4440bprf+dbwv4+ee5UVuqEi26zw9NYxFo+OjDfuA1Wt6oVAIh8OBw+FgdnY2Za0mRp/5luNvJ8UWr/XWPx0OR2r9U6PRoFAo8Hq9V9X/9koU/eR63FyELtv6ML0Cd3Z2lkQikeEdnIuFXyFrmGLb0bWUkhXYelvITi3vu6YFM93ebrPeyo1SqNFolN7eXlwu17pDnrPZatFPIpFgdHSUqakpampqCIVCRXEgWe+8otEo3d3d+Hy+TV17tjrLcnZ2loGBATQaDc3NzRuK5VLQzyu26YzHDEo1vYtLtBnKGPc5eXy4C11C4PgadllarZa6urpUZWT2bEbRGeZ6GslVKGutf46OjuL3+7l06RJyuTz1PuWy/rkVtjMlm+/3TCaTpSz86uvrUxZ+ooCmrx1vNDu1kGOHQiHi8fg1lZKVIswdRiH2duulZNPnHp49ezbnlEkhRUQi4vphJBLh9OnTeDyeVHHLVllLMMVB1qJrz2aikc9aaDqJRIKBgQGsVivHjx9nbGxs0+d8b7SfvSWVdLkXEG9KdxssvGmzogjIqdMZmA/6OL9oxYeG05uct8lkwmQy0dLSsmokV19fX4Ylnclk2lHp26uZHhXXP8XhxO3t7avWP3U6XUoA1lr/3Arb2c6y1TXvdAu/pqam1Nqx0+lMzU7VaDQZAqpWqwuKMP1+P8A1lZK9nrnmBLNQe7tsgUsf8rx7925aWlqu+IQRALvdTnd3d8bUD5/PV7QCovSUrCAIzM7OMjg4SFtbW86uPYWkZMVWGNGNSKfTMT4+vuE+YokE3x8bYDEY4FR1PW8650CAeZ8PAFc4hEZRQoVaz5TXQ1ckzJGpUe5p3p3TOa2VvhUrSnt6ekgkEhkVpTqd7i3TviIiivRa659iBCWuFYtFMMXo/9yulGyh64gbkf7eib2z4hDt6elp+vv7U1XePp+PWCyWs2j7/X7kcvk1VRkuRZg7hOzeyny+cGJKVhTc7u5u/H4/N9xwQ+oikQ/5Fv2IBTCTk5Ps37+f+vr61PkXu6czkUgQj8fp6+vDbrfnnGYWyTclu7y8TGdn56pWmM3ceV6Ym2QxGADgTdsCJ6qTxT4D9uXUNraAnxsq6+h3LCIAf3jhefRKFefqm3N+PSJarTYjJSlOxlhaWmJkZCQjfbsdlbc7abyXUqnMKIJJv9nI7v/MdQ0vne2ukr2SKJVKysvLU9+5SCSCy+VicHAQq9XKzMxMxs2HyWRaN/IUW0qupRu561kwd04+agNEkduKF6z4gVxaWuKVV15BoVBw5syZgsRS3F+uIhcOh3njjTewWq3cfPPNq4ptii2YgUCA8+fPEwwGOXPmTF5iCbmnZMUiokuXLtHe3s6hQ4cyvvibCeZ3R/szfu5aXMSiWH0nHQzHqVYbUSEjlkjwe6/8jDet8/m8pFWIabXm5maOHz/OuXPnUtaDExMTdHZ2EovFGB8fx+l0Fu3vs9PIVaTFm42DBw9y9uxZTp06RXl5OU6nk4sXL/Lyyy/T19fH/Pw8oVAop+Nej4K5GB4klghnPKZWq6mqqkKhUHDo0CFOnz5NXV0doVCIvr4+XnrpJTo6OpicnMTj8WR8Z3w+X96C+cgjj3DDDTdgNBqpqqrivvvuY2hoKPV7h8PBJz/5Sdrb29HpdDQ1NfGpT30qwzN2LT7ykY+kWvXEf/fcc0/O53U9sOMjzEQiQSwW2/KEEfFL0tnZyb59+/Ka67gWua5hLi8v093djcViWXcEWDEFMx6PMzAwQFNT0yqzhXzYTOxisRg9PT243e51i4g22se4y8mQ057xmFmlpdtqp81UxrjXCUCFVs+Aw05cEGjS6JgTQjSWmHnw+Z/yt3fey7Gq1VNbCkGhUGREBXa7nb6+PoLBIHNzc6mqSDGiuhK2ajspwtyIjfo/5+fnc1r/3OlVsoUw4HuWxcgAt1p+d91jKxSKVYVq6cPHp6eTBXClpaW88MIL6HS6vCu9f/nLX/Lggw9yww03EIvF+MxnPsNdd92VSg3Pz88zPz/PV77yFQ4cOMDU1BS/9Vu/xfz8PP/2b/+24b7vueceHnvssdTPa7kjXc8R5o4VzPTeSvFLXegXTCyyATh27BhVVVVbPr/NRE4QBMbGxpiYmNiwhSOXfeWCOP4rGAzS0tLCvn37trS/jeYz+nw+Ojo60Gq1G47+2kgwn+zvoVZtIhBzEBOSr73NWMZFnxWVT06tzsBC0EdLSSl2b3I00XQ4xJHKKhQyGYGYi9/5+bN88x3v4mDFamOJraLRaJDL5Rw8eDCjKtJutzM2NoZKpcqovi3Wuth2COZWBSR9Da+trW3d9U/xvRL7P6+XCDMmRHjJ+U8shF7izvI/WHe7tXpA1xo+7vP5mJub44c//GHK0/lDH/oQd9xxB3fccQeNjY0bns+zzz6b8fPjjz9OVVUVFy9e5Ny5cxw6dIjvf//7qd/v2rWLP/3TP+U3f/M3N11fFdttNkIQZAhbFLytPv9KsSMFUxAEPB4PXq+X8vLyLYnl0tIS3d3dVFZW4na7i9aXt9EaZjgcpru7m2AwyE033YTJZNp0X1sRzFAoRGdnJ/F4PFUlulXWEzur1UpPTw/Nzc2bTn5Zbx++SIQfjQ7hj0Y5XpW0w5MhY8btAcAZDlGrNGBRa5m6/JjIiMPBYUsVMgG80QgP/Od/8A93vYt9lootvuL1ya6KjMfjqaIOcS7jWgOh8+V6GSC90fqnOEUkkUhgtVqprq6+qmt0xR4g7YnZ+cnS/8ag0GBW7aNKs3fN7cQAIJcZoOJ3+Pnnn+fb3/42f/3Xf01zczN/+7d/y8c+9jFeffVVbrzxxpzPUUy1iq5G621jMpk2Xbt/4YUXqKqqoqysjNtvv50vfvGLeS/5XMvsOMEUo0qn08n4+Dhnz54teD/Dw8PMzMxw4MAB6uvrsdvtRXPnWW8N0+Fw0NXVRVlZGcePH8+peGQrrkGia09lZSUHDhzg0qVLRfOBTd9Puu/skSNHUiOVNtvHWiLww5FB/NEoAB2LNm6orScYj9K3uJKiXfD7uLG6ju7lxYznHiir4M2FBU7W1PKmfQFPJMzX33yDh07dyF7L1fniZtuqia4w6QUx6dW3+aRvr8UIczPWKrZ64403cLvdzM7OolAoMlowrmT/ZzHnYU4Fe3nG/lcYFbXYo9O8reyjGx4XyFusI5EIdXV1fPGLX+SLX/wiHo8nr5v+RCLBQw89xNmzZzl06NCa29jtdr7whS/wwAMPbLive+65h/e+9720trYyNjbGZz7zGe69917Onz+f8bqkeZhXgezeSpVKVbCIiAOXxWkfYg/TVnons8kWuXQXnfb29rzWSAuJMNOPt3//fhoaGoDizY1MT8mGw+GMvtFcXUfWOhdBEHiyvyfjsTcXFriltmHV8wPhKG0lpQx5l4ld3o8nnDRsv2S1ckNNLV0OG92Lizzw7H/wzXvexZ4N7qKvFNmuMH6/H4fDwfLycip9my6g66Vvr5cIcyPEFCTAoUOHUCqVKRP0tdY/i+0VXIyUrCAIvOx8lgH/f2BWNgIxFKjZpbtpw+NC/oKZbYuXb/bowQcfpLe3l5dffnnN33s8Ht71rndx4MABPve5z224r1//9V9P/f/hw4c5cuQIu3bt4oUXXuCOO+5I/U5aw7zCrNVbqVQqCxI3cVRVXV3dqoHLxRTM9AgzEomk2lQ2c9FZi3znWEYiEXp6evD5fKtSvsUqIBLFzuVy0dHRQVlZ2bpFS5vtI53X5uaIxTPPr6akhDfmFmi3WBhyOQAo1+oYXF4mLggcqaqi27FIuVLJmNOZet5Fq5VzjU28OJMslPjvz/47f3fPO69apLkW6QUx2elbsSfPYDBkpG+zK4uvJttRaJQ+HCHdISfX9c+t9n9u5fmheIAfLD5GJOFCLS9jKjRMo7aco8Z7kcvW3288Hi9oaWkrtnif+MQn+MlPfsKLL76YuqFOx+v1cs8992A0GnnqqafyNqZoa2ujoqKC0dHRDMG8ntl2wUwkEmu2i+Tr1RqPxxkcHGRhYSFjVFU6xY4wBUFgeXmZnp4ezGZzTi466+0Lcvsyi649RqNxzeMVs+LWarUyOzvLnj17aG5uLqiaMlswn+jqIhpJUKrW4ook2w8aSkzYXAHm3X4aS0zM+D20Gku56EsW+3QvLnK0shKf38cymZ8Ju9fPqapa3lxcwBkK8cmf/ZSvv+Nu2nfIukp2+jYSiaT8XAcGBohGo6nqW7HA7WqyXZW5wJqf9Y3WP9OrlfPxcE1nK2uYC+EZ/sX6KKDEqBBYik5To65HIzexX3/7hs/Nxb5zLXw+X94uP4Ig8MlPfpKnnnqKF154gdbW1lXbeDwe7r77bjQaDU8//XRBafDZ2VmWl5dXDbffjqKfRx55hB/84AcMDg6i0+k4c+YMX/rSl2hvb09tEwqF+B//43/w3e9+l3A4zN13381f//Vf57S8JLJtgimmYMWLRPaHSRS3XL7QPp+Prq6uVUOesym2YAJcvHiRvXv3FiQo2fvarOpWNIfftWsXra2tax6vGClZMTU+NzfHyZMnNywW2Ijsc5lxu3lxeoqEILDXYsEfjSCXyxhZSkaVvkgEvVJJhVbHlCuz2KffbqdNlfmlrtLrGbQvIwCn6pKiWaMv4b//5N/563vv5VBV8atnt4parc5I34otBQ6HA7fbjc/nw+v1bpq+LRbbHWFuRvb6p5juFmsclEplRvp2swt/oRHmedd5Lnl/hk5RSiQRYik6hgIVGrkJi6oFzRr9w+kUOjza7/dTVlaW13MefPBBnnzySX70ox9hNBqxWpM3nmazGZ1Oh8fj4a677iIQCPCd73wHj8eDx5P8vlVWVqbOc9++fTzyyCO85z3vwefz8fnPf573ve991NTUMDY2xqc//Wl2797N3XffnXH87UjJbtZKA/C7v/u7/Pu//zvf+973MJvNfOITn+C9730vr7zySs7H2RbBzMXeTkz9bXZHKA55bmpqYs+ePRt+GYolmGIKFuDEiRMp67VC2Uwwxfmcdrt9UwHbaoQZCATo6OggkUhw4MCBgsUSVgvmd3p6SFz+edjhoE2nQ6FWMOL2pbZZDAS4oaaWvuWljH3tK7PQZ1vmVH0tby4tANBkMLHkSToFXZxf4FRdLb5wBE84zG/9+7/zf+69h+OblMBvJ9ktBR0dHRgMBuRyOTMzM5umb4vBdvRDip/PfIUrO92dSCQyhkCL0YUonmutf+YrmJFEhO/Zvsd0cByLqoTx4BgH9A0IgpkSRR2zoRHeVblxsQwULpjBYHDTNpJsHn30UQBuu+22jMcfe+wxPvKRj3Dp0iVee+01AHbvzrSZnJiYoKWlBYChoaFUha1CoaC7u5snnngCl8tFXV0dd911F1/4whdW9WJuR4S5WSuN2+3mH/7hH3jyySe5/fZkNuCxxx5j//79XLhwgZtvvjmn42yLYIpf0I1y+uKHa70PWrqIrDfkOZtizLB0uVx0dnam1g2LMXZHvGFYS+h8Ph+dnZ2oVCrOnDmz6R30VgRTbMERUyxbNdtOF0x/JMIPBgcyfj8eDHJSWw74Mh73+EK06M0MeR3ExcKjSPLvdmlugRN11XTYbcxkRaGzLg9NxuTfxReN8tv/8Qz/5567uaGAYdzbgSigdXV17Nq1i0gkkkpHiulbs9lMeXk5ZWVlRRnHtV0p2WJUqmavf4pDoNNnpaa3+xgMhryObQvb+Nb8t/DHAtRrLYyHhjEqDESECP6EijKVwH7DTZiUm99UFpoK9vl8ebfCbZZhuu2223LKQqVvo9Pp+OlPf5rXeRQDMfIV0Wg0a5olZJPdSnPx4kWi0Sh33nlnapt9+/bR1NTE+fPnd7ZgwsaN8eLvISmM2Wkpj8dDZ2dnqnE+1/x7PnZ22QiCwNTUFCMjIymz9ueee66oKd7scxN7HnOJnkUKScmmmywcPHiQuro6zp8/v+XUbvq5/LB/kN2mUjrtK20ibaWldCw6OFZXTeeSDYBylYZRpwsB2GUsYTTko7qkhFGnK/W87oVFzjWtFPuINBpMXJy1JqPQxQVCsRhfevE8D954kre3tWzptVwNst9vtVpNdXU11dXVq9K3ExMTqXYMURByuZCsdcztiDCvxDGzh0CLs1KdTic9PT2p7+rCwgIVFRUbrn+ed17igvsl5KiQo2E2PA5Ao6aR8eAgGrkaf8zNPeUfyuncCm1nudaGR0MyOtxqSlaMMLOj64cffnjTat61WmmsVitqtXqVFWp1dXUqZZ0L2170sx4ymWxVpWz6Ol5rayu7du3K24C9EIGLRqP09PTg8XgyzNq3IsDZpAum6NozNzeXc8/jWvvJhXQj+ptvvjk1d2+9iDdfBEEgIQg8cbETm99Pk7GE6WByZJFJmbwRGrQts8dSxojLSWuZhUuB5Ad4zOun3WwkHo2R3o2ZEAS8/jBHK6rouizAMiEZYQJcmkuK5lIowJjDyad/9nP++LZzvHvfni2/nivNep/ntRxhxOrbubk5BgYGKCkpSYlnaWlpThHNdgnm1XD5ybagEyu+nU4nk5OTGeuf4g1HOBHhyfkf0eXpp1lfzmRwmkOGJmZDVho0+5kNTxAnRqNmDxqFnkpNfU7nspU1zGtOMIGt1q6JT5+ZmcnoAsjlpnCzVpqtsGMFEzIFLn3Ic6GFKIUIZvYsyfRo90pMGUl37dmogGmj/UQvmwJshsfjSa2bnT59OiMFW4ziIblcTiwW47uvXmDu8siuQFSgSq8nmkjQb0saFUTicZY8QZoMRsaXnRn7GPf4OVlTw1ggmHqsRC6j37qEAOyvtDDgdtBeXs6wzZHa5tKclVubG5lZ9hBLCDz8/C9xBoN86PiRLb2mK0k+73d6OhJImX04HA6GhoYIh8MZ3rfrpW+v5ZRsPshkstSIrGPHjiEIwqobjlBJjBdK3sRPmN0l9QwFBlEgJ5BwY1I2IpfFCCb8NGj2MReZ5tdrfjvn4xcqmFtpK7keyNe5bL1WmpqamtTUmPQo02azbWr1l862CWY+MyzFdUOj0ZjXkOe19hcOhzffkOSXenp6muHh4XWrUotddStW/lVVVXHgwIGCvmC5Ct38/Dx9fX3rRuqbpcxzIZFIYLfb+deRidRjjmCQFm0plWY9b3hXJo54wmH2llkY8Tsy9nGwopI3phc4VleVSue2l1fROZ/8/7ElF80lWuLBzL+rQiaje26RY1XVdC3ZSADPjU7g8Af5f87euCPHJW1FvFQqFVVVVVRVVSEIAsFgMJW+nZycRC6Xp8QzPX17PaVkNyO9tUMmk2XccDxjvcBF10WEqJxoTM6kbxwU0CCrYjnsxp9woJGXUKveD7I45apqWnRr2+CtRSFrmGJVsJj1uVZIIEN2lZ1+NmulOXnyJCqVip///Oe8733vA5JFTdPT05w+vdFY+kx2fIQ5NzeHzWYraMjzWvvLReDSo9lTp06tW9ZdrAhTEARisRgjIyMcOHBgzSbjXNnsnBKJRKpfdaNiqa2mZP1+P/Pz8yyEIsyEMsVs1u2hWqtHJkD6UofbH6JSrSMUjxG+/HcKR5J9l70LdlpKtExGQiz5VqLNuCDgjQpUZl2MWg0GxpxeXPM2DtVUMuBcRp6Af7zUw7I/yB/feQ6V4pqYbpc3MpkMvV6PXq+noaEhY5qIWE2q1+u3rfdzJ83C9MeCPDr9Iy55BjlsrGch5GOfsZbZyBh1siYCghtfwk9l1IQfGbPycerVJbyr8v68jv1WW8O82lWym7XSmM1m/tt/+2/83u/9XmoG6Sc/+UlOnz6dc8EP7GDBDIfDBINBwuFwwUOes8mlStbtdtPV1YVer980mi1G1a3YohKLxWhvb9+SWIrntJ7Qiele0TJwo3TvVlKyi4uLdHd3YzAYeMXqYF9ZBZ12W+r3h6oqeWNqnpMNNby5mPxgN5tMjNmT6diDNRX0OezUGQwM25MRZ0IQmPOHOdNcz4WpzFmYbWVl9C/YOVBdQb/9sh9t2lvQa11ib5mZqcuFQ/8xNIo9EODL77wTg+bK9jnmw5WK9rKniaSnb0OhEAMDA8zPz6eiT6PReEUjwJ0yqWTAO8P/nvoXwvEohw276PEmq7gFQjRqdhOKB3HGnVhUlWjVcqyxeWoT5eBRsjTnIV7Wl3PB1VtpDXM72KyVBuCrX/0qcrmc973vfRnGBfmwI1Oy4gxJuVxOW1tbUcQSNo4w0wuK2traaGtr2/SisdWiH7fbTUdHByaTCaPRWBTT6fWEzuFw0NnZmTJpz2VqQiHVtqK/7aFDh5ixL3N+ITnL8oamOt64PPQ5EEyusV6atXK8voqOpUXKNTpmSBbt9FntHKuvRi6TMe9caTmJCxANxtlrsTDsWEndugIhIvE4Y1YHh2oqmPP6mPRmtqoQj1OSgIRCjj+e4PWZeT794+f447tvpca4cy5IVyNVmZ6+dbvdNDY2IghCyr5PTFeKYlBsM/TtnoUZFxL84+wvGfVPopeX4I/4sUeTN1pNmkp88QQL4WkOG2soUbQQFRJYYxNYlJXI5HBb3TtoS+zNWP8UI3ax4Cq7/zMej+fdpiWmZK+1NcyEIEN2lY0LcrlWabVavvGNb/CNb3yj0NPaWRFmIpFgbGyMyclJ2tvbsdvtRU0XrSdwsViM3t5enE5nXgVFhUaY6eIspppff/31oqyHZkeY6e0w+ZjC5xthxmIxuru78Xq9KX/bR1/vSPVRXpqe53B9FYF4lFHritj1Ldg5XFPJoG05Y3/91iWO1WRWB2tlMvptduQyGbvKyhhzOmkuNTNpT/ZcRRMJhq0Obm6t56WJmYznxmVKFkM+qg16dKo4KuD1mQV+44l/43/dfJRTbc2UlpZuS+Qjsl3m61qtFovFQn19PYlEAq/Xi8PhYGFhIWWGvpEY5Mt2pmRd8hC/2/s4o/4FTpU2MuZbokVfzkJ4jmZtIzqljNHAJBalAZmgYSQwySFjNVplEwpURAQnx003IJfJMwquxP7PkZERQqEQJpMpddNhMpkKWsMMBAIIgnDNrWEKQhGqZK/+VyEndoxgikOeI5FIqr3B7XYXragG1o4wxZ5O0X8wn162QiLMWCxGX18fDocjQ5yLtR6avp/0G4F809r5rGGmD5Q+ffo0arWaQCTKzyZmU9sIwMSik8N1VUywUgkbSyTQy5RU6HXMerypxw9UVvLm1AInGqu5ZE2mc+s0GiZ9Sf/ZJbefFrMZi1bHNO6M/c0uejhaXUWXLVkY1GAyMuFwAWDzBSjVaWmtqsDqn8UdjfG5Vzv4jfkFDplLUpWlWq12WwRsu83X5XI5ZrMZs9lMa2trygw9XQzMZvOW0rfbUWgE8Jyjn+/yOiURHcdMrXR4RgAwq5SYVbuYCS1D1I1GpqJeW0O/f5hKtRmZTMWEf57degtvt9y1ymQ9u/8zGAyu8r8VvbF9Pl/O/rd+f7L9SkrJ7hx2REp2cXGRnp4eqqqqOHnyZOoOtphVqNn7EwSB2dlZBgcHC+rphPxFLtu1J12ciy2Yfr+fjo4O1Gp13jcC4n5yEQxxvbKxsZG9e/em3sOnuvqp1ukYj66IoE6lZG7JjVmjwX25WlkGzDq8CIJAmVaLM5QURN/lqtfu2UWO1FXRvbiIL7ryWfCFI2gUCtRkFfuUlTK15ELukqXEtrqkhHmnN+254WT6tqqS3sUlIvEE3YEEMpOGd5WWYrfbcblcCILA4OBgShyKOWZqLXbieK9sM/T06tvp6aRxRHr6Vmzd2IirHWEuR3z8xfAz+MIeKgQjtkiYgCYpRmVKA754gvHANCfNDSxHBRTomQhOIUdBnaaSAf8gTepqDMoyTprWH+ElotPp0Ol0qf5Pn89Hb28vgUCAN998E6VSmbLv22j90+/3o1AoCjKk2E62o+jnarGtZYJixWZXVxf79+/n8OHDGRelKyWYYvpwZGSEEydOsHv37oLuePM5v4WFBc6fP09lZSU33HDDqi9BMcdyhcPh1LFOnTpV0Bdus5SsIAiMjo7S1dXFwYMHaW9vT72HsUSCb7/exbIvRJl6Zd2mrayMebePWr0BxeVt91dVYPP4WPT6sai1aJUKWkrNjC+7gGSxz+CCnZvrarGHM/tLG0wmlp1+mswrfVplGm3qeV3TNk7V1jB5OboUaa+swO4PMDhv50RtsgfL4Q/y+Bu9PNo5yr6Dhzh+/DgKhQKFQsH4+DgvvfQSFy9eZGJiAo/Hc8XEbbsjzM3Q6XTU19dz+PBh3va2t3H06FEMBgNWq5ULFy5w/vx5hoaGWFpaWnfa0NUs+vnF0iAfufgP9LhnQZAxHvdQolAxEVigWVtDk76S8YAVlUyBgIAjGsOi1iBDTqO2idHgGFqZFo1CS7t+P0pZfjdNMpkMo9GIWq2mpaWFc+fOcfDgQTQaDXNzc7zyyiu89tprDA8PY7fbM94zcf0yn/fqkUce4YYbbsBoNFJVVcV9993H0NBQxjahUIgHH3yQ8vJyDAYD73vf+7DZbOvsMYkgCPzxH/8xtbW16HQ67rzzTkZGRtbZVlaUfzuRbYswQ6EQr732GolEgjNnzqy5sK1UKnPum8wFMS1y/vx5NBoNZ8+e3dLdWy5rmOmuPUePHqWqqmrdfW1VMAVBwGq1EggEOHbsWF4NudlslJIVnY+8Xm+GO5DIs/0jWD3JopsalZaAIgEyGLEm1ymHF5c51ljDJasVIb4iPBPLLg7UVKBSKlalWWPhBLUaFQtpohkKR3GHwiCDJrMJq8/HyGLmWmg4GKPNVMrFwIr9lezyy0oIAp3TVk431/HGTLIg6fnhCaYdLj73jjPI5XL27NnDnj17UjZry8vLzMwk10fFqKq8vLwoUcB2RJhbKcCRyWSr0rfZXq4mkykjfSt+zq/0jYErEuArQz+n2zdBhcqERq5mIJCMiJtKTAiYGfAuUJ5wgyDjiLmVbu8ICpmMSCKEghJ0CjAkDJhVFpyxRc6U5t6vl42Yll3PcMLpdGasf/70pz/FYDDkbVxypaZ2/MVf/AVf//rXeeKJJ2htbeWzn/0sd999N/39/auKwraj6OdqsW2CqdFoqK6uprm5ed3F8GJHmOJdb3Nzc8FRZTqbiVwwGEy1cWzm2rPVittIJEJXVxd+vx+9Xr8lsYT1U7LieqVOp0utV6YjCAKPXehI/Wz1hzjaUINcIaNjciH1eOeMlTMt9VyYnMt4/rTDzb6s6S8GtYqBBTsICZosJqbdHmqNBkYWk8VD7mAYhOSIr+z9KWRyOqasHG+qoctmxaDRMJRVYBSLJthrKWfO58UbjmD3BfnEvz3H+1oredvlbdJt1tILY+bn5xkaGlpVJVnoVJGdHmFuhFKppKKiIjW9J30tT7zJKCsrQxCEK3pz8HPbEF8eep7GEhNNuio6nXMctyQLyPQo8cfiDPutHDXXMheep0XXiC2yjIDAAUMzU8FZQCAmaPDGE5SpI9xZfgcqeeGXy/XaStIrliH5ni0tLXHx4kVeffVVAoEAv/Irv8Kdd97JO97xDvbv37/h3+tKTO0QBIGvfe1r/NEf/RG/+qu/CsC3v/1tqqur+eEPf8iv//qvF/y+XGtsW0pWbBnZ6MJSLMEUU7CTk5MARRFL2Fjk7HY7r776KkajkZtvvnnTO8WtRJhut5tXX30VpVLJgQMHivLa1oowbTYbFy5coLq6mpMnT67Zo3p+fIYFtzfjse5ZK1ph9d85EolzsDrTOGFvRTmXphY4Wbsi+HvLywnH4oTjAl5vmAaTkbqsQgh3KEwwEKW51Jx6zKhRM2RNtgt0TVs5WF7JHouFWNrrkgPTDg/D1mWMCjX1ZiOt5aW4QxEeG5jjb158MzWSLPWcy4Uxra2tnDp1iltuuSUVYQ0ODvLSSy/R2dnJ9PQ0Pp8vZ3HYiWuYW0Fcxzt06BBve9vbOHbsGEajEZ/Px/Lyckb6Nlc7x42wh/18efDnfKb3JxiUGgQBLjln0StVjPoXqFeWUa8oY9ifzDao5DLUMhMCcazhZfbq23BFXQQTYdpLGhkPLmJUaNHLzZzdQnQJuRsX6HQ6mpqa+P73v89f//Vfs2fPHm699VaeeeYZTp06ldfsRsh/asdaTExMYLVaM55jNpu56aab1nyOWCW71X87kW2tkt1snUxMoW6F9EKbG2+8kVdeeWVLU9ezzy90uUhFJH3yx/79+3M2IijUWWdmZobBwcFUe4rT6SzaWqj4txHXKycnJzl8+PCG0es3X3yTXaUWemy2lIvPwZoq3hib42B9JX225JxLg0bN0LwdQYBWi5kJpxuZADZXMpWbjAqr6bDaWPL4U/t3h8JolArcZL7vNUYDvbOLGLRqWstKmXC62F1uoXN6JRXbN7/EDY11GNVqvJEIAHsqyxlZSEacVrcPvVpF4+UUswA89monS54Av3PbKcoNa9/0ZNvSpU8VGR8fR6VSZdjSbdSPdy1HmBshk8lSvqDxeJxwOExVVdW6o7hMJlNea3c/mu3jq4MvY9TAMVMjtpCPAW8yo7HPWI6AnA7XLC1aLQhw2NhIv3eecCJKrbaKVm0r4UQYa9jBHv0uZsPzyAQoU5nYb9iLSr61UXeFGBcEg0EqKyv5/d//fX7/93+fUCiUVy9nsaZ2iI9nD4FY7zlJwdtq0c+Wnn7F2DFtJWuRPa0kX8Th0mIKVhSAQl03ssmOCkXXnkAgkOpFzBWFQpHXXXY8HmdgYIDFxUVOnDhBeXn5mudUKGJKdr1pJmvRMb1A50zyC3SqpY435pLrgtFInIQgMLPkpsFsZNbtpb2ynI6J5AXN4wtTqddTXqJjeH4lXdo7s8iZtnoujGemWasMBpZcPqpK9Cz6kwOk60wGbE4f3lCEeEJgT7kFpz+Y8bymUhMXJ+apKzWiMyhZ9AXQKjK/AqU6DW+OznOsoZIu6xKCDIYW7PyXv3+Kh3/lVm5q2/gGKHuqSDweT5l8T05O0tfXl1rXKy8vT63rwfUXYW50zOz0rbhGnN6KkV19u9Z5zvhdfLHveV5fnuGwuYpAIsqbjnlurKhl0eOgQm3AG4sx7FukUWXAHnezz9BMgijhRJR6TSmuaIyZkJWjpgqadC3I5XEScYFmbTP26BLnynK3TluPQm7Ss00L8jWQuJJTO96q7GjBLDQlK4qJzWbL8EtNF8xikF70IxrEm83mVZM/ct1XrkIXDAbp6OhAJpOtmgdaDNN0yKy2LSkpyek1/f1LF1P/3zG1wO5KM/5wOFXs4wtHMOk0mLUa5pdXBsM6AyEaykyos1YI4oJAOBBjT4WFEfuK2UEsGmfJG6DaVEKFXocjEGTKvlIkFIhEESIJ9MrM860o0TNr9zDv8lKq19JeYWEkaz2zxmhgweGje3aJeoMGZYmWsUUHAvDQPz/LB28+zG+//QaUOUY/CoUiddHfvXs34XA4VTw0NzeXbKe5LAzb4YCzU8zXs0dxiWnbpaUlRkZG0Gg0qfexrKwMFHIeG7nERdcsFx1znChtIEaUCb8DlUzORGCJ/Ybk6K1BX7If2KJUQdzMbNBJROahWVuNWa2mzzdFq64cbyzBQnieg8ZyhIQWZGH+r4o7t7R2CZdH3BUomIX2YBZzaof4uM1mSw2XF38+duzYqu2ltpIrRC7Wc/mKm8/n4/z58/h8Ps6ePZthLi6TyYpaSCTua2pqijfeeIPm5maOHTuWt1hC7oIpro2KawjZd53FmmPp9/ux2+3U1tZy4sSJTV/T8MISr46tDHROCAKLrgBGWeZFYt7l5WBlJXZvIOPxaCxOPBRHKV/5TJi1Gvrnlliwe2mxlAJQZdCnBNjm8aMSFByvr8WRFU2atVomFhwcrkkWU8hlMLnkSv3eFQhRIlOxp3zF1UkmwKxjRcjnfWGqdSXsqkxWNArAc33jfOwffsTkUuYYslzRaDTU1tZy6NAhbrnlltS6ntVqJRwO09/fn2oxKGbB21qIN1Y7bR6m2IrR0tLC8ePHOXfuHO3t7SgUCiYmJvjWL57l/3rmMb4xeAFfOES9ppQJj5MBb9Ko4mBpFfWaSjqdNmTy5Hu4r6SWsYiXuZiXNkMpe/WNLEfCDPlnqddUoFdqmAktcdDQwEzIiUamwKAwc8ZyasuvV/w75ttKU4gtniAIfOITn+Cpp57i+eef33Bqh8hmUztaW1upqanJeI7H4+G1115b8zlCkf7tRHb0uIZ81zDn5+dT/Yc33njjmimMYgqmIAh4vV7Gx8c5efLkmiPAcmUzwRTXRjs6Omhvb+fgwYNrfgG3mpIVBIHh4WFsNhtms5k9e/bk9Jr+7pcXOdFQm/GYXq3E54+iUWaKpsMVYLcx80JQplQwbHVwMK1Cdld5GdF4gkAkissdxKJSUm80ZHyZbG4fqoSMcv1Kw7xSLmPC5iQaTzA4vcTxumr2VVXgCmSue4bCMfqnFjlZlzzv3VUWlrKEfMHhZcrq4kR9DXKgwWxkaGGZD3/zh3z3Qu+WonlxXa+lpYWTJ0+i0Wior69P/Q1efPFFOjo6mJqawuv1Fj1lu12CmW8fpkKhoLy8HFNDLT9Th3g0OM1yPMIRXTn9bjuTfhfVShVxIUGrzkIwFqfTtUClRs+od5HDxma0SiUBIYpGJicmQId7jtYSE626WgRBzoh/hr36ZpajDhKJBKVqAyfMB1HKtr50I15vrkaE+eCDD/Kd73yHJ598MnUjZrVaCQaTN5TpUzt+8YtfcPHiRT760Y+umtqxb98+nnrqKSD5+XjooYf44he/yNNPP01PTw8f+tCHqKur47777svr/K51dnRKVlzD3CxtFI/HGRwcxGq1btjrCMUTTJ/Px9jYGIlEgltuuWXLfXgbCV163+Nma6NbEcxoNEpXVxeBQIDm5mYCgcDmTwLGFx38YmAchUzOrqqy1NSRan0JfQ47h5uq6VpINkY3W8yMXfaSPd5STce8DY1SwZwzWdjTO7vE3ooSRjx+ZpZW0qyeYBiTWoHLlyl6Fr2OjokFKowlVJTosPuD7K+uoG86WVyUEAS6J2yc3duY8byKEh2j1mSqtWNigSONVShUmRfxSp2KucsOQZ2TVvbWluMPJdeZI7E4//tnFxi3OfjQ247RYMl9vXojxKkia820TE/vWiyWgufCioiCebV9XfNNPUficb492sU3By9ywFJBu7kSRzAEOhWJcPKu30mI3fIyHL4gDmVSHJo1JXgSWrqdC5SXyDGhoVVTRpd7Fr1ChRw5/R4rx0qrKde0ATEiQoxmXQP+uIdbyo4X5fXG43FkMlne77PP50ut8eZKsaZ2DA0NpSpsAT796U/j9/t54IEHcLlc3HLLLTz77LNrBiXXc0p226tkN0K8I9so/+/3++ns7EQul3PmzJlNrbmKIZgLCwv09vZSWVmJx+MpStP6ekLn9Xrp6OhAr9ev2feYjfie5rs2JR5HXK+cn5/H5/Nt/kTgm798E0GAmJDA4wtTqtOCDIYvV5/2TNs41VrLm7MLyNOMKPqmFjnQUI5GqaR7YsVpZMzu52htKd1WV8ZxSlVKQoEY5SU6li+nYFssZjo9QWxuH5WmEqqNJcSime+jSavhjaE5jjdV0z1vIw40lplZdq+kcYcX7LSWl1Jl1LN4Oco0qpTYSTNKiMRweYMcqqukd34JmQDnR2b5z95xHrj9JO+/6SCKLYqP+Ddba6alWDw0PT1Nf39/RlWp2WzO+4K8U1Oy6fx8ZoInxjrpWF7AotKSSAj0O+yYVBoGLnsPHyqtxhMPMxh0caqyGoc7SJuylBGfE68QZY+qBBJgiwVZiLtQy5QcMTVw0T1GpcpAXJDT553mmLmSWEKFIIvwgZp7VnnGbuX1FlJkGAgE8o4wizW1I3s/MpmMP/mTP+FP/uRPcjgJtp5T3aE52R0dYYofsvWqWhcWFujr66OhoYG9e/fm9CXcygxL0cpvfn6eo0ePolQq6enpKWhfuZyXKMwtLS05946K70E+X1Kr1UpPT0/GcXItHppacvJc71jqZ7svQHtNBQadikuuFaOCjskFdpXqmHZlDn+esXlorVg9oDuWUKaEKfVYXGDJF6DCoMWs1eAJhpl3rPR8Lnn8tFWW4gtGMva1q6qMrgkr3ZM29jdUMOpwptpXRPZWV9A/s4hJp6G9qpzhxWWW/Jn7KS/RMbPkpn96iaNNVcQEgf655Pl9/aev8cuBSX733tPsrc0vKhDZ6P1Od4jZtWsXkUgkFX329fURj8czqkpzcYjZySnZfscSf9lxnmm/m6Won1OWOsLxOJeWk1XYe8vK6HDMc6KsgShRJn0udAol4/5ljpkaEYgz6U1mOsy6Ejp9NprkWnzRICZKGPXOY1RoadCX0eOb5KipgYngAjVqMxZVGSfN+4v2egsdHh0IBK650V7XOztaMOVyOTKZjFgslhFZpQvX4cOHV/UHbUShjjqia48gCCnXHpfLVZQCG8iMMHO101tvP+I+NhNMca1sZmaGI0eOZLyPuY73+vvnL7K3qpxBmz312KzTzWFN5t9EEMBiMBNLqJh1rRTWNFhMLDp9WEq0OPzJdGutqYTheTtKuZz2mnKGFpepNRuwLSdFzu4LYdGpaDFqmXL5M45j1mpx2Fw0lpmYcSaP4/CspJYHZu0ca65JedWKiO+9JxjGNxfhprZaXp9YSLrDk/zPdFolbs/0Ije21SfP73IRUiIh8LG/+xHvu/EgH3v7CUq0+adMcxUvtVpNTU0NNTU1qapSh8PB4uIiIyMjqZFdYlXpWsbx2xlhrnfMOZ+Xfxnu4/GhTgTglvpG1B4Fb9qsHKte+R7EhDit+gomPC48JD8Dh8uqWA4Hubg8z95SE3qFiqOl9bzmHAfAoFThTsQp02rwxMMoYwr6hSka5RUshpbRyNQo5AJ3VWxusJ4Phbax+Xy+a3NSSTG8YKWUbP6sVdUaCATo7OxMtVTk67VYSEp2aWmJ7u5uqqur2b9/f+rDX8wCIlEww+EwnZ2dxGIxTp8+nfcdZq49fWLPaDAY5Oabb171xcyl2nZy0clPu0Yw6TUZadJ91ZW8MTLLvroyBheTd/l6tYrh2WVMeg0mrRpPKBm9KQUZy94ATRVmgqoYwWiMWrMRm8NPNJ5gbslNa3kppTptSjABHMEorRUWlv0xfNFkYZhMgCmbA3cgQiyRoK2ijIQgML3oyjhvISGgFeQ0lJmYdXqwlOhS5gWQXPcMBCI06jU4EwLecIQ91eUZ2yjlMgbnlvAGIxxrrmbU7iAWTxBPCPzrhV5+3jvGQ/ee5u0Hcy8EK7TFQ6wqNRqNNDc3r+nputZIrp2UkrUHA/x9Tyf/OtxPQ6mBSp2eWrWRYaeDxaAfo1rNgHsJOTJOVzbw5vI84UScG6pruOj0cdRchy3oZzrgZrexjKgQxSAvwRtL3iydKm2k2zODgIBJX86s180Bi5lY1Eg8HiIaTaCPK1HEBTSLCRxRR9HmoxYqmIWkZHcC0jzMK0QuX9R0UbJarfT29lJfX097e3tBH+Z8RC7d4ebAgQPU19dn/H4r6d1s5HI50WiUV199FYvFwqFDhwr6konv6UZi5/V6uXTpEkajkdOnT68ZfeSSkv3bn79BQhBw+UPsrinHFQihVMiZXEgW9UzaXJRrlSyHY+yvraRzdJ5AJMreugr8kWWqjCUMzicj02m7m/a6CqZdLkbSzAuCkRgBfxhF1ssp1WvpmVqitsyAXBHGEwrTWmFmwpaMAv2hCNHFGPvrLUynPU+tlDO64CAQjqIPqdhfW4FWpaTLu5Iq1qoUjNtchKJxKkx6qipL0Kky36M9teUMziTPvXvKRoPFiDqtonLZF+Svnn2Nf36lh0/dezOHm3LPgmyVtTxdxfTt1NQUcrkci8WybRfj9BsDVyjE9wYH+GZ/B8FYjEajkXK1nnm3H4sqwWIwGT3uLbNgj/hRxBX4Y1HCiTgKmQxbyMdhYx2BaJTpYPJvX6cz8rpjFotGy4hvicPGRkJChDgCxw21XHLNYlZpSQhyBoMLnLTUsOh3U28y8b6SM4S9yfaeWCyWSoNbLJac51hmU6hgFtJWshOQin62EYVCQSQSYWBggLm5OQ4dOrQlY/FcBVM0MxcjsLUcbhQKRcpIeit36YIgsLi4SDgcZv/+/TQ1NW1pgsRG0aG4LrrZDNDNUrKj1mX+s2c04+fjrbUIcugaTa5dRuICJXEZpXotM7aVvsXheTtHW2sREDKixqF5O2f3NvLK8EzGsepKTcwveijVKHGFk9FkW3kpnW4rM3YPDRUmkIEuqyAqIQiMzzppMmiY9iWLjdoqShmaSwp6IBJldGaZG3dn3gjtqS6ndyrZ02f3BPCHIlgaqpAD4ruqyOrIKjfo6Z5IrpE6QiH0GiWTNheLbj+//c0fc8+x3Xzo3DGaKkvXfU+vlImAOJKrvr6eRCKBx+PB4XCkbM3eeOONDOP4K101m0gkcEej/PPrr/GvgwPsqywnEotzsqIGpULOa9akQ5RWnTwPjVyBRqZkzuVDp1IxF0kK47Hyamb8Xro8No5VVaIJKThaVsery9PJFhOjmeWwmqWwF0fMTVPCjCPhQytXsrukkg7PJDeUNdHnneCAoZ4mXTXHGw8Ayb+F3+9PmcePj4+n5ljmW6VcyPxP8fgbOWtJXH12vGDK5XIGBwdRKpUFpWCzyUUw0117zpw5s+7g4EIKbLKJx+P09vZit9tRKpU0NzcXtJ/s88oWzEQiwcjICDMzMzmti26Wkv37596gpaKMibQG/r6ZRdrMmVGLMxTldFMNrw9liuDYwjJ7q8pX7XdqwcWJxlouzawUDPl8YRy+IGatEoteizMQYn55pdhn1u5hT62FxaxCnv11lfRNLhJwxjnUWE6vdRmvN3PNs67UwOsDsxxtqWJgyU4kliAczfx8tFVZ6BiZZ0+theVIiEAkkpGeBfAHk9W0Q7N2VEoF7XvrWVj2Eo4l97Xg8PFfvv597j2+h4+8/Tg1ZdtzIZTL5anWlerqal5//XWam5txOBwZUVV68VAxRXze6+Wfp2boGRliMRhEBqjkcmq0BrptNgz6ZMW5Ua1mwGlnv7kCrVzFq9akW0+7xUKn08rJsnoCsTCLIT8VWh2ucJBKlYk4ceJCgl0lFkY8DpYjAW6uqMcU1RIKeIjGY9RpKuj3zXLE2MxMaIE2bR3OqI9P170/dZ4ymQyDwYDBYKCxsTGjSnlmZob+/n4MBkNGlfJ614CtRJjXYkoWQbb1NUgpwlzNZl9Em82G3+/HYrFw4sSJovm/rieYgiAwPT3N8PAwe/bsobm5ecNz3KyKdzPElhilUsmxY8fo6OjY/Ek5kB0ditFyKBTKeV10o5Rs/4yN53vGqTYbMGjU+MLJ9cgmk45pu5cacwlWd1KYZMCc1c3x5jouTs2n9rG3ppzuESv7myqSo7uAvdXljM4sM7/s5VhbNZ2zNloqSplccAHgDsWo1mo40lhNz3jmwNsStRq/P0K5QceyL3j5dSf/zoIA/dPL3LinjksT8xnPU8WTQtc7uUidxYC6TMnYgiNjm0Q8eeMwuuCgRKvi5K5aXk6LgisMesZtadZ9sTj9k4uYlBpqqg30zi3iCYSJJwR+cnGYZztH+eDZw/xfN7RTl9a/ebVt6sRq1erqaqqrq1NRjcPhwG63MzY2hkqlory8PFU8VIiLFcDA0hJPdPXw8/FxqjRqFmNhDpdXUqJUceGy5/DBygp6nMmq4/2XJ9R0LS1yom4lnZ0QBGrVJhb8XhaiyaKufeYKLi7Pk0DAK/NzzFyPSiFjwrVMvdbETMDDQsjDAZUOe1yOQaVgj7oOhSJOraICpQxuLTtJmWp9cVqrSlmMPgcGBohGo5SWlqYEND19u5U1zGszJSutYV5VEolEqnrTYDBQXV1dFLGElRRvNrFYjN7eXpxOJ6dOnUoNeN2I9AgzXxYXF+nu7k6txwYCgStScevxeOjo6MBkMq27XrkWG0WY33jmNSDpsnOwsYqe+UUUMnB6I4RjCdQyJVqVglA0Tr1Ry5zdw5zdw5G2arpnbCgVcmasrmRBzoKL5nIzU8tuVGlpzt6JRQ42V6LI6oWzufw0W0ox6ZJtJSKLDh9Wp49KcwnVJgOCTGA0KwqMRxLsr65k2L5MJJZAIZfhDK18M+cdPtoELQ1GHdOXK2vNOk3Gmqo/FMW+HOBQVSUzXg/uYJjGchPL7pVK3N215YzOJZ+z7AlwqKmScGLlJk2jVPDdl3t48qVubj/cxv1vO8KeutXR9pUmW6DTo6qmpibi8XiqeGhiYiLDOF6cKLKRwEfjcX4+Nsl3u/tAAV022+UJICqUSjV91iWONqRVZstlKJBxvKKGJX+QCY8LnVLJoMuOAjk3VdXx2tI8MSHBqZoaHC4/B0xV9LoWCcZjnKqsQRCg22GjTK9gn7Eao0rFRdcMx0prGfbNY5JpiAhxpgPLHDJVMeZf4mRZI++qvjGv906tVmfcaKRPqJmYmEiZTJSVlRGJRPK+fiUSiWs3wryO2XGCmT10eXh4uKiemmu1lXi9Xjo7O9FoNJw5cyZnIwJxvTCf80svJDp06FDKzFg8r2JEGaJgzs/P09fXR1tbG21tbXntd701zDdHZnljdDb1c9/MIm1lWtQ6HSOzyfTsrN3N4ZZqumZtxCIr7/XIjJ2WilJMei29o8n1s2Akht8bYXdVGUOzK60pCUHAuuSjujTLQq9ES8fIPLXlRhAEPKEIe2osjM0mI7wlt58yg47dDRbsyyvpVxkwb/ey5PbTUl3KcjREXamRwamljP2HEkqsTh97qg2MOnxYNHI8vpX3wWLQMjbvICEIGPUaDtdVYXdnOiJlFwipFAr6p5bY31BBKB7DoNfQO5WMkJ/rGmPB6UWlULDPJHDiKt5ab/ZZEy3pxEk46RNFxIHQ6Wt6ouvLtNPNT4fH+JfefhzBEDqlEkEpcLSyGl8owrjPTTCRQKOUM+RM/t3MGg2JRIIGnQlHMMiE3wXA/opylsIBVCoFvniUmJBAq1AQiEWwKEtIIOCKhKjS6PFEIox4lzlVWY1cJmPM6ySuCHPM3EAo4UeRkNFSUkavZ5YbLI10uac4XlrPbRVHtmSwnj2hJj19Ozs7i9frRaVSpUQ0lwHjfn/ys3tNrmFKxgVXhuwv6+LiIj09PRntG1sd8ZVN9hqmKCrNzc05+6Zm7y/XyDB9/Fd2IVF6O0gx0nJTU1PY7faMaS35sFZKVhAEvvGTC+yutjCaloK0+qLs0Zsztu2ZtHF6bz2vD66M5gpH4wT8EbSyzI+dwxdkT205VpWXQGTFO7i5wszIzDItlWYmL9vkNZQa6XOFmF3y0FiZPGb2iC63P4jV6qGtspTxy4bru2vKGZtNRn2TNhflJj26rOc1V5UyfTn9O271UWfWoFSqgZUK2jKNAufl98UbCOPxBDFpNVQY9di9AVQKOePWTGN2hyf5/OHLNwQ3tTckU8325LHicYHeqQU6gOfGfsT/fcthbj3USq3lyl4s8/2sZU8UEYuH5ufn6ejrZzQU5TWHl2Gnh2MNNSmxPFlfy6jdQc/8IodqKwl6k9+X9spKOpdt1OoN7Ckt48W5pAgfr6sBvwuFTIZOocLq9lOiUjEdcSET4FRlHa8tzRJNJNBo5Bw0V6GWKej0zKOSyQA5by7Pc1NlLTFBIBAP40+EKRU0jASsHDE3Meqf54i5GbVC4HRZe1Hf1+z0rbg2LA4Yj0ajGW0+BoNh1d9BFMxrMyV7/VbJ7gjzdbFRv6uri/3792e0VBSz1zF9f4lEgv7+fgYGBjh69Ch79+4tSKhyPT+Px8P58+eRy+WcPn161Z3jVtK76UQikdT4ntOnTxcklrB2hPmzSyMMzCzi8YbQpfmu7q+rYnHZi0mbGZm7XUFqDJmVhOVGPfFwHLVy5fl6jYq+MSuNZWYUl6eVyIGFJS/BcBSnM0S9xYScZJQoMrPkps5gYCGtAAhgb105c3YP1kUv+y6nOrVZBvCxeILRySUONqy8P6W6TF/MSDTO8nKQfXUrzj2BaOZ7olPA0LSdoCfC8aYa2uvK8YdWUv51FiMzaYYHJl3Spm963kV7ZTkH6yoZta7cfISjcf722Tf49S//C//P3/07z7w5jNuf6Z9bLLZycyaTyUCtoccX5Z+ml/nzvhmemllkWDSLcDtpNxhQxGHJ48PmSwpAXLby/glygVMVtTjcQSa9yfdIo5Az5LKzy1TK8fIaXplLCuPu8jKMSg0HTJXM+N1EEwn2mssoV+npX7YTIkqFWs+NFY1ccsxjUKjwxiJ0OOexaDR4IwlKFDKqVGUo5XHMKjMqucDHm+/Z4ru4OYIgYDKZ2L9/P2fOnOHGG2+ksrISt9vNpUuXePnll+nr62NhYYHwZevIQCCASqXKy3bzxRdf5N3vfjd1dXXIZDJ++MMfZvxezIhl//vyl7+87j4/97nPrdp+3759Bb0P1wPbnpINhUIZjfrZOft8J5ZshriG+dprryEIAqdPn95S5W0uZufiIOuNUqPFEEy3201HRwdyuZz29vYt3Z1mr2GGozEe/Y/k2qXdE6C5vIQJtx+1UsGczcWyO8i+xkoGrEsIQGtVGSMzDnQqOZUmPUuX1wRlcZhYcHKotZru2WRacm9tsgBoZHaZQ61V9Mwu0l5fwdBkMiLzBsIo5XLaLHrGbZnpzxKNmlAwSkKvTU0jkV++Ow1HY4xPL3N8VzUDU/aM57VUldI9usDgxCLHd9fSO2tjIqvYx6RRMmUP4p1c4tiuGlyhMFNp/rYyAeye5AUuFInRPWLlYEMpbZVmxi9HxNXmTEFvqS6l+3LB0sjcModbqqkrKaHUpKNv1kZzpTllHN8xvoAgCPzFD17iWFstZ/Y1cWZ/E/XlxTF6z1cwBUFgeHGZ1ybmeGV0BrlSxpuzyWrm/bUVDNrtHKpKFvK8sbBAQghjVCkZcSQjboNKyaDdnlynrKxiaNGFNxKh1VLKmCe5zf7KCuTI6bTZKK1N3sDIZKCQyUhEBaLqOFN+N2VqLSa1ljeXFmgxmYknEsTjMmwRL7VaI63GUi44pjhRWkuH00qVWocz5seEkoVwmEq1nn2GBuq0lrVfbBFJL/pZyyNYjNTn5uYYHBzkz//8zyktLUWlUuVlXuD3+zl69Cj/9b/+V9773veu+v3CwkLGz8888wz/7b/9N973vvdtuN+DBw/yn//5n6mfc6qD2KEp1a2yrYIZiUR45ZVXqKqq4sCBA2vm9ZVKZequqxj4fD68Xi8NDQ3s27dvy8VEG1XdJhIJBgYGsFqtHD9+fMPJA1sVzPT1SqvVuuVeuuyU7E9eG8DqXLnwTy37ObGrFmTQNZT8Ig7OLHFiTx0XJ+dTw5uD0QRVSg1uZZiaMiPD00nh6p2wcXx3DV3TNqxpUWPvxCLHdtcQCK2YngM4fUHKVDosBi2OyxNLZAjYlr3YHD5qy40oDFoEVlKfAPGEgCwGBxsq6Zi0ph63X7bUEwToGlngxn0N9E4vpn4vA5Z9kdQ2PaNWbmpvQKgQUhZ5u2rLGJtfSb9qVQpG5lxE4wJNFi3eRILZtBmcQGraiUgkGmd2ycPskgetUo5RpabeYmLu8lxOuzdAPCFwcXServEFvvXcJUx6DSd21XJydz1768tprDAXFClu5ukajEQZW3TQNWuje8bGuN3JnMdL/PLnoq4imSVpLjVTrtNRqtDSP7fEseYaEpe32VNdwcWF5PveYNITicZY8ofx+Hx4LxffmfVq8MFhSyWhSJxBxyI6lZIB5zJ6pZJTlTW8OJ9M1zZZTLQryhHiMjodyf02GUy8aptlT2kZyAQi0TADXhvHzQ34EgGqNAZK1QpssQB6lRIVahKyOB+oW3v+Y7HZqO0svc2nra2NSCTCb/zGb/Av//IvhMNhysvLOXv2LO94xzv40Ic+tMo8JZ17772Xe++9d93fZ/ev/+hHP+Ltb387bW1tG56/UqnMq/f9ek7JbqtgajQaTp48mTH5O5tipWTTi21UKhUHDx7c8j5h/TXMUChER0dHynt2sykqmxkOrEe676y4Xrm0tLTl1G56SnbZ7eevfvgqjWYNM+6Vm5exeQf1pZl3v12jC9zU3sAb/bOiDStTNieH22oQgNmMba3cfLCBC32zGftYcvipNmVGx7VlBqYXvZSb9SnR3F1bwdhlt52FZS+VpSU01Zbypmsu47kuT5AZm5uju6rpnVuiscLM1ELmOqPHE8KkUGMp1zGz7KGtupTxNDGUA6Mzy3gDYY7vqqF72opek5lu3lNfQe948iI+5whRbylBo5DhVcoIxwTMOjXj8ytRrFGnZiytAlcugzeH5kkkBFqrS6ks0zOSZviwq7acoVk7/lCEf3d4mVv20DlhxaBV01ZTxsHmaixGHXUWEzWlBsoMWsx6LSrl2hfrRCJBIBpn2u7C5vZjc/tY8vgZXnQwvuRk1uFhb315qu3nWHM10+6kkLdXWdBr1MiisOT0seTzE7xsUTjrWfEKXgoGkMvgSFUV/miU8cvPV1/+fKpkMOtwsFtjYNnrZz6azCC0V5Tjj0XxBMMsR5I3SBVaHRqU9DnsHK+tRhGScWNFA6/aZokJCSp1es4vznC8sgpBkBFORFDIZZhUGgLxIKWo0chU6BVy/u+Gm9AoCmuRyZd8zNfVajUf+tCHqK2txWaz8e///u8899xz/OxnP+Od73znhoKZD+K+n3jiiU23HRkZoa6uDq1Wy+nTp3nkkUdoamoqynlca2x7SrasrGxDR5lipGTTXXsOHjzIyMjIlvaXzloR5vLyMl1dXVRVVWV4zxayr42IRCJ0dnYSiUQyTB22OkQaVlKysViMP/vHZwhF4jh8cqrMBhbdSYOAPTXlWG1uSrSqVOSUEATi4TiVJj32NNNzm8NHwxrN+g57gF01ltSMTIAqg56ekQUO76qm53LUV20uYXHRi90doKbcSJlBi1qReRFadvkxqzUZEVpTpZmZhWRE2DtmY3dDOTq9iqm055UZdIzOLpNICGh8Co60VBHN+jvsri9ndPryuLLhBVrryghmRYvhSObPFaVGuketGHRqdtcYiQkx3GkTUOrK9AzPuVa2N6iZdiTFYcrmotSgxesKsafWQolejTJrXqf4/vpCEWbsbrqnban+taOtNXRdjqjVSgXNVaXYvQFkMhnNlWYG5pcIRWIIQEPHPNPLyffoSHOyuhnAoFUzcrm4S62Qo1WoOFFXw4LTi16lpmM6uf/DDVV0W5N/p12VZYy4kiLfVGrCotER1cRx+kNMeZN/k1qtmrlQCLVczo31dbwxv4A97mdPaQlEQYmMRCjMqMtFVYmefscS5Rode8vKedU2S4lKxVLQT4PWTIQYgiBwS1UjL9mm0CkUhOJx+lw23lbbyJuOWW6sqGXatUyrQo0zEmBfeQunynZxtSikD1O0xdu9eze7d+/mt3/7t4t6Tk888QRGo3HN1G06N910E48//jjt7e0sLCzw+c9/nre97W309vauX8F7HVfJ7oiin43YaoTpdDp55ZVXUk5BBoOhaP2O4vmJ+xMEgYmJCS5dusSePXvy9oPNR+jcbjevvvoqarWam2++OWMdNtdJI5udiyAI/Nszv+D8cPJiGAhHMarVyGUyzHoNIxOL2Jw+2ipXelYbK810Dc9j0qhRpglaXZmRnuEF9qcV2bRUlzI2s4zd7qX2cqRaolUxMm1HEGBofJF99RVoVArGZ1YiMeuylwqdjiVHZrHP7voKxucc+NwhWqqS51RWkhnZz9hc+JwhatLaVZorzSQSyfcrHI0zMb2MKi5DpVhJC2my1m30ahUz0w5ONNegUsiT7SZzK6IvA6Yvr3f6ghEGJ5dRCWqON1WnCp58gcylhnAs829vdwdICAJj8w76xm0MTdip1pdwtLGak621RNO2b6wszWj29qUVHlmMOoYXlnH4gix7A8QSCYKXxbJUp0qJJUDw8s2pSavhUH0lR2qr2GuxUK7W8froLJ1TVmweP3Pulfc+Kqych0GvoUSl4mR1DTUlBrpmbdi8fiqMK59PtUrGofJKLEodNn+AcDyOSiHHGo+y21zGAbOFbpcLASgR4rRo9MiiCXodyc/h4YpK3MEwS6EAMwE3e4wVuOMhKtR6TlbU0+ta5HRlI+ftUxwx1/CGY5b9xnIWhACVWj2/2XiWq0khgnmlJ5V861vf4jd+4zfWHACdzr333sv73/9+jhw5wt13381//Md/4HK5+Nd//dcNniUr0r+dx44XzELbSgRBYHJykjfffJPW1laOHTuGUqksetWtGBXGYjE6OzuZmprixhtvpLGxsaB95SKYc3NzvP766zQ1NaXmchayn41wu90IgsDLw46MlN74goNjLbW0VVoIhJMRVd+EjeOtyX5Ss0YDAkwuOFMVqKUGLYPjVhKCwNyCi7rL7RKJUDKa8gUixEMxTHoNe2rKCV1uLYknBKZmHZxsrV219mfSaNAISsoMK1945eUvmS8QYdHm5UBjVaqVRGRPfQVTCy5Cnih7L1fQLjky7fJ21ZUzML6EWaakqdKMTq1kNGs/ibhAPCHQPbxApVbHvvqK1LodJCNSl2+lurWmrITBqSV6RqwYUHJDay3e4Mrn0KhVsehZEblKk445+0pqc/fl6tslt5+ecRtCHJaWfJgVavZUWihRqjjWVMO+2gp2VZVid/tTl5zqtLS5XA4Ti05kQIlaSbVBQ3tNOccaarixuQ5VQka1Vo/fG8blDdE5YWXU6qDGYkzd9LdWlbF42WLQrNMwvJR8b2oMJSgTMuQR6J6xMmpP3kAo5DLGLhf+NJtNRCMC/QtLKOUyRhzJbfZXVbDHaGHS7kauSX6e1XIZpUYzU/4gFVo13kiEvUo9Q8tLuCNhDljKkSfk+GMRArEoKpmKfreNk6X1zIacHDM3shB2cbKsAUfMR628hPtqTlCmvrqtGoVYZ15J4/WXXnqJoaEhPvaxj+X93NLSUvbu3cvo6Oj6GwlF+rcD2XbB3KxYoRCBi8VidHV1MTExwalTp2hpaUkdR9zfViOw9PMLBoOcP3+eWCzGmTNnMJvNmz9xDTYTOrEVZnBwkOPHj29YcVuoYIr2gN3d3XTOeOkYt3OwMdN31rrsJRLMFLD+cSsnd9UxMLFiWdczZqWpVENLZSnRaPJ8/KEI8VCUihIV8/YVQVn2BNEl4sxnufNEonGWF320VJeuvD4ZzNncWJe96FBSbtRRZtAxMr1S7BOOxFDHZeyqzqyCDF0WXl8wwuSUg9N7G1a1pQQuvzaXP8qi1cvJtjoiaelWk16TIcSLDh/WBQ+H6iopNyYjWm2WeUFNmgWexx8mHk0ghOIca6qmurSE1lpLxjXCrMteLcn8DtgvWw96gxGWXQHeGJilZ9TKyJQdo1qD1x1GEZVhkKkI+aNUafVUa/Ucra2GiIAiJiPoi+HyJQ3oeyasRONxBufs2L0BTDpNRruLO7jytzLpV1odWivL2FdRwQFLBZU6PZemFpITaWoqcF5+Tnt1OSq5gmNV1ZSqNcxfjn5FIT9QXkE0GufSvBWDWsWAw06T0cSNNXVcWkx+ngStigPmStR6Hc5YhFa1nh67jYWAj2qlilmvl3pjCfW6UgRZnCqNGblcoFxjQKWAWEygWq7n7VUHuNpsJSV7JfiHf/gHTp48ydGjR/N+rs/nY2xsLGW4slPYrKXG5/PxiU98goaGBnQ6HQcOHOBv/uZv8j7OtgvmZuQrmF6vl/PnzxONRjlz5swqizvxg1ustGw4HGZ6eprq6mpOnTqV8wSDtdhI6MLhMG+88QZOp5PTp09vWHFbaEo2kUjQ19fH6Ogou/Ye4Of9SVHoGp3nQJpolut1LC75KC1Zie6i8QSKGBizhiY7PFGCvszUo90dZFelBXmW1leYTZRqtRkfygZLCRNzDhx2PxWXezr3NlSmrOhsDh/KuIzdtRbiiczX7A9E6B+2cqw1WeFXXVbC+OyKCCQSAiFflEONVWhUitQ2E2mp1VgswdKSlz3V5ZSbkmnFltoyYvGVv1NdhYkZm5vBiSVCnignWmqYXVxJcwLYnJnG8B5/mGA4Rs+IleVFX3I+p1Gdek8Cacv2ChlM2Vb2V2HSMpsWfTZVmzOi2+DliS6iG9HI3DLLngB2TwBBlqzUTSQEKkxaFtP+NummES3Vpalq2OpSAxOXTRbkMphYdlFvMnCyroZgIMLAzBKDC3aEtD+c8nLa2aTRUKrR4vWF6Z6z4YkmxVIhl7EU8HOsogpfMMyAPflZ21VRxmFLJUsuP9O+5Gs8XFGJyx+hf9mOXxbjVEUdFrMZvxDnpLmSi147SiHBnGOZQZeNSDTCqMdOIBEmISQY9dmp1up5h2bjatArRT5FPyKF2OL5fD46Ozvp7OwEYGJigs7OTqanVwbceTwevve9760bXd5xxx381V/9Vern3//93+eXv/wlk5OTvPrqq7znPe9BoVBw//33r38i2xBhii013/jGN9b8/e/93u/x7LPP8p3vfIeBgQEeeughPvGJT/D000/ndZwdL5hKpTLnop/5+XkuXLhATU0Np06dWrPpN90wfSuI1akul4vKysqCjQ+yz20twXS73Zw/fx6NRsNNN920ad9oIRFmOBzm9ddfx+PxcPr0aZ69OEkwurKP+SU3FoOW3XXlDI7ZcPmC1JgNqQ9Qa62Fjv45GizmjNWHyhIlTkeAMuOKuBr1avpHFjnYlBm5RsNxJufdHGquQnb5G6O5fKHxByOEfFEqjVpikczPg8MVwLXop758pQihrsLI5GXh6xlc4EhTNbVZRUcalYKxmWUGxmxUleiptRhWuetUliYFdGxmmYgvwuGWajy+TCOBSvPK3yMciRENx1HHZBxuTo4Ea6wqxZoWxVaWljCZVqVbbtLTMTSP1R7GotRw0+66DA/d3Q0VhNL+FqX6zOpOt3/FichUoskooKqxZKVjba6V8zCtnHdpiZbxxZXn+cIrEXXt5X1UGfXc1NKARanBuuRj3uFl+HJRkEGrZngxKXolahWzbi8na2ooQcnrU/NE4nHqS41MON3IBLixoRa3N0z3/CKVlyuiy7VawtEYl+asNFvMTHs9nKysJY7AYsDPvgoLBoWGjkUrc0EPJ8rqiKvl1OqMHKmsw0WcI6ZKJgJuqpDj9/kJhL20qI283dBGqWLjSvUrgWh3eTUizDfffJPjx49z/PhxICkSx48f54//+I9T23z3u99FEIR1BW9sbAy7fSVTMzs7y/333097ezsf+MAHKC8v58KFCxsboojTSrb6Lw/uvfdevvjFL/Ke97xnzd+/+uqrfPjDH+a2226jpaWFBx54gKNHj/L666/ndZxtF8xcU7IbRUxiZDQwMMCxY8c2tLgT7/S2IpjhcJg333yTpaUlamtrN104z5W12kpmZ2dTI5jWWq9ci3wFUxRknU7HTTfdRO+EnX/5eTfVaS49Hn+IarOBRGhFrIan7RzbVQeA6nJ4MTS5lHpMr1Wx5Ajj9ATRCgJiDdDuugrCkTh9I1aOtSbNt5urS5mcS4pI36iNo621lJt0TNtWhCYYSaCKJ3A6s4p9GiuYnHPid4dpvpy6rchqSxkcsyGEBIw6ddrzygleFob5RQ9eVxB5PPNzU1dhTBXTBEJRnA4/OkGRijZlwOyiJ+M5iYSAwx1gYNhGY6mJhvJMEa7NMh6oqzSljuHyhYiG4yzMumgoMXC8qYZSvSZ1AwEQiq2co0GrYnpp5fjVZm2qgAmS/asiu2rL8aYZ1jvT/r+5qjQVoZeW6BhfdCInOT9UK1PSajKzvBwgEI4wdbkPNX3Syq7qMqLxBCaNhuP1NUQDMTqmrNRajMQufxarTCU0mYzUqNQ4g2G84QgapYIhh4NjVdU0mcz0LyUv1nqtiiNlVSz6/fQt26kvMaCQyemxL3KsuhqTQos95CcUjyFLyJjyO2kzlGNPhNlXWoXBZKLGYESGAlMYyubDeL1eJicn8Xg8RVuS2Qzxe5ivYOZjWCBy2223pebzpv97/PHHU9s88MADBAKBdZeNJicn+dznPpf6+bvf/S7z8/OEw2FmZ2f57ne/y65dV6/C2OPxZPwrtCf/zJkzPP3008zNzSEIAr/4xS8YHh7mrrvuyms/2y6Ym7FZCjUQCHDhwgXcbjdnzpzZ1ApOJpNtqfDH5XJx/vz5VHWq5rJpdDFIjzDF9cqhoSGOHz9Oa2trzhFsPoI5Pz+fEuQjR44Qjsb5i3/6BYmEQDAcR69ZiWa0SiWWkszotntkgZvaGxlLc9LpGVqgvaGS9vpKwpHkhcnmDHGwqQatWslE2ra9I1YONldhzOpp7BleYH99RcbFH8BiNCCLKaguXTkPnyspGF5/GLvNy77GSiazi30aK+gfsWJQqKi5LGDBQOY6bENlKT398xxprkallIMgsLCUKYaVZgMjk3ZC7jBHW6rZ3VCOI8183ahXZ1T0ztvcjI0ssdtSmioyWnZnFhm5PMGMn8Wh2tZlLwNjNgaGbFiUWo7UV3FqVy3xeCIloG115RnVscG0yLCsRM10WmpYq1m52aouK2HBtXIe3nCyZ7G1vJSDdRUcqKrApFATCyd4fWSWabsbtVLOaFpf6IJn5cZFEOBEbQ2xYJwFjw//5TXfpUDyvTFp1MgSMO/wEo4nGLpcKHSgpoJWg5nuORthIXkztqeslDmXl57FJSoMeg6XV2JUaeh1LNFoMLEYCDDsctBSWsq4y0WL2URckFGmUxOMRynRKHFFgiwLQdos5fzhzb9Gc3MzWq02NWjh5Zdfpre3N8OO7kogXmfyTcle6SrZK4k43mur/wAaGxsxm82pf4888khB5/R//s//4cCBAzQ0NKBWq7nnnnv4xje+wblz5/Laz7b3YW6GGFHFYrFVd2lLS0t0d3dTU1PD/v37Mz6UG9l+5dvvKO5vZmaGoaGhjFmZ640LKwRR6MLhcIZdYL7WfbmsYQqCkBqh9v+z999RsqZXfS/+eVPlnLqqOsfTp0+cHBQQlkASWAIBFghsZMD4WjZOsrUwcME4CnN9Wdgggxf32kLX2OCfAVsILMLIkkacGc2cfDrnWDnnqjf9/qjq6u4zZ+aEOdLMyNpr1VrdFZ43Pu/32Xt/93cfF2j/zB9d6ZNgqi2dubEgC3sZXHYLu3tFGs0OY1E/2z2BcdM0aZTbeJw2Kj3NU8M0KZeb1MyTMnbza0mevTjGC9e2j+0HlAoNnLaTYUaLLLK4lOLcRJRbPTEAWRLYTZRptjS82IiH3KiqTiZ3tJ1WW6NdrhJxW6k1jq6LqXfPRyZfw2FTeGQqxvWVk70xLb37Z2E1RTTkQvFp7GROdjzZ75WKtNoa88spnjg7RCfsZbcnhTcW8zO/dqQoNDkUZGMnT7EHihemo3RMgwQmJgLRoIu9Y/nJoYiX/WP/Tw4FWdnJAirlWovz0zGyySpeu4WBkBuXLHNhZICGqtJWdXL1o3MR8Too9s6BIHSbdouA22FjLOLDpUiIhonX7SZbraO0BXYPSgimwFame30n4gH2e2IDU7EQ84luacdo2MdWscR4wMuA28XlnQS6YRL1OdnoNRUfC3nZKVd4LNbNIV/Z656XgEOhUNe4MBCh3GyzWSgR8zhZzuV5fCCGKcJquoTPakUWRK5n0pyNhzmrhLHJCpfzCZ6NDvJ8codJj5/5UpaozcnNYpqzgTA71RJBh0LIauevjDyNU7YiSRJOp5MzZ868Qo5uaWkJp9PZ7/v5Ws2g79d0XUcQhPsGzLdqL0zgodZh7u3t4fEcRTLuR1v3uP3Kr/wKL774Ip/97GcZHR3ly1/+Mn/rb/0t4vE473nPe+55nDccMO/mNd2phZZpmqytrbGzs8OZM2eIx+Ov+J1m6rT0Dm75lWBzPx1GoHvTLywskMvleOyxxwgEjpiXDwK+r2aiKFKv17l06RKBQOC+6zjvdZ9UVe0LORxvKH15cY8/fH4Rv8veD+Utbmc4NxlFEgRuLXcl8JpNFYdVodFWOTseZXEpycxYmGq9idnLYPpsEqVCA0mEQ36MLIlsrGeZGQmzunvUVivic7K9WyAadPdzfTPDYRZXUiytpDgzHWFhO8NQwMFuogtg5WoLwzCZHg+Rz5702EBmd7fC+KCTrVwDr0Nh/ZhX22ip0DG4MBnl5kYSEwGX3cL6zrFaz1yNkYid8+NRbm11vzM1HGJ962gcq0VifiVJR9W5MBNlI1WkVj/prdgsJxcCkiCwtpphKOLBH3AgWkTSuSNCkN9tOwGY0m3iDIeSfrVmB7FQZytR6HvhZyejHByUsMsSdquMbMjEHA5M0yTgsbKdriCqJrV2k20zR7ang3ve4ex7oiGvow+WAIlj4W+jJ5yuiCJDfjeSKbCVKhJw2Pvh3KjfTaLXaWPQ56HV0bm2k2JmsOtdSyLUNIOzoRDVdofNcgmA4YAXd93KcjqHYe2WJ52OhLiUOCDudmERJK7lMgz63TwSiFLR25z1R5AVAbsho4sqc/YIFa3JqMtD3WjxTGicM57us+F4acftcnSqqvbblh1vBn0IoA6H44H5CQ/aPPqt7GE+TPN4PCcA80Gs2Wzy0z/90/z+7/8+3/md3wnA+fPnuX79Ov/6X//r+wLMN31I9vYQ6mH+MJ1O8/TTT98RLAEUsVuVt9/MvuKz+wnJNhoNvvrVr9JoNHj22WdPgOXhWA8rJNtqtdjZ2WF8fJzz588/8Cr3tUKytVqNF154AUEQePrpp/tgWa23+OSnv0C51iLmPzlROx2NdPooNJkp1JiIBVFkiXSq+/7qdpaL013ZLpsicZCokC93GPQeES1Ojw2Qy9dIHpSIhbqTwGFT2NzOUWu0MVo6vl5dZanY9ZQM02RlPcPp0TD1+kmyT7PVIblfYizm6783GPGwn6xgArsHdc6OhIkGXCfClqIA23t55heTzA5FcNgUJuJBVO3onrBZJFLZJgtLSaajIQIeO8ptXsLkcIhWW8MwTOaXk0QcNtxWa5/papFFtvZOhoYTvXxnMlNhcTlFI9/i4li0SxwyIXlMV9cii2wdHP0+FnSTOBYiHon5ToSsW2o3DKpqOlZFZnk3S6ZYJ1tqoChWWqqOCUT8zj5YAqQKRwB5qA8LMB71k6l0wc9ls9Bsqzw6FMUtKizsZrrAKsBer0OJIMBuqcJ0KMBsMMj1vRSpSo2w28FKpuvdPhKNUG6pLKZyeOxdb+F8JMxqOs9qrsBMNEjU6cIlWriVy2IVRYY9Hi6nkpwbGMAmKFTUNlZRoqlpiAgoooBNsmBVRFq6RllrMusJ8aH4xf6xGIbxql6eoij9loLPPvssjz/+OIFAgHw+z8svv8ylS5dYWloik8mgquodx3g1e5AaTHiwHOabxt4A0s9rmaqqqKr6iuv/IM/uNz1gwpE8XrFY5NKlSyiKcscWWbebS3Zgl6wsVLZfMd69AGY2m+WFF17A5/Px5JNP3pHc8zA8zEPSUq1WIx6Pn6gbfRB7tZBsJpPps4gfffRRFOXI+/n1332BbK/0YXk7y8XJbp2VKAp06ipum/VEGcjCRoonTw2RLx55d7dWEsR8VoaCDlrt7o24n2lydjyCKAgUemBQb3YwOwZuh5WpeLAvtJ4r1nErFuZGw31g6Z4fE62pnWgpBjAzGiadrZJNVZka6nowAffJiMLKegaHZMF+LH83POCm2pOoW93I4BQktNtk7cYG/aha9xxubOeQOwKKcHL7nfZJAPe67CwuJRn0uJkZDjE5HDohIj82FCB37HwNR31s7ReYX0pSSteZ8NmIed3YLN19nRwO9UtEAMKBkw/Q4/lKt9PK5rFymFj4eK9V2D6WezxOOvI4FDLHwHM/ezSG0yYTcTt5dDjK2XiE3USJG5spYkE35Z5K0VQ0QLbaXdycG4wQsdrZTBSwWiTqvf0bDHoY9nmY8PoptFq0dQO31cJWqcQjAwPIkkSp1UYUwCrJ7BYqRL0u7JLMKV+Iy5kkMYeLYqvFaqFAxOngSiZF1OVkoZhBF0x002CvXiJstzHl8fOxyXeemEP3WtohCAIul4uRkREuXrzIO97xDmZnZ5Flma2tLb7yla9w+fJlNjc3KZfLd33gPqiH+bWsw/xam2A+nNf92GuV1Hg8Hr7lW76FT3ziE3zxi19ka2uLT3/603zmM595VVbtq9mbPiQLXVBKJBIkEokT+cN7saDFg2ZoPJ+d5x3hs8DdAdM0TTY2Ntja2nrVkO+hvV4P87C9mWEYRCKRh8K4vd3DNE2Tzc1NNjc3OXv27CuKjj/7xXm+enMHh03pP+BXtrL4HQpDET9LK93i8Quzg1xb6+b9fG47K8tpBsNeDnr5O8MwMXSBZuPk3b66kePJc8O8fPVIwTWTqzI1GiJ1LPwIXUGCJ4JDWBSJjnp0jaySzF6qwfiIj61E9zetXn6u1VbZ3y1wbnrgBKEIYHoszPxSknjUS8Omky83sCgnCUayYLK5lmU05mAn2w1FN+on89KxsJuFxQSnxsPka00MzBPeowCkMt0FQSJdgTQ8fm6YsZiP7V5Tapf95Hb9Hjv7vc9Ms3v+llZSWC0yZ4bDeOzWfugbOAG2XpeNrWNC7qMxP7c2jnKnx1WGJuJB1o6JvGcrx/OcdsqZ7vjRoItkqUbc68AlieTSJfI1lXyuznD0CGTFY2Fim1VhPOjDIcmYBqz0hCcaehfo7YqEZAokc1UiXicHle6i7HQ0zHahxI2DNNGAC5dF4WIsypf39pBEARMDta0j+0QmBT8eq5VruRTvGB7m+fQu74iPcDWX4NFwjJbRAQlGnR4Qdf7yyJO4lZPzyDCMEwvEezVJkggGgwSD3QVZq9Xqh2/397tNA/x+fz98e/v8fZAaTNM0qdfrd3UIvmlHdvnyZb71W7+1///HP/5xAD760Y/y6U9/mt/+7d/mp37qp/ihH/ohCoUCo6Oj/It/8S/4G3/jb9zXdt5wwLybaZqGqqqkUikef/zxVwgR3IsN2AIYJvyPg6/yF+NPvCZgqqrKzZs3qdVqPPXUU3eNn78eD7NYLHL9+nWCwSBnzpxhZWXloeRDjwOmpmnMz89TKpXueDyrO1l+5be/QkfVOTt1RLBpqxoRj52tYzm7W6sJJocCbBwUGA15WVhK4rJbUCQBtUeqiQd9NKodRFHohwt1w6CcqxP0OciXjh7WNovMgNdFvljv5z6jITfXbu4xNR5m7SCPbpgEPHbWtzLohklir8ypiRD1lsr23hFgqJqOqJtMDgW5tX4EHIdkn0SqjMdl4+zkAEtrR2pEAJGAl1y2yf5+nYkhDxW10xdsP7RqD4DWt7LYrAoXzw3yYuloATA2FGB791gnEqeV6/N76LrJ6YkIDUNj5+DIyztOIIJuODNf7oJ0u6Oxs1fA2DEwDJOZQT8+n51stYksiWi6wUjUy62No+NoHfM2wz4nO8fqLY+zY2Mh9wnJvWq7w2DATcjlwOWw0qprpLMNvMMhMr3cqs9hYbf3G5ssstLrXjIdCaC2NXZTpW7I1uzeu1Gfk/V0gQvxCIoocXmnm/uO+FxkWnXG7Q62CyUytTqnoyGahoaumezXuwuOJ+MxXkom8NqsiMB2scRQwM2E28dBs8KFwACpdpUZbxDV1HFZLFS1Jrqp8YNDjzLheqWox2uFZO/HbDYb8XiceDyOaZp98lAymWRlZQW73d4HT5/P98Ae5ls7JMvXXXz9sKTm1SwajfIf/+N/fJ079SYPyVarVS5dugTA9PT0A4HlocXsAZ4KTPNb28+jieYdgelQJQi6dTv3kmx+UA9zb2+vr3N77tw5JEl6KBqwcCSc3mw2+epXv0q73b7j8VTrLf6f33ux78nNr6eY69VFioKA2tSZ6pVCQNcDqlZanBoJs9AjAB2ky8T93VV10OdkZTXF5m6O81NH/fOmR4Ksb2ZxWS1YlMNGulDM11leS3N++sjjDXudmCasbWY5PRLuFf570XvAp+kG25s5BgOvXH2XS00Wl5Jc6I0X8jvZ3D4C/EqthWLAmYkjwQSrRWLrGNlnZ7/CeCjI8MDR+D6XzO4xsGu1VbY384wEvYxEfQA4b1M4Ghv09/d5dTODU5QZ8rv6+dbxoQDF8lE5yfiQn2b76NqPDwfoqDqabrC5m0dt6+xt5VFaJuN+D05R4cJYlFODIcaivn4pCtwhHJsq4rQqxANuxsI+Lo4O8MjIAKfDXirFNqlkhfm1FBuJAuUe01mxHD0aRuNHsn2jEQ8jbjtRi4LWbLLa81zHo/5+h5fRkI9Jv5/5nQw1rbsIsCoSHU0jKNtQMcnU6ggm+Bw29goVPHYrB5UqF0MRdqsVTBNOhUNcTqQ4PxChpeo4rTIyEjaLRLXVwWmVaWoqZbWF32bhPdEZng3fWc3nQXOJr2WCIOD1ehkfH+exxx7j7W9/OxMTE+i6zsrKCs8//zzb29t0Oh1qtdp91X6+lUOyb7Yc5sO0N62HeXBwwOLiImNjY5RKpYcyZtQe4Nui5/m1xB/ygZaNsWOfHTZgHh8fZ3Jy8mtS8whH9ZWZTIZHH320H+o5HOv1tjKD7kRut9tcunSJWCzG7OzsK1bXhmHyz/79n7C6k8XtsFLt5aT2UyX8bjtjA35uzh+QK2aZGg2x3mvKXCg3mIwG2Tg29/dSTc7ORBGAxXT3wX1zMcHcTJTFzTT1Xo5s76DI3EyU+c00p8YHWFvpeoLzi0nOnY6xkyiyvnnUxHlpLd19/5gnCWC1yCwuJDg9OcBSz8saG/Szu1vsjZfg7KkokixSOMZAFUWBvb0ipXKTs7NRVg/yTI+EWVw+6kQviQIbWzmqtTZjgw72Ci2GYkHKlSOvNeyzkMlW++f64unYCTIOQPm22kpRgOX1LgFteiRI0OfsepHHjunE9dFP3lOZHiCqmk6l2uYgtd+XwzszHWWvUMQmiVitMmpNJWK1Y5omsbCb5Z0sumGSKXcQNPpM5KlhL+2egtBI1Md2T5DAqkhsJI/Oeapcw2u3MhnyU1dVtjOl7m/cdqB7nAf5Al6rTMzpZPkgS7nZIeJxspopYJMlHhuO8cLWAYZpMhR04LPZOBUKcGm7G9b0OazENCeGYFJutbgYGeByOsm0z89OrdwVg+i0MDFZLdc5HQxS7rRwWxWcVpGz/jDfPXSeV7OH5WG+limKQiQSIRKJdMutGo1+rvPy5cvIskwgEOi/Xk1GU9d1ms3mNz3MN6G94R7m7cCk6zrz8/MsLy/3VXsURXlopRsxu5/3OCb5/cJNVsrpPoAdqgRNTU3dF+Hmfhi3rVaLr371q335ueNgCQ+ny4hpmhSLRcrlMjMzM8zNzd3xQfHr//XPeenWLqVKk5GBI9WPar3NRCzAwnKiP16p1MDl6E7uc1MxLl/fYSRyUmas1VRPgBPAzm6eyZiT1DGG7eJqioun4rSbJ3OEyyspTk8M0OmcPJemajAWPRlZmBgO0myqrC2nOdvzZB23eXira2mMlobzWN5wejRMqefVLS2niLqdGNrJ7U2PhalUW9262/06wwEPrdsEDkKBo/NlmibFQolmscnp0SCSCNGwm71Eqf8dh11hY/vIi91LFFlaTBJxOzg/GcXrsrFz7PtOh4WNY/nRoaiX9DH27Ejcd1I7tkdY0nQDh01hdSdHodzo1n6KQr/kY3DAe0Kir3isBMbrObqeU0NBmh0NETg/GiFkddCqqiTztb5HOeB3sZPvXtfhkIdBv59W06Cja5R719Zjlxj3ufHJVvZLVQzTJOqxIyEgatDqhXDPDoRZTOXYLVWQZAGfYsdUYNYfxGe3YhVlpoIBLKJMwGFj2htANXX8diuKBNPuID86/gyvZQ+SS3w9JggCTqcTt9uN3+/nne98J3Nzc1gsFnZ3d/nKV77Cyy+/zMbGBqVS6cS8r9W68+h+cph3Ex//q3/1r/ZL9A5f73vf++467qc+9SnGxsaw2Ww89dRT9y0l941mbzhgHrfDEo5qtXpCtedht+QK23z8Rfdpfnv7BX7j+T/qC5rfTSXoTnavIFcsFnnhhRdwOp089dRT2O2v1LV8vYB5yLbNZDK43e5XbTH2P74wz8r2kSe3uJHm3GQXeGwWmVSixJmJo5BqvtRgNOIn4HWw3sv/pbIt4pGjEK9sgILYD7lCN3SpN/QTOTSARq2D6zbijSQK7KxmGB88CY6lQoOFxSTnprv7I2CS6pWyGKbJ4mKSR07F2di6jewzHmZpOYXHohAJdlfq+m39Jk3D5GCrwOz4UYhWu+07DqvM/maeC1NRJFHAapHY3Sud+I4sKjRbGqsrWTyShN9xclqND58sWZkcDVFvdMjmaiwsJhj0uxgNeoj6LIjAaNx/Yj/83pPM3+OCDG6Xla1jgvLRyNFDVhIFdhLHNGuPqSPFwx6y5W74VRCEE4pADqvCIyNRglYbgimwuJNB0w1ix0pOokEXVlnmkeEoIaeTWzsZVN1AsXfD8x6rgmgKbKcrCIbKTqGMIgpEHFZ2inUQYDmb47FoFEkSqXdULsQjrGdLtDQVCYGtQpG2qWMa0NY1LJKIZppYFBHd1BEEg3GXl78+9QziXRa5Xw8P8052mMMURZFAIMDU1BRPPvkkb3vb2xgaGqLVanHr1i2ef/55bt68yX/7b/+NW7duAdyXh3k38XGA973vfSSTyf7rv/yX//KaY/7O7/wOH//4x/nH//gfc/XqVS5cuMB73/teMpnMa/7um+29vg6WyWS4dOkSPp/vFYDysAFTkiSsHZOLORtLZoGNiHJHALsXuxvp57Bd1uXLl5mYmOjnK19trAcFzOPi6TMzM6/6cPjza1v8m//0JRbWUgz38m8Am3s5wn4n0/Eg6UyVlY00AfcRqC2upxn22mn1tGRVzUA0QZFFTo1H2NjMcpAsMTt2BD6nJ6McJOoMhz0ntFAF3WRzI8tI7Agcp0dD5At1sqlqH4inRkIke+C4sJBkPOZmdNBHLn/SkzU6BrOj4RPb6PTYvulMlWapxbmZKJtbJ2tyA147jUaHteUU5yYHGAi52No+CbyGbqLpBvPzCeJeF+dnYjSPlYoEfA729o/AplpVSR80iHlsRLzd81cqndzf2x8Ggglr61lyqRYBqxWPRWFyMNCfnMljJTZ+r70vKg/w2GmTd11Y6w9arB6xYyeHg9SOefKJY95l0H+UH5sY9BN02XhkNMpk0Mf1pQNuriUp11tHYu0C7BV6IVtZQhEkrIbE0m6G1R4JKOx1spbOc3FogKlIkNUeCAeDPoY8LqI2O0u9sG/UZSFuc7BbKLGQzvJ4PEpVVWmpKlNhP5cPkpyLRVjK5hkLeFjJ5zFEA6dFpqmrOCwSIy43f/vUO1DEu+cm32jAvN2sViuxWIwzZ87w9re/nUceeQSPx8Nv/uZv8oEPfADoMj0/97nP9T3O17K7iY8fbjMajfZfd+OE/NIv/RI//uM/zo/8yI/022E5HA7+w3/4D6+9M98EzK+dHUq03bhxg7m5uTuGEA/rMB/W9iqVCrlcjkem5/jZpz/ERi3JP73xp9Q6968peUj6uVNC/1AhaH19nccee+yu5TAPCpi3i6fbbLY7jnNj+YB//zt/3q1r1A0M3UTulQg0WiqTsQBLvXxeR9WRhK6XAjAWc7O2licSPHrQHqTKnB4foHqsAfP8UoJz0zEkSaTUCyNubOU5f6orajA2FGBzI0uno1EtNgj5nYhAoafW02h0aJZbhAJOxNsOYWengseqnABGUYBkosTCQoLZsQEkSSA24GHrWAi03uggaiZnZ468ZqtFYvvYdxYXk4yEvUSPEWacDpnNzSMATSTLlDJ1zk5Fsdm6XnP8ttZaE2MhKtU2mWyTfKbN6eEAxjFv0WaV2DgGynabcoJ0ZJpw9foeO5t5PLKFJ08PEfW7CPcAbjDqwzRBEEw++LZF/s8f+HX+6Y88x89/9DnG4hJ7x5i3suXoQT0S85HtlaWIAmiaznTEzVTQjVuxsL1T4NZqEo/T2g/hTg+H+rntqcEg7Y7GoyNRTkWDXF49oNpsMzMU7tdbjg/4GPX6uLmVptzuArXfYcMmyaSLdcJBD6phMuyyk6i22C5W8cgwYrNRqNbI1GqcH4hwJZniycE4l9MpnojFuJXLcjEWwWOxYmJiVyRGnW5+Yubt2OR7KxX5WpB+7sXuhSUrCAIej4exsTH+4A/+gM9+9rO4XC4Mw+Dv/b2/RyAQ4POf//zr3pcvfvGLRCIRTp06xcc+9jHy+fyrfrfT6XDlypUTKjiiKPKe97ynT4z839HecMDUdZ1qtcozzzzzqvWOsiw/FA/zsLF0qVTC5/MxMjJC0ObmJ2a/FZ02P3ftj9kov/pNdCd7NXH4VqvFSy+91A8v364QdCd7EMC8XTz9MPxzO4AvbqT46V/6HJIgcojZB5kyZ3qh2PHBANev73L+1NE1yJXaTA37cdllcskaqmbgUJQ+iAKIJgRv6wyyvpHhsblB0sc6jcwvHHB6YgDrMW+gXGlhQeTMTKxPojl832e1UCicXFkHfVYWb6Y5MxXtg+b0eIRCTxVoZSXFWMRH6LYQpiyL7O4UWJxPMDcRwWaVmRoL0TgW2hQE2N7MUUhXOTfTHT/gsZwAw4Gwm63tPIsLCRyCxOmJCOnbOpUcD0kDWBUL2YMaM/EgYzEfg1HPiV6a0bDjRL3pUNzbL8ep1dt0WhrLSymKqRpBqxWrKfCuixY+9Q8/x0f/4gsc5H0ABLw1/umPf4YLU3vdY5YE8sU6QyEPs8MhhkJeLgwPMBX0MRUOsLKaZmuvwl66eqIZ9vFG0WbvOke8TkIuO0ZT58Za8kQr67qq4nfaeWRwgNWDPDvZEkNBDxuZAsMBD9OxIFe3uouw3VKZ0wEvDotCud1hwOVEky1sVRtYFBFFNylWS0w4nFRaDU77AtR0lXG3l5auI0hglUXGvG7+7ul34FDuTJq5k71RHuaDbFcQBPx+P5/61KdYX19naWmJZ5999nXtx/ve9z4+85nP8Nxzz/Gv/tW/4ktf+hLvf//7X/W5msvl0HWdgYGBE+8PDAyQSqXu+Ju+fQOzZN9wwFQUhccff/w14/UPIyRbr9d58cUX6XQ6TE5Onlj1he0efmL2ndhlgf/r1pf44921ex73cDIcB7pCocClS5dwuVyvqhB0J7ufEhXTNFlZWWFxcZGLFy+e6GZye5uwpY00P/NLn6PRUtk+KHBh+ggUb64mOD8To5JroGkmi6spho9Jza1t5xkOuGi1u+d/96DI2V7ZRsDnYG0lxc5OnnDw5PUrZ+o47Eerf9PshkkblZO9JFPpClZT6DccPjSHomBBxOs+Elt22brXbGkhyenxASRRQLuNJJRKV6hm64QDRyA+PRGm2gtVrqykCLpsmLexUKcmwhRLDVRVZ3E+wXjMR6t5kuwTOZbDK5WadBoqXoulH0J2OBQ2b8ulHkoKbmxm2dsq4LHYmR2P9Cfe7SSnYvE2sfeesAGAIgsMB/8nf/8H/w1Tw1u4nXUstjzPXR9gfGSPiD/Hv/zx/85ffs8lzg65yCWqpPbLrK9nWVvPsrCaYnu/iP1YP82RqId6L8QcDbnY7nmoTpuCqZuciYdo1zpcX0vQ6mi4HVZWE91jjAXceC0WOnUV1TQo9UpSgj4Hjw5HyRfrrKS6YHx2KIJPsbGaKZNptTgdCTEc9LJbqnA+HmGv1sTpsGO1O2noBu1Oh1qtym4+R1NtIpkGFkkg7nbxt0+9Ddt9ihB8vUk/x7f7IK29nE5nfz5PTk6+bj3VH/iBH+CDH/wg586d47u/+7v53Oc+x8svv8wXv/jF1zXuneyNUPr5etkbDpj3Yq83JJtOp3nhhRcIh8P9xtK3A3DE5uXvnv4WfHaR/7p9i39z4wU6+t23eby/pmma7OzscOXKFaampu5bPP1ePUxVVbly5QqZTOaOZKXj41xb3Ocf/Kv/zkj8yMNdWEsx0gNFm0VBb+hoPS9H0w101ei2twIm4h7yuRZu5xFwzS8dMD0WYsDnot3SaDQ7OBQFWepO8NmJCJubWUZjAY6LuCoIaE0Nt+torImRANev7TE9Gu5L77ldNtbXM2QyVVwWC263DbtVIpk4ApOV5RRnJiPsH8vnQZdQs79XpFPtMD7cU2dpnGTkypLEzlqOueljq+fb2oiJCNTyHc70wriSKLB7W3mLzSKztZUje1Dm3NQA0+PhE97i2EiA7DHmcCjk4ubNfdaWUoScdh6ZjVOrHd1jbpdM4phXHhtw9Vm9kVCJv/VX/oy/+YNfxm7rAtza3iAducWZcxvsF9wsbUXYyDr54Psu8bEf/mXOndoGujWfhy3IBBF2j4VtjWML+XDQhddp4+JYlLnhCGtbWZa3s4wNBWj3jmts0I9hGFwYHiDuc3FjI0Wro9E2ep+HfOTLDa5vpZgaDFFqtDg3GKHYbLGRLTIedDFgt7Ofr7CYyfJoLEpF7WCVZHxOO4lqDZfbDoqFigzToSA2UaRcL9OpFnh3x0U2kaRer99XXeObLYf5Wvb1qMGcmJggFAqxvr5+x89DoRCSJJFOnxT5SKfTRKPRO/7mfwd7SwDmg4ZkD/OjN2/e5OzZs5w6dQpRFF8VmCIOD5848214bSZX83t87IufY6tUvMPIRyaKIoIg9BV1NjY2ePzxxxkZGblvPdh7Aczj4unHO43cPo5pmly6usk/+r//gGZLZX41yeRIF0A03UDrGNhtCqNhLytraUaPAWoyUyEWsBL229jfqVAsNRg6RhAyza4HmDoo9d/b3S9weiqG121jY7U7yVZWU4wNdb2y4biPjZUMuVyNsNeJ1ANXuXcLriynODPT9VzHhwJ9zyuZLKPoOvGIA007+YA0OwaDQXe/dETAJNeTp6vV2iS28zx2boidnZNA53Faabc1lheSzE0NEBvwvMIzFBFQOwbLtxJMDQY4Mxujcsw7djgs/fymYZgsLiRpFlucm46i9MKyt4sZRI+xivP5OkZHp1NucWYszNigD5/n5PctFhFBMHj/X7jKL/7c/8fs6Ze4uhKlULYzvxMmMriNw9FdDFTbHuRQlmzFga4L5Ms2fvSjf8Rf++E/IhQ+ys1PjAQp91SLbBaRvWwVqyJxZiSM0TJolFrcWkmSOdYrs9JrNC0AVlkm5nSxspvpy+3Fgm4OChUeGY7id9rY75WbNFSVi/EBOqrOTr6My6pgAsvZMtPxANOBAC1dQ9MNRn0eUtUac9EQpmkSdNkZ9frRJAGL08r4UJhfePa7GIxGKRQKvPzyy7zwwgssLy+TzWbvuqB+KwHm16NTyf7+Pvl8/hUymYdmsVh47LHHeO655/rvGYbBc889xzPPvHYJzzdJP19juxuwPEhIttPp9LuaPPPMMydWRa81XtDm5GfPvw+fU0aR4WdefI7fXrx11/2/fv06tVqNZ5999oEVie4GmLeLpx/2Cr3TOH9+M8vP/vL/5FSvZMIwTcrVFo5e38l0rspj03HWe8X0i2spzkwfnaNCRccny321muW1NOd6+U2nw8LBToFYyH2CgDO/cMDpsQGax0KZ+3tVBoJWzGOEqu2tHLPjEYbjPtbXjyjqC/MJzp+Os7tzMo9cqbSRNBnfsc4nLqeVzfUsezsFfHYLAb+D8bEQmWM1n5pm0K62mZsa6AO0w2Fhc+OILbu8mCQedDMYPaqt9HvtbG8d7cPWZg6t1uHcqWg/fzs+EqTTOXpIx6IeNjeyLN46wCPJnJ2JsnNbp5LDcpj+OS7UUVWd5eUUext5tJrG+akBRuN+JEnAYtnnn3zid/jhD38Jq6XHThY1FjM2PN7uwqBUdrC4HSEQ38bu0IgNZ7i1M4Mud3A62lw4u8Gzz/4W3/quq0iSjqVHVvI4rYxH3Yz53Ygtk3ZLY3EzjWGYxCMednvs2HjYw06qyNxwhEfGY1xe2idZqDIzHKbaY+CORHzYBYUbWymS5a5HPTcUplprc3M3DXK3MfWpaIiNYg23RaLSbHNjP43LbqFQayDKIhZBRMdEEkSKzSaqoCMoGm43fPLR9xHwehkeHu6Loh8ugDc2Nnj++ee5evUq29vbVKvVE96naZqYpvmGkH4ehGz0IL0wX0t8vFar8YlPfIIXX3yR7e1tnnvuOb7ru76Lqakp3vve9/bHePe7382v/uqv9v//+Mc/zm/8xm/wm7/5mywtLfGxj32Mer3Oj/zIj9zXvn0j2ZtW6ee43S9glstlrl27htfr5ZlnnnkFsNxtPL/NyT+9+H5+8vJncVhkPrezwtVMio8//gzR21Z+hUIBwzBwOBxcvHjxda1iXw0w7yaeftzaHY3/+HuXee5yF4hWt7JEQ25SuSq5Yp0z01EW11OcnRzgxZe2mJmMsLrZBZCNrQwel4VaXWU45OVgL4/LaaHWEyJf28wQi3gIehwszScoFxucOzvIzaWuyMFQ3MfyzT3CIVc/FGkY4HY4KWZPEniWFpNcvDDIwe0HoBqMDvm5tXikvjM7PcDyfIJwxE3A76RQrDM+GmThZlclJpUs4/XZ8URPNpd1OLvg2GlrDA37qXY04lEvi/NHjaMlSWBzLU290eHcmTgLK0kG4z5K+SPN21DQxdpqGtOEWNyL7LD0248dWjDgJNUThS+VGkSjHpyixOj0AMsbGUaHAyeYu/G4j+Qxub143EsiUSaTaSLLOh/9q8uMjWwwGuv+pt5wspVyMzTe0/ptK3z15hgjEwniI93rl0gG0BWTyMgOhmFydWGcULjNyMQBIxMHzJ0usLn9GI3SGPuJMmVZJJnvhnztx/LNgYCT/WIVSYCRiBdBh5WNDHMzRyHsekdlMODGa7VycytFo61yaiTEerbAI8NRWqZOptIlHTlkma1kAUEWiDlthDwObmYKPDEW58puknNDEZbSOc4PDbBRKOJwykR9DrJCgYjdyb9+7APIt4HO7aLozWaTQqFAPp9nZ2cHSZIIBAIEg0G83u5i6I3yMO93uw8Skn0t8fFf+7Vf4+bNm/zmb/4mpVKJeDzOt3/7t/PP/tk/O9GQeWNjg1zuKNLy/d///WSzWX7u536OVCrFxYsX+fznP/8KItD/TvaWAExZlu85h7m/v8/S0hJTU1Ov2ibrXgDYa7Xzr5/4bj7+8u8jqCKZZo2f+fIXeP/4FN87exqAnZ0d1tbWkGWZsbGx1z0h7wSYdxNPP277qRI//yufZ2M3x1DYxn62RbujYVXkvhj64nqKZ86O8tXLWwCks1VcDgu1Roe2ahCPuRkftDB/owtlIyFnrymyQLutEQt5+kAFsLycZHTIz85+EZsgkqp38PudyLLYL74XVBOXzUrDovZDrYGAnZtXdokPOkmkuyFCEcimymQzVYZGXOwnuw/zWq/APpupEgg6iQ64Se6fDJUrisT6fIJT0wOs9MQVJkZDLNzq7uv+XhGXy3rUzbpnU5NhVpe6ILRwY5+RsSCN6snyomjUQ77H4k0mygwN+fG5bNQ9NsqVFpIksLN90ptsNTvkcjVyuRqhkItIwMXefrF/TgJe+wnAdPfITZPTB3zko/+LaLz72V7GTTU/QGwsz9BY97iaTQfJQpiBuRR7ewMMhorsJQNER9Mc4srBwTjhqTS6amV7e5iWahKd3CY4voN3YJjlm49w/VoI6IoxbPT6bkqSQKpQ48JYlEy2wtJmhkq93VUQ6n1nMOTBY7OwkCgSmnD0u6l47FYGnE6SxRrpRh2XVWHA6+LyVoKpWACbRSFbrFLWKzw6GGWnXOZsLMJuucr52AAH1QrjYS8NqcmGccApT5RffvIv3tO8stvtDA4OMjg4iGEYlMvlPnge1jHu7u4SDodxu92vq33e/djXKyR7N/HxP/7jP77rGNvb26947yd+4if4iZ/4ifvaF4HXT9p5c3Jkv4FCsoeSequrqzz66KMnWKMPMh6Ay2Ll3z71vdhd0BFatHSV/7xwi5/+s+f4oxdfZGtrq08ielii6cf361D56NXE04/b5/7XAv/i1/+Ezb3uCjFdbDPQY67uJIr92siz41EWFg4I9FRfypUmbsfReXLZLIjHyKG7e2XOzXZrKP0+B5srKU4fq2fUNINWvcPFuUG2e6HO/f0isz2B86mJMNvrWRL7RSZHj7pIRMMeMCGXajIU7+Y5IxEr2V4OMrlX48xslImxIPvHyDaFfJ2w14HT8cr8YKulsr6Y4NxcHEGA9DFyC8DAgIeVGwecORVF7IVWb5e9syoyya0Cp6e7QgiSJLC3ezIH6nZZWVlIdMO0szFmpgeo1Y5ANhx2najxrNZa3Lq2i0eWOXcqisdtZe8Y4AsCFEppPviX/py//1O/1wfLcslBrubCOV5kZ6+bY95Yj1I1FAKxLsgrjibr2QgdQ0CSoFF3srETxTuYQpRM6g2ZmmKiuSCXirO7HSY8lufdH/5jvu/HnmNsbp+J8QDNtkYs6OaJ2WEaxRbzK0kCfieVnnzexEgQTde7za49Dm6up9ANk1y9iSKJPDk1yJX1BIl8lUjQyVjIR8zj5tpOEkkQ8Dps3NpNE/fZiTodmCIMuT3Iksiwx40hGHgcClvCAQdClrPuGP/mqQ880CJUFEX8fn9fVefxxx8Hul7o9evX+cpXvsLCwgLJZJJ2+/5rr+/H3qykn6+pfQOXlbwlPMxDgDNN844g2Gw2uXbtWp8IczfVnruNd9xsssKnnvoe/o9L/41qo0VQcvHi7hYv6yLfPTfHo3b7Q+0ycjhOoVDg2rVrryqefmjJbIX/9D9e5o++vATAhVNxbiwnUDUTu83S9yzXtrM8Nh3n6vVdAAbCHoqlBiaQzLY4d3qwT4QRgLHhQL991vJqiuG4H6sgsJWqMj9/wMxMlNX1rsfTammI6skFyOJCgjNn41QKR6HLlaUk584Pkc5VWemFXDXNoJipMxjz0mkeCZabJizdOmDm1CvrV+ulJvl0hamJEOubOWw2hc21TP93C9f3eOyJMeYXTgZ8JYTuuDcPGBkLYnVbWV1KnviO1tHodDRW5lMEwzaGx6Ncv7bb/9xmk9ne6C5KWk2VxRv7nDkbZ3Z6gJW1FCYCkYinD/wAE+NhlheTtFsa5ZsHTM9EkBWJosNCIlXi2z6Q5tF3/QkWi8rmRpSJyRQrK4P4hkoMjHWvgSta44VrU4xNp7DYuyC/sRrDP1Ih4O9+58qNCSKxFuHh7v+pgyGkQBmPr4GmiuzvelBsHdScjMUKtlCT9/7QV2kUN/HfPMWVL7XxOmz9xtSq2YsQYGJTZCJ2B+s7OfRe9HZyKIApCoQdDlqahmGYuGwKiiCyly4xNzGAp2llOhrgq9sJIh4X+WaHakfF43awXyoT8Dqw2EQ2zQN0u4phCjztneJfPvVtr7juD2qyLCMIAmfPnsUwDKrVKvl8vh+Ncrlc/fCux+N5qKHbB81hvlba5U1v38Di628ZwITuau32fGQul+PGjRtEo1FOnz59Tzf7cbGBe7mZFVnm3z/7ffzI//rPrFd28Tl8SLKV31tZ4ctbe1x0WBkaGX2AIztph+zWnZ0dVldXmZ2dfVU92FZb5b/98XX+02evYLcqeJw2KvUW8+spRuI+dhOlbs3lbJzdZAmvxcLuXgG7TaHZUtncyTEy6GIn0Q1XtVodtJra75LRaHSwWkTaHQNV1YkGXMzf3OtvP50q4fPZKZWajMR83Lq+z9zZOIvHAEjUAf02AYVb+zz62Ci5YwzbZlPFp7bQ1ZPfDYdcbC7kGBlzs7vfZW3Goi52e97bzlqWuTMxBElk8cb+id+W8zVCHjuqAJlMlVDYxcbaEcFodzvP+fNDzJ2KstjrmhIOu9g5puxTyLbwuaucmY2yupFBVQ0mxsMsHcuBhsIuFm8dYJowPBJAccjs75/0SJu3Cc0LCCzNJwjFS/zNn36J+MTReTWdGjdW5xia2ESSuufjYCeG5GsQO5enXHGTPLCCbBKZ6nqinbbM3k6E4FyJdkdibXkQUzSJTBV658KJJjgJjnVzrJndCIKkYmkLqG2Vjtxi7O2XiZx1sL05QESJQGmYjf0Cs8Nh7FaZywvd83t2JsqN7RRuuwWf08Hl1QNcdgv5RIuw28FELMCL6/t4HFZaqopoCJTabaYjAdxOK/OJNLPRABu5IgNRG2VHnprcBEHC0GXeFZrkHz/xbh6mHWfIiqKI1+vF6/UyMTFBp9PpN4S+desWhmH0u4kEg8HX1dD9UAHsQTzMt2ynkm9we1MA5t28vEOQPA6YpmmytbXFxsYGp0+fZmho6J63d7x28l5uZtM0Odjf5y/rEf4/t0lJ7+BRbZyKhNjKlfjsbpGl6iXee+YU33thDrvl/ju7H7fD0pQ7sW07msYffWmJ//QHl4lHPLQ7Gu2OxuzEAJXNFrpu0O7oyBJoerf7yJDXxdJaFxRmpyIs95ipiVSDkbgfQRBI7RQI+Fz93GM2V2NsxMvWXpnT0wNc++oWZ84OMt8j+FQqLSYmwoSDbpZvdT259dU0g4M+Dg5KWK0yyd0CiizicFj6qjrhsJulq7sMD/lPhCUVJDTDJOB39JV7IiE3+USZ/c0Kc+cHWVxOcVzfQNcNVm4ecOHREQTMfhPqWNzb9zjtDgunZgZQZJl88sjrczotrC4kaLc1Zs/EOciUiYQ95I59JxhysNVjEQfDLjxDLkrHZAChG+bN9Won93cLTJ8aIOy243PZ2dkvMBBxs3OMcet0WdndS/D2v3STsZkkocHufmqqSGJ3ENdIAW8oye5BBLvYoWO48Awf/b5WDWFEKtSTDrytGtWSh5YEwckyIFDKuTGCJqIIia0whgGOeAOLpYrWtlApBbAPlQDIbAawBgRaOQtySccS0hi+mMQTqyLZ96kmfGxcyxGVJvvbz1XrnB8doFptcXW9ey9MDAfQdZP9dImlnqjB6eEwL28edBm0skyyWKOidQh7RXasSeynIE8ZDRFNlxANmW8fmOWnHn/HK+7512uvtTC2WCx9bVXTNKlWqxQKBVKpFKurqzgcjhPkofsBv8P0yoOQft7SgPlND/ONtcN2NIc3oKqq3Lp1i2q1ypNPPtlnwd2rvZqc3Z3sMDdaKBR4+umn+XaPh7/xpd9nvZZD0APE3C6cmGxXKvy/L1zl0vou08Eg3/f4HMMB3z3vU7vd7lPCn3jiiVe09ilVmnzu+QV+/7lbhH1OcqU6uVKd2YkIK5sZljfTnDsV49ZKknS+ylDYht/rY205hc/r6HuWy+sZJoZ9bO6V0HQDr8tGcq9Io6HSaBQ5d2aQW4vdB+H2bpnT00F2e+CzMH/A7OkYy6td8M1kKkwPH7UoUzs6WlvHZlOYmgizeK3rOU2fGmBtI4OJQNDvJLdXpFZs4PVYKVfaxKJu9ndKAAzEvHg9Nkxg/Zi3unzzgEeeGOXW1SNvrPt9Bzde2mZozEMq10TtGAT8DlJ7XTBuNjrsbWSZnhlAksV+x5Lx8TAL17tjrS50Gbjc1qkkGvVRyHQ98Hy2hsNhwWWRCQYd5PMNJEnoe7uHZhpGH2SnpyN4gk4yfTECkye/Lcvk27+AJ9hdFBSKIZpbJopfwzN+NJame6g4Oijtbq62XrGRyfnwj3aPSx6rsbE9CWKD2HgBw4DcwSDWWA5RFNBVmWrFg+xSaZfs1I0WqgVs4RJaRyKX8OIZ6x5bMefCFmrQKHigraBEqgjWGqpF5vT3pVGb20yf9mDHSyPVYmtXZywyhFE08Dis6KrBwnaGs1MDbGSLXBge4OZeCsGiYw9pLNX2ic05yVECxURvyuiGFdUQMU0RUVf40PAZ/s4jT/O1sHtlqh5quh7quqqqSrFYJJ/Ps7S0hKqq+P1+gsEggUAAh8PxmuMdPl/+d/MwH4ZSz5tV6ectA5iHecdqtcq1a9dwOBw888wzr9qE9W7j3a3LCHRzCdeuXUOSJJ599tk+Bfvfv+t7+Ltf/ixXS/sMS0EkBCZ8Hmq6yeX9BJlynRc393DLFt53foanp4YYCrw6qJfLZa5evUogEKBcLvePqVpvcXX5gD95YYVrywd4nFZypTqqpuN12SnXmiTzFbwuG+Vaq1tCEnbTamsYbR29qaJpBrl8jclRPxs73YdtKtcgFHThc9vZWkkzORGh2PPqbi0cMDM9wOp6Bo/bQj5Zw+uxk2kdeVGBgJNCoc5g2MP89X1Gx4Ls9GonM+kK5y4MsXLrKH+4tpLmzIUhcoU6q/Pd98vFBr6AFbtdweO0k6YEQDpZJhr3EY66XwGOWkNl9lSUpeVkX0DIbnUANQ62KwTCdnQXrCwmTvxuYjLC/JVdBkcDtHWTbLZK6hhDFSA84GHp+h6DIy7Kta44/dbaSZUTl8PK8nwCxSJxZi6GIQgnwrP+gIPN9aMaz53NLM5khckhP/ZYmciZr3LxXUeyi42qhVLZgxwt08o6cIWbNEpOMnknvrFS71t1lq+P4x+t4h/tXoNG0UNTs2AfKwAmia1RZIuOfTAHCNSyHjqyhDXWHaOciFI3JCxNE0EwqHXAM1JDb8vkU24cI01MXaKlWlEG66gtG6V1B5JsImU9dGQdz1iVTkZGeTzF4CkrdZLMPGVCxUeRNQKjFsqBNM6KRMazj60NLqvAjp7B03GSVgvIgo1KXccmW9ANEHQFDJEfnLjAj597/PZp8dDsQUULbm8IXa/XKRQKZLNZ1tbWsNlsfe/T7/e/AhgPgfp+GblvdcD8RrY3BWDeyw11KNO0tbXF2NjYfTd6vtN4rwWYh7nRO5FuBEHg337Ld/GJ5/+IS7lt7FYZVxPibi8DLicryRx6y8ATtvKLf/hlJoMBWh2NZyeHifndTA4ECbjteB028rksy8vLDMSH6Vi8XNte4db/789pdXS+8NU1bFYFuyJTb3YI+hxIokC51mJ2LEK51qRcbXFqPEK51i0hGRnws76WIl1pUa8b+H0OiqUGGztFZibCrG5maTS7km/z1/fotHUWFhPMzR7l8lKpMvGoF73RJpetMzwSQJIEdN2kXm8TCruID3hYutrNa9XKTVxOa6/8BFrlFtNTAyweA67Fm/tcfGSEzDGPrFRoM3d+iLXbiDfFQg27JOLx2PrqOg6Hhc2VFK2mytTpGLv7RUJhN9vHhA8K2SbnLgxRdjTY6S0OME2Su90w4cFOAatN4fHHx7j8wuaJbaYOut9J7tZwe2zMXRji5WPfcXtsrK90AVTt6Cxd3+fUXIy501GWl1MYJsRiXkr5o5DtxGSEnd09wk9fZvbbdxAlg/T2COGRPfZWIziHmjiGu/tpWFusXJ/AP5XDN9Ydo1Ozk0k7cc3VKBYsONNOykVwjdWwKN0Qd3otiBxvIEoCheUQAuCcqKNIKp26TDHrxjFcwgEUtjw0mgJGzUDtyGCXcAw2aZctaIYdJVanVbSiiRasI22aKQdlu46uiqibHnTRhKoHxSEjygbVsoDF10AtyjiiGpW8AjYVuelAV3VUXUZCoo6BLlvoaCYWQQZVxjQFJGR+bOYxfmju/KvOw4dhD0PlRxAEXC4XLpeLkZERNE2jVCqRz+dZXV2l3W7j8/n63qfT6Xxg/dq3PkuWb4Zk30gzDANd19na2uLChQtEIpG7/+gu9mqAaZom29vbrK+v3zU3+n+94zv4R1/5PF84WEVzG+g1EVmH2UiQpqpxbTvJbCxErlKn09S4spNg+8UiE5EA24k8foeNWrWFiUjcX2QvXWI0aGM3m8VmkQn6nWTyNeIhD4Vyg91kiYszca6vHLC8neF8LwS7spXhqXMjFPI1rlzZ5vzpQW5WDqg1OsTCcreoyYS9RIlIyEUs5OHqS9vd8GvP49vZKRAOusjma6iaTjzo4tp2HuiWVZw9N8T8fBcgTcNEOiZTV8jXmZ6NsrqWZnY2yuq1fWRFYmjYz34vNDo8EmT1+h4+v5VS8YjKb7Y1JsZCrK6n+17j1OQAi1d3GYh7kfwOisUGExNhFnps1fWlJEOjQbxeO8d9SVkR2V3PUqs0OfvIMIuLCUYnw2yvHIFqu6WS3EozOR4gU2hQLbcYiDnJHBzlLquVJnurGSZGQ9SaHTKZCqOjoX4IFyA26GOld+6igz6cAQeJY0QmQTQInlvisb/3Mjb3YemKQIM2SwsTRKdySJbu/Vc8cNNExjFXJbvvw+euU846sQ2ruMa6nr9uSKQ6NnQDHHoTQ5XJplw4J7rMYrVmoWaxIrk1xPQAHb2B6TJwDDfRVYHCrhf7WAMQ0DsBSrYWelZGTNuxRDtI9ibVfSdCQEewdDCyAQhX0JsyzaoFOd6hk7AjDbRRazJtQ0RwCtSrCoIDmjUF1WIgyjK1poHpMpHbEoYhoIkC6BJSR6GjG4iCiA0Lf3PuyX5N89fSvhayeLIsEwqFCIW6pVKNRoN8Pk+hUGBzcxNFUfpeoqZpr6rKdbsderK3p2TeUvYNDJhvijrM17J2u83LL7+MYRicOnXqoYAl3BkwD9t/bW9v88QTT9wTkegX3v4+nnXEqBkdMp4ChtVkNVegVu/w9PgQlU4H0zQZGvCxkS5wYSLGeirPeMRNvtZiejTSFTw3TSyyxE6+xdRg1yO12RVESWBtL8f5ma4s3c21JFO9vOHydobZ8TDnx6PcurVPuydJd2v5gEiwy+5LZhucnT3qTjIy4Gfp1gGYsLCYYHKiK9zeaHZwOiy4nBbifjfXLu8wNXmUn1yY32dqKoLP56CWa7B484DxySPR97XlFBcuDJPolVxoqk6r2sbptByeXJqNDoJu4uwJuYcjblYXEqzOJzg9G+tdF4FkL7ybTpSRjK7ntn9bY+dGrU16J8/QyLEm1DNRKqVGV6Dhyi4TI0GU28JkAzE3yd0yWysZ9HqLaMyOdNssmJgeIJ0os7WappiqcPbsINnbZO38x7qhpA5KSLqJz25hYiLMwLkc7/3ky0T+wg3q+W6JU6tq4WAljBDXcZ6qkMm5qCQ85LbjMKDhiPb0Wu0m25kgTdGKaNUwDUgtB+i4RCwDTexTTXY3whSyAzhHu2BZ3fNRNyVsg21kp06uaaUg2ajmnWhlJ+WiC/tYN+xa2vLSDtUR7DoNTaE1aFLvuEguBWkjIwgS9YSHdqCKWXXQ6shIfg0z50GKthHLLtoWA0MVMUwZUxDQDAlVMzFlAbUsojt0hLaFRlPHNETUqkyzIaIjImgiVk3mJy++/esClvD10ZF1OBwMDw9z4cIF3vGOd/QZ+7qu8/zzz3PlypU7yvbdyRqNxl3zo9+0N8beFID5aqHVYrHIpUuXsNlseDyee16l3YvdDpi3iwT4fL57HutjM+d5j3sExVBI2cq4IwpltclSIkvQZmMs7KfSbHFxMs71nSSDXhsb+SoTMT/zuxnmxgc4yFc4PdGVnMpUGnicVraTXcEBgIWtFMNRH4ZpUqy1mBkJcWowRKvSYXUtTaejIwgCiiximlCrqzjs3fO1uJbiwlwcv83KtSs7zPUA1DBM8vkaHnf3oZ7L1Tg7FWW7J5W3uVlgINoFBtOEYqHOgN9JqVDHMEwK2RqeY/qunWoLv/9oouezNeJRH2PjAfZ7QFrKN4mEXUiSQCjgwuiVnSxd3+fMXJyZmRjFY2HNfKZKyOfoqvQcs1jcSz5TJbtXZHauK6RQOtYZBKDdVMnu5JmcOlpk+f1HuaFWQ6NV6SDoOjb7EbCax8hgmqqjNlW0RptTp7vXwu60sLFysidgp6VTUreJf/fnefs/uI5zoIri1JEGVNYvx2lINpxTdQ41TLS2h5Rpp9Q0EAQB0xAoboVoO0VcEy3k0Ra7tyIktgLYp5uIionWksiu+lCmOrSjdVJrfhK3AhBvIjkM2iWFas6HMFRDCerosptMy0WrYqeZsVEtOpFHWuhNkUbKgzLSxmhJNKo2zDGdttVCKuumqom0dvyUSjLoEmLVjRqo0zqw03C3MMpWDDu0qwKqYqJ0rBh2E0vDgSmBXLHTKAkYpkK5BYYoYRetCB0JpSPzj849ybdPTPL1sq938+hDWb5oNIrL5eprWVerVa5evcpXvvIVFhcXSaVSdDqdV/z+re5hfrO919fZDmsRL1++zMTEBOfPn0dRlNfV4ut2O076yeVyvPDCC/j9fp544okT+or3OtYPjUzyl8bOIRsS+0aJerjNYMzLVqFEIl8h4nRSKFSZ8FoxFQm3w0al08Fls7CTKxL02Lm+kWQwYKNcbzEY6ZKEbm4kmRgKomoGToeFR2ZiuAQZqymxtJxiL1nidE80/SBVZmzYB0CjpROLeBEEODsdJXNQptbLB84vHjDdA5FSuclAxI3fZyfgtHHlq1tM9zRDDcOkUevgclmQJJGgx4HW0voNqMulBqGQC0GAuTNxVm8d0Kq3cTiPiFjb6xnM9knd1e21DGfPDLI2f5Kcs3R9D7ty8pYUMMklSxQSJSanu/vczWd284mdtsbK9X0ef2KM7LHekQAuj41yscHWUldEIRh2s754Ml86NBwmuV1BNmBiKoAvYGNrLXviO51mh2KuxuqNPcaG/Zyei9FuHSkEDc9Zcbz7Bc5/fBVX7OhYawd+ipUAyvkWpYMAhiZQS9tIbfowButYwxrKZIfdqyEKaT/iSB1RMTENaO1HMScMOl6Z8pab2r6bat2GfaIFCNQP7LTdIsakTmU7SGXTS8cqI4aamB2R8oabdriB4e1Q02WKsotKwUptx4Gq2hDCTdSCBU11YATbdJJWOpIAfo12S6Ey0MFwKRQ7NjKiQWHLTcdiRU/5aasKQt5LoyMjl3wU2ibNrIOyKVI1ZNqmgqhY0BCx6DJGQ6BV01FaAn/FF+GJ6J0bxX+t7I3shSmKIjabjcHBQc6dO8c73vEOzp49i9VqZXd3l6985StcvnyZzc1NVlZWaDabtNvt+yL9fPnLX+YDH/gA8XgcQRD47//9v/c/U1WVn/zJn+TcuXM4nU7i8Tg//MM/TCKRePUBgZ//+Z/vVyccvmZnZ+9th76BlX7edICp6zq3bt1ic3OTxx9/nNHR0RMs2Ydlh+Ntbm5y7do1ZmdnmZube6CJddj4+e8++SwfnXkUxVTomAaL1iTxYReKTWbhII2pq5Q6ArWyymjAy6DXzYWJGFG/m+GYH5fdQrVjEPE5KFabPD03wrnxKD6HlfGgl9XlNEbHZD9ZYnE9xZlTXY/n5kqC6V5odW27yPR4N69Sb7R56uwI89f3SWeqDA13VXNMs9to2d+Tx6s32kwOBknsFTHNbij00FOsVju43TLDMScbS0m2N7OcOXcUqt5cy/DIo6Ns9FixuUyVoaGjMGk07uBgvdIHu0NTWyqnz55UM5k+FeX6n29w5tzRA3X6dIz0QYlWU2VnOcXc2UHGpyKv6HGZT5YZHPLjC3Y9Yn/IxfpCon+8i1d3GR30EQwdecBOl5WN5S6A1qttthYzTE0MMBA9kiD0h23sbJxkvu6vZZidjTIwYmXqI7tMf+LPib0zjzWi0bIqVHciHKz56UTbiP4uwAmxBls3B2hICvbRbvhVa4pkl/yYpw1KqkIjbaWetFFM+WhHqwiyCYpBBy911YWkiJi6gJYIYw7oyH4dQZepqQrlAFS2nbQSDqplG/JoB1MTqG46MYc0TIdGS1eohURaHSf6bpimqqA7VJrbdvSwhilAK2mDQQ2xYKduGAhWUEsWjIiBqNsoeztomoW8s41VdFKyqnQ6EopVoWlqOAwrnY6JgoJRl9A1CatgISA7+akzF5lwurh27RqXL19ma2uLSqVyX30tH8TeTK29DmX7JicnefLJJ3nb297G4OAgjUaDv/7X/zqTk13P+w/+4A9IJpN3GvYVVq/XuXDhAp/61Kde8Vmj0eDq1av87M/+LFevXuX3fu/3WFlZ4YMf/OBdxz1z5gzJZLL/+spXvnJP+/ONbG8qwGw0Grz44os0m02eeeaZE4X7DxswRVFkd3eX3d1dnnzySQYHB1/XWIc1V3/90Sf4P+YeR9Fk5I7MmpCj4Kow6reR7+goisRwzMf8dhpRELl0awenpHBj8YCZaJBaqYPXYiWbqnJzKUE+U+P6wgEuVzcneWs1yexU1wNc38kyEO6GbvZTRZyObgi2VG0zGXeST9S4dq0rEgBdibuzZ7rHWa228PsczE4PUElVuXl9j7Ee0FarLbweO6IoIAjgttuQjj3TFm/uMTLWHdPtsbG/lmbwWC5xbSnJ8JgHn99KZqeKaZhkDkoEw91VcyTmZeXmHgtXdpg7ewSOzWrXA168sttV8BGhVT8iCOm6wfr8PjL023UBDI0G2V5Ns7ueRWt0mJqNEhv0oR8TWrfaFZav75I/KDN7JookCYxNhk94ii63jfmXd8gflDh7bhCrTWYgclI8IhJ3kC8XqE5eY+Cv3WDoHSUEubudTlWmsOumENBpdawchl9b+wFKVTvKGZWW6ETNeimuuqk0HVimOwiigOTXyaQ85HJupEh3MVDfsVGv2lBjdfRYi1zaTmreTzNcAUGguW+l1nRgDLcRbAKmxUneYqGRs6Fn7dTyNsRRFbMj0tp3IoxoCEiUcyLZcIuGTSK/7qaly4gZN1rZjjCgYcm7abhUaEnoqozoMRHLNirWJkZGoe3Rkas2GrKK3hJwSFbqbRVXw0GtbCKgUG3oWCUFu64QEB38+nu/k/c8+ggAjz32GPF4nFqtxrVr1/ohynQ6jaqe1PZ9GPZmAszbzWq1EovFOHv2LM899xy/8iu/AsBnPvMZhoaGuHjxIl/4whdec4z3v//9/PN//s/50Ic+9IrPvF4vf/qnf8qHP/xhTp06xdNPP82v/uqvcuXKFXZ3d+8w2pHJstwXdYhGo32C013tG7gf5puCJSsIAplMhps3bzI4ONjvc3fcJEl6aCHZRqNBsVhEURSeeeaZ+w7B3m63g/kPX3gEl2zhl65coqOplASdQrjDRX8Me0dhcTvNxek4tzZTjMcCrBzkiIc83NxMEfFb2UgUuTgT5+ZKAskiIUsCC+spzp6KsrCSYj9dJuBzUCg1kHwCogCNlsapiQg2SWJ3M0/TJmAaJppp0m5r2O0KzabK8lqKoUEfiWQZl8OCoBn9/pXlUhOXu8vc3dnOc+bcIKaqs3xjH0kSGR0PsbOVwzQhm6rg8ig4LCbZgyqdtorHZ6dS6hJRUnsVZmdjLKS6k7JWaRH3OVAsEn6vnexOd0as3Npj5swgumqwuXAUJlq6tsfFp8dZuH5yUk/Nxrj14iajMwMUig0q5eaJ1lS1Sovkdp6J6QiKRULtdUeJxp3srnSl4lau7TM0HqLTOumljk6GWbjS3d7ClR2GJ0KIptlXERKtBsF354g/s4Pi7o5bq0pIu3bQnXTCDazT3TGVqQ6pq36UoIk82OLwsdluQKVhwyYrWDzd/WknnDQkkE51x6zs+FDLOra5dlf/1oDamgNjVEeImRQTLsiJSHNtBFFFr4q0CjaEwRYC0MoqNBQgK+DSBAyHCbEORkXC1G0YQx2MkoyBjD6oI+Zt5B06BibmhgvJAfqWHcWhIEkCjZqGzSOjJUUcboV6ykA1TCwOG2LDpOYwwbChGiI2i4Sum7iworYMwjYX/+4730fY7eovKm02G16vl3g8fqKzyPb2NouLi3g8nr62q8vlet2dRb7eOcxDu1/hdVmWOXfuHHa7nUuXLlEsFvnTP/1TRkZGHup+lctlBEG4K09jbW2NeDyOzWbjmWee4ZOf/OQ97cs3hQu+xqaqKouLi5w5c+ZVRYcfFmBms1lu3LiBzWYjEom8brCEV3YZAfiWaJQtZ4DfLWUwenJz18QEIdHJ7HCYlqoxHPZSa7aRJRFBERFFaOkGNovEwnaKoaiPvVSJCzMxbi4l2NjPMxBykc7VmBwJUSg3OEhXmJsIYpGt7GzmGB8JUq22qFZhdjrM8mqGTLbK6VNRllZSqKqOxSpzajzM/LU9BAGmpiOsr2UoFutMToWp11pIkojR1jB6ouq6blAu1nF77FQrTdotjQunhrh1eQeASqlJOOaguzQUmJmNkdjO9QEYILFb4MITY9x46ai+0dBNtpaSzF14pWZuJdclDeVLdWqVFoIIuV7PyZ3VNL6gk9PnB1m5flJHdmwyzPxLW0SH/WCVSB2UKKROStq5PTZWbuxx5pER1tcz6JrO3uZJJq7Ha2fxyg4jpwNIT2WRz2eQLY0+WJo6NFJO2g4dpWPgsnVnuVaRKSfsiHMaZJ1Q1xBkk8qGE2lSA79KC5XqoguH3Yo6XEPqeaN6wknNpoNXQl1x4howqNREhEkDAQGhbKWpCQindCxpH1qlgxk1EQZ1zI5A68CKOdy7Fw0bGYeKXJdhV8IMGAjBDvq+ghowwaKjpB3UQ21oiGh1BSNmoCUV2jEde12iJqpIDpmGAbJToWiCgYjuAbVsgFXA1EUkVUAwRSRTpNNRMYFRq49f+67vwNdrhnAImMcXw4chysPuIq1W6459LUOhEH6/H0W5f9nJN8rDfBCgrtVqOJ1OBEEgGAzyAz/wAw91n1qtFj/5kz/JRz7ykdfsfvTUU0/x6U9/mlOnTpFMJvkn/+Sf8I53vIP5+fm7E5K+gctK3hSAqSgK73znO1/zppZl+XW14jnehHlubo5KpfJQOozAUQ7zcDu7u7usrq7y4Sef5PGOyj95/kvUjQ5OwU6BFi8495lpBpDKMBryQkTk8tI+Fydi3FxNMDPoZ32niGp2wfPmWpKZ8TCrW1kigS7DdD9VZHrQiWBa2VzLMzEaplptMb+UYGw0yPZOnpX1LFOTEdY3MiytpDg7N4ih6+xv5Bgaui2fGXBSLNTZWM9y/sIw9WKdlVsHOJxWgmE3+WyVUrHB+FSEWrXJ6dNxbry4zdzFIRZ7/TGzyQYjk34a9TbLV3cwDZPhySC1apPD8GQ5U+HMuaETPTWHRgIsvbTF9OkYa73elEOjQbaWu3+Hoh5cgz68fgerx8CxlK8TH/Jz+lycxRv7mAhYrDK7PYWe1F4RURKYvRhl9eZRLaYgQD5dwdBNFi/v4A+5mLg4zOWvbPS/Y3Mo7GwfEPhACct37iB7u9dXbcgYeyJqU0IIKhhjKhKgGybVFQ+aZmCMGYhTOiCghpuU592IdhPbzJFHW1+xoUehI5hIW1aUsIZR9NCKNhF7XmVds9CuSwhmGwWDzoYdNa4hDAiYqoDatlAf0ZASCp66TN2iYQ5rCKpIe1/GGNHAEGgVJdRRAwwRcVnB4ZaxtXRqGYNOrIO1aqOKBm4TR9lJKdLCmrVQ9amIBQnVA1JFpOnUkUsyutvE2pDRJBNZl+nUDURJxkSgYxg4TCsTTi//7nu/E9sxgDvMVb7WPLfZbMTj8Vd4n1tbWywsLDyQ93mnpg1fD/t6NY++V1NVlQ9/+MOYpsmv/dqvveZ33//+9/f/Pn/+PE899RSjo6P81//6X/mxH/uxr8n+vRXsTQGY0AWd10r+v54cpqZp3Lp1i3K53NeerdfrDy1fcpjDNAyDxcVFMplMXzx9GPiXssRPP/cclU4bRZSRTYNFR45QxI5cl9jdKPDM7DDNjsZs3E1T1Xn01CBbiQKnp6LsJ0tIksT5qSgiAq5BL2sbRbbrGmODVjTNJJnuEnWKxQblWgu7TaLZ0snmavi8DiRJwGhr1Cst6rU2K8vJrhjBrX2q1RYjIwEq5QbBoIvcQbFfK9mot/EHHP3w5tZ6hqeenuClL3Ul3hav7zM86WdvqytQUC11iEW85He7dYt7G3ni4x4SOzVGJgPsLKQRBJg5P9RvrSWZ3fKNrcUEs+eGWJ5PnAiz5lIV7E4LkcjJFbE/5GLlxh66ZjBxOkau0GBoNMji5e3+dwzDpJCoE415QBRJ7BWZmouzdvM48NbYXU4xORWiVlfJVgoM/TA0phNYGnofLAGaBwqm24ogGlg83fCzaUB91Q5xCf3AwCl1PWozb6XVUtBPaWgqCBtOBGebVtuCMGEgAAYGzYYVfcOGfbKNgICRkzFMK8akSgcNoyhTvWHDPqkjKAJmVkGTZNSBFiDSaYgcBDWkjIiSVCAkYozomDUBoWlDHdYQmiJK205tpEO7qGN0ZFS3jnXdgioL2Kw2JEGmJLUQ9mQaUR1LXqHp01HyMh2rgb/upCnoWKsiuga6oqO3TRyKBcEQkAwBSRc45Qvyb7/n/ci3eVeHi8p7DbHeyfvM5/MnvM9D8AwEAq8Kim9kDvN+I1iHgPmwG1wfguXOzg5f+MIXXtO7vJP5fD5mZmZYX1+/+5cfRlnIm9TDfNOQfu6lifSDhGTr9Tovvvgiqqry7LPP9oXaHyaJ6HDfXnrpJSqVCs8+++wJwtLTo6P82+/4TgKCA6spYVFlPKqdmtJh3pPFc9HJlfV9qpUWu+kGjVKb5Y00TmRu3Ngn6nKyspSkVe8wP59gdaPIxGgIwzAp11q4nFaqtTZ+nxNBFCgU6/iDNhCg2VI5NRmhVWyyspik1db6YgLLSwlGR7viBLu7BR55bJRmsUHqoEQ6WSIY6pJ0DvaKTM1EEQQ4cybOy19cZWbuKHSe2isTiXmx2hRcFoXd1TShgaOwTXKnyvh0iMJ+Ceh6tVuLCQZHfAyPhdjsAaeuGaxe3+XRJ8fYuK2X5dB4iPkX1jlzcQihd9fGBn19MfXNpSSCpiHcFjWYPjNI5qBEYjtPeifPmQtDtG9rtzV9Jk42UWI7vY/6ri2G/k2aztP7yEEDPQb1VStGwk1xx0FnTEQNqnTiGsauh/aWnXLKjjEFhkNHmDaprNup3LRTc4MW6d6zgiHRwkYxb8f0d58GQlmhtmVDnRAxZgQ6DQf161aaboFOoNeTck2moSh0ZgSqmkL7loOGzUT1aJhVgfaOQnsMkES0pkw5plDpSKhLVvSGjaZfw1q0oGsyNVcHcV9CdYioNgMhI1OLCxh2hZxkkrHqtCsWan4Ja8FN2S7iKLqoW0UsHQd5TaNmGAjI1NCRDBmrLiFpApImIKjwWCTOr37vd7wCLLvXvXfcDwgGh+UZ58+f5x3veAdzc3PIsszW1hbPP/88V69eZWdnh1qtdmLx/WYm/dxuXwsP8xAs19bW+LM/+zOCweDdf3Sb1Wo1NjY27q1P5zcw6edNA5h3M1mW7xvgstksL7zwAqFQiMcff/yEUPvDavoMXRJRs9nE4XDw1FNP3bGH3tnoAP/uA9+Bx7SCLmCo4NCtWCWFHalM+RGdA3sd0zSwOxU6mo5klZAVke1kkaDPzvpunskxHyaQLdTweezki3UGB30AbO7kODfXZZ2mMw0uzkVxyxKXX9xkeqZbq5nLVhkcCoDQbd5cqTTx+RycOxPn6lfWGe4BaK3axu6woFi6E351KckTT4yx1CPF7G1m8QW6x6l2DCRBZHQkwMFmlkatjVVR+r81DROXw4rlWHhOUw3yB2V07WRu0TShXqwxe24Qsc+ENamXm93m0C9vMzIaZHg8xNqtk7nL+HCAha9uEht2Yncedvk4qovUdYNWvUU9X2VidqD/ftVdwvmxOt5fqiAM66Ac3RftHStVxU6uICHEj2axkHGQUQ3KdQtiqPu+qUJzyUIzKtOKWdEOuh5Pe0Wh1lBoxDWMCRG14aC14KBqFWC4+1s9KdJoStRnZdqbFvSEiLpvpz0mghXEskgrK1GaEqm3rAhrDpptGX0QxLaIvqPQHhEwRQG5aqMyIlF2CqiLFmpZkDQZdiRaMRNRE5HKFjpRsGVkqlYN2ZDQawKGW8DVtFKSOyglgaqoYlMVQEDHxIuNcrON17Chl3VEQwRNQFYl3j04xi9+17e9KjgdAtfD8J5EUSQQCDA9Pc1TTz3F008/zcDAAOVymcuXL3Pp0iWWlpbIZDJomvaWymHer/B6rVbj+vXr/W5HW1tbXL9+nd3dXVRV5fu+7/u4fPkyv/Vbv4Wu66RSqVeIJrz73e/mV3/1V/v//8N/+A/50pe+xPb2NpcuXeJDH/oQkiTxkY985L727etlr1WLemhLS0t88IMfxOv14nQ6eeKJJ+7KFL7d3jKAeT8eoWmabGxscP36debm5l4hnn6/472WJRIJlpaWEEWRc+fOveYEmYqE+X++54OERRuSDg1NQ2yLKKaM3bCQD7bIP2KwoVU4OxNjL90VJag3OyAaiKLAVqLCyFCAcrVFMORGEASW19N9oNzZL/LUI2M4RZH5G0l8vVrL+fn9viDB6mqas2e75SWyLDE+5Gfp6h6YsLWeId4rQ9nfLTA5PYDdrjA+GuTapU1Gp7r1nq2miigIOJwWREnA47KCavRFDRI7eSZ7ID17bpD5Sxs4XRbkY8IEkaiXWqpJcODoAeEN2Vi7tc/S5S1GRgO4vXamzsRJHJPG21lN4/NaGZs+Aj1REjjY6uYpk5tlLJLAo89OkLit/ZbWVsmnymzO7xL/gIPoz6u0P7aH9W0dBAmYNemsOWiuKJT3bLRHJIwoaJMmzQUr6p5Ea9dJNWjAoIgxZdLYtKBv2Gg37OjTQrfEw23QVGXKV2yokyL0HG59W6TUFCiNicgJF0JLpLMi0w6KqAEDEOhoMiXZQaPSJRYZaxJNi4QeFaADStlBZlCggQVp3U6rIKEOgtKSELMWqgM6QltATMg0xiTaAZlySaLmknElnCh5K2rTwJlUqAV1lLxIRwaLLGO2BBqGhtACxSZjGgJCA9SGgbdhoV3RsQgyzZaGy2rDpskobfjuU9P8n3/xXa85VwzDeOihxkOz2+197/Od73wnp0+fRpZlNjc3KRaL7O/v39H7/Frag+QwH0QW7/LlyzzyyCM88ki3bOfjH/84jzzyCD/3cz/HwcEBn/3sZ9nf3+fixYvEYrH+69KlS/0xNjY2yOWO5tj+/j4f+chHOHXqFB/+8IcJBoO8+OKLhMPhV2z/FfYGeJivVYt6eHxvf/vbmZ2d5Ytf/CI3b97kZ3/2Z++7QfibJod5N7vXkOzxfOVTTz31qrH61wuYpmmysrLC/v4+p0+fZnl5+Z4eBoMBH//v938Pf+N3PkuyVcOQTOSGhGEBExGLCcXzOl9K7zF7KsCNlSSDETvJTJMLs3FuLh5Qb3dw2BXWt7Ocn4uzvpFBN0yeODfMjet7rLSTYAoYhkmp3MTjsVOpNEkkioRCLnK5GsvLKZ54bIyFKzvc3C9x5vwgCzf2abc1Om0Nl9tKrdomm65w+lSM6y92ma35TAWnW6FeVSnmGkzPxRAwWesJk595dISFq91V28qNfR592yTzL3TJNPsbWU4/OsrSja5nqMgC1VITFzA8EWJvM0fA76Tca+K8vZzE5bMhGCevuy/oYvnKDmpHY/axMbbXM4TjLvZWjsCxnK+T3s4yczpKKlWhUmwwfmqArb19pA/qyH9BpxBKIxdFbHUZw6lhqiAlnRTsKkLJhjWkcXhFhYyC5rRSL3ewTWn0Je62RQynjaqmYW9oiE6QGjJa1kIzrkJMQFoDq8+gVRTRxun/ttTSULct2D2AqHe9yKKEOtZjzOoSxrKMbDUxFRMhJdAWJVoRDXQBW9FCNqYhGDK2eRMhbKMZbCNmBHDItAcM5LSA5pZQgyautEImoCG0BISaTC0gYN1SUH0iSgKasolXslHW2vhEO3m1jVwR0TwiRttEECVExUA0BBRDxGyaKILADz56gR9+2yP3NGe+Hp7eofd56IG+9NJLuN1uSqUSW1tbKIrSz336/f6vGSHoQUOy9+thvutd73rNRcC9LBC2t7dP/P/bv/3b97UPx+2NKCt5//vff4KodLv9zM/8DN/xHd/BL/7iL/bfOxSJuB9703iYdwObewnJ1ut1XnjhBTRN49lnn33NxPbrAUxVVbl8+TLZbJZnnnmGYDCIruv3vHINu5385g99iFGHD6EDkiDQbKtYOiJVycCWEcAvsO4t03wciFqZHg1RqnRB0++xc/70IOdPxaiWmgwHPSzfPGBnO4/VKlOptHB5LAiiQLHYIBjueqL1egerTWZkJMBQ2MPqrQOc7u4Ka+HmAafOdL3UXLZKJOplcjqCWm1x8+Utxme6Sj21ShuXx4HVJqNYZNB0lGMPwYWru5w631UCCse8bF7fZXj8qOB56eoOpy8MMXFqoF93WSs1SW1nufDkKNtLJ3tQBiIuNm7sExtzcbjsHIh7UDtdEF2+so1FMeG28PrUmTgHG1lWr++i1huMfGeQ1Hdmkf6mhvJhHaG3S5rfoJoVURdsNBp2SlEdMyhiTAq0tmWkjJXGqkzZL1If0NAmRbSMHW1LpL6p0BhUaPl0zJBAQ5RpXZGpIFKP90BVB0VxkG9a0CwiICDVRbR1ieawhDYqUfWIdK5KVHUJdbA7Dyx7Cm1RojMu0YjKqDdltLaM4RdQqiJmVqQ0oIMhIO6IVCZksm4dY0nCKEuYdXAmFZoBAU0wkfcFyiEDuShgaAKaV8BTttCMiDhbFmoBkDsieZuKTbeQt6goNQmLS0HtGCiqgN4xsLRE9JqOqAs4TZm/9ewT9wSW8LX1MO9moVCoL4w+OzuLJElsbGzw/PPPc+3aNXZ3dx+69/n1AsxvZKtUKideD1IpYRgGf/iHf8jMzAzvfe97iUQiPPXUU3cM297N3jSAeTe7G8BlMhleeOEFIpEIjz322F0bSz8oYNZqNV544QVEUeSZZ57B6XT2J8X9TDaX3cZnfvhDnPaHkDsiFkPCJsooFQHZImFWTdS2jirB5UiBpVCZ9VaenZ0chWSVl17aAt1kZztPrtTA7bGRy9cYGvSDAMl0nfGJbmh1czPL3Jk4Xq8dr8uG26Kwt5WjVm1htx/lGrc2sgwO+xFFAYfNgl2WqJVbGLpJcr+I29c9p+mDMpOnYsRjHtZvHbB4ZYfZC8fk8pZTzF4YRqu3KOfrpHbyRHp5VoCd1RQ2y8lbT21rNEoNTj8yjNRrHyKIAu2a1t3+apH4sJfIkJu1mycbS/tDLvYWM5y+MIT9kN1baWAEwPg2qP/jDtsfSlKfa6HOiqiL3fHFvExrUaLqVygEJGgfPdyMXYGmYSHbkFCDEodeoVKUqRRNKnYHgrt3jxlgrAo0VYXyaSv6hgQGmJsCraxMfkDDCIs0gxLaVYmmKaGOdcFTSINUsFGZtdFuywgrYE1bqUZNTJuApSwilyzUpxSqYRn7lo12CjoBsFQFyAq0RkTkjoi0L9AYlWlHFLS2hbwNfBkH4o6Argi4syItt4AiSlgaMmWrij0rULCr2HMiLT9YcgJNi4G1IWFXFJSWiLMlYTNkBFVA10zcohUnEv/wLzzDBx69R31R3th6yMPtHjJrp6enefrpp3n66acJh8MUi8V+7nN5eZlsNvu6676/CZiv34aHh/F6vf3XJz/5yfseI5PJUKvV+IVf+AXe97738Sd/8id86EMf4nu+53v40pe+dF9jvaVCsode3PFV6mG+cmtri7Nnz94bi4sHA8xDNaLR0dETDawPJ+P95iwUWeY3fui7+Nu/9TkW81nUtomChNk2ECUJ0SJQNzVCDSsZRxvXOZmVTpvJsgvzJqxsZBga9LN/UGR6IkKt1mZlLd3vc7mxVWR2NkoqUQbDZDDsYflGl3165ny3fvJgr8jsmTjLCwk6bQ1ZkTk1PcDiy9sAnDoXZ+VWglZDxeP1omtgd1gpJIqEBo48+LX5g27IcyWN12+nlqsgit3z06i1sTutePwOKsUGQ6MBNucPGJ0ZYGe161GOTEVYu9EFwuHpARrNDpGYj6VjJSKJjTxnnhjD73Wy0gvrSopIZrdb0rJ0eQt33MnQ94bZCKQxTkvQNLE2jnmfGoguG6xKlMba4O7uo+mFegPkWwKqU0QbOpoaegGUrA6CQmkYcHU/U5smgS07dbdJc/xoGy2PCDdEGAbT2x1f2DfpCBLN0xKOsohYaGNUBRpjEoi9gv6sQCVqw1IyEVsmQl2gNiJgSgZi3UQsSKSjABZsKzq6RUQPGVgydJmvUVAyJrodWj4Ta0Ig49cwbTK2LBQiAp6kiGYBo2ZgMQScLiuOoklH03FmBfS2gaLICHWTts1ANkQUU0JEQEYE3cQlyPzMd7yd86NROp0Ooij2X69lX6+Q7O32WkBtt9sZGhpiaGgIXdf7TaHX19dptVr9ptDBYBCHw3FfHvKDkH7q9TqBQOC+fvOms4coXLC3t3ciUvggQjOH5M7v+q7v4u///b8PwMWLF7l06RK//uu/zrd8y7fc81hvGsC8l7ISOFmErGkaN2/epFqtvma+8tXGux8S0aHowblz54hGo3fctwdh3UqSxKf+ygf5B//5f/LV/V0EwUSVwWkqVPQOYd1OyWhhVSQ6dQ3JJ7ISrxH0WyimOtiqHew2hbXNDOfPDDJ/a5/F5STxmAtNM1BEAbdVZun6Pna7wkDMSzpZZnkxydhkmO2NLMsLCc6cH0LXdPZXMwgDHiRZRNcM1heTDAy5SO/XyCTLXHxyjK35AwrFBun9IrMXh1m+3q2FTO8XmTkXJ7OVYz9XIxz34fLYqVWa5NMV4uNBhseCLHy1mw9NbeeYvTjCys099M7Ran5vLY034ES+7VkTHwuy+NImpmESHvPQacLgeJiF61uoj4uoT8hUoyrZcBbT0XtAOgU0UURaV9HbIp2BrgA5mPj37DSHW6Ca2NI2SoKOPqhgzx3ti1IUMWoWSh4dryoB3XIPYd9EkGwchHVsmzp4BaSmgJkQqA8K4BMR6gbeHWi1dJoTXaYpQLuk0bFZ8FoURENFKJvo1a53CKDKJnrTgmSaWGoielmn5ZEwoiJi00TKQm1UARPcSQXTCkJGw6pBY6jr3Vp3TRoxEUtdQNShGRGwJUzKERN3Q6bpApspUTE1TM1EtEkIdQPdKyFVTVTBRDEljKqBxaZgdHQEIGx38snvfw9jEX9/AWuaZt8bEwShz4S9HaTeqJDsvQLX8bpOeGVTaIvFciL3ebcxH1S44Jse5pF5PJ77rhm93UKhELIsMzc3d+L906dP37eg/JsGMO9mhyB5CJiHws2HOod3C8HebneSs7uTHZKIKpXKq4Ly4UPgQXOipmnyYxdHqRdzLFWayKYBCrhbCqqoY1Vk5CZU3SZS08RZFSlZO1jiEvPWBgNjVjpbKjc2E1w8M4hgQjFXolJosLhXIRJxY+tpybo9dhwOC41Gh1yuRqBXa6k2O5iaQb3Wpl7LMn16gPXFFLpuUq9ohKMewgMebl3aYObcIJVit1xjbf6Aidkom8spQhEPtWy1f1zZRImhyTCaptNudvB4bFTyNewuK81am3ZTZfnKNo+/6xTL13ZOnJPB8RC3vrLG1IURMqkKlUIdq1XGNLpLz3S2guWdXpbPlqn8oA3TfexBnNSQMUEBS0qmY4pUvRKWuoHpOXqAlRwa1hsynTGJegToKb42ozLBHYVKu01jXAJX97OybmK9ZaLbRDqjMt1lsEhrVEC+rKNNSKgjPY9SB2fJStqlY68K0AZZBT0F9RELIJAzDGyLgE2gMy6BCZ6UQs5nYHoEJBWMlImkyNg1AakoUJUNmnFQ6mCWoRQWkNsg1mTaEQFvWkSr64g+GXfepGY3ERSwZaE5IOLJi1Q8Br66QtWqoxRNVJeAX5Wp2FW8bZmOrhGwWCmVO7itFoyOjtUQibrc/PKPfgcBd7dO8PhC8RA8D/8+tOPe55vRw3wtczgc/cbQx73PtbW1u3qfpmk+cEj2rdwLE958WrIWi4UnnniClZWVE++vrq4yOjp6X2O9ZQDzcNWq6zrpdJpbt24xPDzMzMzMA61aD+Xsbg/xHrdGo8G1a9f6Iu2vBsqH7ccexMPsdDpcv34dVVX55R/7S/zC7/4ZX9g8QBZEmujdtnA1g6YDPHUZUREwrdCQOlg1CcUUSHvahE5Z2T3XoZBLEkqKkGkzEvLSbpbJZKrE4g5SByqZdLfV1uZahlZLZWZmgPX5fdYSJewOC9FBL6mDMmtLaabnBlhfTKNrBrGYl62FBIZusHx9jzOPjbJwZQddM/oasYsvb6G2NaLDAZxuG/Vqi/2NLBNzMayK2A+vDk1GKMl1aqUGgxMhrn9xCbvLyvS5IdZu7ROJ+1jrAej6jV2cHjuPvGOSl9Y2aH6bFWNOonNGAtEEOjjSErrdwOzdzaYq0l42MOIS9YHDB5ZERxCw7OvIkkS7YtAekWnMiHjTIqqiggziroFuiOwPmtjXu3lGAGtZpJ3WKU7YCaZEOoYKmIgbJk2vQuO0FbmsY6lqCG2Ttk0mF+5utzEqYl3SEEJWmiPde0RO6ohWK9XJ7k7bF9s4PHayA93SEmtCR3XI1KMSgmbiK8iUtA6KbuBzWiladYywiKcsUhUN1AEJf1mm7NTQ3RL+okTRrWPLgs0q0W5oeJsiggUcewYdRcNZEdBNgYGmjUqthaKIIIBpCDTaGi5ZQemAYIhMBAP88o99JzbrK7Vcj4djD+eUrut99avDeaGqKoIgfN1zmQ+jH+areZ/5fP6O3ufx392PPUhZyZvSvs7CA7Va7YQK0WEtaiAQYGRkhE984hN8//d/P+985zv51m/9Vj7/+c/zB3/wB3zxi1+8r+28aQDzXkBPFEW2trZIJBL3la+8kx1K8b0aYObzea5fv04sFrtjHeed9u1+PczDDuwej4dHH30UWZb5a99yEVHXeT6RR0FA1XXssgW5qdHRdRyCQrnTISxZydraONoSSh1qegeXQ6QWMTBcJs05mVSxxuSUn8q1IolEg8kpP1trRTbXM8ycCpDZrXDtz9eZmYtRLSdpNjpYbBI2h0SrobO+nOHik2Psr2e49dUtRqcitNsqakdn4cpOPxw7OR1hezGBN+AklyyT2iswPBlG17sPS0HXaXVUFKuM2tbY38gQjHkZOBMnv19AU3WqxQbV4jYzj45iGgbp3RxaWKI1rVAeE9l4LI3u7nr3SkJD0ATM3vqlMSBgmddxh53kLCp6VIEoKCkdqWli2AWEhoktI9N2WGg3VPSJo8VPOaRjuamh+STU4aP3m1MWbDc6SB6F0qAIY92HXz4KwS0LbTtUji1QzTa0qhKSDtpgd2opexqqIlGbtgEmno2uDGBjQukuozUT67ZObchGVTBxrOkImkljquuFKhkdU5TI+U2EjoyU0sl7TGwpE8UwqAwLCIi4DgwKAxpSw8RahVLAxJ4yaflFRENEdFhoyCZy2UD1y7iaIm3ZRGxBtaWiWUR8ooV6rY3TYcGoasiW7prkwmCUX/iR990T6Bwn18CR96lpGtlsFlmW0TTtNUO3D9MO5/jD3sbt3mexWCSfz7O6ukqn0+krirXb7fuKftVqtbe8h/lGiK9fvnyZb/3Wb+3///GPfxyAj370o3z605/mQx/6EL/+67/OJz/5Sf7O3/k7nDp1it/93d/l7W9/+31t500DmHczVVUxTZNMJsPTTz/9um+q4znR45PpuHj67Owsw8Ov7KLxauPdj4f5WgSi983GODM1yW988WUEHURBQNcF3LKVYquNV1bIW1UCFQt1rYPHaaXgUmlrBq6UgKoY+AyFYkRjgRp+r52KpJLNVpkdCdFZr7N6K8PQiJtyAVYXk0ycCrG5kqNcaDI0GiCXrjI1GWblyg6RuI88sLOeYfrsIOvzB93ztJ7h0afHufqlVQCCUQ++oJNSDo/4WQAAoppJREFUvs7eRpbp80NozRYbPUWesdMxUrsFWo0OakulXW0SGfZTylUxrALtIZnt8zr5To3qX47Q6S20LTUDwThajKhxGXfGRO10MBsCraBMc9pJZ6+DPnJ0LdUBCWGxA6JAfdxCPd5jx7osuA902j4De06mZDdpzrqwpFXEmonhErBmQVJlCtMynryA0FAxHQLynoZotZKICcglHUtKR/DJKFmBUkQAf3cb7k0draXRmO4CH4B1U6PsVxAkmWBBoiXotDSoj3aJDNYDjaZLQXcJuLYNzLZGfUwBUcSa0TFtEs1BBXtTQLBLVNwClqSG1DSQPRbsByodt4TqE3GmDephiUBDpiRoyKqJ1ZRRFRNbW8AQwFDBJUjUBANvW6DVbONQRDplDadVRtEEvmV2nJ/8yNGD6H7tMBS7vLxMu93m4sWL/blyp9Dt4d8Py+7UIeVhmyRJhEIhQqEQpmnSaDRIp9N95q3NZut7nz6f7zW9zq+l+Po3st2tFhXgR3/0R/nRH/3R17Wdt0RZyWEphyAInD59+qGswI4D5qEZhsHCwgIbGxs8/vjj9wyWcO9Se4cEohs3bnD27Fmmp6dPeLiH43zf287xD97/NtySgtHSMTsmDUMlIFiomjqeokhT15BFiZKhEijLSB0B3SmiWUX+/+y9Z5xkZZ32/z25Uuc0OQ+TQ08iCCiIRGEGFhX1URZZwz4CKgZkVwFXFJB9hEXXgLqGv7giDCCCgDiAIIhM6J6cc+yuzpVOvv8vas6he5jQoXq6wLk+n3nRNd2nTp06577uX7quTuFS066ht/p0RF0SkkbXGJnltZ1sWuCx9door89xsN9bRsdUlfXtbVSNzz+otmUzYUIVG1buxsw5tCVT1A7P75i3rtvPtPox1A4vozSus+71HYw9PKPZeqgLI6pTUh6jelgpHQfb8T2BcVhIfdfGg5SPLKWkvorMHJ3Vk7P8ZW4X7beOYNe3aznwhSo2LnBpPkOHpjeF8e2EjJ+VUJpc1C0Osf0KbREVnziZcQZeeX7flxutI+/0UA66JHbL0KnSNTlOrkRD7ja+JTd7ZNoFRjJK6zAFryz/93adht4sI6316CxTaauWAImuKlD2gbzeIzPMIFVxuGYdkXBbQD8k0zFMAllGdqHykEpHpUqm1sDY7hLpAnW3R2Z0BC+hIBSJzmaLTIePsASqA2UHJXK1Gl6pQompQkwnPTpCRYdG5W6wyhXsuETigI/pC7IlEqUtYMdVcnUa5CTMcg0jJ1PeJiNsKNntYqdcIkmPmCWjZ6DMUSlxVPx2j0iHj+LJKDmBJBTiho4sJGKAyLicOaKMK+ePpK2trd8ykq7rhiWHBQsWEI1G0XWdSCSCYRioqhqSquu6uK6L4zhhSnegCI5xsvwwJUkiHo9TV1eHLMuce+65TJ48ORQ6eeWVV2hsbGTv3r1ks9kefyuE6HMN80SScEIIbrvtNoYPH040GuWCCy5g69atJzzuf//3fzNu3DgikQinn346b7zxRq/PKahhDvRfMaJoIsxjpWSbmprCSCyZTBasyy5IBQWEaZomjY2N+L7PWWed1WfJpN6kZD3PY/369bS2toauKUc7TvCQXzhvCrUlCe54eBlpzyFnOnnSjOr4usByHCQV9Ax0lHrE0jIOPtURnWTMoUXzqMxFaM/aeFmXRBfkEuBL+UmGbJ3MvhIXf7SBF5HY6wrKzVJ2ZWy0VBvVdWWkW0zacz5lho9UGSfXbtIatdEnxNm+Zh+UgGOnKJlXTVNLB9v1NCPn1dLc3kWbcHATHvp7qnByNqmxCptLFEBQdhBSo/ILQxpBaVIiUwtCBmQZc4RGZKeNpmuoqHRKAseTEcMU0pH8PdAVgfJmhUydj9zqIrcIzBIDqd0jO0HJHwtwajUizR76fgczqpAdZkC1RFYI4lts7Ek6sX0+li7TUmcgZ1WMfQ7OKI1ok4edga5RERQHypp9OisFxg4Hs0YnOyFKFohsN1E8H6vaoLky3wwkQ35Gs13GPRwtR3bZuJUG2bF5j8jIXhsjB+moB75C+SFBR6WPSMhobR62JJOpUdFaXCo9hXYp74tZ3ibTXi5Qs4K4qdJZ7hNLejilKinXR/MlctU6RtLDrtQoMzVaFIdYh4cdl9E1hZim0mXZRFDQPAlJ5PVwE1qU6y6dyxlT60gmk6xduxbf96mqqgojqd6kGR3HoaGhAVmWw5LDkfd699pn93/HahzqK05GhHms91UU5ajRZ2trKy0tLWzbti2MPm3bZuzYsX2uYQaScJ/4xCe46qqr3vL/3/nOd3jggQf45S9/yfjx4/n617/ORRddxIYNG465xj388MPcfPPN/OhHP+L000/n/vvv56KLLmLz5s3U1tae+KRO+WGefAgh2LZtG7t27QpHOdrb2wtiIh0gGC3p7Oxk1apVVFVVMWPGjH7tRk+UkrUsi1WrVgFw5plnHvNmPTJSnTt5JN/550u45edPI3tgyIJMxkYooGkgORLCUChPy0iqQBISrapLZbtCxnbIxV0MTyJbJhHJgfB9hA2lrorp2TgJCd2VsXTwVYmU7EK5ijkMUgjKOmIkKwQHgVi7jFlRwm7ZBARVM6pprTxs2eQIotkysuUSe7FQczqyp+Ic7kpVTB3dh/wyKNFZK1OehK7D0pTpcoisN4lWxUinLZwSlUxFFDXl4tRJQD5KLW0XZGUPoctoBxxyXYJIl0rHmAiUBpspjchOE3eMitbkImUgNyqCLGnAm7J2clbg2BLSGpv26W8uUn5MwUt6VGyTSY5R4XAPhycLcu0usQ6FrjERODxnauyzcVUVM6FQbst0IIjssDArdFIj88QSTwlKt/u0jYziK6CkPbQWl9xIgxwSWotDZLODXWsgFIjttDFHGGRkCaPJQURUmkslIu0KRruMoshUHvLIKD6pMo/ofpfcMI14CizAi8mU5mSyZRIlXdCuOehdPkpCQ/N9NCvvZJMQ+Vq+L3wUIVGtR7nlw+9h/vR8dqWurg4hBF1dXbS0tLB37142bNhAaWlpSAQlJSVv2cjats2qVaswDIPZs2ef8Jk6WuNQQJ69HVs5GjzPQ5Kkkz7OcrQO2SD6jMfjjBkzBtd1aW9vp62tjdtvv52//OUvOI7Dk08+SWVlJRMmTDjh+xxPEk4Iwf3338/XvvY1Fi9eDMCvfvUr6urqeOKJJ45pTv3d736XT37yk1x33XUA/OhHP+Lpp5/mf/7nf/jqV7/al8vwjkNRpmQdx2HVqlUcPHiQM844I5x77I9jyfEgyzKHDh3ijTfeYNy4cScUTz/RsY51bp2dnfztb38jHo+zaNGi40avR0vtnjaqhh999iqqI1FUH+KKmt+AdfnISEgdHqovkfI8PCGINHl06R6GrGJrMrIvETvg4dk+ZbaKG5PoKBPosoanq9gylDdJxPZ6aG0+sVYfLStAQGdckMgcFiCokEg0B+cm0VriU9qR/0loEr4h5/8OcKMSsi+hmIfdOCISvg9Gh49+wCGy28FKOlTtUfLi345C14QSUq022TFRnAoNT1dwDBW1Nb9YqqZAtiUiWzzEIchWRkmPi9E2SsfYbsHhkZNIp4AcyBtdcuURMuOiuKqEXSqDphHf7VG6DxwUsuPjZCcnKN0vkGwfY7uVH8EYHuXQcIXIFhNcQWSbhdYpkR4Vo2OkgbbXJd7skjgoyNVFsGsM/BKVdNbDWGuRq4vgl6hIriC6zSQjSySHaagdgqpdHsgKuZERJF+i4pDATWiYY2O4rkTZboFu6Ci+RHWrhFWp4UZlSps8zIRCLi6Ta7PoKJVRFBXjgIdAZlirgp6TqHJUqiwVp8NGP2SjI6O3upRLGlKXj9TiossKhiwjyxIRVKJCYUQiwX9+9vKQLANIkkRZWRkTJ07k9NNP55xzzmHkyJGkUilWrFjByy+/zPr162lqasJ1XUzTZMWKFcRiMebMmdPnZ0qWZRRFQdM0DMNA13U0TetRRnFdF9u2cV33uBvVobT2OtH7qqpKTU0NU6ZM4ZFHHuHpp59GCMELL7zA1KlTmTp1Kk8++WS/z2Hnzp0cOnSICy64IHytrKyM008/nb/97W9H/Rvbtlm5cmWPv5FlmQsuuOCYf3MkTqVkTwKCHWAqlaKhoYF4PM6ZZ56J1s0SqpAelkHaZ/fu3dTX11NdXX3iPzoOjhVhHjp0iLVr1zJx4kTGjx9/wp3usWqhdZWl/OhzS/j89//A/o4UFYqOG/VJpxximkancIhnJSx85ISGnPVAQLTNJ1cpE4+rWKpHxvGpblOwFZ9sTFCVUmgtgfYKqOwyaCv1MYGSNkFKCFQTVCFRnZLImhaugJp9MhnPQQCOJyjPKfi+wLFcIr5EPKJg2y4CiMkKUplKRriYcRmjQ+BUGvhV+etgmwLFE3B4cclOiFC62yE1VkM3QWl1EVkPowOyo3SscgnKY5S3Cbo8gThsAeaUakQac0ij46RLZRiXr8caB0y84Rp4An2fjRtTSZfqxCyBUA/PTFo+wgJ1q4s5ysCPHl7gfTBiMfwtFubICF40f45qh4uUg0zcQEuZgIrW5RHPSrRX6lBpoKRcqtugTfPJjslHr4k02CmP1hoDPWlRpmh04dJRpYMQlOx3SFeoODUaiQzIB2yytqDM0bBcj1S1RqTLAxfMYTqxZgerREMp1SkxJVojgkiTQ7pKI9bh48RVSnISaXxKNI0cPp7rY8gqwvORMgJNl9CQGFWe4J6bLqe0JHrCe90wDEaOHMnIkSPxfZ+Ojg6SySTbtm1j7dq1SJJEIpFgwoQJBSGrY42t9EY04e3ihSnLMpMnTwbgj3/8I5IksWzZMiZNmtTvczh06BCQzxJ0R11dXfh/R6KlpQXP8476N5s2berdG59KyZ4cBOQybty4Hp2jAfprIn0kHMcJ65VTp04dMFnCWyPM7inlOXPm9C73z7EJUwhBPGLw3zct5ks/eJoth1qRZYiqKqbwiKQkRERCs8D3PEoVhc64j4xMpMnDlzxqSgyaoy7tQHlawfd8ukyPWlslZZt0RWXK0xodCZ9UpURNOi/o3QXobS5OTQRfgZwQlKcMOsrz5+amPIjLOFX59GP0kE1uRD5lmQPiB6xwXMOslonst7BH6ggZnIiE3+Gjt3rovoxIufiahrHGxJwag+F5sommfZSUi1eSv2U7yqF2P3iKoEvycKoNnKkRYntykNDzuRMhiMWimBszWCMMsmPf7D5MST7RLVmi8SidFWq+aQcdtc1Gy7qonR5miUprhQYVUSKmIN7sYXfa5EZFw8/jSwaxxgzmxDjtlfmFWW93MRyJ5nKZeLOHZDvETInOGhWpxkCyfBKeRnupjN4K2i4TrSxCqlYHT1B6wKGrWkOqNtD2WeQ0BSFJJLaaRCoiZFRBWatPZ6VGtMPHlSFjKOhJB6tCo9JU6IhDha2Q1X3ULhdHUsAUlKoqsiSR6XRIRDVUV6J+wjBu/2zvxkaOdr8GziCjRo0KI0tZlnn99deJRCLU1NRQXV1NRUXFgMnrWGMrxxJNGCovzP6IFqTTaSA/sqKqKkuWLBmEMzuFgaBoCNNxHDZv3szs2bPfsrsJUIgIM51Os2rVKhKJBCUlJT0i2IGge4TZXR2oryMwR4tUu++oVVXhvz63mG/9z/O8vmUfvu0T1WVUVcF1PYSh4eY80lFBaUZCURXsEhnT82iRXcqTAtPzyEQlSjIK6YRCm+0TUXTsCHTZHrUdKrbrkc7lqDJ10oqLG5GJJl0yw1SQJDqjgtKsRFdM4JQo6M02cq2OL0NumE78gEVm1GET5xEG8Z0mznAduhxkD2r2+LiGTNZxsOMqvumTKVPwyw43k9SoRHfnMA83x+QSMvFD4B3KARLesCjN1TKRPVnccRGCumR2TJTYxhRCkXDqYrTFZZhUQqzLx065eAmFyB4L4UF2eAKlycatzT8Gqi3Q2zz8ygiu8HHL8veGnhPI+3J01UUpkTVyiozkCaK7cpjVEbKTStHTHlqTiWT75EbGcOISEiByHrKmoUoSqgcl7T45TaKjUkbyBWrGx6yL4mVdYs0OvqGQqjNQcx6xFGTqIugOxGyFrhFR/C4XLEE2olK6x8GVII6EwMfzfUq7JCQFEm0uiiEj5VwUx0cpU5FkCd8W+K5PuaGjOHDpGVP55Iff1c+7/k0EM8UjRowIN7uu69LW1kZLSwvr16/HdV0qKyvD2mdfG+uOhhOJJpimGRJnUMs8GQTaXx3ZeDxesPMLSllNTU09ZtabmpqYO3fuUf+muroaRVFoaurpGtTU1PQWSdBj4lSEOfjQNI1zzz33uClLVVVxHOeY/38iBApBwezjihUrCpbiDSLMXC7HqlWrUFW135J93Qmz+wLQ3a3+a9dfyA9/91eeXbGVrOng4uAaEl6XjVmmEmlyERUaVqeFVaoQswRmziNVplKSUklFwMoJypNgCg9fl9BUGUeX6cg4yBEFu8TAcgVxR8NRIFcqU7LTgSoN3/SxTZeqiE7OthEC1C05ItVRHMcDRSWxPoc/PIqFIFsdIbbbJDs2ilMKOSC6K4s5MR9B+gko6fRJKT5Ck0GWcAyVqt0uWds53ARkkFB1zBi4ev46mGNiRHZlUSsN9IwgY0hkx5dh7MviRd5ceCw8qtpUrIyga9ibDT6pEQax9WmEKpEbHsMdnY9CRSxCbFMGNIXc8AjO2LyEYKpWpm6PR4fskjv8u5IPatLCrIoQyVloPkjtNoolsEbm3yvd5aLvtHAQeKOj6EkbhIQ5IobkC+IZSNXmf7dku4kv5Wuj8VYH05DpiimUdfh0xhQU26fEkkhV60SbbXIVGmWWREryEZ5El+uiO5COCHRJJlJikM46qFmXSDyK63hEJJl/XryQS987s0/359EQNM2NGzeO8ePHh6+rqkptbS21tbUIIUin07S0tHDgwAE2bdpEIpEIybOsrGzAjTlHRp8dHR1s27aNsWPHhhEo9L1xqD/oj7pQOp0mHo8XrEFp/PjxDBs2jGXLloUE2dXVxd///nf+9V//9ah/o+s68+fPZ9myZWGE6/s+y5Yt44YbbujV+xabNF4hUTSECW8OOR8LiqJgmmafj9vd0aS7eHoha6KKopDNZkOLsenTp/c7xRXUZoCjkmWAf/3g2dSUx3no+QYs4eNkXLSYhtzuIpdo2F0uekyFdpdslULcVJHaPYQvEe3KE6ApCYSm4ihgtLhEFRnH9kC4iOEGjiqRczwMW8HSJbLDdWLNNmadDmUq6XYHv8rAO1wPjLX7ZKryt5UoV4nuN/FHRZCA7IgoiSabdF1+E5EbFyO6I4s5JkrClnDbTOL7Pdy4ilOh45dEaI8KtDYftyI/3J8ukYi1O8gJBTlpIpkCryqCn7RpG2GAmr/m1qgYxp4ski8Qsow5LEKySkbOuERbHHLVGmVtPlanRXZ0CZFDJjISPuTTsu0O5sgSKrNguR6+LIjsNZHLDFqqNeQ0GHtzaIqMbciYh8nTU6OUHnQxbQ9zXAzJE8QP2GQqdbyRGrIjiO7I4Utg1xnEujwc2ydVrSObHvEun/SwKLLtU9Elk7YdIp0usZhBR0QQaXfxEzqWCqVpyJRrRFpsOss1yrKQ0rx8tJvQ0V2wsx4KCkrGpyQWxUm51JbEufX/vpdpp43o8/15JNra2mhsbGTSpEmMGTPmmL8nSRIlJSWUlJQwfvx4bNsOxysaGhqQJCkkz6qqqgFnfjo6OmhoaGDChAmMHTv2LdFnocZWjoX+pGT7I4t3Ikm4z3/+89x5551Mnjw5HCsZMWJEj3Tve9/7Xq688sqQEG+++WauvfZaFixYwKJFi7j//vvJZDJh1+w/MoqKMCVJOiFh9rWGebz0aCEJM5ivmjp1KmPGjOn3LjF4aIMU0rHIMsDVF9YzuraC//frl9B0mVTKRtMVvJxAkWScjIebUIk0OYiIQlSWSZfkHSwqOiWEAJH16SyXsMtV1HYXu+qw8swBB7VCRWQECQ1KFUhnLTwZYodsvHINJ6agNVt4ww2QJNoqJCJ7cphjosiuwC5Tiew30csjuGkHL+MSb7eR4xq+ImPFdEoPuKTqdBiRJ53I3ix25LDHqCrhVUYwmiyEBAlPIWu60Onh1kbxDvtqOnEVY38Gu84g3u4iTB+rNoaR8chFQQoWQ1mCZpt40qFrQgLiKhJgjYhRkXQwOzNkJ5TgleSvQVtcEN9lESk1aBvx5mKmdbn4QkaXVUxdAk8Q3Z3FrYvTWa0DOtUHXBRdobkun3qMHrLwEzrmyDiS45NIOni+QDYkjAM5RJlBpkLDSFpIMY3OOJR6GrlyiZQEpZ2ClKFS1uGTtRxcV1AWi2DZgkiTjRaLUOIJdGTSWR/f9IhqGk7Oz9cusy6Tayv4xlfeT2XFwNVkWlpaWLNmDVOmTGHkyJF9+ltd1xk+fDjDhw/H9306OztpaWlh586drFu3jrKyMqqrq6mpqelz1NXe3k5DQ0MPEj9W7XOgYyvHQn9rmH39rCeShPvKV75CJpPhU5/6FB0dHZx99tk8++yzPdLh27dvp6WlJfz5Qx/6EMlkkttuu41Dhw4xd+5cnn322WOWyt6Cd3BKVhKFtBgfIBzHOW6L+L59+zh48CALFy7s1fGy2SyrVq1C13Xmzp37lvTounXrMAwj7E7rDwIFjz179lBZWcmCBQv6fSzIX4Nly5ZxzjnnoOt6r2fIduxu4vYf/In2nIlQZTo9BwPIaaCaPlpcwfR83KhMpSeT8hz8iIKLj6/L+Q5O30H4Al2R6apWQJIo74KOwwYteouFVaODJCGZHqorcA434cRanDCy9IXAaLOxh+UfSsUVSBkbpyJ//aWch2J7OJWHvw9PYCRzWCPf7NAs3W9iSj6y6SNUGa/UIKoppGJvXgutOYdfbeBJUNrhYXdaCEnCGRnF1978vWjWRzN9rJSFNSwGWj6Kj+5JkxsXJ7I3i1ZikC5RkU0ftcPEGhmltNkhB3iVBsITVKU80rhEJJXOUgXpcN00sjON5Alyk/KbMbXTQe1ysYYF4gQZcHysCfkLGW+zcTUFJ6qg2YJoxseKKEQyDsLx6KoxUF2B2mpjV0eIZj1c28eLqlRYEu0GGC02fplOJOdj6zJlvkK766BlXKKxCFnTRs/5JBIG2XaL8kSEOZNHcOsXLylIJNXU1MS6deuYMWNG72tbvUQul6OlpYWWlhba2trQdT2MPisrK49LREHEe9pppzFq1Khj/l53HCma0H1J7G/0uWXLFmRZ7lOX6+9+9zt+8pOf8Prrr/fpvYoFXV1dlJWVMeVz30YxBlaf9iyTzf/1b3R2dg7Y3quQKKoI80ToS0TYG/H0/gimd4fruqxevZpsNsvo0aMHVF8Fwgc1Fovx2muvUVVVRW1tLdXV1SdMUU0YW8f3/+1qbv3P37M72ZF3pDJkIr6Mbwgyvo8iZOR2h7ZyDSMtcPEpQyadc0mXKpRmNbpK846PVe3gapBLW8S6BFKlQbZUI3LQwhwRQUQURNpFc8FRIVutEdmfxRwdQ0bCKdfR2x3sCg1PlVBkGSXt4CU0RFQBX2DkfGxZELMlcEDZmIKYhl+ik6qKkjiUIz3mzUgok3OJdUK2TEXpsilBI7s1DbURUqU6lOavkdacw63Ik5/e7uCXR8gK0EoM0A5HGjkPyZWIbU5jjk9gK3Ke/lSJEjVCRRM0V+ihOEEs45HtyuvSZuM+EiqRFgsNhezIPFGWNjm4XTlyoxL4w3RkT2Dsy2LXxkCVie7PIWVcsuMSSHI+qnRKdVIlCrEulyzgl0eo7BBk0xaygNImi5wuI/mgZVxSEZXyrESmXCea8sjqEpFOh4zqYaQ9dFWBlEOJqqIakE3mqC6JcdWFc7j66kUDuj8DHDhwgI0bNzJ79mxqamoKcszuiEajjB49uoeweUtLC5s3b8ayrB6NQ9Hom5us1tZWVq9e3eeIdzBEE7r79vYW7xQd2VM1zJOE3phInygl2108fdq0acfdZQ4kJZvNZlm5ciXRaJQzzjiD/fv396u+GiB4SIUQnHnmmaTTaZLJJLt372b9+vWUl5dTU1NDbW1tj0WiO2TZ5YPvHcbSP3vsbc3iu9CZMjFKDnsaajK2pqB1eUR0Fd906SqVKbE00ikPK+dSrUTo0Dw6DEEk5+NWGbi+QO90kSo0vJhGbHuOSG0UzxTYyTSqJhMtjZJBIrozgxRTMaI6XtZH7sqgqAqKIuGkHYRqo8Z0pJiG2W6ilGqYUQVq4iiOQHc8zFg+TZoZFqMy6dBWo6KkHbRWG2H7RJslzDEJOgwJyspQW01QXPx4nkhjrozUCqmIjDnyTTNey/Io2ZVF0mQylRGsw9J88Q4bS9honQ52VZSOw8QbS5pohgq2T1e5hjQs/7ranKM2ZdNSY+DIEviCik6fTlXCH1FCRaeHqstkJIE1Ig6+oKzVIRXToSJKvNVGTjlYZRrIEpVdPu1RFdn2KWlz6CrVMHwd2c13w5bnBJ0axCwfs83Bsn2iEQ0v66KqCjFNI+t4RCMamiST6bLwHRdVURlbVc4Nn3k3c+aM6/e92R179+5l69atzJ07N7S6GkwcKS2XyWRoaWmhqamJzZs3E4vFqKmpQVVVduzYwbRp0xgxov+12b6OrRwr+uyvF+Y7gTDfySgqwjwRTkRwgXh6MplkwYIFPXzpjnU827b7fB5B9DpixAimTJkSPjT9FYs+Wids4DQ+ceJEcrkcyWSSZDLJ1q1bicfj1NTUUFNTQ2lpKZIkhZqf48aN44FvvpufPfQqz726mQrdoKPLpjyqkc7aGFEN33LIaDLoKpFmG0eXqUpEaClzafddYimwPQ8sl5gjcOIydlxBS7m4JSrW8Aii1cSujUCpht6co8MAIlHwBCUOdBkSGAZKp4QdVfAjClQYxFMumbicFw2oiWJ02FiKh9AVPE3CFTJGq4WwPWTTw48ZlG/L0TUqinO4WUg2XSJtNlZlvs6oqAqxQzaO6pAbFiVl5DdeuuWjZHwsfLQmEy+hk62OYexLI6rzvxPNuERsCVdSELpAxA5HqU05hO2TUVVKhYyERCTnE836dJRHaJMktJYcSsZBrorTUZJfHLV2CySVdgRGUw5DBa0kSqpUQ/IEiRaLbKmOiOvEu1xkT8J3XEozLpYukylRiRzKYZUbRDQZrd2mq0SjwpLoUGWMLgev1ICUi4jpxF0fx3KRbA9V0cilciiuoKIkwsRRldz671eQSAx8fANg165d7Ny5k3nz5lFeXl6QY/YFgSBCIpFg3LhxOI5DW1sbe/fupb29HVmWw1pcb/VuT4TjiSZ09/o8MvrsL2EmEokT/2Kx4x1cw3xbEebxpPEC8XQhRK/F0/sTYe7Zs4fNmze/JXrtb3q3e+3kWM090WiUMWPGMGbMGBzHobW1lebmZlatWoWiKEQiEVKpVI/d9b/8n7MZO6qKX/7udVA8sum8H6WXsvFLdfS0R8RQcUsNTNujzXaozElk7LxAua4pmPF8o4hkgy5LRHwVZ1+OaFmUtCfQm028ch27NkrkYA5zRBQUibTroXZ4uOU6XpmO1mbiKBJCO0wIzTmsEhXF9JBdqHFkLM/E9Dz8uIaQFbSYhlkp4wCiXCe6qwtzXL6WISkycluWWFMOpzqKW2rgDtNQMw5au41bYSA7Pmoyh+f6aIaKfTialAB7ZILYhnZEqYFVG8MOst2+xrBWnw7LwqqJEnwTmU6b2MYOrGFx7FINCYh02OiyTrouSknKwTMdlLSLVRcnLUsoORfJA7sqhtxqYrgefkwjU24g51y0DptsdQzV8VHSLnZNlKgtUPabIEFlyidnOciSRKTDxYmoVJkSbjyCnPGwLA/D8pEkGWF5GJKMi0NMkjAMhQvOGsdH//ndRKMDJ8vAYWfv3r3Mnz+/aGpKmqYhSRKdnZ3MmjWLaDRKS0sLe/bsYf369WHj0LH0bvuK3kafwQxqX98vnU6/IwjzVEq2SHAsggtayPsqnt4XwvR9n02bNnHo0KGjRq99Jd9gdCT4m+N1wnaHpmkMGzaMYcOG4bou69ato7W1FVVV2bRpE8lkMqx7vu8905g4tpq773+WVpHFFAItYmBbAllRyaVsLF8lIcnk0g6dpSol6DiywOuyKdM0bF1G9mSysiBjgGopdEk+oiyKZHooXR4iJiGXRonvyODEVXRNwXd81M4MQpfRozolHYKUsPANBbskQlmXQ1dlBBtoA0pS4FYaYc1Q5DwM08OKKCgZByHJxDZ1INUlyMYUnBGlYHmoKQv/8PrtaTKJNgdSGdLVUazawzOVnk9pi01Gg3jOx4yr2OMqiKVc3HS++cnYn0Euj9ISU9HSPrrlo/qgdTmkynTsseXIpkvikInpeNh1cRxA9gROu4koi2AoEpIL8ZxHl6Hg1MUxnHzXarYqim776LtSeIaKWx2jPOuTRuBURyjP+KQ0Ca3UIOpJpBWJEk8ipclolk/W9BFpGxIR5LQDqoymaaiuIBpRkF3IdlmMHV3ORz5Wj2q4vPrqq8Tj8bDbtD+zjkIItmzZEt73xbSgB41HM2fODDs4A81by7LCxqFdu3aFqd2amhoqKyv7XF88Go4VfWYyGTKZDKqqYtt2+GyfqPaZzWZPpWSLHEVFmL2pYQY7uuB39+/fz4YNG5g8eTJjx47t04LQW5KzbTv09DvzzDOPWkPsi4F097QO0C83BcdxWLt2LaZphhF1KpU6at3z3v9YzHf/axnrNh/CwgVZYDkeokwn2mmTi6noqorU6WE5HiUlOukSA88BVwh8X6A35ZAUGaPEwGwxsWryjT+aI4MrsHUJMTyOnsyRKzMAFcP0cHWZ7OEZzdIuQaeRr0+mynSq0oLWxGEN4RKV2KEsoiKCanq4aRvf9TAiKnZNDLdWwwGMvV1IhyNNDAVdRFC2dCAiKnZ1jExlfvYx1mGRrY4g2R7RFhNHllHbHNLj3oyOXF2mvMshl7TCeiaAkGSUvWm0RIR0pYEERHMeMUemLWGgteXQWnIkdJ2U72EPP9wd63uYLRY5y0VKqJRLKl2qRK7MwOiykYSEU1uCnLEpb/cwsxaq56NpeX1bvcXELTFwAaXTIqOrlDmQEQI162IkokieQI8aKBKkW02EB5G4TlRR+NBHzuQDHzm9xz3S1tZGMpmksbERoE+zjkIINm7cSGtrKwsXLuzzjOBg4tChQ6xfv/6YjUfH0rvdunUruVyOioqK8FoUgqQCIrQsi7Vr1zJixIiw7tpb0YRMJtP70Y1ixqmUbHEg2BUGKhpbtmxh//79/RZP7w1hdpfSO5qnX4C+GEifKAV7IuRyORoaGohEIixatCg8pyPrni0tLTQ3N7N161Yuft8wqspVXlu+n5TtYegaVqeNFteQTR9HuJTGdToNBcsXlHR4+EKg2i5OdQS3MobWapJWJKiIUtrpYesSsuujOR6O64Isocd1pINZiKioEZVExqPTdZGEICegpg1Slk00ppPpyFHeruLEFCwEZmmUsq68eTOHa4lyl4WatvESOhLg1sSIbG4HXUGuimMaCtKIMhIZB+ewaIEQAjftEE1mscaWY1UfXhAro+j70mhRFTfr4NQk6CozEKU6lR0utiRwsw5WVQy/NIoDRLZ1ImQwR5ZiRfKDJLqQkDQDycmne6WUk3eLialgKNCcJYJOLmWh+14+NVsXR/JBP5jBrYqRFgLNFngVcYTjoyUt0BWqLImc7VImKUiujOwJhCMwFI1Um4nqgRzVsU2XMkNDBU4bX8Pnb7mUsvKeC7+madTV1YUWXZ2dnSSTyXDWMdhQHY00gn6Arq4uFi5cWBAZu0Lh4MGDbNy4kTlz5vTque+udztlyhSy2WwYfW7durVgerdBI2BdXR2nnXZa+Gz3VjThHdP0c4owiwNBqtU0TTZu3IhlWZxxxhn9vslOVHdMJpOsXr06lNI7Hrn1poZ5LJm7vqCjo4PVq1eHD+WxHu7urflB3TORSFBZIfjTn/aRdX0iuobvyTiyREyW6PA8IlkfWRbkJB9ZV/HLIugtJqgK0ZiBSHmk4jKZuILeksOsiQIq8ZxKJiLjyhKypqA5PqYiYyoyCRdScQVkiTag3IeOiArDSkgB+qE0/sgEEtBVoqLvS2GPLslrrSKRyAgyhzrwSg28siju6ArK0g4dhpKvM8oSaV2mttXBliClyfg1JXhAeadDR6WEnHaIZ1zceBTf8RC6hiRL4PqUpRzSro/kCvxY/pjxnIeUdckML0N2fKKHsngSeXPrinyGwbJclAMmqqFgRxW0tIPhQaYyhicE5YZOVpHxZajuzG+mcuUxoi44voRTGaM055JRFQxDQ5ZluhwXJeuQi+vIXRaCvGSh7/gkNI2oIWOmLCJIjBlWynWfeg/T54w+yh3QE5IkUV5eTnl5OZMnTw43VEHUFY1Gw5RlaWkp69atI5fLsWDBAgzD6PN9OlgIZPXmzJnT7y7dWCwW9gQUSu82l8uxcuVKamtre5Al9Kx9Bpvqo4kmHDhwoN/2gqdwclBUhNkb6yvIq1uUlpZyxhlnDKgWcaw0qhCCXbt2sW3bNmbOnNlDuLivxwrQm+aeE+HQoUNs2LDhhDJkR6J73XPGjBlc8L5mvn//MtZvbcVTJDzPx9YVynWVtOmCKiPFdMjYGGkQZREiPnRJIFQZ7aCJF1XRNQ2t2cSWBJauUOYLOuMKvizhCNDt/FB9Oq4SbTPJVeUXn464in4wjT08geT5eCUGlW02puthqApZTyKytQN7RCmertOpgyxJIImwEaczoVHVapOzbBwh4VXGaItIaAe6YPThFKknMLtyGC0e7rASshWHU4q6gpFxiDdbdCY00vE3CSHSlkMkO8iOKkMqyadj47aPFDHy5teuh217yM1Z3Oo4fp2Oa3soLTl8RUIYKoZt4vuQKo2guz5yMkdHZRzFdIh2+eRk0DpzJGIGtumiuT5ySRQ/Z6IKiGgqqiuj6BoyErmUjWO6lJQY4PmMqirh8ivnceHlc/t8DwXovqHqThpr167FcRwURTnhJvFkY//+/WzevJm5c+dSWVlZkGMeTe82mUz2Se82l8uxYsUKampq3kKWRyJYw7rXPn3f55VXXqGhoYHzzz+/IJ9rKCEBA71riueu64miIswTIVDQr66uZsaMGQN+mI+Wkg1SUS0tLSxatIiysrJeHetYEWZ/m3uOPMaOHTvYs2cPs2bNGtCwuCzLDBs2jDvv/ih/++tm/udnf6UtlcXzBLkui3hMIY1EPONCwsDxfJysh6sq6K1Z/IiCV26gZ1xyMQ10hZjlkjU0MkB5u0tak5AcDxyX8riB7XooiorY0YlWk8C2XVxdJ7KzC3tEKZIq06WC1pQiNSIK8fw4QEm7SfowyfpRjZKch9rukE7n8EsidMZ01IwDNbGwWcitjmNsaydaU0KnoSDq8jVLLWujuA5elwlI2DUJHB2UphRUx0hYPjZglUShJIqWzCLbLmpJNP85Acl0KfVkvKSJFjUQSJRnfboUGb8mgW57RBxBRoKIZaN32KQMBVEeI9qawy0xcFRB3PTIVZQg2x5qTEWVJCTbx5XVfArWEuRci5iq4EsyMVVBjSuU6AYXvX8WS645vaBEFpBGRUUF6XQawzCoqqoKCaq0tDQcYyqkOHhfEMx/1tfXn3BcrL/ornc7YcKEXundmqbJypUrqa6uZsqUKX2+NrIs8/e//50Pf/jDPPDAA3zmM58ZlM92UnEqJTu06C6ermkaI0eOLMhDeyRhWpZFQ0NDKB7Ql7rNiWy5oH/NPZ7nsWHDBjo6OliwYEGfrMJOhDPPnsKC0ydx311P07BuH6oqYzqCqO/hqRJeMocSV1FsFysiEOUxjIyNaYEsJCoyHpbwsHxBQvFJ6zLpqEqk0yJXbgA6ruPj6Sq2KsPwMqSmFN7wEiTAiWoYzRns2nj+57oStAMp/No4SsZBUxRK9qawVBmvNEJWU5Esl0hpnOxhk2e3Jo52sAvZ9TFKo+RiOt6oSrIdORTh4ycMlPYccRRMTSIeidBVkh8NkXMOsi2g1cJE4NTkRQbinRZC0zHjUaSOLLLjoaRt/KoEqagMuoLfnCHuyaQzJpTo6F0WbmWctC6jJjP4CYOMpqIlMwDEEhEyTWlQFbyIhtaRIxfVieYcLFVBTdvIUZ2EquRHYXSFXJdNRFeoLI1y3vumc/XHzxo0srJtO5SRnDNnDoqiMHnyZEzTDOt9O3bsQNf1HvW+k5FC3LNnD9u3bz/p858n0rstKSkhm82GtdH+fDfLly/nn/7pn7jzzjv5zGc+U1QR/Sm8FUVFmEe7WY4UT29sbCyow0hwrK6uLlatWkVFRQUzZ87s80IQuIwEKdfu9cr+Cjnbts3q1asRQrBo0aJBqSVpmsJXbruCdY17+MmPXmR/UxeyppJNW6gJHafLwis10BwfP2uixjQqhESHrpLyfKIoSLpM1vYpzTo4+LiWS1VKwddkMl05FNtDjipEExGyskz8UAY5riMDlgf6jnaIaqCpiNIE2sEMTm2CNIChUZJz6VLl/MbVUDHTFkZrhnh5nIzr4VSWImcsLM8PI001omJkHMzmDtxR5fljAWmg5GAaSVdJJwz8umAmxcfY1opfEsU8nLqVcw4i6yErGolYhLQviKRNHE3BrU5gej6GD3ZWEItEyDanEaqCXxFHzTmoXVn88hgx1yeXdZESMSKmg+XJxBUd2wJDKPhZn6isYqfdfCewroHjMbq2hPMvnMGSj54xqAupZVmsWrWKWCzGrFmzetyrkUiEUaNGMWrUqFCmLplMsnHjRmzbpqqqKiTQwbg/d+/ezY4dO6ivrx8SsYQAsixTUVFBRUUFkydPpqOjg8bGRlRVpaWlhVdffbXXercBGhoaWLJkCV/72te48cYb3zFkeWoOc4jQXTw98Jbsj2PJsaAoCkIIDh48yLp165gwYQITJkzo143bfZhZkqQBN/ek02kaGxspLS3t02xpfzFz7hju+8HHeOhnf2XZCxsRER1ZgBaPIHvgeCBpCmlPYFoecdfFdnwc3ydaFiGnymRliYii4UR0OoVAbcvhVx4mn44cGR8oiWECajKNW5eAMhVRGsVIWVgl+Yjeq0pQmnboSmjg+ThCYOzuwKhIYAqBEzXwynUyLSnc4aV5o+a4QSzjYO9owy+J4pZG87q18ShlKYesLkEyg1QSwSyNQ9ZCbckgDJUSZNKagj+8EtnzKUs7pDuzuFUJvNoSJCEwm9NIqoZr2yiVMaSmFH4sglMWx3A8rC4TShPojofWbuJ5PkKWiFk+nUiopossyTgeKKaFa2jIjo8vSZQoMjg+KhKaLDGsIsZlVy/ivEtmDOp3Dm82q5SXl5/Qku5ImbrA33L//v1s3LiRkpKSsHGoEEIBO3fuZNeuXcybN6/XpZGTAcuyWL9+PTU1NUyfPh3f90O9202bNmHb9jH1bgOsXbuWK664gi996Ut88YtffMeQJXAqJTsUOJr8HBTWkis45rp165g9e/aAZqCCYwXnNhCybG1tZc2aNYwePZqJEyeetIdJlmU+9slzWfyhhfzwu8+xZvVeZFkmbdrE4zqdto/uuSgKmIK8F2TCwLV9Yo6HJEtY7Vk04WOUx7BVBVoyeaussgjRnEsuJiHJEm5NAqM1i53Q0SUJWVUo67LIpi0QkFVkKm1BR0zFUVSoLSfXnsEvzXtrIkl4JVG0nW0ITUGpiGOpKqK2nFjaIgMono/UnCYnyyAEUnkcT1dACAzLx7UFMUUmrUkIRUZuzxLXNFKaihyJkMg46LpKVki4FXniTNgqmayPJGSUzhxxV5DSVaSYgdGexY0aWJKCknUQpVHstENE5OX7NEcgUNA0BTOVnzONJKJgukQ0lTHjqrjqY4uYs2DiSfm+M5kMq1atorq6mqlTp/bpPjuav2WQut2zZw+yLIeRZ1VVVZ83fEHNvpiUhSBPlitXrqSsrIzp06cjSVKPjcSUKVOOqXfb1dXFzJkz2b59O5dffjk33HAD//Zv//bOIssARUp4A0VREWbgh3k88fTjyeP1BZ7nsW7dOoB+z3F2R3DTW5ZFNBrtN1nu3bs3/OwDEZEeCEpLo9xyxxI2rtvLz77/EvsPtuO7gpjv5629ZAU/rzlOpMNEiWvkLAehKlASRbJdrJyHiOhIikbc9DAFOLJKSZdLVpdBkfFiUSpdQacq4ysKji+IGoJsIp/a6wS0Q124w/MLphzRiacdcukUImogSiJQW0Hcskkfvtay7eFkHSolmbSh4lV18z9NmcgHOvArS3DjUYhDVgjKTAc/nSNdEiUrSUi2i9yRwy9LkEm7kDVRJAm1LE5aVZAcH8X0EGVxskIQa8miGiqeLCN3mbgRDSWu43eauIZGTPjkbAnFc5F1DdkXxDQNWVFIqDIz5o/jo596D1V1hatPnwjpdJqVK1cyfPhwJk+ePOBFW9d1RowYwYgRI3oIBWzZsgXLsqioqAgJ9FjmAfBWGb5C1uwHCtu2WblyZZj1Odo1O5bebTKZ5LrrruPAgQP4vs8FF1zAZz/72XcmWb6DUVR+mJ7n0dDQQEtLC3Pnzj1qN1xjYyNlZWWMHz++3+9jmmaow9re3s655547IBWToHb56quvYts21dXV1NbWUlVV1euxl0CC7ODBg8yZM2fQOgH7g2XPNPLrn71MOuMhIB85eh6SJPCjOn7GxE9EUHyBl7NQIwqqJmH64GoqKDK652EZh70zHZeMkffbFEAkbWGWHm6w8nxiloMnSygCrJSJcDyoLcFX81GKbDsI28Mvyy+8cipHzBegqaQN7c1FKGuBbROL6AhZJqfmVYbk9jRqaRSnLYNIRCByWNS9LYMmfJzSeD7iFIK45WIi4ckyes5EuB5OLIqkyigdWXxDQ9JUDMvBQUGWICrL5Fwfw3VxBci2i4+ErsggJCKKQm1tgvMvnc3FV88viD9lX9DZ2UlDQwNjxoxh/Pjxg7poCyHIZrMkk0laWlro6OgIzQOOHNUImvv279/P/Pnzi0qGz7ZtVqxYQUlJCTNnzuzXNduyZQsXXHABEyZMwPd9GhoaWLhwIT/72c+YMWPw0++DjcAPc+anvo2iD9AP0zZZ9+ApP8wTQpbl43aoDrSGGejOBvWHF154YUARa/fmnjPOOCOUp9u2bRvr1q2jsrKS2tpaampqjumeEDQ25XI5Fi1aVFQSZJ2dnaixTr7yzfex9vVWlj27jq6MDaqCUCRypoceiaAJsCQJOR7B831MFBTfQ3YEruPhOC4ltoevKriWi9aawSiP49gurifQOjuQqktwJQlT1pDbUjg1pVCRH+lQOjL4FVFQZLA9ShQVukzSSGBEyAGS4xHN2jgRjajt4ZgeTjSO25nGqYznhRA6shiGgWlDSTxKSleJOR5Wew6/NIYrSURtF7utC78kQiZqoPs+ojWNUxpDUsmPhWSzIAQlhk6208RSZCJ42LKMmcki6yqynFcFMiIGjukQUyRqRkRY9N4xTJ4+hpqamlC16mShvb2dxsZGJkyYwNixYwf9/SRJIh6PE4/Hw4irtbX1qHJ9HR0dNDU1sWDBgqJSvAkiy0Qi0e9xtl27drF48WKuueYaHnjgAWRZ5tChQzzzzDNDlkkaNLyDa5hFFWFC/uY83ilt3LgRSZKYOnVqn4994MAB1q9f30N39sUXX+x3B96JlHsymQzNzc0kk8lw9xWQZ0CKpmnS0NCAruvMnj37hPqeJxOBZViwuEqShON4PPSjF3n5zxvJOR452yMS1Ug7HnFDOayY4xIvMcjkbHwhUA7LzOH5yJaDHwgFdGYR5bEw0pTaU/jV+RScACIZE99QcbtMVFnCiGrkhIRvaOHvKJ1p3MoEui+gK4frCoTrQU0JHCaiiOOhOi6u52PFD2/EHBe5M4sRj2KlcvnOVtcjpihkhASSRMTz0CVwfIGtyEQ8H1tIeAJivo8jZCQh0IXAFKA7HrbrE1HBdQVRTUVTJEaMrOCiK+s5++JZSJJEV1dXaNeWyWRCibru98VgIDBYPu20047rE3uyEIxqBEIBjuNQVlZGXV3doF+L3iIgy6N1EPcW+/fv58ILL+TCCy/khz/84UnPKJwshBHmJwsUYf6k+CLMtx1hbtmyBcdx+pTCCNKde/fuZe7cuT3qlS+//DIzZszos8xWX2XuTNMMF8m2tjbi8TilpaU0NzdTW1vLtGnTiupBCgbFZ8yYcdRmKDPr8Kv/XsbK13eQzloIWcbyfTRFwpHlvIC4JLCR8CwHRQiMuI6dtfEcB8XQ0CMKrulgO/lraCQMXNPGUWTkiIEnScQ9l7SWT98CaK6Hj0AoMlLGwrdcYiVRMhKgv7nZiHsumdY0UsyAWP7hFYDWnkKLGpi6hpAkEAI9a+E5Hoahk/N9JDtvzOwYer6emc4hx2Ng2niWjRHRUHQN3/IQmkJMU3AdD02SsEwLVZIYPbqK+WdP5vL/cwbR6LHHLbpL1LW1tYUNIv11FzkWmpubWbt2LdOnT++VctXJghCCzZs3k0wmmTFjRth529bWRjQaDVO35eXlJ/35cBwnNInvL1kePHiQiy++mLPPPpuf/vSn72jpu4AwZ/1LYQhz7U9PEeYJ4TjOcSXmtm/fTiaTYfbs2b06nuu6rF69mkwmw7x5895SF3n11VeZPHkytbW1vTped/eB/nbCOo7D9u3b2bdvH5B3VqipqaG2tnZIFobuEEKwdetWDhw4wNy5c08YeVumwy+/92dee3EzluPjSyD8vGqOoStksxZq3ABFxnY8MPKiAZrrYB+Opg3fw5TyjUAAEdchZ2ghSUrtKSKVcSTXJ9eZw1MUZN+Hije/S8lx8VNZjIiGp6h4qooQgrjv4umHxRdc8LX863rOxLEcRDyKpGtIno+cyoGmoesKkusiCbAUFVXK101tSSGqSFgZG19AIqLhez6qJCEjMCIwc/5orv3cpZRX9r1ZxXXdMF3Z3Qi5pqamT/XwI3Hw4EE2bNjArFmzen2fnwwEbihtbW3Mnz+/RzNQINcXXAvf98OZz6qqqoKYQx8PAVlGIhFmz57dr2eyqamJSy+9lHnz5vHLX/6yIJZixYyQMK8vEGH+7BRhnhAnIsxdu3bR1tbGvHnzTnisYI7TMAzmzp171HTn66+/ztixY3u16z6ay3p/ZO4C5/qZM2dSXV1NW1tbmLr1fT8kz/604w8EnueFDhX19fV9qiNZpsPDD/6Fv724ifYuE1WTcZGwPYGuymRdHxWBpkjksjaSDLHSCLmcje8LYnEDIUtYWQvX9hC+jxI3EJqKkGREzsx34R5u0BGAlsrg+gKQIGKAphITbr65x/OQMhaqoWO5AilnIkqjxGUJ13LzoyqSRKmc3wCZPrhIxGUJz/UwhUSMvHat4/rEVAnHEUi+j6JIIMjPTI4oZ/LMYQybqjF1xuSCNdEIIejo6Aijz0BRpjedpt2xb98+tmzZMiCx8sGAEIINGzbQ3t7OggULjquqJYQI09gtLS2k0+nQHHow5Pocx+mhetQfsmxpaeHSSy9l2rRp/OY3vymqUstgYSgJ8+WXX+bee+9l5cqVHDx4kMcff5wlS5Yc9Xc/85nP8OMf/5j77ruPz3/+8306r7fdlqe3YyVtbW00NDS8ZY7zSPR2rvNImbv+PES+74f+ggsWLAhvhO7D4EFNZ+vWraxduzbcVR+vaagQOFJVqK/vZUQ0Pn7TBfyfG87n9796jZeeWUdLsgtVgGsLIrIEmoppumi6hivLZEyfqKqSQybrgDBNUFWkeF70XBMeluODLiPrGprrImVyCGRsAUKPYvgekq5gSTJS1sTM2SBJROMGOSOCA8QUHzURwXYBL29GbZg2kqqQETLYDoYMkudjui6KolAW07EtD1WWkAUI28cAYnGd2uFlnHH+dM6/ch6pdCdr1qxh8uTJjB59YteQ3kKSpB7KMkfO9gWdpoG7yNEIo7tKTjF1XQshWL9+PZ2dnSckS8hfi7KyMsrKypg0aVIo15dMJtmxYweGYYTkORB7LsiTZdBT0F+ybG9vZ/HixUyaNImHHnroH4Isu2MolH4ymQxz5szhE5/4BFddddUxf+/xxx/n9ddf73ejVdERZm9NpI+HvXv3smnTJqZOnXrCRexk2XI5jsPq1atxXZdFixYddZHobsE0adIkMpkMyWSSffv2sXHjxrBpqLa2ttcRRm+QzWZpaGggkUj0SxawO2RZ5sp/Ppsr//ls/rZsAw//+C90dGQxbQ9NCGxPIOMh57IohoYc0VAyGTwB0biBpkq4rksuZeJrClFdxbVyeLqOi4qQQHNsJMNA9jw0BLmWFJLrI5cnIBEHBJIQxE0bz/VwIjq2D2SyeL6AqIFvufi2iabJ+BEDO2shCYFq6KjCx0vb6LKMhqCqppTx04fz7svmMHPhm+NMQapzxowZDBs2bOBfxHEQdJqOHTsWx3FCwli1alUoElBTU0NlZSWyLLNz586iHPwPzA1SqVS/rcOOlOs70p6rqqoq3IT25fiu69LQ0ICqqv1Ow3Z2drJ48WJGjBjBww8/POip46LEEHTJXnLJJVxyySXH/Z39+/dz44038txzz3HZZZf167SKjjBPhOONlfi+z6ZNmzh48CDz58/vlQXQiWy5uvvV9ZcsM5kMjY2NxONx6uvre0VI3Qegx48fHzYNBYbQ8Xg8JM9EItHvlFSgiTl8+PATWhP1FWe+dzpnvnc629bt43cPvsz6hr3EJEAIPEUhoqlkTA8UjRJdJuOA7fgI3ycaj2AKCVsAkoSaM1EiOrIvcCyPqGdh+QJL15GjMSQhiPo+wnEwPbBVFYSEJiRoSaHIYJTE8D0BjouDTDQWAdvFzdrEDQ3P9VCFT2VVnOFjq5h/9mmc8/45GNG3LnpBU1RvTYwLCU3TeoiCByIBmzdvxrIsDMPAtm3mzp1bdGS5bt06MpkM8+fPL4j2rKIo4WZh6tSpoT1Xd7m+II19PLk+13VZtWoVqqqG4vN9RSqV4sorr6SyspKlS5cWlY/oPzp83+djH/sYX/7ylwc08/q2JMyjRYSO49DY2IhlWZx55pm9bkk/1vG6N/cIIfpNlm1tbaxZs4aRI0cOyF8wEon0MIQOIozly5ejaVo4rtKXpqGmpibWr1/fZ3/NvmLSzFH82wMfoas9y0MP/JnG17bhWR6ZlIXkuRhxHd/2IZVDj0XQIxqe46LmbIQkI6sqrjisoqPrCEXD8fNpXtV3EQKyrsCU8vJDmueiCA/XEbiKQrwkCp6PnbFRZAlDlVFcF1WSMWIqiZIII8dVs+Ddp3HWJbMxIseOCrpbrZ1s94yjQZZlKisrqaysZPLkyaxbt47W1lZisRirVq0KCaOmpmZAG6uBwvd91q5dSzabZf78+YMSeR1pz2VZVthEtWvXLlRVDVO33QXSg8hSUZR+k2Umk+Hqq68mGo3y+OOP98np6B2HAkaYXV1dPV42DKNfG5F77rkHVVW56aabBnRaRUeYJ3qgj1bDTKfTrFq1ikQi0WdT6aMR5pHNPf0ly/3794ep4ZEjR/b574+F7hFGkJIKZiaFED2Uho718O/evZvt27czc+bMk9Y5WVoR419vvwIhBM89/AZ/eWo1B/d14AtBzvaQdR0ZQS5t5Uc+JIWIrmDly5i4lofq5YgaOjlP4AhwAOE4SLZDrDRKzgVPSEiWhyqByLkIR0LTFCKGgmGo1I6o4LRZI5n1rsnMOr33YvvBCERTUxMLFy4sKiUa3/fZsGFD6OoTjUZDfdeAMDRNC8lzoLW+vp7b6tWrsSxr0MjyaDAMo4dcX+C0EkTilZWVVFVVcfDgQVRVZe7cuf0iy1wuxwc/+EEAnnzyyaISXRgKFLKGeWRJ7fbbb+eOO+7o07FWrlzJf/3Xf7Fq1aoBbxiLjjBPhCMJLplMsnr1asaMGdMvTcwjj1eI5h4hBNu2bWPfvn3U19cXzB3+aOiekgqahpqbm0MNz6qqKmpra6murkbX9R6L/vz584fEBUKSJC6+5nQuvuZ0Du5u43c/WMbq17dhmT6e7SF7HtGYgesKvKyN7+RT4pKm4fng2B5RGVzXw/MEniSjGTqe6WLIYKgqiqoRL9Epr4kRq9CoGBFh6oLRjBg1nNra2mM2yhwLQe2ts7OTRYsWFbSGPFB0j94WLlwY7sC767t2t+bqXusL0pWDRWKe57F69Wocx2H+/PlD1gAjyzJVVVVUVVUhhAhFRbZv347ruiQSCXbu3HncJqqjwTRNPvzhD5PL5XjuueeKSvt2yFDACHPv3r09ygr9iS5feeUVmpube2TRPM/ji1/8Ivfffz+7du3q9bHetoTp+z579uwJh+v72/WkKAq2bQM9I8v+RpWBqHsqlWLRokUndbfZvWko6Kxsbm5m7969bNiwgbKyMhzHwfO8oln0h4+t5HP3fADP8/j9Q8/z2lObOLgrRTZtEY3quL5P1FCRJRCeh6wqWLaLJ0tEDAVFhnhJhJET6qgZXsbICTXMOmMCI8b3jJpd1z1uo8zxIgvP81izZg2mafYgpGLAkYR0LOLr7qgxderUUMJxz5494b3RXW2oEKlbz/NC/9p58+YVTbeoJElEo1Ha29tJJBLMmjUrtOcK7o3gWh1v/tWyLD72sY/R1tbG888/X1QWZO8UlJaWDrgO/7GPfYwLLrigx2sXXXQRH/vYx7juuuv6dKyiI8zepGSBsFazcOHCAdWRAgIuRCesaZo0NjaiKEq/RjMKie5NQxMmTKCrqyvs0g0W2WDecyhrW5AfaWlsbGT0tCru+vBnUVWVfdubeeUPDWxu2EM2baFHNEZPrGXagnFU1ZVSPaKCutGVvT5vVVUZNmwYw4YNCxtlmpub2bRpE47jHDPaCmrjAAsWLCiaRR/ym4DGxkaEEMyfP7/XpQhJksKFaOLEiT3GNLZv3x4KafS1Jt4dgZGCEIJ58+YV1dB+QOS+71NfX4+qqj2aqILRru3bt7N27doeTitBb4TjOPzzP/8z+/bt44UXXiiqsZ2hhiTyXeoDPUZfkE6n2bZtW/jzzp07aWxspLKykjFjxrxlBlnTNIYNG8aUKVP69D7Fcxf3EkHHaiqVOq5Ie28RjJUMlCxTqRQNDQ1UVlae0Ij3ZCOTybBmzRrKy8uZMWMGnufR0tJCc3Mzu3bteovS0Mkkz1wuF9afu4+0jJ5Ux0e+cPGgvGf3RpkpU6aEnZVHRlvl5eVs3LgxVHspJlmzYLhe07R+N6oEOHJMI2iUWbt2Lb7v91Ab6s2GIWiikSQpJKRiQbBZDKLeI89NluVw/vW0004jm82Gm4ktW7bwn//5n4wbN46dO3fS1tbGiy++WFSCEEWBIRgrWbFiBeedd17488033wzAtddeyy9+8YsBnsybKDqlH9/3cRznqP/X1dXFqlWrME2Ts846a8ChuhCC/fv3s3XrVsaPH09tbW2/0m3B4jJ+/HjGjRtXVB53gTvFqFGjjtqlGzQNBUpDQBhdDLbSUCqVYtWqVdTW1vbZwHiwEIzvHDp0iI6ODlRVZeTIkdTW1hZU23UgsCyLVatWEY1G+z0v2Bt0V9gJhOIrKipCAj1aJ3ownqEoSr+baAYLQfOR4zj9inodx+HXv/41d911F4cOHaKkpIRLL72U97///Vx22WVFNcIzFAiUfub+n28VROmn8df/XnTSeMWz9TsBmpqaWLNmDRMmTGDnzp0DPl6Qgq2ursY0TQ4ePMjmzZv7JA4QmF1v3779mCLlQ4lDhw6xfv16pkyZckx3iiObhoJUZdA0FCyONTU1BU1HtrW1sXr1asaNG1dUm4xIJEJ5eTk7duxg1KhRVFRUkEwmaWho6FPdc7BgmmYPE+PBzGQcqbCTy+VC8ty6detbhOK7D/4PNOotNAKytG273yliWZZZvnw50WiUnTt3cuDAAZ566im+853vMGXKlF7Jdf4jYCiUfk4Wii7CFEKETTjBzzt27GDHjh3Mnj2buro6XnrppQGZLAfNPYEXYbBYdxcHCBoCAvI8Uq8yEElIJpPMnTu3qAr+3fVqZ8+e3a/BeiFEmKpsbm4mnU5TXl4eznsOpGEoIPJCj9sUAoFf6tixY3vownYXCGhubg6Nwge7y7Q7stksK1eupKqqimnTpg3pJuNoQvGQ33DU19cXVWOU7/usWbMGy7L63Xzk+z5f+MIXWLZsGS+++OJJ8RJ9uyGIMOs/UpgIs+E3xRdhFjVhep7H2rVr6ejoYN68eeGFe+WVV5g6dSo1NTX9On5v6pWO44SLY2trK5FIpEfkuXbt2lBNpRi6TQN0J/J58+YVrM29e3TRfTPR14H4PXv2sG3bNmbNmtWv728w0dLS0itd2O6biWQySSqVCuuetbW1g+LjmE6nWblyJcOGDSu4ItNAYVkWy5cvB/JRqWmaYaNMTU3NkA7xByM3uVyu32Mtvu9zyy238Ic//IGXXnqJCRMmDMKZ9g779+/nlltu4ZlnniGbzTJp0iR+/vOfs2DBgiE7pwD/CIRZtClZ0zTDFu8zzzyzx461t4LpRyIYGelNc4+maT1m2IImmZUrV+L7PoZhMHXq1KLaSbuuy9q1azFNs+BjI9FolDFjxjBmzJhwM5FMJtm5c2evmoa624YN1fzn8dAXXdgjFWW6e51u27at4J6WQe1+9OjRTJjQe6GFkwHbtkNFocAzMtBAPnToEJs3byaRSISReF/nXweCQpHl17/+dZ544glefPHFISXL9vZ23vWud3HeeefxzDPPUFNTw9atW4uuQ/ednJItOsKUJClMi1VXVx+1TtNbx5IAgcxd8Dd97YRVFIW6ujoMw6ClpSVMwW3YsAEhREgWQ1XXgjdHWjRNG/TxhyM3E0FqbvXq1QBvuR6BCk1HRwcLFy4sOiWUgerCdpctDFKVzc3NBal7Bs9C0FBWTLAsi5UrV4YdzsFzGgjFjxs3roeM4549e8J50MGuAwe6tYEUX3+eByEEd955J//7v//Liy++yGmnnTYIZ9p73HPPPYwePZqf//zn4Wvjx48/zl8MEYagS/ZkoegI07ZtVq5cycSJExk7duxRia0vEeaRyj398bCENyOQ0047LUzXBco6geVSUNcKlHVOVjt9Op2moaGBioqKkz7SoihKmKoOZti6zzdWVlaSy+UAim7ofzB0YVVVpa6ujrq6uh51z02bNvW57tna2srq1asLbh1WCPS2+ehIofhAbSi4Ht3nXwt1bxwp8t6f+rIQgnvuuYef/exnvPDCC0ybNq0g5zYQPPnkk1x00UV84AMf4C9/+QsjR47k//7f/8snP/nJoT61HngnR5hFV8OEfArqeA9PY2MjZWVlJ9xdFUKMoPuiOmvWrGNGIEFdq7m5mebmZjKZTLgY1NbWDlpTSGtrK2vWrGHMmDFFla4TQtDW1sa6devC7yCoa9XW1g65OPWREoGDrQt7vLpnYILcHclkkjVr1jBt2rR+q1gNFgKyLC8vZ/r06f1+roLUbTKZpKuri9LS0nBD0V8xDSFEqLS1YMGCfpPlfffdx3e/+12WLVtGfX19n48xGAiemZtvvpkPfOADLF++nM997nP86Ec/4tprrx3is3uzhjn/Q4WpYa58uPhqmEVJmLZtc7zTWrduHYZhMHny5GP+TiHI0vO8UD+0vr6+T4tqsBg0NzeHN1JdXd2AO0y748CBA2zcuLEoF9VsNsuqVasoKytjxowZWJYVXo+Ojo7jdiAPNrrrws6fP39Imra61z3b2tp61D1zuRwbNmxg5syZRTeqlMvlWLlyJZWVlQXt1LUsK0zdtra2out6n4XiA2Pqrq6uftuHCSH4/ve/z913381zzz3HokWL+vNxBgW6rrNgwQJee+218LWbbrqJ5cuX87e//W0IzyyPkDA/WCDC/F3xEWbRpWR7gxOlZPvS3HMsWJYV1uROP/30Pu9Uu9dxuo+rbNmypQdZ9Cey6R71zp07t+iURjo7O2loaGDEiBGhIH73pqHARaO5uTlsGgqux2CLAwRKL7ZtD2mK+Gh1z2QyGTaVVVVVhSpUxTLPmMvlWLFiRahHW8jvyTAMRo4cyciRI49qCh1oux4rlS2EYMOGDXR2dvbbmFoIwYMPPsi3v/1tnnnmmaIiS4Dhw4czffr0Hq9NmzaNpUuXDtEZHRvFmlIdKIqSMCVJOm6EqSjKUdWABtrcEyCoCQYpp4EuWEd6WQbkuXPnzh7jKr3pIPR9n40bN9LW1lZ0FlPw5mhGUIM+Go500QjIorGxEUmSBk0coLsu7FA6ZxyJoO5pWRbNzc2cdtppmKYZ2lAd6TgzFMhms6xYsYLa2lqmTJkyqJuaI02hjycUH4/HQ7Ls6OgYUGT5i1/8gttvv52nnnqKs846axA+2cDwrne9i82bN/d4bcuWLadmQk8iipIwTwRFUcJGkgBHelj2t7mnpaWFtWvXDlpN8FjjKoHbe/fxjCPTUI7jsGbNGhzHYeHChUNeBzwSQYp4+vTpDB8+vFd/c2TTUPcmmUAUPSCLgRBcICdXjLqwkBeL3rVrV4+Rm9NOOy2se3Z3nDlW3XOwkMlkwhnQ/ljoDQRHE4oPxBK2b99OJBJBlmVs22bRokX9eiaEEDz00EN89atf5fe//z3nnnvuIHySgeMLX/gCZ511Ft/+9rf54Ac/yBtvvMGDDz7Igw8+ONSn1hNC5P8N9BhFiKKsYTqOExLf0bBr1y7a2tpCKaru9UpJkvrdJbp37162bNnSpwW/UPB9v4em65HjKo7j0NDQgGEYzJ49u6gErQNloV27djF79uyCpIiP1kRVUVERiiX0ZWEM6qlBxqCYhPED79QDBw6cUGjieHXPwUplB4IJI0aMOKoW8VDCcZxQ2ESW5dA8vS9C8UIIHnnkEW644QYeffRRLr54cAT/C4WnnnqKW2+9NdS/vvnmm4umSzaoYS64+k5UbWCbedcxWfHo14quhlmUhBlYUB0L+/bt4+DBgyxcuLBgnbCbN2/m0KFDzJ07tyDjBQNBd03XQIYNoKysjNmzZw+pbdiR6N5tWkhloSORy+XCzURHRwclJSUheR6vaSgQeC9GhZzg2jU3NzN//vw+RYzd657JZHJQdG7T6TQrVqxg1KhRTJw4seiu3aZNm2htbWX+/PlEIpHQlqulpSXcYAXX5FiNXY8//jif+tSnePjhh3n/+99/kj/FOwv/CIRZPGFKH6AoCq7rFoQsA3WcXC7H6aefXhQyd5IkhRZDlZWVrFmzhrKyMmzb5uWXXw7TlDU1NUNKnoFZdjqdHnRD6mg0ytixYxk7diy2bYdEsWPHDiKRSBiNd4+0jqULWwwIatHt7e0sXLiwz9fuWPOehap7plIpVq5cGZYmignBRqOlpYUFCxaE1667eXp3KcctW7YQj8eprq6msrKS8vJyFEXhqaee4lOf+hS//vWvT5FlIXFKuKC4EHTJBoIE/SXLXC5HY2Mjuq6zcOHComkCCbBv3z42b97cI0WcyWRobm5m//79bNy4sWCC6H2F4zisXr0a3/dZuHDhSSVuXdd7dFQeTVnHMAx27drVQ2iiWBAM1qfTaRYsWFAQT9fA37MQdc9Aii/YaBQThBBs2bKFZDLZgyyPxJFSjkE0/rOf/YwHHniA0047jYaGBh588EGuvPLKk/wp3tmQ/Py/gR6jGFGUKVnP80Kj6CMRpCuXL1/OsGHDqK2tDVvw+4LOzk4aGxvDrr9iq2tt376dvXv3Mnfu3GNqRR7prhKkKYPZxsGCaZo0NDQUXQNNEGnt2rWL1tbWHmnKgTYNFQqe5/VwzhjsjYZpmmFjWW/qnp2dnaxataoopfgCPeJDhw6xYMGCfonc27bNd7/7Xe666y6qq6tpb2/nve99L0uWLCmaWuDbFUFKduGVhUnJLn/8VEp2QAhSsIlEgvr6+rCb0nXdMCXXG9PjpqYm1q9fz8SJExkzZkzRpeqCofpFixYdl/i6j6t0n23csWMH0Wg0jDwLKXgdjNwEg+vFtNGQZZl0Ok1HRwf19fXouk5zczO7du1i/fr1VFZWDqmDhuu6NDY24vv+SRtriUQijBo1ilGjRvWoewbReCDlWFlZSSqVoqGhIXwuiglBc9RAyBLg9ddf57777uPHP/4x1113HVu2bOHJJ58Mx41OoQB4B6dk3zYRZndN2O4jI4ErfHNzM01NTcfVcxVChO37xWgvFaQ5Pc9j7ty5/R6q7y4A3tLS0mNcpaKiot/kGdQER48eXZRNIDt27Aij8iMbt7LZbBiNd3Z2nrRoPEDQ5awoCnPnzh3yqLx73TOZTGJZFr7vM2zYMKZMmVJ0jWVBJ/GCBQv6/X299tprXHXVVXznO9/h05/+dFHdv+8EBBHmosWFiTDf+H3xRZhFSZi+7/cQJjgWWR6J7qMITU1N5HI5Kisrqauro6qqiq1bt9LW1kZ9ff2gdXP2F7lcjoaGBmKxGLNmzSrYgtp9XKW5uRmgRzTe2wixubmZdevWFaUQePdu03nz5p1QzCFoGgrSlIF4xGCNZwQWWJFIpKDfbaHQ2tpKY2MjVVVVWJZ1Qp3bk4mgPLF///4BkeXy5ctZvHgx3/zmN7nhhhuGjCzvuOMOvvGNb/R4bcqUKWzatGlIzqeQCAnzim8WhjCf/HrREWZRp2QD5Z7eytx19ymcOHFi2CCze/du1q9fj6IoTJgwoagcM+DNempdXV3BVVSCtFt1dTXTpk0Lx1UCYYDeuKvs27ePLVu2MHPmTGprawt2boVA9xR2b7tNuzcNHS1N2X3+daAp58DX9UgLrGJB4IgydepURo4cCfSsew6Gv2dfsGPHDvbv39/nsZvuaGhoYMmSJXz9618fUrIMMGPGDP785z+HPxfTTPUpHB9F+00dqdzTn07YeDxObW0t+/fvp6qqioqKinARCLpLh9o5I4jcTkY9tfu4ymmnnUYqlQprnkGNr/u4SnfN2vr6+qIzqi2ELuyR4xmB/dSGDRvwPK/HeEZfF7ZAqDywXRvqhfpIBDKG06ZN6yHUcay6ZyBd2L3uOZjRcpBiX7BgQb8lINeuXcsVV1zBV77yFW6++eai+A5UVT2hSfnbGe9ke6+iJEzf93vUMPu7K29ra2P16tWMGjUqVCkZP348pmmGKcotW7ZQWlpKbW0tdXV1J3U0IzAunjFjxkl3peguOTZp0qQwGt+3bx8bN26krKwMIQS5XK4oNWuDmqAkSQVroJFlmaqqKqqqqpgyZUq4odi5cyfr1q3rsaE4ETkHcnJ1dXVFJ5gAefuwtWvXMn369OMu3r2Z9wyiz0LWPXfu3MmePXsGRJYbNmzg/e9/PzfeeCNf/epXi+Y72Lp1KyNGjCASiXDmmWdy1113FV2T1YBwqunn5OLaa69l+/btLFmyhCuuuIKRI0f2+WYPZhi7p5qOBtu2Q/Jsa2sLnUTq6uoGrXYTtMcfOHCgKJSFjkQmk2H16tWYponv+ye9QeZECHRho9HoSasJZrPZUGkoqKsEqdsjr0kw9F+MCjmQz2qsXbt2QPZh3f0sm5ubC1r33LlzJ7t372b+/Pn97jXYvHkzl1xyCddddx3f/va3i+Y7eOaZZ0in00yZMoWDBw/yjW98g/3797Nu3bqi66voK4Ia5unvL0wN8+9PFV8NsygJc9++fTz66KM89thjvPbaayxYsIDFixezePFixo4de9ybvzsZzZ49m8rKyl6/b3cnkdbW1nA0o66urt+GtkciUMdJpVLMmzev3+3xgwXbtsPU29y5cxFC9GiQCa5JbW0tJSUlJ30hKgZd2MDbM9B0jUajIXn6vk9jYyPjxo0ruqF/yI9UrVu3jlmzZhW0Hh3UPY+8Jn2tewaaxAMhy+3bt3PxxRdzzTXXcO+99xZd3bg7Ojo6GDt2LN/97ne5/vrrh/p0BoSAMM+4rDCE+frTpwizTxBCcPDgQR5//HEee+wxXn75ZWbPnh2S55Fi0J7nsXbtWjKZDHPnzh3QLtd13bDxoaWlBV3Xqaur67UN19EQkBHA3Llzi6p1H/I1t+4NKkdGbkE9q6mpiZaWFjRNC8mzvLx80MmzGHVhu4/wJJNJPM+jvLycCRMm9Nr4+GTh0KFDrF+/ntmzZw/qSFX3umdLS0tY9wxE0Y+VEdi9ezc7duxg/vz5/V4kd+3axSWXXMLll1/OAw88UFTX/1hYuHAhF1xwAXfddddQn8qAEBLmpf9RGML8422nCLO/EELQ0tISkucLL7zA1KlTQ/KMRCJ85jOf4ctf/jLvec97CjoU3l1+LZlMhpZUdXV1vSaKIDIqLS1lxowZRTdaEJBRbzt1fd8PF8VgXCWo7/VHeelEaG9vDyO3cePGFQVZdkcymWTNmjWMHj0az/NC8gyIoj9NQ4XEwYMH2bhxI7Nnz6a6uvqkve/R5j2PVvfcs2cP27dvHxBZ7tu3j4suuogLL7yQH/7wh28Lskyn04wZM4Y77riDm266aahPZ0A4RZhFCiEE7e3tPPnkkyxdupTnnnsO3/eZOHEiDz74IPPnzx+0h+XIucbA8Liuru6YEUVHRweNjY2MGDHipPsJ9gZBc1R/yehId5VgXCWYfx0oUQQNKqeddhqjRo0a0LEGA0Gas3tNMBDUCDYU2Wy2T01DhcSBAwfYtGkTc+bMKYj1Wn9xrLqnpmm0tbX18ALtKw4ePMjFF1/MOeecw09+8pOi25AG+NKXvsTll1/O2LFjOXDgALfffjuNjY1s2LCh6IRU+oqAMM+8pDCE+bdnThFmwfHEE0/wsY99jMsuuwzLsvjTn/7E8OHDWbx4MUuWLKG+vn5QyTMgiqamph4elkGUFcjwFePAP7yZpps2bRojRowY8PGEEGF3aXNzcyge0V93lYMHD7Jhw4YBNagMJgIyOpFyVHei6OrqCjuzB1sYIJihnTt3bp/q+ScDpmmydetWmpqaAHrIOfal7tnU1MQll1zCggUL+OUvf1m0ZAlwzTXX8PLLL9Pa2kpNTQ1nn3023/rWt5g4ceJQn9qAERLmxQUizGdPEWZBsXr1as4++2x+9atfhY4D6XSaP/7xjyxdupRnnnmGyspKrrjiCpYsWcLChQsH7WESQtDZ2UlTU1MYZcViMTKZDDNmzCjKuavdu3ezffv2QU3TBeMqQUTRl/nXPXv2sG3btiGPjI6FYCyor2TUvWmotbWVWCw2KLq/wfkV4wwtvEnmgTpTf+qeLS0tXHrppUyfPp3f/OY3p0QAhhCnCPNtgL179x4zcstmszz33HMsXbqUp59+mng8zuWXX86SJUs488wzB+3hCuybkskkuq730LetqakZ8oe6eydxfX19v9NgfUX3+dfuJtBHjmZ014U9mefXFwSaxPX19QMaCwqaywKiUBSlh+5vf7MjQU1woOc3WAjI8mhk3tu6Z1tbG5dddhkTJkzg4YcfLromun80BIR51kWFIczXnjtFmEMG0zT585//zGOPPcbvf/97VFXl8ssv58orr+Tss88uWJNQ0KmbzWapr68nEomQyWTCyDOTyQypAXR3Kbn6+vohm6s8Us+1ezruwIEDJJPJXunCnmwE2qb79u0b0OjD0RAoDQWbCt/3w41WX2rBu3btYufOncybN68oNxv79+9n8+bNvYp8u9c9k8kkBw4c4J577uGcc87hhRdeYPz48Tz22GNFJ3f5j4iQMN/3jcIQ5vO3nyLMYoDjOLz44ossXbqUJ554As/zuOyyy1iyZAnvec97+v3wWZZFY2MjiqIwZ86co5LwkSnKioqKMMoa7IfedV1Wr16N4zjU19cXzSITRFlNTU0kk0kAhg8fzogRI07KuEpvEZgXNzU1DUjbtLfvFbjwJJPJsBYcRFnH+u6CyHcg3aaDiaDm29+aaktLCz/+8Y954IEHyGazTJo0KeyUP+OMM4q6fvlOR0iYFxSIMP/ce8J8+eWXuffee1m5cmU4irhkyRIgv95/7Wtf449//CM7duygrKyMCy64gLvvvrvPfRv/kITZHa7r8te//pVHHnmEJ554gkwmw2WXXcbixYt573vf22upvMAnsry8nBkzZvQqlZbL5ULy7OzspKysjLq6Ompqagou0WdZFg0NDWiaxpw5c4Y8LXwkAl1Yy7IYN24cbW1tJJPJsAu5UGLo/YUQgg0bNtDe3s78+fNPqoQivLnRSiaT4cIUXJdA/CLQ/S105FsoBKMtA2lASqfTXHXVVei6zm9/+1v++te/8vvf/55nnnmG9evXv+07Td/OGErCfOaZZ3j11VeZP38+V111VQ/C7Ozs5Oqrr+aTn/wkc+bMob29nc997nN4nseKFSv6dF7/8ITZHZ7n8be//Y1HH32Uxx9/nPb2di6++GIWL17MhRdeeMyIIhjLGIhPpGVZIXm2t7eH9b26uroBqwFlMhkaGhooKyvrNZmfTAS6sLIs94jMu3chJ5NJXNftV4pyoAhq0ul0mnnz5g2pWD+82TQUpLNjsRiappFOp4s2sgzIciANXNlslquvvhrf9/njH//YI10fuBmdwtAhIMx3XfANVHWAhOmavNoHwuwOSZJ6EObRsHz5chYtWsTu3bv7pON7ijCPAd/3Wb58eUieBw8e5MILL2Tx4sVccskl4Q7+2WefRVVVpk6dWrAZwe71vdbW1tB1JdC37Qshd3Z20tDQULQzoKZp0tDQcEJd2CPnGnO5XA8nkcGqBXuex5o1a7Asi3nz5hVdY4njOKxfv57W1lYkSUJV1bAWXCxKQ4cOHWLDhg0DIkvTNPnQhz5EOp3mueeeK5pNwd13382tt97K5z73Oe6///6hPp0hRUiY772jMIS57I5BI8w///nPXHjhhXR0dPTp+KcIsxcI9EED8ty1axfnn38+nufx8ssv86c//Yl58+YNyns7jtNDoi8SiYQSfSfScg3smyZOnMjYsWMH5fwGgoHowqbT6R4D8EEtuKampmARoOd5NDY24nke9fX1BVWPKgSCbudDhw6FaeJAVCOZTOL7fljzrK6uHpL6XiDqMGfOnH6PLlmWxUc/+lGSySR/+tOfimZEZvny5Xzwgx+ktLSU88477xRhDgJh7t27twehGYZxwt6LExGmaZq8613vYurUqTz00EN9Oq9ThNlHCCFYvXo1119/PWvWrAHg/PPPZ8mSJVx22WVUVVUNWhTneV7YHBPo2wYNQ0cOeh84cICNGzcW7QxoIXVhc7lcSJ7BjvFYTiK9Rfc08dy5c4uu5tu9AWnBggVvSdsHc8HBdTFNc0ACEv1BQJYD0a51HIePf/zj7N69m2XLlhXNPG6Qnv/BD37AnXfeydy5c086YQZLd7FkjQLCPPv8whDmX1+44y2v33777dxxx1tf747jEabjOPzTP/0T+/bt46WXXupz9Fpcq8DbAOl0mltvvRXHcdi+fTu5XI6lS5fy05/+lJtuuolzzjmHxYsXc8UVV1BbW1vQm1lRlNCb0PM82traaGpqoqGhIdS3rampobOzk927d1NfX1906i5QeF3YaDTKmDFjGDNmTI909vbt20NRgL64q9i2zapVqzAMg9mzZxdd56UQgk2bNtHS0nJUsoT8olFeXk55eTmTJ08Om4b2798f+p0G98tgOOYExugDIUvXdbn++uvZvn07L774YtGQJcBnP/tZLrvsMi644ALuvPPOk/Kenue95V4sFrLsgQL6YR4twuwvHMfhgx/8ILt37+aFF17oV1r/FGH2EbZtM2bMGH7729+GM27/9m//xq233sqOHTtYunQp//u//8sXv/hFzjrrLK644goWL17MiBEjCk6eQbotmN9ramqisbER3/dDq6lia4YYbF1YXdcZOXIkI0eO7OE4s2LFil65q5im2cOxpZiuHeTJcuPGjbS1tbFgwYJed+vG43HGjx8fGqgHc41bt24lHo+HEXkhLNuC7/hEcoHHg+d5fOYzn2H9+vW8+OKLRdX9+tvf/pZVq1axfPnyk/ae3cny1ltvDbNMX/3qV1mwYEHR1dYLhcDkfqAIyHLr1q0D2nydIsw+oqqqih//+MdveV2SJCZOnMhXvvIVvvzlL7N3716WLl3KY489xle/+lUWLlwYSvSNGTOmoOQpyzLl5eXs27cPwzCYNGkSHR0dbNiwAc/zeujbDmW0dLJ1YVVVZdiwYQwbNiyMyJubm1m9evVRx1VyuRwrV66koqKC6dOnF93uvftoy4IFC/pdq41EIowePZrRo0eHNfJkMhluKoLrUl5e3ucNQ+DaMnPmzH77bXqex4033sjy5ct56aWXiqqksHfvXj73uc/x/PPPn9Ru6eC5PeeccxBCcP7552MYBmeffTaPPvooV155ZdHcr5IQSAOs9PX179PpNNu2bQt/3rlzJ42NjVRWVjJ8+HCuvvpqVq1axVNPPYXneRw6dAiAysrKPm02TtUwBxlCCA4cOBDakr3yyivMnj2bJUuWsHjx4n6PoXSH4zg0NjYihOjhsxl0lgYqQ90l+k623VQx6cJ2H1dpbm4OPSw7Ojqoq6tj2rRpRbP4BBBChApN8+fPH5TFursTTzKZRAjRY4znRJutlpYWVq9ePaANke/7fP7zn+eFF17gxRdfLLpmtSeeeIIrr7yyx7XwPA9JkpBlGcuyBm1Tes899/Dwww/z97//HU3TuOOOO/jRj37ESy+9xNSpU4H8fTJU925Qwzzn3NsLUsN85eVv9LpL9qWXXuK88857y+vXXnstd9xxxzHN3F988UXe85739Pq8ThHmSYQQgubmZp544gkee+wxXnzxRaZOnRqS59SpU/t8swdjGZFI5Lj1NiEE6XQ6JM/uYxk1NTWD1gHaXUquGHVhhRDh2IMsy/i+f1KuS1/QfQ50/vz5J0WhKWgaCjYVx9JzDRB0ZE+fPr3fEaHv+3zlK1/hqaee4qWXXmLChAmF+CgFRSqVYvfu3T1eu+6665g6dSq33HILM2fOLNh7HVmzvPnmm4nFYtx5553cdNNNoUb23LlzWbFiBbW1tX2aKSw0hpIwTxZOEeYQIfD0/P3vf8/SpUv585//zIQJE0Jbst4IDATqQpWVlUybNq3PYxnBYphOp8MOytra2oLVQ4LmlGLVhYX8nOqqVasYN24c48ePf8t1GYxxlb7A9/1Qm3j+/PlDUqs6lo9lcL9ks1lWr149YLL82te+xiOPPMJLL73E5MmTC/wpBg/vec97Ct4l250sM5kM8XicL37xi+zfv58pU6bwk5/8hMcff5zTTz8dgNtuu43m5mbuv//+IRPWCAjz3HNuKwhhvvzKfxQdYZ6qYQ4RJEmisrKS6667juuuu47Ozk7+8Ic/sHTpUs477zxGjhwZkufcuXPfQoYdHR00NDT0W10okUiQSCSYMGEC2WyW5ubmUOezvLw8lOjr78MXREWpVIqFCxeedCm53qCtrY3GxkYmTZoU7sy7X5dgXOXQoUNs3rz5pHlYBvB9nzVr1mCa5pCRJeTv1eC6dG8aam5uZsuWLQDhNelPSlAIwTe/+U1++9vfvu3IcjDwu9/9jlwux7XXXsu5557LnDlz+N73vsell17Kl770JZ5++mmeeOKJkCzXrVvHI488wg033DDkKlRAQbtkiw2nIswiRCqV6uHpWV1dHTqrLFy4kN/85jesXbuWG264oeCm1IEFV1NTU7i7C4QSekt6gS6sbdtFqY4Db6YQp0yZwsiRI0/4+7Zth7W97upLtbW1JBKJgteNfN8PtXXnz59fFKnhI9HW1kZDQwPDhw8PO5KDTuSamppeNQ0JIbj77rv50Y9+xIsvvljQlObbEZ2dnXzgAx/Asiwsy6KtrY0VK1ZQWlqKbdvcfvvtPP3005xxxhlceeWV7Nu3j29961tceOGFPPjgg0N67mGE+a6vFybCfPWbRRdhniLMIkc2m+XZZ58N6xWQT6d+4Qtf4LbbbhvUrtdAs7SpqYn29nYSiURInseKsIp94B/eHKjvr6hD93GVQECipqaGurq6twhI9AfBhsNxHObNm1eUZNne3k5DQwNTp04NHR+CTuRgZOVETUNCCO677z7uu+8+li1bxty5c4fgkxQfurq6qK+vZ8+ePdxzzz3cfPPN4f/Zts29997LCy+8wPLlyzn99NNZuHAh3/72t4fwjPM4RZinUDQQQvC1r32NBx54gHe961288cYb6LoeRp7vete7BnVhdRwnJM9jRVi91YUdSgRp54HMCHZH93GVQrirFLscH7xJlseLzo/VNBSLxcKsxfe//33uuecennvuORYuXHiSP0VxwnVd9uzZw9e//nW6urro6urimmuu4VOf+tRbnqc9e/ZQW1tbHGlY3iTMd59VGML8y2unCPMU+omvfe1r/OpXv+LZZ59l+vTp2Lbdw9PT933e//73h56eg5kG7e5fGejbVlRUkEwmqaqq6rMu7MnC3r172bp166CNthxtXKX7GM+JNhCe59HQ0IAQgvr6+qKMzjs6Oli1alWfhCeCpqHm5mYeeeQRvvWtbzF8+HBaWlp46KGHuOqqqwb5rIsbxxIXSaVS/Mu//Av79u3jIx/5CJ/61KfQNI1UKkUul+v3nOtgISTMM79WGML8252nCPMU+odNmzaRSCSOuki5rssrr7wSenrmcrkenp6DuQP1PI99+/axbds2hBAYhnFCNZ2hwK5du9i5cyf19fWUl5cP+vt1N4AOtFyPN67iui4NDQ1IkkR9fX1RRudBo9mkSZP6XTsXQvCd73yHu+++m1mzZoVzm1deeSVf//rXi+Z+OVnoTpavvfYae/fuZebMmVRXV1NXV0drays33XQTe/bs4bLLLuMDH/gA559/PldffTX/7//9vyE++544RZin8LaD53m89tprPProozzxxBN0dHRw0UUXsWTJEi688MKC64Z214UdM2bMW9KTAXkOldWUEIIdO3awd+9e5s2bNyQPX/cI62jjKqqqsmrVKhRFYe7cuUVJlsH4zUDJ8te//jVf+tKXePLJJznvvPNob2/n6aefZt26ddx9990FPuviRveO4q985SssXbo0FBdZsGABX/jCF5g+fTqdnZ18+ctf5vXXX6elpYVFixbxxBNPDO3JHwUBYb7n9MIQ5kt/P0WYfcJ///d/c++993Lo0KGwtXrRokVDfVpvG/i+zxtvvBHakjU1NfG+972PJUuWcPHFF4eenv3F8XRhA33bgCSEED0k+k4GeQaOHoH9VbHMgeZyufC6dHR0oChKKPQ+0O9kMBCQ5cSJE/s9GC+E4He/+x033ngjS5cu5aKLLirwWfYeP/zhD/nhD3/Irl27AJgxYwa33XYbl1xyyZCcz7333st9993Hww8/zDnnnMO//uu/8tvf/pZ3v/vd3H777dTX12OaJuvXr6erq+uoijbFgJAwF/17YQjzjW+dIsze4uGHH+bjH/84P/rRjzj99NO5//77eeSRR9i8eXPR5e7fDvB9n4aGBh599FEee+wx9uzZwwUXXMDixYu59NJL+9zdGdiH9UYGTQjRo7bnum6YchosfdtApLy1tZX58+cPiiPHQOE4DsuXL0eSJAzDoK2tbdDHVfqKrq4uVq5cyYQJEwYkU/fYY4/x6U9/mocffpj3v//9BTzDvuMPf/gDiqIwefJkhBD88pe/5N5776WhoYEZM2ac1HPZu3cv119/PZ/4xCe45ppreOqpp/jIRz7CNddcw2uvvcaECRP4xje+QX19/Uk9r/7gFGEOIYJ26e9///tAfsEfPXo0N954I1/96leH+Oze3hBCsG7dupA8t2zZwnnnnRd6elZWVh53oR6ILmz32l5TUxOWZYXkWSh9W9/3w934YOmuDhS2bbNy5UpisRizZs1CluUeZuGtra3H9Ts9GQjIcvz48YwbN67fx3nqqae47rrr+PWvf82VV15ZuBMsICorK7n33nu5/vrrT/p7P/fcc8yePZsDBw6wePFivva1r/GZz3yGm2++mZ/85CfMnDmT//mf/2HatGkn/dz6gpAwFxaIMJcXH2EWXxseby4mt956a/iaLMtccMEF/O1vfxvCM3tnQJIkZs2axaxZs7jjjjvYvHkzS5cu5cEHH+TGG2/k3HPPZfHixVx++eU9PD1932f79u3s37+f+fPn90sXVpIkysrKKCsrY9KkSaEU3Y4dO1i/fj2VlZWhylB/RioCdZxcLseCBQtOiu5qXxHc3/F4vIeFmKZpDB8+nOHDh/cYV2lsbDzp9eDA4HugZPnss89y3XXX8fOf/7woydLzPB555BEymQxnnnnmoL7XsVSQ3vOe92AYBj/84Q8588wz+cQnPgHAyJEjOeOMMzjvvPOKniy7YyjcSk4WipIwW1pa8DzvLam+uro6Nm3aNERn9c6EJElMnTqVf//3f+ff/u3f2L59O0uXLuWhhx7i5ptv5qyzzgrTtrfddhvRaJT//M//LEg9UJIkSkpKKCkpYeLEiWFjzJ49e9iwYUOf9W27D/wvWLCgKGcYLcti5cqVlJSUHFcv+Ei/0yClvX79+kG3bEulUqxcuZKxY8cOiCyXLVvGxz/+cR588EE+8IEPFO4EC4C1a9dy5plnYpomiUSCxx9/nOnTpw/a+3Uny+eff54DBw6g6zof/vCHw01dLpdj9+7dNDU1MXr0aF555RWuuuoq/vVf/3XQzusU+oaiJMxTGBpIksSkSZO45ZZb+MpXvsKePXtYunQpjz76KF/+8pfRNI0bb7wxFC4odIqwu8lxLpejqamph75tQJ5HS7F2H8uYP39+Uc4wmqbJypUrKSsrY8aMGb2+frIsU1lZSWVlJVOmTAlT2lu3bmXt2rVUV1eH5DrQTUI6nWblypWMGTPmmJZIvcHLL7/MRz7yEb73ve/xkY98ZMhrsUdiypQpNDY20tnZyaOPPsq1117LX/7yl0EjzeDz//jHP+bzn/8806ZNY/Xq1Tz++ON897vfZdSoUSxcuJCXXnqJSy+9FFmWsW2bpUuXDsr5DCqEyP8b6DGKEEVZw7Rtm1gsxqOPPsqSJUvC16+99lo6Ojr4/e9/P3Qn9w+GTCbDVVddxaFDh/jQhz7E888/z1//+lfmzJkT2pJNmDBhUBfEQN826CoNRNBra2uJxWLYtk1DQwOapjFnzpyiHMswTZMVK1YU1Jz6eOMqtbW1fU5HB2Q5atQoJk6c2O/zeu2117jqqqv4z//8Tz75yU8WHVkeDRdccAETJ048qjn8QNA9smxpaeGqq67illtu4ayzzmLXrl1ccsklzJw5k//v//v/GD58OI8++iibN2/GNE1uu+22osySHAtBDfO8ebeiKgOsYXomL66661QNszfQdZ358+ezbNmykDB932fZsmXccMMNQ3ty/2C4+eabcRyHV155hdLSUm699VaamppCT8//+I//YNq0aSF5TpkypeALZCQSYcyYMYwZMyYUQW9ubmbbtm3EYjEcxyGRSBzV1aUYkMvlWLlyZWjDVqjr091FJHBXaW5ufou7SrCxOB4ymQwrV65k5MiRAyLLN954g6uvvppvf/vbbxuyhPz6YllWwY63a9cuxowZE96Pv//97/nd737H8OHDWbhwIRUVFVRUVPDaa69x7rnncs011/Cb3/yGq6++umDnMFR4J9cwizLChPxYybXXXsuPf/xjFi1axP3338/vfvc7Nm3a1G8391PoO4L069HSoEII2traenh6Tpo0KbQlG2yJvKDWFnSYRqNRamtrqaurK4qRDMiL569cuZKamppB2UwcC4FwfnNz8wnHVTKZDCtWrAjJsr/nuGrVKi6//HK+/vWv84UvfKEorv/RcOutt3LJJZcwZswYUqkUv/nNb0JN2/e9730DPv73vvc9HnzwQV5//fXQpODJJ5/k6quvJpFI8MYbbzBp0qRQ5WfPnj2cf/75qKrKc889N6DxnaFEEGGeX//VgkSYLzTcXXQRZtESJsD3v//9ULhg7ty5PPDAA6EHXKHx8ssvc++997Jy5UoOHjzI448/3iMdfArHRyC2HXh6/ulPf2LUqFEhec6ZM6eg5JnJZFi1ahXV1dVMnToVz/Pe4iASkGdpaemQLN5B1FZXV8dpp502ZATSfVylpaWlh3xhoDI0fPhwJk2a1O9zXLNmDZdddhlf/vKXueWWW4qWLAGuv/56li1bxsGDBykrK2P27NnccsstBSHLAOvXr2fGjBm0tbVRWlqKqqq89NJLXHHFFSxZsoQf/OAHJBKJMGW7b98+PvGJT/DYY48VjcBGXxES5tyvoioD6053PYsXGk8RZtHimWee4dVXX2X+/PlcddVVpwhzgEilUjz99NMsXbqUZ599lurqaq644gquvPJKFixYMCDyDGptw4cPZ/LkyW9ZnD3Po7W1NZToUxSlx0jGyVjMg6jtWOc4VDjy2riuSyKRYPLkyf1yVwHYsGEDl1xyCTfccAO33XZb0XzWk42///3vlJeXM2XKFABWrlzJFVdcwU9/+lMuuOACNE3jxRdfZPHixVxxxRX88Ic/pKSk5Jji6283hIQ555bCEObqe04R5tsBkiSdIswCIpPJ8Oyzz/LYY4/x1FNPUVpaGu60zzjjjD416XR2dtLQ0BB2cZ5ocfZ9P5xnbG5uDu236urqBm2eMSD0gaY4BxPZbJYVK1ZQVlaGruskk8l+jats3ryZSy65hOuvv54777yzKD/rYEMIwaZNm1i0aBGf/OQnuemmm8JxnLPOOou9e/fy05/+lPPOOw9d13n55Ze54ooruOyyy/jv//7vk2IGcDJwijD/QXGKMAcPuVyO559/nscee4wnn3wSwzC4/PLLWbJkyQk9PQOh9/7KtHWfZ2xqasL3/ZA8KysrC9JdG9RVR48ePejdw/1FLpdjxYoV1NbWhqniYykwBdZkR/tetm3bxiWXXMKHP/xhvvOd77wjoqSB4Ac/+AH33HMPV199Nddff304onLppZeyfPlyfvGLX/C+970PXdf5+9//HooU/OQnPynK+6SvCAlzVoEIc+0pwnxb4BRhnhzYts0LL7wQenoCoafnu9/97h5iBcE8Zl98GI+HoOba1NREc3MzjuP0kOjrD3kGZDlmzBgmTJgw4HMcDARkebwmpGBcpampiWQySTqdDkUkgtrwrl27uPjii1myZAn333//PzRZep6HLMtIksTPfvYzvvnNb3L11VfziU98IiTNJUuW8Morr/Dzn/+ciy66CMMwWL16NRUVFf0WtC82BIT53plfKQhhLlv3nVOE+XbAKcI8+XBdl5dffjn09DRNk/e///0sXryYQ4cOcdddd/H8888PSHnmWBBCkEqlwujKNM0TRldHItBdHTdu3IAG/gcTwSxoVVUVU6dO7XVUE4yr7Nq1iyVLljB+/Hiampq45JJL+PWvf/0PTZaQJ0xFUVi9ejUrV67krrvuYt++fXz84x/npptuCgXdP/jBD/Liiy/yve99jyuvvLIoZRsHglOE+Q+KU4Q5tPA8j1dffZVHH32Uhx56iLa2NhYtWsTnP/953ve+9w2q80j36Kq5uZlMJtPD+PloEn2B/dVAHT0GEwFZDnQWdPny5Vx11VVEIhGSySTTp0/nyiuv5F/+5V8YOXJkgc/67YONGzcyb948vvSlLzFy5EhaWlr49re/zUc/+lE+97nPMXPmTAAuv/xyGhoa2LBhQ1ERQSEQEuaMLxeGMNffW3SEWZTCBafwjw1FUTj33HPZvHkztm1z3333sXfvXv793/+dT37yk1x44YUsWbKEiy66qOD+kd3FALrr2+7bt4+NGze+RUmno6ODhoaGAXlFDjYCSb6BkmVTUxOf/vSnufTSS/nFL34RdkI/9thjtLS0/EMSZtDh+pOf/ITTTz+db37zm+H/TZkyheuuuw7btrn55puZM2cOf/jDH9i7d29RkUDB8Q6WxjtFmIeRTqfZtm1b+PPOnTtpbGyksrKyaBfCdzLWr1/Pl7/8Zf74xz9yzjnnAHmj3VWrVvHoo49y55138ulPf5oLLriAJUuWcOmllw7KvOWR+rbdlXTi8TiZTIYJEyYU7T0SiL2Xl5cPiCyTySSXX345c+bM4ec//zmKolBeXs5HP/pRPvrRjxb4rI+Pu+66i8cee4xNmzYRjUY566yzuOeee8JxjpMB13VRVZV0Oh3OWQape9d1kWWZD3zgAxw8eJBbb70V3/f5/Oc/z/z58wtSgz+FocE/dvGhG1asWEF9fX1o1HrzzTdTX1/PbbfdNsRn9o+JGTNmsHXr1pAsIS9CvmDBAu6++242bdrE3//+d+rr67nvvvsYN24cV199Nb/61a9obW1lMCoN0WiUsWPHsnDhQmbNmkUmkyEajbJjxw7+/ve/s3PnTjKZTMHft78IyLKsrGxA+rVtbW1cfvnlTJ48mV//+tdDLmz/l7/8hc9+9rO8/vrrPP/88ziOw4UXXnhSr72qqmzfvp3TTjuNDRs2MGnSJP7617+yYcMGVFXF930ARowYwbBhw/jb3/4Wjo+8Ezpij4sgwhzovyLEqRrmEKIYdsrvBARzcIEh9rp163j3u98denrW1NQUdJFqbW1l9erVTJ06lREjRmDbdihDF0gJBipDg+Hq0hvYts2KFSsoLS3tkzPKkejo6ODyyy9n+PDhPPbYY72yWTvZSCaT1NbW8pe//IVzzz13UN8raPDxPI9vfetbbNu2jV/+8pcIIfjABz7Aq6++yvPPP8+sWbOAvExeJpPh+uuvp6amZlDPbagR1jCnfLEwNczN/6/oapinIswhRDHslP//9u48Lqpyf+D4Z4ZVEQFFQQK3RFCQTRSXUlQKNffcQjOV1FRwwyjNXNu8eUuvesHsulz3YklTEEMR9bqAoCEShoppyB6goLLMnN8f/DhX0q4o6LA879dr/ujAnPPMJPOd5znf5/utDxQKBZ06deLjjz8mPj6eX375BQ8PD3bs2IG1tTWDBw8mMDCQ27dvV3vmmZOTw88//0ynTp2wsLAAypsFvPTSSzg7O9O3b1/atm1LYWEh586d4/Tp06SkpHDnzp3nMut9nIpgWdFz81mD5Z07dxg1ahSmpqYEBQXVymAJ5UlXAM2aNXvu19LS0uLOnTsMHz6chIQExo8fj0KhQKlU8umnn/LKK6/QtWtXRowYwdChQ5k3bx4ODg71Plg+rKL4enUftZGYYdYiL/KbckMgSRK//fYbwcHBhIaGcvbsWbp3787w4cMZPnw4VlZWTxVMsrOzuXTpEp07d8bc3PyJv19R3zYzM5OcnBx0dHTkmaeRkdFzmXmWlJQQFxeHgYEB9vb2z7zlo7CwkFGjRqGrq8uhQ4do1KhRDY+0ZqjVaoYNG0Z+fj6nTp16IdeMiYnhvffeIyEhgYMHDzJw4EA5+ae4uJgdO3YQExODtrY2o0aNwsPD44WMS9MqZpgeHRfUyAwz8tevat0MUwTMWuTq1atYW1tz6dIlOQ1dqBmSJJGWlkZISAghISH85z//wcnJSW5L9qQye1lZWfL/l2fplqNSqSqV6Hu4vq2xsXGN7GWsCJaNGzemS5cuz3zOe/fuMXr0aCRJ4tChQ7W6GPjMmTMJDw/n1KlTzy2Z5uGellCe1HP69Gn8/f1JT08nJiYGMzMzebm2oZIDpvX8mgmYKV+LgCk8nia+KTdUkiSRmZlJaGgoISEhHD9+HDs7O7mzyp87i6Snp5OUlESXLl1o2bJlta+vVqvJy8uTK+lIkiQHz2ctgF5aWkpcXByNGjWqVrB88OAB48aNk+v/1qYPqz/z8fFh//79nDhx4rkVi6jIhlWpVBQVFXH37l15+8z58+fx9fUlLy+PyMhILC0tKS0trVNNn2uSHDBfnlczAfPa2loXMMU9zFpi9uzZJCYmsnfvXk0Ppd5TKBSYm5szc+ZMjhw5Qnp6Or6+vsTGxtKjRw/c3Nz45JNPuHz5Mps2bWLUqFE1FiyhPNu3efPmdO7cmT59+sitz5KSkoiOjiYxMZGsrCxUKlWVzlcRLPX19asVLIuLi5k4cSIFBQWEhYXVqg+qh0mShI+PD6GhoRw7duy5BUuVSoW2tjYlJSUMGzaM/v3707lzZ959913Onj2Lq6srGzduxNzcHA8PD1JTUxtssNS0EydOMHToUCwsLFAoFHKpzQqSJLF06VJatWpFo0aN8PDwICUl5amvIwJmLeDj48PBgweJiooSe7ReMIVCgampKd7e3hw6dIjMzEz8/f25fPkyvXv3xs/PjzZt2nD79m15q0BNX9/ExARbW1teffVVXFxc0NXV5ddffyU6OpqEhAQyMjIoKyt77PNLS0uJj49HT08PBweHZw6WJSUlvPPOO6Snp3P48OFa3UFj9uzZ7Ny5k927d2NoaEhGRgYZGRncv3+/Rq+jpaWFJEn06tULSZLw9/cnMDCQ06dPs2LFCo4ePYqLiwtr1qzBzMyM7t27c/fu3ReW3FVraWBbSVFREY6OjmzcuPGxP//b3/7GP/7xDwIDAzl37hwGBgZ4enry4MGDp7qOWJLVIEmS8PX1JTQ0lOPHj2Ntba3pIQn/b8uWLcydO5c5c+Zw5coVDh8+TMuWLeWenl27dn2uNVQlSaKwsFAu0Xf//v1KJfp0dHQoKysjPj4eHR2dajXoLi0txdvbmytXrnDs2LFan9H5V/eat27dyuTJk2v0WgcPHsTPz4+TJ0/KKwzJycl4e3tjYmLCgQMHUCqVnDt3jvz8fDw9PWv0+nWJvCTbfg7aymouyaqLibz+j2dakv1zaVNJkrCwsMDPz4+FCxcC5ZnVZmZmbNu2jfHjx1f53KLSjwbNnj2b3bt3s3//fvmbMoCRkVGtzUpsCE6ePMncuXP58ccfcXd3B8q/wYaHhxMSEsKwYcMwMjKSe3q6ubnVeLKHQqHA0NAQQ0NDOnToQGFhIVlZWdy8eZOkpCRMTEy4f/8++vr61ZpZlpWV8d5775GUlERUVFStD5bAC53BSZLE/fv35Rl+aWkptra2bN68GQcHByIiIhg0aBBubm4vbEwNyZ07dyr9t56e3lMXrU9NTSUjI6NStrKRkRFubm6cOXPmqQKmWJLVoICAAAoKCnB3d6dVq1byY9++fZoeWoPWu3dvYmNj5WAJ5SXyRo8eze7du8nIyGD9+vXcvXuXsWPHYmNjw/z584mOjv7LpdPqatKkCe3bt5fvsd67d4/S0lK5lu3NmzefenlJpVLh6+tLXFwckZGRz5T9W588LhC3atWKrKwsoqKiAOSiBebm5nTs2PG5LNPXeTW4JGtlZYWRkZH8+Pzzz596OBUTkT//+zYzM5N/VlVihqlBmloNDwgIICAggBs3bgDlZeiWLl3KoEGDNDKe2kapVGJra/uXP2/UqJG8l7OkpITIyEhCQkKYNGkSCoWCN954g5EjR9KnT58a3+xfVlZGcnIyjRs3xsnJidLSUrkt2a+//krTpk3lvZ7/a5VCrVYzf/58Tp06RVRUlFyEoaF6eEtIfn4++vr6cinG+fPn4+3tjZ6eHqNHjwbg2rVr/PHHH8+1c06dpZaAan62qcuf/+dC9ZpuiSYCZgNkaWnJF198gbW1NZIksX37doYPH86FCxfk3n1C1ejq6jJ48GAGDx5MQECA3NNzxowZFBcX88YbbzBixAj69euHvr5+ta6lUqm4ePEiSqUSJycntLS00NLSonXr1rRu3Zri4mKys7PJzMzk6tWrNGnSBDMzM1q2bImBgYF8HrVajb+/Pz/99BPHjx+vtYXjX5SHg+WMGTNITEykuLgYGxsb1qxZw+eff879+/cZO3as3Pz5zJkzTJo0iX79+ml49PVb06ZNq52tXVFkJDMzk1atWsnHMzMzcXJyeqpziaQfASgvK/bll1/i7e2t6aHUCyqVilOnThEUFMQPP/zAnTt3GDRoECNGjMDDw+OpZyYqlYoLFy4A4Ozs/MR7pqWlpXLwzM3NRaFQEB4ezptvvsn+/fsJCQkhKipKJJo9ZMSIEVy/fp0FCxZw7do1oqOjSUlJ4cyZM7Rt25aDBw+yf/9+mjZtSufOncXfyp/IST+tZ9VM0s/Nf9Zo0s/ChQvx8/OTx9qyZUuR9CM8HZVKxffff09RURE9e/bU9HDqDS0tLfr27Uvfvn1Zt24dZ8+eJSgoiMWLFz/S0/NJlXQqZpaSJOHi4lKlBCMdHR0sLCywsLCgrKyMS5cukZycLGdxTpkyhfz8/Eeq2DRU586d48qVKwQHB9O5c2egfNl1zpw5DBw4kOjoaIYMGcKQIUM0PNI6QAP9MJ/UnnHevHl88sknWFtb065dOz7++GMsLCzkoFpVIumngbp06RJNmjRBT0+P9957j9DQUPmDQqhZSqWSXr168dVXX3H16lWOHTuGtbU1q1atom3btowfP549e/ZQUFDwyH1tlUrFzz//jFqtrtLM8nG0tbVxcnKiV69emJiYsGbNGu7fv4+Hhwdt27bl8uXLNfVS64w/v895eXlcv3690sz/5ZdfZunSpSiVSnl2X9ViEg2aWqqZx1N4UntGf39/fH19mT59Ot26daOwsJDDhw8/9W0SsST7jCretrr67bykpISbN29SUFBAUFAQ3377LdHR0SJovkBqtZqEhASCg4MJCQnh6tWrDBgwgGHDhjFkyBB0dXWZPn06EyZMwNPT85n7UEqSxFdffcXatWs5duwYjo6OQHlln6NHj9KvX78GtY3pzwk+xsbGZGdn4+HhweTJk5k1a5acXHL37l0cHBzklQHhr8lLsi+9VzNLsmmBojRefVBUVIRCoaizwRLKk1U6dOhA165d+fzzz3F0dGTdunWaHlaDUpG8s2rVKhITE7lw4QI9evQgMDCQdu3aYWNjQ0xMDB07dnzmfZ6SJLF+/Xq+/vprIiIi5GAJ5RmHgwcPfuHB8kllzJ4ntVotv5fLli1jw4YNJCUlYWxsjIuLC0FBQQQFBcm/n5OTg7a2Nqampi9sjHVePW4gLQLmM/D29ubdd9+luLhYPlaxH6uuTtjVanWl1yO8WAqFgs6dO7N06VLOnTtHnz59MDAwwMzMDFdXVwYPHsymTZtIT0+v8r8xSZLYtGkTX3zxBWFhYbi6uj7nV1E1Typj9jxVFHiYMWMGW7Zswd7eHlNTU3R0dFi/fj3m5uasWbMGd3d35s2bh4eHBw4ODowcOfKFj7XOkqiBgKnpF/F4IunnGcyePZs33niDv//97+jp6SFJEkqlkoyMjCr1SdS0RYsWMWjQIFq3bs3du3fZvXs3x48fJyIiQtNDa/BUKhXjxo2joKCAxMREjIyMuHHjBsHBwQQFBfH+++/j5uYm7wO1tLR87EqHJEls3bqV5cuXc+jQIXr06KGBV/N4gwYN0uie3+DgYI4cOcKRI0fo1KkTUL6/tUmTJuzevZudO3dy4sQJcnNzmTx5Mh9//LHGxirULmKG+QxeeuklrKysCAsLA8oztNatW0f79u0JCAjQ8OieLCsri0mTJmFjY8OAAQOIjY0lIiKC1157TdNDa/C0tLQYOnQoR44cwdjYGIVCQbt27Vi4cCGnTp0iNTWVsWPHcujQIezs7OjXrx9r164lNTVVnnlKksSOHTtYtGgRBw4c4NVXX9Xwq6pdbt++jZmZGVZWVvJ7VnF/WE9PD29vb7Zv3862bdtEsHwW9XhJVswwn5JaraZ9+/YYGxuTlJREQUEBb7/9NikpKaxZs4aZM2cCjzadrU3+9a9/aXoIAHzxxRcsWrSIuXPnsnbtWk0Pp9b4q/19CoUCKysruSh8RkaG3NNz2bJl2NvbM3z4cPT09Pj0008JCQmpVN6voav4m0xLSyMvL0/ezvNwz8vw8HAsLCyqvH1HeAy1GqhmycBaWnJQzDCfUsU9kNmzZxMcHIy9vT25ubns2bOHWbNmAeVBtbYGy9oiNjaWTZs24eDgoOmh1EkKhYJWrVoxa9YsfvrpJ9LT0/Hx8eHkyZMsXryYTZs28frrr2t6mBpRMWvMzc2tdLzib/Ltt98mJycHf39/4L+zy9zcXL788kuSkpJe4GiFukQEzKdQkdiTnp7O5cuXSU5Oxt3dnYMHD1YqsfS4zhEPJ2qo1ernVqS7LigsLGTChAls3rwZExMTTQ+nznu4p2dkZCS3bt1iwoQJmh6WxigUCi5duoSzs/Nji2u3a9cOf39/QkJCmDx5MgkJCRw6dIgxY8YgSRITJ07UwKjrkXq8JCsCZhWpVCqUSiU3btxg2LBhxMfHA9CtWzdMTEwoLS39n89XKBQkJCSQmZmJUql85j119UFF0tTD7XaEmqFQKEQTcpAbOT+uWHfjxo3x9vZm5cqVnDlzhv79++Pv70+zZs04ceKEBkZbz4iAKWhpaXHixAn69OmDsbExW7duZerUqURGRqJSqdDR0XnkORWzytOnTzN27FgmTpxIp06dsLW15dtvv31sO6aysrI6uzWlKvbu3Ut8fPwztekR6ofCwkIuXrzIxYsXgf+WMbt582aNXcPV1RWlUsnRo0cf+3NTU1O8vLxITk6WM8RDQ0Nr7PpC/SQCZhWUlZUxY8YMJk6cyODBgwkLC8Pc3Jw333yTEydOUFRU9NjnKRQK/vjjD6ZMmUJubi6LFy/m4sWLTJ8+nRMnTlS6V1JSUgKU30+pr/c/b926xdy5c9m1a1e1O3cIddeTypg9rT/3pFSr1UiSRKtWrUhNTf2fz1MoFNjb24tZeU3SQGm8F6Xhrgs+BYVCQZcuXXj99dcZOXIkSqUSSZKwsbHB3NycsLCwx1a8V6vV7Nu3jxs3bnDmzBmaNWsGwLx584iJiZHbKu3Zs4fw8HAuXLiAp6cn8+bNw9LS8pFM29qceVsVcXFxZGVl4eLiIh9TqVScOHGCDRs2UFxcLDITGwB3d/caXUVRKpVcvXqVCxcu0LNnTwwNDTEyMmLUqFHyrZOHy+E9/Dyh5kmSGkmqXpZrdZ//vIhass+oInj16tULR0dHAgICHhvQvLy8yMnJ4ciRI5SWllZaulWr1WzdupVp06YxdepUnJycCAkJQUdHh7179/5lQkxZWRlaWlp1LnjevXuX3377rdKxKVOmYGtrywcffIC9vb2GRibUVZIkce/ePTmvoEWLFhQUFNCzZ08uXrxIo0aNiIuLo3Hjxo8NmkLNqaglO8B4EtqK6jVOL5NKOJr/71pXS1bMMJ9RRbBauXKlXAvzcbPBK1euMHDgQOC/6esVgfP8+fNs2bIFX19fuY6ru7s7AwYMIDw8HC8vL/l8P//8M9ra2tjZ2dXZhCFDQ8NHgqKBgQHNmzcXwVJ4JgqFAgMDA7777juMjIxISkri/Pnz/PHHHxQXF/Pbb78xZcoUvv32WwwNDUXQFKpFrElUk4eHBxs2bHjkeEXw7NGjBxEREWRmZsrHKmaZUVFRNGrUiLFjx8rPs7W1xdXVlcOHDwOQlpbGwoULGTt2LP3798fc3Jx169Y9ct8GyoO0WDAQGiITExO0tbVxcHBg6tSpLFy4kB9++IElS5aQmprKpEmTuHPnDlpaWo/92xFqkMiSFZ7VnDlzUKvVrFixgtjYWJKTk7l+/ToA2dnZqFQquSi2SqVCrVZz5coV7OzsAFi8eDE//vgjPj4+pKSksGjRIrZs2UJMTIx8jby8PIA62UHl+PHjosqPUG0V9yMrvjCq1Wr09PQYPXo0vr6+5OTkMHjwYAoKCsS9y+dNra6ZRy0k/uU8RxWJQRWNgz08PFiyZImcPm9paUlycrK8V0xLS4tz586RmprKoEGDuHnzJkFBQaxYsQJfX1+aNm3K3LlzKS4uJiQkBCjv/DBjxgw8PT25evUqkZGRj4xDpVLJhRL8/PwIDQ1FpVI1uNno8uXL5S8VFQ9bW1tND0uoQRVfGCsS83R1dfHy8mLy5MmYmZmJ2aVQLSJgPkcVf7zu7u4cOXKE/Px8PvvsM7p37w6Am5sbpqamBAQEoFKpCA0N5aOPPqJHjx44ODhw+vRptLS0GDFiRKU/dAsLCwoLCykrKyMvL4+UlBROnTrFhg0bGDZsGJMnTwaQiyloaWmhra1NamoqYWFh8nklSWL58uVkZWW92DdGg+zs7EhPT5cfp06d0vSQhOdEoVAgSRJaWlpMmTKFnTt3ispSL4JYkhVqgkKhoGPHjjRu3Bgov785ZcoUFi9eTNu2bXn//fexsrKS+wReuHABGxsb9PX15eB75coVtLW1ad68Odra2sTHx5OQkMDKlSv58MMPyc3NZfXq1cTGxuLj40OHDh147bXXSEtL46effirPYhswACjv2nDt2jXi4uI084ZogLa2Nubm5vJDNAZ+Nhs3bqRt27bo6+vj5uZW6RZBbVIRNJVK5QtvlN1QSWp1jTxqIxEwNUihULBgwQLy8vLYuXMn33zzDbt27ZLr0jo4OHD79m3OnTsnB8wDBw6Qn59Pz549gfLefs7Ozvj5+WFubk6jRo0oKirirbfe4sKFCyxfvhw7Ozs+/fRTwsLCaNOmjZyRamlpyY4dO+TehCqV6sW/CS9YSkoKFhYWtG/fngkTJtRodZmGYt++fSxYsIBly5YRHx+Po6Mjnp6etXaloq7d1xdqL7EPsxa7d+8eI0eORFdXl8mTJ3Pp0iVWrlzJypUrmT9/PsXFxdjZ2bFo0SLmzJkjb2WZNm0a8fHxREREYGpqSlFREaNHj+bChQvMmDGDFStWADBz5kx8fX3p3LlzpT2kkiShVqvrXfp9eHg4hYWF2NjYkJ6ezooVK0hLSyMxMRFDQ0NND6/OcHNzo1u3bnJ2uFqtxsrKCl9fXz788EMNj07QlIp9mP0bjauRfZjH7u+rdfswxQyzlpIkicaNG7N+/XpMTU2ZP38+Z8+eZfXq1SxZsgQDAwNiYmLIzc2Vt6UoFAry8/M5cOAAPj4+mJqaUlZWhoGBAd27d0elUsn3TyMiItixYwcJCQlAeabtvn375MBZ34IlwKBBgxgzZgwODg54enoSFhZGfn4+3333naaHVmeUlJQQFxdXqXC+UqnEw8ODM2fOaHBkQq0hSuMJL1rFbK9jx45s3boVKP8GV/Ftq7S0lO3bt/Pyyy9jbm4ub8jOzc0lOzubvn37Av9Nt09ISMDNzU1ejg0NDaV37944OjoCsHnzZhYtWsSDBw+IiorC1dWVqVOnyvdbK9T18nwPMzY2pmPHjly9elXTQ6kzcnJyUKlUmJmZVTpuZmZGcnKyhkYlCC+GmGHWIQ8vTSiVSrp27crChQsr/U5WVhaWlpYkJibKv3f79m0uX76Ms7Mzbdq0ASA6Oppu3bphZWUFwI8//ghAYmIidnZ2rF69Gh8fH+7du1fp/BXBUq1W/+U9z7qSul9YWMi1a9do1aqVpociCPWHJIGkruZDzDCFGqSlpVUpWFZsE3Fzc8PFxYXt27fTt29fkpKS+Prrr8nNzZULJERFRVFUVISLiwtNmjQhNzeX06dP89VXXzFr1ix0dXVxcnJi6NChzJkzR05CioyMJDMzk/79+z82yFSU/KutG8MXLlzI0KFDadOmDbdv32bZsmVoaWnx1ltvaXpodYapqSlaWlpkZmZWOp6ZmYm5ubmGRiXUJpJaQlJUL+DV1tSa2vnJJjwThUKBUqnE19eX5ORk2rVrR2BgIJGRkfTq1QsHBwcAgoKCaN++PR07dgTg3//+NxYWFgwZMgRd3fKb9dbW1pSUlFRqw/X999/zzTffYG1tTe/eveWtBBVFESIiIhg4cCDHjx9/ga+66n7//XfeeustbGxsGDt2LM2bN+fs2bO0aNFC00OrM3R1denatWulPpNqtZqjR4/KmdtCA1ft2eX/P2ohMcOshwYMGMDly5e5ffs2+fn56Ovr06RJE9q1aweUL8cOGzZMbi+2Y8cOPDw8sLCwkM+xZ88ebG1t5ULvkiSxatUqWrZsSVpaGkuXLmXlypWEhoaio6NDTEwMERERFBUV0aVLF6D8g7Q2zTb37t2r0eunpaXxwQcfEB4ezr179+jQoQNbt26VZ/51xYIFC3jnnXdwdXWle/furF27lqKiIqZMmaLpoQnCcyUCZj1mYWGBhYUFmzZt4sGDB0B515OsrCxsbW1p2rQpBQUFXL58mSVLllRK8AkKCuKVV16RkzuSk5O5ePEiLVu2ZMCAAUyfPp2pU6eSmJiIs7MzkZGRbNy4kSZNmrBq1SrefffdRzqQqFQqeRbc0OTl5dG7d2/69etHeHg4LVq0ICUlpU5Wnhk3bhzZ2dksXbqUjIwMnJycOHz48COJQELDVJ+XZEXAbCD09fWRJAlHR0dSUlLkhJ3t27dTWlpaKbilpaWRkpKCv78/hoaG7Nq1Cz8/Pzp16sTNmzcpLCykQ4cO6OrqkpubC0D37t3p1q0b9vb2JCYmMmXKFIKDg+VZLFAvt6pU1erVq7GyspIzngF5xl8X+fj44OPjo+lhCLWRpAaquaRaS5dkG95X/QasIsPVyMiIZs2aIUkSU6dO5fjx43L2LMC2bdto0aIF3bp1IyMjg127dtGvXz+Cg4OJi4tj165dlJWVVdrXGR0djY6ODh999BGRkZEcP36c1q1bk5iYyNdff42HhwczZ86U9302NAcOHMDV1ZUxY8bQsmVLnJ2d2bx5s6aHJQg1roxSyqRqPijV9Mt4LDHDbMAUCgVNmjShT58+lY5nZ2fj7u4uB9X09HTs7e1p1qwZAC+99BJKpRIHBweaNm1KdnY2SUlJtG7dmvbt2wPljaEvXbrE+PHjsbGx4fXXX+f8+fOMGjWKwMDAShvfG4Lr168TEBDAggULWLx4MbGxscyZMwddXV3eeecdTQ9PEKpNV1cXc3NzTmWE1cj5zM3N5STE2kIETOERa9eurZSw4+npya5du1AqlVhaWrJt2zaSk5Px8/MDIC4ujszMTMaMGSOfIycnh3Xr1lFaWiq3IgNYtmwZS5cupXfv3g2qGLZarcbV1ZXPPvsMAGdnZxITEwkMDBQBU6gX9PX1SU1NpaSkpEbOp6urWylLvzYQAVN4rIcTcz777DMcHBz47rvvKCkpoXXr1ty6dYv+/fsD8Msvv1BcXIy7u7v8nNjYWOLj48nLy8PExIROnToxb948XnnlFQIDA+tNtaCqatWqFZ07d650rFOnTgQHB2toRIJQ8/T19WtdkKtJImAKT6RUKvHy8sLLywuApKQkIiIiaNasGWq1mhYtWpCdnU2HDh3k5xQVFZGTk8PJkyfR0dFh+/btfPLJJyQmJuLo6EhmZmal+6b1Xe/evbly5UqlY7/++muDeg8Eoa4T3UqEaktOTsbLy4tbt24xe/Zsli9fTnx8PG5ubvzyyy+VAmlSUhJ5eXm4uLg0qCXZ2NhYevXqxYoVKxg7diwxMTFMmzaNb775hgkTJmh6eIIgVIEImEKNCQ4OJjMzk0mTJqFQKPDy8sLAwIB//vOfGBsb8+DBg3q9XPMkBw8eZNGiRaSkpNCuXTsWLFjAtGnTND0sQRCqSARM4bk5ffo0Pj4+/P777wwcOFDOyB03blyDu4cpCELdJ/ZhCs9Nr169iI+P5/vvv6d58+aoVCq6dOkigqUgCHWSmGEKgiAIQhWIGaYgCIIgVIEImIIgCIJQBSJgCoIgCEIViIApCIIgCFUgAqYgCIIgVIEImIIgCIJQBSJgCoIgCEIViIApCIIgCFUgAqYgCIIgVIEImIIgCIJQBf8HBNOPhuTmQlQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "x = np.linspace(0, 6, 100)\n", - "y = np.linspace(0, 6, 100)\n", - "plot3d(x, y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So this is what our function looks like, we can see that a minimum does exist within our bounds $x \\in [0, 6], y \\in [0, 6]$\n", - "\n", - "now lets do some calc\n", - "\n", - "\\begin{align*}\n", - "f(x, y) = \\sum_{(x_i, y_i) \\in \\mathcal{S}} \\sqrt{(x - x_i)^2 + (y - y_i)^2}\\\\\n", - "\\frac{\\partial f}{\\partial x} = \\sum_{(x_i, y_i) \\in \\mathcal{S}} \\frac{2(x - x_i)} {2 \\sqrt{(x - x_i)^2 + (y - y_i)^2}}\\\\\n", - "\\frac{\\partial f}{\\partial y} = \\sum_{(x_i, y_i) \\in \\mathcal{S}} \\frac{2(y - y_i)} {2 \\sqrt{(x - x_i)^2 + (y - y_i)^2}}\\\\\n", - "\\end{align*}\n", - "\n", - "So now we have a very funny system of equations, we use numerical methods to solve in python." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Solution for (x, y): [2.22989218 3.34881129]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "from scipy.optimize import fsolve\n", - "\n", - "def equations(p):\n", - " x, y = p\n", - " sum_x = sum((x - xi) / np.sqrt((x - xi)**2 + (y - yi)**2) for xi, yi in data)\n", - " sum_y = sum((y - yi) / np.sqrt((x - xi)**2 + (y - yi)**2) for xi, yi in data)\n", - " return (sum_x, sum_y)\n", - "\n", - "initial_guess = (0, 0)\n", - "\n", - "solution = fsolve(equations, initial_guess)\n", - "\n", - "print(\"Solution for (x, y):\", solution)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqoAAAIjCAYAAADLOjl6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABTD0lEQVR4nO3deVyU5f7/8feIrLIJYqAguCuuJ0mPmrtm7kuapacUzUot9/plnXNEs7RyzzRtEVs0y3Cp3EjNNXPLJbdccA03DBQXRLh/f/BljiOogODcyOv5eMwD5prrvuczc93Am3u5xmIYhiEAAADAZArZuwAAAAAgMwRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVALkmJCREvXr1sncZD1zjxo3VuHFjuzz3L7/8IovFol9++SXPnsNisSgiIiLP1p8TvXr1UkhIyAN/3mPHjslisSgyMjJX1xsRESGLxZKr6wQeBgRVIJdERkbKYrFYby4uLipRooRatmypqVOn6vLlyzle96ZNmxQREaH4+PjcK1j/++OYfnNzc1NoaKj+/e9/69KlS7n6XPcyffr0XP/jb0YpKSmaPXu2GjduLB8fHzk7OyskJETh4eHatm2bvcvLVfv27VNERISOHTtmtxpSU1P1xRdfqE6dOvLx8ZGHh4cqVKig559/Xps3b36gtVy9elURERF5+k8F8LApbO8CgIfN6NGjVbp0aSUnJ+vMmTP65ZdfNHjwYE2cOFFLlixR9erVs73OTZs2adSoUerVq5e8vb1zveYZM2bI3d1diYmJWrlypd555x2tXr1aGzduzNZenoMHD6pQoZz9/zt9+nQVK1bsod4je+3aNXXu3FnLly9Xw4YN9eabb8rHx0fHjh3Tt99+qzlz5ujEiRMKDAy0d6m5Yt++fRo1apQaN25sl72fkjRw4EB99NFH6tChg3r06KHChQvr4MGDWrZsmcqUKaN//vOfD6yWq1evatSoUZKUYQ/8v//9b73xxhsPrBYgvyCoArmsVatWCgsLs94fMWKEVq9erbZt26p9+/bav3+/XF1d7VhhRl26dFGxYsUkSS+//LKeeuopRUVFafPmzapbt26W1+Ps7JxXJT4UXnvtNS1fvlyTJk3S4MGDbR4bOXKkJk2aZJ/CHlJnz57V9OnT1bdvX82aNcvmscmTJ+v8+fN2qiyjwoULq3Bh/iQDt+PQP/AANG3aVP/5z390/PhxffXVV9b23bt3q1evXipTpoxcXFzk7++v3r17Ky4uztonIiJCr732miSpdOnS1sP06YdTZ8+eraZNm6p48eJydnZWaGioZsyYcd/1SlJMTIwk6cqVKxo2bJiCgoLk7OysihUravz48TIMw2a5289RTT8dYuPGjRo6dKj8/PxUpEgRderUySYkhISEaO/evVq7dq319aXvcUpOTtaoUaNUvnx5ubi4yNfXV48//riio6Pv+houXryo4cOHq1q1anJ3d5enp6datWqlXbt22fRLP8fz22+/1TvvvKPAwEC5uLioWbNmOnz4cIb1zpo1S2XLlpWrq6tq166t9evXZ+k9PXXqlGbOnKkWLVpkCKmS5ODgoOHDh1v3ph4/flz9+/dXxYoV5erqKl9fX3Xt2jXLh9F/++03tW7dWkWLFlWRIkVUvXp1TZkyxfr4nc6rzcq5n1mpLTIyUl27dpUkNWnSxDqutx72XrZsmRo0aKAiRYrIw8NDbdq00d69ezM836JFi1S1alW5uLioatWqWrhwYZbeg5iYGBmGofr162d4zGKxqHjx4jZtR48eVdeuXeXj4yM3Nzf985//1E8//XTP58nKe3ns2DH5+flJkkaNGmV9P9LP/c3sHNWbN2/q7bffVtmyZa2niLz55ptKSkqy6RcSEqK2bdtqw4YNql27tlxcXFSmTBl98cUX96wdMDv+fQMekOeee05vvvmmVq5cqb59+0qSoqOjdfToUYWHh8vf31979+7VrFmztHfvXm3evFkWi0WdO3fWn3/+qXnz5mnSpEnWPZ/pf/RmzJihKlWqqH379ipcuLB++OEH9e/fX6mpqRowYECOaj1y5IgkydfXV4ZhqH379lqzZo369OmjmjVrasWKFXrttdd0+vTpLO0FfPXVV1W0aFGNHDlSx44d0+TJk/XKK69o/vz5ktL2br366qtyd3fXW2+9JUl65JFHJKX9AR87dqxeeOEF1a5dW5cuXdK2bdu0Y8cOtWjR4o7PefToUS1atEhdu3ZV6dKldfbsWc2cOVONGjXSvn37VKJECZv+48aNU6FChTR8+HAlJCTo/fffV48ePfTbb79Z+3z22Wd66aWXVK9ePQ0ePFhHjx5V+/bt5ePjo6CgoLu+B8uWLdPNmzf13HPP3fP9kqStW7dq06ZNeuaZZxQYGKhjx45pxowZaty4sfbt2yc3N7c7LhsdHa22bdsqICBAgwYNkr+/v/bv368ff/xRgwYNytLz329tDRs21MCBAzV16lS9+eabqly5siRZv3755Zfq2bOnWrZsqffee09Xr17VjBkz9Pjjj+v333+3BryVK1fqqaeeUmhoqMaOHau4uDiFh4dn6fSI4OBgSdJ3332nrl273vU9O3v2rOrVq6erV69q4MCB8vX11Zw5c9S+fXstWLBAnTp1uq/3zM/PTzNmzFC/fv3UqVMnde7cWZLueirQCy+8oDlz5qhLly4aNmyYfvvtN40dO1b79+/PENYPHz6sLl26qE+fPurZs6c+//xz9erVS7Vq1VKVKlXuq3bArgwAuWL27NmGJGPr1q137OPl5WX84x//sN6/evVqhj7z5s0zJBnr1q2ztn3wwQeGJCMmJiZD/8zW0bJlS6NMmTL3rHnkyJGGJOPgwYPG+fPnjZiYGGPmzJmGs7Oz8cgjjxhXrlwxFi1aZEgyxowZY7Nsly5dDIvFYhw+fNjaFhwcbPTs2dN6P/09ad68uZGammptHzJkiOHg4GDEx8db26pUqWI0atQoQ401atQw2rRpc8/Xcrvr168bKSkpNm0xMTGGs7OzMXr0aGvbmjVrDElG5cqVjaSkJGv7lClTDEnGnj17DMMwjBs3bhjFixc3atasadNv1qxZhqRMa7/VkCFDDEnG77//nqX6MxvXX3/91ZBkfPHFFxnqX7NmjWEYhnHz5k2jdOnSRnBwsPH333/bLH/rGDRq1CjTmnv27GkEBwfbtEkyRo4cme3avvvuO5va0l2+fNnw9vY2+vbta9N+5swZw8vLy6a9Zs2aRkBAgM22snLlSkNShjoz8/zzzxuSjKJFixqdOnUyxo8fb+zfvz9Dv8GDBxuSjPXr19vUWbp0aSMkJMS6LcXExBiSjNmzZ1v7ZfW9PH/+fIb3Ml36z2K6nTt3GpKMF154wabf8OHDDUnG6tWrrW3BwcEZfmecO3fOcHZ2NoYNG3bH9wbIDzj0DzxA7u7uNlf/33qu6vXr13XhwgXrxR07duzI0jpvXUdCQoIuXLigRo0a6ejRo0pISMjSOipWrCg/Pz+VLl1aL730ksqVK6effvpJbm5uWrp0qRwcHDRw4ECbZYYNGybDMLRs2bJ7rv/FF1+0OazZoEEDpaSk6Pjx4/dc1tvbW3v37tWhQ4ey9FrSOTs7Wy/sSklJUVxcnNzd3VWxYsVM39vw8HA5OTnZ1Cil7ZmVpG3btuncuXN6+eWXbfr16tVLXl5e96wnfRYFDw+PLNV/67gmJycrLi5O5cqVk7e39123jd9//10xMTEaPHhwhgvvcmv6o5zWli46Olrx8fF69tlndeHCBevNwcFBderU0Zo1ayRJsbGx2rlzp3r27GnzHrdo0UKhoaFZqnX27NmaNm2aSpcurYULF2r48OGqXLmymjVrptOnT1v7LV26VLVr19bjjz9ubXN3d9eLL76oY8eOad++fVl6vtyydOlSSdLQoUNt2ocNGyZJGU5JCA0NtW6zUtoe3IoVK1q3XyC/IqgCD1BiYqJNULl48aIGDRqkRx55RK6urtawKCnLIXPjxo1q3ry5ihQpIm9vb/n5+enNN9/M1jq+//57RUdH65dfftHhw4f1xx9/qFatWpLSzkcsUaJEhoCVfgg3K2GzVKlSNveLFi0qSfr777/vuezo0aMVHx+vChUqqFq1anrttde0e/fuey6XmpqqSZMmqXz58nJ2dlaxYsXk5+en3bt3Z/q+3KvG9NdZvnx5m36Ojo4qU6bMPevx9PSUpCxPU3bt2jX997//tZ4XnF5/fHz8Xcc1/bSNqlWrZul5ciKntaVL/6ejadOm8vPzs7mtXLlS586dk3Tn91xK++cqKwoVKqQBAwZo+/btunDhghYvXqxWrVpp9erVeuaZZ6z9jh8/nuk6s7Od56bjx4+rUKFCKleunE27v7+/vL29M9Rz+/YrpW3DWfkZA8yMc1SBB+TUqVNKSEiw+cPz9NNPa9OmTXrttddUs2ZNubu7KzU1VU8++aRSU1Pvuc4jR46oWbNmqlSpkiZOnKigoCA5OTlp6dKlmjRpUpbWIUkNGza0nvuaFxwcHDJtN267GCszDRs21JEjR7R48WKtXLlSn376qSZNmqSPP/5YL7zwwh2Xe/fdd/Wf//xHvXv31ttvvy0fHx8VKlRIgwcPzvR9uZ8as6JSpUqSpD179qhmzZr37P/qq69q9uzZGjx4sOrWrSsvLy9ZLBY988wzWR7Xu7FYLJm+tpSUlDyvLb3Pl19+KX9//wyP59XV776+vmrfvr3at2+vxo0ba+3atTp+/Lj1XNacup/3Mivrzoq83n4BeyGoAg/Il19+KUlq2bKlpLQ9datWrdKoUaP03//+19ovs0Pcd/pj9cMPPygpKUlLliyx2aOSfug0NwQHB+vnn3/W5cuXbfaqHjhwwPp4brjbH2QfHx+Fh4crPDxciYmJatiwoSIiIu4aVBcsWKAmTZros88+s2mPj4/PUShPf52HDh2yzoogpR36jomJUY0aNe66fKtWreTg4KCvvvoqSxdULViwQD179tSECROsbdevX7/nhz6ULVtWkvTHH3+oefPmd+xXtGjRTA8LZ2XPYVZru9OYptdYvHjxu9Z463t+u4MHD96zzrsJCwvT2rVrFRsbq+DgYAUHB2e6zqxs51l9L7Nz6kVwcLBSU1N16NAh615dKe2ir/j4+Fz7uQPMjkP/wAOwevVqvf322ypdurR69Ogh6X97QG7f4zF58uQMyxcpUkSSMgSBzNaRkJCg2bNn51bpat26tVJSUjRt2jSb9kmTJslisahVq1a58jxFihTJNITdOlWXlHbeYLly5TJM0XM7BweHDO/td999Z3NeYnaEhYXJz89PH3/8sW7cuGFtj4yMzNInhgUFBalv375auXKlPvzwwwyPp6amasKECTp16tQd6//www/vuZfu0UcfVenSpTV58uQMdd26vrJly+rAgQM204Tt2rVLGzduvOdryWptd9puW7ZsKU9PT7377rtKTk7OsP70mgICAlSzZk3NmTPH5pSC6OjoLJ0zeubMmUz73bhxQ6tWrbI5tN66dWtt2bJFv/76q7XflStXNGvWLIWEhNz1nNisvpfpsw5kZXtp3bq1pIy/DyZOnChJatOmzT3XATwM2KMK5LJly5bpwIEDunnzps6ePavVq1crOjpawcHBWrJkiVxcXCSlnbPYsGFDvf/++0pOTlbJkiW1cuVK69ylt0o/X/Stt97SM888I0dHR7Vr105PPPGEnJyc1K5dO7300ktKTEzUJ598ouLFiys2NjZXXk+7du3UpEkTvfXWWzp27Jhq1KihlStXavHixRo8eLB179j9qlWrlmbMmKExY8aoXLlyKl68uJo2barQ0FA1btxYtWrVko+Pj7Zt26YFCxbolVdeuev62rZtq9GjRys8PFz16tXTnj179PXXX2fpfNLMODo6asyYMXrppZfUtGlTdevWTTExMZo9e3aW1zlhwgQdOXJEAwcOVFRUlNq2bauiRYvqxIkT+u6773TgwAHreZNt27bVl19+KS8vL4WGhurXX3/Vzz//LF9f37s+R6FChTRjxgy1a9dONWvWVHh4uAICAnTgwAHt3btXK1askCT17t1bEydOVMuWLdWnTx+dO3dOH3/8sapUqXLPj8/Nam01a9aUg4OD3nvvPSUkJMjZ2dk65++MGTP03HPP6dFHH9UzzzwjPz8/nThxQj/99JPq169v/cdo7NixatOmjR5//HH17t1bFy9e1IcffqgqVaooMTHxrnWeOnVKtWvXVtOmTdWsWTP5+/vr3Llzmjdvnnbt2qXBgwdb966/8cYbmjdvnlq1aqWBAwfKx8dHc+bMUUxMjL7//vu7fuJaVt9LV1dXhYaGav78+apQoYJ8fHxUtWrVTM8nrlGjhnr27KlZs2YpPj5ejRo10pYtWzRnzhx17NhRTZo0uetrBx4a9plsAHj4pE/FlH5zcnIy/P39jRYtWhhTpkwxLl26lGGZU6dOGZ06dTK8vb0NLy8vo2vXrsZff/2V6RQ2b7/9tlGyZEmjUKFCNlNVLVmyxKhevbrh4uJihISEGO+9957x+eef33E6q1ulT4lz/vz5u/a7fPmyMWTIEKNEiRKGo6OjUb58eeODDz6wme7IMO48PdXtU3bdPqWSYaRNTdSmTRvDw8PDZrqnMWPGGLVr1za8vb0NV1dXo1KlSsY777xj3Lhx4641X79+3Rg2bJgREBBguLq6GvXr1zd+/fXXDFMJpdfy3Xff2Syf2TREhmEY06dPN0qXLm04OzsbYWFhxrp16+44PVFmbt68aXz66adGgwYNDC8vL8PR0dEIDg42wsPDbaau+vvvv43w8HCjWLFihru7u9GyZUvjwIEDGd7jzN5LwzCMDRs2GC1atDA8PDyMIkWKGNWrVzc+/PBDmz5fffWVUaZMGcPJycmoWbOmsWLFiixNT5XV2gzDMD755BOjTJkyhoODQ4Y616xZY7Rs2dLw8vIyXFxcjLJlyxq9evUytm3bZrOO77//3qhcubLh7OxshIaGGlFRUZnWebtLly4ZU6ZMMVq2bGkEBgYajo6OhoeHh1G3bl3jk08+ybD9HjlyxOjSpYvh7e1tuLi4GLVr1zZ+/PFHmz532i6y+l5u2rTJqFWrluHk5GTzvt4+PZVhGEZycrIxatQoo3Tp0oajo6MRFBRkjBgxwrh+/bpNv+Dg4EyncMvOdgmYlcUwONMaAAAA5sM5qgAAADAlgioAAABMiaAKAAAAU7J7UD19+rT+9a9/ydfXV66urqpWrZq2bdtm77IAAABgZ3adnurvv/9W/fr11aRJEy1btkx+fn46dOiQ9aMLAQAAUHDZ9ar/N954Qxs3btT69evtVQIAAABMyq5BNTQ0VC1bttSpU6e0du1alSxZUv3791ffvn0z7Z+UlGTzaTSpqam6ePGifH19s/XRdAAAAHgwDMPQ5cuXVaJEibt+eMadFrYbZ2dnw9nZ2RgxYoSxY8cOY+bMmYaLi4sRGRmZaf/0CZG5cePGjRs3bty45a/byZMns50V7bpH1cnJSWFhYdq0aZO1beDAgdq6davN5y2nu32PakJCgkqVKqU///xTPj4+D6RmZE1ycrLWrFmjJk2ayNHR0d7l4DaMj3kxNubF2Jgb42NeFy9eVIUKFRQfHy8vL69sLWvXi6kCAgIUGhpq01a5cmV9//33mfZ3dnaWs7NzhnYfH597fv41Hqzk5GS5ubnJ19eXXxgmxPiYF2NjXoyNuTE+5peT0zTtOj1V/fr1dfDgQZu2P//8U8HBwXaqCAAAAGZh16A6ZMgQbd68We+++64OHz6suXPnatasWRowYIA9ywIAAIAJ2DWoPvbYY1q4cKHmzZunqlWr6u2339bkyZPVo0cPe5YFAAAAE7DrOaqS1LZtW7Vt29beZQAAUOAZhqGbN28qJSXF3qVkW3JysgoXLqzr16/ny/rzMwcHBxUuXDhPpgq1e1AFAAD2d+PGDcXGxurq1av2LiVHDMOQv7+/Tp48ydzqduDm5qaAgAA5OTnl6noJqgAAFHCpqamKiYmRg4ODSpQoIScnp3wX9lJTU5WYmCh3d/fsTyqPHDMMQzdu3ND58+cVExOj8uXL5+r7T1AFAKCAu3HjhlJTUxUUFCQ3Nzd7l5MjqampunHjhlxcXAiqD5irq6scHR11/Phx6xjkFkYSAABIEgEPOZZX2w5bJAAAAEyJoAoAAABTIqgCAACYSEREhGrWrGnvMkyBoAoAAPKlXr16yWKxyGKxyNnZWRUqVNATTzyhzz//XKmpqdlaV2RkpLy9vXOlrsaNG1vrcnFxUWhoqKZPn57l5YcPH65Vq1Zl6zlDQkI0efLkbFZqfgRVAACQK1JSpF9+kebNS/v6IObdf/LJJxUbG6ujR4/qu+++U5MmTTRo0CC1bdtWN2/ezPsC7qBv376KjY3Vvn379PTTT2vAgAGaN29elpZ1d3eXr69vHleYPxBUAQDAfYuKkkJCpCZNpO7d076GhKS15yVnZ2f5+/urZMmSqlGjhkaMGKHFixdr2bJlioyMtPabOHGiqlWrpiJFiigoKEj9+/dXYmKiJOmXX35ReHi4EhISrHtCIyIiJElffvmlwsLC5OHhIX9/f3Xv3l3nzp27Z11ubm7y9/dXmTJlFBERofLly2vJkiWSpBMnTqhDhw5yd3eXp6ennn76aZ09e9a67O2H/nv16qWOHTtq/PjxCggIkK+vrwYMGKDk5GRJaXtwjx8/riFDhljrl6Tjx4+rXbt2Klq0qIoUKaIqVapo6dKl9/N2P3AEVQAAcF+ioqQuXaRTp2zbT59Oa8/rsHq7pk2bqkaNGoq65YkLFSqkqVOnau/evZozZ45Wr16t119/XZJUr149TZ48WZ6enoqNjVVsbKyGDx8uKe2jWd9++23t2rVLixYt0rFjx9SrV69s1+Tq6mqdr7ZDhw66ePGi1q5dq+joaB09elTdunW76/Jr1qzRkSNHtGbNGs2ZM0eRkZHWIB4VFaXAwECNHj3aWr8kDRgwQElJSVq3bp327Nmj9957T+7u7tmu3Z6Y8B8AAORYSoo0aJBkGBkfMwzJYpEGD5Y6dJAcHB5cXZUqVdLu3but9wcPHmz9PiQkRGPGjNHLL7+s6dOny8nJSV5eXrJYLPL397dZT+/eva3flylTRlOnTtVjjz1m/RSse0lJSdG8efO0e/duvfjii1q1apX27NmjmJgYBQUFSZK++OILValSRVu3btVjjz2W6XqKFi2qadOmycHBQZUqVVKbNm20atUq9e3bVz4+PnJwcLDu9U134sQJPfXUU6pWrZq1/vyGPaoAACDH1q/PuCf1VoYhnTyZ1u9BMgzD5mNgf/75ZzVr1kwlS5aUh4eHnnvuOcXFxenq1at3Xc/27dvVrl07lSpVSh4eHmrUqJGktBB4N9OnT5e7u7tcXV3Vt29fDRkyRP369dP+/fsVFBRkDamSFBoaKm9vb+3fv/+O66tSpYocbkn6AQEB9zwFYeDAgRozZozq16+vkSNH2gT3/IKgCgAAcuz/jjLnWr/csn//fpUuXVqSdOzYMbVt21bVq1fX999/r+3bt+ujjz6SlPbxsXdy5coVtWzZUp6envr666+1detWLVy48J7LSVKPHj20c+dOxcTE6MqVK5o4ceJ9fXqTo6OjzX2LxXLPmQ1eeOEFHT16VM8995z27NmjsLAwffjhhzmuwR4IqgAAIMcCAnK3X25YvXq19uzZo6eeekpS2l7R1NRUTZgwQf/85z9VoUIF/fXXXzbLODk5KeW2aQoOHDiguLg4jRs3Tg0aNFClSpWydCGVJHl5ealcuXIqWbKkTUCtXLmyTp48qZMnT1rb9u3bp/j4eIWGhub0JWdavyQFBQXp5ZdfVlRUlIYNG6ZPPvkkx89hDwRVAACQYw0aSIGBaeeiZsZikYKC0vrlhaSkJJ05c0anT5/Wrl27NHbsWHXo0EFt27bV888/L0kqV66ckpOT9eGHH+ro0aP68ssv9fHHH9usJyQkRImJiVq1apUuXLigq1evqlSpUnJycrIut2TJEr399tv3VW/z5s1VrVo19ejRQzt27NCWLVv0/PPPq1GjRgoLC8vxekNCQrRu3TqdPn1aFy5ckJR2Xu6KFSsUExOjHTt2aM2aNapcufJ91f+gEVQBAECOOThIU6akfX97WE2/P3ly3l1ItXz5cgUEBKhMmTLq0qWL1qxZo6lTp2rx4sXWczpr1KihiRMn6r333lPVqlX19ddfa+zYsTbrqVevnl5++WV169ZNfn5+ev/99+Xn56fIyEh99913Cg0N1bhx4zR+/Pj7qtdisWjx4sUqWrSoGjZsqObNm6tMmTKaP3/+fa139OjROnbsmMqWLSs/Pz9JaRdyDRgwQJUrV9aTTz6pChUqZOuDB8zAYhiZXaeXP1y6dEleXl66cOECE+OaTHJyspYuXarWrVtnOK8G9sf4mBdjY14P89hcv35dMTExKl26tFxcXHK0jqiotKv/b72wKigoLaR27pw7dd5NamqqLl26JE9Pz/s6FxQ5c7dtKC4uTsWKFVNCQoI8PT2ztV6mpwIAAPetc+e0KajWr0+7cCogIO1w/4OckgoPH4IqAADIFQ4OUuPG9q4CDxP2jQMAAMCUCKoAAAAwJYIqAAAATImgCgAAAFMiqAIAAMCUCKoAAAAwJYIqAAAATImgCgAACqyIiAjVrFnzvtcTGRkpb2/v+15PXsut1/ugEFQBAEC+dP78efXr10+lSpWSq6urKlasqCeffFIbN27M0+cNCQnR5MmTbdq6deumP//8M0+fV5IaN24si8Uii8UiFxcXhYaGavr06Vlefvjw4Vq1alW2njOz1/ug8MlUAAAgd6SkPNDPUH3qqad048YNzZkzRyEhITp69Kh+++03xcXF5dlz3omrq6tcXV0fyHP17dtXo0eP1tWrV/XFF19owIABKlq0qJ599tl7Luvu7i53d/cHUGXuYI8qAAC4f1FRUkiI1KSJ1L172teQkLT2PBAfH6/169frvffeU5MmTRQcHKxatWrpjTfeUPv27a39Tpw4oQ4dOsjd3V2enp56+umndfbs2Tuut3Hjxho8eLBNW8eOHdWrVy/r48ePH9eQIUOsezalzA/9z5gxQ2XLlpWTk5MqVqyoL7/80uZxi8WiTz/9VJ06dZKbm5vKly+vJUuW3PO1u7m5yd/fX2XKlFFERITNcvd6vbcf+u/Vq5c6duyo8ePHKyAgQL6+vhowYICSk5Pv+nofFIIqAAC4P1FRUpcu0qlTtu2nT6e150FYTd8zuGjRIiUlJWXaJzU1VR06dNDFixe1du1aRUdH6+jRo+rWrVuOnzcqKkqBgYEaPXq0YmNjFRsbm2m/hQsXatCgQRo2bJj++OMPvfTSSwoPD9eaNWts+o0aNUpPP/20du/erdatW6tHjx66ePFitmpydXXVjRs3cvx616xZoyNHjmjNmjWaM2eOIiMjFRkZma3Xm1cIqgAAIOdSUqRBgyTDyPhYetvgwWn9clHhwoUVGRmpOXPmyNvbWw0aNNDo0aO1e/dua59Vq1Zpz549mjt3rmrVqqU6deroiy++0Nq1a7V169YcPa+Pj48cHBzk4eEhf39/+fv7Z9pv/Pjx6tWrl/r3768KFSpo6NCh6ty5s8aPH2/Tr1evXnr22WdVrlw5vfvuu0pMTNSWLVuyVEtKSoq++uor7d69W02bNs3x6y1atKimTZumSpUqqW3btmrTpo31PNasvt68QlAFAAA5t359xj2ptzIM6eTJtH657KmnntJff/2lJUuWqGXLltqwYYPCwsKsewP379+voKAgBQUFWZcJDQ2Vt7e39u/fn+v13Gr//v2qX7++TVv9+vUzPG/16tWt3xcpUkSenp46d+7cXdc9ffp0ubu7y9XVVX379tWQIUPUr1+/HL/eKlWqyOGWc4kDAgLuWcODQlAFAAA5l9VDwXl0yNjFxUUtWrTQv//9b61cuVI9e/bUyJEjc7y+QoUKybht73D6+Zp5wdHR0ea+xWJRamrqXZfp0aOHdu7cqZiYGF25ckUTJ05UoUI5j3Q5qeFBIagCAICcCwjI3X73KTQ0VFeuXJEkVa5cWSdPntTJkyetj+/bt0/x8fEKDQ3NdHk/Pz+b8zBTUlL0xx9/2PRxcnJSyj1OZahcuXKGabI2btx4x+fNDi8vL5UrV04lS5a0Cag5eb1ZkZXXm1cIqgAAIOcaNJACA6U7XQ1usUhBQWn9clFcXJyaNm1qPUczJiZGixYt0gcffKAOHTpIkpo3b65q1aqpR48e2rFjh7Zs2aLnn39ejRo1UlhYWKbrbdq0qX766Sf99NNPOnDggPr166f4+HibPiEhIVq3bp1Onz6tCxcuZLqe1157TZGRkZoxY4YOHTqkiRMnKioqSsOHD8/V9+FWOXm9WZGV15tXCKoAACDnHBykKVPSvr89rKbfnzw51+dTdXd3V506dTRp0iQ1bNhQ1atX17vvvqsXXnhB06ZN+7+nt2jx4sUqWrSoGjZsqObNm6tMmTKaP3/+Hdfbu3dv9ezZ0xrwypQpoyZNmtj0GT16tI4dO6ayZcvKz88v0/V07NhRU6ZM0fjx41WlShXNnDlTs2fPVuPGjXPtPbhdTl5vVmTl9eYVi3H7iRj5yKVLl+Tl5aULFy7I19fX3uXgFsnJyVq6dKlat26d4dwX2B/jY16MjXk9zGNz/fp1xcTEqHTp0nJxccnZSqKi0q7+v/XCqqCgtJDauXOu1Hk3qampunTpkjw9Pe/rfE3kzN22obi4OBUrVkwJCQny9PTM1nr5ZCoAAHD/OneWOnR4oJ9MhYcfQRUAAOQOBwcpDw9to+Bh3zgAAABMiaAKAAAAUyKoAgAAScow0T2QVXm17RBUAQAo4NJnMbh69aqdK0F+lb7t5PaMGFxMBQBAAefg4CBvb2/r57u7ubnJcqcJ/E0qNTVVN27c0PXr15me6gEyDENXr17VuXPn5O3tLYdcnuWBoAoAAOTv7y9J1rCa3xiGoWvXrsnV1TXfheyHgbe3t3Ubyk0EVQAAIIvFooCAABUvXlzJycn2LifbkpOTtW7dOjVs2PCh+0AGs3N0dMz1PanpCKoAAMDKwcEhz0JHXnJwcNDNmzfl4uJCUH2IcBIHAAAATImgCgAAAFMiqAIAAMCUCKoAAAAwJYIqAAAATImgCgAAAFMiqAIAAMCUCKoAAAAwJYIqAAAATImgCgAAAFMiqAIAAMCUCKoAAAAwJYIqAAAATImgCgAAAFMiqAIAAMCUCKoAAAAwJYIqAJhESoq0YUPa9xs2pN0HgILMrkE1IiJCFovF5lapUiV7lgQAdhEVJYWESG3apN1v0ybtflSUPasCAPsqbO8CqlSpop9//tl6v3Bhu5cEAA9UVJTUpYtkGJKr6//aT59Oa1+wQOrc2X71AYC92D0VFi5cWP7+/vYuAwDsIiVFGjQoLaTezjAki0UaPFjq0EFycHjg5QGAXdk9qB46dEglSpSQi4uL6tatq7Fjx6pUqVKZ9k1KSlJSUpL1/qVLlyRJycnJSk5OfiD1ImvSx4NxMSfGxzw2bJDi4v63J9XVNdnmqyRduCCtWyc9/rg9KkQ6fm7MjfExr/sZE4thZPZ//IOxbNkyJSYmqmLFioqNjdWoUaN0+vRp/fHHH/Lw8MjQPyIiQqNGjcrQPnfuXLm5uT2IkgEAAJANV69eVffu3ZWQkCBPT89sLWvXoHq7+Ph4BQcHa+LEierTp0+GxzPboxoUFKTY2Fj5+vo+yFJxD8nJyYqOjlaLFi3k6Oho73JwG8bHPDZs+N8FVFLantTPP49W794tdO3a/8bmp5/Yo2pv/NyYG+NjXnFxcQoICMhRULX7of9beXt7q0KFCjp8+HCmjzs7O8vZ2TlDu6OjIxulSTE25sb42F/DhpKvb9qFU7fuNrh2zVHXrjnKYpECA9P6cY6qOfBzY26Mj/ncz3iYah7VxMREHTlyRAEBAfYuBQAeCAcHacqUtO8tFtvH0u9PnkxIBVAw2TWoDh8+XGvXrtWxY8e0adMmderUSQ4ODnr22WftWRYAPFCdO6dNQVWypG17YCBTUwEo2Ox66P/UqVN69tlnFRcXJz8/Pz3++OPavHmz/Pz87FkWADxwnTunTUG1bp106VLaOakc7gdQ0Nk1qH7zzTf2fHoAMBUHh7QLppYuTftKSAVQ0JnqHFUAAAAgHUEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVuS4lRdqwIe37DRvS7gNAfsbvNcA+TBNUx40bJ4vFosGDB9u7FNyHqCgpJERq0ybtfps2afejouxZFQDkHL/XAPsxRVDdunWrZs6cqerVq9u7FNyHqCipSxfp1Cnb9tOn09r5pQ4gv+H3GmBfdg+qiYmJ6tGjhz755BMVLVrU3uUgh1JSpEGDJMPI+Fh62+DBHC4DkH/wew2wv8L2LmDAgAFq06aNmjdvrjFjxty1b1JSkpKSkqz3L126JElKTk5WcnJyntaJu9uwQYqLk1xd0+67uibbfJWkCxekdeukxx+3R4W4VfrPCz835sPYmAe/1/IXfnbM637GxGIYmf2v+GB88803euedd7R161a5uLiocePGqlmzpiZPnpxp/4iICI0aNSpD+9y5c+Xm5pbH1QIAACC7rl69qu7duyshIUGenp7ZWtZuQfXkyZMKCwtTdHS09dzUewXVzPaoBgUFKTY2Vr6+vg+ibNzBhg3/u9BAStvj8Pnn0erdu4WuXXO0tv/0E3sezCA5OVnR0dFq0aKFHB0d770AHhjGxjz4vZa/8LNjXnFxcQoICMhRULXbof/t27fr3LlzevTRR61tKSkpWrdunaZNm6akpCQ5ODjYLOPs7CxnZ+cM63J0dGSjtLOGDSVf37QLDG791+faNUddu+Yoi0UKDEzrd9uwwo742TEvxsb++L2WP/GzYz73Mx52u5iqWbNm2rNnj3bu3Gm9hYWFqUePHtq5c2eGkApzc3CQpkxJ+95isX0s/f7kyfwyB5B/8HsNsD+7BVUPDw9VrVrV5lakSBH5+vqqatWq9ioL96FzZ2nBAqlkSdv2wMC09s6d7VMXAOQUv9cA+7L7Vf94uHTuLHXokHYV7KVLaeducVgMQH7G7zXAfkwVVH/55Rd7l4Bc4OCQdmHB0qVpX/llDiC/4/caYB92n/AfAAAAyAxBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIAp5Sio3rx5Uz///LNmzpypy5cvS5L++usvJSYm5mpxAAAAKLgKZ3eB48eP68knn9SJEyeUlJSkFi1ayMPDQ++9956SkpL08ccf50WdAAAAKGCyvUd10KBBCgsL099//y1XV1dre6dOnbRq1apcLQ4AAAAFV7b3qK5fv16bNm2Sk5OTTXtISIhOnz6da4UBAACgYMv2HtXU1FSlpKRkaD916pQ8PDxypSgAAAAg20H1iSee0OTJk633LRaLEhMTNXLkSLVu3To3awMAAEABlu1D/xMmTFDLli0VGhqq69evq3v37jp06JCKFSumefPm5UWNAAAAKICyHVQDAwO1a9cuzZ8/X7t27VJiYqL69OmjHj162FxcBQAAANyPbAfVdevWqV69eurRo4d69Ohhbb9586bWrVunhg0b5mqBAAAAKJiyfY5qkyZNdPHixQztCQkJatKkSa4UBQAAAGQ7qBqGIYvFkqE9Li5ORYoUyZWiAAAAgCwf+u/cubOktKv8e/XqJWdnZ+tjKSkp2r17t+rVq5f7FQLIX1JSpPXrpdhYKSBAatBAcnCwd1UAgHwoy0HVy8tLUtoeVQ8PD5sLp5ycnPTPf/5Tffv2zf0KAeQfUVHSoEHSqVP/awsMlKZMkf7vn10AALIqy0F19uzZktI+gWr48OEc5gdgKypK6tJFMgzb9tOn09oXLCCsAgCyJdvnqI4cOZKQCsBWSkrantTbQ6r0v7bBg9P6AQCQRdmenkqSFixYoG+//VYnTpzQjRs3bB7bsWNHrhQGIB9Zv972cP/tDEM6eTKtX+PGD6wsAED+lu09qlOnTlV4eLgeeeQR/f7776pdu7Z8fX119OhRtWrVKi9qBGB2sbG52w8AAOUgqE6fPl2zZs3Shx9+KCcnJ73++uuKjo7WwIEDlZCQkBc1AjC7gIDc7QcAgHIQVE+cOGGdhsrV1VWXL1+WJD333HOaN29e7lYHIH9o0CDt6v5M5liWlNYeFJTWDwCALMp2UPX397d+MlWpUqW0efNmSVJMTIyMzC6kAPDwc3BIm4JKyhhW0+9Pnsx8qgCAbMl2UG3atKmWLFkiSQoPD9eQIUPUokULdevWTZ06dcr1AgHkE507p01BVbKkbXtgIFNTAQByJNtX/c+aNUupqamSpAEDBsjX11ebNm1S+/bt9dJLL+V6gQDykc6dpQ4d+GQqAECuyHZQLVSokAoV+t+O2GeeeUbPPPNMrhYFIB9zcGAKKgBArsjRPKrx8fHasmWLzp07Z927mu7555/PlcIAAABQsGU7qP7www/q0aOHEhMT5enpKcstF05YLBaCKgAAAHJFti+mGjZsmHr37q3ExETFx8fr77//tt7SZwMAAAAA7le2g+rp06c1cOBAubm55UU9AAAAgKQcBNWWLVtq27ZteVELAAAAYJXtc1TbtGmj1157Tfv27VO1atXk6Oho83j79u1zrTgAAAAUXNkOqn379pUkjR49OsNjFotFKSkp918VAAAACrxsB9Xbp6MCAAAA8kK2z1EFAAAAHoQs7VGdOnWqXnzxRbm4uGjq1Kl37Ttw4MBcKQwAAAAFW5aC6qRJk9SjRw+5uLho0qRJd+xnsVgIqgAAAMgVWQqqMTExmX4PAAAA5BXOUQUAAIApZWmP6tChQ7O8wokTJ+a4GAAAACBdloLq77//bnN/x44dunnzpipWrChJ+vPPP+Xg4KBatWrlfoUAAAAokLIUVNesWWP9fuLEifLw8NCcOXNUtGhRSdLff/+t8PBwNWjQIG+qBAAAQIGT7XNUJ0yYoLFjx1pDqiQVLVpUY8aM0YQJE7K1rhkzZqh69ery9PSUp6en6tatq2XLlmW3JAAAADyEsh1UL126pPPnz2doP3/+vC5fvpytdQUGBmrcuHHavn27tm3bpqZNm6pDhw7au3dvdssCAADAQybbQbVTp04KDw9XVFSUTp06pVOnTun7779Xnz591Llz52ytq127dmrdurXKly+vChUq6J133pG7u7s2b96c3bIAAADwkMnSOaq3+vjjjzV8+HB1795dycnJaSspXFh9+vTRBx98kONCUlJS9N133+nKlSuqW7dupn2SkpKUlJRkvX/p0iVJUnJysrUWmEP6eDAu5sT4mBdjY16MjbkxPuZ1P2NiMQzDyGrnlJQUbdy4UdWqVZOTk5OOHDkiSSpbtqyKFCmSowL27NmjunXr6vr163J3d9fcuXPVunXrTPtGRERo1KhRGdrnzp0rNze3HD0/AAAA8s7Vq1fVvXt3JSQkyNPTM1vLZiuoSpKLi4v279+v0qVLZ+uJ7uTGjRs6ceKEEhIStGDBAn366adau3atQkNDM/TNbI9qUFCQYmNj5evrmyv1IHckJycrOjpaLVq0kKOjo73LwW0YH/NibMyLsTE3xse84uLiFBAQkKOgmu1D/1WrVtXRo0dzLag6OTmpXLlykqRatWpp69atmjJlimbOnJmhr7Ozs5ydnTO0Ozo6slGaFGNjboyPeTE25sXYmBvjYz73Mx7ZvphqzJgxGj58uH788UfFxsbq0qVLNrf7lZqaarPXFAAAAAVTtveopp8/2r59e1ksFmu7YRiyWCxKSUnJ8rpGjBihVq1aqVSpUrp8+bLmzp2rX375RStWrMhuWQAAAHjIZDuo3vopVffr3Llzev755xUbGysvLy9Vr15dK1asUIsWLXLtOQAAAJA/ZTuoNmrUKNee/LPPPsu1dQEAAODhku2gKknx8fH67LPPtH//fklSlSpV1Lt3b3l5eeVqcQAAACi4sn0x1bZt21S2bFlNmjRJFy9e1MWLFzVx4kSVLVtWO3bsyIsaAQAAUABle4/qkCFD1L59e33yyScqXDht8Zs3b+qFF17Q4MGDtW7dulwvEgAAAAVPtoPqtm3bbEKqlPYRqq+//rrCwsJytTgAAAAUXNk+9O/p6akTJ05kaD958qQ8PDxypSgAAAAg20G1W7du6tOnj+bPn6+TJ0/q5MmT+uabb/TCCy/o2WefzYsaAQAAUABl+9D/+PHjZbFY9Pzzz+vmzZuS0j4aq1+/fho3blyuFwgAAICCKdtB1cnJSVOmTNHYsWN15MgRSVLZsmXl5uaW68UBAACg4MrRPKqS5ObmpqJFi1q/BwAAAHJTts9RTU1N1ejRo+Xl5aXg4GAFBwfL29tbb7/9tlJTU/OiRgAAABRA2d6j+tZbb+mzzz7TuHHjVL9+fUnShg0bFBERoevXr+udd97J9SIBAABQ8GQ7qM6ZM0effvqp2rdvb22rXr26SpYsqf79+xNUAQAAkCuyfej/4sWLqlSpUob2SpUq6eLFi7lSFAAAAJDtoFqjRg1NmzYtQ/u0adNUo0aNXCkKAAAAyPah//fff19t2rTRzz//rLp160qSfv31V508eVJLly7N9QIBAABQMGV7j2qjRo30559/qlOnToqPj1d8fLw6d+6sgwcPqkGDBnlRIwAAAAqgHM2jWqJECS6aAgAAQJ7K8h7VQ4cO6dlnn9WlS5cyPJaQkKDu3bvr6NGjuVocAAAACq4sB9UPPvhAQUFB8vT0zPCYl5eXgoKC9MEHH+RqcQAAACi4shxU165dq65du97x8aefflqrV6/OlaIAAACALAfVEydOqHjx4nd8vFixYjp58mSuFAUAAABkOah6eXnpyJEjd3z88OHDmZ4WAAAAAOREloNqw4YN9eGHH97x8alTpzI9FQAAAHJNloPqiBEjtGzZMnXp0kVbtmxRQkKCEhIS9Ntvv+mpp57SihUrNGLEiLysFQAAAAVIludR/cc//qEFCxaod+/eWrhwoc1jvr6++vbbb/Xoo4/meoEAAAAomLI14X/btm11/PhxLV++XIcPH5ZhGKpQoYKeeOIJubm55VWNAAAAKICy/clUrq6u6tSpU17UAgAAAFhl+RxVAAAA4EEiqAIAAMCUshxU//rrr7ysAwAAALCR5aBapUoVzZ07Ny9rAQAAAKyyHFTfeecdvfTSS+ratasuXryYlzUBAAAAWQ+q/fv31+7duxUXF6fQ0FD98MMPeVkXAAAACrhsTU9VunRprV69WtOmTVPnzp1VuXJlFS5su4odO3bkaoEAAAAomLI9j+rx48cVFRWlokWLqkOHDhmCKgAAAJAbspUyP/nkEw0bNkzNmzfX3r175efnl1d1AQAAoIDLclB98skntWXLFk2bNk3PP/98XtYEAAAAZD2opqSkaPfu3QoMDMzLegAAAABJ2Qiq0dHReVkHAAAAYIOPUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRV5LqUFGnDhrTvN2xIuw/khZQU6ZdfpHnz0r6yrQHAw8WuQXXs2LF67LHH5OHhoeLFi6tjx446ePCgPUvCfYqKkkJCpDZt0u63aZN2PyrKnlXhYZS+rTVpInXvnvaVbQ0AHi52Dapr167VgAEDtHnzZkVHRys5OVlPPPGErly5Ys+ykENRUVKXLtKpU7btp0+ntRMgkFvY1gCgYChszydfvny5zf3IyEgVL15c27dvV8OGDe1UFXIiJUUaNEgyjIyPGYZksUiDB0sdOkgODg+8PDxE2NYAoOCwa1C9XUJCgiTJx8cn08eTkpKUlJRkvX/p0iVJUnJyspKTk/O+QNzRhg1SXJzk6pp239U12earJF24IK1bJz3+uD0qxK3Sf17y48/N7dtaZvLztpafx+Zhx9iYG+NjXvczJhbDyGy/xIOXmpqq9u3bKz4+XhvSr8S5TUREhEaNGpWhfe7cuXJzc8vrEgEAAJBNV69eVffu3ZWQkCBPT89sLWuaoNqvXz8tW7ZMGzZsUGBgYKZ9MtujGhQUpNjYWPn6+j6oUpGJDRv+dwGVlLYn9fPPo9W7dwtdu+Zobf/pp/y5l+thk5ycrOjoaLVo0UKOjo73XsBEbt/W7iS/bmv5eWwedoyNuTE+5hUXF6eAgIAcBVVTHPp/5ZVX9OOPP2rdunV3DKmS5OzsLGdn5wztjo6ObJR21rCh5OubdjHLrf/6XLvmqGvXHGWxSIGBaf04b9A88uPPzp22tXQPy7aWH8emoGBszI3xMZ/7GQ+7XvVvGIZeeeUVLVy4UKtXr1bp0qXtWQ7ug4ODNGVK2vcWi+1j6fcnT87fwQHmwLYGAAWHXYPqgAED9NVXX2nu3Lny8PDQmTNndObMGV27ds2eZSGHOneWFiyQSpa0bQ8MTGvv3Nk+deHhw7YGAAWDXQ/9z5gxQ5LUuHFjm/bZs2erV69eD74g3LfOndOmBVq3Trp0Ke08wfx+CBbmlL6trV8vxcZKAQFSgwZsawDwMLFrUDXJdVzIZQ4OaRexLF2a9pXggLzi4CDd9n8uAOAhYtdD/wAAAMCdEFQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSnYNquvWrVO7du1UokQJWSwWLVq0yJ7lAAAAwETsGlSvXLmiGjVq6KOPPrJnGQAAADChwvZ88latWqlVq1b2LAEAAAAmZdegml1JSUlKSkqy3r906ZIkKTk5WcnJyfYqC5lIHw/GxZwYH/NibMyLsTE3xse87mdMLIZhGLlYS45ZLBYtXLhQHTt2vGOfiIgIjRo1KkP73Llz5ebmlofVAQAAICeuXr2q7t27KyEhQZ6entlaNl8F1cz2qAYFBSk2Nla+vr4PoEpkVXJysqKjo9WiRQs5OjrauxzchvExL8bGvBgbc2N8zCsuLk4BAQE5Cqr56tC/s7OznJ2dM7Q7OjqyUZoUY2NujI95MTbmxdiYG+NjPvczHsyjCgAAAFOy6x7VxMREHT582Ho/JiZGO3fulI+Pj0qVKmXHygAAAGBvdg2q27ZtU5MmTaz3hw4dKknq2bOnIiMj7VQVAAAAzMCuQbVx48YyybVcAAAAMBnOUQUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSgRVAAAAmBJBFQAAAKZEUAUAAIApEVQBAABgSqYIqh999JFCQkLk4uKiOnXqaMuWLfYuCQAAAHZm96A6f/58DR06VCNHjtSOHTtUo0YNtWzZUufOnbN3aQAAALAjuwfViRMnqm/fvgoPD1doaKg+/vhjubm56fPPP7d3aQAAALCjwvZ88hs3bmj79u0aMWKEta1QoUJq3ry5fv311wz9k5KSlJSUZL2fkJAgSbp48WLeF4tsSU5O1tWrVxUXFydHR0d7l4PbMD7mxdiYF2NjboyPeaXnNMMwsr2sXYPqhQsXlJKSokceecSm/ZFHHtGBAwcy9B87dqxGjRqVob1ChQp5ViMAAADuX1xcnLy8vLK1jF2DanaNGDFCQ4cOtd6Pj49XcHCwTpw4ke0Xjrx16dIlBQUF6eTJk/L09LR3ObgN42NejI15MTbmxviYV0JCgkqVKiUfH59sL2vXoFqsWDE5ODjo7NmzNu1nz56Vv79/hv7Ozs5ydnbO0O7l5cVGaVKenp6MjYkxPubF2JgXY2NujI95FSqU/Uuj7HoxlZOTk2rVqqVVq1ZZ21JTU7Vq1SrVrVvXjpUBAADA3ux+6H/o0KHq2bOnwsLCVLt2bU2ePFlXrlxReHi4vUsDAACAHdk9qHbr1k3nz5/Xf//7X505c0Y1a9bU8uXLM1xglRlnZ2eNHDky09MBYF+MjbkxPubF2JgXY2NujI953c/YWIyczBUAAAAA5DG7T/gPAAAAZIagCgAAAFMiqAIAAMCUCKoAAAAwpXwdVD/66COFhITIxcVFderU0ZYtW+xdEiStW7dO7dq1U4kSJWSxWLRo0SJ7lwSlfQTxY489Jg8PDxUvXlwdO3bUwYMH7V0W/s+MGTNUvXp162TldevW1bJly+xdFjIxbtw4WSwWDR482N6lQFJERIQsFovNrVKlSvYuC//n9OnT+te//iVfX1+5urqqWrVq2rZtW5aXz7dBdf78+Ro6dKhGjhypHTt2qEaNGmrZsqXOnTtn79IKvCtXrqhGjRr66KOP7F0KbrF27VoNGDBAmzdvVnR0tJKTk/XEE0/oypUr9i4NkgIDAzVu3Dht375d27ZtU9OmTdWhQwft3bvX3qXhFlu3btXMmTNVvXp1e5eCW1SpUkWxsbHW24YNG+xdEiT9/fffql+/vhwdHbVs2TLt27dPEyZMUNGiRbO8jnw7PVWdOnX02GOPadq0aZLSPtEqKChIr776qt544w07V4d0FotFCxcuVMeOHe1dCm5z/vx5FS9eXGvXrlXDhg3tXQ4y4ePjow8++EB9+vSxdymQlJiYqEcffVTTp0/XmDFjVLNmTU2ePNneZRV4ERERWrRokXbu3GnvUnCbN954Qxs3btT69etzvI58uUf1xo0b2r59u5o3b25tK1SokJo3b65ff/3VjpUB+UdCQoKktDAEc0lJSdE333yjK1eu8HHSJjJgwAC1adPG5m8PzOHQoUMqUaKEypQpox49eujEiRP2LgmSlixZorCwMHXt2lXFixfXP/7xD33yySfZWke+DKoXLlxQSkpKhk+veuSRR3TmzBk7VQXkH6mpqRo8eLDq16+vqlWr2rsc/J89e/bI3d1dzs7Oevnll7Vw4UKFhobauyxI+uabb7Rjxw6NHTvW3qXgNnXq1FFkZKSWL1+uGTNmKCYmRg0aNNDly5ftXVqBd/ToUc2YMUPly5fXihUr1K9fPw0cOFBz5szJ8jrs/hGqAB68AQMG6I8//uA8LpOpWLGidu7cqYSEBC1YsEA9e/bU2rVrCat2dvLkSQ0aNEjR0dFycXGxdzm4TatWrazfV69eXXXq1FFwcLC+/fZbTpuxs9TUVIWFhendd9+VJP3jH//QH3/8oY8//lg9e/bM0jry5R7VYsWKycHBQWfPnrVpP3v2rPz9/e1UFZA/vPLKK/rxxx+1Zs0aBQYG2rsc3MLJyUnlypVTrVq1NHbsWNWoUUNTpkyxd1kF3vbt23Xu3Dk9+uijKly4sAoXLqy1a9dq6tSpKly4sFJSUuxdIm7h7e2tChUq6PDhw/YupcALCAjI8I925cqVs3VqRr4Mqk5OTqpVq5ZWrVplbUtNTdWqVas4nwu4A8Mw9Morr2jhwoVavXq1Spcube+ScA+pqalKSkqydxkFXrNmzbRnzx7t3LnTegsLC1OPHj20c+dOOTg42LtE3CIxMVFHjhxRQECAvUsp8OrXr59hGsQ///xTwcHBWV5Hvj30P3ToUPXs2VNhYWGqXbu2Jk+erCtXrig8PNzepRV4iYmJNv/JxsTEaOfOnfLx8VGpUqXsWFnBNmDAAM2dO1eLFy+Wh4eH9XxuLy8vubq62rk6jBgxQq1atVKpUqV0+fJlzZ07V7/88otWrFhh79IKPA8PjwznchcpUkS+vr6c420Cw4cPV7t27RQcHKy//vpLI0eOlIODg5599ll7l1bgDRkyRPXq1dO7776rp59+Wlu2bNGsWbM0a9asrK/EyMc+/PBDo1SpUoaTk5NRu3ZtY/PmzfYuCYZhrFmzxpCU4dazZ097l1agZTYmkozZs2fbuzQYhtG7d28jODjYcHJyMvz8/IxmzZoZK1eutHdZuINGjRoZgwYNsncZMAyjW7duRkBAgOHk5GSULFnS6Natm3H48GF7l4X/88MPPxhVq1Y1nJ2djUqVKhmzZs3K1vL5dh5VAAAAPNzy5TmqAAAAePgRVAEAAGBKBFUAAACYEkEVAAAApkRQBQAAgCkRVAEAAGBKBFUAAACYEkEVAAAApkRQBYB8pFevXurYsaP1fuPGjTV48GC71QMAeYmgCuChlpKSonr16qlz58427QkJCQoKCtJbb7111+UPHz6s8PBwBQYGytnZWaVLl9azzz6rbdu25WXZWRYVFaW33347V9cZERGhmjVr5uo6ASAnCKoAHmoODg6KjIzU8uXL9fXXX1vbX331Vfn4+GjkyJF3XHbbtm2qVauW/vzzT82cOVP79u3TwoULValSJQ0bNixP605OTs5SPx8fH3l4eORpLQBgLwRVAA+9ChUqaNy4cXr11VcVGxurxYsX65tvvtEXX3whJyenTJcxDEO9evVS+fLltX79erVp00Zly5ZVzZo1NXLkSC1evNjad8+ePWratKlcXV3l6+urF198UYmJidbHU1NTNXr0aOte2Zo1a2r58uXWx48dOyaLxaL58+erUaNGcnFx0ddff62UlBQNHTpU3t7e8vX11euvvy7DMGzqvP3Qf0hIiN5991317t1bHh4eKlWqlGbNmmWzzP/7f/9PFSpUkJubm8qUKaP//Oc/1mAcGRmpUaNGadeuXbJYLLJYLIqMjJQkxcfH64UXXpCfn588PT3VtGlT7dq1K0djAgBZQVAFUCC8+uqrqlGjhp577jm9+OKL+u9//6saNWrcsf/OnTu1d+9eDRs2TIUKZfxV6e3tLUm6cuWKWrZsqaJFi2rr1q367rvv9PPPP+uVV16x9p0yZYomTJig8ePHa/fu3WrZsqXat2+vQ4cO2azzjTfe0KBBg7R//361bNlSEyZMUGRkpD7//HNt2LBBFy9e1MKFC+/5WidMmKCwsDD9/vvv6t+/v/r166eDBw9aH/fw8FBkZKT27dunKVOm6JNPPtGkSZMkSd26ddOwYcNUpUoVxcbGKjY2Vt26dZMkde3aVefOndOyZcu0fft2Pfroo2rWrJkuXrx4z5oAIEcMACgg9u/fb0gyqlWrZiQnJ9+17/z58w1Jxo4dO+7ab9asWUbRokWNxMREa9tPP/1kFCpUyDhz5oxhGIZRokQJ45133rFZ7rHHHjP69+9vGIZhxMTEGJKMyZMn2/QJCAgw3n//fev95ORkIzAw0OjQoYO1rVGjRsagQYOs94ODg41//etf1vupqalG8eLFjRkzZtzxNXzwwQdGrVq1rPdHjhxp1KhRw6bP+vXrDU9PT+P69es27WXLljVmzpx5x3UDwP0obOecDAAPzOeffy43NzfFxMTo1KlTCgkJuWNf47ZD7Heyf/9+1ahRQ0WKFLG21a9fX6mpqTp48KBcXV31119/qX79+jbL1a9fP8Nh87CwMOv3CQkJio2NVZ06daxthQsXVlhY2D1rq169uvV7i8Uif39/nTt3zto2f/58TZ06VUeOHFFiYqJu3rwpT0/Pu65z165dSkxMlK+vr037tWvXdOTIkbsuCwA5xaF/AAXCpk2bNGnSJP3444+qXbu2+vTpc9fAV6FCBUnSgQMHHlSJNmH3fjg6Otrct1gsSk1NlST9+uuv6tGjh1q3bq0ff/xRv//+u9566y3duHHjrutMTExUQECAdu7caXM7ePCgXnvttVypGwBuR1AF8NC7evWqevXqpX79+qlJkyb67LPPtGXLFn388cd3XKZmzZoKDQ3VhAkTrCHvVvHx8ZKkypUra9euXbpy5Yr1sY0bN6pQoUKqWLGiPD09VaJECW3cuNFm+Y0bNyo0NPSOz+/l5aWAgAD99ttv1rabN29q+/btWX3Zmdq0aZOCg4P11ltvKSwsTOXLl9fx48dt+jg5OSklJcWm7dFHH9WZM2dUuHBhlStXzuZWrFix+6oJAO6EoArgoTdixAgZhqFx48ZJSrsyfvz48Xr99dd17NixTJexWCyaPXu2/vzzTzVo0EBLly7V0aNHtXv3br3zzjvq0KGDJKlHjx5ycXFRz5499ccff2jNmjV69dVX9dxzz+mRRx6RJL322mt67733NH/+fB08eFBvvPGGdu7cqUGDBt217kGDBmncuHFatGiRDhw4oP79+1sDck6VL19eJ06c0DfffKMjR45o6tSpGS7QCgkJUUxMjHbu3KkLFy4oKSlJzZs3V926ddWxY0etXLlSx44d06ZNm/TWW2+ZZk5ZAA8fgiqAh9ratWv10Ucfafbs2XJzc7O2v/TSS6pXr95dTwGoXbu2tm3bpnLlyqlv376qXLmy2rdvr71792ry5MmSJDc3N61YsUIXL17UY489pi5duqhZs2aaNm2adT0DBw7U0KFDNWzYMFWrVk3Lly/XkiVLVL58+bvWPmzYMD333HPq2bOn6tatKw8PD3Xq1Om+3o/27dtryJAheuWVV1SzZk1t2rRJ//nPf2z6PPXUU3ryySfVpEkT+fn5ad68ebJYLFq6dKkaNmyo8PBwVahQQc8884yOHz9uDeQAkNssRlavGAAAAAAeIPaoAgAAwJQIqgAAADAlgioAAABMiaAKAAAAUyKoAgAAwJQIqgAAADAlgioAAABMiaAKAAAAUyKoAgAAwJQIqgAAADAlgioAAABM6f8DiRZ7EAodu8AAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(8, 6))\n", - "plt.scatter(*zip(*data), color='blue', label='Data Points')\n", - "plt.scatter(*solution, color='red', label='Solution Point', zorder=5)\n", - "plt.xlabel('X Coordinate')\n", - "plt.ylabel('Y Coordinate')\n", - "plt.title('Data Points and Calculated Solution')\n", - "plt.legend()\n", - "plt.grid(True)\n", - "plt.xlim(0, 6)\n", - "plt.ylim(0, 6)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ofcourse if I were to fully work through this i would need to check the boundary points of our range, but we can see from the first plot that the min isnt there so am not going to do it." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## **Solution 2**\n", - "Solve this a binary Linear programming problem.\n", - "## **Idea**\n", - "Turn this space into a 6 x 6 grid of squares, then precompute the distance between the center of each square to each of the 5 locations, then just use a 6 x 6 binary var grid to pick which ever location minimizes the sum of distances.\n", - "\n", - "## **Sets**\n", - "\n", - "$\\mathcal{X}$: Set of x coordinates.\n", - "\n", - "$\\mathcal{Y}$: Set of y coordinates.\n", - "\n", - "$\\mathcal{P}$: Set of Stations.\n", - "\n", - "$\\mathcal{C} = \\{(x, y), x \\in \\mathcal{X}, y \\in \\mathcal{Y}\\}$: Coordinates for each point we want to test.\n", - "\n", - "\n", - "## **Indecies**\n", - "$p \\in \\mathcal{P}$: Element in $\\mathcal{P}$.\n", - "\n", - "$(x, y) \\in \\mathcal{C}$: Coordinates in $\\mathcal{C}$\n", - "\n", - "## **Data**\n", - "$s_p,p \\in \\mathcal{P}$: Coordinates for each station $p$.\n", - "\n", - "$d_{xyp}, (x, y) \\in \\mathcal{C}, p \\in \\mathcal{P}$, Distance from each point $(x, y)$ to each station $p$.\n", - "\n", - "## **Decision Variables**\n", - "\n", - "$z_{xy}, (x, y) \\in \\mathcal{C}$: Binary var representing whether to use location $(x, y)$.\n", - "\n", - "## **Formulation**\n", - "\n", - "**Objective Function**\n", - "\\begin{align*}\n", - "\\mathrm{Min} \\sum_{(x, y) \\in \\mathcal{C}} z_{xy} (\\sum_{p \\in \\mathcal{P}} d_{xyp})\n", - "\\end{align*}\n", - "\n", - "**S.T.**\n", - "\n", - "\\begin{gather}\n", - "\\sum_{(x, y) \\in \\mathcal{C}} z_{xy} = 1\\\\\n", - "z_{xy} \\in \\{0, 1\\}, \\forall (x, y) \\in \\mathcal{C}\n", - "\\end{gather}\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "model = Model(name = \"Location Problem\")" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import math\n", - "def dist(p1, p2):\n", - " x1, y1 = p1\n", - " x2, y2 = p2\n", - " return math.sqrt((x1 - x2)**2 + (y1 - y2)**2)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "## Data\n", - "data = [(1, 4), (1, 2), (2.5, 2), (3, 5), (4, 4)]\n", - "X = list(range(6))\n", - "Y = list(range(6))\n", - "P = list(range(5))\n", - "\n", - "C = [(x, y) for x in X for y in Y]\n", - "d = {(x, y, p) : dist((x, y), data[p]) for x in X for y in Y for p in P}\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "def plotpoints(points):\n", - " x, y = zip(*points)\n", - " # Create a scatter plot\n", - " plt.figure(figsize=(6, 4))\n", - " plt.scatter(x, y, color='blue') # Scatter plot: x vs y\n", - " plt.title('Scatter Plot of Points')\n", - " plt.xlabel('X Coordinate')\n", - " plt.ylabel('Y Coordinate')\n", - " plt.grid(True) # Optional: adds a grid\n", - " plt.axis('equal') # Optional: ensures the scale of x and y axes are equal\n", - " plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAGJCAYAAAAEz3CAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA71klEQVR4nO3deVhUZd8H8O8wDpsygKApi0C4a2KJ+uKCS6IprxuvLUKpaPU8ZS659fj6XAIaqVkupbmVy/X0kpZii0tFboSWooZprpmKiEugMiAI43C/f0yMjsBxRgbPnOn7uS4u5tznzMzvB9H5es59zqiEEAJERERE1XCSuwAiIiKybwwLREREJIlhgYiIiCQxLBAREZEkhgUiIiKSxLBAREREkhgWiIiISBLDAhEREUliWCAiIiJJDAtEZLXz589DpVJh7dq1cpdi5ttvv0X79u3h6uoKlUqFmzdvPpL37dmzJ3r27PlI3otIDgwLRPc4evQohg0bhqCgILi6usLf3x9RUVH48MMPa+09U1JSsGjRokrjubm5SExMRFZWVq299/12794NlUpl+tJoNHj88ccxYsQI/PHHHzZ5j3379iExMdHmO/L8/Hw899xzcHNzw9KlS/Gf//wHdevWrXLbtWvXmvXp6uqK5s2b44033sDVq1dtWteDVPf7J7IndeQugMhe7Nu3D7169UKTJk3wyiuvoFGjRrh48SJ+/vlnLF68GOPGjauV901JScGxY8cwceJEs/Hc3FwkJSUhODgY7du3r5X3rs748ePRsWNH6PV6HD58GCtXrsTWrVtx9OhR+Pn51ei19+3bh6SkJIwaNQpeXl62KRhAZmYmCgsLMXv2bPTp08ei58yaNQshISG4ffs2MjIysGzZMmzbtg3Hjh2Du7u7xe/9/fffP2zZ1f7+iewJwwLRX5KTk+Hp6YnMzMxKO7Fr167JU1QtuHXrVrX/4q7QvXt3DBs2DAAQHx+P5s2bY/z48Vi3bh2mT5/+KMq0WsXvyJoA0r9/f4SHhwMAXn75Zfj4+GDBggX46quvMHz4cItfx9nZ2apaiZSGpyGI/nL27Fm0adOmyp1Nw4YNK419+umn6NSpE9zd3eHt7Y3IyEizf2F+9dVXiI6Ohp+fH1xcXBAaGorZs2fDYDCYtunZsye2bt2KCxcumA6JBwcHY/fu3ejYsSMA4866Yt29cwT279+PZ555Bp6ennB3d0ePHj2wd+9esxoTExOhUqlw/PhxxMbGwtvbG926dbP6Z9O7d28AwLlz5yS327lzJ7p37466devCy8sLgwcPxokTJ8zqmTp1KgAgJCTE1Nf58+clX/eLL75Ahw4d4ObmBl9fX7z44ou4dOmSaX3Pnj0xcuRIAEDHjh2hUqkwatSoGvd5584dzJ49G6GhoXBxcUFwcDD+93//F6WlpWbPu3/OQsXpnM8//xzJyckICAiAq6srnn76afz+++9mz6vq91/hww8/RJs2bUz/jYWHhyMlJcXqvohqikcWiP4SFBSEn376CceOHUPbtm0lt01KSkJiYiK6dOmCWbNmwdnZGfv378fOnTvRt29fAMbz4vXq1cOkSZNQr1497Ny5EzNnzoROp8P8+fMBADNmzEBBQQFycnKwcOFCAEC9evXQqlUrzJo1CzNnzsSrr76K7t27AwC6dOkCwLhT7t+/Pzp06ICEhAQ4OTlhzZo16N27N3788Ud06tTJrN5nn30WzZo1wzvvvIOH+VT6s2fPAgB8fHyq3eaHH35A//798fjjjyMxMRElJSX48MMP0bVrVxw+fBjBwcGIiYnB6dOn8dlnn2HhwoXw9fUFADRo0KDa1127di3i4+PRsWNHzJkzB1evXsXixYuxd+9e/PLLL/Dy8sKMGTPQokULrFy50nRqITQ0tMZ9vvzyy1i3bh2GDRuGyZMnY//+/ZgzZw5OnDiBzZs3P/D15s6dCycnJ0yZMgUFBQV49913ERcXh/379wOo/vcPAKtWrcL48eMxbNgwTJgwAbdv38avv/6K/fv3IzY21ureiGpEEJEQQojvv/9eqNVqoVarRUREhJg2bZr47rvvRFlZmdl2Z86cEU5OTmLo0KHCYDCYrSsvLzc9Li4urvQe//jHP4S7u7u4ffu2aSw6OloEBQVV2jYzM1MAEGvWrKn0Hs2aNRP9+vWr9H4hISEiKirKNJaQkCAAiOHDh1v0M9i1a5cAIFavXi3+/PNPkZubK7Zu3SqCg4OFSqUSmZmZQgghzp07V6m29u3bi4YNG4r8/HzT2JEjR4STk5MYMWKEaWz+/PkCgDh37twD6ykrKxMNGzYUbdu2FSUlJabxLVu2CABi5syZprE1a9YIAKYapVRs+8MPP4g///xTXLx4Uaxfv174+PgINzc3kZOTI7KysgQA8fLLL5s9d8qUKQKA2Llzp2msR48eokePHpV+jq1atRKlpaWm8cWLFwsA4ujRo6ax6n7/gwcPFm3atHlgL0SPAk9DEP0lKioKP/30EwYNGoQjR47g3XffRb9+/eDv74+vv/7atN2XX36J8vJyzJw5E05O5n9CKpXK9NjNzc30uLCwEHl5eejevTuKi4tx8uTJh64zKysLZ86cQWxsLPLz85GXl4e8vDzcunULTz/9NNLT01FeXm72nH/+859Wvcfo0aPRoEED+Pn5ITo6Grdu3cK6detM5/fvd/nyZWRlZWHUqFGoX7++abxdu3aIiorCtm3brG8UwMGDB3Ht2jW8/vrrcHV1NY1HR0ejZcuW2Lp160O9boU+ffqgQYMGCAwMxAsvvIB69eph8+bN8Pf3N9U8adIks+dMnjwZACx67/j4eLP5DBVHiCy5ssTLyws5OTnIzMy0uB+i2sLTEET36NixI1JTU1FWVoYjR45g8+bNWLhwIYYNG4asrCy0bt0aZ8+ehZOTE1q3bi35Wr/99hv+/e9/Y+fOndDpdGbrCgoKHrrGM2fOAIDpHH1VCgoK4O3tbVoOCQmx6j1mzpyJ7t27Q61Ww9fXF61atUKdOtX/7+LChQsAgBYtWlRa16pVK3z33XcWTay05nVbtmyJjIwMq17vfkuXLkXz5s1Rp04dPPbYY2jRooUpAF64cAFOTk5o2rSp2XMaNWoELy8vU21SmjRpYrZc8Tu5cePGA5/71ltv4YcffkCnTp3QtGlT9O3bF7Gxsejataul7RHZDMMCURWcnZ3RsWNHdOzYEc2bN0d8fDy++OILJCQkWPT8mzdvokePHtBqtZg1axZCQ0Ph6uqKw4cP46233qr0L39rVDx3/vz51V5SWXHeu8K9Rzks8cQTT1h8+aGSderUqdqjJRXuPVpkLbVaXeW4sGDeSKtWrXDq1Cls2bIF3377LTZt2oSPPvoIM2fORFJS0kPXRPQwGBaIHqBiZ3L58mUAQGhoKMrLy3H8+PFqd9a7d+9Gfn4+UlNTERkZaRqv6mqC6nZG1Y1XTNzTarV2s0MPCgoCAJw6darSupMnT8LX19d0VMGane+9r1txpUKFU6dOmdbXhqCgIJSXl+PMmTNo1aqVafzq1au4efOmzd5b6udRt25dPP/883j++edRVlaGmJgYJCcnY/r06WanZYhqG+csEP1l165dVf6Lr+LcdcWh8CFDhsDJyQmzZs2qdISg4vkV/6K89/XKysrw0UcfVXr9unXrVnlaomLnev+dDjt06IDQ0FC89957KCoqqvS8P//8s9oea0vjxo3Rvn17rFu3zqzeY8eO4fvvv8eAAQNMY9X1VZXw8HA0bNgQy5cvN7tccfv27Thx4gSio6Nt1sP9Kmq+/+6KCxYsAACbvXd1v//8/HyzZWdnZ7Ru3RpCCOj1epu8N5GleGSB6C/jxo1DcXExhg4dipYtW6KsrAz79u3Dhg0bEBwcjPj4eABA06ZNMWPGDMyePRvdu3dHTEwMXFxckJmZCT8/P8yZMwddunSBt7c3Ro4cifHjx0OlUuE///lPlWGkQ4cO2LBhAyZNmoSOHTuiXr16GDhwIEJDQ+Hl5YXly5fDw8MDdevWRefOnRESEoKPP/4Y/fv3R5s2bRAfHw9/f39cunQJu3btglarxTfffPOof3yYP38++vfvj4iICIwZM8Z06aSnpycSExPN+gWMlw2+8MIL0Gg0GDhwYJXzGTQaDebNm4f4+Hj06NEDw4cPN106GRwcjDfffLPW+gkLC8PIkSOxcuVK02mlAwcOYN26dRgyZAh69eplk/ep7vfft29fNGrUCF27dsVjjz2GEydOYMmSJYiOjoaHh4dN3pvIYnJeikFkT7Zv3y5Gjx4tWrZsKerVqyecnZ1F06ZNxbhx48TVq1crbb969Wrx5JNPChcXF+Ht7S169Ogh0tLSTOv37t0r/uu//ku4ubkJPz8/06WYAMSuXbtM2xUVFYnY2Fjh5eUlAJhdRvfVV1+J1q1bizp16lS6VPGXX34RMTExwsfHR7i4uIigoCDx3HPPiR07dpi2qbh08s8//7ToZ1Bxyd8XX3whuV1Vl04KIcQPP/wgunbtKtzc3IRWqxUDBw4Ux48fr/T82bNnC39/f+Hk5GTRZZQbNmww/azr168v4uLiRE5Ojtk2D3Pp5IO21ev1IikpSYSEhAiNRiMCAwPF9OnTzS59FaL6Syfv/zlW9XOr7ve/YsUKERkZafr9hoaGiqlTp4qCgoIH9kdkayohHuIOLURERPS3wTkLREREJIlhgYiIiCQxLBAREZEkhgUiIiKSxLBAREREkhgWiIiISJKib8pUXl6O3NxceHh41Oj+7URERH83QggUFhbCz8+v0ifo3k/RYSE3NxeBgYFyl0FERKRYFy9eREBAgOQ2ig4LFbc8vXjxIrRarczVGOn1enz//ffo27cvNBqN3OXYHPtTNvanbOxP2eytP51Oh8DAQItuH67osFBx6kGr1dpVWHB3d4dWq7WL/xhsjf0pG/tTNvanbPbanyWn8TnBkYiIiCQxLBAREZEkhgUiIiKSxLBAREREkhgWiIiISBLDAhEREUliWCCLGQxARobxcUaGcdmRsD9lY3/K5uj9KZ2sYSExMREqlcrsq2XLlnKWRNVITQWCg4HoaONydLRxOTVVzqpsh/0pG/tTNkfvzxHIfmShTZs2uHz5sukroyJakt1ITQWGDQNycszHL10yjiv9D5r9yVOXrbA/eeqyFUfvz1HIHhbq1KmDRo0amb58fX3lLonuYTAAEyYAQlReVzE2caJyDxmyP/Znz9ifsvtzJLLf7vnMmTPw8/ODq6srIiIiMGfOHDRp0qTKbUtLS1FaWmpa1ul0AIy30NTr9Y+k3gepqMNe6qmpjAwgPx9wczMuu7npzb4DQF4ekJ4OdOsmR4U1w/7Ynz1jf8ru7372tn+wpg6VEFVlukdj+/btKCoqQosWLXD58mUkJSXh0qVLOHbsWJUfbJGYmIikpKRK4ykpKXB3d38UJRMRETmE4uJixMbGoqCg4IGfryRrWLjfzZs3ERQUhAULFmDMmDGV1ld1ZCEwMBB5eXl29UFSaWlpiIqKsqsPCnlYGRl3Jx0BxsS/enUaRo+OQknJ3f62blVm8md/RuzPPrE/I6X2dz972z/odDr4+vpaFBZkPw1xLy8vLzRv3hy///57letdXFzg4uJSaVyj0djFD/5e9ljTw4iMBHx8jJON7o2VJSUalJRooFIBAQHG7dRq+ep8WOyP/dkz9qfs/qpjL/sHa2qQfYLjvYqKinD27Fk0btxY7lLoL2o1sHix8fH9n2JasbxokXL/kNkf+7Nn7E/Z/TkSWcPClClTsGfPHpw/fx779u3D0KFDoVarMXz4cDnLovvExAAbNwL+/ubjAQHG8ZgYeeqyFfYnT122wv7kqctWHL0/RyHrnIUXXngB6enpyM/PR4MGDdCtWzckJycjNDTUoufrdDp4enpadL7lUdHr9di2bRsGDBhgF4eZbMlgANLT9dDptkGrHYDISI1DJX72p2zsT9kcvT/A/vYP1uxDZT2ysH79euTm5qK0tBQ5OTlYv369xUGBHj21+u4ko27dHO/QIPtTNvanbI7en9LZ1ZwFIiIisj8MC0RERCSJYYGIiIgkMSwQERGRJIYFIiIiksSwQERERJIYFoiIiEgSwwIRERFJYlggIiIiSQwLREREJIlhgYiIiCQxLBAREZEkhgUiIiKSxLBAREREkhgWiIiISBLDAhEREUliWCAiIiJJDAtEREQkiWGBiIiIJDEsEBERkSSGBSIiIpLEsEBERESSGBaIiIhIEsMCERERSWJYICIiIkkMC0RERCSJYYGIiIgkMSwQERGRJIYFIiIiksSwQERERJIYFoiIiEgSwwIRERFJYlggIiIiSQwLREREJIlhgYiIiCQxLBAREZEkhgUiIiKSxLBAREREkhgWiIiISBLDAhEREUliWCAiIiJJDAtEREQkiWGBiIiIJDEsEBERkSSGBbKYwQBkZBgfZ2QYlx0J+1M29qdsjt6f0tlNWJg7dy5UKhUmTpwodylUhdRUIDgYiI42LkdHG5dTU+WsynbYn7KxP2Vz9P4cgV2EhczMTKxYsQLt2rWTuxSqQmoqMGwYkJNjPn7pknFc6X/Q7E+eumyF/clTl604en+OQvawUFRUhLi4OKxatQre3t5yl0P3MRiACRMAISqvqxibOFG5hwzZH/uzZ+xP2f05kjpyFzB27FhER0ejT58+ePvttyW3LS0tRWlpqWlZp9MBAPR6PfR6fa3WaamKOuylnprKyADy8wE3N+Oym5ve7DsA5OUB6elAt25yVFgz7I/92TP2p+z+7mdv+wdr6lAJUVWmezTWr1+P5ORkZGZmwtXVFT179kT79u2xaNGiKrdPTExEUlJSpfGUlBS4u7vXcrVERESOo7i4GLGxsSgoKIBWq5XcVrawcPHiRYSHhyMtLc00V+FBYaGqIwuBgYHIy8t7YKOPil6vR1paGqKioqDRaOQup8YyMu5OOgKMiX/16jSMHh2FkpK7/W3dqszkz/6M2J99Yn9GSu3vfva2f9DpdPD19bUoLMh2GuLQoUO4du0annrqKdOYwWBAeno6lixZgtLSUqjVarPnuLi4wMXFpdJraTQau/jB38sea3oYkZGAj49xstG9sbKkRIOSEg1UKiAgwLjdfb8uRWB/7M+esT9l91cde9k/WFODbBMcn376aRw9ehRZWVmmr/DwcMTFxSErK6tSUCB5qNXA4sXGxyqV+bqK5UWLlPuHzP7Ynz1jf8ruz5HIFhY8PDzQtm1bs6+6devCx8cHbdu2lassqkJMDLBxI+Dvbz4eEGAcj4mRpy5bYX/y1GUr7E+eumzF0ftzFLJfDUHKEBMDDB5snJWs0xnPITrSoUH2p2zsT9kcvT9HIPt9Fu61e/fuaic3kvzU6ruTjLp1c7w/ZPanbOxP2Ry9P6Wzq7BARERE9odhgYiIiCQxLBAREZEkhgUiIiKSxLBAREREkhgWiIiISBLDAhEREUliWCAiIiJJDAtEREQkiWGBiIiIJDEsEBERkSSGBSIiIpLEsEBERESSGBaIiIhIEsMCERERSWJYICIiIkkMC0RERCSJYYGIiIgkMSwQERGRJIYFIiIiksSwQERERJIYFoiIiEgSwwIRERFJYlggIiIiSQwLREREJIlhgYiIiCQxLBAREZEkhgUiIiKSxLBAREREkhgWiIiISBLDAhEREUliWCAiIiJJDAtEREQkiWGBiIiIJD1UWLhz5w5++OEHrFixAoWFhQCA3NxcFBUV2bQ4IiIikl8da59w4cIFPPPMM8jOzkZpaSmioqLg4eGBefPmobS0FMuXL6+NOomIiEgmVh9ZmDBhAsLDw3Hjxg24ubmZxocOHYodO3bYtDgiIiKSn9VHFn788Ufs27cPzs7OZuPBwcG4dOmSzQojIiIi+2D1kYXy8nIYDIZK4zk5OfDw8LBJUURERGQ/rA4Lffv2xaJFi0zLKpUKRUVFSEhIwIABA2xZGxEREdkBq09DvP/+++jXrx9at26N27dvIzY2FmfOnIGvry8+++yz2qiRiIiIZGR1WAgICMCRI0ewYcMGHDlyBEVFRRgzZgzi4uLMJjwSERGRY7A6LKSnp6NLly6Ii4tDXFycafzOnTtIT09HZGSkTQskIiIieVk9Z6FXr164fv16pfGCggL06tXLJkURERGR/bA6LAghoFKpKo3n5+ejbt26NimK7JPBAGRkGB9nZBiXHQn7Uzb2p2yO3p/SWRwWYmJiEBMTA5VKhVGjRpmWY2JiMHjwYPTr1w9dunSx6s2XLVuGdu3aQavVQqvVIiIiAtu3b7e6Cap9qalAcDAQHW1cjo42LqemylmV7bA/ZWN/yubo/TkCi8OCp6cnPD09IYSAh4eHadnT0xONGjXCq6++ik8//dSqNw8ICMDcuXNx6NAhHDx4EL1798bgwYPx22+/Wd0I1Z7UVGDYMCAnx3z80iXjuNL/oNmfPHXZCvuTpy5bcfT+HIXFExzXrFkDwHinxilTptjklMPAgQPNlpOTk7Fs2TL8/PPPaNOmTY1fn2rOYAAmTACEqLxOCEClAiZOBAYPBtTqR15ejbE/9mfP2J+y+3MkVl8NkZCQUBt1wGAw4IsvvsCtW7cQERFR5TalpaUoLS01Let0OgCAXq+HXq+vlbqsVVGHvdRTUxkZQH4+UHFVrJub3uw7AOTlAenpQLduclRYM+yP/dkz9qfs/u5nb/sHa+pQCVFVppO2ceNGfP7558jOzkZZWZnZusOHD1v1WkePHkVERARu376NevXqISUlpdo7QSYmJiIpKanSeEpKCtzd3a16XyIior+z4uJixMbGoqCgAFqtVnJbq8PCBx98gBkzZmDUqFFYuXIl4uPjcfbsWWRmZmLs2LFITk62qtiysjJkZ2ejoKAAGzduxMcff4w9e/agdevWlbat6shCYGAg8vLyHtjoo6LX65GWloaoqChoNBq5y6mxjIy7k44AY+JfvToNo0dHoaTkbn9btyoz+bM/I/Znn9ifkVL7u5+97R90Oh18fX0tCgtWn4b46KOPsHLlSgwfPhxr167FtGnT8Pjjj2PmzJlV3n/hQZydndG0aVMAQIcOHZCZmYnFixdjxYoVlbZ1cXGBi4tLpXGNRmMXP/h72WNNDyMyEvDxMU42ujdWlpRoUFKigUoFBAQYt1PiOUX2x/7sGftTdn/VsZf9gzU1WH2fhezsbNMlkm5ubigsLAQAvPTSSzb5bIjy8nKzowckL7UaWLzY+Pj+22tULC9apNw/ZPbH/uwZ+1N2f47E6rDQqFEj0xGEJk2a4OeffwYAnDt3DtZOf5g+fTrS09Nx/vx5HD16FNOnT8fu3bvNbiNN8ouJATZuBPz9zccDAozjMTHy1GUr7E+eumyF/clTl604en+OwurTEL1798bXX3+NJ598EvHx8XjzzTexceNGHDx4EDFW/lavXbuGESNG4PLly/D09ES7du3w3XffISoqytqyqJbFxBgvX0pPB3Q64zlERzo0yP6Ujf0pm6P35wisDgsrV65EeXk5AGDs2LHw8fHBvn37MGjQIPzjH/+w6rU++eQTa9+eZKRWGycZbdtm/O5of8jsT9nYn7I5en9KZ3VYcHJygpPT3bMXL7zwAl544QWbFkVERET2w+qwAAA3b97EgQMHcO3aNdNRhgojRoywSWFERERkH6wOC9988w3i4uJQVFQErVZr9gmUKpWKYYGIiMjBWH01xOTJkzF69GgUFRXh5s2buHHjhunrYe6zQERERPbN6rBw6dIljB8/nrdXJiIi+puwOiz069cPBw8erI1aiIiIyA5ZPWchOjoaU6dOxfHjx/HEE09Uul3koEGDbFYcERERyc/qsPDKK68AAGbNmlVpnUqlgsFgqHlVREREZDesDgv3XypJREREjs3qOQtERET092LRkYUPPvgAr776KlxdXfHBBx9Ibjt+/HibFEZERET2waKwsHDhQsTFxcHV1RULFy6sdjuVSsWwQERE5GAsCgvnzp2r8jERERE5Ps5ZICIiIkkWHVmYNGmSxS+4YMGChy6GiIiI7I9FYeGXX34xWz58+DDu3LmDFi1aAABOnz4NtVqNDh062L5CIiIikpVFYWHXrl2mxwsWLICHhwfWrVsHb29vAMCNGzcQHx+P7t27106VREREJBur5yy8//77mDNnjikoAIC3tzfefvttvP/++zYtjoiIiORndVjQ6XT4888/K43/+eefKCwstElRREREZD+sDgtDhw5FfHw8UlNTkZOTg5ycHGzatAljxoxBTExMbdRIREREMrL6syGWL1+OKVOmIDY2Fnq93vgidepgzJgxmD9/vs0LJCIiInlZFRYMBgMOHjyI5ORkzJ8/H2fPngUAhIaGom7durVSIBEREcnLqrCgVqvRt29fnDhxAiEhIWjXrl1t1UVERER2wuo5C23btsUff/xRG7UQERGRHbI6LLz99tuYMmUKtmzZgsuXL0On05l9ERERkWOxeoLjgAEDAACDBg2CSqUyjQshoFKpYDAYbFcdERERyc7qsHDv3RyJiIjI8VkdFnr06FEbdRAREZGdsjosAMDNmzfxySef4MSJEwCANm3aYPTo0fD09LRpcURERCQ/qyc4Hjx4EKGhoVi4cCGuX7+O69evY8GCBQgNDcXhw4dro0YiIiKSkdVHFt58800MGjQIq1atQp06xqffuXMHL7/8MiZOnIj09HSbF0lERETysTosHDx40CwoAMbbPU+bNg3h4eE2LY6IiIjkZ/VpCK1Wi+zs7ErjFy9ehIeHh02KIiIiIvthdVh4/vnnMWbMGGzYsAEXL17ExYsXsX79erz88ssYPnx4bdRIREREMrL6NMR7770HlUqFESNG4M6dOwAAjUaD1157DXPnzrV5gURERCQvq8OCs7MzFi9ejDlz5ph96qS7u7vNiyMiIiL5PdR9FgDA3d0d3t7epsdERETkmKyes1BeXo5Zs2bB09MTQUFBCAoKgpeXF2bPno3y8vLaqJGIiIhkZPWRhRkzZuCTTz7B3Llz0bVrVwBARkYGEhMTcfv2bSQnJ9u8SCIiIpKP1WFh3bp1+PjjjzFo0CDTWLt27eDv74/XX3+dYYGIiMjBWH0a4vr162jZsmWl8ZYtW+L69es2KYqIiIjsh9VhISwsDEuWLKk0vmTJEoSFhdmkKCIiIrIfVp+GePfddxEdHY0ffvgBERERAICffvoJFy9exLZt22xeIBEREcnL6iMLPXr0wOnTpzF06FDcvHkTN2/eRExMDE6dOoXu3bvXRo1EREQko4e6z4Kfnx8nMv4NGQxARobxcUYGEBkJqNXy1mRL7E/Z2J+yOXp/SmfxkYUzZ85g+PDh0Ol0ldYVFBQgNjYWf/zxh1VvPmfOHHTs2BEeHh5o2LAhhgwZglOnTln1GvRopKYCwcFAdLRxOTrauJyaKmdVtsP+lI39KZuj9+cILA4L8+fPR2BgILRabaV1np6eCAwMxPz586168z179mDs2LH4+eefkZaWBr1ej759++LWrVtWvQ7VrtRUYNgwICfHfPzSJeO40v+g2Z88ddkK+5OnLltx9P4chcVhYc+ePXj22WerXf/cc89h586dVr35t99+i1GjRqFNmzYICwvD2rVrkZ2djUOHDln1OlR7DAZgwgRAiMrrKsYmTjRup0Tsj/3ZM/an7P4cicVzFrKzs9GwYcNq1/v6+uLixYs1KqagoAAAUL9+/SrXl5aWorS01LRccUpEr9dDr9fX6L1tpaIOe6mnpjIygPx8wM3NuOzmpjf7DgB5eUB6OtCtmxwV1gz7Y3/2jP0pu7/72dv+wZo6VEJUlekqa9SoEVJSUtC7d+8q1+/YsQNxcXG4cuWKxW9+r/LycgwaNAg3b95ERsUsl/skJiYiKSmp0nhKSgo/zIqIiMgKxcXFiI2NRUFBQZVTDO5lcVh47rnnoNfrsXnz5irXDx48GM7Ozvjiiy+srxjAa6+9hu3btyMjIwMBAQFVblPVkYXAwEDk5eU9sNFHRa/XIy0tDVFRUdBoNHKXU2MZGXcnHQHGxL96dRpGj45CScnd/rZuVWbyZ39G7M8+sT8jpfZ3P3vbP+h0Ovj6+loUFiw+DTF9+nRERERg2LBhmDZtGlq0aAEAOHnyJN59911899132Ldv30MV/MYbb2DLli1IT0+vNigAgIuLC1xcXCqNazQau/jB38sea3oYkZGAj49xstG9sbKkRIOSEg1UKiAgQLmXObE/9mfP2J+y+6uOvewfrKnB4gmOTz75JDZu3Ij09HRERESgfv36qF+/Prp06YIff/wRn3/+OZ566imrChVC4I033sDmzZuxc+dOhISEWPV8qn1qNbB4sfGxSmW+rmJ50SLl/iGzP/Znz9ifsvtzJFbdwfG///u/ceHCBWzcuBFz587FnDlzsGnTJpw/f97sUygtNXbsWHz66adISUmBh4cHrly5gitXrqCkpMTq16LaExMDbNwI+PubjwcEGMdjYuSpy1bYnzx12Qr7k6cuW3H0/hyFxXMWauXN74+Sf1mzZg1GjRr1wOfrdDp4enpadL7lUdHr9di2bRsGDBhgF4eZbMlgANLT9dDptkGrHYDISI1DJX72p2zsT9kcvT/A/vYP1uxDrf5sCFsSQlT5ZUlQoEdPrb47yahbN8c7NMj+lI39KZuj96d0soYFIiIisn8Wh4Xc3NzarIOIiIjslMVhoU2bNkhJSanNWoiIiMgOWRwWkpOT8Y9//APPPvssrl+/Xps1ERERkR2xOCy8/vrr+PXXX5Gfn4/WrVvjm2++qc26iIiIyE5YfAdHAAgJCcHOnTuxZMkSxMTEoFWrVqhTx/wlDh8+bNMCiYiISF5WhQUAuHDhAlJTU+Ht7Y3BgwdXCgtERETkWKza069atQqTJ09Gnz598Ntvv6FBgwa1VRcRERHZCYvDwjPPPIMDBw5gyZIlGDFiRG3WRERERHbE4rBgMBjw66+/Sn4qJBERETkei8NCWlpabdZBREREdoq3eyYiIiJJDAtEREQkiWGBiIiIJDEsEBERkSSGBSIiIpLEsEBERESSGBaIiIhIEsMCERERSWJYICIiIkkMC0RERCSJYYGIiIgkMSwQERGRJIYFIiIiksSwQERERJIYFoiIiEgSwwIRERFJYlggIiIiSQwLREREJIlhgYiIiCQxLBAREZEkhgUiIiKSxLBAREREkhgWiIiISBLDAhEREUliWCAiIiJJDAtEREQkiWGBiIiIJDEsEBERkSSGBSIiIpLEsEBERESSGBaIiIhIEsMCERERSWJYICIiIkkMC2QxgwHIyDA+zsgwLjsS9qds7E/ZHL0/pZM1LKSnp2PgwIHw8/ODSqXCl19+KWc5JCE1FQgOBqKjjcvR0cbl1FQ5q7Id9qds7E/ZHL0/RyBrWLh16xbCwsKwdOlSOcugB0hNBYYNA3JyzMcvXTKOK/0Pmv3JU5etsD956rIVR+/PUcgaFvr374+3334bQ4cOlbMMkmAwABMmAEJUXlcxNnGicg8Zsj/2Z8/Yn7L7cyR15C7AGqWlpSgtLTUt63Q6AIBer4der5erLDMVddhLPTWVkQHk5wNubsZlNze92XcAyMsD0tOBbt3kqLBm2B/7s2fsT9n93c/e9g/W1KESoqpM9+ipVCps3rwZQ4YMqXabxMREJCUlVRpPSUmBu7t7LVZHRETkWIqLixEbG4uCggJotVrJbRUVFqo6shAYGIi8vLwHNvqo6PV6pKWlISoqChqNRu5yaiwj4+6kI8CY+FevTsPo0VEoKbnb39atykz+7M+I/dkn9mek1P7uZ2/7B51OB19fX4vCgqJOQ7i4uMDFxaXSuEajsYsf/L3ssaaHERkJ+PgYJxvdGytLSjQoKdFApQICAozbqdXy1fmw2B/7s2fsT9n9Vcde9g/W1MD7LJAktRpYvNj4WKUyX1exvGiRcv+Q2R/7s2fsT9n9ORJZw0JRURGysrKQlZUFADh37hyysrKQnZ0tZ1l0n5gYYONGwN/ffDwgwDgeEyNPXbbC/uSpy1bYnzx12Yqj9+coZJ2zsHv3bvTq1avS+MiRI7F27doHPl+n08HT09Oi8y2Pil6vx7Zt2zBgwAC7OMxkSwYDkJ6uh063DVrtAERGahwq8bM/ZWN/yubo/QH2t3+wZh8q65GFnj17QghR6cuSoECPnlp9d5JRt26Od2iQ/Skb+1M2R+9P6ThngYiIiCQxLBAREZEkhgUiIiKSxLBAREREkhgWiIiISBLDAhEREUliWCAiIiJJDAtEREQkiWGBiIiIJDEsEBERkSSGBSIiIpLEsEBERESSGBaIiIhIEsMCERERSWJYICIiIkkMC0RERCSJYYGIiIgkMSwQERGRJIYFIiIiksSwQERERJIYFoiIiEgSwwIRERFJYlggIiIiSQwLREREJIlhgYiIiCQxLBAREZEkhgUiIiKSxLBAREREkhgWiIiISBLDAhEREUliWCAiIiJJDAtEREQkiWGBiIiIJDEsEBERkSSGBSIiIpLEsEBERESSGBaIiIhIEsMCERERSWJYICIiIkkMC0RERCSJYYGIiIgkMSwQERGRJIYFIiIiksSwQERERJIYFshiBgOQkWF8nJFhXHYk7E/Z2J+yOXp/SmcXYWHp0qUIDg6Gq6srOnfujAMHDshdEt0nNRUIDgaio43L0dHG5dRUOauyHfanbOxP2Ry9P0cge1jYsGEDJk2ahISEBBw+fBhhYWHo168frl27Jndp9JfUVGDYMCAnx3z80iXjuNL/oNmfPHXZCvuTpy5bcfT+HIXsYWHBggV45ZVXEB8fj9atW2P58uVwd3fH6tWr5S6NYDwUOGECIETldRVjEycq95Ah+2N/9oz9Kbs/R1JHzjcvKyvDoUOHMH36dNOYk5MT+vTpg59++qnS9qWlpSgtLTUt63Q6AIBer4der6/9gi1QUYe91FNTGRlAfj7g5mZcdnPTm30HgLw8ID0d6NZNjgprhv2xP3vG/pTd3/3sbf9gTR0qIarKdI9Gbm4u/P39sW/fPkRERJjGp02bhj179mD//v1m2ycmJiIpKanS66SkpMDd3b3W6yUiInIUxcXFiI2NRUFBAbRareS2sh5ZsNb06dMxadIk07JOp0NgYCD69u37wEYfFb1ej7S0NERFRUGj0chdTo1lZNyddAQYE//q1WkYPToKJSV3+9u6VZnJn/0ZsT/7xP6MlNrf/ext/1BxdN4SsoYFX19fqNVqXL161Wz86tWraNSoUaXtXVxc4OLiUmlco9HYxQ/+XvZY08OIjAR8fIyTje49BlVSokFJiQYqFRAQYNxOrZavzofF/tifPWN/yu6vOvayf7CmBlknODo7O6NDhw7YsWOHaay8vBw7duwwOy1B8lGrgcWLjY9VKvN1FcuLFin3D5n9sT97xv6U3Z8jkf1qiEmTJmHVqlVYt24dTpw4gddeew23bt1CfHy83KXRX2JigI0bAX9/8/GAAON4TIw8ddkK+5OnLlthf/LUZSuO3p+jkHWCY4UlS5Zg/vz5uHLlCtq3b48PPvgAnTt3fuDzdDodPD09LZqc8ajo9Xps27YNAwYMsIvDTLZkMADp6XrodNug1Q5AZKTGoRI/+1M29qdsjt4fYH/7B2v2obIfWQCAN954AxcuXEBpaSn2799vUVCgR0+tvjvJqFs3xzs0yP6Ujf0pm6P3p3R2ERaIiIjIfjEsEBERkSSGBSIiIpLEsEBERESSGBaIiIhIEsMCERERSVLUZ0Pcr+IWEdbc37q26fV6FBcXQ6fT2cV1tLbG/pSN/Skb+1M2e+uvYt9pye2WFB0WCgsLAQCBgYEyV0JERKRMhYWF8PT0lNzGLu7g+LDKy8uRm5sLDw8PqO6/sbhMKj4J8+LFi3ZzV0lbYn/Kxv6Ujf0pm731J4RAYWEh/Pz84OQkPStB0UcWnJycEBAQIHcZVdJqtXbxH0NtYX/Kxv6Ujf0pmz3196AjChU4wZGIiIgkMSwQERGRJIYFG3NxcUFCQgJcXFzkLqVWsD9lY3/Kxv6UTcn9KXqCIxEREdU+HlkgIiIiSQwLREREJIlhgYiIiCQxLBAREZEkhoValJycjC5dusDd3R1eXl5yl1NjS5cuRXBwMFxdXdG5c2ccOHBA7pJsJj09HQMHDoSfnx9UKhW+/PJLuUuymTlz5qBjx47w8PBAw4YNMWTIEJw6dUrusmxm2bJlaNeunelGNxEREdi+fbvcZdWauXPnQqVSYeLEiXKXYhOJiYlQqVRmXy1btpS7LJu6dOkSXnzxRfj4+MDNzQ1PPPEEDh48KHdZVmFYqEVlZWV49tln8dprr8ldSo1t2LABkyZNQkJCAg4fPoywsDD069cP165dk7s0m7h16xbCwsKwdOlSuUuxuT179mDs2LH4+eefkZaWBr1ej759++LWrVtyl2YTAQEBmDt3Lg4dOoSDBw+id+/eGDx4MH777Te5S7O5zMxMrFixAu3atZO7FJtq06YNLl++bPrKyMiQuySbuXHjBrp27QqNRoPt27fj+PHjeP/99+Ht7S13adYRVOvWrFkjPD095S6jRjp16iTGjh1rWjYYDMLPz0/MmTNHxqpqBwCxefNmucuoNdeuXRMAxJ49e+QupdZ4e3uLjz/+WO4ybKqwsFA0a9ZMpKWliR49eogJEybIXZJNJCQkiLCwMLnLqDVvvfWW6Natm9xl1BiPLNADlZWV4dChQ+jTp49pzMnJCX369MFPP/0kY2X0MAoKCgAA9evXl7kS2zMYDFi/fj1u3bqFiIgIucuxqbFjxyI6Otrs79BRnDlzBn5+fnj88ccRFxeH7OxsuUuyma+//hrh4eF49tln0bBhQzz55JNYtWqV3GVZjWGBHigvLw8GgwGPPfaY2fhjjz2GK1euyFQVPYzy8nJMnDgRXbt2Rdu2beUux2aOHj2KevXqwcXFBf/85z+xefNmtG7dWu6ybGb9+vU4fPgw5syZI3cpNte5c2esXbsW3377LZYtW4Zz586he/fuKCwslLs0m/jjjz+wbNkyNGvWDN999x1ee+01jB8/HuvWrZO7NKso+lMn5fCvf/0L8+bNk9zmxIkTDjdBhxzD2LFjcezYMYc6JwwALVq0QFZWFgoKCrBx40aMHDkSe/bscYjAcPHiRUyYMAFpaWlwdXWVuxyb69+/v+lxu3bt0LlzZwQFBeHzzz/HmDFjZKzMNsrLyxEeHo533nkHAPDkk0/i2LFjWL58OUaOHClzdZZjWLDS5MmTMWrUKMltHn/88UdTzCPi6+sLtVqNq1evmo1fvXoVjRo1kqkqstYbb7yBLVu2ID093W4/2v1hOTs7o2nTpgCADh06IDMzE4sXL8aKFStkrqzmDh06hGvXruGpp54yjRkMBqSnp2PJkiUoLS2FWq2WsULb8vLyQvPmzfH777/LXYpNNG7cuFJobdWqFTZt2iRTRQ+HYcFKDRo0QIMGDeQu45FydnZGhw4dsGPHDgwZMgSAMS3v2LEDb7zxhrzF0QMJITBu3Dhs3rwZu3fvRkhIiNwl1bry8nKUlpbKXYZNPP300zh69KjZWHx8PFq2bIm33nrLoYICABQVFeHs2bN46aWX5C7FJrp27VrpUuXTp08jKChIpooeDsNCLcrOzsb169eRnZ0Ng8GArKwsAEDTpk1Rr149eYuz0qRJkzBy5EiEh4ejU6dOWLRoEW7duoX4+Hi5S7OJoqIis3/JnDt3DllZWahfvz6aNGkiY2U1N3bsWKSkpOCrr76Ch4eHaZ6Jp6cn3NzcZK6u5qZPn47+/fujSZMmKCwsREpKCnbv3o3vvvtO7tJswsPDo9L8krp168LHx8ch5p1MmTIFAwcORFBQEHJzc5GQkAC1Wo3hw4fLXZpNvPnmm+jSpQveeecdPPfcczhw4ABWrlyJlStXyl2adeS+HMORjRw5UgCo9LVr1y65S3soH374oWjSpIlwdnYWnTp1Ej///LPcJdnMrl27qvxdjRw5Uu7SaqyqvgCINWvWyF2aTYwePVoEBQUJZ2dn0aBBA/H000+L77//Xu6yapUjXTr5/PPPi8aNGwtnZ2fh7+8vnn/+efH777/LXZZNffPNN6Jt27bCxcVFtGzZUqxcuVLukqzGj6gmIiIiSbx0koiIiCQxLBAREZEkhgUiIiKSxLBAREREkhgWiIiISBLDAhEREUliWCAiIiJJDAtEREQkiWGBiGQzatQo0+eNAEDPnj0xceJE2eohoqoxLBApiMFgQJcuXRATE2M2XlBQgMDAQMyYMUPy+b///jvi4+MREBAAFxcXhISEYPjw4Th48GBtlm2x1NRUzJ4926avmZiYiPbt29v0NYn+bhgWiBRErVZj7dq1+Pbbb/F///d/pvFx48ahfv36SEhIqPa5Bw8eRIcOHXD69GmsWLECx48fx+bNm9GyZUtMnjy5VuvW6/UWbVe/fn14eHjUai1E9BDk/nAKIrLe4sWLhbe3t8jNzRVffvml0Gg0Iisrq9rty8vLRZs2bUSHDh2EwWCotP7GjRumx7/++qvo1auXcHV1FfXr1xevvPKKKCwsNK03GAwiKSlJ+Pv7C2dnZxEWFia2b99uWn/u3DkBQKxfv15ERkYKFxcXsWbNGnHnzh3x5ptvCk9PT1G/fn0xdepUMWLECDF48GDTc+//gKSgoCCRnJws4uPjRb169URgYKBYsWKFWe3Tpk0TzZo1E25ubiIkJET8+9//FmVlZUIIIdasWVPtB2jduHFDjBkzRvj6+goPDw/Rq1cvyZ8h0d8ZwwKRApWXl4uePXuKp59+WjRs2FDMnj1bcvvDhw8LACIlJUVyu6KiItG4cWMRExMjjh49Knbs2CFCQkLMPn1zwYIFQqvVis8++0ycPHlSTJs2TWg0GnH69GkhxN2wEBwcLDZt2iT++OMPkZubK+bNmye8vb3Fpk2bxPHjx8WYMWOEh4fHA8NC/fr1xdKlS8WZM2fEnDlzhJOTkzh58qRpm9mzZ4u9e/eKc+fOia+//lo89thjYt68eUIIIYqLi8XkyZNFmzZtxOXLl8Xly5dFcXGxEEKIPn36iIEDB4rMzExx+vRpMXnyZOHj4yPy8/Mt+RUQ/a0wLBAp1IkTJwQA8cQTTwi9Xi+57YYNGwQAcfjwYcntVq5cKby9vUVRUZFpbOvWrcLJyUlcuXJFCCGEn5+fSE5ONntex44dxeuvvy6EuBsWFi1aZLZN48aNxbvvvmta1uv1IiAg4IFh4cUXXzQtl5eXi4YNG4ply5ZV28P8+fNFhw4dTMsJCQkiLCzMbJsff/xRaLVacfv2bbPx0NDQSkcuiEiIOnKd/iCimlm9ejXc3d1x7tw55OTkIDg4uNpthYWfRH/ixAmEhYWhbt26prGuXbuivLwcp06dgpubG3Jzc9G1a1ez53Xt2hVHjhwxGwsPDzc9LigowOXLl9G5c2fTWJ06dRAeHv7A2tq1a2d6rFKp0KhRI1y7ds00tmHDBnzwwQc4e/YsioqKcOfOHWi1WsnXPHLkCIqKiuDj42M2XlJSgrNnz0o+l+jviBMciRRo3759WLhwIbZs2YJOnTphzJgxkjvd5s2bAwBOnjz5qEo0Cxw1odFozJZVKhXKy8sBAD/99BPi4uIwYMAAbNmyBb/88gtmzJiBsrIyydcsKipC48aNkZWVZfZ16tQpTJ061SZ1EzkShgUihSkuLsaoUaPw2muvoVevXvjkk09w4MABLF++vNrntG/fHq1bt8b7779v2tHe6+bNmwCAVq1a4ciRI7h165Zp3d69e+Hk5IQWLVpAq9XCz88Pe/fuNXv+3r170bp162rf39PTE40bN8b+/ftNY3fu3MGhQ4csbbtK+/btQ1BQEGbMmIHw8HA0a9YMFy5cMNvG2dkZBoPBbOypp57ClStXUKdOHTRt2tTsy9fXt0Y1ETkihgUihZk+fTqEEJg7dy4AIDg4GO+99x6mTZuG8+fPV/kclUqFNWvW4PTp0+jevTu2bduGP/74A7/++iuSk5MxePBgAEBcXBxcXV0xcuRIHDt2DLt27cK4cePw0ksv4bHHHgMATJ06FfPmzcOGDRtw6tQp/Otf/0JWVhYmTJggWfeECRMwd+5cfPnllzh58iRef/11U0h5WM2aNUN2djbWr1+Ps2fP4oMPPsDmzZvNtgkODsa5c+eQlZWFvLw8lJaWok+fPoiIiMCQIUPw/fff4/z589i3bx9mzJhhN/ecILIr8k6ZICJr7N69W6jVavHjjz9WWte3b1/Ru3dvUV5eXu3zT506JUaMGCH8/PyEs7OzCAoKEsOHDzeb+GjJpZOJiYnC399faDSaai+d/OWXX8zeW6/XiwkTJgitViu8vLzEpEmTLLp0cuHChWavExYWJhISEkzLU6dOFT4+PqJevXri+eefFwsXLhSenp6m9bdv3xb/8z//I7y8vMwundTpdGLcuHHCz89PaDQaERgYKOLi4kR2dna1Pz+ivyuVEBbOfCIiIqK/JZ6GICIiIkkMC0RERCSJYYGIiIgkMSwQERGRJIYFIiIiksSwQERERJIYFoiIiEgSwwIRERFJYlggIiIiSQwLREREJIlhgYiIiCT9P8ZJWoVGX9vmAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plotpoints(C)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "z = model.binary_var_dict(C, name = \"z\")" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "model.minimize(model.sum(z[x, y] * model.sum(d[x, y, p] for p in P) for x, y in C))" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "docplex.mp.LinearConstraint[](z_0_0+z_0_1+z_0_2+z_0_3+z_0_4+z_0_5+z_1_0+z_1_1+z_1_2+z_1_3+z_1_4+z_1_5+z_2_0+z_2_1+z_2_2+z_2_3+z_2_4+z_2_5+z_3_0+z_3_1+z_3_2+z_3_3+z_3_4+z_3_5+z_4_0+z_4_1+z_4_2+z_4_3+z_4_4+z_4_5+z_5_0+z_5_1+z_5_2+z_5_3+z_5_4+z_5_5,EQ,1)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.add_constraint(model.sum(z[x, y] for x in X for y in Y) == 1)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'location.lp'" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.export_as_lp(\"location.lp\")" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2022-11-27 | 9160aff4d\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 21.048542 after 0.00 sec. (0.00 ticks)\n", - "Found incumbent of value 8.418597 after 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "MIP Presolve eliminated 1 rows and 36 columns.\n", - "All rows and columns eliminated.\n", - "Presolve time = 0.00 sec. (0.01 ticks)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.00 sec. (0.02 ticks)\n", - "Parallel b&c, 16 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.00 sec. (0.02 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=8.4186,values={z_2_3:1})" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "8.418597068495664\n", - "[(2, 3)]\n" - ] - } - ], - "source": [ - "obj = model.objective_value\n", - "assigment = [(x, y) for x in X for y in Y if z[x, y].solution_value == 1]\n", - "print(obj)\n", - "print(assigment)\n", - "# yayyyyy this is what we expected from the calc solve" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Madi/ILP/BankTeller_Problem.ipynb b/Madi/ILP/BankTeller_Problem.ipynb deleted file mode 100644 index 8addfd3..0000000 --- a/Madi/ILP/BankTeller_Problem.ipynb +++ /dev/null @@ -1,339 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## **Bank Teller Problem**\n", - "The Northside Bank is working to develop an efficient work\n", - "schedule for full-time and part-time tellers. The schedule must provide for efficient\n", - "operation of the bank, including adequate customer service, employee breaks, and so\n", - "on. On Fridays, the bank is open from 9:00 a.m. to 7:00 p.m. The number of tellers\n", - "necessary to provide adequate customer service during each hour of operation is summarized as follows:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
TimeNo. of Tellers
9:00 a.m. – 10:00 a.m.6
10:00 a.m. – 11:00 a.m.4
11:00 a.m. – Noon8
Noon – 1:00 p.m.10
1:00 p.m. – 2:00 p.m.9
2:00 p.m. – 3:00 p.m.6
3:00 p.m. – 4:00 p.m.4
4:00 p.m. – 5:00 p.m.7
5:00 p.m. – 6:00 p.m.6
6:00 p.m. – 7:00 p.m.6
\n", - "\n", - "Each full-time employee starts on the hour and works a 4-hour shift, followed by a\n", - "1-hour break and then a 3-hour shift. Part-time employees work one 4-hour shift beginning on the hour. Considering salary and fringe benefits, full-time employees cost the\n", - "bank $15 per hour ($105 a day), and part-time employees cost the bank $8 per hour\n", - "($32 per day).\n", - "\n", - "Formulate an integer programming model that can be used to develop a schedule\n", - "that will satisfy customer service needs at a minimum employee cost.\n", - "\n", - "\n", - "## **Sets**\n", - "$\\mathcal{T}$: Set of all shifts.\n", - "\n", - "$\\mathcal{F}$: Full time employee start times.\n", - "\n", - "$\\mathcal{P}$: Part time employee start times.\n", - "\n", - "## **Indecies**\n", - "\n", - "$t \\in \\mathcal{T}$: Index of a shit.\n", - "\n", - "$f \\in \\mathcal{F}$: Index of full time employee start time.\n", - "\n", - "$p \\in \\mathcal{P}$: Index of part time employee start time.\n", - "\n", - "## **Data**\n", - "\n", - "$n_{t}, t \\in \\mathcal{T}$: Number of tellers that need to be working during shift $t$.\n", - "\n", - "$w_{ft}, f \\in \\mathcal{F}, t \\in \\mathcal{T}$ binary number indicating whether full time employee starting at $f$ is working at $t$.\n", - "\n", - "$c_{pt}, p \\in \\mathcal{F}, t \\in \\mathcal{T}$ binary number indicating whether part time employee starting at $p$ is working at $t$.\n", - "\n", - "$d$: Daily salary for full time employee.\n", - "\n", - "$e$: Daily salary for part time employee.\n", - "\n", - "## **Decision Variables**\n", - "$x_{f}, f \\in \\mathcal{F}$: Number of full time employees to start at time $f$.\n", - "\n", - "$y_{p}, p \\in \\mathcal{P}$: Number of part time employees to start at time $p$.\n", - "\n", - "## **Formulation**\n", - "**Objective Function**\n", - "\\begin{align*}\n", - "\\mathrm{Min}\\sum_{f \\in \\mathcal{F}}x_{f} + \\sum_{p \\in \\mathcal{P}} y_{p}\n", - "\\end{align*}\n", - "\n", - "**S.T.**\n", - "\\begin{gather}\n", - "\\sum_{f \\in \\mathcal{F}}x_{f}w_{ft} + \\sum_{p \\in \\mathcal{P}} y_{p}c_{pt} \\ge n_{t}, \\forall t \\in \\mathcal{T}\\\\\n", - "x_{f} \\ge 0, f \\in \\mathcal{F} \\\\\n", - "x_{f} \\in \\mathbb{Z}, f \\in \\mathcal{F} \\\\\n", - "y_{p} \\ge 0, p \\in \\mathcal{P} \\\\\n", - "y_{p} \\in \\mathbb{Z}, p \\in \\mathcal{P} \\\\\n", - "\\end{gather}\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "model = Model(name = \"BankTellers\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "T = list(range(10))\n", - "F = list(range(3))\n", - "P = list(range(7))\n", - "\n", - "n = [6, 4, 8, 10, 9, 6, 4, 7, 6, 6]\n", - "\n", - "w = [\n", - " [1, 1, 1, 1, 0, 1, 1, 1, 0, 0],\n", - " [0, 1, 1, 1, 1, 0, 1, 1, 1, 0],\n", - " [0, 0, 1, 1, 1, 1, 0, 1, 1, 1]\n", - "]\n", - "\n", - "c = [\n", - " [1, 1, 1, 1, 0, 0, 0, 0, 0, 0],\n", - " [0, 1, 1, 1, 1, 0, 0, 0, 0, 0],\n", - " [0, 0, 1, 1, 1, 1, 0, 0, 0, 0],\n", - " [0, 0, 0, 1, 1, 1, 1, 0, 0, 0],\n", - " [0, 0, 0, 0, 1, 1, 1, 1, 0, 0],\n", - " [0, 0, 0, 0, 0, 1, 1, 1, 1, 0],\n", - " [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "x = model.integer_var_list(len(F), lb = 0, name = \"x\")\n", - "y = model.integer_var_list(len(P), lb = 0, name = \"y\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "model.minimize(model.sum(x[f] for f in F) + model.sum(y[p] for p in P))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "for t in T:\n", - " model.add_constraint(model.sum(w[f][t] * x[f] for f in F) + model.sum(c[p][t] * y[p] for p in P) >= n[t])" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'BankTellers.lp'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.export_as_lp(\"BankTellers.lp\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2022-11-27 | 9160aff4d\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 25.000000 after 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "MIP Presolve eliminated 2 rows and 0 columns.\n", - "Reduced MIP has 8 rows, 10 columns, and 41 nonzeros.\n", - "Reduced MIP has 0 binaries, 10 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.00 sec. (0.02 ticks)\n", - "Tried aggregator 1 time.\n", - "Detecting symmetries...\n", - "Reduced MIP has 8 rows, 10 columns, and 41 nonzeros.\n", - "Reduced MIP has 0 binaries, 10 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.00 sec. (0.02 ticks)\n", - "MIP emphasis: balance optimality and feasibility.\n", - "MIP search method: dynamic search.\n", - "Parallel mode: deterministic, using up to 16 threads.\n", - "Root relaxation solution time = 0.00 sec. (0.01 ticks)\n", - "\n", - " Nodes Cuts/\n", - " Node Left Objective IInf Best Integer Best Bound ItCnt Gap\n", - "\n", - "* 0+ 0 25.0000 0.0000 100.00%\n", - "* 0+ 0 15.0000 0.0000 100.00%\n", - " 0 0 cutoff 15.0000 15.0000 9 0.00%\n", - " 0 0 cutoff 15.0000 15.0000 9 0.00%\n", - "Elapsed time = 0.02 sec. (0.07 ticks, tree = 0.01 MB, solutions = 2)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.02 sec. (0.07 ticks)\n", - "Parallel b&c, 16 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.02 sec. (0.07 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=15,values={x_0:6,x_1:3,x_2:6})" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "6.0\n", - "9.0\n", - "15.0\n", - "15.0\n", - "9.0\n", - "12.0\n", - "9.0\n", - "15.0\n", - "9.0\n", - "6.0\n", - "Objective value: 15.0\n", - "[6.0, 3.0, 6.0]\n", - "[0, 0, 0, 0, 0, 0, 0]\n" - ] - } - ], - "source": [ - "obj = model.objective_value\n", - "assignmentx = [x[f].solution_value for f in F]\n", - "assignmenty = [y[p].solution_value for p in P]\n", - "\n", - "for t in T:\n", - " assert sum(w[f][t] * assignmentx[f] for f in F) + sum(c[p][t] * assignmenty[p] for p in P) >= n[t]\n", - "\n", - "# turns out part timers are uselss (:\n", - "print(\"Objective value: \", obj)\n", - "print(assignmentx)\n", - "print(assignmenty)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.0" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Madi/ILP/ComponentOrdering_Problem.ipynb b/Madi/ILP/ComponentOrdering_Problem.ipynb deleted file mode 100644 index d7e796c..0000000 --- a/Madi/ILP/ComponentOrdering_Problem.ipynb +++ /dev/null @@ -1,81 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Morgan Inc. is planning the purchase of one of the component\n", - "parts it needs for its finished product. The anticipated demands for the component for\n", - "the next 12 periods are shown in the following table.\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Period123456789101112
Demand2020304014036050054046080020
\n", - "\n", - " The cost to order the component\n", - "(labor, shipping, and paperwork) is $150. The cost to hold these components in inventory is $1 per component per period. The price of the component is expected to remain\n", - "stable at $12 per unit for the next 12 periods, and no quantity discounts are available.\n", - "The maximum order size is 1,000 units.\n", - "Formulate a model to minimize the total cost of satisfying Morgan Inc.’s demand\n", - "for this component." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.10" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "9682219fa65ec76ab0a712f3cc506ba5eb9451d445ad0b772c7739d17e7a6e46" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Madi/ILP/Locating_Police_Substations.ipynb b/Madi/ILP/Locating_Police_Substations.ipynb deleted file mode 100644 index e085cdd..0000000 --- a/Madi/ILP/Locating_Police_Substations.ipynb +++ /dev/null @@ -1,238 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Locating Police Substations**\n", - "Grave City is considering the relocation of several police substations to obtain better enforcement in high-crime areas. The locations under consideration together with the areas that can be covered from these locations are given in the following table:\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Potential Locations for SubstationsAreas Covered
A1, 5, 7
B1, 2, 5, 7
C1, 3, 5
D2, 4, 5
E3, 4, 6
F4, 5, 6
G1, 5, 6, 7
\n", - "\n", - "### **Sets**\n", - "$\\mathcal{P}$: Set of police substations.\n", - "\n", - "$\\mathcal{A}$: Set of Areas to cover.\n", - "\n", - "### **Indecies**\n", - "$p \\in \\mathcal{P}$: index of police substation.\n", - "\n", - "$a \\in \\mathcal{A}$: index of area to cover.\n", - "\n", - "### **Data**\n", - "$c_{ap}, a \\in \\mathcal{A}, p \\in \\mathcal{P}$: a binary value indicating whether area $a$ is covered by substation $p$.\n", - "\n", - "### **Decision Vars**\n", - "$x_{p}, p \\in \\mathcal{P}$, Binary variable indicating whether to use location $p$ or not. \n", - "\n", - "### **Formulation**\n", - "**Objective function**\n", - "\\begin{align*}\n", - "\\mathrm{Min} \\sum_{p \\in \\mathcal{P}} x_{p}\n", - "\\end{align*}\n", - "\n", - "**S.T.**\n", - "\\begin{gather}\n", - "\\sum_{p \\in \\mathcal{P}} c_{ap}x_{p} \\ge 1, \\forall a \\in \\mathcal{A} \\\\\n", - "x_{p} \\in \\{1, 0\\}, \\forall p \\in \\mathcal{P}\n", - "\\end{gather}" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "model = Model(name='Substations')" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "P = list(range(7))\n", - "A = list(range(7))\n", - "\n", - "c = [\n", - " [1, 0, 0, 0, 1, 0, 1],\n", - " [1, 1, 0, 0, 1, 0, 1],\n", - " [1, 0, 1, 0, 1, 0, 0],\n", - " [0, 1, 0, 1, 1, 0, 0],\n", - " [0, 0, 1, 1, 0, 1, 0],\n", - " [0, 0, 0, 1, 1, 1, 0],\n", - " [1, 0, 0, 0, 1, 1, 1]\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "x = model.binary_var_list(len(P), name = \"x\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "model.minimize(model.sum(x[p] for p in P))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "for a in A:\n", - " model.add_constraint(model.sum(c[p][a] * x[p] for p in P) >= 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'substation.lp'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.export_as_lp(\"substation.lp\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2022-11-27 | 9160aff4d\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 7.000000 after 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "MIP Presolve eliminated 7 rows and 6 columns.\n", - "All rows and columns eliminated.\n", - "Presolve time = 0.00 sec. (0.01 ticks)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.00 sec. (0.01 ticks)\n", - "Parallel b&c, 16 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.00 sec. (0.01 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=2,values={x_1:1,x_4:1})" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Objective value: 2.0\n", - "[0, 1.0, 0, 0, 1.0, 0, 0]\n" - ] - } - ], - "source": [ - "obj = model.objective_value\n", - "assignment = [x[p].solution_value for p in P]\n", - "\n", - "print(\"Objective value: \", obj)\n", - "print(assignment)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Madi/ILP/Nurse_Scheduling.ipynb b/Madi/ILP/Nurse_Scheduling.ipynb deleted file mode 100644 index 8fa0bbb..0000000 --- a/Madi/ILP/Nurse_Scheduling.ipynb +++ /dev/null @@ -1,266 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Nurse Scheduling**\n", - "Hospital administrators must schedule nurses so that the hospital’s patients are provided adequate care. At the same time, careful attention must be paid to keeping costs down. From historical records, administrators can project the minimum number of nurses required to be on hand for various times of day and days of the week. \n", - "\n", - "The objective is to find the minimum total number of nurses required to provide adequate care.Nurses start work at the beginning of one of the four-hour shifts given below (except for shift 6) and work for 8 consecutive hours. Hence, possible start times are the start of shifts 1 through 5. Also, assume that the projected required number of nurses factors in time for each nurse to have a meal break.\n", - "\n", - "Formulate and solve the nurse scheduling problem as an integer program for one day for the data given below.\n", - "Hint: Note that exceeding the minimum number of needed nurses in each shift is acceptable so long as the total number of nurses over all shifts is minimized.\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Time No. of Nurses
12:00 a.m. – 4:00 a.m.10
4:00 a.m. – 8:00 a.m.24
8:00 a.m. – 12:00 p.m.18
12:00 p.m. – 4:00 p.m.10
4:00 p.m. – 8:00 p.m.23
8:00 p.m. – 12:00 a.m.17
\n", - "\n", - "## **Sets**\n", - "$\\mathcal{T}$: Set of shifts.\n", - "\n", - "$\\mathcal{S}$: Set of nurse start times.\n", - "\n", - "## **Indecies**\n", - "$t \\in \\mathcal{T}$: index of shift in shifts.\n", - "\n", - "$s \\in \\mathcal{S}$ index of start time in possible nurse start times.\n", - "\n", - "## **Data**\n", - "$n_{t}, t \\in \\mathcal{T}$, Amount of needed nurses at each time step.\n", - "\n", - "$w_{st}, t \\in \\mathcal{T}, s \\in \\mathcal{S}$ binary value indicating whether the nurses who started at shift $s$ is working during shift $t$.\n", - "## **Decision Variables**\n", - "$x_s, s \\in \\mathcal{S}$ Number of nurses starting at time $s$.\n", - "## **Formulation**\n", - "**Objective function**\n", - "\\begin{align*}\n", - "\\mathrm{Min} \\sum_{s \\in \\mathcal{S}} x_{s}\n", - "\\end{align*}\n", - "\n", - "**S.T.**\n", - "\\begin{gather}\n", - "\\sum_{s \\in \\mathcal{S}}x_{s} w_{st} \\ge n_{t}, \\forall t \\in \\mathcal{T} \\\\\n", - "x_{s} \\ge 0, \\forall s \\in \\mathcal{S} \\\\\n", - "x_{s} \\in \\mathbb{Z}, \\forall s \\in \\mathcal{S}\\\\\n", - "\\end{gather}\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "model = Model(name = \"Nurse Scheduling\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Data\n", - "T = list(range(6))\n", - "S = list(range(5))\n", - "\n", - "n = [10, 24, 28, 10, 23, 17]\n", - "w = [\n", - " [1, 1, 0, 0, 0, 0],\n", - " [0, 1, 1, 0, 0, 0],\n", - " [0, 0, 1, 1, 0, 0],\n", - " [0, 0, 0, 1, 1, 0],\n", - " [0, 0, 0, 0, 1, 1]\n", - "]\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "x = model.integer_var_list(len(S), name = \"x\", lb = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "model.minimize(model.sum(x[s] for s in S))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "for t in T:\n", - " model.add_constraint(model.sum(w[s][t] * x[s] for s in S) >= n[t])" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Nurse_Scheduling.lp'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.export_as_lp(\"Nurse_Scheduling.lp\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2022-11-27 | 9160aff4d\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 102.000000 after 0.02 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "MIP Presolve eliminated 2 rows and 0 columns.\n", - "Reduced MIP has 4 rows, 5 columns, and 8 nonzeros.\n", - "Reduced MIP has 0 binaries, 5 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.01 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "Detecting symmetries...\n", - "Reduced MIP has 4 rows, 5 columns, and 8 nonzeros.\n", - "Reduced MIP has 0 binaries, 5 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.02 sec. (0.01 ticks)\n", - "MIP emphasis: balance optimality and feasibility.\n", - "MIP search method: dynamic search.\n", - "Parallel mode: deterministic, using up to 16 threads.\n", - "Root relaxation solution time = 0.00 sec. (0.00 ticks)\n", - "\n", - " Nodes Cuts/\n", - " Node Left Objective IInf Best Integer Best Bound ItCnt Gap\n", - "\n", - "* 0+ 0 102.0000 27.0000 73.53%\n", - "* 0 0 integral 0 61.0000 61.0000 3 0.00%\n", - "Elapsed time = 0.06 sec. (0.02 ticks, tree = 0.00 MB, solutions = 1)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.08 sec. (0.02 ticks)\n", - "Parallel b&c, 16 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.08 sec. (0.02 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=61,values={x_0:10,x_1:14,x_2:14,x_.." - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Day 1, will have 10.0\n", - "Day 2, will have 24.0\n", - "Day 3, will have 28.0\n", - "Day 4, will have 14.0\n", - "Day 5, will have 23.0\n", - "Day 6, will have 23.0\n" - ] - } - ], - "source": [ - "obj = model.objective_value\n", - "assignment = [x[s].solution_value for s in S]\n", - "\n", - "for t in T:\n", - " print(f\"Day {t + 1}, will have {sum(w[s][t] * assignment[s] for s in S)}\")\n", - " assert sum(w[s][t] * assignment[s] for s in S) >= n[t]" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Madi/ILP/Television_plan.ipynb b/Madi/ILP/Television_plan.ipynb deleted file mode 100644 index c5ae618..0000000 --- a/Madi/ILP/Television_plan.ipynb +++ /dev/null @@ -1,358 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Television Show Planning**\n", - "John White is the program scheduling manager for the \n", - "television channel CCFO. John would like to plan the schedule of television shows for \n", - "next Wednesday evening.\n", - "The table below lists nine shows under consideration. John must select exactly \n", - "five of these shows for the period from 8:00 p.m. to 10:30 p.m. next Wednesday \n", - "evening. For each television show, the estimated advertising revenue (in $ millions) \n", - "is provided. Furthermore, each show has been categorized into one or more of the \n", - "categories “Public Interest,” “Violent,” “Comedy,” and “Drama.” In the following \n", - "table, a 1 indicates that the show is in the corresponding category and a 0 indicates \n", - "it is not\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ShowRevenue ($ Millions)Public InterestViolentComedyDrama
Sam's Place$60011
Texas Oil$100101
Cincinnati Law$91001
Jarred$40101
Bob & Mary$50010
Chainsaw$20100
Loving Life$61001
Islanders$70010
Urban Sprawl$81000
\n", - "\n", - "John would like to determine a revenue-maximizing schedule of television shows \n", - "for next Wednesday evening. However, he must be mindful of the following \n", - "considerations:\n", - "\n", - "• The schedule must include at least as many shows that are categorized as public \n", - "interest as shows that are categorized as violent.\n", - "\n", - "• If John schedules “Loving Life,” then he must also schedule either “Jarred” or \n", - "“Cincinnati Law” (or both).\n", - "\n", - "• John cannot schedule both “Loving Life” and “Urban Sprawl.”\n", - "\n", - "• If John schedules more than one show in the “Violent” category, he will lose an \n", - "estimated $4 million in advertising revenues from family-oriented sponsors.\n", - "\n", - "## **Sets**\n", - "$\\mathcal{I}$: Set of shows.\n", - "\n", - "## **Indecies**\n", - "$i \\in \\mathcal{I}$: Index of arbitrary show.\n", - "\n", - "## **Data**\n", - "$r_{i}, i \\in \\mathcal{I}$: Revenue gain for each show.\n", - "\n", - "$p_{i}, i \\in \\mathcal{I}$: Binary value indicating whether show $t$ was in public interest category.\n", - "\n", - "$v_{i}, i \\in \\mathcal{I}$: Binary value indicating whether show $t$ was in violent category.\n", - "\n", - "$c_{i}, i \\in \\mathcal{I}$: Binary value indicating whether show $t$ was in comedy category.\n", - "\n", - "$d_{i}, i \\in \\mathcal{I}$: Binary value indicating whether show $t$ was in drama category.\n", - "\n", - "$a$: Violent penalty.\n", - "\n", - "$n$: number of shows.\n", - "\n", - "## **Decision Vars**\n", - "$x_{i}, i \\in \\mathcal{I}$ Binary variable indicating whether to schedule show $i$ or not.\n", - "\n", - "$y$ Binary variable indicating whether the violent penalty applies or not.\n", - "\n", - "## **Formulation**\n", - "**Objective function**\n", - "\\begin{align*}\n", - "\\mathrm{Max}\\sum_{i \\in \\mathcal{I}}x_{i}r_{i} - ya\n", - "\\end{align*}\n", - "\n", - "**S.T.**\n", - "\\begin{gather}\n", - "\\sum_{i \\in \\mathcal{I}} x_{i}p_{i} = \\sum_{i \\in \\mathcal{I}} x_{i}v_{i}\\\\\n", - "x_{7} \\le x_{3} + x_{4}\\\\\n", - "x_{7} \\ge x_{3}\\\\\n", - "x_{7} \\ge x_{4}\\\\\n", - "x_{7} = 1 - x_{9}\\\\\n", - "yn \\ge \\sum_{i \\in \\mathcal{I}} x_{i}v_{i} \\\\\n", - "x_{i} \\in \\{0, 1\\}, \\forall i \\in \\mathcal{I} \\\\\n", - "y \\in \\{0, 1\\}\n", - "\\end{gather}\n", - "\n", - "Helpfull link https://cs.stackexchange.com/questions/12102/express-boolean-logic-operations-in-zero-one-integer-linear-programming-ilp\n", - "\n", - "I think this can be generalized further, but its too much work, also not entirly sure about if statements." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "model = Model(name = \"Television Schedule\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "I = list(range(9))\n", - "\n", - "r = [6, 10, 9, 4, 5, 2, 6, 7, 8]\n", - "p = [0, 0, 1, 0, 0, 0, 1, 0, 1]\n", - "v = [0, 1, 0, 1, 0, 1, 0, 0, 0]\n", - "c = [1, 0, 0, 0, 1, 0, 0, 1, 0]\n", - "d = [1, 1, 1, 1, 0, 0, 1, 0, 0]\n", - "\n", - "a = 4\n", - "n = len(I)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "x = model.binary_var_list(I, name = \"x\")\n", - "y = model.binary_var(name = \"y\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "model.maximize(model.sum(r[i] * x[i] for i in I) - a * y)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "docplex.mp.LinearConstraint[](9y,GE,x_1+x_3+x_5)" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.add_constraint(model.sum(x[i] * p[i] for i in I) == model.sum(v[i] * x[i] for i in I))\n", - "model.add_constraint(x[6] <= x[2] + x[3])\n", - "model.add_constraint(x[6] >= x[2])\n", - "model.add_constraint(x[6] >= x[3])\n", - "model.add_constraint(x[6] == 1 - x[8])\n", - "model.add_constraint(y * n >= model.sum(v[i] * x[i] for i in I))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Television.lp'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.export_as_lp(\"Television.lp\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2022-11-27 | 9160aff4d\n", - "CPXPARAM_Read_DataCheck 1\n", - "Tried aggregator 2 times.\n", - "MIP Presolve eliminated 0 rows and 3 columns.\n", - "MIP Presolve modified 1 coefficients.\n", - "Aggregator did 1 substitutions.\n", - "Reduced MIP has 5 rows, 6 columns, and 15 nonzeros.\n", - "Reduced MIP has 6 binaries, 0 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.00 sec. (0.02 ticks)\n", - "Found incumbent of value 43.000000 after 0.02 sec. (0.02 ticks)\n", - "Probing fixed 1 vars, tightened 0 bounds.\n", - "Probing time = 0.00 sec. (0.00 ticks)\n", - "Cover probing fixed 0 vars, tightened 6 bounds.\n", - "Tried aggregator 1 time.\n", - "MIP Presolve eliminated 5 rows and 6 columns.\n", - "All rows and columns eliminated.\n", - "Presolve time = 0.02 sec. (0.00 ticks)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.03 sec. (0.03 ticks)\n", - "Parallel b&c, 16 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.03 sec. (0.03 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=43,values={x_0:1,x_1:1,x_2:1,x_3:1.." - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "43.0\n", - "[1.0, 1.0, 1.0, 1.0, 1.0, 0, 1.0, 1.0, 0]\n", - "1.0\n" - ] - } - ], - "source": [ - "obj = model.objective_value\n", - "assignment = [x[i].solution_value for i in I]\n", - "assigny = y.solution_value\n", - "\n", - "\n", - "print(obj)\n", - "print(assignment)\n", - "print(assigny)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Madi/LP/BankFunds.ipynb b/Madi/LP/BankFunds.ipynb deleted file mode 100644 index dcfc684..0000000 --- a/Madi/LP/BankFunds.ipynb +++ /dev/null @@ -1,325 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## **Bank Loan Funds Allocation**\n", - "\n", - "Adirondack Savings Bank (ASB) has $1 million in new funds that must be allocated to home loans, personal loans, and automobile loans. The annual rates of return for the three types of loans are 7% for home loans, 12% for personal loans, and 9% for automobile loans. The bank’s planning committee has decided that at least 40% of the new funds must be allocated to home loans. In addition, the planning committee has specified that the amount allocated to personal loans cannot exceed 60% of the amount allocated to automobile loans.\n", - "\n", - "a. Formulate a linear programming model that can be used to determine the amount of funds ASB should allocate to each type of loan to maximize the total annual return for the new funds.\n", - "\n", - "b. How much should be allocated to each type of loan? What is the total annual return? What is the annual percentage return?\n", - "\n", - "c. If the interest rate on home loans increases to 9%, would the amount allocated to each type of loan change? Explain.\n", - "\n", - "d. Suppose the total amount of new funds available is increased by $10,000. What effect would this have on the total annual return? Explain.\n", - "\n", - "e. Assume that ASB has the original $1 million in new funds available and that the planning committee has agreed to relax the requirement that at least 40% of the new funds must be allocated to home loans by 1%. How much would the annual return change? How much would the annual percentage return change?\n", - "\n", - "\n", - "## **Sets**\n", - "\n", - "$\\mathcal{R}$: Set of loan types.\n", - "\n", - "## **Indecies**\n", - "$r$: Index for element in $\\mathcal{R}$\n", - "\n", - "## **Data**\n", - "$l_{r}, r \\in \\mathcal{R}$ Return percentages for each loan type.\n", - "\n", - "$f$, Total availble funds/\n", - "\n", - "\n", - "## **Decision Variables**\n", - "$x_{r}, r \\in \\mathcal{R}$ Amount to allocate to each loan type.\n", - "\n", - "## **Formulation**\n", - "**Objective Function**\n", - "\\begin{align*}\n", - "\\mathrm{Max} \\sum_{r \\in \\mathcal{R}} x_{r} l_{r}\n", - "\\end{align*}\n", - "\n", - "**S.T.**\n", - "\\begin{gather}\n", - "\\sum_{r \\in \\mathcal{R}} x_{r} = f\\\\\n", - "x_{1} \\ge 0.4f\\\\\n", - "x_2 \\le 0.6x_{3}\\\\\n", - "x_{r} \\ge 0, \\forall r \\in \\mathcal{R}\n", - "\\end{gather}\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "model = Model(name = \"Bank_Funds\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "returns = [0.07, 0.12, 0.09]\n", - "f = 1000000\n", - "R = [0, 1, 2]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "x = model.continuous_var_list(len(returns), name = \"x\", lb = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "model.maximize(model.sum(returns[r] * x[r] for r in R))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "model.add_constraint(model.sum(x[r] for r in R) <= f)\n", - "model.add_constraint(x[0] >= 0.4 * f)\n", - "model.add_constraint(x[1] <= 0.6 * x[2])\n", - "for r in R:\n", - " model.add_constraint(x[r] >= 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Bank_Funds.lp'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.export_as_lp(\"Bank_Funds.lp\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2022-11-27 | 9160aff4d\n", - "CPXPARAM_Read_DataCheck 1\n", - "Tried aggregator 1 time.\n", - "LP Presolve eliminated 5 rows and 2 columns.\n", - "Aggregator did 1 substitutions.\n", - "All rows and columns eliminated.\n", - "Presolve time = 0.02 sec. (0.00 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=88750,values={x_0:400000,x_1:22500.." - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "88750.0\n" - ] - }, - { - "data": { - "text/plain": [ - "[400000.0, 225000.0, 375000.0]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "obj = model.objective_value\n", - "assignment = [x[r].solution_value for r in R]\n", - "\n", - "\n", - "print(obj)\n", - "assignment" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "x_0+x_1+x_2 <= 1000000 0.10124999999999999\n", - "x_0 >= 400000.0 -0.031249999999999986\n", - "x_1 <= 0.600x_2 0.01875\n", - "x_0 >= 0 0\n", - "x_1 >= 0 0\n", - "x_2 >= 0 0\n" - ] - } - ], - "source": [ - "for ct in model.iter_constraints():\n", - " print(ct, ct.dual_value)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "cpx = model.get_engine().get_cplex()" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[(400000.0, 1e+20),\n", - " (0.0, 1000000.0),\n", - " (-360000.0, 600000.0),\n", - " (-1e+20, 400000.0),\n", - " (-1e+20, 225000.0),\n", - " (-1e+20, 375000.0)]" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cpx.solution.sensitivity.objective()\n", - "cpx.solution.sensitivity.rhs()" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "x_0+x_1+x_2 <= 1000000\n", - "0.10124999999999999\n", - "x_0 >= 400000.0\n", - "-0.031249999999999986\n", - "x_1 <= 0.600x_2\n", - "0.01875\n", - "x_0 >= 0\n", - "0\n", - "x_1 >= 0\n", - "0\n", - "x_2 >= 0\n", - "0\n" - ] - } - ], - "source": [ - "for ct in model.iter_constraints():\n", - " print(ct)\n", - " print(ct.dual_value)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "x_0\n", - "0\n", - "x_1\n", - "0\n", - "x_2\n", - "0\n" - ] - } - ], - "source": [ - "for ct in model.iter_variables():\n", - " print(ct)\n", - " print(ct.reduced_cost)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Madi/Problems_for_fun/knapsack.ipynb b/Madi/Problems_for_fun/knapsack.ipynb deleted file mode 100644 index d7170d8..0000000 --- a/Madi/Problems_for_fun/knapsack.ipynb +++ /dev/null @@ -1,168 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "# i was curious how fast it can solve knapsack problem\n", - "from docplex.mp.model import Model\n", - "model = Model(name = 'knapsack')" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "from random import randint\n", - "n = 100000\n", - "nums = [randint(100000, 100000000) for _ in range(n)]\n", - "weights = [randint(1, 100) for _ in range(n)]\n", - "cap = 300" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "x = model.binary_var_list(n, name = 'x')" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "model.maximize(model.sum(x[i] * nums[i] for i in range(n)))" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "docplex.mp.LinearConstraint[](60x_0+83x_1+29x_2+62x_3+59x_4+95x_5+45x_6+5x_7+52x_8+77x_9+23x_10+91x_11+81x_12+87x_13+31x_14+20x_15+97x_16+41x_17+28x_18+26x_19+99x_20+76x_21+22x_22+46x_23+91x_24+35x_25+99x_26+69x_27+49x_28+100x_29+7x_30+63x_31+100x_32+91x_33+14x_34+11x_35+44x_36+85x_37+12x_38+71x_39+91x_40+36x_41+52x_42+94x_43+43x_44+18x_45+48x_46+96x_47+85x_48+26x_49+29x_50+86x_51+55x_52+41x_53+74x_54+94x_55+56x_56+79x_57+35x_58+5x_59+69x_60+3x_61+60x_62+31x_63+99x_64+99x_65+55x_66+58x_67+33x_68+4x_69+51x_70+85x_71+33x_72+52x_73+60x_74+35x_75+2x_76+31x_77+81x_78+92x_79+64x_80+76x_81+45x_82+44x_83+64x_84+38x_85+59x_86+59x_87+92x_88+78x_89+10x_90+98x_91+61x_92+51x_93+44x_94+89x_95+65x_96+62x_97+13x_98+15x_99+67x_100+27x_101+22x_102+91x_103+71x_104+32x_105+93x_106+74x_107+93x_108+15x_109+28x_110+57x_111+18x_112+70x_113+78x_114+71x_115+15x_116+44x_117+18x_118+40x_119+39x_120+46x_121+46x_122+31x_123+81x_124+48x_125+45x_126+74x_127+3x_128+99x_129+57x_130+84x_131+30x_132+32x_133+24x_134+27x_135+64x_136+73x_137+11x_138+52x_139+45x_140+69x_141+28x_142+38x_143+61x_144+35x_145+91x_146+73x_147+29x_148+87x_149+33x_150+77x_151+x_152+41x_153+75x_154+9x_155+12x_156+91x_157+43x_158+45x_159+11x_160+15x_161+12x_162+13x_163+92x_164+61x_165+39x_166+42x_167+95x_168+7x_169+78x_170+75x_171+9x_172+81x_173+31x_174+23x_175+4x_176+49x_177+13x_178+61x_179+47x_180+86x_181+5x_182+17x_183+92x_184+21x_185+87x_186+77x_187+12x_188+81x_189+69x_190+62x_191+98x_192+74x_193+57x_194+61x_195+58x_196+91x_197+99x_198+29x_199+97x_200+60x_201+34x_202+95x_203+15x_204+97x_205+74x_206+35x_207+65x_208+74x_209+46x_210+41x_211+72x_212+82x_213+10x_214+69x_215+27x_216+71x_217+30x_218+x_219+42x_220+16x_221+68x_222+88x_223+36x_224+75x_225+39x_226+26x_227+33x_228+41x_229+36x_230+77x_231+32x_232+35x_233+81x_234+32x_235+43x_236+84x_237+8x_238+45x_239+90x_240+74x_241+34x_242+2x_243+98x_244+51x_245+19x_246+53x_247+83x_248+94x_249+35x_250+73x_251+96x_252+53x_253+x_254+92x_255+79x_256+49x_257+55x_258+59x_259+31x_260+7x_261+69x_262+48x_263+71x_264+93x_265+68x_266+9x_267+74x_268+43x_269+99x_270+30x_271+14x_272+8x_273+79x_274+9x_275+23x_276+14x_277+88x_278+33x_279+90x_280+47x_281+99x_282+69x_283+82x_284+31x_285+47x_286+14x_287+61x_288+x_289+96x_290+49x_291+21x_292+53x_293+96x_294+31x_295+81x_296+64x_297+9x_298+64x_299+68x_300+50x_301+37x_302+45x_303+25x_304+79x_305+84x_306+19x_307+99x_308+20x_309+2x_310+79x_311+58x_312+9x_313+10x_314+93x_315+94x_316+37x_317+83x_318+42x_319+40x_320+37x_321+99x_322+53x_323+21x_324+42x_325+68x_326+29x_327+21x_328+32x_329+67x_330+35x_331+44x_332+50x_333+45x_334+42x_335+94x_336+41x_337+42x_338+68x_339+82x_340+7x_341+47x_342+41x_343+97x_344+41x_345+5x_346+58x_347+97x_348+53x_349+65x_350+27x_351+62x_352+54x_353+51x_354+4x_355+99x_356+11x_357+49x_358+95x_359+90x_360+4x_361+15x_362+61x_363+82x_364+54x_365+25x_366+89x_367+97x_368+22x_369+38x_370+92x_371+53x_372+69x_373+78x_374+23x_375+35x_376+10x_377+81x_378+40x_379+86x_380+80x_381+85x_382+58x_383+30x_384+77x_385+39x_386+19x_387+2x_388+79x_389+76x_390+52x_391+73x_392+92x_393+70x_394+92x_395+59x_396+68x_397+67x_398+71x_399+15x_400+23x_401+22x_402+58x_403+63x_404+49x_405+99x_406+6x_407+97x_408+67x_409+12x_410+43x_411+78x_412+27x_413+74x_414+37x_415+37x_416+36x_417+55x_418+19x_419+14x_420+45x_421+78x_422+6x_423+25x_424+45x_425+x_426+33x_427+14x_428+86x_429+41x_430+28x_431+x_432+44x_433+22x_434+21x_435+95x_436+3x_437+42x_438+29x_439+42x_440+53x_441+7x_442+86x_443+89x_444+46x_445+69x_446+24x_447+66x_448+82x_449+78x_450+2x_451+53x_452+19x_453+11x_454+80x_455+93x_456+93x_457+64x_458+74x_459+65x_460+47x_461+71x_462+98x_463+42x_464+26x_465+2x_466+9x_467+2x_468+48x_469+13x_470+49x_471+78x_472+12x_473+5x_474+61x_475+84x_476+57x_477+95x_478+54x_479+84x_480+63x_481+89x_482+96x_483+6x_484+27x_485+4x_486+45x_487+96x_488+95x_489+86x_490+3x_491+16x_492+69x_493+31x_494+18x_495+72x_496+36x_497+6x_498+84x_499+63x_500+61x_501+10x_502+64x_503+89x_504+2x_505+14x_506+100x_507+91x_508+8x_509+50x_510+53x_511+80x_512+46x_513+83x_514+49x_515+60x_516+62x_517+87x_518+96x_519+100x_520+49x_521+29x_522+43x_523+83x_524+79x_525+68x_526+17x_527+70x_528+84x_529+63x_530+56x_531+29x_532+91x_533+41x_534+31x_535+85x_536+x_537+20x_538+89x_539+48x_540+87x_541+29x_542+10x_543+85x_544+44x_545+74x_546+8x_547+40x_548+61x_549+10x_550+2x_551+65x_552+87x_553+76x_554+13x_555+33x_556+71x_557+80x_558+29x_559+3x_560+98x_561+51x_562+24x_563+76x_564+9x_565+81x_566+92x_567+x_568+36x_569+63x_570+19x_571+76x_572+99x_573+24x_574+49x_575+79x_576+4x_577+83x_578+6x_579+12x_580+28x_581+80x_582+21x_583+37x_584+58x_585+59x_586+58x_587+34x_588+14x_589+99x_590+97x_591+99x_592+79x_593+31x_594+83x_595+19x_596+29x_597+50x_598+15x_599+97x_600+16x_601+55x_602+77x_603+71x_604+78x_605+89x_606+45x_607+5x_608+24x_609+10x_610+77x_611+22x_612+64x_613+96x_614+11x_615+22x_616+97x_617+77x_618+67x_619+47x_620+67x_621+97x_622+89x_623+25x_624+89x_625+98x_626+95x_627+98x_628+53x_629+82x_630+29x_631+28x_632+67x_633+83x_634+76x_635+21x_636+22x_637+11x_638+59x_639+3x_640+23x_641+55x_642+27x_643+55x_644+14x_645+32x_646+91x_647+74x_648+100x_649+51x_650+99x_651+84x_652+58x_653+38x_654+83x_655+32x_656+14x_657+100x_658+74x_659+5x_660+41x_661+x_662+95x_663+67x_664+73x_665+31x_666+97x_667+99x_668+47x_669+17x_670+18x_671+99x_672+87x_673+88x_674+66x_675+27x_676+68x_677+48x_678+77x_679+4x_680+34x_681+x_682+28x_683+5x_684+20x_685+97x_686+5x_687+4x_688+7x_689+99x_690+9x_691+57x_692+19x_693+16x_694+38x_695+57x_696+73x_697+14x_698+11x_699+70x_700+55x_701+68x_702+8x_703+36x_704+79x_705+25x_706+7x_707+58x_708+x_709+26x_710+18x_711+81x_712+22x_713+40x_714+59x_715+19x_716+76x_717+90x_718+48x_719+74x_720+44x_721+30x_722+80x_723+89x_724+55x_725+69x_726+46x_727+32x_728+54x_729+23x_730+4x_731+63x_732+33x_733+11x_734+32x_735+94x_736+81x_737+78x_738+11x_739+49x_740+90x_741+32x_742+59x_743+7x_744+79x_745+76x_746+27x_747+71x_748+71x_749+59x_750+74x_751+62x_752+34x_753+67x_754+83x_755+6x_756+49x_757+6x_758+36x_759+89x_760+43x_761+27x_762+55x_763+54x_764+58x_765+22x_766+83x_767+98x_768+75x_769+84x_770+10x_771+x_772+81x_773+83x_774+7x_775+6x_776+62x_777+22x_778+92x_779+16x_780+68x_781+25x_782+78x_783+25x_784+80x_785+40x_786+27x_787+x_788+40x_789+15x_790+90x_791+84x_792+71x_793+62x_794+38x_795+22x_796+100x_797+58x_798+16x_799+67x_800+54x_801+87x_802+16x_803+73x_804+94x_805+63x_806+67x_807+72x_808+93x_809+64x_810+14x_811+95x_812+28x_813+56x_814+31x_815+26x_816+12x_817+56x_818+26x_819+74x_820+34x_821+55x_822+x_823+38x_824+78x_825+51x_826+46x_827+13x_828+87x_829+70x_830+29x_831+34x_832+35x_833+72x_834+86x_835+6x_836+71x_837+84x_838+14x_839+10x_840+25x_841+14x_842+100x_843+56x_844+66x_845+39x_846+26x_847+71x_848+7x_849+58x_850+x_851+83x_852+49x_853+27x_854+37x_855+53x_856+45x_857+35x_858+77x_859+88x_860+66x_861+5x_862+40x_863+11x_864+12x_865+4x_866+6x_867+72x_868+69x_869+77x_870+54x_871+35x_872+56x_873+36x_874+4x_875+93x_876+26x_877+84x_878+35x_879+28x_880+48x_881+60x_882+x_883+81x_884+36x_885+7x_886+100x_887+47x_888+79x_889+37x_890+40x_891+87x_892+75x_893+21x_894+100x_895+11x_896+28x_897+21x_898+29x_899+7x_900+10x_901+56x_902+91x_903+99x_904+88x_905+67x_906+24x_907+21x_908+28x_909+59x_910+23x_911+40x_912+61x_913+97x_914+65x_915+19x_916+23x_917+39x_918+82x_919+49x_920+46x_921+100x_922+59x_923+11x_924+100x_925+55x_926+38x_927+54x_928+3x_929+63x_930+18x_931+31x_932+39x_933+92x_934+83x_935+80x_936+32x_937+40x_938+13x_939+91x_940+100x_941+54x_942+53x_943+41x_944+89x_945+81x_946+9x_947+52x_948+4x_949+17x_950+55x_951+81x_952+77x_953+17x_954+96x_955+72x_956+6x_957+14x_958+57x_959+45x_960+88x_961+91x_962+3x_963+65x_964+54x_965+32x_966+4x_967+22x_968+3x_969+77x_970+89x_971+98x_972+55x_973+68x_974+95x_975+87x_976+23x_977+72x_978+54x_979+92x_980+6x_981+77x_982+31x_983+31x_984+49x_985+82x_986+15x_987+89x_988+35x_989+73x_990+29x_991+69x_992+60x_993+8x_994+16x_995+20x_996+79x_997+80x_998+97x_999+2x_1000+46x_1001+65x_1002+x_1003+85x_1004+70x_1005+55x_1006+9x_1007+49x_1008+11x_1009+27x_1010+37x_1011+70x_1012+96x_1013+22x_1014+23x_1015+23x_1016+60x_1017+22x_1018+67x_1019+33x_1020+93x_1021+22x_1022+4x_1023+93x_1024+2x_1025+87x_1026+53x_1027+78x_1028+97x_1029+20x_1030+3x_1031+64x_1032+38x_1033+81x_1034+45x_1035+3x_1036+91x_1037+48x_1038+69x_1039+53x_1040+66x_1041+43x_1042+85x_1043+79x_1044+74x_1045+37x_1046+39x_1047+53x_1048+57x_1049+47x_1050+56x_1051+72x_1052+38x_1053+20x_1054+54x_1055+92x_1056+32x_1057+x_1058+32x_1059+28x_1060+55x_1061+44x_1062+17x_1063+42x_1064+95x_1065+49x_1066+24x_1067+20x_1068+56x_1069+72x_1070+44x_1071+46x_1072+26x_1073+40x_1074+42x_1075+46x_1076+94x_1077+7x_1078+63x_1079+28x_1080+83x_1081+75x_1082+25x_1083+82x_1084+75x_1085+39x_1086+53x_1087+30x_1088+9x_1089+6x_1090+38x_1091+50x_1092+60x_1093+9x_1094+36x_1095+80x_1096+27x_1097+79x_1098+4x_1099+59x_1100+28x_1101+63x_1102+87x_1103+46x_1104+11x_1105+41x_1106+82x_1107+39x_1108+5x_1109+13x_1110+48x_1111+61x_1112+53x_1113+18x_1114+48x_1115+68x_1116+93x_1117+94x_1118+89x_1119+18x_1120+41x_1121+2x_1122+66x_1123+44x_1124+73x_1125+14x_1126+67x_1127+36x_1128+28x_1129+92x_1130+16x_1131+88x_1132+29x_1133+17x_1134+22x_1135+29x_1136+3x_1137+92x_1138+81x_1139+23x_1140+58x_1141+68x_1142+80x_1143+11x_1144+94x_1145+x_1146+69x_1147+73x_1148+99x_1149+66x_1150+55x_1151+5x_1152+41x_1153+8x_1154+8x_1155+46x_1156+20x_1157+79x_1158+41x_1159+66x_1160+54x_1161+17x_1162+22x_1163+28x_1164+50x_1165+45x_1166+67x_1167+65x_1168+14x_1169+33x_1170+11x_1171+70x_1172+32x_1173+70x_1174+99x_1175+87x_1176+92x_1177+63x_1178+25x_1179+5x_1180+23x_1181+89x_1182+91x_1183+60x_1184+85x_1185+70x_1186+86x_1187+74x_1188+8x_1189+14x_1190+56x_1191+38x_1192+67x_1193+59x_1194+25x_1195+86x_1196+49x_1197+93x_1198+30x_1199+42x_1200+49x_1201+60x_1202+12x_1203+40x_1204+99x_1205+41x_1206+6x_1207+46x_1208+49x_1209+36x_1210+37x_1211+51x_1212+58x_1213+86x_1214+27x_1215+21x_1216+71x_1217+x_1218+67x_1219+42x_1220+41x_1221+58x_1222+62x_1223+25x_1224+46x_1225+16x_1226+75x_1227+78x_1228+2x_1229+95x_1230+81x_1231+2x_1232+96x_1233+96x_1234+28x_1235+64x_1236+83x_1237+65x_1238+6x_1239+55x_1240+18x_1241+91x_1242+5x_1243+x_1244+53x_1245+98x_1246+21x_1247+20x_1248+74x_1249+76x_1250+83x_1251+90x_1252+4x_1253+82x_1254+58x_1255+50x_1256+7x_1257+59x_1258+86x_1259+45x_1260+60x_1261+7x_1262+33x_1263+36x_1264+13x_1265+30x_1266+37x_1267+77x_1268+34x_1269+42x_1270+100x_1271+66x_1272+32x_1273+47x_1274+76x_1275+20x_1276+90x_1277+6x_1278+39x_1279+x_1280+56x_1281+14x_1282+x_1283+55x_1284+x_1285+39x_1286+33x_1287+93x_1288+4x_1289+17x_1290+15x_1291+82x_1292+63x_1293+86x_1294+32x_1295+49x_1296+28x_1297+3x_1298+97x_1299+96x_1300+49x_1301+13x_1302+25x_1303+63x_1304+63x_1305+63x_1306+80x_1307+35x_1308+43x_1309+17x_1310+72x_1311+59x_1312+9x_1313+11x_1314+81x_1315+94x_1316+49x_1317+7x_1318+29x_1319+31x_1320+97x_1321+45x_1322+95x_1323+45x_1324+50x_1325+82x_1326+62x_1327+43x_1328+2x_1329+21x_1330+18x_1331+20x_1332+42x_1333+42x_1334+93x_1335+59x_1336+16x_1337+66x_1338+24x_1339+63x_1340+56x_1341+65x_1342+25x_1343+76x_1344+42x_1345+38x_1346+5x_1347+39x_1348+62x_1349+20x_1350+93x_1351+25x_1352+44x_1353+11x_1354+95x_1355+52x_1356+70x_1357+69x_1358+76x_1359+58x_1360+66x_1361+75x_1362+18x_1363+57x_1364+45x_1365+71x_1366+88x_1367+46x_1368+52x_1369+63x_1370+89x_1371+49x_1372+99x_1373+12x_1374+86x_1375+26x_1376+68x_1377+29x_1378+35x_1379+75x_1380+86x_1381+5x_1382+23x_1383+8x_1384+68x_1385+43x_1386+83x_1387+56x_1388+94x_1389+31x_1390+67x_1391+2x_1392+91x_1393+32x_1394+11x_1395+9x_1396+96x_1397+88x_1398+91x_1399+43x_1400+6x_1401+90x_1402+40x_1403+56x_1404+4x_1405+7x_1406+39x_1407+63x_1408+41x_1409+99x_1410+45x_1411+x_1412+48x_1413+67x_1414+73x_1415+10x_1416+68x_1417+58x_1418+54x_1419+89x_1420+44x_1421+80x_1422+56x_1423+6x_1424+5x_1425+26x_1426+48x_1427+40x_1428+26x_1429+53x_1430+55x_1431+79x_1432+42x_1433+19x_1434+67x_1435+9x_1436+45x_1437+91x_1438+25x_1439+67x_1440+69x_1441+39x_1442+65x_1443+46x_1444+28x_1445+55x_1446+50x_1447+25x_1448+83x_1449+85x_1450+16x_1451+48x_1452+64x_1453+47x_1454+13x_1455+72x_1456+48x_1457+44x_1458+3x_1459+70x_1460+76x_1461+55x_1462+62x_1463+x_1464+37x_1465+33x_1466+69x_1467+77x_1468+90x_1469+64x_1470+99x_1471+14x_1472+88x_1473+54x_1474+x_1475+x_1476+x_1477+44x_1478+7x_1479+71x_1480+97x_1481+55x_1482+7x_1483+14x_1484+23x_1485+22x_1486+57x_1487+26x_1488+74x_1489+53x_1490+64x_1491+3x_1492+40x_1493+44x_1494+81x_1495+67x_1496+23x_1497+13x_1498+38x_1499+17x_1500+19x_1501+92x_1502+55x_1503+46x_1504+71x_1505+47x_1506+37x_1507+62x_1508+77x_1509+83x_1510+32x_1511+38x_1512+9x_1513+38x_1514+52x_1515+58x_1516+35x_1517+x_1518+55x_1519+12x_1520+98x_1521+54x_1522+17x_1523+32x_1524+52x_1525+66x_1526+70x_1527+43x_1528+31x_1529+19x_1530+16x_1531+17x_1532+49x_1533+44x_1534+16x_1535+8x_1536+50x_1537+77x_1538+16x_1539+97x_1540+73x_1541+21x_1542+2x_1543+20x_1544+36x_1545+18x_1546+38x_1547+54x_1548+x_1549+28x_1550+69x_1551+24x_1552+24x_1553+30x_1554+22x_1555+69x_1556+82x_1557+100x_1558+20x_1559+92x_1560+98x_1561+42x_1562+54x_1563+12x_1564+62x_1565+3x_1566+5x_1567+65x_1568+27x_1569+69x_1570+65x_1571+18x_1572+42x_1573+75x_1574+96x_1575+46x_1576+77x_1577+19x_1578+52x_1579+95x_1580+54x_1581+2x_1582+96x_1583+88x_1584+25x_1585+75x_1586+36x_1587+8x_1588+3x_1589+59x_1590+10x_1591+46x_1592+31x_1593+59x_1594+27x_1595+67x_1596+25x_1597+88x_1598+10x_1599+72x_1600+16x_1601+66x_1602+90x_1603+66x_1604+66x_1605+97x_1606+89x_1607+54x_1608+37x_1609+97x_1610+48x_1611+42x_1612+98x_1613+74x_1614+16x_1615+38x_1616+76x_1617+22x_1618+3x_1619+67x_1620+54x_1621+10x_1622+37x_1623+78x_1624+2x_1625+74x_1626+34x_1627+56x_1628+68x_1629+88x_1630+8x_1631+63x_1632+45x_1633+9x_1634+58x_1635+43x_1636+81x_1637+32x_1638+2x_1639+74x_1640+8x_1641+100x_1642+93x_1643+80x_1644+94x_1645+4x_1646+x_1647+3x_1648+28x_1649+25x_1650+57x_1651+67x_1652+63x_1653+95x_1654+24x_1655+65x_1656+55x_1657+15x_1658+30x_1659+31x_1660+60x_1661+92x_1662+94x_1663+36x_1664+81x_1665+33x_1666+99x_1667+80x_1668+22x_1669+45x_1670+71x_1671+33x_1672+49x_1673+30x_1674+95x_1675+62x_1676+38x_1677+30x_1678+37x_1679+12x_1680+59x_1681+93x_1682+50x_1683+27x_1684+93x_1685+60x_1686+95x_1687+36x_1688+56x_1689+51x_1690+44x_1691+37x_1692+73x_1693+69x_1694+70x_1695+62x_1696+86x_1697+51x_1698+40x_1699+92x_1700+53x_1701+45x_1702+65x_1703+85x_1704+14x_1705+20x_1706+100x_1707+28x_1708+59x_1709+19x_1710+95x_1711+99x_1712+97x_1713+40x_1714+64x_1715+62x_1716+88x_1717+63x_1718+64x_1719+32x_1720+11x_1721+49x_1722+62x_1723+21x_1724+66x_1725+79x_1726+45x_1727+51x_1728+63x_1729+20x_1730+11x_1731+15x_1732+100x_1733+13x_1734+28x_1735+5x_1736+61x_1737+93x_1738+55x_1739+70x_1740+82x_1741+45x_1742+51x_1743+72x_1744+64x_1745+35x_1746+54x_1747+18x_1748+100x_1749+93x_1750+45x_1751+8x_1752+14x_1753+27x_1754+29x_1755+8x_1756+43x_1757+46x_1758+20x_1759+64x_1760+47x_1761+80x_1762+60x_1763+72x_1764+15x_1765+x_1766+71x_1767+19x_1768+49x_1769+32x_1770+88x_1771+42x_1772+92x_1773+80x_1774+35x_1775+82x_1776+47x_1777+22x_1778+67x_1779+66x_1780+71x_1781+100x_1782+96x_1783+93x_1784+31x_1785+26x_1786+21x_1787+25x_1788+46x_1789+47x_1790+17x_1791+4x_1792+90x_1793+47x_1794+86x_1795+82x_1796+55x_1797+6x_1798+12x_1799+73x_1800+80x_1801+29x_1802+23x_1803+9x_1804+73x_1805+55x_1806+77x_1807+36x_1808+49x_1809+69x_1810+9x_1811+74x_1812+53x_1813+52x_1814+16x_1815+76x_1816+7x_1817+66x_1818+10x_1819+90x_1820+45x_1821+69x_1822+73x_1823+38x_1824+42x_1825+75x_1826+33x_1827+60x_1828+30x_1829+64x_1830+90x_1831+10x_1832+4x_1833+12x_1834+79x_1835+65x_1836+33x_1837+84x_1838+56x_1839+73x_1840+14x_1841+66x_1842+45x_1843+60x_1844+55x_1845+85x_1846+65x_1847+23x_1848+28x_1849+4x_1850+50x_1851+84x_1852+4x_1853+75x_1854+33x_1855+49x_1856+56x_1857+8x_1858+5x_1859+60x_1860+55x_1861+69x_1862+80x_1863+92x_1864+18x_1865+59x_1866+42x_1867+63x_1868+96x_1869+90x_1870+87x_1871+38x_1872+58x_1873+80x_1874+96x_1875+22x_1876+5x_1877+95x_1878+3x_1879+7x_1880+19x_1881+90x_1882+50x_1883+61x_1884+38x_1885+10x_1886+71x_1887+100x_1888+24x_1889+33x_1890+38x_1891+91x_1892+44x_1893+43x_1894+76x_1895+33x_1896+59x_1897+62x_1898+52x_1899+50x_1900+88x_1901+6x_1902+85x_1903+71x_1904+74x_1905+35x_1906+50x_1907+84x_1908+92x_1909+72x_1910+18x_1911+22x_1912+92x_1913+66x_1914+48x_1915+78x_1916+87x_1917+78x_1918+28x_1919+x_1920+83x_1921+5x_1922+29x_1923+25x_1924+43x_1925+16x_1926+45x_1927+46x_1928+45x_1929+22x_1930+87x_1931+23x_1932+97x_1933+61x_1934+94x_1935+69x_1936+5x_1937+79x_1938+8x_1939+84x_1940+18x_1941+26x_1942+88x_1943+86x_1944+5x_1945+48x_1946+82x_1947+22x_1948+19x_1949+30x_1950+86x_1951+16x_1952+11x_1953+53x_1954+37x_1955+41x_1956+69x_1957+89x_1958+94x_1959+92x_1960+93x_1961+22x_1962+34x_1963+51x_1964+90x_1965+87x_1966+17x_1967+51x_1968+56x_1969+81x_1970+9x_1971+55x_1972+50x_1973+60x_1974+16x_1975+94x_1976+46x_1977+2x_1978+21x_1979+93x_1980+52x_1981+64x_1982+86x_1983+97x_1984+74x_1985+67x_1986+37x_1987+95x_1988+11x_1989+18x_1990+44x_1991+x_1992+4x_1993+15x_1994+39x_1995+39x_1996+56x_1997+10x_1998+95x_1999+58x_2000+31x_2001+45x_2002+82x_2003+95x_2004+25x_2005+82x_2006+49x_2007+6x_2008+6x_2009+14x_2010+16x_2011+10x_2012+60x_2013+59x_2014+11x_2015+58x_2016+6x_2017+65x_2018+36x_2019+45x_2020+96x_2021+42x_2022+12x_2023+64x_2024+61x_2025+51x_2026+70x_2027+96x_2028+27x_2029+96x_2030+79x_2031+97x_2032+65x_2033+24x_2034+75x_2035+56x_2036+100x_2037+79x_2038+52x_2039+8x_2040+15x_2041+10x_2042+70x_2043+67x_2044+94x_2045+34x_2046+90x_2047+x_2048+19x_2049+6x_2050+26x_2051+57x_2052+28x_2053+27x_2054+10x_2055+36x_2056+20x_2057+47x_2058+45x_2059+26x_2060+88x_2061+59x_2062+7x_2063+34x_2064+80x_2065+80x_2066+76x_2067+11x_2068+16x_2069+6x_2070+79x_2071+5x_2072+47x_2073+85x_2074+57x_2075+90x_2076+98x_2077+78x_2078+8x_2079+14x_2080+12x_2081+9x_2082+59x_2083+85x_2084+6x_2085+39x_2086+72x_2087+39x_2088+94x_2089+5x_2090+4x_2091+90x_2092+81x_2093+11x_2094+96x_2095+91x_2096+39x_2097+4x_2098+22x_2099+19x_2100+95x_2101+93x_2102+80x_2103+66x_2104+53x_2105+10x_2106+7x_2107+14x_2108+55x_2109+22x_2110+89x_2111+61x_2112+72x_2113+7x_2114+12x_2115+71x_2116+42x_2117+x_2118+30x_2119+20x_2120+35x_2121+86x_2122+38x_2123+76x_2124+47x_2125+66x_2126+62x_2127+75x_2128+47x_2129+20x_2130+23x_2131+27x_2132+82x_2133+76x_2134+8x_2135+26x_2136+33x_2137+9x_2138+18x_2139+49x_2140+98x_2141+10x_2142+42x_2143+72x_2144+91x_2145+8x_2146+72x_2147+54x_2148+74x_2149+18x_2150+19x_2151+48x_2152+95x_2153+23x_2154+55x_2155+62x_2156+3x_2157+40x_2158+64x_2159+81x_2160+55x_2161+21x_2162+40x_2163+22x_2164+86x_2165+17x_2166+44x_2167+80x_2168+46x_2169+69x_2170+66x_2171+33x_2172+75x_2173+87x_2174+89x_2175+11x_2176+64x_2177+80x_2178+68x_2179+25x_2180+70x_2181+85x_2182+59x_2183+97x_2184+84x_2185+44x_2186+23x_2187+6x_2188+8x_2189+51x_2190+82x_2191+13x_2192+49x_2193+41x_2194+67x_2195+20x_2196+68x_2197+45x_2198+4x_2199+97x_2200+83x_2201+97x_2202+28x_2203+60x_2204+33x_2205+88x_2206+59x_2207+34x_2208+87x_2209+93x_2210+11x_2211+46x_2212+17x_2213+44x_2214+96x_2215+68x_2216+49x_2217+77x_2218+34x_2219+32x_2220+14x_2221+83x_2222+78x_2223+32x_2224+50x_2225+74x_2226+44x_2227+x_2228+4x_2229+32x_2230+24x_2231+56x_2232+73x_2233+89x_2234+81x_2235+75x_2236+74x_2237+94x_2238+63x_2239+95x_2240+10x_2241+85x_2242+61x_2243+24x_2244+43x_2245+92x_2246+96x_2247+62x_2248+12x_2249+34x_2250+61x_2251+36x_2252+95x_2253+65x_2254+45x_2255+45x_2256+70x_2257+13x_2258+58x_2259+70x_2260+48x_2261+12x_2262+25x_2263+50x_2264+53x_2265+35x_2266+40x_2267+63x_2268+86x_2269+96x_2270+36x_2271+93x_2272+11x_2273+74x_2274+8x_2275+33x_2276+24x_2277+64x_2278+38x_2279+79x_2280+99x_2281+100x_2282+8x_2283+48x_2284+98x_2285+97x_2286+31x_2287+58x_2288+41x_2289+55x_2290+67x_2291+20x_2292+88x_2293+72x_2294+27x_2295+14x_2296+81x_2297+19x_2298+42x_2299+65x_2300+23x_2301+2x_2302+100x_2303+80x_2304+90x_2305+68x_2306+100x_2307+88x_2308+53x_2309+52x_2310+88x_2311+75x_2312+81x_2313+53x_2314+43x_2315+44x_2316+75x_2317+42x_2318+19x_2319+39x_2320+5x_2321+23x_2322+70x_2323+18x_2324+14x_2325+17x_2326+23x_2327+28x_2328+97x_2329+19x_2330+x_2331+59x_2332+79x_2333+35x_2334+40x_2335+67x_2336+69x_2337+44x_2338+8x_2339+23x_2340+88x_2341+11x_2342+76x_2343+70x_2344+67x_2345+5x_2346+80x_2347+82x_2348+98x_2349+27x_2350+57x_2351+45x_2352+89x_2353+91x_2354+27x_2355+50x_2356+27x_2357+54x_2358+45x_2359+54x_2360+78x_2361+75x_2362+61x_2363+55x_2364+83x_2365+20x_2366+66x_2367+41x_2368+73x_2369+14x_2370+25x_2371+15x_2372+22x_2373+17x_2374+51x_2375+73x_2376+56x_2377+35x_2378+11x_2379+97x_2380+99x_2381+90x_2382+64x_2383+67x_2384+x_2385+45x_2386+98x_2387+32x_2388+100x_2389+26x_2390+13x_2391+98x_2392+43x_2393+24x_2394+56x_2395+68x_2396+54x_2397+41x_2398+74x_2399+47x_2400+58x_2401+66x_2402+23x_2403+40x_2404+37x_2405+5x_2406+70x_2407+78x_2408+40x_2409+15x_2410+2x_2411+17x_2412+20x_2413+10x_2414+73x_2415+34x_2416+14x_2417+92x_2418+80x_2419+72x_2420+6x_2421+81x_2422+41x_2423+70x_2424+76x_2425+58x_2426+8x_2427+40x_2428+53x_2429+70x_2430+84x_2431+78x_2432+98x_2433+30x_2434+17x_2435+71x_2436+89x_2437+43x_2438+38x_2439+89x_2440+24x_2441+86x_2442+41x_2443+82x_2444+60x_2445+x_2446+x_2447+59x_2448+99x_2449+22x_2450+63x_2451+76x_2452+45x_2453+79x_2454+18x_2455+23x_2456+89x_2457+82x_2458+90x_2459+96x_2460+27x_2461+77x_2462+22x_2463+85x_2464+8x_2465+13x_2466+11x_2467+45x_2468+78x_2469+20x_2470+68x_2471+34x_2472+56x_2473+73x_2474+44x_2475+84x_2476+45x_2477+62x_2478+10x_2479+58x_2480+8x_2481+6x_2482+83x_2483+4x_2484+23x_2485+36x_2486+41x_2487+89x_2488+76x_2489+57x_2490+69x_2491+20x_2492+66x_2493+96x_2494+63x_2495+37x_2496+21x_2497+79x_2498+8x_2499+69x_2500+90x_2501+41x_2502+34x_2503+x_2504+69x_2505+59x_2506+9x_2507+73x_2508+91x_2509+77x_2510+9x_2511+54x_2512+8x_2513+16x_2514+55x_2515+38x_2516+68x_2517+34x_2518+46x_2519+24x_2520+60x_2521+74x_2522+95x_2523+16x_2524+36x_2525+88x_2526+61x_2527+29x_2528+27x_2529+90x_2530+18x_2531+53x_2532+72x_2533+50x_2534+8x_2535+8x_2536+69x_2537+42x_2538+8x_2539+77x_2540+11x_2541+72x_2542+50x_2543+13x_2544+92x_2545+93x_2546+74x_2547+85x_2548+57x_2549+9x_2550+68x_2551+97x_2552+44x_2553+61x_2554+37x_2555+64x_2556+61x_2557+67x_2558+x_2559+92x_2560+98x_2561+85x_2562+83x_2563+29x_2564+47x_2565+80x_2566+29x_2567+48x_2568+82x_2569+8x_2570+x_2571+21x_2572+85x_2573+67x_2574+97x_2575+36x_2576+28x_2577+5x_2578+87x_2579+36x_2580+88x_2581+61x_2582+78x_2583+6x_2584+62x_2585+98x_2586+46x_2587+96x_2588+9x_2589+65x_2590+16x_2591+29x_2592+37x_2593+29x_2594+60x_2595+31x_2596+16x_2597+83x_2598+86x_2599+75x_2600+42x_2601+84x_2602+38x_2603+9x_2604+95x_2605+50x_2606+50x_2607+71x_2608+64x_2609+75x_2610+49x_2611+12x_2612+91x_2613+23x_2614+87x_2615+54x_2616+24x_2617+25x_2618+22x_2619+80x_2620+65x_2621+26x_2622+72x_2623+6x_2624+18x_2625+67x_2626+67x_2627+81x_2628+87x_2629+54x_2630+57x_2631+33x_2632+38x_2633+81x_2634+95x_2635+70x_2636+86x_2637+14x_2638+84x_2639+96x_2640+58x_2641+66x_2642+91x_2643+67x_2644+59x_2645+19x_2646+97x_2647+99x_2648+100x_2649+42x_2650+36x_2651+63x_2652+75x_2653+4x_2654+64x_2655+90x_2656+29x_2657+47x_2658+10x_2659+48x_2660+4x_2661+48x_2662+42x_2663+82x_2664+97x_2665+10x_2666+82x_2667+17x_2668+89x_2669+85x_2670+53x_2671+35x_2672+22x_2673+76x_2674+78x_2675+10x_2676+75x_2677+89x_2678+95x_2679+7x_2680+70x_2681+5x_2682+94x_2683+88x_2684+66x_2685+30x_2686+89x_2687+83x_2688+43x_2689+10x_2690+3x_2691+73x_2692+29x_2693+85x_2694+67x_2695+42x_2696+51x_2697+53x_2698+22x_2699+51x_2700+47x_2701+95x_2702+98x_2703+39x_2704+48x_2705+50x_2706+33x_2707+69x_2708+80x_2709+54x_2710+11x_2711+31x_2712+32x_2713+85x_2714+23x_2715+96x_2716+41x_2717+57x_2718+32x_2719+87x_2720+12x_2721+42x_2722+3x_2723+73x_2724+56x_2725+20x_2726+76x_2727+92x_2728+99x_2729+80x_2730+55x_2731+43x_2732+16x_2733+70x_2734+73x_2735+25x_2736+49x_2737+90x_2738+6x_2739+92x_2740+35x_2741+65x_2742+6x_2743+70x_2744+15x_2745+99x_2746+36x_2747+32x_2748+37x_2749+74x_2750+54x_2751+41x_2752+83x_2753+25x_2754+17x_2755+75x_2756+45x_2757+75x_2758+64x_2759+88x_2760+59x_2761+57x_2762+46x_2763+52x_2764+15x_2765+70x_2766+100x_2767+55x_2768+69x_2769+12x_2770+x_2771+43x_2772+54x_2773+42x_2774+65x_2775+50x_2776+22x_2777+94x_2778+22x_2779+29x_2780+73x_2781+72x_2782+30x_2783+45x_2784+66x_2785+19x_2786+55x_2787+10x_2788+14x_2789+16x_2790+37x_2791+100x_2792+62x_2793+53x_2794+8x_2795+38x_2796+89x_2797+85x_2798+76x_2799+10x_2800+11x_2801+68x_2802+78x_2803+41x_2804+9x_2805+37x_2806+75x_2807+70x_2808+25x_2809+x_2810+99x_2811+87x_2812+21x_2813+98x_2814+22x_2815+68x_2816+51x_2817+33x_2818+77x_2819+41x_2820+61x_2821+5x_2822+27x_2823+2x_2824+46x_2825+43x_2826+58x_2827+81x_2828+45x_2829+88x_2830+33x_2831+63x_2832+44x_2833+69x_2834+95x_2835+14x_2836+77x_2837+18x_2838+88x_2839+81x_2840+99x_2841+14x_2842+56x_2843+7x_2844+58x_2845+33x_2846+38x_2847+22x_2848+6x_2849+97x_2850+11x_2851+66x_2852+50x_2853+37x_2854+96x_2855+92x_2856+65x_2857+84x_2858+75x_2859+75x_2860+25x_2861+2x_2862+14x_2863+28x_2864+32x_2865+18x_2866+61x_2867+28x_2868+48x_2869+20x_2870+14x_2871+40x_2872+75x_2873+7x_2874+97x_2875+52x_2876+73x_2877+70x_2878+100x_2879+35x_2880+86x_2881+84x_2882+66x_2883+46x_2884+8x_2885+4x_2886+77x_2887+96x_2888+42x_2889+45x_2890+52x_2891+50x_2892+51x_2893+81x_2894+69x_2895+46x_2896+48x_2897+76x_2898+51x_2899+3x_2900+95x_2901+20x_2902+37x_2903+87x_2904+88x_2905+79x_2906+61x_2907+57x_2908+36x_2909+65x_2910+12x_2911+86x_2912+26x_2913+47x_2914+61x_2915+41x_2916+98x_2917+28x_2918+39x_2919+94x_2920+12x_2921+88x_2922+24x_2923+16x_2924+32x_2925+45x_2926+55x_2927+3x_2928+97x_2929+86x_2930+29x_2931+56x_2932+88x_2933+30x_2934+7x_2935+47x_2936+5x_2937+39x_2938+42x_2939+22x_2940+20x_2941+78x_2942+69x_2943+66x_2944+90x_2945+5x_2946+64x_2947+68x_2948+50x_2949+66x_2950+33x_2951+74x_2952+49x_2953+84x_2954+48x_2955+17x_2956+64x_2957+46x_2958+7x_2959+92x_2960+68x_2961+80x_2962+51x_2963+87x_2964+22x_2965+15x_2966+48x_2967+86x_2968+59x_2969+82x_2970+73x_2971+18x_2972+30x_2973+75x_2974+19x_2975+55x_2976+72x_2977+62x_2978+28x_2979+34x_2980+93x_2981+15x_2982+39x_2983+80x_2984+44x_2985+70x_2986+48x_2987+8x_2988+97x_2989+61x_2990+73x_2991+79x_2992+33x_2993+35x_2994+52x_2995+12x_2996+14x_2997+56x_2998+36x_2999+32x_3000+50x_3001+22x_3002+21x_3003+88x_3004+39x_3005+83x_3006+38x_3007+83x_3008+36x_3009+84x_3010+5x_3011+34x_3012+73x_3013+40x_3014+26x_3015+10x_3016+x_3017+61x_3018+34x_3019+93x_3020+77x_3021+29x_3022+60x_3023+16x_3024+45x_3025+20x_3026+71x_3027+43x_3028+41x_3029+39x_3030+32x_3031+25x_3032+19x_3033+46x_3034+19x_3035+27x_3036+15x_3037+36x_3038+55x_3039+21x_3040+31x_3041+62x_3042+24x_3043+81x_3044+75x_3045+4x_3046+32x_3047+64x_3048+7x_3049+17x_3050+x_3051+79x_3052+72x_3053+95x_3054+97x_3055+94x_3056+36x_3057+61x_3058+93x_3059+60x_3060+53x_3061+4x_3062+31x_3063+36x_3064+83x_3065+61x_3066+6x_3067+43x_3068+10x_3069+60x_3070+96x_3071+33x_3072+21x_3073+9x_3074+2x_3075+6x_3076+70x_3077+8x_3078+89x_3079+95x_3080+10x_3081+8x_3082+100x_3083+59x_3084+10x_3085+11x_3086+96x_3087+27x_3088+95x_3089+52x_3090+83x_3091+27x_3092+36x_3093+75x_3094+66x_3095+41x_3096+25x_3097+48x_3098+70x_3099+89x_3100+54x_3101+58x_3102+91x_3103+69x_3104+28x_3105+3x_3106+14x_3107+81x_3108+94x_3109+18x_3110+27x_3111+42x_3112+42x_3113+92x_3114+57x_3115+100x_3116+21x_3117+92x_3118+97x_3119+64x_3120+50x_3121+5x_3122+53x_3123+90x_3124+96x_3125+17x_3126+100x_3127+79x_3128+53x_3129+76x_3130+54x_3131+14x_3132+64x_3133+91x_3134+75x_3135+19x_3136+18x_3137+96x_3138+76x_3139+44x_3140+45x_3141+26x_3142+89x_3143+99x_3144+23x_3145+76x_3146+65x_3147+84x_3148+19x_3149+91x_3150+94x_3151+31x_3152+91x_3153+17x_3154+50x_3155+32x_3156+59x_3157+87x_3158+78x_3159+17x_3160+59x_3161+2x_3162+55x_3163+49x_3164+11x_3165+98x_3166+45x_3167+76x_3168+66x_3169+87x_3170+4x_3171+x_3172+87x_3173+93x_3174+59x_3175+57x_3176+9x_3177+60x_3178+82x_3179+15x_3180+84x_3181+19x_3182+73x_3183+28x_3184+79x_3185+62x_3186+75x_3187+18x_3188+40x_3189+15x_3190+8x_3191+80x_3192+100x_3193+94x_3194+23x_3195+33x_3196+7x_3197+56x_3198+84x_3199+x_3200+46x_3201+27x_3202+21x_3203+27x_3204+6x_3205+42x_3206+31x_3207+x_3208+8x_3209+22x_3210+3x_3211+84x_3212+58x_3213+37x_3214+27x_3215+35x_3216+84x_3217+98x_3218+19x_3219+12x_3220+21x_3221+54x_3222+98x_3223+50x_3224+x_3225+99x_3226+41x_3227+39x_3228+93x_3229+45x_3230+46x_3231+74x_3232+92x_3233+74x_3234+66x_3235+38x_3236+60x_3237+56x_3238+59x_3239+21x_3240+49x_3241+84x_3242+x_3243+94x_3244+74x_3245+48x_3246+47x_3247+63x_3248+85x_3249+13x_3250+70x_3251+15x_3252+62x_3253+68x_3254+x_3255+98x_3256+23x_3257+50x_3258+47x_3259+26x_3260+34x_3261+53x_3262+50x_3263+69x_3264+20x_3265+87x_3266+16x_3267+93x_3268+24x_3269+46x_3270+25x_3271+81x_3272+51x_3273+47x_3274+76x_3275+38x_3276+46x_3277+66x_3278+25x_3279+78x_3280+72x_3281+85x_3282+2x_3283+81x_3284+60x_3285+57x_3286+73x_3287+61x_3288+22x_3289+65x_3290+70x_3291+94x_3292+99x_3293+48x_3294+57x_3295+41x_3296+93x_3297+28x_3298+89x_3299+36x_3300+40x_3301+40x_3302+31x_3303+61x_3304+37x_3305+82x_3306+49x_3307+55x_3308+11x_3309+42x_3310+x_3311+52x_3312+79x_3313+9x_3314+27x_3315+19x_3316+23x_3317+93x_3318+63x_3319+21x_3320+19x_3321+49x_3322+9x_3323+82x_3324+87x_3325+68x_3326+81x_3327+4x_3328+44x_3329+77x_3330+35x_3331+23x_3332+3x_3333+36x_3334+54x_3335+31x_3336+73x_3337+8x_3338+13x_3339+10x_3340+54x_3341+100x_3342+28x_3343+51x_3344+88x_3345+90x_3346+83x_3347+95x_3348+15x_3349+10x_3350+38x_3351+19x_3352+23x_3353+50x_3354+30x_3355+45x_3356+62x_3357+80x_3358+80x_3359+55x_3360+13x_3361+86x_3362+74x_3363+60x_3364+78x_3365+96x_3366+22x_3367+64x_3368+48x_3369+29x_3370+67x_3371+11x_3372+9x_3373+74x_3374+57x_3375+31x_3376+80x_3377+90x_3378+36x_3379+43x_3380+4x_3381+97x_3382+99x_3383+20x_3384+88x_3385+90x_3386+36x_3387+9x_3388+81x_3389+39x_3390+25x_3391+59x_3392+8x_3393+6x_3394+62x_3395+30x_3396+29x_3397+15x_3398+35x_3399+77x_3400+52x_3401+38x_3402+72x_3403+35x_3404+34x_3405+66x_3406+22x_3407+32x_3408+38x_3409+76x_3410+46x_3411+76x_3412+21x_3413+89x_3414+3x_3415+55x_3416+31x_3417+12x_3418+70x_3419+27x_3420+60x_3421+79x_3422+39x_3423+34x_3424+11x_3425+58x_3426+9x_3427+74x_3428+56x_3429+95x_3430+97x_3431+89x_3432+60x_3433+5x_3434+23x_3435+51x_3436+57x_3437+33x_3438+3x_3439+77x_3440+99x_3441+64x_3442+95x_3443+37x_3444+92x_3445+36x_3446+97x_3447+14x_3448+86x_3449+81x_3450+64x_3451+34x_3452+73x_3453+57x_3454+86x_3455+42x_3456+40x_3457+75x_3458+48x_3459+89x_3460+79x_3461+91x_3462+78x_3463+25x_3464+69x_3465+59x_3466+41x_3467+62x_3468+11x_3469+6x_3470+44x_3471+67x_3472+57x_3473+100x_3474+17x_3475+22x_3476+67x_3477+94x_3478+93x_3479+53x_3480+16x_3481+88x_3482+79x_3483+79x_3484+92x_3485+31x_3486+81x_3487+32x_3488+57x_3489+24x_3490+91x_3491+20x_3492+35x_3493+87x_3494+78x_3495+18x_3496+87x_3497+63x_3498+3x_3499+48x_3500+12x_3501+11x_3502+91x_3503+23x_3504+80x_3505+68x_3506+70x_3507+x_3508+71x_3509+10x_3510+18x_3511+33x_3512+35x_3513+65x_3514+37x_3515+30x_3516+58x_3517+36x_3518+10x_3519+51x_3520+79x_3521+5x_3522+76x_3523+15x_3524+30x_3525+68x_3526+46x_3527+57x_3528+38x_3529+13x_3530+8x_3531+61x_3532+90x_3533+8x_3534+18x_3535+88x_3536+33x_3537+89x_3538+72x_3539+86x_3540+14x_3541+11x_3542+82x_3543+34x_3544+81x_3545+29x_3546+16x_3547+25x_3548+75x_3549+62x_3550+36x_3551+60x_3552+41x_3553+70x_3554+65x_3555+4x_3556+19x_3557+77x_3558+24x_3559+96x_3560+89x_3561+80x_3562+36x_3563+21x_3564+37x_3565+65x_3566+38x_3567+26x_3568+90x_3569+25x_3570+57x_3571+59x_3572+61x_3573+93x_3574+x_3575+67x_3576+61x_3577+10x_3578+45x_3579+22x_3580+x_3581+18x_3582+16x_3583+56x_3584+90x_3585+55x_3586+10x_3587+97x_3588+10x_3589+30x_3590+96x_3591+2x_3592+95x_3593+68x_3594+44x_3595+85x_3596+59x_3597+41x_3598+36x_3599+81x_3600+33x_3601+35x_3602+68x_3603+46x_3604+62x_3605+68x_3606+42x_3607+x_3608+2x_3609+34x_3610+43x_3611+34x_3612+91x_3613+16x_3614+32x_3615+64x_3616+88x_3617+36x_3618+40x_3619+84x_3620+77x_3621+28x_3622+77x_3623+43x_3624+93x_3625+90x_3626+82x_3627+3x_3628+17x_3629+20x_3630+x_3631+49x_3632+17x_3633+78x_3634+57x_3635+10x_3636+82x_3637+71x_3638+18x_3639+42x_3640+57x_3641+4x_3642+19x_3643+34x_3644+96x_3645+71x_3646+12x_3647+10x_3648+23x_3649+87x_3650+82x_3651+10x_3652+69x_3653+9x_3654+100x_3655+60x_3656+72x_3657+62x_3658+79x_3659+43x_3660+63x_3661+4x_3662+85x_3663+41x_3664+97x_3665+55x_3666+88x_3667+78x_3668+2x_3669+92x_3670+23x_3671+93x_3672+75x_3673+67x_3674+71x_3675+96x_3676+20x_3677+26x_3678+71x_3679+49x_3680+43x_3681+90x_3682+88x_3683+96x_3684+22x_3685+64x_3686+83x_3687+18x_3688+23x_3689+74x_3690+9x_3691+78x_3692+98x_3693+41x_3694+63x_3695+58x_3696+55x_3697+81x_3698+62x_3699+43x_3700+98x_3701+36x_3702+80x_3703+100x_3704+56x_3705+76x_3706+3x_3707+54x_3708+32x_3709+83x_3710+38x_3711+70x_3712+75x_3713+99x_3714+14x_3715+99x_3716+20x_3717+29x_3718+15x_3719+47x_3720+32x_3721+68x_3722+71x_3723+3x_3724+92x_3725+84x_3726+42x_3727+61x_3728+12x_3729+62x_3730+88x_3731+47x_3732+19x_3733+85x_3734+52x_3735+10x_3736+7x_3737+79x_3738+68x_3739+23x_3740+46x_3741+20x_3742+13x_3743+56x_3744+89x_3745+71x_3746+29x_3747+48x_3748+89x_3749+58x_3750+19x_3751+41x_3752+5x_3753+94x_3754+35x_3755+64x_3756+90x_3757+69x_3758+55x_3759+79x_3760+4x_3761+90x_3762+63x_3763+55x_3764+12x_3765+96x_3766+59x_3767+78x_3768+67x_3769+7x_3770+45x_3771+94x_3772+84x_3773+17x_3774+39x_3775+70x_3776+x_3777+29x_3778+3x_3779+35x_3780+58x_3781+57x_3782+27x_3783+34x_3784+59x_3785+21x_3786+37x_3787+31x_3788+26x_3789+34x_3790+83x_3791+27x_3792+69x_3793+4x_3794+46x_3795+99x_3796+62x_3797+92x_3798+63x_3799+69x_3800+56x_3801+100x_3802+100x_3803+40x_3804+79x_3805+64x_3806+8x_3807+95x_3808+14x_3809+59x_3810+42x_3811+26x_3812+95x_3813+x_3814+79x_3815+44x_3816+49x_3817+37x_3818+8x_3819+34x_3820+94x_3821+61x_3822+24x_3823+5x_3824+61x_3825+85x_3826+55x_3827+52x_3828+77x_3829+50x_3830+82x_3831+11x_3832+58x_3833+67x_3834+89x_3835+86x_3836+4x_3837+7x_3838+79x_3839+19x_3840+23x_3841+72x_3842+81x_3843+67x_3844+80x_3845+80x_3846+11x_3847+57x_3848+x_3849+93x_3850+36x_3851+31x_3852+99x_3853+42x_3854+68x_3855+11x_3856+5x_3857+29x_3858+9x_3859+6x_3860+12x_3861+65x_3862+78x_3863+86x_3864+69x_3865+93x_3866+7x_3867+82x_3868+54x_3869+34x_3870+92x_3871+69x_3872+73x_3873+34x_3874+15x_3875+48x_3876+24x_3877+81x_3878+58x_3879+84x_3880+79x_3881+69x_3882+12x_3883+78x_3884+42x_3885+39x_3886+9x_3887+36x_3888+99x_3889+48x_3890+7x_3891+31x_3892+29x_3893+51x_3894+27x_3895+68x_3896+34x_3897+2x_3898+99x_3899+42x_3900+92x_3901+86x_3902+7x_3903+14x_3904+87x_3905+74x_3906+76x_3907+9x_3908+39x_3909+14x_3910+19x_3911+55x_3912+71x_3913+93x_3914+38x_3915+72x_3916+88x_3917+91x_3918+42x_3919+95x_3920+96x_3921+12x_3922+10x_3923+34x_3924+28x_3925+8x_3926+3x_3927+57x_3928+88x_3929+52x_3930+76x_3931+61x_3932+90x_3933+78x_3934+81x_3935+55x_3936+38x_3937+100x_3938+62x_3939+85x_3940+40x_3941+97x_3942+36x_3943+71x_3944+78x_3945+73x_3946+55x_3947+21x_3948+47x_3949+11x_3950+13x_3951+44x_3952+24x_3953+92x_3954+48x_3955+40x_3956+57x_3957+66x_3958+39x_3959+24x_3960+24x_3961+99x_3962+89x_3963+68x_3964+22x_3965+61x_3966+65x_3967+26x_3968+11x_3969+62x_3970+4x_3971+32x_3972+37x_3973+3x_3974+93x_3975+52x_3976+88x_3977+20x_3978+71x_3979+66x_3980+38x_3981+x_3982+57x_3983+30x_3984+87x_3985+47x_3986+33x_3987+23x_3988+76x_3989+86x_3990+10x_3991+89x_3992+99x_3993+54x_3994+7x_3995+23x_3996+91x_3997+90x_3998+24x_3999+38x_4000+92x_4001+5x_4002+76x_4003+52x_4004+93x_4005+54x_4006+71x_4007+x_4008+75x_4009+54x_4010+90x_4011+59x_4012+41x_4013+85x_4014+47x_4015+67x_4016+43x_4017+35x_4018+10x_4019+78x_4020+86x_4021+20x_4022+89x_4023+71x_4024+62x_4025+44x_4026+100x_4027+26x_4028+12x_4029+38x_4030+85x_4031+90x_4032+49x_4033+16x_4034+9x_4035+48x_4036+83x_4037+14x_4038+72x_4039+69x_4040+50x_4041+12x_4042+28x_4043+47x_4044+8x_4045+13x_4046+46x_4047+98x_4048+21x_4049+74x_4050+40x_4051+93x_4052+23x_4053+54x_4054+56x_4055+97x_4056+18x_4057+60x_4058+52x_4059+5x_4060+4x_4061+3x_4062+30x_4063+78x_4064+22x_4065+48x_4066+8x_4067+94x_4068+72x_4069+21x_4070+24x_4071+7x_4072+74x_4073+8x_4074+51x_4075+21x_4076+93x_4077+42x_4078+5x_4079+85x_4080+5x_4081+13x_4082+60x_4083+24x_4084+47x_4085+14x_4086+43x_4087+56x_4088+86x_4089+6x_4090+26x_4091+44x_4092+19x_4093+72x_4094+61x_4095+2x_4096+78x_4097+94x_4098+73x_4099+94x_4100+63x_4101+87x_4102+30x_4103+51x_4104+47x_4105+79x_4106+14x_4107+81x_4108+7x_4109+41x_4110+22x_4111+47x_4112+94x_4113+33x_4114+70x_4115+42x_4116+3x_4117+51x_4118+43x_4119+33x_4120+54x_4121+34x_4122+8x_4123+55x_4124+46x_4125+24x_4126+13x_4127+33x_4128+15x_4129+22x_4130+43x_4131+43x_4132+32x_4133+28x_4134+77x_4135+68x_4136+54x_4137+63x_4138+49x_4139+30x_4140+34x_4141+15x_4142+67x_4143+97x_4144+7x_4145+3x_4146+62x_4147+63x_4148+38x_4149+65x_4150+88x_4151+70x_4152+21x_4153+2x_4154+94x_4155+48x_4156+71x_4157+26x_4158+25x_4159+62x_4160+75x_4161+16x_4162+90x_4163+100x_4164+11x_4165+70x_4166+52x_4167+99x_4168+67x_4169+31x_4170+39x_4171+24x_4172+24x_4173+77x_4174+80x_4175+23x_4176+80x_4177+73x_4178+89x_4179+5x_4180+9x_4181+59x_4182+27x_4183+48x_4184+25x_4185+38x_4186+5x_4187+38x_4188+50x_4189+63x_4190+18x_4191+55x_4192+97x_4193+70x_4194+95x_4195+98x_4196+33x_4197+56x_4198+43x_4199+87x_4200+65x_4201+70x_4202+65x_4203+93x_4204+24x_4205+17x_4206+27x_4207+97x_4208+30x_4209+66x_4210+47x_4211+67x_4212+66x_4213+4x_4214+81x_4215+58x_4216+26x_4217+76x_4218+11x_4219+13x_4220+32x_4221+81x_4222+71x_4223+28x_4224+3x_4225+10x_4226+94x_4227+8x_4228+29x_4229+16x_4230+81x_4231+24x_4232+11x_4233+36x_4234+50x_4235+35x_4236+51x_4237+22x_4238+75x_4239+37x_4240+53x_4241+54x_4242+2x_4243+83x_4244+38x_4245+91x_4246+15x_4247+11x_4248+14x_4249+9x_4250+4x_4251+78x_4252+81x_4253+67x_4254+38x_4255+44x_4256+32x_4257+17x_4258+16x_4259+41x_4260+45x_4261+91x_4262+2x_4263+55x_4264+97x_4265+57x_4266+99x_4267+86x_4268+63x_4269+98x_4270+59x_4271+67x_4272+55x_4273+17x_4274+94x_4275+9x_4276+86x_4277+66x_4278+75x_4279+57x_4280+19x_4281+99x_4282+41x_4283+13x_4284+94x_4285+85x_4286+23x_4287+42x_4288+23x_4289+56x_4290+15x_4291+3x_4292+13x_4293+53x_4294+89x_4295+53x_4296+36x_4297+34x_4298+37x_4299+24x_4300+35x_4301+4x_4302+61x_4303+57x_4304+4x_4305+6x_4306+10x_4307+66x_4308+94x_4309+53x_4310+92x_4311+11x_4312+20x_4313+90x_4314+68x_4315+64x_4316+3x_4317+41x_4318+47x_4319+88x_4320+54x_4321+12x_4322+59x_4323+88x_4324+71x_4325+80x_4326+2x_4327+32x_4328+11x_4329+24x_4330+8x_4331+25x_4332+9x_4333+49x_4334+94x_4335+3x_4336+38x_4337+50x_4338+19x_4339+10x_4340+26x_4341+57x_4342+76x_4343+6x_4344+79x_4345+99x_4346+72x_4347+93x_4348+39x_4349+73x_4350+28x_4351+56x_4352+10x_4353+53x_4354+18x_4355+87x_4356+84x_4357+31x_4358+91x_4359+32x_4360+73x_4361+82x_4362+54x_4363+54x_4364+14x_4365+17x_4366+99x_4367+71x_4368+27x_4369+71x_4370+12x_4371+97x_4372+21x_4373+75x_4374+57x_4375+17x_4376+3x_4377+94x_4378+23x_4379+27x_4380+92x_4381+59x_4382+81x_4383+57x_4384+14x_4385+92x_4386+78x_4387+23x_4388+78x_4389+37x_4390+59x_4391+77x_4392+45x_4393+87x_4394+92x_4395+46x_4396+26x_4397+68x_4398+19x_4399+72x_4400+79x_4401+43x_4402+20x_4403+26x_4404+14x_4405+83x_4406+78x_4407+81x_4408+35x_4409+17x_4410+58x_4411+96x_4412+45x_4413+33x_4414+46x_4415+48x_4416+11x_4417+10x_4418+7x_4419+71x_4420+60x_4421+17x_4422+45x_4423+54x_4424+47x_4425+93x_4426+8x_4427+48x_4428+67x_4429+26x_4430+27x_4431+54x_4432+10x_4433+40x_4434+20x_4435+19x_4436+43x_4437+31x_4438+18x_4439+75x_4440+61x_4441+67x_4442+8x_4443+24x_4444+22x_4445+62x_4446+38x_4447+99x_4448+73x_4449+93x_4450+13x_4451+95x_4452+65x_4453+52x_4454+41x_4455+81x_4456+42x_4457+60x_4458+81x_4459+67x_4460+46x_4461+27x_4462+60x_4463+32x_4464+23x_4465+35x_4466+40x_4467+90x_4468+80x_4469+80x_4470+40x_4471+46x_4472+18x_4473+36x_4474+12x_4475+35x_4476+87x_4477+16x_4478+36x_4479+x_4480+16x_4481+7x_4482+95x_4483+34x_4484+53x_4485+86x_4486+29x_4487+9x_4488+15x_4489+68x_4490+92x_4491+32x_4492+48x_4493+60x_4494+37x_4495+85x_4496+34x_4497+30x_4498+92x_4499+30x_4500+59x_4501+45x_4502+33x_4503+28x_4504+91x_4505+54x_4506+13x_4507+100x_4508+35x_4509+35x_4510+35x_4511+16x_4512+5x_4513+59x_4514+13x_4515+2x_4516+55x_4517+61x_4518+71x_4519+32x_4520+6x_4521+71x_4522+4x_4523+21x_4524+10x_4525+51x_4526+69x_4527+25x_4528+2x_4529+58x_4530+59x_4531+78x_4532+63x_4533+95x_4534+62x_4535+58x_4536+38x_4537+24x_4538+31x_4539+41x_4540+24x_4541+27x_4542+34x_4543+67x_4544+80x_4545+98x_4546+50x_4547+19x_4548+11x_4549+53x_4550+12x_4551+73x_4552+99x_4553+27x_4554+65x_4555+54x_4556+84x_4557+46x_4558+5x_4559+26x_4560+79x_4561+92x_4562+56x_4563+71x_4564+37x_4565+6x_4566+95x_4567+30x_4568+94x_4569+89x_4570+58x_4571+59x_4572+20x_4573+83x_4574+43x_4575+50x_4576+70x_4577+52x_4578+49x_4579+19x_4580+29x_4581+66x_4582+94x_4583+97x_4584+43x_4585+58x_4586+90x_4587+11x_4588+2x_4589+5x_4590+83x_4591+86x_4592+64x_4593+94x_4594+49x_4595+14x_4596+5x_4597+32x_4598+70x_4599+38x_4600+31x_4601+73x_4602+26x_4603+64x_4604+33x_4605+95x_4606+35x_4607+57x_4608+85x_4609+36x_4610+49x_4611+88x_4612+7x_4613+38x_4614+15x_4615+85x_4616+68x_4617+11x_4618+63x_4619+86x_4620+64x_4621+x_4622+76x_4623+59x_4624+72x_4625+67x_4626+37x_4627+70x_4628+30x_4629+61x_4630+65x_4631+56x_4632+38x_4633+53x_4634+29x_4635+64x_4636+71x_4637+23x_4638+86x_4639+17x_4640+40x_4641+67x_4642+91x_4643+19x_4644+12x_4645+45x_4646+52x_4647+92x_4648+57x_4649+13x_4650+32x_4651+6x_4652+91x_4653+25x_4654+45x_4655+22x_4656+27x_4657+10x_4658+27x_4659+5x_4660+42x_4661+70x_4662+41x_4663+37x_4664+23x_4665+87x_4666+84x_4667+73x_4668+37x_4669+11x_4670+11x_4671+49x_4672+23x_4673+53x_4674+57x_4675+49x_4676+56x_4677+82x_4678+9x_4679+74x_4680+80x_4681+42x_4682+62x_4683+56x_4684+73x_4685+88x_4686+91x_4687+57x_4688+62x_4689+32x_4690+32x_4691+96x_4692+59x_4693+88x_4694+18x_4695+59x_4696+83x_4697+40x_4698+87x_4699+8x_4700+62x_4701+47x_4702+96x_4703+75x_4704+80x_4705+82x_4706+48x_4707+35x_4708+45x_4709+10x_4710+66x_4711+44x_4712+60x_4713+4x_4714+58x_4715+42x_4716+57x_4717+58x_4718+36x_4719+9x_4720+20x_4721+79x_4722+28x_4723+56x_4724+85x_4725+46x_4726+85x_4727+22x_4728+76x_4729+10x_4730+98x_4731+75x_4732+90x_4733+10x_4734+78x_4735+92x_4736+59x_4737+14x_4738+62x_4739+63x_4740+36x_4741+21x_4742+65x_4743+6x_4744+30x_4745+3x_4746+66x_4747+22x_4748+98x_4749+73x_4750+98x_4751+52x_4752+40x_4753+24x_4754+64x_4755+88x_4756+90x_4757+62x_4758+60x_4759+9x_4760+19x_4761+17x_4762+87x_4763+9x_4764+38x_4765+86x_4766+22x_4767+45x_4768+16x_4769+24x_4770+21x_4771+73x_4772+9x_4773+19x_4774+74x_4775+37x_4776+45x_4777+36x_4778+45x_4779+51x_4780+49x_4781+6x_4782+22x_4783+45x_4784+90x_4785+76x_4786+31x_4787+84x_4788+27x_4789+33x_4790+48x_4791+82x_4792+3x_4793+4x_4794+98x_4795+6x_4796+52x_4797+22x_4798+48x_4799+13x_4800+39x_4801+66x_4802+15x_4803+24x_4804+93x_4805+x_4806+75x_4807+55x_4808+93x_4809+35x_4810+50x_4811+43x_4812+52x_4813+56x_4814+16x_4815+12x_4816+69x_4817+36x_4818+15x_4819+68x_4820+75x_4821+99x_4822+98x_4823+78x_4824+59x_4825+10x_4826+61x_4827+30x_4828+2x_4829+26x_4830+8x_4831+23x_4832+70x_4833+15x_4834+99x_4835+87x_4836+62x_4837+59x_4838+37x_4839+96x_4840+85x_4841+58x_4842+49x_4843+5x_4844+98x_4845+12x_4846+37x_4847+49x_4848+4x_4849+33x_4850+62x_4851+5x_4852+19x_4853+31x_4854+7x_4855+14x_4856+87x_4857+64x_4858+50x_4859+60x_4860+63x_4861+21x_4862+90x_4863+37x_4864+51x_4865+98x_4866+50x_4867+28x_4868+61x_4869+89x_4870+65x_4871+50x_4872+19x_4873+91x_4874+34x_4875+84x_4876+83x_4877+74x_4878+78x_4879+96x_4880+13x_4881+36x_4882+26x_4883+100x_4884+19x_4885+14x_4886+100x_4887+52x_4888+26x_4889+23x_4890+64x_4891+65x_4892+26x_4893+53x_4894+72x_4895+86x_4896+23x_4897+89x_4898+6x_4899+81x_4900+16x_4901+87x_4902+30x_4903+54x_4904+41x_4905+51x_4906+30x_4907+2x_4908+83x_4909+65x_4910+99x_4911+9x_4912+75x_4913+48x_4914+35x_4915+69x_4916+24x_4917+77x_4918+63x_4919+47x_4920+11x_4921+62x_4922+99x_4923+20x_4924+80x_4925+13x_4926+68x_4927+51x_4928+73x_4929+67x_4930+20x_4931+92x_4932+62x_4933+25x_4934+x_4935+8x_4936+64x_4937+76x_4938+67x_4939+39x_4940+37x_4941+26x_4942+71x_4943+6x_4944+44x_4945+72x_4946+8x_4947+15x_4948+74x_4949+95x_4950+97x_4951+15x_4952+55x_4953+24x_4954+65x_4955+62x_4956+47x_4957+34x_4958+39x_4959+2x_4960+10x_4961+84x_4962+14x_4963+73x_4964+36x_4965+66x_4966+46x_4967+x_4968+58x_4969+29x_4970+16x_4971+77x_4972+63x_4973+4x_4974+98x_4975+44x_4976+49x_4977+51x_4978+28x_4979+43x_4980+17x_4981+50x_4982+78x_4983+95x_4984+40x_4985+64x_4986+60x_4987+30x_4988+88x_4989+9x_4990+67x_4991+4x_4992+3x_4993+29x_4994+82x_4995+29x_4996+6x_4997+13x_4998+79x_4999+42x_5000+34x_5001+30x_5002+84x_5003+81x_5004+71x_5005+68x_5006+100x_5007+96x_5008+6x_5009+39x_5010+53x_5011+100x_5012+4x_5013+96x_5014+50x_5015+28x_5016+23x_5017+30x_5018+61x_5019+16x_5020+5x_5021+50x_5022+31x_5023+35x_5024+9x_5025+25x_5026+3x_5027+50x_5028+99x_5029+7x_5030+99x_5031+87x_5032+44x_5033+56x_5034+83x_5035+x_5036+82x_5037+63x_5038+54x_5039+22x_5040+96x_5041+51x_5042+17x_5043+23x_5044+43x_5045+74x_5046+79x_5047+59x_5048+9x_5049+67x_5050+41x_5051+29x_5052+69x_5053+50x_5054+40x_5055+70x_5056+93x_5057+9x_5058+78x_5059+57x_5060+24x_5061+19x_5062+76x_5063+46x_5064+51x_5065+86x_5066+93x_5067+6x_5068+73x_5069+75x_5070+11x_5071+36x_5072+21x_5073+62x_5074+85x_5075+6x_5076+86x_5077+29x_5078+25x_5079+72x_5080+6x_5081+34x_5082+63x_5083+97x_5084+31x_5085+88x_5086+86x_5087+88x_5088+29x_5089+62x_5090+77x_5091+59x_5092+65x_5093+34x_5094+52x_5095+x_5096+27x_5097+4x_5098+41x_5099+73x_5100+92x_5101+71x_5102+35x_5103+89x_5104+94x_5105+46x_5106+27x_5107+25x_5108+47x_5109+88x_5110+86x_5111+64x_5112+71x_5113+25x_5114+39x_5115+47x_5116+43x_5117+25x_5118+85x_5119+37x_5120+54x_5121+9x_5122+73x_5123+94x_5124+94x_5125+2x_5126+98x_5127+65x_5128+98x_5129+67x_5130+88x_5131+30x_5132+51x_5133+29x_5134+76x_5135+100x_5136+25x_5137+100x_5138+12x_5139+77x_5140+85x_5141+30x_5142+5x_5143+2x_5144+63x_5145+5x_5146+54x_5147+73x_5148+39x_5149+47x_5150+58x_5151+56x_5152+21x_5153+86x_5154+47x_5155+12x_5156+47x_5157+84x_5158+22x_5159+43x_5160+91x_5161+18x_5162+88x_5163+27x_5164+100x_5165+78x_5166+9x_5167+65x_5168+21x_5169+22x_5170+88x_5171+48x_5172+92x_5173+69x_5174+91x_5175+31x_5176+26x_5177+4x_5178+82x_5179+27x_5180+85x_5181+46x_5182+7x_5183+36x_5184+40x_5185+2x_5186+98x_5187+71x_5188+43x_5189+77x_5190+83x_5191+99x_5192+99x_5193+38x_5194+48x_5195+82x_5196+11x_5197+36x_5198+95x_5199+24x_5200+59x_5201+58x_5202+83x_5203+82x_5204+47x_5205+87x_5206+67x_5207+80x_5208+63x_5209+39x_5210+32x_5211+56x_5212+80x_5213+10x_5214+29x_5215+59x_5216+74x_5217+96x_5218+96x_5219+57x_5220+58x_5221+54x_5222+75x_5223+59x_5224+13x_5225+37x_5226+64x_5227+46x_5228+19x_5229+51x_5230+81x_5231+51x_5232+52x_5233+90x_5234+79x_5235+71x_5236+59x_5237+13x_5238+75x_5239+18x_5240+9x_5241+73x_5242+39x_5243+39x_5244+36x_5245+34x_5246+58x_5247+95x_5248+20x_5249+72x_5250+97x_5251+99x_5252+84x_5253+25x_5254+13x_5255+46x_5256+63x_5257+57x_5258+17x_5259+13x_5260+90x_5261+79x_5262+42x_5263+91x_5264+8x_5265+26x_5266+79x_5267+5x_5268+62x_5269+88x_5270+17x_5271+21x_5272+50x_5273+26x_5274+62x_5275+58x_5276+40x_5277+88x_5278+74x_5279+93x_5280+32x_5281+71x_5282+21x_5283+95x_5284+65x_5285+22x_5286+48x_5287+90x_5288+44x_5289+91x_5290+24x_5291+40x_5292+90x_5293+25x_5294+50x_5295+73x_5296+60x_5297+89x_5298+92x_5299+52x_5300+45x_5301+69x_5302+45x_5303+29x_5304+55x_5305+36x_5306+96x_5307+19x_5308+43x_5309+28x_5310+74x_5311+47x_5312+22x_5313+62x_5314+70x_5315+59x_5316+74x_5317+21x_5318+84x_5319+67x_5320+37x_5321+36x_5322+48x_5323+2x_5324+4x_5325+39x_5326+90x_5327+73x_5328+28x_5329+65x_5330+66x_5331+33x_5332+18x_5333+92x_5334+78x_5335+90x_5336+96x_5337+33x_5338+76x_5339+65x_5340+96x_5341+84x_5342+42x_5343+63x_5344+5x_5345+15x_5346+49x_5347+91x_5348+76x_5349+40x_5350+18x_5351+90x_5352+5x_5353+81x_5354+55x_5355+88x_5356+22x_5357+82x_5358+31x_5359+75x_5360+45x_5361+64x_5362+23x_5363+10x_5364+43x_5365+47x_5366+81x_5367+18x_5368+70x_5369+75x_5370+87x_5371+83x_5372+62x_5373+98x_5374+19x_5375+89x_5376+81x_5377+88x_5378+50x_5379+49x_5380+51x_5381+2x_5382+81x_5383+2x_5384+46x_5385+21x_5386+100x_5387+41x_5388+16x_5389+34x_5390+24x_5391+91x_5392+31x_5393+33x_5394+40x_5395+65x_5396+15x_5397+35x_5398+16x_5399+9x_5400+100x_5401+56x_5402+91x_5403+100x_5404+95x_5405+20x_5406+91x_5407+58x_5408+x_5409+7x_5410+55x_5411+77x_5412+21x_5413+51x_5414+57x_5415+72x_5416+31x_5417+19x_5418+96x_5419+73x_5420+31x_5421+64x_5422+16x_5423+55x_5424+71x_5425+9x_5426+86x_5427+79x_5428+98x_5429+89x_5430+52x_5431+11x_5432+41x_5433+95x_5434+59x_5435+6x_5436+12x_5437+75x_5438+96x_5439+60x_5440+42x_5441+28x_5442+59x_5443+18x_5444+28x_5445+87x_5446+80x_5447+5x_5448+46x_5449+59x_5450+73x_5451+37x_5452+83x_5453+8x_5454+92x_5455+78x_5456+93x_5457+96x_5458+77x_5459+96x_5460+54x_5461+23x_5462+74x_5463+87x_5464+88x_5465+11x_5466+73x_5467+10x_5468+44x_5469+2x_5470+15x_5471+80x_5472+53x_5473+99x_5474+44x_5475+63x_5476+84x_5477+79x_5478+26x_5479+39x_5480+37x_5481+15x_5482+58x_5483+15x_5484+27x_5485+73x_5486+65x_5487+32x_5488+49x_5489+71x_5490+61x_5491+14x_5492+26x_5493+67x_5494+29x_5495+79x_5496+9x_5497+74x_5498+75x_5499+47x_5500+43x_5501+29x_5502+4x_5503+49x_5504+51x_5505+4x_5506+72x_5507+6x_5508+52x_5509+43x_5510+3x_5511+31x_5512+51x_5513+16x_5514+93x_5515+33x_5516+26x_5517+55x_5518+42x_5519+31x_5520+99x_5521+33x_5522+46x_5523+75x_5524+77x_5525+41x_5526+72x_5527+29x_5528+5x_5529+35x_5530+39x_5531+16x_5532+53x_5533+43x_5534+95x_5535+50x_5536+30x_5537+77x_5538+52x_5539+70x_5540+49x_5541+91x_5542+30x_5543+12x_5544+28x_5545+69x_5546+77x_5547+11x_5548+100x_5549+33x_5550+90x_5551+21x_5552+12x_5553+85x_5554+37x_5555+42x_5556+92x_5557+25x_5558+27x_5559+28x_5560+89x_5561+91x_5562+80x_5563+96x_5564+5x_5565+24x_5566+11x_5567+19x_5568+90x_5569+32x_5570+84x_5571+98x_5572+27x_5573+85x_5574+19x_5575+17x_5576+60x_5577+82x_5578+31x_5579+35x_5580+36x_5581+41x_5582+2x_5583+4x_5584+41x_5585+61x_5586+12x_5587+41x_5588+14x_5589+25x_5590+42x_5591+34x_5592+8x_5593+50x_5594+36x_5595+74x_5596+55x_5597+87x_5598+58x_5599+32x_5600+36x_5601+74x_5602+86x_5603+15x_5604+33x_5605+44x_5606+26x_5607+53x_5608+42x_5609+76x_5610+30x_5611+55x_5612+22x_5613+61x_5614+17x_5615+26x_5616+28x_5617+82x_5618+60x_5619+18x_5620+29x_5621+66x_5622+99x_5623+24x_5624+24x_5625+77x_5626+4x_5627+30x_5628+13x_5629+93x_5630+89x_5631+90x_5632+25x_5633+18x_5634+42x_5635+51x_5636+43x_5637+12x_5638+24x_5639+96x_5640+93x_5641+11x_5642+64x_5643+98x_5644+65x_5645+65x_5646+91x_5647+7x_5648+34x_5649+80x_5650+60x_5651+87x_5652+91x_5653+63x_5654+63x_5655+53x_5656+71x_5657+45x_5658+72x_5659+58x_5660+44x_5661+79x_5662+56x_5663+62x_5664+20x_5665+44x_5666+78x_5667+73x_5668+79x_5669+21x_5670+34x_5671+51x_5672+8x_5673+65x_5674+x_5675+52x_5676+41x_5677+33x_5678+88x_5679+71x_5680+13x_5681+42x_5682+4x_5683+61x_5684+62x_5685+80x_5686+33x_5687+35x_5688+50x_5689+28x_5690+89x_5691+36x_5692+70x_5693+99x_5694+21x_5695+87x_5696+19x_5697+83x_5698+24x_5699+73x_5700+52x_5701+79x_5702+7x_5703+5x_5704+22x_5705+68x_5706+25x_5707+42x_5708+80x_5709+95x_5710+46x_5711+82x_5712+30x_5713+70x_5714+30x_5715+86x_5716+47x_5717+9x_5718+72x_5719+19x_5720+87x_5721+40x_5722+7x_5723+68x_5724+58x_5725+87x_5726+34x_5727+61x_5728+49x_5729+93x_5730+22x_5731+57x_5732+74x_5733+81x_5734+62x_5735+50x_5736+84x_5737+82x_5738+2x_5739+44x_5740+97x_5741+63x_5742+19x_5743+50x_5744+59x_5745+47x_5746+14x_5747+45x_5748+98x_5749+83x_5750+55x_5751+11x_5752+30x_5753+27x_5754+53x_5755+16x_5756+24x_5757+56x_5758+23x_5759+50x_5760+x_5761+24x_5762+96x_5763+17x_5764+94x_5765+3x_5766+39x_5767+80x_5768+85x_5769+92x_5770+68x_5771+78x_5772+x_5773+83x_5774+20x_5775+13x_5776+48x_5777+20x_5778+10x_5779+82x_5780+94x_5781+53x_5782+96x_5783+78x_5784+56x_5785+76x_5786+53x_5787+32x_5788+28x_5789+29x_5790+41x_5791+84x_5792+9x_5793+42x_5794+10x_5795+45x_5796+44x_5797+76x_5798+25x_5799+89x_5800+16x_5801+14x_5802+77x_5803+40x_5804+75x_5805+70x_5806+65x_5807+40x_5808+74x_5809+58x_5810+85x_5811+76x_5812+56x_5813+73x_5814+77x_5815+13x_5816+99x_5817+4x_5818+27x_5819+41x_5820+70x_5821+72x_5822+99x_5823+90x_5824+49x_5825+13x_5826+43x_5827+66x_5828+67x_5829+x_5830+29x_5831+78x_5832+11x_5833+60x_5834+62x_5835+68x_5836+38x_5837+98x_5838+62x_5839+2x_5840+67x_5841+55x_5842+72x_5843+41x_5844+98x_5845+21x_5846+53x_5847+64x_5848+76x_5849+52x_5850+97x_5851+23x_5852+x_5853+88x_5854+5x_5855+88x_5856+32x_5857+50x_5858+72x_5859+43x_5860+99x_5861+80x_5862+38x_5863+47x_5864+57x_5865+45x_5866+88x_5867+52x_5868+2x_5869+26x_5870+60x_5871+84x_5872+70x_5873+85x_5874+48x_5875+41x_5876+7x_5877+83x_5878+28x_5879+2x_5880+31x_5881+24x_5882+53x_5883+85x_5884+24x_5885+35x_5886+21x_5887+64x_5888+62x_5889+11x_5890+60x_5891+91x_5892+92x_5893+78x_5894+42x_5895+52x_5896+x_5897+58x_5898+81x_5899+10x_5900+64x_5901+39x_5902+72x_5903+99x_5904+16x_5905+18x_5906+47x_5907+90x_5908+11x_5909+23x_5910+25x_5911+47x_5912+49x_5913+98x_5914+88x_5915+34x_5916+93x_5917+69x_5918+97x_5919+x_5920+18x_5921+23x_5922+61x_5923+66x_5924+26x_5925+5x_5926+89x_5927+87x_5928+65x_5929+78x_5930+76x_5931+13x_5932+100x_5933+35x_5934+54x_5935+5x_5936+37x_5937+71x_5938+99x_5939+46x_5940+25x_5941+87x_5942+58x_5943+62x_5944+20x_5945+67x_5946+32x_5947+30x_5948+2x_5949+57x_5950+70x_5951+95x_5952+82x_5953+40x_5954+13x_5955+89x_5956+59x_5957+24x_5958+26x_5959+35x_5960+93x_5961+96x_5962+20x_5963+86x_5964+40x_5965+11x_5966+89x_5967+91x_5968+26x_5969+85x_5970+57x_5971+73x_5972+52x_5973+53x_5974+94x_5975+53x_5976+47x_5977+41x_5978+83x_5979+60x_5980+84x_5981+26x_5982+91x_5983+18x_5984+44x_5985+36x_5986+79x_5987+14x_5988+29x_5989+11x_5990+4x_5991+81x_5992+47x_5993+27x_5994+33x_5995+11x_5996+33x_5997+73x_5998+11x_5999+77x_6000+91x_6001+73x_6002+7x_6003+81x_6004+22x_6005+12x_6006+83x_6007+23x_6008+97x_6009+18x_6010+63x_6011+76x_6012+14x_6013+27x_6014+68x_6015+68x_6016+44x_6017+30x_6018+77x_6019+100x_6020+4x_6021+44x_6022+9x_6023+59x_6024+19x_6025+12x_6026+73x_6027+57x_6028+74x_6029+26x_6030+33x_6031+98x_6032+20x_6033+11x_6034+48x_6035+66x_6036+82x_6037+4x_6038+x_6039+35x_6040+44x_6041+40x_6042+64x_6043+8x_6044+6x_6045+22x_6046+19x_6047+2x_6048+57x_6049+29x_6050+46x_6051+64x_6052+47x_6053+36x_6054+2x_6055+91x_6056+67x_6057+13x_6058+81x_6059+7x_6060+45x_6061+41x_6062+35x_6063+35x_6064+71x_6065+57x_6066+64x_6067+70x_6068+37x_6069+79x_6070+85x_6071+25x_6072+71x_6073+5x_6074+91x_6075+64x_6076+93x_6077+37x_6078+44x_6079+22x_6080+21x_6081+100x_6082+61x_6083+11x_6084+89x_6085+82x_6086+21x_6087+82x_6088+32x_6089+60x_6090+28x_6091+22x_6092+45x_6093+75x_6094+42x_6095+65x_6096+62x_6097+34x_6098+48x_6099+2x_6100+63x_6101+68x_6102+11x_6103+18x_6104+91x_6105+43x_6106+3x_6107+63x_6108+48x_6109+78x_6110+86x_6111+44x_6112+52x_6113+62x_6114+27x_6115+20x_6116+55x_6117+30x_6118+98x_6119+99x_6120+66x_6121+7x_6122+13x_6123+x_6124+31x_6125+5x_6126+16x_6127+22x_6128+88x_6129+27x_6130+79x_6131+9x_6132+79x_6133+79x_6134+87x_6135+3x_6136+62x_6137+79x_6138+91x_6139+10x_6140+34x_6141+10x_6142+13x_6143+11x_6144+66x_6145+70x_6146+90x_6147+57x_6148+32x_6149+94x_6150+55x_6151+55x_6152+72x_6153+16x_6154+6x_6155+81x_6156+53x_6157+30x_6158+5x_6159+36x_6160+37x_6161+73x_6162+69x_6163+37x_6164+17x_6165+39x_6166+87x_6167+56x_6168+94x_6169+15x_6170+84x_6171+77x_6172+72x_6173+55x_6174+73x_6175+2x_6176+93x_6177+41x_6178+91x_6179+33x_6180+30x_6181+82x_6182+13x_6183+92x_6184+29x_6185+73x_6186+51x_6187+41x_6188+9x_6189+34x_6190+90x_6191+30x_6192+62x_6193+69x_6194+73x_6195+79x_6196+36x_6197+47x_6198+24x_6199+83x_6200+90x_6201+5x_6202+96x_6203+74x_6204+24x_6205+100x_6206+56x_6207+17x_6208+56x_6209+14x_6210+58x_6211+81x_6212+73x_6213+8x_6214+38x_6215+93x_6216+15x_6217+68x_6218+31x_6219+16x_6220+64x_6221+8x_6222+33x_6223+62x_6224+77x_6225+20x_6226+33x_6227+31x_6228+63x_6229+17x_6230+29x_6231+99x_6232+57x_6233+76x_6234+78x_6235+25x_6236+84x_6237+63x_6238+54x_6239+14x_6240+17x_6241+65x_6242+13x_6243+53x_6244+62x_6245+23x_6246+85x_6247+67x_6248+40x_6249+48x_6250+4x_6251+32x_6252+24x_6253+61x_6254+36x_6255+99x_6256+98x_6257+53x_6258+11x_6259+45x_6260+74x_6261+17x_6262+32x_6263+36x_6264+98x_6265+92x_6266+10x_6267+45x_6268+87x_6269+80x_6270+64x_6271+69x_6272+9x_6273+6x_6274+28x_6275+77x_6276+52x_6277+69x_6278+83x_6279+37x_6280+45x_6281+59x_6282+70x_6283+65x_6284+87x_6285+75x_6286+26x_6287+11x_6288+81x_6289+42x_6290+6x_6291+8x_6292+33x_6293+32x_6294+15x_6295+8x_6296+43x_6297+72x_6298+90x_6299+46x_6300+14x_6301+36x_6302+31x_6303+16x_6304+x_6305+54x_6306+77x_6307+48x_6308+48x_6309+73x_6310+54x_6311+8x_6312+35x_6313+18x_6314+79x_6315+22x_6316+17x_6317+11x_6318+6x_6319+95x_6320+49x_6321+34x_6322+92x_6323+41x_6324+40x_6325+8x_6326+64x_6327+24x_6328+7x_6329+76x_6330+82x_6331+5x_6332+67x_6333+80x_6334+11x_6335+91x_6336+18x_6337+17x_6338+26x_6339+15x_6340+49x_6341+16x_6342+11x_6343+87x_6344+68x_6345+98x_6346+50x_6347+9x_6348+60x_6349+78x_6350+56x_6351+39x_6352+99x_6353+16x_6354+97x_6355+31x_6356+49x_6357+49x_6358+45x_6359+27x_6360+88x_6361+55x_6362+5x_6363+70x_6364+63x_6365+21x_6366+54x_6367+50x_6368+73x_6369+58x_6370+46x_6371+87x_6372+39x_6373+40x_6374+31x_6375+46x_6376+53x_6377+86x_6378+61x_6379+65x_6380+16x_6381+75x_6382+26x_6383+46x_6384+66x_6385+24x_6386+70x_6387+26x_6388+53x_6389+28x_6390+48x_6391+67x_6392+87x_6393+24x_6394+39x_6395+34x_6396+42x_6397+50x_6398+79x_6399+13x_6400+98x_6401+9x_6402+49x_6403+8x_6404+54x_6405+91x_6406+98x_6407+89x_6408+84x_6409+50x_6410+92x_6411+x_6412+34x_6413+26x_6414+53x_6415+88x_6416+5x_6417+71x_6418+44x_6419+90x_6420+98x_6421+55x_6422+93x_6423+21x_6424+4x_6425+74x_6426+80x_6427+8x_6428+35x_6429+92x_6430+14x_6431+23x_6432+30x_6433+73x_6434+37x_6435+29x_6436+91x_6437+72x_6438+25x_6439+78x_6440+96x_6441+69x_6442+72x_6443+23x_6444+64x_6445+x_6446+99x_6447+17x_6448+75x_6449+75x_6450+43x_6451+70x_6452+19x_6453+7x_6454+62x_6455+35x_6456+96x_6457+54x_6458+65x_6459+92x_6460+10x_6461+77x_6462+6x_6463+36x_6464+88x_6465+34x_6466+33x_6467+44x_6468+9x_6469+28x_6470+20x_6471+64x_6472+27x_6473+54x_6474+61x_6475+84x_6476+76x_6477+36x_6478+83x_6479+75x_6480+88x_6481+78x_6482+51x_6483+32x_6484+64x_6485+53x_6486+37x_6487+80x_6488+4x_6489+28x_6490+97x_6491+100x_6492+7x_6493+10x_6494+46x_6495+68x_6496+80x_6497+28x_6498+65x_6499+35x_6500+27x_6501+19x_6502+73x_6503+80x_6504+64x_6505+56x_6506+59x_6507+38x_6508+84x_6509+28x_6510+41x_6511+26x_6512+20x_6513+20x_6514+50x_6515+63x_6516+88x_6517+27x_6518+16x_6519+17x_6520+24x_6521+96x_6522+64x_6523+12x_6524+5x_6525+6x_6526+98x_6527+66x_6528+15x_6529+49x_6530+86x_6531+38x_6532+23x_6533+10x_6534+98x_6535+91x_6536+56x_6537+33x_6538+19x_6539+85x_6540+44x_6541+x_6542+20x_6543+59x_6544+59x_6545+88x_6546+28x_6547+54x_6548+88x_6549+5x_6550+72x_6551+91x_6552+68x_6553+38x_6554+83x_6555+58x_6556+20x_6557+51x_6558+82x_6559+52x_6560+61x_6561+65x_6562+65x_6563+89x_6564+51x_6565+92x_6566+42x_6567+16x_6568+5x_6569+71x_6570+98x_6571+92x_6572+28x_6573+61x_6574+54x_6575+11x_6576+5x_6577+13x_6578+91x_6579+30x_6580+48x_6581+43x_6582+68x_6583+7x_6584+24x_6585+19x_6586+33x_6587+80x_6588+36x_6589+37x_6590+7x_6591+53x_6592+31x_6593+100x_6594+39x_6595+91x_6596+7x_6597+90x_6598+89x_6599+4x_6600+25x_6601+85x_6602+46x_6603+21x_6604+2x_6605+22x_6606+14x_6607+25x_6608+77x_6609+97x_6610+54x_6611+47x_6612+56x_6613+34x_6614+32x_6615+74x_6616+7x_6617+63x_6618+73x_6619+85x_6620+78x_6621+17x_6622+55x_6623+25x_6624+50x_6625+19x_6626+76x_6627+69x_6628+69x_6629+38x_6630+11x_6631+98x_6632+54x_6633+11x_6634+42x_6635+50x_6636+47x_6637+78x_6638+97x_6639+91x_6640+100x_6641+30x_6642+38x_6643+17x_6644+35x_6645+83x_6646+72x_6647+33x_6648+53x_6649+77x_6650+32x_6651+21x_6652+82x_6653+10x_6654+85x_6655+79x_6656+61x_6657+3x_6658+85x_6659+44x_6660+47x_6661+66x_6662+30x_6663+71x_6664+9x_6665+17x_6666+34x_6667+73x_6668+88x_6669+33x_6670+42x_6671+4x_6672+3x_6673+82x_6674+93x_6675+93x_6676+64x_6677+83x_6678+4x_6679+71x_6680+2x_6681+69x_6682+86x_6683+23x_6684+19x_6685+71x_6686+69x_6687+26x_6688+27x_6689+55x_6690+86x_6691+68x_6692+87x_6693+84x_6694+74x_6695+3x_6696+64x_6697+73x_6698+4x_6699+54x_6700+30x_6701+54x_6702+34x_6703+78x_6704+39x_6705+60x_6706+98x_6707+73x_6708+46x_6709+46x_6710+77x_6711+36x_6712+55x_6713+10x_6714+25x_6715+4x_6716+80x_6717+57x_6718+90x_6719+23x_6720+34x_6721+8x_6722+48x_6723+36x_6724+24x_6725+43x_6726+37x_6727+46x_6728+11x_6729+96x_6730+76x_6731+18x_6732+93x_6733+19x_6734+25x_6735+90x_6736+77x_6737+54x_6738+40x_6739+95x_6740+39x_6741+66x_6742+71x_6743+61x_6744+23x_6745+11x_6746+63x_6747+55x_6748+15x_6749+78x_6750+22x_6751+27x_6752+67x_6753+49x_6754+14x_6755+98x_6756+36x_6757+62x_6758+5x_6759+19x_6760+31x_6761+35x_6762+84x_6763+69x_6764+85x_6765+14x_6766+64x_6767+x_6768+67x_6769+32x_6770+85x_6771+11x_6772+66x_6773+89x_6774+27x_6775+96x_6776+28x_6777+6x_6778+64x_6779+22x_6780+43x_6781+22x_6782+91x_6783+97x_6784+17x_6785+52x_6786+86x_6787+99x_6788+32x_6789+56x_6790+55x_6791+66x_6792+18x_6793+10x_6794+61x_6795+72x_6796+45x_6797+27x_6798+52x_6799+75x_6800+52x_6801+16x_6802+20x_6803+85x_6804+7x_6805+19x_6806+8x_6807+17x_6808+15x_6809+6x_6810+99x_6811+81x_6812+11x_6813+80x_6814+24x_6815+70x_6816+77x_6817+93x_6818+37x_6819+30x_6820+31x_6821+27x_6822+19x_6823+45x_6824+78x_6825+67x_6826+96x_6827+68x_6828+7x_6829+78x_6830+5x_6831+76x_6832+98x_6833+16x_6834+99x_6835+22x_6836+94x_6837+99x_6838+75x_6839+20x_6840+15x_6841+19x_6842+77x_6843+60x_6844+x_6845+83x_6846+78x_6847+5x_6848+7x_6849+75x_6850+63x_6851+71x_6852+12x_6853+12x_6854+70x_6855+55x_6856+43x_6857+27x_6858+34x_6859+50x_6860+82x_6861+12x_6862+24x_6863+7x_6864+61x_6865+36x_6866+60x_6867+16x_6868+49x_6869+48x_6870+37x_6871+55x_6872+74x_6873+57x_6874+27x_6875+38x_6876+43x_6877+53x_6878+26x_6879+80x_6880+15x_6881+73x_6882+14x_6883+82x_6884+88x_6885+2x_6886+7x_6887+48x_6888+70x_6889+25x_6890+35x_6891+47x_6892+25x_6893+39x_6894+76x_6895+92x_6896+20x_6897+62x_6898+58x_6899+64x_6900+72x_6901+49x_6902+47x_6903+100x_6904+85x_6905+13x_6906+41x_6907+37x_6908+48x_6909+64x_6910+61x_6911+87x_6912+3x_6913+46x_6914+17x_6915+4x_6916+38x_6917+72x_6918+91x_6919+25x_6920+81x_6921+89x_6922+83x_6923+9x_6924+53x_6925+68x_6926+40x_6927+56x_6928+18x_6929+88x_6930+17x_6931+16x_6932+45x_6933+5x_6934+88x_6935+41x_6936+19x_6937+86x_6938+88x_6939+55x_6940+26x_6941+24x_6942+99x_6943+99x_6944+19x_6945+79x_6946+74x_6947+44x_6948+44x_6949+96x_6950+4x_6951+78x_6952+16x_6953+95x_6954+19x_6955+92x_6956+48x_6957+38x_6958+24x_6959+62x_6960+94x_6961+46x_6962+41x_6963+63x_6964+35x_6965+31x_6966+91x_6967+90x_6968+82x_6969+15x_6970+82x_6971+73x_6972+25x_6973+49x_6974+24x_6975+67x_6976+10x_6977+20x_6978+11x_6979+23x_6980+92x_6981+49x_6982+29x_6983+41x_6984+27x_6985+67x_6986+67x_6987+57x_6988+78x_6989+57x_6990+91x_6991+20x_6992+61x_6993+59x_6994+41x_6995+25x_6996+15x_6997+60x_6998+14x_6999+29x_7000+93x_7001+59x_7002+91x_7003+72x_7004+10x_7005+6x_7006+93x_7007+45x_7008+92x_7009+40x_7010+80x_7011+45x_7012+20x_7013+12x_7014+94x_7015+36x_7016+6x_7017+99x_7018+12x_7019+49x_7020+15x_7021+30x_7022+69x_7023+61x_7024+86x_7025+68x_7026+47x_7027+2x_7028+68x_7029+86x_7030+21x_7031+91x_7032+43x_7033+46x_7034+10x_7035+76x_7036+6x_7037+27x_7038+85x_7039+76x_7040+61x_7041+20x_7042+47x_7043+58x_7044+93x_7045+46x_7046+62x_7047+83x_7048+63x_7049+34x_7050+59x_7051+26x_7052+84x_7053+19x_7054+98x_7055+35x_7056+11x_7057+32x_7058+81x_7059+89x_7060+22x_7061+39x_7062+79x_7063+17x_7064+99x_7065+68x_7066+12x_7067+25x_7068+9x_7069+82x_7070+85x_7071+x_7072+18x_7073+86x_7074+73x_7075+81x_7076+98x_7077+47x_7078+22x_7079+68x_7080+78x_7081+46x_7082+96x_7083+64x_7084+36x_7085+83x_7086+36x_7087+6x_7088+74x_7089+7x_7090+20x_7091+26x_7092+90x_7093+20x_7094+94x_7095+43x_7096+57x_7097+44x_7098+94x_7099+73x_7100+16x_7101+99x_7102+54x_7103+73x_7104+47x_7105+3x_7106+24x_7107+46x_7108+21x_7109+23x_7110+56x_7111+29x_7112+73x_7113+81x_7114+18x_7115+34x_7116+8x_7117+86x_7118+61x_7119+20x_7120+96x_7121+91x_7122+41x_7123+83x_7124+37x_7125+19x_7126+21x_7127+88x_7128+51x_7129+51x_7130+87x_7131+71x_7132+70x_7133+22x_7134+57x_7135+11x_7136+61x_7137+92x_7138+81x_7139+82x_7140+20x_7141+25x_7142+4x_7143+67x_7144+60x_7145+72x_7146+23x_7147+68x_7148+13x_7149+18x_7150+87x_7151+26x_7152+16x_7153+80x_7154+63x_7155+79x_7156+52x_7157+71x_7158+46x_7159+25x_7160+91x_7161+55x_7162+68x_7163+66x_7164+6x_7165+39x_7166+58x_7167+83x_7168+24x_7169+46x_7170+64x_7171+98x_7172+80x_7173+100x_7174+78x_7175+79x_7176+46x_7177+16x_7178+9x_7179+73x_7180+60x_7181+90x_7182+62x_7183+45x_7184+43x_7185+71x_7186+23x_7187+90x_7188+46x_7189+50x_7190+78x_7191+20x_7192+58x_7193+93x_7194+89x_7195+77x_7196+43x_7197+92x_7198+29x_7199+80x_7200+18x_7201+91x_7202+73x_7203+95x_7204+56x_7205+56x_7206+24x_7207+6x_7208+88x_7209+70x_7210+19x_7211+37x_7212+18x_7213+90x_7214+86x_7215+66x_7216+18x_7217+43x_7218+77x_7219+96x_7220+11x_7221+59x_7222+74x_7223+8x_7224+89x_7225+57x_7226+7x_7227+3x_7228+16x_7229+81x_7230+27x_7231+30x_7232+91x_7233+30x_7234+69x_7235+29x_7236+13x_7237+39x_7238+93x_7239+21x_7240+73x_7241+66x_7242+72x_7243+53x_7244+83x_7245+56x_7246+28x_7247+84x_7248+41x_7249+82x_7250+3x_7251+46x_7252+65x_7253+56x_7254+58x_7255+52x_7256+55x_7257+81x_7258+58x_7259+36x_7260+22x_7261+66x_7262+63x_7263+9x_7264+5x_7265+49x_7266+52x_7267+98x_7268+87x_7269+36x_7270+47x_7271+63x_7272+96x_7273+45x_7274+63x_7275+89x_7276+79x_7277+85x_7278+79x_7279+10x_7280+2x_7281+11x_7282+64x_7283+29x_7284+82x_7285+80x_7286+29x_7287+x_7288+75x_7289+30x_7290+91x_7291+58x_7292+18x_7293+42x_7294+90x_7295+19x_7296+29x_7297+94x_7298+41x_7299+74x_7300+100x_7301+56x_7302+22x_7303+77x_7304+95x_7305+77x_7306+27x_7307+20x_7308+6x_7309+37x_7310+41x_7311+100x_7312+90x_7313+50x_7314+63x_7315+85x_7316+81x_7317+4x_7318+78x_7319+56x_7320+72x_7321+70x_7322+55x_7323+83x_7324+20x_7325+24x_7326+26x_7327+5x_7328+37x_7329+70x_7330+8x_7331+7x_7332+13x_7333+91x_7334+3x_7335+83x_7336+33x_7337+82x_7338+40x_7339+7x_7340+4x_7341+33x_7342+20x_7343+5x_7344+61x_7345+15x_7346+80x_7347+59x_7348+86x_7349+29x_7350+55x_7351+69x_7352+19x_7353+43x_7354+11x_7355+52x_7356+63x_7357+57x_7358+67x_7359+69x_7360+85x_7361+65x_7362+36x_7363+x_7364+79x_7365+77x_7366+15x_7367+52x_7368+69x_7369+50x_7370+9x_7371+33x_7372+48x_7373+98x_7374+3x_7375+22x_7376+44x_7377+35x_7378+60x_7379+42x_7380+73x_7381+25x_7382+53x_7383+7x_7384+3x_7385+64x_7386+88x_7387+13x_7388+13x_7389+30x_7390+58x_7391+14x_7392+18x_7393+81x_7394+74x_7395+27x_7396+40x_7397+36x_7398+40x_7399+37x_7400+23x_7401+62x_7402+48x_7403+25x_7404+80x_7405+29x_7406+9x_7407+58x_7408+57x_7409+79x_7410+46x_7411+86x_7412+12x_7413+47x_7414+58x_7415+61x_7416+46x_7417+86x_7418+31x_7419+88x_7420+54x_7421+3x_7422+75x_7423+88x_7424+66x_7425+91x_7426+13x_7427+83x_7428+55x_7429+49x_7430+45x_7431+20x_7432+62x_7433+60x_7434+35x_7435+46x_7436+72x_7437+33x_7438+96x_7439+23x_7440+58x_7441+13x_7442+90x_7443+17x_7444+33x_7445+76x_7446+73x_7447+13x_7448+88x_7449+43x_7450+42x_7451+17x_7452+99x_7453+71x_7454+58x_7455+40x_7456+10x_7457+72x_7458+12x_7459+52x_7460+16x_7461+25x_7462+99x_7463+29x_7464+7x_7465+44x_7466+44x_7467+9x_7468+55x_7469+6x_7470+70x_7471+63x_7472+56x_7473+14x_7474+74x_7475+71x_7476+42x_7477+25x_7478+37x_7479+x_7480+49x_7481+44x_7482+36x_7483+20x_7484+90x_7485+30x_7486+27x_7487+69x_7488+87x_7489+100x_7490+51x_7491+5x_7492+59x_7493+23x_7494+6x_7495+26x_7496+82x_7497+82x_7498+83x_7499+59x_7500+8x_7501+85x_7502+24x_7503+69x_7504+53x_7505+39x_7506+70x_7507+46x_7508+31x_7509+74x_7510+67x_7511+50x_7512+55x_7513+25x_7514+40x_7515+82x_7516+88x_7517+40x_7518+86x_7519+67x_7520+25x_7521+60x_7522+68x_7523+48x_7524+3x_7525+39x_7526+85x_7527+4x_7528+100x_7529+72x_7530+95x_7531+57x_7532+62x_7533+41x_7534+45x_7535+73x_7536+61x_7537+75x_7538+36x_7539+90x_7540+52x_7541+44x_7542+80x_7543+95x_7544+44x_7545+79x_7546+44x_7547+10x_7548+28x_7549+92x_7550+82x_7551+x_7552+29x_7553+27x_7554+77x_7555+27x_7556+16x_7557+70x_7558+66x_7559+17x_7560+33x_7561+9x_7562+53x_7563+44x_7564+50x_7565+66x_7566+60x_7567+34x_7568+76x_7569+23x_7570+36x_7571+82x_7572+82x_7573+52x_7574+97x_7575+47x_7576+78x_7577+17x_7578+44x_7579+16x_7580+95x_7581+49x_7582+86x_7583+77x_7584+38x_7585+21x_7586+46x_7587+49x_7588+46x_7589+96x_7590+34x_7591+65x_7592+84x_7593+3x_7594+75x_7595+98x_7596+14x_7597+23x_7598+63x_7599+77x_7600+62x_7601+77x_7602+3x_7603+41x_7604+9x_7605+18x_7606+47x_7607+78x_7608+23x_7609+6x_7610+38x_7611+14x_7612+64x_7613+90x_7614+8x_7615+51x_7616+3x_7617+93x_7618+24x_7619+78x_7620+4x_7621+41x_7622+18x_7623+31x_7624+4x_7625+17x_7626+70x_7627+54x_7628+52x_7629+32x_7630+71x_7631+7x_7632+98x_7633+12x_7634+7x_7635+57x_7636+38x_7637+11x_7638+29x_7639+29x_7640+89x_7641+58x_7642+5x_7643+94x_7644+10x_7645+92x_7646+7x_7647+54x_7648+x_7649+22x_7650+7x_7651+31x_7652+57x_7653+41x_7654+10x_7655+11x_7656+46x_7657+22x_7658+23x_7659+19x_7660+91x_7661+16x_7662+70x_7663+100x_7664+7x_7665+81x_7666+10x_7667+47x_7668+13x_7669+61x_7670+94x_7671+93x_7672+57x_7673+91x_7674+72x_7675+63x_7676+33x_7677+23x_7678+36x_7679+24x_7680+60x_7681+79x_7682+33x_7683+14x_7684+34x_7685+31x_7686+45x_7687+50x_7688+87x_7689+24x_7690+8x_7691+80x_7692+24x_7693+45x_7694+94x_7695+2x_7696+38x_7697+77x_7698+59x_7699+87x_7700+38x_7701+25x_7702+69x_7703+54x_7704+53x_7705+64x_7706+60x_7707+100x_7708+97x_7709+46x_7710+27x_7711+48x_7712+85x_7713+82x_7714+38x_7715+75x_7716+5x_7717+12x_7718+83x_7719+78x_7720+70x_7721+76x_7722+55x_7723+85x_7724+33x_7725+24x_7726+63x_7727+93x_7728+59x_7729+40x_7730+25x_7731+70x_7732+32x_7733+38x_7734+3x_7735+9x_7736+28x_7737+97x_7738+40x_7739+24x_7740+32x_7741+22x_7742+37x_7743+89x_7744+47x_7745+10x_7746+31x_7747+35x_7748+46x_7749+6x_7750+75x_7751+66x_7752+47x_7753+52x_7754+46x_7755+60x_7756+71x_7757+5x_7758+23x_7759+31x_7760+76x_7761+4x_7762+47x_7763+5x_7764+35x_7765+5x_7766+56x_7767+68x_7768+54x_7769+11x_7770+38x_7771+78x_7772+31x_7773+57x_7774+11x_7775+57x_7776+56x_7777+35x_7778+12x_7779+49x_7780+10x_7781+41x_7782+x_7783+92x_7784+66x_7785+51x_7786+30x_7787+98x_7788+44x_7789+17x_7790+91x_7791+23x_7792+83x_7793+68x_7794+100x_7795+3x_7796+91x_7797+72x_7798+38x_7799+14x_7800+42x_7801+72x_7802+86x_7803+82x_7804+98x_7805+50x_7806+62x_7807+69x_7808+47x_7809+2x_7810+97x_7811+93x_7812+71x_7813+5x_7814+80x_7815+5x_7816+79x_7817+94x_7818+x_7819+4x_7820+14x_7821+93x_7822+7x_7823+32x_7824+58x_7825+85x_7826+86x_7827+24x_7828+53x_7829+66x_7830+61x_7831+69x_7832+65x_7833+69x_7834+46x_7835+70x_7836+46x_7837+23x_7838+70x_7839+26x_7840+39x_7841+73x_7842+29x_7843+2x_7844+56x_7845+25x_7846+65x_7847+12x_7848+87x_7849+94x_7850+80x_7851+82x_7852+8x_7853+36x_7854+77x_7855+15x_7856+46x_7857+5x_7858+18x_7859+8x_7860+19x_7861+95x_7862+50x_7863+56x_7864+87x_7865+98x_7866+86x_7867+22x_7868+89x_7869+13x_7870+91x_7871+85x_7872+17x_7873+86x_7874+95x_7875+20x_7876+46x_7877+66x_7878+x_7879+70x_7880+66x_7881+75x_7882+x_7883+78x_7884+34x_7885+20x_7886+16x_7887+98x_7888+39x_7889+57x_7890+72x_7891+59x_7892+19x_7893+75x_7894+30x_7895+80x_7896+72x_7897+31x_7898+26x_7899+75x_7900+55x_7901+56x_7902+26x_7903+66x_7904+60x_7905+73x_7906+38x_7907+84x_7908+7x_7909+79x_7910+41x_7911+33x_7912+33x_7913+65x_7914+60x_7915+11x_7916+7x_7917+9x_7918+53x_7919+50x_7920+61x_7921+85x_7922+27x_7923+95x_7924+64x_7925+65x_7926+94x_7927+29x_7928+71x_7929+99x_7930+100x_7931+84x_7932+95x_7933+29x_7934+8x_7935+6x_7936+79x_7937+15x_7938+98x_7939+40x_7940+58x_7941+57x_7942+44x_7943+36x_7944+78x_7945+74x_7946+38x_7947+96x_7948+76x_7949+64x_7950+65x_7951+93x_7952+11x_7953+27x_7954+30x_7955+51x_7956+35x_7957+63x_7958+68x_7959+4x_7960+61x_7961+22x_7962+89x_7963+39x_7964+72x_7965+58x_7966+76x_7967+88x_7968+74x_7969+49x_7970+22x_7971+15x_7972+94x_7973+17x_7974+51x_7975+92x_7976+85x_7977+35x_7978+24x_7979+90x_7980+65x_7981+83x_7982+38x_7983+50x_7984+99x_7985+46x_7986+58x_7987+44x_7988+27x_7989+58x_7990+50x_7991+26x_7992+52x_7993+7x_7994+65x_7995+42x_7996+80x_7997+11x_7998+53x_7999+84x_8000+67x_8001+60x_8002+63x_8003+20x_8004+67x_8005+2x_8006+90x_8007+7x_8008+63x_8009+46x_8010+79x_8011+56x_8012+85x_8013+57x_8014+89x_8015+8x_8016+92x_8017+70x_8018+45x_8019+96x_8020+17x_8021+97x_8022+10x_8023+93x_8024+59x_8025+64x_8026+87x_8027+23x_8028+33x_8029+97x_8030+57x_8031+54x_8032+44x_8033+89x_8034+85x_8035+71x_8036+61x_8037+84x_8038+55x_8039+58x_8040+63x_8041+93x_8042+73x_8043+20x_8044+93x_8045+91x_8046+19x_8047+5x_8048+93x_8049+72x_8050+3x_8051+79x_8052+45x_8053+63x_8054+41x_8055+41x_8056+12x_8057+71x_8058+6x_8059+99x_8060+85x_8061+42x_8062+42x_8063+90x_8064+8x_8065+67x_8066+23x_8067+11x_8068+13x_8069+24x_8070+99x_8071+61x_8072+73x_8073+40x_8074+17x_8075+35x_8076+69x_8077+60x_8078+35x_8079+42x_8080+22x_8081+63x_8082+41x_8083+82x_8084+99x_8085+47x_8086+44x_8087+86x_8088+39x_8089+89x_8090+91x_8091+65x_8092+96x_8093+4x_8094+3x_8095+15x_8096+29x_8097+98x_8098+95x_8099+38x_8100+15x_8101+8x_8102+93x_8103+61x_8104+48x_8105+3x_8106+73x_8107+28x_8108+84x_8109+46x_8110+52x_8111+55x_8112+33x_8113+14x_8114+21x_8115+41x_8116+30x_8117+31x_8118+74x_8119+75x_8120+2x_8121+12x_8122+80x_8123+100x_8124+32x_8125+24x_8126+63x_8127+77x_8128+9x_8129+74x_8130+11x_8131+23x_8132+12x_8133+20x_8134+55x_8135+12x_8136+57x_8137+78x_8138+6x_8139+81x_8140+87x_8141+49x_8142+x_8143+27x_8144+100x_8145+75x_8146+42x_8147+97x_8148+18x_8149+30x_8150+53x_8151+88x_8152+81x_8153+89x_8154+15x_8155+66x_8156+40x_8157+92x_8158+83x_8159+92x_8160+57x_8161+63x_8162+28x_8163+29x_8164+82x_8165+47x_8166+31x_8167+14x_8168+22x_8169+15x_8170+65x_8171+35x_8172+45x_8173+94x_8174+19x_8175+89x_8176+60x_8177+21x_8178+61x_8179+83x_8180+95x_8181+52x_8182+78x_8183+71x_8184+76x_8185+80x_8186+53x_8187+74x_8188+91x_8189+37x_8190+48x_8191+53x_8192+87x_8193+81x_8194+56x_8195+7x_8196+69x_8197+64x_8198+85x_8199+68x_8200+36x_8201+28x_8202+22x_8203+50x_8204+31x_8205+40x_8206+77x_8207+53x_8208+88x_8209+31x_8210+23x_8211+56x_8212+2x_8213+6x_8214+73x_8215+59x_8216+86x_8217+13x_8218+67x_8219+36x_8220+76x_8221+63x_8222+82x_8223+72x_8224+77x_8225+76x_8226+20x_8227+x_8228+28x_8229+94x_8230+58x_8231+57x_8232+33x_8233+20x_8234+71x_8235+63x_8236+90x_8237+20x_8238+76x_8239+74x_8240+13x_8241+38x_8242+13x_8243+67x_8244+90x_8245+31x_8246+35x_8247+77x_8248+74x_8249+50x_8250+29x_8251+18x_8252+60x_8253+87x_8254+97x_8255+11x_8256+98x_8257+47x_8258+84x_8259+39x_8260+34x_8261+88x_8262+65x_8263+22x_8264+7x_8265+7x_8266+72x_8267+7x_8268+25x_8269+41x_8270+21x_8271+71x_8272+58x_8273+53x_8274+21x_8275+43x_8276+63x_8277+29x_8278+50x_8279+5x_8280+86x_8281+74x_8282+91x_8283+18x_8284+35x_8285+33x_8286+92x_8287+65x_8288+43x_8289+34x_8290+62x_8291+25x_8292+71x_8293+21x_8294+32x_8295+23x_8296+9x_8297+59x_8298+93x_8299+79x_8300+99x_8301+23x_8302+86x_8303+35x_8304+33x_8305+65x_8306+66x_8307+36x_8308+39x_8309+58x_8310+12x_8311+74x_8312+18x_8313+57x_8314+55x_8315+43x_8316+65x_8317+14x_8318+69x_8319+x_8320+54x_8321+88x_8322+21x_8323+49x_8324+93x_8325+9x_8326+59x_8327+71x_8328+40x_8329+83x_8330+50x_8331+6x_8332+73x_8333+39x_8334+56x_8335+73x_8336+93x_8337+96x_8338+28x_8339+97x_8340+29x_8341+65x_8342+10x_8343+35x_8344+97x_8345+77x_8346+28x_8347+12x_8348+45x_8349+7x_8350+23x_8351+72x_8352+76x_8353+11x_8354+43x_8355+31x_8356+22x_8357+79x_8358+35x_8359+15x_8360+99x_8361+45x_8362+79x_8363+86x_8364+93x_8365+79x_8366+40x_8367+85x_8368+20x_8369+8x_8370+93x_8371+77x_8372+81x_8373+25x_8374+93x_8375+5x_8376+38x_8377+21x_8378+60x_8379+27x_8380+49x_8381+26x_8382+25x_8383+62x_8384+23x_8385+62x_8386+63x_8387+7x_8388+7x_8389+25x_8390+100x_8391+93x_8392+97x_8393+28x_8394+70x_8395+59x_8396+42x_8397+31x_8398+14x_8399+48x_8400+7x_8401+44x_8402+31x_8403+42x_8404+99x_8405+82x_8406+18x_8407+76x_8408+22x_8409+31x_8410+7x_8411+21x_8412+68x_8413+23x_8414+19x_8415+25x_8416+33x_8417+86x_8418+45x_8419+16x_8420+48x_8421+61x_8422+57x_8423+47x_8424+28x_8425+90x_8426+26x_8427+31x_8428+57x_8429+x_8430+75x_8431+83x_8432+41x_8433+34x_8434+13x_8435+47x_8436+82x_8437+58x_8438+36x_8439+7x_8440+16x_8441+61x_8442+35x_8443+72x_8444+53x_8445+14x_8446+87x_8447+41x_8448+10x_8449+13x_8450+64x_8451+x_8452+24x_8453+72x_8454+35x_8455+29x_8456+90x_8457+83x_8458+27x_8459+79x_8460+80x_8461+82x_8462+99x_8463+64x_8464+65x_8465+37x_8466+86x_8467+42x_8468+94x_8469+27x_8470+39x_8471+21x_8472+72x_8473+51x_8474+83x_8475+88x_8476+64x_8477+8x_8478+61x_8479+11x_8480+19x_8481+5x_8482+55x_8483+77x_8484+77x_8485+45x_8486+7x_8487+44x_8488+87x_8489+49x_8490+88x_8491+39x_8492+16x_8493+62x_8494+73x_8495+88x_8496+63x_8497+97x_8498+39x_8499+84x_8500+77x_8501+97x_8502+12x_8503+65x_8504+5x_8505+83x_8506+80x_8507+85x_8508+38x_8509+23x_8510+55x_8511+30x_8512+36x_8513+49x_8514+73x_8515+80x_8516+29x_8517+6x_8518+52x_8519+85x_8520+100x_8521+11x_8522+87x_8523+92x_8524+65x_8525+59x_8526+61x_8527+58x_8528+11x_8529+76x_8530+64x_8531+15x_8532+30x_8533+72x_8534+12x_8535+87x_8536+79x_8537+22x_8538+74x_8539+69x_8540+28x_8541+17x_8542+70x_8543+80x_8544+53x_8545+92x_8546+49x_8547+63x_8548+20x_8549+90x_8550+3x_8551+64x_8552+5x_8553+36x_8554+40x_8555+41x_8556+22x_8557+5x_8558+x_8559+65x_8560+56x_8561+68x_8562+57x_8563+26x_8564+70x_8565+19x_8566+19x_8567+13x_8568+9x_8569+94x_8570+48x_8571+93x_8572+74x_8573+9x_8574+26x_8575+x_8576+16x_8577+96x_8578+27x_8579+35x_8580+13x_8581+50x_8582+97x_8583+27x_8584+38x_8585+27x_8586+92x_8587+64x_8588+17x_8589+97x_8590+96x_8591+8x_8592+23x_8593+22x_8594+97x_8595+76x_8596+14x_8597+29x_8598+24x_8599+83x_8600+19x_8601+45x_8602+84x_8603+91x_8604+9x_8605+19x_8606+97x_8607+52x_8608+91x_8609+43x_8610+88x_8611+22x_8612+92x_8613+31x_8614+75x_8615+44x_8616+31x_8617+72x_8618+70x_8619+37x_8620+36x_8621+45x_8622+65x_8623+48x_8624+77x_8625+64x_8626+61x_8627+86x_8628+77x_8629+56x_8630+2x_8631+26x_8632+55x_8633+4x_8634+57x_8635+29x_8636+33x_8637+41x_8638+34x_8639+55x_8640+71x_8641+79x_8642+97x_8643+51x_8644+29x_8645+44x_8646+63x_8647+66x_8648+34x_8649+93x_8650+70x_8651+37x_8652+45x_8653+78x_8654+29x_8655+52x_8656+72x_8657+17x_8658+73x_8659+67x_8660+66x_8661+2x_8662+2x_8663+80x_8664+42x_8665+14x_8666+42x_8667+71x_8668+97x_8669+81x_8670+98x_8671+87x_8672+21x_8673+23x_8674+70x_8675+39x_8676+50x_8677+57x_8678+38x_8679+11x_8680+5x_8681+35x_8682+26x_8683+10x_8684+64x_8685+51x_8686+70x_8687+80x_8688+34x_8689+x_8690+25x_8691+48x_8692+28x_8693+10x_8694+11x_8695+34x_8696+30x_8697+33x_8698+52x_8699+65x_8700+36x_8701+x_8702+68x_8703+92x_8704+57x_8705+78x_8706+8x_8707+59x_8708+6x_8709+11x_8710+28x_8711+98x_8712+55x_8713+65x_8714+53x_8715+14x_8716+27x_8717+94x_8718+25x_8719+90x_8720+85x_8721+12x_8722+84x_8723+81x_8724+22x_8725+12x_8726+61x_8727+58x_8728+91x_8729+43x_8730+47x_8731+32x_8732+28x_8733+83x_8734+78x_8735+20x_8736+52x_8737+89x_8738+65x_8739+76x_8740+100x_8741+32x_8742+97x_8743+14x_8744+95x_8745+47x_8746+52x_8747+13x_8748+100x_8749+96x_8750+5x_8751+82x_8752+39x_8753+79x_8754+65x_8755+35x_8756+68x_8757+19x_8758+67x_8759+62x_8760+92x_8761+13x_8762+21x_8763+88x_8764+80x_8765+78x_8766+3x_8767+24x_8768+95x_8769+100x_8770+92x_8771+53x_8772+8x_8773+4x_8774+34x_8775+63x_8776+62x_8777+42x_8778+35x_8779+91x_8780+5x_8781+5x_8782+3x_8783+32x_8784+22x_8785+31x_8786+29x_8787+90x_8788+58x_8789+41x_8790+100x_8791+9x_8792+27x_8793+51x_8794+7x_8795+86x_8796+56x_8797+x_8798+85x_8799+74x_8800+97x_8801+83x_8802+68x_8803+45x_8804+x_8805+90x_8806+30x_8807+26x_8808+83x_8809+29x_8810+84x_8811+38x_8812+59x_8813+13x_8814+49x_8815+96x_8816+90x_8817+21x_8818+55x_8819+22x_8820+57x_8821+97x_8822+27x_8823+97x_8824+39x_8825+29x_8826+7x_8827+79x_8828+77x_8829+55x_8830+13x_8831+40x_8832+2x_8833+35x_8834+5x_8835+58x_8836+30x_8837+62x_8838+x_8839+78x_8840+22x_8841+29x_8842+63x_8843+94x_8844+95x_8845+4x_8846+67x_8847+89x_8848+63x_8849+59x_8850+77x_8851+72x_8852+85x_8853+27x_8854+73x_8855+34x_8856+83x_8857+67x_8858+39x_8859+61x_8860+98x_8861+57x_8862+20x_8863+75x_8864+66x_8865+67x_8866+73x_8867+65x_8868+25x_8869+5x_8870+31x_8871+98x_8872+48x_8873+81x_8874+65x_8875+x_8876+27x_8877+18x_8878+55x_8879+5x_8880+56x_8881+x_8882+85x_8883+57x_8884+96x_8885+40x_8886+74x_8887+69x_8888+87x_8889+86x_8890+57x_8891+33x_8892+49x_8893+86x_8894+83x_8895+60x_8896+74x_8897+27x_8898+72x_8899+41x_8900+97x_8901+32x_8902+74x_8903+42x_8904+66x_8905+59x_8906+2x_8907+56x_8908+87x_8909+6x_8910+82x_8911+18x_8912+93x_8913+87x_8914+81x_8915+23x_8916+45x_8917+50x_8918+29x_8919+57x_8920+39x_8921+5x_8922+12x_8923+84x_8924+53x_8925+21x_8926+66x_8927+63x_8928+52x_8929+47x_8930+42x_8931+8x_8932+12x_8933+87x_8934+13x_8935+6x_8936+73x_8937+45x_8938+78x_8939+9x_8940+71x_8941+8x_8942+71x_8943+23x_8944+52x_8945+41x_8946+41x_8947+48x_8948+94x_8949+18x_8950+86x_8951+72x_8952+89x_8953+19x_8954+26x_8955+26x_8956+92x_8957+97x_8958+32x_8959+40x_8960+21x_8961+5x_8962+73x_8963+100x_8964+x_8965+29x_8966+37x_8967+20x_8968+50x_8969+68x_8970+71x_8971+46x_8972+67x_8973+18x_8974+44x_8975+44x_8976+45x_8977+71x_8978+43x_8979+84x_8980+9x_8981+61x_8982+76x_8983+46x_8984+52x_8985+95x_8986+11x_8987+78x_8988+4x_8989+7x_8990+3x_8991+12x_8992+66x_8993+83x_8994+72x_8995+47x_8996+21x_8997+44x_8998+75x_8999+40x_9000+54x_9001+75x_9002+58x_9003+41x_9004+21x_9005+89x_9006+55x_9007+9x_9008+29x_9009+82x_9010+94x_9011+33x_9012+73x_9013+90x_9014+36x_9015+53x_9016+72x_9017+60x_9018+63x_9019+65x_9020+78x_9021+87x_9022+68x_9023+13x_9024+64x_9025+43x_9026+49x_9027+24x_9028+79x_9029+12x_9030+3x_9031+93x_9032+58x_9033+90x_9034+37x_9035+69x_9036+59x_9037+82x_9038+86x_9039+28x_9040+73x_9041+71x_9042+83x_9043+56x_9044+66x_9045+45x_9046+80x_9047+49x_9048+44x_9049+22x_9050+25x_9051+7x_9052+69x_9053+26x_9054+91x_9055+31x_9056+88x_9057+77x_9058+61x_9059+11x_9060+33x_9061+87x_9062+64x_9063+77x_9064+39x_9065+87x_9066+19x_9067+54x_9068+81x_9069+65x_9070+62x_9071+79x_9072+48x_9073+49x_9074+83x_9075+26x_9076+77x_9077+39x_9078+44x_9079+71x_9080+70x_9081+57x_9082+92x_9083+40x_9084+25x_9085+71x_9086+52x_9087+56x_9088+4x_9089+92x_9090+23x_9091+2x_9092+7x_9093+48x_9094+10x_9095+65x_9096+4x_9097+78x_9098+94x_9099+69x_9100+43x_9101+49x_9102+64x_9103+12x_9104+34x_9105+83x_9106+91x_9107+62x_9108+x_9109+79x_9110+52x_9111+53x_9112+28x_9113+76x_9114+31x_9115+53x_9116+34x_9117+71x_9118+63x_9119+91x_9120+19x_9121+33x_9122+9x_9123+70x_9124+96x_9125+2x_9126+7x_9127+8x_9128+92x_9129+23x_9130+77x_9131+77x_9132+49x_9133+73x_9134+66x_9135+74x_9136+46x_9137+73x_9138+74x_9139+12x_9140+12x_9141+5x_9142+68x_9143+23x_9144+47x_9145+8x_9146+71x_9147+42x_9148+29x_9149+47x_9150+63x_9151+56x_9152+64x_9153+81x_9154+64x_9155+2x_9156+51x_9157+30x_9158+43x_9159+22x_9160+2x_9161+93x_9162+27x_9163+53x_9164+91x_9165+61x_9166+85x_9167+2x_9168+36x_9169+2x_9170+90x_9171+33x_9172+87x_9173+19x_9174+46x_9175+100x_9176+4x_9177+37x_9178+17x_9179+6x_9180+17x_9181+83x_9182+27x_9183+96x_9184+19x_9185+60x_9186+11x_9187+67x_9188+10x_9189+65x_9190+52x_9191+34x_9192+4x_9193+96x_9194+11x_9195+91x_9196+99x_9197+19x_9198+98x_9199+11x_9200+91x_9201+20x_9202+92x_9203+65x_9204+60x_9205+81x_9206+30x_9207+44x_9208+52x_9209+92x_9210+19x_9211+93x_9212+35x_9213+63x_9214+90x_9215+6x_9216+72x_9217+100x_9218+8x_9219+61x_9220+13x_9221+28x_9222+2x_9223+17x_9224+10x_9225+30x_9226+91x_9227+57x_9228+33x_9229+71x_9230+22x_9231+49x_9232+73x_9233+31x_9234+23x_9235+75x_9236+45x_9237+12x_9238+83x_9239+87x_9240+x_9241+46x_9242+14x_9243+49x_9244+94x_9245+83x_9246+29x_9247+33x_9248+7x_9249+73x_9250+40x_9251+46x_9252+11x_9253+56x_9254+61x_9255+33x_9256+87x_9257+68x_9258+73x_9259+30x_9260+68x_9261+49x_9262+59x_9263+34x_9264+20x_9265+32x_9266+71x_9267+2x_9268+71x_9269+56x_9270+10x_9271+48x_9272+93x_9273+29x_9274+85x_9275+84x_9276+11x_9277+81x_9278+9x_9279+50x_9280+79x_9281+68x_9282+16x_9283+28x_9284+72x_9285+86x_9286+55x_9287+54x_9288+65x_9289+52x_9290+69x_9291+51x_9292+56x_9293+29x_9294+58x_9295+67x_9296+5x_9297+69x_9298+67x_9299+82x_9300+12x_9301+33x_9302+14x_9303+37x_9304+33x_9305+65x_9306+40x_9307+89x_9308+33x_9309+57x_9310+7x_9311+6x_9312+84x_9313+44x_9314+98x_9315+46x_9316+41x_9317+86x_9318+52x_9319+100x_9320+77x_9321+48x_9322+15x_9323+42x_9324+28x_9325+80x_9326+39x_9327+14x_9328+49x_9329+78x_9330+5x_9331+54x_9332+42x_9333+28x_9334+77x_9335+27x_9336+67x_9337+27x_9338+25x_9339+5x_9340+46x_9341+43x_9342+34x_9343+54x_9344+16x_9345+54x_9346+22x_9347+30x_9348+76x_9349+9x_9350+80x_9351+86x_9352+16x_9353+90x_9354+24x_9355+33x_9356+86x_9357+69x_9358+75x_9359+68x_9360+67x_9361+92x_9362+2x_9363+78x_9364+34x_9365+4x_9366+86x_9367+22x_9368+15x_9369+22x_9370+37x_9371+22x_9372+48x_9373+43x_9374+16x_9375+31x_9376+80x_9377+94x_9378+17x_9379+34x_9380+50x_9381+42x_9382+26x_9383+93x_9384+49x_9385+11x_9386+99x_9387+21x_9388+66x_9389+29x_9390+44x_9391+31x_9392+15x_9393+20x_9394+34x_9395+54x_9396+45x_9397+73x_9398+36x_9399+96x_9400+62x_9401+43x_9402+37x_9403+31x_9404+14x_9405+24x_9406+65x_9407+18x_9408+56x_9409+80x_9410+100x_9411+96x_9412+74x_9413+37x_9414+77x_9415+24x_9416+27x_9417+95x_9418+24x_9419+58x_9420+91x_9421+28x_9422+76x_9423+89x_9424+24x_9425+17x_9426+6x_9427+79x_9428+93x_9429+93x_9430+73x_9431+2x_9432+42x_9433+55x_9434+61x_9435+71x_9436+82x_9437+93x_9438+16x_9439+60x_9440+10x_9441+90x_9442+22x_9443+87x_9444+50x_9445+58x_9446+35x_9447+65x_9448+95x_9449+80x_9450+69x_9451+22x_9452+93x_9453+98x_9454+x_9455+52x_9456+8x_9457+80x_9458+23x_9459+31x_9460+94x_9461+27x_9462+93x_9463+72x_9464+33x_9465+71x_9466+58x_9467+99x_9468+32x_9469+48x_9470+100x_9471+45x_9472+67x_9473+67x_9474+85x_9475+2x_9476+98x_9477+63x_9478+9x_9479+96x_9480+48x_9481+4x_9482+10x_9483+12x_9484+x_9485+99x_9486+76x_9487+36x_9488+66x_9489+61x_9490+62x_9491+27x_9492+96x_9493+22x_9494+22x_9495+87x_9496+85x_9497+82x_9498+20x_9499+74x_9500+90x_9501+27x_9502+53x_9503+27x_9504+24x_9505+37x_9506+61x_9507+69x_9508+11x_9509+60x_9510+93x_9511+8x_9512+83x_9513+59x_9514+41x_9515+76x_9516+80x_9517+29x_9518+48x_9519+74x_9520+80x_9521+31x_9522+71x_9523+2x_9524+5x_9525+63x_9526+67x_9527+49x_9528+76x_9529+32x_9530+56x_9531+58x_9532+74x_9533+16x_9534+68x_9535+43x_9536+33x_9537+23x_9538+95x_9539+35x_9540+100x_9541+68x_9542+86x_9543+96x_9544+10x_9545+50x_9546+94x_9547+56x_9548+100x_9549+30x_9550+36x_9551+53x_9552+100x_9553+17x_9554+24x_9555+84x_9556+19x_9557+79x_9558+88x_9559+27x_9560+98x_9561+4x_9562+31x_9563+44x_9564+19x_9565+9x_9566+4x_9567+63x_9568+36x_9569+89x_9570+18x_9571+99x_9572+72x_9573+49x_9574+93x_9575+68x_9576+74x_9577+48x_9578+94x_9579+33x_9580+83x_9581+58x_9582+76x_9583+85x_9584+83x_9585+35x_9586+35x_9587+92x_9588+50x_9589+55x_9590+55x_9591+28x_9592+13x_9593+33x_9594+31x_9595+67x_9596+20x_9597+98x_9598+76x_9599+96x_9600+11x_9601+37x_9602+27x_9603+81x_9604+67x_9605+89x_9606+40x_9607+25x_9608+34x_9609+23x_9610+55x_9611+85x_9612+78x_9613+3x_9614+42x_9615+42x_9616+63x_9617+33x_9618+89x_9619+67x_9620+32x_9621+93x_9622+99x_9623+34x_9624+71x_9625+39x_9626+4x_9627+51x_9628+4x_9629+11x_9630+97x_9631+38x_9632+57x_9633+68x_9634+40x_9635+26x_9636+66x_9637+96x_9638+50x_9639+99x_9640+17x_9641+97x_9642+31x_9643+70x_9644+5x_9645+81x_9646+48x_9647+50x_9648+23x_9649+76x_9650+86x_9651+53x_9652+45x_9653+10x_9654+28x_9655+67x_9656+93x_9657+19x_9658+35x_9659+17x_9660+67x_9661+47x_9662+43x_9663+71x_9664+94x_9665+14x_9666+13x_9667+7x_9668+3x_9669+58x_9670+38x_9671+7x_9672+x_9673+71x_9674+72x_9675+76x_9676+5x_9677+15x_9678+76x_9679+63x_9680+37x_9681+55x_9682+92x_9683+8x_9684+44x_9685+96x_9686+74x_9687+11x_9688+91x_9689+42x_9690+41x_9691+99x_9692+62x_9693+43x_9694+35x_9695+59x_9696+52x_9697+57x_9698+67x_9699+7x_9700+69x_9701+87x_9702+83x_9703+30x_9704+36x_9705+42x_9706+51x_9707+53x_9708+14x_9709+34x_9710+39x_9711+33x_9712+56x_9713+58x_9714+30x_9715+30x_9716+48x_9717+96x_9718+92x_9719+58x_9720+60x_9721+93x_9722+9x_9723+31x_9724+60x_9725+22x_9726+25x_9727+53x_9728+22x_9729+56x_9730+79x_9731+15x_9732+17x_9733+29x_9734+58x_9735+68x_9736+72x_9737+79x_9738+15x_9739+77x_9740+100x_9741+48x_9742+74x_9743+91x_9744+83x_9745+3x_9746+7x_9747+47x_9748+56x_9749+47x_9750+31x_9751+88x_9752+45x_9753+89x_9754+65x_9755+85x_9756+32x_9757+74x_9758+5x_9759+52x_9760+61x_9761+18x_9762+25x_9763+61x_9764+5x_9765+81x_9766+49x_9767+31x_9768+26x_9769+31x_9770+26x_9771+77x_9772+20x_9773+30x_9774+50x_9775+74x_9776+25x_9777+58x_9778+3x_9779+78x_9780+32x_9781+55x_9782+13x_9783+19x_9784+93x_9785+10x_9786+91x_9787+88x_9788+7x_9789+19x_9790+8x_9791+60x_9792+3x_9793+19x_9794+67x_9795+64x_9796+22x_9797+94x_9798+78x_9799+53x_9800+59x_9801+90x_9802+29x_9803+74x_9804+19x_9805+18x_9806+64x_9807+63x_9808+5x_9809+13x_9810+44x_9811+34x_9812+89x_9813+56x_9814+49x_9815+70x_9816+89x_9817+23x_9818+17x_9819+57x_9820+6x_9821+10x_9822+16x_9823+51x_9824+37x_9825+62x_9826+8x_9827+37x_9828+69x_9829+55x_9830+89x_9831+61x_9832+37x_9833+53x_9834+27x_9835+70x_9836+56x_9837+22x_9838+5x_9839+33x_9840+x_9841+98x_9842+73x_9843+85x_9844+27x_9845+x_9846+97x_9847+37x_9848+18x_9849+80x_9850+18x_9851+24x_9852+29x_9853+55x_9854+88x_9855+61x_9856+34x_9857+73x_9858+63x_9859+62x_9860+23x_9861+83x_9862+38x_9863+100x_9864+45x_9865+51x_9866+8x_9867+38x_9868+4x_9869+74x_9870+97x_9871+4x_9872+78x_9873+33x_9874+95x_9875+87x_9876+95x_9877+18x_9878+42x_9879+94x_9880+90x_9881+50x_9882+11x_9883+80x_9884+42x_9885+31x_9886+75x_9887+8x_9888+27x_9889+62x_9890+97x_9891+3x_9892+10x_9893+94x_9894+97x_9895+13x_9896+x_9897+36x_9898+77x_9899+50x_9900+84x_9901+40x_9902+37x_9903+76x_9904+58x_9905+35x_9906+69x_9907+19x_9908+43x_9909+52x_9910+47x_9911+11x_9912+24x_9913+21x_9914+14x_9915+x_9916+66x_9917+77x_9918+74x_9919+31x_9920+54x_9921+2x_9922+10x_9923+58x_9924+97x_9925+22x_9926+70x_9927+52x_9928+20x_9929+29x_9930+98x_9931+46x_9932+24x_9933+39x_9934+36x_9935+69x_9936+24x_9937+92x_9938+84x_9939+81x_9940+20x_9941+27x_9942+85x_9943+4x_9944+30x_9945+76x_9946+79x_9947+23x_9948+46x_9949+75x_9950+65x_9951+75x_9952+16x_9953+75x_9954+93x_9955+94x_9956+72x_9957+21x_9958+12x_9959+64x_9960+75x_9961+3x_9962+88x_9963+22x_9964+71x_9965+80x_9966+14x_9967+74x_9968+34x_9969+72x_9970+69x_9971+49x_9972+42x_9973+80x_9974+80x_9975+96x_9976+46x_9977+56x_9978+84x_9979+59x_9980+86x_9981+80x_9982+62x_9983+95x_9984+29x_9985+8x_9986+29x_9987+7x_9988+91x_9989+57x_9990+100x_9991+16x_9992+73x_9993+80x_9994+33x_9995+2x_9996+35x_9997+81x_9998+71x_9999+47x_10000+81x_10001+55x_10002+36x_10003+40x_10004+41x_10005+10x_10006+17x_10007+16x_10008+49x_10009+70x_10010+94x_10011+50x_10012+4x_10013+16x_10014+98x_10015+45x_10016+45x_10017+91x_10018+63x_10019+30x_10020+30x_10021+79x_10022+x_10023+44x_10024+4x_10025+61x_10026+12x_10027+20x_10028+55x_10029+73x_10030+66x_10031+19x_10032+41x_10033+87x_10034+99x_10035+76x_10036+9x_10037+99x_10038+32x_10039+32x_10040+3x_10041+96x_10042+41x_10043+78x_10044+92x_10045+37x_10046+85x_10047+53x_10048+88x_10049+77x_10050+91x_10051+100x_10052+96x_10053+99x_10054+19x_10055+59x_10056+42x_10057+15x_10058+6x_10059+32x_10060+60x_10061+48x_10062+99x_10063+70x_10064+38x_10065+25x_10066+32x_10067+90x_10068+96x_10069+45x_10070+82x_10071+87x_10072+78x_10073+74x_10074+49x_10075+76x_10076+51x_10077+63x_10078+86x_10079+82x_10080+31x_10081+65x_10082+35x_10083+95x_10084+80x_10085+66x_10086+55x_10087+6x_10088+80x_10089+83x_10090+2x_10091+83x_10092+67x_10093+78x_10094+84x_10095+53x_10096+57x_10097+94x_10098+83x_10099+x_10100+28x_10101+82x_10102+48x_10103+25x_10104+82x_10105+40x_10106+67x_10107+8x_10108+31x_10109+51x_10110+66x_10111+54x_10112+72x_10113+55x_10114+93x_10115+9x_10116+16x_10117+51x_10118+77x_10119+68x_10120+15x_10121+54x_10122+25x_10123+36x_10124+63x_10125+80x_10126+34x_10127+58x_10128+10x_10129+53x_10130+68x_10131+80x_10132+37x_10133+21x_10134+20x_10135+29x_10136+23x_10137+43x_10138+78x_10139+61x_10140+34x_10141+57x_10142+55x_10143+66x_10144+63x_10145+40x_10146+20x_10147+69x_10148+96x_10149+53x_10150+90x_10151+21x_10152+61x_10153+95x_10154+77x_10155+76x_10156+45x_10157+80x_10158+51x_10159+4x_10160+7x_10161+49x_10162+89x_10163+78x_10164+24x_10165+8x_10166+35x_10167+46x_10168+100x_10169+59x_10170+69x_10171+88x_10172+45x_10173+71x_10174+42x_10175+52x_10176+79x_10177+3x_10178+31x_10179+9x_10180+51x_10181+74x_10182+16x_10183+12x_10184+97x_10185+84x_10186+97x_10187+97x_10188+43x_10189+94x_10190+x_10191+48x_10192+54x_10193+96x_10194+85x_10195+59x_10196+21x_10197+8x_10198+26x_10199+67x_10200+63x_10201+99x_10202+22x_10203+85x_10204+86x_10205+44x_10206+7x_10207+84x_10208+51x_10209+5x_10210+22x_10211+75x_10212+95x_10213+26x_10214+15x_10215+44x_10216+44x_10217+24x_10218+86x_10219+38x_10220+6x_10221+89x_10222+7x_10223+42x_10224+48x_10225+79x_10226+9x_10227+80x_10228+17x_10229+83x_10230+37x_10231+8x_10232+93x_10233+58x_10234+49x_10235+58x_10236+62x_10237+49x_10238+41x_10239+11x_10240+94x_10241+44x_10242+65x_10243+37x_10244+67x_10245+80x_10246+59x_10247+80x_10248+50x_10249+4x_10250+27x_10251+6x_10252+42x_10253+61x_10254+43x_10255+3x_10256+67x_10257+54x_10258+81x_10259+53x_10260+90x_10261+62x_10262+34x_10263+81x_10264+43x_10265+25x_10266+63x_10267+75x_10268+77x_10269+50x_10270+51x_10271+39x_10272+59x_10273+82x_10274+42x_10275+25x_10276+2x_10277+15x_10278+44x_10279+36x_10280+46x_10281+65x_10282+23x_10283+19x_10284+77x_10285+71x_10286+95x_10287+80x_10288+55x_10289+83x_10290+72x_10291+76x_10292+64x_10293+88x_10294+42x_10295+35x_10296+95x_10297+27x_10298+23x_10299+14x_10300+55x_10301+63x_10302+76x_10303+21x_10304+8x_10305+5x_10306+98x_10307+26x_10308+7x_10309+40x_10310+31x_10311+66x_10312+58x_10313+10x_10314+54x_10315+31x_10316+94x_10317+59x_10318+84x_10319+7x_10320+32x_10321+25x_10322+44x_10323+55x_10324+30x_10325+95x_10326+40x_10327+23x_10328+62x_10329+73x_10330+9x_10331+50x_10332+67x_10333+85x_10334+80x_10335+10x_10336+38x_10337+89x_10338+43x_10339+38x_10340+14x_10341+31x_10342+77x_10343+7x_10344+52x_10345+83x_10346+100x_10347+16x_10348+71x_10349+37x_10350+10x_10351+33x_10352+19x_10353+73x_10354+36x_10355+89x_10356+79x_10357+71x_10358+44x_10359+87x_10360+44x_10361+33x_10362+36x_10363+46x_10364+27x_10365+98x_10366+57x_10367+16x_10368+87x_10369+60x_10370+68x_10371+95x_10372+10x_10373+5x_10374+33x_10375+36x_10376+95x_10377+17x_10378+96x_10379+12x_10380+10x_10381+22x_10382+2x_10383+52x_10384+84x_10385+86x_10386+28x_10387+44x_10388+55x_10389+57x_10390+49x_10391+62x_10392+62x_10393+47x_10394+23x_10395+12x_10396+90x_10397+13x_10398+48x_10399+25x_10400+20x_10401+23x_10402+81x_10403+63x_10404+81x_10405+93x_10406+38x_10407+87x_10408+17x_10409+22x_10410+67x_10411+79x_10412+5x_10413+24x_10414+26x_10415+23x_10416+24x_10417+12x_10418+47x_10419+69x_10420+48x_10421+18x_10422+46x_10423+82x_10424+7x_10425+25x_10426+52x_10427+81x_10428+96x_10429+13x_10430+62x_10431+35x_10432+98x_10433+31x_10434+41x_10435+30x_10436+4x_10437+28x_10438+39x_10439+x_10440+10x_10441+74x_10442+40x_10443+38x_10444+86x_10445+38x_10446+82x_10447+34x_10448+11x_10449+62x_10450+19x_10451+96x_10452+4x_10453+78x_10454+93x_10455+57x_10456+69x_10457+62x_10458+18x_10459+24x_10460+5x_10461+33x_10462+72x_10463+17x_10464+79x_10465+74x_10466+82x_10467+47x_10468+28x_10469+51x_10470+50x_10471+12x_10472+24x_10473+71x_10474+26x_10475+18x_10476+100x_10477+34x_10478+20x_10479+58x_10480+32x_10481+64x_10482+54x_10483+60x_10484+45x_10485+65x_10486+56x_10487+13x_10488+57x_10489+32x_10490+74x_10491+94x_10492+14x_10493+55x_10494+10x_10495+69x_10496+65x_10497+3x_10498+64x_10499+75x_10500+52x_10501+86x_10502+60x_10503+40x_10504+21x_10505+41x_10506+80x_10507+29x_10508+95x_10509+13x_10510+37x_10511+23x_10512+6x_10513+31x_10514+39x_10515+21x_10516+57x_10517+57x_10518+31x_10519+33x_10520+62x_10521+4x_10522+9x_10523+69x_10524+3x_10525+41x_10526+29x_10527+63x_10528+65x_10529+6x_10530+34x_10531+51x_10532+9x_10533+97x_10534+98x_10535+45x_10536+6x_10537+35x_10538+23x_10539+92x_10540+99x_10541+20x_10542+91x_10543+53x_10544+36x_10545+14x_10546+42x_10547+98x_10548+22x_10549+89x_10550+78x_10551+32x_10552+26x_10553+68x_10554+95x_10555+90x_10556+60x_10557+88x_10558+98x_10559+80x_10560+10x_10561+3x_10562+29x_10563+6x_10564+84x_10565+89x_10566+90x_10567+34x_10568+50x_10569+15x_10570+84x_10571+58x_10572+7x_10573+5x_10574+19x_10575+53x_10576+63x_10577+81x_10578+97x_10579+9x_10580+77x_10581+54x_10582+60x_10583+82x_10584+36x_10585+73x_10586+86x_10587+78x_10588+100x_10589+29x_10590+6x_10591+5x_10592+89x_10593+11x_10594+16x_10595+22x_10596+54x_10597+19x_10598+94x_10599+12x_10600+82x_10601+9x_10602+50x_10603+96x_10604+87x_10605+13x_10606+18x_10607+48x_10608+42x_10609+12x_10610+77x_10611+42x_10612+3x_10613+32x_10614+51x_10615+29x_10616+56x_10617+9x_10618+47x_10619+71x_10620+49x_10621+79x_10622+88x_10623+93x_10624+31x_10625+71x_10626+21x_10627+17x_10628+47x_10629+84x_10630+80x_10631+79x_10632+4x_10633+73x_10634+34x_10635+47x_10636+45x_10637+17x_10638+41x_10639+66x_10640+67x_10641+47x_10642+4x_10643+40x_10644+39x_10645+16x_10646+13x_10647+62x_10648+13x_10649+16x_10650+93x_10651+55x_10652+74x_10653+59x_10654+50x_10655+78x_10656+14x_10657+x_10658+99x_10659+12x_10660+18x_10661+85x_10662+79x_10663+66x_10664+70x_10665+93x_10666+25x_10667+19x_10668+26x_10669+10x_10670+7x_10671+58x_10672+29x_10673+41x_10674+31x_10675+40x_10676+83x_10677+22x_10678+78x_10679+18x_10680+88x_10681+88x_10682+66x_10683+47x_10684+15x_10685+16x_10686+12x_10687+85x_10688+98x_10689+19x_10690+91x_10691+43x_10692+16x_10693+69x_10694+95x_10695+x_10696+50x_10697+68x_10698+57x_10699+3x_10700+98x_10701+6x_10702+65x_10703+9x_10704+20x_10705+15x_10706+81x_10707+14x_10708+11x_10709+6x_10710+6x_10711+4x_10712+68x_10713+19x_10714+91x_10715+50x_10716+33x_10717+68x_10718+20x_10719+58x_10720+69x_10721+47x_10722+77x_10723+87x_10724+61x_10725+93x_10726+x_10727+42x_10728+56x_10729+3x_10730+53x_10731+18x_10732+63x_10733+21x_10734+44x_10735+60x_10736+28x_10737+17x_10738+72x_10739+49x_10740+60x_10741+3x_10742+94x_10743+76x_10744+73x_10745+6x_10746+62x_10747+61x_10748+75x_10749+15x_10750+51x_10751+67x_10752+38x_10753+94x_10754+88x_10755+72x_10756+43x_10757+x_10758+83x_10759+87x_10760+17x_10761+28x_10762+5x_10763+92x_10764+56x_10765+48x_10766+98x_10767+76x_10768+53x_10769+36x_10770+20x_10771+65x_10772+86x_10773+18x_10774+13x_10775+79x_10776+82x_10777+8x_10778+36x_10779+94x_10780+74x_10781+18x_10782+90x_10783+78x_10784+48x_10785+3x_10786+86x_10787+29x_10788+50x_10789+51x_10790+53x_10791+23x_10792+10x_10793+75x_10794+30x_10795+8x_10796+26x_10797+52x_10798+74x_10799+75x_10800+86x_10801+82x_10802+28x_10803+39x_10804+11x_10805+78x_10806+77x_10807+92x_10808+10x_10809+73x_10810+29x_10811+11x_10812+99x_10813+85x_10814+3x_10815+44x_10816+46x_10817+11x_10818+56x_10819+72x_10820+46x_10821+15x_10822+60x_10823+19x_10824+56x_10825+66x_10826+58x_10827+49x_10828+42x_10829+28x_10830+100x_10831+9x_10832+29x_10833+94x_10834+83x_10835+33x_10836+24x_10837+69x_10838+99x_10839+72x_10840+95x_10841+22x_10842+21x_10843+86x_10844+98x_10845+47x_10846+24x_10847+79x_10848+91x_10849+15x_10850+30x_10851+5x_10852+90x_10853+86x_10854+64x_10855+6x_10856+55x_10857+7x_10858+26x_10859+52x_10860+58x_10861+52x_10862+37x_10863+36x_10864+63x_10865+47x_10866+41x_10867+71x_10868+73x_10869+90x_10870+37x_10871+24x_10872+12x_10873+23x_10874+31x_10875+12x_10876+97x_10877+35x_10878+41x_10879+45x_10880+52x_10881+75x_10882+76x_10883+83x_10884+10x_10885+22x_10886+24x_10887+32x_10888+96x_10889+23x_10890+20x_10891+84x_10892+72x_10893+100x_10894+16x_10895+48x_10896+76x_10897+35x_10898+67x_10899+12x_10900+100x_10901+43x_10902+77x_10903+98x_10904+100x_10905+52x_10906+55x_10907+81x_10908+76x_10909+13x_10910+94x_10911+100x_10912+45x_10913+38x_10914+92x_10915+21x_10916+5x_10917+44x_10918+51x_10919+62x_10920+69x_10921+10x_10922+74x_10923+47x_10924+5x_10925+13x_10926+91x_10927+66x_10928+53x_10929+15x_10930+12x_10931+70x_10932+70x_10933+99x_10934+48x_10935+65x_10936+8x_10937+33x_10938+81x_10939+22x_10940+93x_10941+73x_10942+8x_10943+28x_10944+31x_10945+91x_10946+7x_10947+24x_10948+11x_10949+52x_10950+35x_10951+19x_10952+6x_10953+9x_10954+78x_10955+79x_10956+65x_10957+22x_10958+35x_10959+77x_10960+73x_10961+27x_10962+90x_10963+63x_10964+63x_10965+34x_10966+50x_10967+52x_10968+77x_10969+40x_10970+9x_10971+94x_10972+40x_10973+49x_10974+5x_10975+42x_10976+90x_10977+89x_10978+46x_10979+61x_10980+90x_10981+39x_10982+3x_10983+55x_10984+x_10985+71x_10986+84x_10987+x_10988+43x_10989+60x_10990+32x_10991+27x_10992+6x_10993+67x_10994+86x_10995+26x_10996+22x_10997+56x_10998+38x_10999+80x_11000+39x_11001+26x_11002+32x_11003+82x_11004+29x_11005+86x_11006+65x_11007+87x_11008+77x_11009+85x_11010+17x_11011+22x_11012+98x_11013+3x_11014+58x_11015+2x_11016+53x_11017+48x_11018+31x_11019+21x_11020+42x_11021+21x_11022+85x_11023+25x_11024+95x_11025+69x_11026+32x_11027+22x_11028+13x_11029+84x_11030+29x_11031+37x_11032+74x_11033+51x_11034+11x_11035+78x_11036+14x_11037+11x_11038+69x_11039+73x_11040+80x_11041+47x_11042+9x_11043+95x_11044+15x_11045+12x_11046+44x_11047+65x_11048+43x_11049+26x_11050+97x_11051+95x_11052+80x_11053+34x_11054+15x_11055+40x_11056+60x_11057+97x_11058+13x_11059+94x_11060+47x_11061+9x_11062+11x_11063+71x_11064+60x_11065+42x_11066+23x_11067+37x_11068+24x_11069+39x_11070+61x_11071+78x_11072+48x_11073+83x_11074+50x_11075+80x_11076+78x_11077+34x_11078+54x_11079+49x_11080+77x_11081+38x_11082+34x_11083+27x_11084+3x_11085+86x_11086+53x_11087+38x_11088+24x_11089+34x_11090+71x_11091+25x_11092+52x_11093+17x_11094+17x_11095+87x_11096+98x_11097+44x_11098+5x_11099+6x_11100+87x_11101+11x_11102+62x_11103+78x_11104+51x_11105+58x_11106+82x_11107+83x_11108+90x_11109+87x_11110+20x_11111+20x_11112+54x_11113+74x_11114+96x_11115+22x_11116+50x_11117+14x_11118+36x_11119+82x_11120+35x_11121+31x_11122+46x_11123+39x_11124+69x_11125+79x_11126+70x_11127+26x_11128+65x_11129+59x_11130+43x_11131+54x_11132+46x_11133+5x_11134+37x_11135+44x_11136+78x_11137+85x_11138+31x_11139+55x_11140+38x_11141+97x_11142+100x_11143+46x_11144+35x_11145+94x_11146+14x_11147+10x_11148+10x_11149+76x_11150+3x_11151+13x_11152+52x_11153+29x_11154+28x_11155+74x_11156+6x_11157+81x_11158+24x_11159+29x_11160+82x_11161+56x_11162+x_11163+33x_11164+9x_11165+3x_11166+72x_11167+62x_11168+69x_11169+15x_11170+62x_11171+54x_11172+98x_11173+74x_11174+24x_11175+60x_11176+95x_11177+9x_11178+93x_11179+99x_11180+48x_11181+34x_11182+23x_11183+14x_11184+16x_11185+28x_11186+75x_11187+30x_11188+24x_11189+64x_11190+81x_11191+73x_11192+35x_11193+9x_11194+47x_11195+98x_11196+3x_11197+26x_11198+49x_11199+80x_11200+10x_11201+32x_11202+35x_11203+65x_11204+96x_11205+58x_11206+27x_11207+100x_11208+35x_11209+52x_11210+11x_11211+75x_11212+4x_11213+87x_11214+15x_11215+57x_11216+96x_11217+23x_11218+25x_11219+46x_11220+77x_11221+57x_11222+67x_11223+65x_11224+43x_11225+96x_11226+59x_11227+10x_11228+36x_11229+46x_11230+79x_11231+52x_11232+35x_11233+49x_11234+25x_11235+94x_11236+38x_11237+57x_11238+56x_11239+42x_11240+37x_11241+15x_11242+37x_11243+63x_11244+70x_11245+99x_11246+86x_11247+78x_11248+60x_11249+96x_11250+41x_11251+92x_11252+24x_11253+21x_11254+60x_11255+44x_11256+29x_11257+51x_11258+9x_11259+41x_11260+56x_11261+77x_11262+13x_11263+14x_11264+67x_11265+92x_11266+90x_11267+70x_11268+99x_11269+17x_11270+13x_11271+59x_11272+50x_11273+84x_11274+35x_11275+78x_11276+70x_11277+87x_11278+88x_11279+5x_11280+66x_11281+78x_11282+50x_11283+72x_11284+16x_11285+8x_11286+60x_11287+88x_11288+17x_11289+4x_11290+28x_11291+35x_11292+55x_11293+96x_11294+84x_11295+53x_11296+27x_11297+50x_11298+62x_11299+59x_11300+79x_11301+22x_11302+19x_11303+71x_11304+17x_11305+68x_11306+75x_11307+62x_11308+19x_11309+92x_11310+95x_11311+19x_11312+81x_11313+78x_11314+90x_11315+33x_11316+36x_11317+29x_11318+100x_11319+47x_11320+63x_11321+45x_11322+29x_11323+33x_11324+71x_11325+65x_11326+34x_11327+88x_11328+100x_11329+52x_11330+39x_11331+9x_11332+29x_11333+79x_11334+22x_11335+8x_11336+19x_11337+37x_11338+74x_11339+44x_11340+28x_11341+93x_11342+40x_11343+10x_11344+58x_11345+22x_11346+40x_11347+37x_11348+62x_11349+9x_11350+39x_11351+59x_11352+55x_11353+22x_11354+6x_11355+81x_11356+94x_11357+24x_11358+20x_11359+100x_11360+67x_11361+78x_11362+9x_11363+66x_11364+56x_11365+80x_11366+20x_11367+61x_11368+44x_11369+20x_11370+63x_11371+21x_11372+49x_11373+90x_11374+74x_11375+55x_11376+11x_11377+58x_11378+66x_11379+68x_11380+86x_11381+38x_11382+36x_11383+97x_11384+82x_11385+58x_11386+74x_11387+48x_11388+48x_11389+56x_11390+54x_11391+4x_11392+26x_11393+24x_11394+84x_11395+16x_11396+94x_11397+90x_11398+43x_11399+14x_11400+49x_11401+41x_11402+35x_11403+22x_11404+9x_11405+72x_11406+43x_11407+28x_11408+74x_11409+21x_11410+20x_11411+88x_11412+90x_11413+14x_11414+30x_11415+98x_11416+88x_11417+64x_11418+3x_11419+33x_11420+60x_11421+34x_11422+47x_11423+5x_11424+99x_11425+14x_11426+51x_11427+10x_11428+15x_11429+32x_11430+68x_11431+65x_11432+54x_11433+97x_11434+100x_11435+72x_11436+61x_11437+12x_11438+28x_11439+23x_11440+52x_11441+14x_11442+85x_11443+83x_11444+33x_11445+89x_11446+22x_11447+88x_11448+43x_11449+32x_11450+92x_11451+2x_11452+80x_11453+57x_11454+81x_11455+66x_11456+75x_11457+83x_11458+51x_11459+45x_11460+50x_11461+7x_11462+73x_11463+26x_11464+99x_11465+71x_11466+49x_11467+96x_11468+19x_11469+36x_11470+19x_11471+28x_11472+5x_11473+45x_11474+38x_11475+79x_11476+27x_11477+86x_11478+96x_11479+69x_11480+61x_11481+30x_11482+73x_11483+34x_11484+11x_11485+7x_11486+92x_11487+50x_11488+77x_11489+49x_11490+5x_11491+71x_11492+45x_11493+38x_11494+81x_11495+x_11496+50x_11497+29x_11498+66x_11499+13x_11500+59x_11501+52x_11502+35x_11503+100x_11504+81x_11505+97x_11506+68x_11507+15x_11508+4x_11509+34x_11510+87x_11511+24x_11512+9x_11513+94x_11514+24x_11515+81x_11516+35x_11517+53x_11518+76x_11519+88x_11520+40x_11521+64x_11522+26x_11523+4x_11524+42x_11525+70x_11526+24x_11527+61x_11528+36x_11529+83x_11530+28x_11531+69x_11532+94x_11533+71x_11534+92x_11535+99x_11536+15x_11537+57x_11538+25x_11539+91x_11540+61x_11541+20x_11542+47x_11543+32x_11544+5x_11545+55x_11546+38x_11547+13x_11548+30x_11549+21x_11550+49x_11551+10x_11552+11x_11553+76x_11554+33x_11555+34x_11556+4x_11557+42x_11558+52x_11559+41x_11560+39x_11561+96x_11562+22x_11563+76x_11564+11x_11565+29x_11566+55x_11567+3x_11568+91x_11569+86x_11570+8x_11571+17x_11572+99x_11573+51x_11574+13x_11575+53x_11576+17x_11577+54x_11578+43x_11579+31x_11580+60x_11581+68x_11582+49x_11583+84x_11584+47x_11585+55x_11586+61x_11587+88x_11588+15x_11589+63x_11590+41x_11591+57x_11592+15x_11593+49x_11594+83x_11595+57x_11596+45x_11597+71x_11598+17x_11599+48x_11600+59x_11601+76x_11602+77x_11603+76x_11604+63x_11605+61x_11606+30x_11607+2x_11608+60x_11609+22x_11610+11x_11611+62x_11612+36x_11613+56x_11614+46x_11615+55x_11616+16x_11617+9x_11618+28x_11619+46x_11620+38x_11621+84x_11622+87x_11623+19x_11624+65x_11625+35x_11626+78x_11627+81x_11628+x_11629+18x_11630+25x_11631+29x_11632+99x_11633+20x_11634+76x_11635+86x_11636+72x_11637+23x_11638+65x_11639+99x_11640+15x_11641+45x_11642+2x_11643+56x_11644+8x_11645+16x_11646+31x_11647+54x_11648+95x_11649+99x_11650+24x_11651+26x_11652+56x_11653+43x_11654+87x_11655+14x_11656+78x_11657+17x_11658+30x_11659+89x_11660+67x_11661+43x_11662+72x_11663+100x_11664+61x_11665+27x_11666+30x_11667+98x_11668+87x_11669+29x_11670+51x_11671+59x_11672+43x_11673+97x_11674+50x_11675+8x_11676+7x_11677+89x_11678+40x_11679+70x_11680+20x_11681+15x_11682+27x_11683+34x_11684+90x_11685+100x_11686+30x_11687+3x_11688+69x_11689+63x_11690+45x_11691+61x_11692+60x_11693+78x_11694+4x_11695+41x_11696+30x_11697+94x_11698+30x_11699+11x_11700+89x_11701+66x_11702+71x_11703+58x_11704+14x_11705+52x_11706+36x_11707+39x_11708+87x_11709+38x_11710+51x_11711+96x_11712+28x_11713+41x_11714+87x_11715+35x_11716+50x_11717+96x_11718+29x_11719+67x_11720+85x_11721+84x_11722+72x_11723+67x_11724+59x_11725+80x_11726+75x_11727+82x_11728+6x_11729+87x_11730+44x_11731+66x_11732+23x_11733+19x_11734+98x_11735+93x_11736+37x_11737+58x_11738+38x_11739+31x_11740+50x_11741+70x_11742+50x_11743+35x_11744+3x_11745+50x_11746+64x_11747+59x_11748+85x_11749+57x_11750+68x_11751+4x_11752+35x_11753+12x_11754+52x_11755+20x_11756+88x_11757+64x_11758+3x_11759+60x_11760+93x_11761+38x_11762+27x_11763+98x_11764+77x_11765+61x_11766+31x_11767+49x_11768+64x_11769+35x_11770+23x_11771+21x_11772+51x_11773+x_11774+71x_11775+38x_11776+93x_11777+90x_11778+39x_11779+43x_11780+61x_11781+11x_11782+70x_11783+22x_11784+78x_11785+45x_11786+78x_11787+15x_11788+90x_11789+93x_11790+85x_11791+52x_11792+56x_11793+93x_11794+72x_11795+89x_11796+60x_11797+x_11798+32x_11799+43x_11800+73x_11801+16x_11802+10x_11803+19x_11804+63x_11805+92x_11806+58x_11807+41x_11808+5x_11809+30x_11810+65x_11811+48x_11812+61x_11813+65x_11814+3x_11815+47x_11816+89x_11817+72x_11818+17x_11819+28x_11820+17x_11821+27x_11822+92x_11823+62x_11824+35x_11825+30x_11826+28x_11827+81x_11828+43x_11829+93x_11830+90x_11831+89x_11832+86x_11833+83x_11834+87x_11835+6x_11836+15x_11837+67x_11838+8x_11839+64x_11840+10x_11841+98x_11842+97x_11843+90x_11844+69x_11845+84x_11846+73x_11847+53x_11848+31x_11849+34x_11850+63x_11851+27x_11852+89x_11853+83x_11854+94x_11855+73x_11856+84x_11857+25x_11858+73x_11859+62x_11860+62x_11861+33x_11862+9x_11863+95x_11864+99x_11865+58x_11866+68x_11867+16x_11868+91x_11869+19x_11870+18x_11871+63x_11872+88x_11873+52x_11874+93x_11875+81x_11876+93x_11877+60x_11878+52x_11879+67x_11880+71x_11881+53x_11882+91x_11883+94x_11884+23x_11885+9x_11886+82x_11887+13x_11888+3x_11889+2x_11890+3x_11891+5x_11892+45x_11893+7x_11894+40x_11895+84x_11896+48x_11897+93x_11898+11x_11899+85x_11900+x_11901+7x_11902+88x_11903+96x_11904+4x_11905+58x_11906+41x_11907+81x_11908+2x_11909+53x_11910+31x_11911+2x_11912+65x_11913+8x_11914+36x_11915+3x_11916+46x_11917+52x_11918+64x_11919+17x_11920+99x_11921+19x_11922+4x_11923+11x_11924+27x_11925+2x_11926+68x_11927+69x_11928+8x_11929+73x_11930+96x_11931+55x_11932+8x_11933+86x_11934+33x_11935+83x_11936+92x_11937+58x_11938+32x_11939+20x_11940+94x_11941+24x_11942+30x_11943+85x_11944+73x_11945+67x_11946+70x_11947+70x_11948+39x_11949+66x_11950+55x_11951+53x_11952+43x_11953+48x_11954+15x_11955+33x_11956+7x_11957+28x_11958+100x_11959+34x_11960+55x_11961+95x_11962+17x_11963+36x_11964+29x_11965+47x_11966+18x_11967+37x_11968+18x_11969+43x_11970+45x_11971+78x_11972+41x_11973+95x_11974+90x_11975+97x_11976+20x_11977+35x_11978+87x_11979+97x_11980+18x_11981+25x_11982+44x_11983+18x_11984+55x_11985+35x_11986+49x_11987+40x_11988+6x_11989+86x_11990+89x_11991+6x_11992+7x_11993+78x_11994+63x_11995+93x_11996+27x_11997+38x_11998+42x_11999+71x_12000+73x_12001+99x_12002+49x_12003+55x_12004+43x_12005+70x_12006+18x_12007+43x_12008+70x_12009+99x_12010+82x_12011+37x_12012+25x_12013+67x_12014+19x_12015+47x_12016+38x_12017+66x_12018+70x_12019+67x_12020+76x_12021+60x_12022+54x_12023+55x_12024+67x_12025+28x_12026+100x_12027+69x_12028+17x_12029+47x_12030+25x_12031+69x_12032+18x_12033+61x_12034+14x_12035+7x_12036+99x_12037+23x_12038+82x_12039+75x_12040+13x_12041+89x_12042+55x_12043+16x_12044+22x_12045+4x_12046+10x_12047+64x_12048+49x_12049+20x_12050+11x_12051+84x_12052+17x_12053+20x_12054+45x_12055+60x_12056+58x_12057+26x_12058+72x_12059+65x_12060+5x_12061+47x_12062+26x_12063+15x_12064+24x_12065+18x_12066+20x_12067+10x_12068+57x_12069+38x_12070+85x_12071+77x_12072+56x_12073+63x_12074+32x_12075+98x_12076+96x_12077+6x_12078+52x_12079+91x_12080+36x_12081+16x_12082+55x_12083+76x_12084+59x_12085+24x_12086+13x_12087+3x_12088+21x_12089+33x_12090+29x_12091+73x_12092+76x_12093+12x_12094+49x_12095+69x_12096+72x_12097+45x_12098+18x_12099+6x_12100+100x_12101+60x_12102+74x_12103+46x_12104+11x_12105+37x_12106+97x_12107+38x_12108+95x_12109+29x_12110+88x_12111+93x_12112+45x_12113+97x_12114+13x_12115+76x_12116+x_12117+46x_12118+34x_12119+94x_12120+47x_12121+8x_12122+57x_12123+11x_12124+4x_12125+53x_12126+15x_12127+22x_12128+90x_12129+86x_12130+70x_12131+34x_12132+26x_12133+16x_12134+86x_12135+97x_12136+74x_12137+39x_12138+51x_12139+99x_12140+63x_12141+55x_12142+11x_12143+41x_12144+98x_12145+67x_12146+54x_12147+76x_12148+42x_12149+70x_12150+66x_12151+86x_12152+58x_12153+10x_12154+51x_12155+72x_12156+60x_12157+55x_12158+85x_12159+20x_12160+56x_12161+97x_12162+37x_12163+64x_12164+33x_12165+96x_12166+59x_12167+52x_12168+60x_12169+27x_12170+52x_12171+83x_12172+79x_12173+78x_12174+61x_12175+78x_12176+74x_12177+60x_12178+74x_12179+57x_12180+29x_12181+45x_12182+9x_12183+76x_12184+71x_12185+6x_12186+56x_12187+44x_12188+71x_12189+47x_12190+27x_12191+69x_12192+3x_12193+79x_12194+87x_12195+31x_12196+28x_12197+84x_12198+100x_12199+53x_12200+21x_12201+2x_12202+8x_12203+56x_12204+35x_12205+11x_12206+68x_12207+85x_12208+56x_12209+80x_12210+60x_12211+42x_12212+40x_12213+91x_12214+22x_12215+7x_12216+38x_12217+86x_12218+11x_12219+51x_12220+65x_12221+73x_12222+38x_12223+54x_12224+82x_12225+74x_12226+76x_12227+30x_12228+68x_12229+51x_12230+44x_12231+45x_12232+29x_12233+100x_12234+10x_12235+39x_12236+76x_12237+81x_12238+46x_12239+85x_12240+49x_12241+78x_12242+79x_12243+87x_12244+62x_12245+95x_12246+84x_12247+33x_12248+24x_12249+7x_12250+60x_12251+29x_12252+66x_12253+98x_12254+13x_12255+17x_12256+12x_12257+100x_12258+99x_12259+78x_12260+99x_12261+58x_12262+36x_12263+93x_12264+78x_12265+63x_12266+24x_12267+99x_12268+80x_12269+75x_12270+58x_12271+24x_12272+9x_12273+30x_12274+65x_12275+69x_12276+98x_12277+38x_12278+81x_12279+34x_12280+5x_12281+100x_12282+85x_12283+59x_12284+90x_12285+37x_12286+48x_12287+55x_12288+63x_12289+100x_12290+45x_12291+99x_12292+60x_12293+40x_12294+47x_12295+33x_12296+50x_12297+17x_12298+22x_12299+81x_12300+3x_12301+15x_12302+78x_12303+84x_12304+16x_12305+77x_12306+6x_12307+12x_12308+7x_12309+10x_12310+96x_12311+80x_12312+15x_12313+11x_12314+78x_12315+79x_12316+52x_12317+33x_12318+38x_12319+56x_12320+39x_12321+38x_12322+92x_12323+62x_12324+91x_12325+63x_12326+9x_12327+48x_12328+30x_12329+42x_12330+100x_12331+37x_12332+63x_12333+23x_12334+69x_12335+66x_12336+27x_12337+93x_12338+93x_12339+21x_12340+3x_12341+2x_12342+18x_12343+89x_12344+88x_12345+8x_12346+53x_12347+89x_12348+19x_12349+21x_12350+86x_12351+9x_12352+85x_12353+46x_12354+84x_12355+69x_12356+55x_12357+64x_12358+75x_12359+73x_12360+14x_12361+58x_12362+50x_12363+60x_12364+63x_12365+90x_12366+82x_12367+40x_12368+52x_12369+71x_12370+21x_12371+59x_12372+21x_12373+90x_12374+25x_12375+47x_12376+17x_12377+36x_12378+19x_12379+28x_12380+14x_12381+14x_12382+30x_12383+13x_12384+12x_12385+58x_12386+93x_12387+58x_12388+x_12389+52x_12390+38x_12391+85x_12392+97x_12393+58x_12394+94x_12395+24x_12396+56x_12397+30x_12398+81x_12399+3x_12400+47x_12401+28x_12402+71x_12403+12x_12404+72x_12405+32x_12406+26x_12407+30x_12408+7x_12409+57x_12410+73x_12411+89x_12412+21x_12413+20x_12414+35x_12415+60x_12416+100x_12417+18x_12418+80x_12419+61x_12420+4x_12421+48x_12422+27x_12423+66x_12424+85x_12425+59x_12426+8x_12427+21x_12428+42x_12429+20x_12430+35x_12431+11x_12432+11x_12433+99x_12434+30x_12435+42x_12436+87x_12437+72x_12438+5x_12439+16x_12440+71x_12441+94x_12442+71x_12443+91x_12444+85x_12445+83x_12446+12x_12447+2x_12448+43x_12449+48x_12450+7x_12451+32x_12452+53x_12453+55x_12454+51x_12455+74x_12456+40x_12457+45x_12458+92x_12459+42x_12460+43x_12461+47x_12462+100x_12463+73x_12464+86x_12465+39x_12466+37x_12467+68x_12468+19x_12469+91x_12470+22x_12471+28x_12472+96x_12473+42x_12474+61x_12475+16x_12476+69x_12477+17x_12478+66x_12479+42x_12480+26x_12481+62x_12482+61x_12483+46x_12484+5x_12485+43x_12486+48x_12487+50x_12488+84x_12489+13x_12490+6x_12491+23x_12492+8x_12493+48x_12494+57x_12495+33x_12496+9x_12497+27x_12498+63x_12499+17x_12500+54x_12501+70x_12502+88x_12503+19x_12504+27x_12505+54x_12506+71x_12507+88x_12508+47x_12509+99x_12510+34x_12511+39x_12512+12x_12513+5x_12514+62x_12515+95x_12516+88x_12517+40x_12518+16x_12519+49x_12520+52x_12521+59x_12522+72x_12523+54x_12524+5x_12525+51x_12526+70x_12527+95x_12528+16x_12529+84x_12530+33x_12531+58x_12532+30x_12533+97x_12534+16x_12535+16x_12536+56x_12537+49x_12538+82x_12539+72x_12540+22x_12541+78x_12542+20x_12543+27x_12544+81x_12545+78x_12546+23x_12547+96x_12548+87x_12549+77x_12550+77x_12551+97x_12552+28x_12553+32x_12554+28x_12555+26x_12556+47x_12557+55x_12558+69x_12559+38x_12560+13x_12561+22x_12562+49x_12563+79x_12564+98x_12565+50x_12566+60x_12567+99x_12568+5x_12569+91x_12570+25x_12571+46x_12572+11x_12573+47x_12574+33x_12575+13x_12576+14x_12577+61x_12578+39x_12579+96x_12580+x_12581+33x_12582+89x_12583+74x_12584+30x_12585+49x_12586+91x_12587+45x_12588+65x_12589+54x_12590+69x_12591+85x_12592+100x_12593+59x_12594+42x_12595+22x_12596+28x_12597+69x_12598+48x_12599+14x_12600+84x_12601+34x_12602+49x_12603+43x_12604+27x_12605+53x_12606+100x_12607+6x_12608+52x_12609+21x_12610+32x_12611+94x_12612+62x_12613+77x_12614+76x_12615+35x_12616+38x_12617+29x_12618+x_12619+18x_12620+51x_12621+70x_12622+27x_12623+40x_12624+51x_12625+45x_12626+89x_12627+85x_12628+64x_12629+85x_12630+39x_12631+7x_12632+5x_12633+19x_12634+29x_12635+65x_12636+76x_12637+3x_12638+81x_12639+76x_12640+59x_12641+93x_12642+13x_12643+66x_12644+62x_12645+69x_12646+38x_12647+57x_12648+5x_12649+42x_12650+55x_12651+58x_12652+59x_12653+64x_12654+12x_12655+27x_12656+41x_12657+88x_12658+44x_12659+91x_12660+75x_12661+50x_12662+88x_12663+88x_12664+12x_12665+65x_12666+76x_12667+55x_12668+52x_12669+41x_12670+83x_12671+69x_12672+46x_12673+64x_12674+62x_12675+65x_12676+65x_12677+8x_12678+42x_12679+22x_12680+65x_12681+79x_12682+33x_12683+13x_12684+82x_12685+36x_12686+61x_12687+93x_12688+47x_12689+80x_12690+50x_12691+37x_12692+70x_12693+76x_12694+99x_12695+77x_12696+77x_12697+96x_12698+7x_12699+50x_12700+62x_12701+78x_12702+33x_12703+26x_12704+65x_12705+73x_12706+90x_12707+64x_12708+69x_12709+49x_12710+37x_12711+71x_12712+71x_12713+45x_12714+95x_12715+98x_12716+23x_12717+34x_12718+39x_12719+76x_12720+30x_12721+86x_12722+2x_12723+90x_12724+62x_12725+91x_12726+24x_12727+77x_12728+85x_12729+83x_12730+54x_12731+39x_12732+12x_12733+93x_12734+73x_12735+53x_12736+71x_12737+58x_12738+53x_12739+49x_12740+67x_12741+3x_12742+17x_12743+37x_12744+95x_12745+52x_12746+54x_12747+97x_12748+87x_12749+57x_12750+87x_12751+84x_12752+64x_12753+9x_12754+52x_12755+60x_12756+34x_12757+35x_12758+75x_12759+16x_12760+11x_12761+85x_12762+85x_12763+87x_12764+13x_12765+95x_12766+20x_12767+54x_12768+75x_12769+53x_12770+8x_12771+13x_12772+71x_12773+49x_12774+17x_12775+75x_12776+31x_12777+95x_12778+29x_12779+63x_12780+45x_12781+45x_12782+29x_12783+60x_12784+41x_12785+32x_12786+34x_12787+77x_12788+99x_12789+88x_12790+64x_12791+26x_12792+11x_12793+91x_12794+4x_12795+17x_12796+40x_12797+2x_12798+69x_12799+31x_12800+53x_12801+32x_12802+60x_12803+74x_12804+66x_12805+10x_12806+96x_12807+54x_12808+95x_12809+5x_12810+61x_12811+35x_12812+78x_12813+24x_12814+20x_12815+76x_12816+18x_12817+8x_12818+47x_12819+72x_12820+4x_12821+87x_12822+15x_12823+28x_12824+2x_12825+83x_12826+3x_12827+48x_12828+54x_12829+41x_12830+64x_12831+84x_12832+72x_12833+77x_12834+71x_12835+88x_12836+58x_12837+10x_12838+51x_12839+86x_12840+44x_12841+15x_12842+92x_12843+36x_12844+23x_12845+77x_12846+33x_12847+x_12848+97x_12849+84x_12850+7x_12851+50x_12852+10x_12853+76x_12854+93x_12855+36x_12856+42x_12857+73x_12858+58x_12859+30x_12860+88x_12861+41x_12862+71x_12863+78x_12864+39x_12865+29x_12866+13x_12867+15x_12868+12x_12869+35x_12870+77x_12871+40x_12872+73x_12873+10x_12874+77x_12875+13x_12876+39x_12877+51x_12878+49x_12879+63x_12880+70x_12881+87x_12882+60x_12883+94x_12884+43x_12885+52x_12886+27x_12887+11x_12888+59x_12889+92x_12890+75x_12891+68x_12892+66x_12893+18x_12894+27x_12895+68x_12896+51x_12897+36x_12898+82x_12899+32x_12900+53x_12901+75x_12902+x_12903+89x_12904+16x_12905+63x_12906+28x_12907+82x_12908+84x_12909+x_12910+29x_12911+38x_12912+64x_12913+8x_12914+66x_12915+57x_12916+32x_12917+69x_12918+18x_12919+48x_12920+3x_12921+88x_12922+48x_12923+77x_12924+12x_12925+28x_12926+81x_12927+93x_12928+52x_12929+7x_12930+78x_12931+68x_12932+98x_12933+72x_12934+94x_12935+31x_12936+48x_12937+76x_12938+93x_12939+64x_12940+92x_12941+22x_12942+46x_12943+99x_12944+20x_12945+78x_12946+41x_12947+52x_12948+99x_12949+85x_12950+35x_12951+93x_12952+35x_12953+93x_12954+12x_12955+87x_12956+10x_12957+65x_12958+57x_12959+15x_12960+8x_12961+56x_12962+24x_12963+47x_12964+65x_12965+82x_12966+48x_12967+2x_12968+64x_12969+8x_12970+97x_12971+77x_12972+22x_12973+21x_12974+15x_12975+69x_12976+6x_12977+21x_12978+24x_12979+5x_12980+20x_12981+80x_12982+8x_12983+82x_12984+64x_12985+49x_12986+85x_12987+34x_12988+66x_12989+61x_12990+75x_12991+71x_12992+90x_12993+53x_12994+67x_12995+36x_12996+8x_12997+96x_12998+50x_12999+48x_13000+74x_13001+15x_13002+51x_13003+66x_13004+28x_13005+23x_13006+59x_13007+98x_13008+3x_13009+42x_13010+96x_13011+68x_13012+4x_13013+45x_13014+25x_13015+5x_13016+87x_13017+92x_13018+38x_13019+36x_13020+37x_13021+48x_13022+7x_13023+73x_13024+42x_13025+92x_13026+24x_13027+93x_13028+49x_13029+93x_13030+72x_13031+30x_13032+8x_13033+100x_13034+84x_13035+11x_13036+12x_13037+74x_13038+95x_13039+86x_13040+99x_13041+39x_13042+51x_13043+48x_13044+96x_13045+37x_13046+48x_13047+82x_13048+83x_13049+52x_13050+83x_13051+97x_13052+69x_13053+90x_13054+60x_13055+32x_13056+13x_13057+22x_13058+89x_13059+24x_13060+73x_13061+34x_13062+35x_13063+69x_13064+87x_13065+89x_13066+61x_13067+77x_13068+30x_13069+14x_13070+48x_13071+66x_13072+25x_13073+25x_13074+68x_13075+19x_13076+41x_13077+15x_13078+71x_13079+95x_13080+3x_13081+66x_13082+68x_13083+47x_13084+85x_13085+24x_13086+32x_13087+12x_13088+54x_13089+99x_13090+21x_13091+11x_13092+8x_13093+55x_13094+78x_13095+3x_13096+43x_13097+52x_13098+70x_13099+100x_13100+5x_13101+80x_13102+77x_13103+38x_13104+59x_13105+32x_13106+56x_13107+47x_13108+67x_13109+93x_13110+33x_13111+4x_13112+84x_13113+58x_13114+56x_13115+9x_13116+28x_13117+75x_13118+26x_13119+28x_13120+46x_13121+80x_13122+7x_13123+84x_13124+55x_13125+13x_13126+92x_13127+66x_13128+24x_13129+73x_13130+92x_13131+43x_13132+71x_13133+69x_13134+85x_13135+100x_13136+85x_13137+18x_13138+60x_13139+61x_13140+100x_13141+51x_13142+22x_13143+29x_13144+50x_13145+54x_13146+43x_13147+93x_13148+49x_13149+11x_13150+9x_13151+33x_13152+23x_13153+25x_13154+12x_13155+84x_13156+18x_13157+27x_13158+13x_13159+32x_13160+91x_13161+33x_13162+10x_13163+70x_13164+47x_13165+87x_13166+24x_13167+53x_13168+58x_13169+82x_13170+47x_13171+66x_13172+99x_13173+87x_13174+99x_13175+78x_13176+48x_13177+80x_13178+4x_13179+7x_13180+37x_13181+18x_13182+22x_13183+13x_13184+88x_13185+78x_13186+40x_13187+55x_13188+99x_13189+41x_13190+20x_13191+11x_13192+39x_13193+39x_13194+99x_13195+5x_13196+14x_13197+10x_13198+2x_13199+68x_13200+71x_13201+72x_13202+5x_13203+24x_13204+35x_13205+92x_13206+60x_13207+98x_13208+42x_13209+6x_13210+25x_13211+26x_13212+98x_13213+9x_13214+40x_13215+52x_13216+11x_13217+19x_13218+68x_13219+62x_13220+96x_13221+24x_13222+15x_13223+94x_13224+36x_13225+4x_13226+24x_13227+79x_13228+21x_13229+80x_13230+11x_13231+83x_13232+2x_13233+54x_13234+73x_13235+6x_13236+36x_13237+27x_13238+50x_13239+9x_13240+43x_13241+4x_13242+35x_13243+44x_13244+16x_13245+53x_13246+92x_13247+62x_13248+78x_13249+54x_13250+61x_13251+85x_13252+5x_13253+88x_13254+81x_13255+40x_13256+85x_13257+7x_13258+90x_13259+47x_13260+95x_13261+10x_13262+33x_13263+69x_13264+51x_13265+32x_13266+9x_13267+52x_13268+26x_13269+87x_13270+95x_13271+18x_13272+16x_13273+100x_13274+43x_13275+64x_13276+35x_13277+89x_13278+60x_13279+5x_13280+73x_13281+65x_13282+15x_13283+88x_13284+95x_13285+71x_13286+87x_13287+62x_13288+54x_13289+45x_13290+64x_13291+5x_13292+49x_13293+41x_13294+35x_13295+34x_13296+24x_13297+68x_13298+48x_13299+85x_13300+38x_13301+20x_13302+15x_13303+20x_13304+84x_13305+71x_13306+25x_13307+59x_13308+27x_13309+99x_13310+42x_13311+24x_13312+70x_13313+67x_13314+30x_13315+37x_13316+55x_13317+94x_13318+79x_13319+56x_13320+5x_13321+82x_13322+55x_13323+91x_13324+35x_13325+11x_13326+73x_13327+10x_13328+19x_13329+5x_13330+72x_13331+59x_13332+97x_13333+75x_13334+24x_13335+x_13336+91x_13337+36x_13338+71x_13339+80x_13340+53x_13341+33x_13342+63x_13343+35x_13344+58x_13345+83x_13346+52x_13347+31x_13348+42x_13349+55x_13350+20x_13351+80x_13352+87x_13353+10x_13354+17x_13355+64x_13356+76x_13357+43x_13358+63x_13359+10x_13360+2x_13361+16x_13362+24x_13363+24x_13364+100x_13365+95x_13366+47x_13367+59x_13368+28x_13369+47x_13370+10x_13371+25x_13372+85x_13373+32x_13374+43x_13375+28x_13376+19x_13377+90x_13378+71x_13379+76x_13380+68x_13381+53x_13382+21x_13383+82x_13384+50x_13385+56x_13386+78x_13387+36x_13388+33x_13389+65x_13390+55x_13391+49x_13392+98x_13393+62x_13394+70x_13395+56x_13396+19x_13397+8x_13398+80x_13399+47x_13400+89x_13401+55x_13402+28x_13403+73x_13404+24x_13405+99x_13406+6x_13407+45x_13408+9x_13409+80x_13410+84x_13411+95x_13412+92x_13413+59x_13414+20x_13415+40x_13416+x_13417+95x_13418+31x_13419+75x_13420+62x_13421+16x_13422+57x_13423+46x_13424+22x_13425+41x_13426+82x_13427+99x_13428+75x_13429+95x_13430+61x_13431+53x_13432+4x_13433+9x_13434+61x_13435+15x_13436+53x_13437+39x_13438+88x_13439+15x_13440+99x_13441+36x_13442+42x_13443+53x_13444+34x_13445+49x_13446+89x_13447+98x_13448+81x_13449+56x_13450+73x_13451+15x_13452+59x_13453+x_13454+83x_13455+3x_13456+67x_13457+49x_13458+17x_13459+46x_13460+57x_13461+55x_13462+16x_13463+47x_13464+2x_13465+95x_13466+88x_13467+41x_13468+84x_13469+64x_13470+6x_13471+34x_13472+44x_13473+79x_13474+34x_13475+33x_13476+16x_13477+78x_13478+50x_13479+52x_13480+29x_13481+19x_13482+69x_13483+68x_13484+50x_13485+61x_13486+68x_13487+74x_13488+84x_13489+24x_13490+91x_13491+6x_13492+73x_13493+8x_13494+55x_13495+53x_13496+45x_13497+4x_13498+46x_13499+69x_13500+66x_13501+25x_13502+83x_13503+63x_13504+42x_13505+88x_13506+84x_13507+38x_13508+63x_13509+84x_13510+86x_13511+86x_13512+13x_13513+18x_13514+85x_13515+89x_13516+50x_13517+49x_13518+78x_13519+44x_13520+15x_13521+76x_13522+13x_13523+44x_13524+43x_13525+16x_13526+83x_13527+51x_13528+49x_13529+96x_13530+11x_13531+6x_13532+65x_13533+37x_13534+45x_13535+19x_13536+23x_13537+49x_13538+63x_13539+77x_13540+x_13541+57x_13542+71x_13543+58x_13544+87x_13545+44x_13546+69x_13547+11x_13548+33x_13549+7x_13550+49x_13551+64x_13552+57x_13553+97x_13554+84x_13555+9x_13556+29x_13557+98x_13558+76x_13559+46x_13560+40x_13561+46x_13562+53x_13563+32x_13564+66x_13565+85x_13566+32x_13567+45x_13568+86x_13569+27x_13570+68x_13571+71x_13572+26x_13573+19x_13574+86x_13575+94x_13576+99x_13577+42x_13578+8x_13579+10x_13580+40x_13581+34x_13582+40x_13583+68x_13584+45x_13585+19x_13586+63x_13587+70x_13588+11x_13589+66x_13590+75x_13591+48x_13592+86x_13593+80x_13594+15x_13595+6x_13596+21x_13597+43x_13598+54x_13599+13x_13600+43x_13601+43x_13602+96x_13603+9x_13604+76x_13605+76x_13606+56x_13607+32x_13608+69x_13609+23x_13610+38x_13611+87x_13612+43x_13613+8x_13614+23x_13615+29x_13616+76x_13617+89x_13618+60x_13619+58x_13620+8x_13621+84x_13622+71x_13623+78x_13624+81x_13625+83x_13626+63x_13627+x_13628+66x_13629+64x_13630+90x_13631+100x_13632+3x_13633+29x_13634+11x_13635+55x_13636+70x_13637+95x_13638+17x_13639+79x_13640+16x_13641+73x_13642+19x_13643+31x_13644+93x_13645+41x_13646+50x_13647+35x_13648+78x_13649+69x_13650+7x_13651+39x_13652+94x_13653+28x_13654+23x_13655+12x_13656+11x_13657+94x_13658+23x_13659+94x_13660+49x_13661+30x_13662+27x_13663+66x_13664+93x_13665+10x_13666+5x_13667+33x_13668+24x_13669+14x_13670+46x_13671+95x_13672+15x_13673+17x_13674+11x_13675+24x_13676+63x_13677+94x_13678+94x_13679+18x_13680+88x_13681+93x_13682+8x_13683+33x_13684+60x_13685+2x_13686+44x_13687+29x_13688+16x_13689+7x_13690+79x_13691+62x_13692+55x_13693+46x_13694+88x_13695+60x_13696+87x_13697+16x_13698+27x_13699+87x_13700+51x_13701+72x_13702+51x_13703+35x_13704+74x_13705+61x_13706+77x_13707+3x_13708+73x_13709+55x_13710+40x_13711+61x_13712+51x_13713+55x_13714+79x_13715+28x_13716+86x_13717+64x_13718+40x_13719+28x_13720+16x_13721+64x_13722+6x_13723+58x_13724+69x_13725+44x_13726+52x_13727+88x_13728+24x_13729+63x_13730+79x_13731+93x_13732+30x_13733+84x_13734+20x_13735+47x_13736+88x_13737+11x_13738+85x_13739+30x_13740+46x_13741+95x_13742+85x_13743+74x_13744+32x_13745+58x_13746+64x_13747+7x_13748+24x_13749+87x_13750+19x_13751+26x_13752+77x_13753+54x_13754+15x_13755+78x_13756+38x_13757+33x_13758+68x_13759+71x_13760+25x_13761+53x_13762+89x_13763+81x_13764+54x_13765+9x_13766+59x_13767+46x_13768+8x_13769+5x_13770+92x_13771+94x_13772+57x_13773+27x_13774+37x_13775+49x_13776+73x_13777+55x_13778+27x_13779+68x_13780+7x_13781+53x_13782+38x_13783+31x_13784+23x_13785+31x_13786+64x_13787+82x_13788+8x_13789+38x_13790+x_13791+48x_13792+18x_13793+56x_13794+78x_13795+21x_13796+80x_13797+75x_13798+6x_13799+11x_13800+91x_13801+85x_13802+69x_13803+17x_13804+18x_13805+15x_13806+30x_13807+9x_13808+89x_13809+73x_13810+29x_13811+28x_13812+93x_13813+41x_13814+93x_13815+69x_13816+69x_13817+15x_13818+9x_13819+14x_13820+52x_13821+28x_13822+72x_13823+89x_13824+76x_13825+99x_13826+25x_13827+74x_13828+68x_13829+22x_13830+16x_13831+94x_13832+96x_13833+61x_13834+38x_13835+72x_13836+77x_13837+46x_13838+76x_13839+68x_13840+3x_13841+71x_13842+99x_13843+10x_13844+5x_13845+51x_13846+86x_13847+73x_13848+35x_13849+2x_13850+78x_13851+21x_13852+79x_13853+27x_13854+41x_13855+20x_13856+5x_13857+82x_13858+60x_13859+78x_13860+44x_13861+74x_13862+53x_13863+94x_13864+100x_13865+x_13866+45x_13867+73x_13868+92x_13869+81x_13870+4x_13871+51x_13872+47x_13873+79x_13874+53x_13875+46x_13876+90x_13877+61x_13878+56x_13879+72x_13880+22x_13881+67x_13882+90x_13883+74x_13884+30x_13885+57x_13886+49x_13887+74x_13888+68x_13889+97x_13890+56x_13891+53x_13892+50x_13893+80x_13894+66x_13895+86x_13896+68x_13897+17x_13898+49x_13899+95x_13900+8x_13901+21x_13902+32x_13903+70x_13904+81x_13905+26x_13906+22x_13907+94x_13908+13x_13909+89x_13910+51x_13911+76x_13912+51x_13913+74x_13914+66x_13915+36x_13916+34x_13917+6x_13918+98x_13919+90x_13920+5x_13921+28x_13922+45x_13923+11x_13924+85x_13925+50x_13926+67x_13927+38x_13928+84x_13929+35x_13930+63x_13931+75x_13932+58x_13933+58x_13934+90x_13935+86x_13936+79x_13937+59x_13938+26x_13939+89x_13940+62x_13941+77x_13942+17x_13943+47x_13944+68x_13945+48x_13946+92x_13947+71x_13948+5x_13949+99x_13950+21x_13951+14x_13952+86x_13953+57x_13954+84x_13955+77x_13956+64x_13957+11x_13958+97x_13959+61x_13960+6x_13961+84x_13962+88x_13963+3x_13964+45x_13965+55x_13966+11x_13967+92x_13968+25x_13969+32x_13970+67x_13971+15x_13972+66x_13973+74x_13974+33x_13975+70x_13976+9x_13977+81x_13978+62x_13979+26x_13980+19x_13981+65x_13982+27x_13983+41x_13984+54x_13985+59x_13986+80x_13987+66x_13988+12x_13989+20x_13990+66x_13991+71x_13992+12x_13993+87x_13994+77x_13995+36x_13996+72x_13997+87x_13998+16x_13999+48x_14000+58x_14001+32x_14002+88x_14003+79x_14004+61x_14005+18x_14006+64x_14007+39x_14008+38x_14009+32x_14010+56x_14011+19x_14012+13x_14013+89x_14014+53x_14015+39x_14016+17x_14017+68x_14018+100x_14019+90x_14020+27x_14021+11x_14022+98x_14023+7x_14024+14x_14025+17x_14026+35x_14027+16x_14028+35x_14029+25x_14030+44x_14031+29x_14032+40x_14033+14x_14034+27x_14035+46x_14036+43x_14037+68x_14038+8x_14039+76x_14040+94x_14041+19x_14042+27x_14043+39x_14044+13x_14045+37x_14046+90x_14047+2x_14048+x_14049+62x_14050+87x_14051+53x_14052+6x_14053+27x_14054+4x_14055+57x_14056+80x_14057+16x_14058+54x_14059+64x_14060+8x_14061+52x_14062+53x_14063+65x_14064+83x_14065+91x_14066+52x_14067+93x_14068+53x_14069+84x_14070+29x_14071+42x_14072+16x_14073+39x_14074+23x_14075+57x_14076+70x_14077+17x_14078+67x_14079+70x_14080+61x_14081+26x_14082+19x_14083+5x_14084+30x_14085+41x_14086+100x_14087+83x_14088+43x_14089+89x_14090+87x_14091+26x_14092+100x_14093+10x_14094+31x_14095+78x_14096+86x_14097+41x_14098+45x_14099+47x_14100+21x_14101+67x_14102+34x_14103+85x_14104+79x_14105+11x_14106+5x_14107+23x_14108+27x_14109+12x_14110+50x_14111+51x_14112+10x_14113+19x_14114+95x_14115+53x_14116+34x_14117+13x_14118+59x_14119+49x_14120+50x_14121+38x_14122+22x_14123+71x_14124+32x_14125+58x_14126+38x_14127+2x_14128+82x_14129+37x_14130+31x_14131+46x_14132+42x_14133+13x_14134+88x_14135+72x_14136+56x_14137+16x_14138+26x_14139+23x_14140+53x_14141+12x_14142+51x_14143+77x_14144+97x_14145+73x_14146+12x_14147+x_14148+37x_14149+74x_14150+30x_14151+14x_14152+83x_14153+34x_14154+43x_14155+60x_14156+52x_14157+9x_14158+99x_14159+34x_14160+7x_14161+30x_14162+62x_14163+52x_14164+41x_14165+4x_14166+83x_14167+96x_14168+14x_14169+52x_14170+70x_14171+80x_14172+72x_14173+4x_14174+88x_14175+59x_14176+13x_14177+6x_14178+43x_14179+12x_14180+98x_14181+8x_14182+70x_14183+63x_14184+41x_14185+15x_14186+80x_14187+70x_14188+36x_14189+27x_14190+34x_14191+83x_14192+65x_14193+15x_14194+92x_14195+43x_14196+65x_14197+86x_14198+72x_14199+91x_14200+7x_14201+21x_14202+25x_14203+20x_14204+5x_14205+66x_14206+45x_14207+47x_14208+70x_14209+13x_14210+61x_14211+49x_14212+8x_14213+53x_14214+25x_14215+4x_14216+74x_14217+91x_14218+32x_14219+33x_14220+26x_14221+9x_14222+8x_14223+98x_14224+20x_14225+31x_14226+97x_14227+91x_14228+24x_14229+16x_14230+48x_14231+69x_14232+86x_14233+81x_14234+61x_14235+100x_14236+40x_14237+30x_14238+27x_14239+45x_14240+76x_14241+91x_14242+50x_14243+53x_14244+13x_14245+51x_14246+52x_14247+50x_14248+7x_14249+8x_14250+14x_14251+17x_14252+82x_14253+27x_14254+19x_14255+78x_14256+68x_14257+64x_14258+60x_14259+44x_14260+4x_14261+2x_14262+67x_14263+8x_14264+67x_14265+48x_14266+55x_14267+32x_14268+27x_14269+35x_14270+80x_14271+70x_14272+4x_14273+19x_14274+90x_14275+83x_14276+17x_14277+61x_14278+49x_14279+78x_14280+x_14281+83x_14282+40x_14283+93x_14284+99x_14285+14x_14286+36x_14287+80x_14288+61x_14289+36x_14290+30x_14291+75x_14292+9x_14293+78x_14294+95x_14295+13x_14296+15x_14297+100x_14298+87x_14299+36x_14300+28x_14301+97x_14302+9x_14303+29x_14304+24x_14305+69x_14306+68x_14307+22x_14308+49x_14309+100x_14310+87x_14311+25x_14312+95x_14313+87x_14314+46x_14315+60x_14316+7x_14317+45x_14318+3x_14319+37x_14320+62x_14321+79x_14322+37x_14323+31x_14324+60x_14325+77x_14326+9x_14327+86x_14328+86x_14329+96x_14330+46x_14331+77x_14332+44x_14333+23x_14334+70x_14335+57x_14336+56x_14337+24x_14338+2x_14339+3x_14340+18x_14341+35x_14342+28x_14343+46x_14344+84x_14345+56x_14346+61x_14347+19x_14348+79x_14349+42x_14350+60x_14351+84x_14352+55x_14353+27x_14354+68x_14355+43x_14356+74x_14357+7x_14358+91x_14359+18x_14360+33x_14361+56x_14362+76x_14363+21x_14364+40x_14365+15x_14366+63x_14367+23x_14368+66x_14369+63x_14370+66x_14371+55x_14372+54x_14373+90x_14374+30x_14375+72x_14376+29x_14377+83x_14378+60x_14379+100x_14380+86x_14381+52x_14382+3x_14383+10x_14384+95x_14385+78x_14386+12x_14387+92x_14388+5x_14389+90x_14390+60x_14391+66x_14392+97x_14393+21x_14394+44x_14395+100x_14396+85x_14397+48x_14398+71x_14399+72x_14400+72x_14401+91x_14402+97x_14403+97x_14404+55x_14405+3x_14406+90x_14407+30x_14408+50x_14409+48x_14410+56x_14411+94x_14412+65x_14413+78x_14414+74x_14415+73x_14416+99x_14417+55x_14418+67x_14419+85x_14420+78x_14421+88x_14422+42x_14423+17x_14424+12x_14425+11x_14426+63x_14427+26x_14428+32x_14429+45x_14430+93x_14431+64x_14432+93x_14433+73x_14434+71x_14435+43x_14436+62x_14437+94x_14438+46x_14439+32x_14440+97x_14441+99x_14442+67x_14443+40x_14444+34x_14445+8x_14446+17x_14447+41x_14448+42x_14449+x_14450+98x_14451+78x_14452+59x_14453+14x_14454+61x_14455+99x_14456+21x_14457+34x_14458+100x_14459+42x_14460+9x_14461+59x_14462+95x_14463+86x_14464+50x_14465+72x_14466+36x_14467+59x_14468+91x_14469+64x_14470+56x_14471+79x_14472+54x_14473+30x_14474+57x_14475+27x_14476+57x_14477+9x_14478+3x_14479+8x_14480+69x_14481+98x_14482+66x_14483+26x_14484+78x_14485+52x_14486+35x_14487+18x_14488+68x_14489+61x_14490+51x_14491+22x_14492+3x_14493+54x_14494+33x_14495+47x_14496+62x_14497+51x_14498+28x_14499+26x_14500+79x_14501+80x_14502+28x_14503+78x_14504+53x_14505+76x_14506+11x_14507+35x_14508+77x_14509+82x_14510+57x_14511+96x_14512+51x_14513+63x_14514+30x_14515+93x_14516+44x_14517+91x_14518+33x_14519+3x_14520+46x_14521+55x_14522+65x_14523+60x_14524+96x_14525+60x_14526+75x_14527+77x_14528+42x_14529+96x_14530+30x_14531+50x_14532+22x_14533+23x_14534+19x_14535+29x_14536+75x_14537+56x_14538+31x_14539+65x_14540+31x_14541+90x_14542+75x_14543+34x_14544+96x_14545+12x_14546+93x_14547+64x_14548+34x_14549+37x_14550+95x_14551+41x_14552+10x_14553+53x_14554+90x_14555+47x_14556+19x_14557+56x_14558+97x_14559+57x_14560+30x_14561+34x_14562+55x_14563+90x_14564+54x_14565+3x_14566+24x_14567+24x_14568+14x_14569+95x_14570+10x_14571+96x_14572+71x_14573+46x_14574+72x_14575+89x_14576+35x_14577+56x_14578+74x_14579+79x_14580+45x_14581+15x_14582+74x_14583+x_14584+28x_14585+57x_14586+15x_14587+15x_14588+43x_14589+39x_14590+95x_14591+90x_14592+93x_14593+80x_14594+69x_14595+30x_14596+20x_14597+73x_14598+94x_14599+3x_14600+82x_14601+85x_14602+94x_14603+70x_14604+40x_14605+66x_14606+49x_14607+30x_14608+89x_14609+32x_14610+46x_14611+35x_14612+22x_14613+54x_14614+2x_14615+36x_14616+23x_14617+15x_14618+78x_14619+81x_14620+79x_14621+30x_14622+41x_14623+56x_14624+11x_14625+6x_14626+77x_14627+26x_14628+30x_14629+77x_14630+35x_14631+80x_14632+20x_14633+64x_14634+86x_14635+29x_14636+56x_14637+40x_14638+84x_14639+48x_14640+88x_14641+96x_14642+93x_14643+64x_14644+69x_14645+42x_14646+32x_14647+65x_14648+94x_14649+50x_14650+47x_14651+15x_14652+87x_14653+24x_14654+32x_14655+82x_14656+4x_14657+58x_14658+11x_14659+30x_14660+68x_14661+87x_14662+95x_14663+71x_14664+13x_14665+67x_14666+6x_14667+61x_14668+92x_14669+87x_14670+4x_14671+93x_14672+78x_14673+12x_14674+87x_14675+91x_14676+82x_14677+94x_14678+63x_14679+78x_14680+68x_14681+20x_14682+85x_14683+78x_14684+38x_14685+26x_14686+65x_14687+57x_14688+10x_14689+11x_14690+27x_14691+63x_14692+12x_14693+65x_14694+79x_14695+12x_14696+9x_14697+65x_14698+96x_14699+63x_14700+14x_14701+55x_14702+94x_14703+49x_14704+62x_14705+78x_14706+58x_14707+96x_14708+72x_14709+97x_14710+39x_14711+45x_14712+21x_14713+96x_14714+10x_14715+34x_14716+66x_14717+7x_14718+17x_14719+13x_14720+40x_14721+31x_14722+30x_14723+56x_14724+58x_14725+39x_14726+11x_14727+58x_14728+89x_14729+70x_14730+63x_14731+50x_14732+51x_14733+53x_14734+59x_14735+72x_14736+40x_14737+52x_14738+54x_14739+88x_14740+7x_14741+19x_14742+32x_14743+90x_14744+83x_14745+44x_14746+29x_14747+52x_14748+51x_14749+69x_14750+100x_14751+77x_14752+60x_14753+55x_14754+8x_14755+87x_14756+33x_14757+66x_14758+3x_14759+95x_14760+4x_14761+36x_14762+99x_14763+90x_14764+31x_14765+28x_14766+25x_14767+35x_14768+49x_14769+9x_14770+99x_14771+65x_14772+34x_14773+12x_14774+35x_14775+65x_14776+56x_14777+64x_14778+35x_14779+27x_14780+98x_14781+76x_14782+62x_14783+58x_14784+53x_14785+75x_14786+17x_14787+19x_14788+54x_14789+11x_14790+81x_14791+61x_14792+39x_14793+13x_14794+45x_14795+40x_14796+82x_14797+27x_14798+36x_14799+77x_14800+59x_14801+90x_14802+80x_14803+8x_14804+31x_14805+27x_14806+68x_14807+55x_14808+54x_14809+63x_14810+47x_14811+96x_14812+43x_14813+64x_14814+72x_14815+40x_14816+9x_14817+82x_14818+40x_14819+44x_14820+85x_14821+36x_14822+64x_14823+56x_14824+6x_14825+31x_14826+70x_14827+19x_14828+35x_14829+99x_14830+75x_14831+26x_14832+69x_14833+62x_14834+15x_14835+62x_14836+16x_14837+20x_14838+37x_14839+80x_14840+11x_14841+58x_14842+40x_14843+51x_14844+70x_14845+34x_14846+87x_14847+36x_14848+58x_14849+24x_14850+32x_14851+23x_14852+84x_14853+61x_14854+87x_14855+62x_14856+53x_14857+23x_14858+34x_14859+92x_14860+5x_14861+18x_14862+96x_14863+68x_14864+86x_14865+81x_14866+35x_14867+23x_14868+20x_14869+17x_14870+76x_14871+40x_14872+33x_14873+39x_14874+27x_14875+52x_14876+65x_14877+38x_14878+40x_14879+59x_14880+26x_14881+83x_14882+18x_14883+37x_14884+8x_14885+87x_14886+71x_14887+56x_14888+90x_14889+23x_14890+41x_14891+x_14892+98x_14893+100x_14894+77x_14895+86x_14896+17x_14897+51x_14898+91x_14899+30x_14900+22x_14901+98x_14902+82x_14903+3x_14904+67x_14905+80x_14906+x_14907+68x_14908+83x_14909+78x_14910+55x_14911+30x_14912+65x_14913+30x_14914+27x_14915+67x_14916+14x_14917+85x_14918+24x_14919+17x_14920+90x_14921+92x_14922+83x_14923+94x_14924+50x_14925+52x_14926+14x_14927+53x_14928+25x_14929+45x_14930+2x_14931+100x_14932+13x_14933+37x_14934+2x_14935+89x_14936+81x_14937+24x_14938+50x_14939+92x_14940+45x_14941+42x_14942+96x_14943+16x_14944+22x_14945+29x_14946+7x_14947+39x_14948+80x_14949+28x_14950+96x_14951+4x_14952+78x_14953+66x_14954+79x_14955+51x_14956+44x_14957+98x_14958+98x_14959+47x_14960+65x_14961+98x_14962+59x_14963+75x_14964+83x_14965+84x_14966+30x_14967+91x_14968+7x_14969+4x_14970+73x_14971+22x_14972+61x_14973+62x_14974+35x_14975+52x_14976+96x_14977+3x_14978+46x_14979+90x_14980+12x_14981+50x_14982+2x_14983+32x_14984+95x_14985+10x_14986+70x_14987+77x_14988+12x_14989+28x_14990+13x_14991+97x_14992+27x_14993+59x_14994+48x_14995+60x_14996+82x_14997+28x_14998+20x_14999+49x_15000+69x_15001+81x_15002+47x_15003+52x_15004+5x_15005+9x_15006+77x_15007+26x_15008+2x_15009+71x_15010+7x_15011+6x_15012+3x_15013+81x_15014+90x_15015+33x_15016+83x_15017+65x_15018+42x_15019+41x_15020+82x_15021+77x_15022+38x_15023+10x_15024+13x_15025+50x_15026+11x_15027+70x_15028+82x_15029+5x_15030+11x_15031+95x_15032+4x_15033+59x_15034+93x_15035+28x_15036+77x_15037+87x_15038+27x_15039+53x_15040+59x_15041+60x_15042+67x_15043+99x_15044+24x_15045+54x_15046+14x_15047+37x_15048+83x_15049+82x_15050+34x_15051+24x_15052+6x_15053+63x_15054+25x_15055+30x_15056+75x_15057+22x_15058+38x_15059+55x_15060+37x_15061+58x_15062+89x_15063+68x_15064+43x_15065+86x_15066+94x_15067+93x_15068+28x_15069+46x_15070+61x_15071+93x_15072+31x_15073+29x_15074+25x_15075+29x_15076+20x_15077+20x_15078+15x_15079+28x_15080+x_15081+15x_15082+76x_15083+76x_15084+80x_15085+70x_15086+21x_15087+76x_15088+12x_15089+60x_15090+70x_15091+25x_15092+18x_15093+71x_15094+95x_15095+83x_15096+48x_15097+11x_15098+79x_15099+94x_15100+86x_15101+92x_15102+53x_15103+68x_15104+43x_15105+67x_15106+39x_15107+40x_15108+46x_15109+85x_15110+90x_15111+67x_15112+11x_15113+37x_15114+36x_15115+12x_15116+51x_15117+97x_15118+54x_15119+40x_15120+9x_15121+32x_15122+81x_15123+70x_15124+38x_15125+41x_15126+62x_15127+74x_15128+8x_15129+20x_15130+48x_15131+82x_15132+98x_15133+69x_15134+12x_15135+95x_15136+81x_15137+10x_15138+57x_15139+91x_15140+69x_15141+80x_15142+65x_15143+11x_15144+24x_15145+12x_15146+25x_15147+48x_15148+76x_15149+48x_15150+12x_15151+55x_15152+63x_15153+25x_15154+6x_15155+72x_15156+30x_15157+16x_15158+30x_15159+30x_15160+39x_15161+34x_15162+16x_15163+31x_15164+16x_15165+8x_15166+64x_15167+70x_15168+48x_15169+34x_15170+28x_15171+68x_15172+34x_15173+55x_15174+80x_15175+77x_15176+99x_15177+2x_15178+75x_15179+75x_15180+58x_15181+28x_15182+5x_15183+80x_15184+96x_15185+82x_15186+55x_15187+84x_15188+24x_15189+31x_15190+x_15191+61x_15192+11x_15193+54x_15194+25x_15195+92x_15196+47x_15197+48x_15198+57x_15199+33x_15200+45x_15201+65x_15202+33x_15203+46x_15204+8x_15205+2x_15206+87x_15207+5x_15208+33x_15209+13x_15210+36x_15211+40x_15212+32x_15213+12x_15214+41x_15215+16x_15216+40x_15217+32x_15218+47x_15219+65x_15220+43x_15221+74x_15222+64x_15223+78x_15224+53x_15225+94x_15226+10x_15227+28x_15228+79x_15229+66x_15230+70x_15231+48x_15232+96x_15233+6x_15234+9x_15235+19x_15236+7x_15237+44x_15238+86x_15239+29x_15240+12x_15241+91x_15242+65x_15243+84x_15244+29x_15245+83x_15246+90x_15247+35x_15248+69x_15249+12x_15250+61x_15251+24x_15252+96x_15253+94x_15254+12x_15255+15x_15256+77x_15257+94x_15258+55x_15259+90x_15260+79x_15261+14x_15262+72x_15263+28x_15264+70x_15265+82x_15266+97x_15267+7x_15268+97x_15269+51x_15270+13x_15271+88x_15272+50x_15273+38x_15274+65x_15275+100x_15276+16x_15277+43x_15278+18x_15279+18x_15280+77x_15281+50x_15282+27x_15283+41x_15284+64x_15285+60x_15286+15x_15287+96x_15288+87x_15289+13x_15290+69x_15291+5x_15292+45x_15293+37x_15294+5x_15295+76x_15296+79x_15297+68x_15298+78x_15299+27x_15300+71x_15301+96x_15302+24x_15303+4x_15304+58x_15305+86x_15306+77x_15307+93x_15308+8x_15309+96x_15310+8x_15311+23x_15312+23x_15313+64x_15314+36x_15315+42x_15316+39x_15317+16x_15318+24x_15319+36x_15320+37x_15321+13x_15322+49x_15323+2x_15324+61x_15325+35x_15326+12x_15327+24x_15328+51x_15329+20x_15330+91x_15331+47x_15332+50x_15333+41x_15334+61x_15335+35x_15336+87x_15337+x_15338+4x_15339+37x_15340+18x_15341+6x_15342+57x_15343+22x_15344+77x_15345+7x_15346+94x_15347+25x_15348+72x_15349+23x_15350+82x_15351+31x_15352+46x_15353+92x_15354+94x_15355+20x_15356+82x_15357+2x_15358+51x_15359+14x_15360+19x_15361+9x_15362+54x_15363+x_15364+93x_15365+39x_15366+24x_15367+82x_15368+3x_15369+14x_15370+41x_15371+x_15372+92x_15373+94x_15374+62x_15375+70x_15376+51x_15377+x_15378+79x_15379+61x_15380+40x_15381+39x_15382+24x_15383+45x_15384+76x_15385+97x_15386+33x_15387+87x_15388+81x_15389+8x_15390+49x_15391+99x_15392+3x_15393+9x_15394+24x_15395+97x_15396+95x_15397+15x_15398+61x_15399+23x_15400+71x_15401+50x_15402+39x_15403+53x_15404+54x_15405+8x_15406+67x_15407+57x_15408+95x_15409+45x_15410+19x_15411+8x_15412+17x_15413+51x_15414+66x_15415+83x_15416+60x_15417+35x_15418+71x_15419+37x_15420+100x_15421+99x_15422+36x_15423+69x_15424+24x_15425+44x_15426+76x_15427+79x_15428+15x_15429+76x_15430+88x_15431+48x_15432+51x_15433+45x_15434+66x_15435+53x_15436+26x_15437+65x_15438+73x_15439+21x_15440+53x_15441+55x_15442+21x_15443+95x_15444+66x_15445+37x_15446+56x_15447+75x_15448+68x_15449+65x_15450+33x_15451+98x_15452+11x_15453+47x_15454+65x_15455+41x_15456+35x_15457+34x_15458+26x_15459+19x_15460+55x_15461+15x_15462+95x_15463+13x_15464+26x_15465+96x_15466+53x_15467+37x_15468+91x_15469+42x_15470+23x_15471+17x_15472+86x_15473+38x_15474+98x_15475+5x_15476+32x_15477+67x_15478+87x_15479+92x_15480+50x_15481+72x_15482+40x_15483+27x_15484+96x_15485+61x_15486+94x_15487+5x_15488+37x_15489+55x_15490+28x_15491+53x_15492+4x_15493+11x_15494+59x_15495+86x_15496+79x_15497+6x_15498+25x_15499+21x_15500+26x_15501+98x_15502+66x_15503+77x_15504+30x_15505+30x_15506+9x_15507+45x_15508+19x_15509+56x_15510+26x_15511+24x_15512+67x_15513+89x_15514+51x_15515+35x_15516+52x_15517+85x_15518+19x_15519+69x_15520+62x_15521+35x_15522+69x_15523+33x_15524+78x_15525+80x_15526+40x_15527+19x_15528+12x_15529+73x_15530+67x_15531+66x_15532+90x_15533+15x_15534+45x_15535+33x_15536+60x_15537+18x_15538+13x_15539+82x_15540+41x_15541+43x_15542+51x_15543+36x_15544+87x_15545+47x_15546+21x_15547+11x_15548+49x_15549+49x_15550+20x_15551+21x_15552+57x_15553+76x_15554+56x_15555+7x_15556+10x_15557+3x_15558+98x_15559+100x_15560+91x_15561+46x_15562+48x_15563+17x_15564+36x_15565+11x_15566+52x_15567+x_15568+91x_15569+57x_15570+48x_15571+82x_15572+28x_15573+47x_15574+59x_15575+29x_15576+17x_15577+58x_15578+38x_15579+35x_15580+41x_15581+6x_15582+91x_15583+95x_15584+16x_15585+78x_15586+7x_15587+59x_15588+96x_15589+48x_15590+65x_15591+57x_15592+38x_15593+9x_15594+86x_15595+64x_15596+43x_15597+71x_15598+21x_15599+77x_15600+31x_15601+89x_15602+2x_15603+96x_15604+24x_15605+69x_15606+50x_15607+49x_15608+52x_15609+30x_15610+44x_15611+80x_15612+48x_15613+97x_15614+57x_15615+16x_15616+24x_15617+58x_15618+66x_15619+14x_15620+10x_15621+80x_15622+30x_15623+2x_15624+33x_15625+98x_15626+56x_15627+81x_15628+23x_15629+19x_15630+50x_15631+98x_15632+87x_15633+2x_15634+85x_15635+85x_15636+3x_15637+13x_15638+9x_15639+7x_15640+93x_15641+97x_15642+85x_15643+30x_15644+21x_15645+11x_15646+59x_15647+71x_15648+91x_15649+5x_15650+44x_15651+8x_15652+98x_15653+80x_15654+100x_15655+49x_15656+89x_15657+52x_15658+45x_15659+51x_15660+19x_15661+43x_15662+11x_15663+45x_15664+54x_15665+76x_15666+23x_15667+28x_15668+56x_15669+72x_15670+79x_15671+55x_15672+46x_15673+65x_15674+9x_15675+44x_15676+89x_15677+7x_15678+80x_15679+12x_15680+4x_15681+6x_15682+4x_15683+30x_15684+47x_15685+38x_15686+45x_15687+68x_15688+51x_15689+97x_15690+39x_15691+25x_15692+48x_15693+2x_15694+7x_15695+96x_15696+79x_15697+51x_15698+30x_15699+30x_15700+73x_15701+99x_15702+72x_15703+88x_15704+72x_15705+9x_15706+23x_15707+6x_15708+98x_15709+81x_15710+90x_15711+45x_15712+92x_15713+81x_15714+98x_15715+71x_15716+85x_15717+66x_15718+83x_15719+68x_15720+32x_15721+37x_15722+55x_15723+96x_15724+6x_15725+95x_15726+15x_15727+44x_15728+34x_15729+16x_15730+69x_15731+62x_15732+83x_15733+83x_15734+92x_15735+98x_15736+81x_15737+92x_15738+94x_15739+76x_15740+13x_15741+42x_15742+21x_15743+100x_15744+13x_15745+57x_15746+73x_15747+53x_15748+45x_15749+11x_15750+38x_15751+53x_15752+77x_15753+2x_15754+59x_15755+99x_15756+15x_15757+84x_15758+46x_15759+83x_15760+14x_15761+86x_15762+82x_15763+67x_15764+16x_15765+56x_15766+66x_15767+56x_15768+31x_15769+33x_15770+91x_15771+61x_15772+70x_15773+60x_15774+34x_15775+2x_15776+63x_15777+49x_15778+34x_15779+8x_15780+35x_15781+53x_15782+4x_15783+5x_15784+60x_15785+19x_15786+90x_15787+44x_15788+7x_15789+8x_15790+50x_15791+39x_15792+94x_15793+73x_15794+x_15795+3x_15796+4x_15797+41x_15798+4x_15799+53x_15800+89x_15801+57x_15802+24x_15803+76x_15804+95x_15805+74x_15806+71x_15807+x_15808+27x_15809+40x_15810+6x_15811+97x_15812+86x_15813+2x_15814+41x_15815+33x_15816+88x_15817+79x_15818+28x_15819+90x_15820+24x_15821+45x_15822+35x_15823+90x_15824+48x_15825+42x_15826+22x_15827+59x_15828+35x_15829+16x_15830+20x_15831+21x_15832+75x_15833+78x_15834+37x_15835+97x_15836+70x_15837+70x_15838+8x_15839+88x_15840+69x_15841+86x_15842+18x_15843+81x_15844+63x_15845+57x_15846+32x_15847+22x_15848+66x_15849+7x_15850+17x_15851+68x_15852+97x_15853+2x_15854+9x_15855+62x_15856+14x_15857+78x_15858+85x_15859+86x_15860+35x_15861+43x_15862+36x_15863+39x_15864+100x_15865+3x_15866+44x_15867+100x_15868+30x_15869+11x_15870+89x_15871+5x_15872+98x_15873+54x_15874+48x_15875+73x_15876+22x_15877+16x_15878+42x_15879+31x_15880+4x_15881+35x_15882+28x_15883+80x_15884+68x_15885+69x_15886+87x_15887+26x_15888+44x_15889+2x_15890+67x_15891+11x_15892+36x_15893+3x_15894+63x_15895+86x_15896+75x_15897+52x_15898+19x_15899+60x_15900+45x_15901+44x_15902+72x_15903+82x_15904+45x_15905+97x_15906+23x_15907+97x_15908+47x_15909+3x_15910+93x_15911+27x_15912+76x_15913+36x_15914+67x_15915+94x_15916+43x_15917+87x_15918+74x_15919+54x_15920+3x_15921+79x_15922+35x_15923+4x_15924+37x_15925+61x_15926+46x_15927+67x_15928+17x_15929+12x_15930+20x_15931+53x_15932+55x_15933+83x_15934+66x_15935+48x_15936+55x_15937+53x_15938+43x_15939+47x_15940+98x_15941+41x_15942+47x_15943+40x_15944+80x_15945+8x_15946+66x_15947+55x_15948+65x_15949+10x_15950+61x_15951+92x_15952+69x_15953+18x_15954+44x_15955+47x_15956+97x_15957+22x_15958+95x_15959+22x_15960+10x_15961+61x_15962+90x_15963+96x_15964+21x_15965+12x_15966+54x_15967+37x_15968+49x_15969+92x_15970+49x_15971+29x_15972+45x_15973+81x_15974+46x_15975+29x_15976+36x_15977+27x_15978+54x_15979+30x_15980+9x_15981+27x_15982+52x_15983+23x_15984+15x_15985+70x_15986+21x_15987+49x_15988+19x_15989+65x_15990+x_15991+3x_15992+41x_15993+87x_15994+87x_15995+61x_15996+31x_15997+93x_15998+66x_15999+67x_16000+94x_16001+63x_16002+90x_16003+16x_16004+31x_16005+61x_16006+64x_16007+3x_16008+95x_16009+90x_16010+71x_16011+85x_16012+47x_16013+28x_16014+68x_16015+5x_16016+86x_16017+22x_16018+28x_16019+60x_16020+53x_16021+43x_16022+96x_16023+74x_16024+10x_16025+50x_16026+49x_16027+19x_16028+86x_16029+20x_16030+46x_16031+26x_16032+86x_16033+49x_16034+60x_16035+81x_16036+77x_16037+93x_16038+51x_16039+78x_16040+66x_16041+33x_16042+13x_16043+36x_16044+8x_16045+13x_16046+52x_16047+x_16048+26x_16049+80x_16050+18x_16051+14x_16052+32x_16053+7x_16054+87x_16055+16x_16056+13x_16057+47x_16058+94x_16059+76x_16060+8x_16061+83x_16062+45x_16063+61x_16064+69x_16065+4x_16066+23x_16067+95x_16068+89x_16069+15x_16070+57x_16071+59x_16072+31x_16073+43x_16074+83x_16075+44x_16076+41x_16077+49x_16078+65x_16079+40x_16080+92x_16081+78x_16082+4x_16083+61x_16084+58x_16085+34x_16086+48x_16087+4x_16088+21x_16089+48x_16090+25x_16091+35x_16092+45x_16093+90x_16094+68x_16095+33x_16096+81x_16097+69x_16098+53x_16099+26x_16100+44x_16101+65x_16102+21x_16103+57x_16104+8x_16105+32x_16106+33x_16107+51x_16108+16x_16109+62x_16110+51x_16111+81x_16112+100x_16113+6x_16114+56x_16115+83x_16116+62x_16117+14x_16118+41x_16119+60x_16120+45x_16121+35x_16122+8x_16123+24x_16124+89x_16125+59x_16126+82x_16127+7x_16128+12x_16129+61x_16130+75x_16131+26x_16132+70x_16133+72x_16134+61x_16135+4x_16136+3x_16137+57x_16138+65x_16139+98x_16140+73x_16141+49x_16142+76x_16143+98x_16144+45x_16145+40x_16146+15x_16147+52x_16148+96x_16149+48x_16150+30x_16151+11x_16152+80x_16153+3x_16154+50x_16155+62x_16156+34x_16157+4x_16158+22x_16159+84x_16160+99x_16161+79x_16162+89x_16163+49x_16164+10x_16165+94x_16166+98x_16167+72x_16168+35x_16169+89x_16170+4x_16171+30x_16172+93x_16173+59x_16174+57x_16175+87x_16176+2x_16177+32x_16178+17x_16179+99x_16180+91x_16181+44x_16182+45x_16183+23x_16184+88x_16185+23x_16186+76x_16187+59x_16188+31x_16189+59x_16190+66x_16191+29x_16192+41x_16193+23x_16194+51x_16195+22x_16196+57x_16197+27x_16198+54x_16199+33x_16200+11x_16201+68x_16202+56x_16203+29x_16204+35x_16205+92x_16206+65x_16207+60x_16208+91x_16209+61x_16210+66x_16211+80x_16212+57x_16213+35x_16214+31x_16215+73x_16216+30x_16217+52x_16218+60x_16219+96x_16220+59x_16221+40x_16222+42x_16223+15x_16224+31x_16225+39x_16226+23x_16227+96x_16228+48x_16229+24x_16230+63x_16231+17x_16232+90x_16233+85x_16234+85x_16235+71x_16236+49x_16237+37x_16238+73x_16239+46x_16240+24x_16241+7x_16242+47x_16243+38x_16244+34x_16245+52x_16246+48x_16247+52x_16248+62x_16249+96x_16250+34x_16251+70x_16252+56x_16253+52x_16254+44x_16255+12x_16256+94x_16257+48x_16258+32x_16259+7x_16260+67x_16261+21x_16262+33x_16263+14x_16264+85x_16265+18x_16266+67x_16267+88x_16268+42x_16269+83x_16270+70x_16271+4x_16272+90x_16273+100x_16274+44x_16275+69x_16276+55x_16277+54x_16278+48x_16279+54x_16280+84x_16281+100x_16282+68x_16283+36x_16284+88x_16285+47x_16286+68x_16287+31x_16288+99x_16289+62x_16290+43x_16291+31x_16292+72x_16293+47x_16294+66x_16295+2x_16296+91x_16297+41x_16298+26x_16299+59x_16300+11x_16301+23x_16302+26x_16303+11x_16304+41x_16305+55x_16306+40x_16307+44x_16308+47x_16309+79x_16310+95x_16311+20x_16312+20x_16313+78x_16314+53x_16315+40x_16316+79x_16317+74x_16318+6x_16319+42x_16320+9x_16321+59x_16322+100x_16323+69x_16324+28x_16325+74x_16326+36x_16327+37x_16328+66x_16329+11x_16330+2x_16331+45x_16332+73x_16333+73x_16334+72x_16335+53x_16336+68x_16337+82x_16338+76x_16339+49x_16340+70x_16341+53x_16342+72x_16343+73x_16344+41x_16345+3x_16346+46x_16347+31x_16348+33x_16349+61x_16350+30x_16351+36x_16352+32x_16353+86x_16354+37x_16355+87x_16356+9x_16357+19x_16358+51x_16359+46x_16360+49x_16361+19x_16362+83x_16363+96x_16364+15x_16365+95x_16366+89x_16367+71x_16368+61x_16369+14x_16370+97x_16371+33x_16372+92x_16373+71x_16374+6x_16375+84x_16376+70x_16377+48x_16378+51x_16379+86x_16380+14x_16381+31x_16382+48x_16383+32x_16384+92x_16385+45x_16386+47x_16387+18x_16388+78x_16389+38x_16390+63x_16391+60x_16392+81x_16393+92x_16394+39x_16395+12x_16396+63x_16397+11x_16398+52x_16399+25x_16400+59x_16401+97x_16402+83x_16403+94x_16404+22x_16405+64x_16406+93x_16407+52x_16408+59x_16409+40x_16410+48x_16411+41x_16412+85x_16413+31x_16414+12x_16415+25x_16416+59x_16417+23x_16418+32x_16419+59x_16420+53x_16421+43x_16422+100x_16423+31x_16424+51x_16425+52x_16426+79x_16427+5x_16428+x_16429+40x_16430+92x_16431+93x_16432+28x_16433+32x_16434+99x_16435+6x_16436+100x_16437+96x_16438+9x_16439+4x_16440+83x_16441+21x_16442+82x_16443+76x_16444+2x_16445+88x_16446+40x_16447+69x_16448+73x_16449+54x_16450+11x_16451+18x_16452+4x_16453+43x_16454+61x_16455+97x_16456+6x_16457+36x_16458+3x_16459+33x_16460+59x_16461+4x_16462+48x_16463+79x_16464+43x_16465+26x_16466+94x_16467+37x_16468+100x_16469+50x_16470+54x_16471+6x_16472+99x_16473+76x_16474+24x_16475+79x_16476+36x_16477+41x_16478+39x_16479+3x_16480+68x_16481+2x_16482+78x_16483+14x_16484+15x_16485+25x_16486+86x_16487+43x_16488+31x_16489+78x_16490+73x_16491+x_16492+78x_16493+19x_16494+52x_16495+34x_16496+2x_16497+96x_16498+81x_16499+89x_16500+15x_16501+85x_16502+41x_16503+18x_16504+x_16505+74x_16506+47x_16507+52x_16508+66x_16509+16x_16510+83x_16511+97x_16512+32x_16513+49x_16514+60x_16515+40x_16516+69x_16517+100x_16518+49x_16519+46x_16520+46x_16521+80x_16522+16x_16523+20x_16524+85x_16525+9x_16526+93x_16527+49x_16528+60x_16529+49x_16530+6x_16531+81x_16532+42x_16533+x_16534+56x_16535+8x_16536+54x_16537+12x_16538+9x_16539+83x_16540+27x_16541+75x_16542+46x_16543+88x_16544+66x_16545+9x_16546+47x_16547+16x_16548+72x_16549+40x_16550+83x_16551+93x_16552+92x_16553+98x_16554+34x_16555+62x_16556+99x_16557+75x_16558+39x_16559+79x_16560+95x_16561+8x_16562+73x_16563+39x_16564+65x_16565+62x_16566+40x_16567+7x_16568+14x_16569+39x_16570+2x_16571+79x_16572+16x_16573+26x_16574+57x_16575+21x_16576+44x_16577+93x_16578+71x_16579+58x_16580+47x_16581+10x_16582+52x_16583+32x_16584+70x_16585+85x_16586+27x_16587+34x_16588+72x_16589+58x_16590+16x_16591+28x_16592+12x_16593+45x_16594+10x_16595+55x_16596+73x_16597+43x_16598+70x_16599+85x_16600+67x_16601+37x_16602+42x_16603+50x_16604+8x_16605+16x_16606+94x_16607+31x_16608+20x_16609+73x_16610+78x_16611+16x_16612+71x_16613+68x_16614+7x_16615+41x_16616+12x_16617+27x_16618+8x_16619+81x_16620+25x_16621+92x_16622+15x_16623+22x_16624+37x_16625+43x_16626+29x_16627+57x_16628+13x_16629+20x_16630+17x_16631+76x_16632+22x_16633+64x_16634+66x_16635+41x_16636+100x_16637+56x_16638+67x_16639+46x_16640+36x_16641+12x_16642+80x_16643+87x_16644+93x_16645+99x_16646+100x_16647+19x_16648+x_16649+66x_16650+2x_16651+43x_16652+64x_16653+88x_16654+98x_16655+60x_16656+76x_16657+37x_16658+30x_16659+90x_16660+46x_16661+11x_16662+33x_16663+68x_16664+44x_16665+2x_16666+32x_16667+19x_16668+54x_16669+99x_16670+54x_16671+94x_16672+39x_16673+37x_16674+98x_16675+7x_16676+9x_16677+53x_16678+86x_16679+73x_16680+84x_16681+96x_16682+24x_16683+18x_16684+x_16685+35x_16686+34x_16687+35x_16688+29x_16689+23x_16690+20x_16691+24x_16692+61x_16693+73x_16694+95x_16695+73x_16696+57x_16697+77x_16698+67x_16699+20x_16700+87x_16701+74x_16702+90x_16703+43x_16704+23x_16705+38x_16706+61x_16707+29x_16708+97x_16709+80x_16710+12x_16711+33x_16712+71x_16713+82x_16714+68x_16715+19x_16716+57x_16717+42x_16718+65x_16719+31x_16720+21x_16721+61x_16722+63x_16723+29x_16724+59x_16725+42x_16726+46x_16727+69x_16728+66x_16729+36x_16730+68x_16731+42x_16732+57x_16733+61x_16734+88x_16735+61x_16736+74x_16737+67x_16738+94x_16739+11x_16740+74x_16741+68x_16742+84x_16743+77x_16744+25x_16745+23x_16746+10x_16747+35x_16748+56x_16749+3x_16750+45x_16751+62x_16752+11x_16753+20x_16754+25x_16755+69x_16756+39x_16757+35x_16758+19x_16759+98x_16760+82x_16761+78x_16762+72x_16763+86x_16764+56x_16765+16x_16766+53x_16767+89x_16768+21x_16769+12x_16770+72x_16771+18x_16772+83x_16773+27x_16774+9x_16775+54x_16776+93x_16777+54x_16778+34x_16779+29x_16780+100x_16781+74x_16782+84x_16783+13x_16784+65x_16785+74x_16786+100x_16787+48x_16788+24x_16789+25x_16790+30x_16791+19x_16792+10x_16793+33x_16794+38x_16795+79x_16796+12x_16797+69x_16798+16x_16799+72x_16800+86x_16801+43x_16802+24x_16803+5x_16804+90x_16805+59x_16806+91x_16807+10x_16808+67x_16809+49x_16810+x_16811+5x_16812+73x_16813+22x_16814+100x_16815+63x_16816+78x_16817+65x_16818+27x_16819+29x_16820+28x_16821+63x_16822+95x_16823+6x_16824+100x_16825+93x_16826+9x_16827+36x_16828+47x_16829+39x_16830+56x_16831+89x_16832+92x_16833+8x_16834+21x_16835+50x_16836+54x_16837+28x_16838+57x_16839+14x_16840+68x_16841+76x_16842+77x_16843+2x_16844+78x_16845+35x_16846+87x_16847+x_16848+20x_16849+93x_16850+76x_16851+91x_16852+65x_16853+54x_16854+91x_16855+53x_16856+14x_16857+38x_16858+8x_16859+73x_16860+13x_16861+57x_16862+93x_16863+39x_16864+8x_16865+9x_16866+50x_16867+62x_16868+57x_16869+14x_16870+90x_16871+83x_16872+2x_16873+70x_16874+39x_16875+40x_16876+51x_16877+39x_16878+59x_16879+92x_16880+47x_16881+46x_16882+26x_16883+65x_16884+15x_16885+31x_16886+59x_16887+63x_16888+60x_16889+7x_16890+92x_16891+78x_16892+2x_16893+15x_16894+31x_16895+39x_16896+43x_16897+25x_16898+56x_16899+36x_16900+99x_16901+65x_16902+52x_16903+94x_16904+51x_16905+29x_16906+76x_16907+19x_16908+59x_16909+63x_16910+51x_16911+69x_16912+x_16913+65x_16914+52x_16915+66x_16916+11x_16917+45x_16918+93x_16919+68x_16920+27x_16921+14x_16922+13x_16923+30x_16924+27x_16925+77x_16926+60x_16927+9x_16928+71x_16929+83x_16930+75x_16931+16x_16932+87x_16933+74x_16934+30x_16935+68x_16936+2x_16937+42x_16938+34x_16939+9x_16940+64x_16941+41x_16942+42x_16943+54x_16944+64x_16945+41x_16946+88x_16947+11x_16948+15x_16949+4x_16950+25x_16951+34x_16952+48x_16953+6x_16954+6x_16955+78x_16956+70x_16957+53x_16958+18x_16959+92x_16960+56x_16961+22x_16962+25x_16963+99x_16964+68x_16965+88x_16966+19x_16967+14x_16968+55x_16969+96x_16970+38x_16971+20x_16972+62x_16973+37x_16974+63x_16975+17x_16976+87x_16977+64x_16978+97x_16979+39x_16980+35x_16981+9x_16982+55x_16983+41x_16984+18x_16985+99x_16986+89x_16987+46x_16988+91x_16989+31x_16990+14x_16991+10x_16992+32x_16993+73x_16994+97x_16995+15x_16996+17x_16997+28x_16998+97x_16999+66x_17000+54x_17001+16x_17002+75x_17003+55x_17004+53x_17005+36x_17006+86x_17007+88x_17008+10x_17009+32x_17010+4x_17011+26x_17012+5x_17013+91x_17014+69x_17015+74x_17016+79x_17017+9x_17018+56x_17019+47x_17020+74x_17021+61x_17022+31x_17023+60x_17024+88x_17025+38x_17026+46x_17027+26x_17028+41x_17029+32x_17030+69x_17031+26x_17032+84x_17033+58x_17034+13x_17035+91x_17036+70x_17037+79x_17038+58x_17039+31x_17040+54x_17041+36x_17042+41x_17043+28x_17044+93x_17045+5x_17046+74x_17047+15x_17048+21x_17049+39x_17050+51x_17051+83x_17052+72x_17053+78x_17054+41x_17055+37x_17056+39x_17057+19x_17058+25x_17059+16x_17060+98x_17061+17x_17062+x_17063+9x_17064+96x_17065+65x_17066+95x_17067+2x_17068+23x_17069+38x_17070+98x_17071+93x_17072+69x_17073+38x_17074+26x_17075+63x_17076+51x_17077+13x_17078+37x_17079+14x_17080+50x_17081+26x_17082+39x_17083+82x_17084+22x_17085+51x_17086+96x_17087+49x_17088+31x_17089+76x_17090+36x_17091+82x_17092+91x_17093+83x_17094+72x_17095+6x_17096+90x_17097+33x_17098+55x_17099+27x_17100+87x_17101+69x_17102+7x_17103+54x_17104+20x_17105+85x_17106+39x_17107+15x_17108+92x_17109+11x_17110+4x_17111+34x_17112+78x_17113+82x_17114+4x_17115+57x_17116+40x_17117+50x_17118+22x_17119+11x_17120+59x_17121+63x_17122+14x_17123+54x_17124+47x_17125+32x_17126+36x_17127+x_17128+97x_17129+11x_17130+69x_17131+65x_17132+53x_17133+49x_17134+97x_17135+57x_17136+32x_17137+12x_17138+56x_17139+96x_17140+33x_17141+50x_17142+42x_17143+30x_17144+21x_17145+33x_17146+6x_17147+73x_17148+91x_17149+58x_17150+80x_17151+67x_17152+86x_17153+65x_17154+92x_17155+x_17156+83x_17157+59x_17158+42x_17159+17x_17160+59x_17161+98x_17162+45x_17163+29x_17164+27x_17165+57x_17166+35x_17167+29x_17168+11x_17169+45x_17170+35x_17171+16x_17172+94x_17173+89x_17174+65x_17175+47x_17176+39x_17177+53x_17178+10x_17179+53x_17180+95x_17181+36x_17182+40x_17183+42x_17184+22x_17185+90x_17186+40x_17187+47x_17188+89x_17189+56x_17190+22x_17191+77x_17192+67x_17193+81x_17194+20x_17195+47x_17196+68x_17197+82x_17198+9x_17199+99x_17200+86x_17201+75x_17202+14x_17203+68x_17204+24x_17205+45x_17206+53x_17207+34x_17208+12x_17209+89x_17210+33x_17211+79x_17212+72x_17213+89x_17214+66x_17215+46x_17216+58x_17217+83x_17218+7x_17219+99x_17220+48x_17221+49x_17222+x_17223+22x_17224+77x_17225+99x_17226+98x_17227+27x_17228+100x_17229+18x_17230+40x_17231+62x_17232+38x_17233+25x_17234+100x_17235+30x_17236+46x_17237+95x_17238+31x_17239+25x_17240+45x_17241+68x_17242+32x_17243+67x_17244+71x_17245+85x_17246+47x_17247+23x_17248+43x_17249+29x_17250+5x_17251+27x_17252+97x_17253+78x_17254+3x_17255+56x_17256+34x_17257+71x_17258+45x_17259+74x_17260+93x_17261+17x_17262+35x_17263+84x_17264+86x_17265+78x_17266+47x_17267+6x_17268+98x_17269+57x_17270+82x_17271+7x_17272+14x_17273+97x_17274+30x_17275+93x_17276+93x_17277+26x_17278+22x_17279+85x_17280+51x_17281+51x_17282+70x_17283+74x_17284+37x_17285+85x_17286+31x_17287+83x_17288+96x_17289+84x_17290+60x_17291+47x_17292+55x_17293+35x_17294+60x_17295+41x_17296+98x_17297+85x_17298+55x_17299+34x_17300+69x_17301+66x_17302+63x_17303+12x_17304+40x_17305+56x_17306+70x_17307+74x_17308+44x_17309+86x_17310+51x_17311+97x_17312+26x_17313+52x_17314+31x_17315+15x_17316+62x_17317+96x_17318+19x_17319+7x_17320+60x_17321+86x_17322+90x_17323+63x_17324+52x_17325+73x_17326+92x_17327+100x_17328+12x_17329+94x_17330+3x_17331+47x_17332+10x_17333+56x_17334+27x_17335+8x_17336+42x_17337+75x_17338+39x_17339+46x_17340+50x_17341+34x_17342+31x_17343+36x_17344+99x_17345+2x_17346+85x_17347+98x_17348+40x_17349+44x_17350+61x_17351+76x_17352+43x_17353+38x_17354+77x_17355+59x_17356+68x_17357+67x_17358+83x_17359+56x_17360+16x_17361+9x_17362+58x_17363+17x_17364+34x_17365+76x_17366+77x_17367+38x_17368+80x_17369+46x_17370+88x_17371+29x_17372+75x_17373+78x_17374+6x_17375+48x_17376+100x_17377+16x_17378+3x_17379+93x_17380+15x_17381+90x_17382+86x_17383+83x_17384+72x_17385+57x_17386+68x_17387+44x_17388+29x_17389+24x_17390+7x_17391+74x_17392+83x_17393+15x_17394+33x_17395+7x_17396+87x_17397+73x_17398+68x_17399+76x_17400+14x_17401+16x_17402+59x_17403+67x_17404+66x_17405+26x_17406+81x_17407+15x_17408+13x_17409+58x_17410+49x_17411+90x_17412+70x_17413+22x_17414+65x_17415+6x_17416+54x_17417+85x_17418+75x_17419+25x_17420+17x_17421+62x_17422+72x_17423+21x_17424+58x_17425+23x_17426+5x_17427+38x_17428+28x_17429+81x_17430+46x_17431+3x_17432+58x_17433+65x_17434+31x_17435+28x_17436+33x_17437+18x_17438+90x_17439+55x_17440+45x_17441+48x_17442+x_17443+17x_17444+57x_17445+86x_17446+25x_17447+x_17448+100x_17449+40x_17450+2x_17451+20x_17452+58x_17453+83x_17454+25x_17455+3x_17456+16x_17457+81x_17458+69x_17459+45x_17460+86x_17461+39x_17462+83x_17463+37x_17464+41x_17465+72x_17466+52x_17467+29x_17468+62x_17469+61x_17470+95x_17471+67x_17472+95x_17473+70x_17474+78x_17475+17x_17476+34x_17477+2x_17478+10x_17479+17x_17480+60x_17481+57x_17482+87x_17483+4x_17484+95x_17485+91x_17486+72x_17487+34x_17488+40x_17489+33x_17490+8x_17491+18x_17492+95x_17493+98x_17494+98x_17495+53x_17496+92x_17497+14x_17498+12x_17499+85x_17500+7x_17501+56x_17502+18x_17503+x_17504+58x_17505+13x_17506+93x_17507+47x_17508+5x_17509+28x_17510+85x_17511+59x_17512+7x_17513+86x_17514+11x_17515+39x_17516+74x_17517+49x_17518+3x_17519+9x_17520+68x_17521+17x_17522+67x_17523+30x_17524+86x_17525+50x_17526+88x_17527+90x_17528+26x_17529+9x_17530+67x_17531+20x_17532+82x_17533+86x_17534+52x_17535+11x_17536+81x_17537+47x_17538+93x_17539+79x_17540+7x_17541+58x_17542+35x_17543+49x_17544+5x_17545+84x_17546+4x_17547+9x_17548+7x_17549+86x_17550+35x_17551+56x_17552+22x_17553+74x_17554+90x_17555+63x_17556+30x_17557+17x_17558+34x_17559+36x_17560+92x_17561+34x_17562+3x_17563+96x_17564+34x_17565+7x_17566+15x_17567+67x_17568+35x_17569+91x_17570+72x_17571+77x_17572+58x_17573+87x_17574+68x_17575+62x_17576+22x_17577+38x_17578+93x_17579+65x_17580+53x_17581+83x_17582+92x_17583+35x_17584+74x_17585+93x_17586+82x_17587+12x_17588+19x_17589+26x_17590+87x_17591+76x_17592+94x_17593+97x_17594+86x_17595+60x_17596+43x_17597+81x_17598+83x_17599+2x_17600+36x_17601+95x_17602+6x_17603+68x_17604+60x_17605+76x_17606+44x_17607+98x_17608+37x_17609+90x_17610+27x_17611+19x_17612+97x_17613+55x_17614+40x_17615+96x_17616+34x_17617+66x_17618+55x_17619+41x_17620+68x_17621+43x_17622+74x_17623+16x_17624+66x_17625+83x_17626+26x_17627+81x_17628+70x_17629+90x_17630+92x_17631+7x_17632+97x_17633+27x_17634+65x_17635+11x_17636+70x_17637+88x_17638+37x_17639+53x_17640+24x_17641+7x_17642+55x_17643+85x_17644+64x_17645+12x_17646+99x_17647+14x_17648+82x_17649+66x_17650+43x_17651+43x_17652+20x_17653+53x_17654+74x_17655+10x_17656+77x_17657+7x_17658+72x_17659+56x_17660+52x_17661+73x_17662+99x_17663+64x_17664+14x_17665+3x_17666+27x_17667+37x_17668+56x_17669+63x_17670+86x_17671+50x_17672+94x_17673+51x_17674+53x_17675+59x_17676+21x_17677+39x_17678+89x_17679+21x_17680+3x_17681+88x_17682+90x_17683+5x_17684+52x_17685+52x_17686+94x_17687+88x_17688+57x_17689+23x_17690+99x_17691+100x_17692+51x_17693+30x_17694+87x_17695+83x_17696+8x_17697+73x_17698+99x_17699+87x_17700+96x_17701+17x_17702+38x_17703+100x_17704+28x_17705+67x_17706+47x_17707+37x_17708+80x_17709+20x_17710+68x_17711+86x_17712+77x_17713+47x_17714+3x_17715+22x_17716+33x_17717+2x_17718+27x_17719+74x_17720+73x_17721+63x_17722+76x_17723+46x_17724+9x_17725+37x_17726+86x_17727+84x_17728+54x_17729+97x_17730+5x_17731+81x_17732+15x_17733+19x_17734+8x_17735+10x_17736+82x_17737+41x_17738+10x_17739+77x_17740+32x_17741+98x_17742+29x_17743+8x_17744+71x_17745+93x_17746+40x_17747+75x_17748+50x_17749+2x_17750+44x_17751+83x_17752+51x_17753+85x_17754+4x_17755+42x_17756+18x_17757+6x_17758+27x_17759+39x_17760+31x_17761+79x_17762+48x_17763+100x_17764+89x_17765+96x_17766+22x_17767+x_17768+90x_17769+83x_17770+2x_17771+22x_17772+39x_17773+26x_17774+71x_17775+76x_17776+63x_17777+52x_17778+42x_17779+48x_17780+64x_17781+36x_17782+87x_17783+4x_17784+29x_17785+97x_17786+31x_17787+14x_17788+12x_17789+24x_17790+19x_17791+16x_17792+78x_17793+31x_17794+71x_17795+34x_17796+75x_17797+95x_17798+54x_17799+81x_17800+36x_17801+51x_17802+9x_17803+49x_17804+42x_17805+84x_17806+78x_17807+55x_17808+78x_17809+93x_17810+77x_17811+14x_17812+79x_17813+16x_17814+3x_17815+83x_17816+52x_17817+81x_17818+2x_17819+91x_17820+48x_17821+x_17822+99x_17823+10x_17824+59x_17825+5x_17826+14x_17827+18x_17828+99x_17829+42x_17830+58x_17831+19x_17832+93x_17833+11x_17834+69x_17835+22x_17836+51x_17837+99x_17838+32x_17839+57x_17840+90x_17841+11x_17842+37x_17843+34x_17844+51x_17845+24x_17846+93x_17847+98x_17848+31x_17849+71x_17850+x_17851+75x_17852+56x_17853+55x_17854+26x_17855+95x_17856+37x_17857+62x_17858+10x_17859+79x_17860+88x_17861+89x_17862+3x_17863+98x_17864+31x_17865+92x_17866+6x_17867+57x_17868+37x_17869+50x_17870+13x_17871+20x_17872+2x_17873+29x_17874+87x_17875+81x_17876+10x_17877+79x_17878+29x_17879+53x_17880+41x_17881+72x_17882+33x_17883+47x_17884+86x_17885+51x_17886+84x_17887+76x_17888+42x_17889+62x_17890+83x_17891+84x_17892+70x_17893+11x_17894+72x_17895+87x_17896+42x_17897+41x_17898+37x_17899+47x_17900+16x_17901+80x_17902+38x_17903+7x_17904+13x_17905+58x_17906+7x_17907+72x_17908+20x_17909+2x_17910+78x_17911+6x_17912+31x_17913+35x_17914+19x_17915+70x_17916+45x_17917+91x_17918+81x_17919+5x_17920+14x_17921+54x_17922+81x_17923+41x_17924+69x_17925+96x_17926+19x_17927+53x_17928+8x_17929+94x_17930+43x_17931+97x_17932+93x_17933+100x_17934+28x_17935+89x_17936+76x_17937+12x_17938+31x_17939+49x_17940+100x_17941+42x_17942+49x_17943+50x_17944+3x_17945+99x_17946+83x_17947+68x_17948+48x_17949+96x_17950+87x_17951+77x_17952+13x_17953+x_17954+78x_17955+23x_17956+89x_17957+69x_17958+78x_17959+34x_17960+16x_17961+45x_17962+95x_17963+99x_17964+54x_17965+88x_17966+44x_17967+100x_17968+96x_17969+32x_17970+92x_17971+3x_17972+46x_17973+40x_17974+39x_17975+25x_17976+30x_17977+41x_17978+69x_17979+9x_17980+83x_17981+38x_17982+43x_17983+26x_17984+72x_17985+43x_17986+95x_17987+24x_17988+47x_17989+53x_17990+76x_17991+20x_17992+66x_17993+44x_17994+2x_17995+31x_17996+85x_17997+x_17998+92x_17999+91x_18000+38x_18001+21x_18002+21x_18003+73x_18004+12x_18005+18x_18006+8x_18007+88x_18008+20x_18009+12x_18010+44x_18011+32x_18012+56x_18013+3x_18014+92x_18015+89x_18016+54x_18017+38x_18018+53x_18019+58x_18020+85x_18021+69x_18022+39x_18023+20x_18024+30x_18025+65x_18026+87x_18027+39x_18028+60x_18029+73x_18030+98x_18031+39x_18032+54x_18033+93x_18034+100x_18035+68x_18036+39x_18037+73x_18038+76x_18039+26x_18040+24x_18041+19x_18042+80x_18043+32x_18044+30x_18045+49x_18046+95x_18047+55x_18048+40x_18049+16x_18050+2x_18051+60x_18052+94x_18053+74x_18054+11x_18055+10x_18056+45x_18057+93x_18058+27x_18059+43x_18060+50x_18061+49x_18062+6x_18063+83x_18064+90x_18065+32x_18066+86x_18067+8x_18068+80x_18069+29x_18070+79x_18071+86x_18072+93x_18073+11x_18074+71x_18075+87x_18076+84x_18077+26x_18078+60x_18079+91x_18080+39x_18081+74x_18082+55x_18083+71x_18084+45x_18085+30x_18086+4x_18087+33x_18088+68x_18089+37x_18090+95x_18091+26x_18092+69x_18093+67x_18094+24x_18095+30x_18096+73x_18097+67x_18098+20x_18099+9x_18100+61x_18101+72x_18102+30x_18103+35x_18104+28x_18105+35x_18106+50x_18107+57x_18108+51x_18109+47x_18110+35x_18111+55x_18112+90x_18113+29x_18114+95x_18115+6x_18116+23x_18117+100x_18118+30x_18119+23x_18120+12x_18121+9x_18122+24x_18123+26x_18124+58x_18125+27x_18126+22x_18127+23x_18128+70x_18129+44x_18130+23x_18131+61x_18132+14x_18133+89x_18134+13x_18135+62x_18136+95x_18137+89x_18138+14x_18139+37x_18140+55x_18141+56x_18142+71x_18143+55x_18144+34x_18145+61x_18146+10x_18147+85x_18148+47x_18149+84x_18150+39x_18151+21x_18152+3x_18153+18x_18154+41x_18155+97x_18156+58x_18157+52x_18158+40x_18159+62x_18160+7x_18161+80x_18162+4x_18163+65x_18164+58x_18165+33x_18166+34x_18167+40x_18168+42x_18169+98x_18170+21x_18171+33x_18172+27x_18173+36x_18174+80x_18175+71x_18176+22x_18177+58x_18178+87x_18179+14x_18180+45x_18181+41x_18182+32x_18183+35x_18184+97x_18185+75x_18186+97x_18187+40x_18188+19x_18189+45x_18190+88x_18191+73x_18192+51x_18193+30x_18194+26x_18195+8x_18196+41x_18197+24x_18198+83x_18199+80x_18200+32x_18201+25x_18202+84x_18203+68x_18204+60x_18205+15x_18206+45x_18207+63x_18208+90x_18209+2x_18210+90x_18211+48x_18212+45x_18213+31x_18214+14x_18215+28x_18216+38x_18217+28x_18218+47x_18219+41x_18220+31x_18221+3x_18222+54x_18223+67x_18224+80x_18225+31x_18226+11x_18227+42x_18228+24x_18229+9x_18230+84x_18231+27x_18232+36x_18233+77x_18234+43x_18235+24x_18236+98x_18237+23x_18238+41x_18239+53x_18240+61x_18241+41x_18242+23x_18243+9x_18244+49x_18245+13x_18246+49x_18247+3x_18248+39x_18249+37x_18250+14x_18251+44x_18252+84x_18253+99x_18254+79x_18255+47x_18256+18x_18257+48x_18258+59x_18259+37x_18260+39x_18261+14x_18262+75x_18263+55x_18264+5x_18265+45x_18266+41x_18267+77x_18268+x_18269+88x_18270+73x_18271+81x_18272+97x_18273+83x_18274+34x_18275+40x_18276+9x_18277+23x_18278+92x_18279+38x_18280+33x_18281+32x_18282+62x_18283+15x_18284+74x_18285+51x_18286+25x_18287+59x_18288+41x_18289+56x_18290+40x_18291+48x_18292+25x_18293+22x_18294+2x_18295+75x_18296+93x_18297+47x_18298+27x_18299+67x_18300+8x_18301+62x_18302+66x_18303+22x_18304+53x_18305+12x_18306+43x_18307+27x_18308+93x_18309+58x_18310+99x_18311+63x_18312+52x_18313+9x_18314+76x_18315+96x_18316+84x_18317+84x_18318+95x_18319+18x_18320+88x_18321+31x_18322+37x_18323+3x_18324+36x_18325+57x_18326+24x_18327+16x_18328+21x_18329+89x_18330+44x_18331+25x_18332+80x_18333+16x_18334+46x_18335+84x_18336+71x_18337+91x_18338+12x_18339+27x_18340+27x_18341+91x_18342+33x_18343+13x_18344+x_18345+74x_18346+18x_18347+73x_18348+42x_18349+80x_18350+19x_18351+24x_18352+70x_18353+60x_18354+63x_18355+100x_18356+80x_18357+76x_18358+29x_18359+50x_18360+94x_18361+9x_18362+9x_18363+10x_18364+60x_18365+95x_18366+89x_18367+50x_18368+21x_18369+54x_18370+56x_18371+49x_18372+77x_18373+13x_18374+11x_18375+97x_18376+76x_18377+46x_18378+18x_18379+21x_18380+73x_18381+25x_18382+98x_18383+81x_18384+49x_18385+41x_18386+55x_18387+78x_18388+53x_18389+95x_18390+65x_18391+41x_18392+78x_18393+58x_18394+63x_18395+94x_18396+35x_18397+77x_18398+9x_18399+92x_18400+16x_18401+24x_18402+99x_18403+7x_18404+21x_18405+20x_18406+44x_18407+x_18408+86x_18409+40x_18410+39x_18411+22x_18412+86x_18413+75x_18414+20x_18415+13x_18416+57x_18417+92x_18418+57x_18419+19x_18420+94x_18421+43x_18422+46x_18423+67x_18424+17x_18425+81x_18426+90x_18427+97x_18428+7x_18429+47x_18430+100x_18431+40x_18432+99x_18433+96x_18434+37x_18435+11x_18436+43x_18437+97x_18438+37x_18439+45x_18440+23x_18441+88x_18442+92x_18443+89x_18444+35x_18445+58x_18446+43x_18447+12x_18448+10x_18449+21x_18450+88x_18451+45x_18452+19x_18453+92x_18454+46x_18455+3x_18456+83x_18457+11x_18458+19x_18459+23x_18460+88x_18461+69x_18462+61x_18463+21x_18464+61x_18465+22x_18466+54x_18467+74x_18468+14x_18469+94x_18470+75x_18471+55x_18472+21x_18473+2x_18474+45x_18475+24x_18476+3x_18477+74x_18478+55x_18479+26x_18480+67x_18481+33x_18482+12x_18483+47x_18484+36x_18485+94x_18486+70x_18487+64x_18488+82x_18489+14x_18490+79x_18491+25x_18492+16x_18493+12x_18494+46x_18495+23x_18496+12x_18497+90x_18498+23x_18499+17x_18500+10x_18501+2x_18502+54x_18503+85x_18504+71x_18505+29x_18506+53x_18507+65x_18508+13x_18509+85x_18510+50x_18511+21x_18512+70x_18513+57x_18514+11x_18515+39x_18516+13x_18517+65x_18518+90x_18519+58x_18520+37x_18521+63x_18522+x_18523+31x_18524+32x_18525+84x_18526+86x_18527+96x_18528+9x_18529+80x_18530+60x_18531+51x_18532+29x_18533+99x_18534+43x_18535+32x_18536+87x_18537+80x_18538+69x_18539+41x_18540+97x_18541+69x_18542+96x_18543+63x_18544+91x_18545+75x_18546+40x_18547+50x_18548+77x_18549+32x_18550+77x_18551+54x_18552+91x_18553+63x_18554+51x_18555+74x_18556+58x_18557+43x_18558+2x_18559+75x_18560+46x_18561+34x_18562+76x_18563+58x_18564+87x_18565+43x_18566+33x_18567+31x_18568+67x_18569+15x_18570+65x_18571+53x_18572+81x_18573+63x_18574+x_18575+7x_18576+15x_18577+41x_18578+97x_18579+32x_18580+3x_18581+93x_18582+74x_18583+16x_18584+65x_18585+40x_18586+18x_18587+64x_18588+54x_18589+63x_18590+67x_18591+4x_18592+26x_18593+14x_18594+81x_18595+34x_18596+91x_18597+13x_18598+73x_18599+24x_18600+58x_18601+x_18602+50x_18603+68x_18604+56x_18605+92x_18606+76x_18607+36x_18608+81x_18609+69x_18610+20x_18611+69x_18612+93x_18613+81x_18614+65x_18615+53x_18616+40x_18617+65x_18618+67x_18619+30x_18620+33x_18621+27x_18622+71x_18623+94x_18624+34x_18625+60x_18626+19x_18627+94x_18628+52x_18629+71x_18630+67x_18631+84x_18632+52x_18633+93x_18634+2x_18635+4x_18636+57x_18637+44x_18638+63x_18639+95x_18640+97x_18641+91x_18642+79x_18643+14x_18644+28x_18645+97x_18646+19x_18647+89x_18648+51x_18649+81x_18650+14x_18651+48x_18652+18x_18653+75x_18654+84x_18655+30x_18656+77x_18657+26x_18658+95x_18659+80x_18660+71x_18661+61x_18662+76x_18663+4x_18664+46x_18665+56x_18666+60x_18667+43x_18668+65x_18669+39x_18670+84x_18671+22x_18672+81x_18673+28x_18674+64x_18675+37x_18676+58x_18677+24x_18678+80x_18679+50x_18680+14x_18681+23x_18682+57x_18683+92x_18684+65x_18685+6x_18686+73x_18687+26x_18688+65x_18689+16x_18690+21x_18691+53x_18692+21x_18693+2x_18694+31x_18695+79x_18696+60x_18697+3x_18698+47x_18699+50x_18700+88x_18701+77x_18702+41x_18703+84x_18704+5x_18705+100x_18706+73x_18707+37x_18708+46x_18709+6x_18710+68x_18711+25x_18712+67x_18713+8x_18714+2x_18715+15x_18716+55x_18717+37x_18718+96x_18719+94x_18720+11x_18721+42x_18722+50x_18723+35x_18724+83x_18725+93x_18726+91x_18727+74x_18728+99x_18729+2x_18730+79x_18731+97x_18732+8x_18733+52x_18734+99x_18735+76x_18736+26x_18737+17x_18738+3x_18739+37x_18740+55x_18741+69x_18742+83x_18743+32x_18744+65x_18745+78x_18746+56x_18747+79x_18748+4x_18749+3x_18750+13x_18751+28x_18752+22x_18753+23x_18754+73x_18755+13x_18756+35x_18757+29x_18758+13x_18759+27x_18760+60x_18761+7x_18762+73x_18763+86x_18764+34x_18765+89x_18766+93x_18767+27x_18768+53x_18769+22x_18770+31x_18771+34x_18772+73x_18773+64x_18774+44x_18775+31x_18776+93x_18777+97x_18778+70x_18779+x_18780+15x_18781+94x_18782+25x_18783+44x_18784+84x_18785+73x_18786+54x_18787+14x_18788+72x_18789+31x_18790+96x_18791+63x_18792+27x_18793+58x_18794+59x_18795+48x_18796+14x_18797+17x_18798+27x_18799+25x_18800+82x_18801+21x_18802+2x_18803+30x_18804+23x_18805+24x_18806+24x_18807+27x_18808+23x_18809+2x_18810+60x_18811+6x_18812+63x_18813+49x_18814+97x_18815+24x_18816+75x_18817+45x_18818+40x_18819+100x_18820+41x_18821+74x_18822+72x_18823+74x_18824+4x_18825+62x_18826+65x_18827+55x_18828+44x_18829+5x_18830+11x_18831+25x_18832+69x_18833+55x_18834+51x_18835+12x_18836+97x_18837+92x_18838+33x_18839+89x_18840+96x_18841+13x_18842+57x_18843+3x_18844+69x_18845+65x_18846+71x_18847+2x_18848+76x_18849+36x_18850+21x_18851+100x_18852+59x_18853+31x_18854+59x_18855+11x_18856+59x_18857+34x_18858+84x_18859+60x_18860+10x_18861+82x_18862+57x_18863+72x_18864+56x_18865+71x_18866+98x_18867+31x_18868+32x_18869+99x_18870+45x_18871+85x_18872+26x_18873+48x_18874+68x_18875+27x_18876+52x_18877+93x_18878+30x_18879+55x_18880+30x_18881+13x_18882+50x_18883+73x_18884+3x_18885+68x_18886+27x_18887+39x_18888+16x_18889+87x_18890+62x_18891+16x_18892+65x_18893+41x_18894+14x_18895+2x_18896+61x_18897+42x_18898+70x_18899+15x_18900+88x_18901+50x_18902+21x_18903+39x_18904+56x_18905+25x_18906+48x_18907+55x_18908+46x_18909+27x_18910+45x_18911+x_18912+86x_18913+59x_18914+21x_18915+31x_18916+15x_18917+95x_18918+3x_18919+78x_18920+73x_18921+77x_18922+86x_18923+19x_18924+38x_18925+43x_18926+28x_18927+27x_18928+87x_18929+82x_18930+25x_18931+91x_18932+62x_18933+84x_18934+30x_18935+77x_18936+10x_18937+17x_18938+62x_18939+70x_18940+35x_18941+9x_18942+28x_18943+60x_18944+x_18945+18x_18946+94x_18947+3x_18948+56x_18949+84x_18950+3x_18951+31x_18952+95x_18953+100x_18954+76x_18955+41x_18956+98x_18957+89x_18958+53x_18959+89x_18960+43x_18961+6x_18962+77x_18963+30x_18964+23x_18965+72x_18966+43x_18967+49x_18968+42x_18969+81x_18970+50x_18971+76x_18972+59x_18973+57x_18974+41x_18975+38x_18976+96x_18977+60x_18978+100x_18979+57x_18980+59x_18981+65x_18982+36x_18983+70x_18984+76x_18985+12x_18986+31x_18987+65x_18988+49x_18989+67x_18990+55x_18991+4x_18992+81x_18993+69x_18994+43x_18995+17x_18996+58x_18997+16x_18998+84x_18999+85x_19000+99x_19001+7x_19002+26x_19003+15x_19004+82x_19005+73x_19006+57x_19007+72x_19008+25x_19009+100x_19010+43x_19011+51x_19012+13x_19013+9x_19014+61x_19015+82x_19016+71x_19017+22x_19018+38x_19019+31x_19020+75x_19021+23x_19022+97x_19023+81x_19024+38x_19025+3x_19026+83x_19027+72x_19028+65x_19029+27x_19030+11x_19031+66x_19032+80x_19033+28x_19034+18x_19035+47x_19036+56x_19037+91x_19038+33x_19039+90x_19040+6x_19041+96x_19042+31x_19043+48x_19044+63x_19045+13x_19046+20x_19047+9x_19048+14x_19049+57x_19050+65x_19051+74x_19052+8x_19053+84x_19054+36x_19055+2x_19056+29x_19057+11x_19058+69x_19059+21x_19060+89x_19061+100x_19062+8x_19063+16x_19064+14x_19065+11x_19066+3x_19067+65x_19068+77x_19069+100x_19070+4x_19071+13x_19072+59x_19073+90x_19074+80x_19075+36x_19076+85x_19077+64x_19078+11x_19079+5x_19080+31x_19081+33x_19082+94x_19083+24x_19084+65x_19085+100x_19086+32x_19087+9x_19088+47x_19089+39x_19090+86x_19091+10x_19092+2x_19093+42x_19094+9x_19095+55x_19096+36x_19097+81x_19098+10x_19099+2x_19100+8x_19101+68x_19102+18x_19103+92x_19104+10x_19105+86x_19106+10x_19107+16x_19108+78x_19109+2x_19110+80x_19111+4x_19112+40x_19113+8x_19114+20x_19115+3x_19116+56x_19117+98x_19118+14x_19119+23x_19120+81x_19121+81x_19122+96x_19123+60x_19124+97x_19125+41x_19126+30x_19127+88x_19128+55x_19129+4x_19130+2x_19131+46x_19132+71x_19133+31x_19134+70x_19135+38x_19136+47x_19137+32x_19138+39x_19139+67x_19140+57x_19141+11x_19142+x_19143+63x_19144+61x_19145+65x_19146+46x_19147+19x_19148+31x_19149+20x_19150+66x_19151+5x_19152+88x_19153+56x_19154+44x_19155+94x_19156+9x_19157+23x_19158+17x_19159+33x_19160+27x_19161+42x_19162+34x_19163+57x_19164+84x_19165+55x_19166+47x_19167+88x_19168+73x_19169+20x_19170+88x_19171+82x_19172+40x_19173+96x_19174+55x_19175+60x_19176+98x_19177+93x_19178+x_19179+46x_19180+39x_19181+94x_19182+49x_19183+19x_19184+35x_19185+12x_19186+81x_19187+61x_19188+89x_19189+23x_19190+61x_19191+94x_19192+13x_19193+93x_19194+16x_19195+48x_19196+84x_19197+91x_19198+73x_19199+81x_19200+34x_19201+58x_19202+25x_19203+48x_19204+87x_19205+86x_19206+68x_19207+65x_19208+42x_19209+58x_19210+33x_19211+49x_19212+17x_19213+72x_19214+20x_19215+47x_19216+35x_19217+29x_19218+93x_19219+17x_19220+21x_19221+96x_19222+2x_19223+16x_19224+38x_19225+42x_19226+28x_19227+60x_19228+82x_19229+28x_19230+38x_19231+68x_19232+93x_19233+99x_19234+42x_19235+84x_19236+8x_19237+20x_19238+89x_19239+6x_19240+100x_19241+6x_19242+75x_19243+56x_19244+90x_19245+9x_19246+42x_19247+71x_19248+93x_19249+14x_19250+32x_19251+32x_19252+46x_19253+19x_19254+100x_19255+60x_19256+11x_19257+76x_19258+31x_19259+x_19260+10x_19261+49x_19262+80x_19263+26x_19264+96x_19265+46x_19266+21x_19267+41x_19268+47x_19269+53x_19270+79x_19271+71x_19272+84x_19273+45x_19274+11x_19275+54x_19276+31x_19277+32x_19278+70x_19279+77x_19280+86x_19281+87x_19282+69x_19283+51x_19284+46x_19285+41x_19286+89x_19287+81x_19288+48x_19289+58x_19290+33x_19291+3x_19292+13x_19293+31x_19294+45x_19295+31x_19296+89x_19297+71x_19298+34x_19299+3x_19300+74x_19301+48x_19302+61x_19303+26x_19304+96x_19305+82x_19306+13x_19307+56x_19308+77x_19309+69x_19310+79x_19311+26x_19312+71x_19313+36x_19314+67x_19315+25x_19316+15x_19317+88x_19318+4x_19319+50x_19320+28x_19321+95x_19322+35x_19323+33x_19324+89x_19325+68x_19326+23x_19327+78x_19328+66x_19329+60x_19330+85x_19331+69x_19332+77x_19333+84x_19334+25x_19335+48x_19336+45x_19337+9x_19338+63x_19339+58x_19340+46x_19341+88x_19342+9x_19343+27x_19344+67x_19345+37x_19346+17x_19347+6x_19348+91x_19349+42x_19350+91x_19351+42x_19352+16x_19353+25x_19354+43x_19355+46x_19356+86x_19357+29x_19358+53x_19359+45x_19360+30x_19361+65x_19362+24x_19363+97x_19364+28x_19365+47x_19366+84x_19367+60x_19368+8x_19369+12x_19370+23x_19371+91x_19372+28x_19373+67x_19374+84x_19375+49x_19376+41x_19377+x_19378+46x_19379+24x_19380+93x_19381+67x_19382+3x_19383+11x_19384+94x_19385+73x_19386+54x_19387+83x_19388+27x_19389+78x_19390+55x_19391+88x_19392+13x_19393+18x_19394+64x_19395+64x_19396+20x_19397+60x_19398+30x_19399+16x_19400+66x_19401+78x_19402+79x_19403+38x_19404+23x_19405+51x_19406+27x_19407+49x_19408+79x_19409+23x_19410+47x_19411+82x_19412+97x_19413+59x_19414+88x_19415+95x_19416+69x_19417+34x_19418+99x_19419+92x_19420+72x_19421+2x_19422+46x_19423+90x_19424+83x_19425+12x_19426+71x_19427+11x_19428+62x_19429+73x_19430+23x_19431+16x_19432+41x_19433+82x_19434+65x_19435+64x_19436+95x_19437+84x_19438+23x_19439+43x_19440+60x_19441+43x_19442+25x_19443+23x_19444+93x_19445+86x_19446+100x_19447+83x_19448+8x_19449+94x_19450+5x_19451+15x_19452+x_19453+90x_19454+24x_19455+48x_19456+86x_19457+29x_19458+37x_19459+45x_19460+19x_19461+89x_19462+9x_19463+7x_19464+22x_19465+74x_19466+31x_19467+69x_19468+33x_19469+99x_19470+90x_19471+52x_19472+44x_19473+66x_19474+31x_19475+87x_19476+36x_19477+65x_19478+84x_19479+82x_19480+14x_19481+62x_19482+99x_19483+82x_19484+63x_19485+55x_19486+50x_19487+25x_19488+18x_19489+5x_19490+9x_19491+88x_19492+2x_19493+82x_19494+54x_19495+97x_19496+21x_19497+74x_19498+37x_19499+50x_19500+62x_19501+26x_19502+11x_19503+80x_19504+25x_19505+74x_19506+57x_19507+23x_19508+3x_19509+11x_19510+47x_19511+76x_19512+21x_19513+67x_19514+12x_19515+87x_19516+93x_19517+25x_19518+3x_19519+60x_19520+28x_19521+54x_19522+91x_19523+41x_19524+98x_19525+63x_19526+52x_19527+43x_19528+5x_19529+43x_19530+14x_19531+4x_19532+31x_19533+36x_19534+87x_19535+35x_19536+12x_19537+84x_19538+x_19539+32x_19540+44x_19541+39x_19542+5x_19543+40x_19544+76x_19545+17x_19546+21x_19547+42x_19548+69x_19549+51x_19550+32x_19551+28x_19552+33x_19553+13x_19554+86x_19555+36x_19556+13x_19557+44x_19558+98x_19559+81x_19560+45x_19561+17x_19562+48x_19563+12x_19564+9x_19565+33x_19566+68x_19567+46x_19568+30x_19569+67x_19570+61x_19571+8x_19572+10x_19573+89x_19574+38x_19575+6x_19576+99x_19577+33x_19578+62x_19579+97x_19580+53x_19581+70x_19582+85x_19583+27x_19584+74x_19585+39x_19586+10x_19587+65x_19588+75x_19589+51x_19590+44x_19591+27x_19592+25x_19593+95x_19594+21x_19595+68x_19596+19x_19597+35x_19598+92x_19599+14x_19600+21x_19601+18x_19602+92x_19603+34x_19604+47x_19605+53x_19606+74x_19607+30x_19608+57x_19609+95x_19610+57x_19611+28x_19612+94x_19613+64x_19614+34x_19615+15x_19616+55x_19617+99x_19618+20x_19619+79x_19620+16x_19621+87x_19622+75x_19623+21x_19624+70x_19625+16x_19626+4x_19627+95x_19628+74x_19629+59x_19630+42x_19631+51x_19632+62x_19633+24x_19634+65x_19635+17x_19636+78x_19637+100x_19638+12x_19639+24x_19640+58x_19641+70x_19642+62x_19643+73x_19644+81x_19645+5x_19646+43x_19647+41x_19648+81x_19649+3x_19650+46x_19651+42x_19652+4x_19653+35x_19654+19x_19655+100x_19656+4x_19657+20x_19658+73x_19659+7x_19660+78x_19661+42x_19662+12x_19663+36x_19664+24x_19665+6x_19666+68x_19667+91x_19668+97x_19669+75x_19670+68x_19671+83x_19672+69x_19673+21x_19674+59x_19675+39x_19676+18x_19677+69x_19678+27x_19679+x_19680+63x_19681+29x_19682+87x_19683+95x_19684+50x_19685+15x_19686+37x_19687+57x_19688+72x_19689+44x_19690+63x_19691+42x_19692+99x_19693+64x_19694+2x_19695+82x_19696+86x_19697+6x_19698+22x_19699+72x_19700+98x_19701+78x_19702+61x_19703+34x_19704+31x_19705+58x_19706+85x_19707+23x_19708+35x_19709+96x_19710+57x_19711+22x_19712+3x_19713+35x_19714+12x_19715+92x_19716+52x_19717+63x_19718+17x_19719+58x_19720+48x_19721+56x_19722+31x_19723+11x_19724+25x_19725+31x_19726+56x_19727+64x_19728+73x_19729+52x_19730+10x_19731+22x_19732+53x_19733+75x_19734+21x_19735+13x_19736+30x_19737+6x_19738+50x_19739+27x_19740+32x_19741+82x_19742+22x_19743+33x_19744+6x_19745+78x_19746+27x_19747+34x_19748+78x_19749+19x_19750+59x_19751+10x_19752+5x_19753+59x_19754+67x_19755+26x_19756+34x_19757+86x_19758+58x_19759+88x_19760+47x_19761+39x_19762+45x_19763+16x_19764+12x_19765+69x_19766+45x_19767+20x_19768+19x_19769+34x_19770+15x_19771+16x_19772+52x_19773+61x_19774+62x_19775+22x_19776+83x_19777+52x_19778+23x_19779+97x_19780+55x_19781+29x_19782+3x_19783+11x_19784+90x_19785+99x_19786+81x_19787+56x_19788+22x_19789+80x_19790+100x_19791+65x_19792+72x_19793+66x_19794+13x_19795+30x_19796+70x_19797+38x_19798+88x_19799+83x_19800+9x_19801+13x_19802+73x_19803+5x_19804+31x_19805+4x_19806+98x_19807+78x_19808+5x_19809+79x_19810+85x_19811+3x_19812+83x_19813+33x_19814+7x_19815+96x_19816+75x_19817+20x_19818+79x_19819+36x_19820+50x_19821+86x_19822+17x_19823+37x_19824+88x_19825+79x_19826+23x_19827+79x_19828+73x_19829+32x_19830+22x_19831+40x_19832+98x_19833+9x_19834+77x_19835+93x_19836+43x_19837+34x_19838+63x_19839+32x_19840+99x_19841+51x_19842+24x_19843+33x_19844+38x_19845+9x_19846+52x_19847+96x_19848+18x_19849+77x_19850+59x_19851+22x_19852+9x_19853+91x_19854+70x_19855+54x_19856+60x_19857+78x_19858+60x_19859+x_19860+91x_19861+19x_19862+9x_19863+30x_19864+91x_19865+2x_19866+51x_19867+11x_19868+50x_19869+18x_19870+8x_19871+49x_19872+54x_19873+42x_19874+42x_19875+77x_19876+81x_19877+38x_19878+36x_19879+55x_19880+20x_19881+21x_19882+77x_19883+68x_19884+95x_19885+26x_19886+20x_19887+62x_19888+6x_19889+7x_19890+91x_19891+7x_19892+82x_19893+30x_19894+29x_19895+10x_19896+98x_19897+42x_19898+26x_19899+54x_19900+79x_19901+18x_19902+22x_19903+58x_19904+17x_19905+29x_19906+100x_19907+49x_19908+77x_19909+29x_19910+66x_19911+9x_19912+89x_19913+50x_19914+64x_19915+37x_19916+30x_19917+63x_19918+63x_19919+93x_19920+47x_19921+33x_19922+52x_19923+80x_19924+31x_19925+12x_19926+15x_19927+83x_19928+9x_19929+8x_19930+29x_19931+39x_19932+57x_19933+58x_19934+43x_19935+29x_19936+61x_19937+4x_19938+94x_19939+61x_19940+16x_19941+40x_19942+15x_19943+14x_19944+69x_19945+70x_19946+100x_19947+31x_19948+7x_19949+85x_19950+4x_19951+13x_19952+12x_19953+57x_19954+57x_19955+71x_19956+100x_19957+53x_19958+83x_19959+64x_19960+24x_19961+89x_19962+31x_19963+53x_19964+68x_19965+99x_19966+11x_19967+76x_19968+40x_19969+69x_19970+28x_19971+47x_19972+72x_19973+52x_19974+96x_19975+25x_19976+58x_19977+77x_19978+92x_19979+99x_19980+52x_19981+83x_19982+7x_19983+85x_19984+11x_19985+75x_19986+59x_19987+47x_19988+72x_19989+52x_19990+69x_19991+3x_19992+17x_19993+93x_19994+81x_19995+57x_19996+72x_19997+9x_19998+86x_19999+87x_20000+14x_20001+33x_20002+11x_20003+85x_20004+18x_20005+39x_20006+97x_20007+29x_20008+16x_20009+46x_20010+18x_20011+62x_20012+25x_20013+15x_20014+9x_20015+4x_20016+78x_20017+29x_20018+15x_20019+81x_20020+56x_20021+13x_20022+2x_20023+78x_20024+84x_20025+77x_20026+47x_20027+50x_20028+80x_20029+19x_20030+50x_20031+81x_20032+100x_20033+41x_20034+43x_20035+2x_20036+73x_20037+80x_20038+96x_20039+2x_20040+37x_20041+61x_20042+9x_20043+96x_20044+13x_20045+64x_20046+46x_20047+52x_20048+58x_20049+36x_20050+56x_20051+23x_20052+82x_20053+100x_20054+50x_20055+46x_20056+99x_20057+73x_20058+15x_20059+63x_20060+61x_20061+99x_20062+84x_20063+83x_20064+13x_20065+63x_20066+53x_20067+91x_20068+94x_20069+62x_20070+89x_20071+91x_20072+x_20073+58x_20074+84x_20075+36x_20076+56x_20077+28x_20078+36x_20079+5x_20080+2x_20081+11x_20082+52x_20083+81x_20084+68x_20085+99x_20086+34x_20087+34x_20088+24x_20089+70x_20090+89x_20091+80x_20092+86x_20093+23x_20094+4x_20095+32x_20096+62x_20097+26x_20098+21x_20099+84x_20100+81x_20101+12x_20102+43x_20103+2x_20104+68x_20105+36x_20106+67x_20107+6x_20108+45x_20109+93x_20110+32x_20111+30x_20112+68x_20113+57x_20114+86x_20115+93x_20116+31x_20117+49x_20118+74x_20119+45x_20120+88x_20121+54x_20122+78x_20123+87x_20124+6x_20125+82x_20126+31x_20127+66x_20128+74x_20129+2x_20130+63x_20131+37x_20132+3x_20133+7x_20134+86x_20135+84x_20136+51x_20137+60x_20138+82x_20139+100x_20140+46x_20141+10x_20142+10x_20143+36x_20144+55x_20145+96x_20146+57x_20147+81x_20148+51x_20149+66x_20150+52x_20151+16x_20152+93x_20153+37x_20154+95x_20155+73x_20156+48x_20157+13x_20158+84x_20159+29x_20160+62x_20161+58x_20162+51x_20163+72x_20164+96x_20165+91x_20166+35x_20167+29x_20168+12x_20169+79x_20170+84x_20171+x_20172+80x_20173+96x_20174+21x_20175+38x_20176+51x_20177+17x_20178+82x_20179+3x_20180+42x_20181+46x_20182+66x_20183+40x_20184+67x_20185+33x_20186+62x_20187+6x_20188+93x_20189+41x_20190+5x_20191+20x_20192+32x_20193+83x_20194+42x_20195+9x_20196+22x_20197+9x_20198+54x_20199+40x_20200+3x_20201+64x_20202+18x_20203+99x_20204+36x_20205+81x_20206+91x_20207+57x_20208+69x_20209+86x_20210+78x_20211+29x_20212+75x_20213+96x_20214+9x_20215+x_20216+11x_20217+35x_20218+49x_20219+56x_20220+42x_20221+52x_20222+6x_20223+59x_20224+92x_20225+90x_20226+94x_20227+58x_20228+32x_20229+74x_20230+52x_20231+26x_20232+61x_20233+18x_20234+36x_20235+17x_20236+60x_20237+81x_20238+12x_20239+4x_20240+36x_20241+91x_20242+37x_20243+78x_20244+37x_20245+45x_20246+99x_20247+44x_20248+86x_20249+53x_20250+14x_20251+32x_20252+89x_20253+88x_20254+36x_20255+41x_20256+16x_20257+9x_20258+44x_20259+78x_20260+6x_20261+12x_20262+43x_20263+44x_20264+85x_20265+57x_20266+35x_20267+80x_20268+99x_20269+59x_20270+68x_20271+94x_20272+54x_20273+12x_20274+81x_20275+8x_20276+7x_20277+21x_20278+96x_20279+43x_20280+53x_20281+77x_20282+7x_20283+56x_20284+26x_20285+44x_20286+16x_20287+12x_20288+20x_20289+20x_20290+22x_20291+25x_20292+52x_20293+20x_20294+62x_20295+50x_20296+22x_20297+27x_20298+30x_20299+73x_20300+94x_20301+22x_20302+87x_20303+49x_20304+99x_20305+93x_20306+94x_20307+40x_20308+72x_20309+64x_20310+29x_20311+7x_20312+34x_20313+72x_20314+89x_20315+91x_20316+14x_20317+56x_20318+18x_20319+62x_20320+27x_20321+40x_20322+60x_20323+67x_20324+89x_20325+99x_20326+59x_20327+85x_20328+61x_20329+78x_20330+28x_20331+25x_20332+55x_20333+51x_20334+12x_20335+90x_20336+4x_20337+34x_20338+47x_20339+62x_20340+15x_20341+100x_20342+99x_20343+2x_20344+72x_20345+96x_20346+87x_20347+19x_20348+69x_20349+47x_20350+8x_20351+2x_20352+9x_20353+78x_20354+35x_20355+72x_20356+50x_20357+31x_20358+71x_20359+62x_20360+95x_20361+3x_20362+98x_20363+22x_20364+52x_20365+77x_20366+98x_20367+99x_20368+44x_20369+47x_20370+45x_20371+5x_20372+88x_20373+35x_20374+39x_20375+18x_20376+91x_20377+70x_20378+43x_20379+44x_20380+8x_20381+25x_20382+2x_20383+20x_20384+20x_20385+29x_20386+11x_20387+76x_20388+73x_20389+57x_20390+80x_20391+75x_20392+72x_20393+2x_20394+19x_20395+48x_20396+54x_20397+62x_20398+19x_20399+13x_20400+63x_20401+25x_20402+65x_20403+99x_20404+5x_20405+65x_20406+34x_20407+93x_20408+93x_20409+68x_20410+30x_20411+67x_20412+19x_20413+37x_20414+40x_20415+35x_20416+74x_20417+68x_20418+96x_20419+83x_20420+79x_20421+61x_20422+25x_20423+88x_20424+33x_20425+84x_20426+28x_20427+92x_20428+47x_20429+71x_20430+41x_20431+8x_20432+10x_20433+54x_20434+39x_20435+97x_20436+96x_20437+54x_20438+58x_20439+21x_20440+80x_20441+16x_20442+66x_20443+19x_20444+61x_20445+58x_20446+13x_20447+93x_20448+11x_20449+7x_20450+41x_20451+53x_20452+91x_20453+88x_20454+5x_20455+10x_20456+67x_20457+29x_20458+51x_20459+97x_20460+62x_20461+52x_20462+44x_20463+89x_20464+52x_20465+71x_20466+x_20467+71x_20468+100x_20469+35x_20470+37x_20471+70x_20472+100x_20473+10x_20474+93x_20475+32x_20476+32x_20477+64x_20478+24x_20479+64x_20480+7x_20481+39x_20482+66x_20483+64x_20484+77x_20485+64x_20486+40x_20487+64x_20488+61x_20489+77x_20490+38x_20491+14x_20492+71x_20493+54x_20494+4x_20495+33x_20496+41x_20497+5x_20498+7x_20499+88x_20500+92x_20501+88x_20502+99x_20503+99x_20504+42x_20505+91x_20506+73x_20507+4x_20508+59x_20509+44x_20510+94x_20511+56x_20512+56x_20513+39x_20514+2x_20515+89x_20516+71x_20517+73x_20518+60x_20519+93x_20520+37x_20521+43x_20522+52x_20523+71x_20524+3x_20525+70x_20526+76x_20527+87x_20528+71x_20529+91x_20530+12x_20531+29x_20532+58x_20533+24x_20534+97x_20535+30x_20536+96x_20537+63x_20538+34x_20539+54x_20540+45x_20541+23x_20542+35x_20543+81x_20544+43x_20545+34x_20546+85x_20547+86x_20548+82x_20549+17x_20550+40x_20551+66x_20552+59x_20553+21x_20554+7x_20555+19x_20556+28x_20557+81x_20558+77x_20559+23x_20560+13x_20561+36x_20562+55x_20563+32x_20564+53x_20565+75x_20566+64x_20567+62x_20568+21x_20569+55x_20570+13x_20571+71x_20572+65x_20573+70x_20574+23x_20575+21x_20576+44x_20577+7x_20578+81x_20579+57x_20580+8x_20581+79x_20582+30x_20583+90x_20584+20x_20585+83x_20586+92x_20587+12x_20588+17x_20589+5x_20590+31x_20591+57x_20592+53x_20593+87x_20594+16x_20595+30x_20596+84x_20597+39x_20598+80x_20599+94x_20600+10x_20601+9x_20602+59x_20603+29x_20604+53x_20605+64x_20606+35x_20607+7x_20608+81x_20609+46x_20610+17x_20611+76x_20612+27x_20613+98x_20614+70x_20615+71x_20616+85x_20617+25x_20618+33x_20619+51x_20620+22x_20621+97x_20622+3x_20623+96x_20624+39x_20625+64x_20626+67x_20627+74x_20628+97x_20629+29x_20630+34x_20631+36x_20632+7x_20633+42x_20634+83x_20635+35x_20636+32x_20637+84x_20638+80x_20639+89x_20640+75x_20641+53x_20642+87x_20643+92x_20644+6x_20645+18x_20646+30x_20647+54x_20648+100x_20649+53x_20650+71x_20651+61x_20652+62x_20653+56x_20654+32x_20655+33x_20656+22x_20657+52x_20658+64x_20659+42x_20660+75x_20661+94x_20662+19x_20663+68x_20664+x_20665+90x_20666+29x_20667+35x_20668+44x_20669+30x_20670+58x_20671+48x_20672+39x_20673+95x_20674+51x_20675+87x_20676+89x_20677+59x_20678+58x_20679+10x_20680+51x_20681+68x_20682+28x_20683+60x_20684+49x_20685+32x_20686+90x_20687+20x_20688+49x_20689+13x_20690+62x_20691+32x_20692+25x_20693+59x_20694+5x_20695+58x_20696+87x_20697+59x_20698+22x_20699+34x_20700+7x_20701+97x_20702+46x_20703+32x_20704+60x_20705+69x_20706+60x_20707+54x_20708+80x_20709+86x_20710+9x_20711+95x_20712+79x_20713+59x_20714+59x_20715+6x_20716+86x_20717+71x_20718+12x_20719+83x_20720+21x_20721+70x_20722+11x_20723+48x_20724+97x_20725+88x_20726+21x_20727+53x_20728+92x_20729+22x_20730+40x_20731+47x_20732+53x_20733+90x_20734+57x_20735+22x_20736+12x_20737+86x_20738+95x_20739+94x_20740+16x_20741+23x_20742+25x_20743+74x_20744+35x_20745+89x_20746+19x_20747+60x_20748+73x_20749+67x_20750+84x_20751+52x_20752+77x_20753+92x_20754+57x_20755+29x_20756+7x_20757+41x_20758+71x_20759+98x_20760+28x_20761+24x_20762+7x_20763+2x_20764+29x_20765+19x_20766+57x_20767+35x_20768+93x_20769+19x_20770+58x_20771+8x_20772+61x_20773+86x_20774+13x_20775+75x_20776+46x_20777+89x_20778+27x_20779+13x_20780+45x_20781+100x_20782+9x_20783+40x_20784+40x_20785+63x_20786+18x_20787+x_20788+15x_20789+52x_20790+19x_20791+36x_20792+81x_20793+71x_20794+79x_20795+65x_20796+38x_20797+43x_20798+47x_20799+73x_20800+34x_20801+48x_20802+6x_20803+65x_20804+27x_20805+18x_20806+92x_20807+55x_20808+81x_20809+33x_20810+3x_20811+50x_20812+87x_20813+14x_20814+69x_20815+58x_20816+41x_20817+9x_20818+14x_20819+34x_20820+95x_20821+37x_20822+29x_20823+94x_20824+53x_20825+81x_20826+78x_20827+39x_20828+92x_20829+84x_20830+77x_20831+86x_20832+77x_20833+61x_20834+22x_20835+11x_20836+30x_20837+63x_20838+61x_20839+77x_20840+22x_20841+8x_20842+100x_20843+19x_20844+17x_20845+74x_20846+42x_20847+10x_20848+4x_20849+83x_20850+66x_20851+8x_20852+46x_20853+55x_20854+84x_20855+75x_20856+13x_20857+88x_20858+82x_20859+20x_20860+7x_20861+98x_20862+56x_20863+87x_20864+6x_20865+69x_20866+43x_20867+30x_20868+26x_20869+50x_20870+83x_20871+76x_20872+67x_20873+67x_20874+95x_20875+96x_20876+84x_20877+68x_20878+12x_20879+85x_20880+3x_20881+87x_20882+18x_20883+50x_20884+61x_20885+49x_20886+63x_20887+42x_20888+81x_20889+99x_20890+86x_20891+49x_20892+13x_20893+28x_20894+30x_20895+17x_20896+x_20897+100x_20898+12x_20899+59x_20900+100x_20901+25x_20902+50x_20903+23x_20904+48x_20905+13x_20906+55x_20907+38x_20908+26x_20909+39x_20910+88x_20911+84x_20912+68x_20913+86x_20914+63x_20915+53x_20916+23x_20917+12x_20918+31x_20919+59x_20920+77x_20921+95x_20922+91x_20923+58x_20924+10x_20925+59x_20926+14x_20927+33x_20928+47x_20929+91x_20930+69x_20931+51x_20932+24x_20933+77x_20934+39x_20935+91x_20936+3x_20937+55x_20938+65x_20939+95x_20940+x_20941+14x_20942+71x_20943+6x_20944+95x_20945+x_20946+3x_20947+7x_20948+27x_20949+23x_20950+96x_20951+24x_20952+69x_20953+7x_20954+52x_20955+88x_20956+86x_20957+74x_20958+28x_20959+51x_20960+60x_20961+3x_20962+3x_20963+36x_20964+70x_20965+96x_20966+93x_20967+100x_20968+24x_20969+44x_20970+36x_20971+85x_20972+93x_20973+47x_20974+33x_20975+100x_20976+58x_20977+71x_20978+13x_20979+86x_20980+49x_20981+75x_20982+21x_20983+3x_20984+100x_20985+33x_20986+45x_20987+28x_20988+68x_20989+76x_20990+67x_20991+79x_20992+48x_20993+15x_20994+4x_20995+74x_20996+51x_20997+x_20998+53x_20999+9x_21000+32x_21001+32x_21002+59x_21003+33x_21004+49x_21005+66x_21006+8x_21007+15x_21008+42x_21009+15x_21010+2x_21011+82x_21012+59x_21013+34x_21014+99x_21015+73x_21016+55x_21017+40x_21018+9x_21019+37x_21020+24x_21021+73x_21022+46x_21023+94x_21024+9x_21025+75x_21026+34x_21027+67x_21028+12x_21029+2x_21030+32x_21031+44x_21032+20x_21033+67x_21034+39x_21035+65x_21036+47x_21037+39x_21038+13x_21039+77x_21040+46x_21041+84x_21042+37x_21043+24x_21044+14x_21045+50x_21046+84x_21047+60x_21048+46x_21049+57x_21050+2x_21051+98x_21052+22x_21053+34x_21054+10x_21055+3x_21056+88x_21057+53x_21058+69x_21059+59x_21060+60x_21061+61x_21062+31x_21063+91x_21064+29x_21065+35x_21066+43x_21067+25x_21068+61x_21069+82x_21070+51x_21071+92x_21072+43x_21073+70x_21074+5x_21075+21x_21076+87x_21077+88x_21078+14x_21079+80x_21080+53x_21081+61x_21082+26x_21083+57x_21084+3x_21085+40x_21086+40x_21087+x_21088+16x_21089+57x_21090+2x_21091+36x_21092+61x_21093+100x_21094+40x_21095+36x_21096+12x_21097+95x_21098+73x_21099+11x_21100+90x_21101+78x_21102+94x_21103+92x_21104+7x_21105+3x_21106+30x_21107+67x_21108+78x_21109+100x_21110+18x_21111+13x_21112+63x_21113+9x_21114+38x_21115+22x_21116+85x_21117+86x_21118+45x_21119+12x_21120+15x_21121+33x_21122+15x_21123+84x_21124+97x_21125+17x_21126+83x_21127+42x_21128+28x_21129+9x_21130+16x_21131+33x_21132+16x_21133+89x_21134+13x_21135+42x_21136+26x_21137+71x_21138+10x_21139+59x_21140+69x_21141+75x_21142+92x_21143+65x_21144+67x_21145+54x_21146+80x_21147+57x_21148+2x_21149+34x_21150+92x_21151+87x_21152+88x_21153+53x_21154+37x_21155+5x_21156+83x_21157+61x_21158+8x_21159+99x_21160+35x_21161+89x_21162+21x_21163+88x_21164+79x_21165+51x_21166+63x_21167+89x_21168+65x_21169+55x_21170+50x_21171+20x_21172+48x_21173+67x_21174+50x_21175+82x_21176+21x_21177+93x_21178+6x_21179+96x_21180+21x_21181+65x_21182+25x_21183+95x_21184+24x_21185+35x_21186+16x_21187+97x_21188+58x_21189+21x_21190+26x_21191+30x_21192+70x_21193+88x_21194+92x_21195+30x_21196+74x_21197+25x_21198+92x_21199+x_21200+56x_21201+18x_21202+74x_21203+35x_21204+55x_21205+26x_21206+93x_21207+75x_21208+42x_21209+83x_21210+28x_21211+82x_21212+57x_21213+36x_21214+73x_21215+44x_21216+73x_21217+95x_21218+9x_21219+19x_21220+83x_21221+63x_21222+78x_21223+96x_21224+54x_21225+49x_21226+38x_21227+32x_21228+11x_21229+20x_21230+63x_21231+81x_21232+24x_21233+82x_21234+40x_21235+62x_21236+50x_21237+58x_21238+86x_21239+67x_21240+80x_21241+93x_21242+79x_21243+45x_21244+67x_21245+x_21246+96x_21247+21x_21248+6x_21249+99x_21250+19x_21251+40x_21252+6x_21253+51x_21254+10x_21255+6x_21256+59x_21257+41x_21258+18x_21259+94x_21260+51x_21261+90x_21262+35x_21263+14x_21264+45x_21265+58x_21266+74x_21267+60x_21268+34x_21269+37x_21270+46x_21271+47x_21272+11x_21273+77x_21274+17x_21275+58x_21276+60x_21277+38x_21278+84x_21279+84x_21280+32x_21281+11x_21282+21x_21283+46x_21284+27x_21285+40x_21286+63x_21287+64x_21288+39x_21289+5x_21290+53x_21291+51x_21292+74x_21293+x_21294+x_21295+14x_21296+8x_21297+95x_21298+4x_21299+55x_21300+62x_21301+35x_21302+38x_21303+62x_21304+34x_21305+17x_21306+43x_21307+60x_21308+3x_21309+71x_21310+2x_21311+34x_21312+9x_21313+38x_21314+54x_21315+25x_21316+x_21317+30x_21318+3x_21319+81x_21320+39x_21321+66x_21322+51x_21323+15x_21324+26x_21325+64x_21326+66x_21327+93x_21328+61x_21329+99x_21330+51x_21331+72x_21332+87x_21333+55x_21334+4x_21335+83x_21336+84x_21337+58x_21338+13x_21339+54x_21340+33x_21341+x_21342+59x_21343+89x_21344+15x_21345+5x_21346+74x_21347+29x_21348+51x_21349+34x_21350+19x_21351+71x_21352+96x_21353+24x_21354+98x_21355+87x_21356+79x_21357+25x_21358+22x_21359+37x_21360+88x_21361+20x_21362+99x_21363+90x_21364+94x_21365+76x_21366+47x_21367+92x_21368+70x_21369+74x_21370+26x_21371+12x_21372+44x_21373+28x_21374+83x_21375+43x_21376+6x_21377+17x_21378+90x_21379+23x_21380+74x_21381+37x_21382+49x_21383+26x_21384+44x_21385+46x_21386+32x_21387+70x_21388+33x_21389+64x_21390+99x_21391+10x_21392+55x_21393+73x_21394+100x_21395+7x_21396+95x_21397+30x_21398+74x_21399+68x_21400+72x_21401+84x_21402+71x_21403+29x_21404+6x_21405+52x_21406+42x_21407+51x_21408+81x_21409+14x_21410+40x_21411+24x_21412+65x_21413+42x_21414+77x_21415+6x_21416+74x_21417+22x_21418+93x_21419+14x_21420+93x_21421+82x_21422+58x_21423+77x_21424+79x_21425+17x_21426+50x_21427+60x_21428+54x_21429+19x_21430+12x_21431+x_21432+6x_21433+71x_21434+31x_21435+20x_21436+69x_21437+99x_21438+26x_21439+78x_21440+35x_21441+60x_21442+36x_21443+41x_21444+78x_21445+16x_21446+79x_21447+25x_21448+67x_21449+36x_21450+55x_21451+21x_21452+56x_21453+5x_21454+13x_21455+63x_21456+80x_21457+95x_21458+90x_21459+20x_21460+94x_21461+64x_21462+40x_21463+35x_21464+25x_21465+97x_21466+56x_21467+57x_21468+23x_21469+79x_21470+49x_21471+19x_21472+16x_21473+80x_21474+36x_21475+94x_21476+18x_21477+15x_21478+15x_21479+10x_21480+29x_21481+26x_21482+11x_21483+81x_21484+30x_21485+37x_21486+15x_21487+91x_21488+75x_21489+37x_21490+10x_21491+7x_21492+61x_21493+50x_21494+83x_21495+48x_21496+56x_21497+40x_21498+29x_21499+3x_21500+82x_21501+35x_21502+15x_21503+35x_21504+76x_21505+19x_21506+53x_21507+13x_21508+47x_21509+4x_21510+98x_21511+91x_21512+16x_21513+46x_21514+61x_21515+63x_21516+91x_21517+80x_21518+43x_21519+48x_21520+28x_21521+38x_21522+64x_21523+69x_21524+5x_21525+25x_21526+52x_21527+58x_21528+77x_21529+48x_21530+78x_21531+55x_21532+90x_21533+39x_21534+100x_21535+36x_21536+73x_21537+40x_21538+30x_21539+19x_21540+46x_21541+99x_21542+30x_21543+43x_21544+75x_21545+49x_21546+73x_21547+82x_21548+98x_21549+75x_21550+49x_21551+49x_21552+37x_21553+39x_21554+35x_21555+30x_21556+58x_21557+43x_21558+56x_21559+41x_21560+86x_21561+80x_21562+54x_21563+40x_21564+52x_21565+71x_21566+52x_21567+14x_21568+79x_21569+42x_21570+14x_21571+34x_21572+75x_21573+43x_21574+19x_21575+29x_21576+89x_21577+48x_21578+84x_21579+30x_21580+40x_21581+65x_21582+78x_21583+42x_21584+23x_21585+70x_21586+67x_21587+58x_21588+70x_21589+5x_21590+54x_21591+80x_21592+96x_21593+58x_21594+99x_21595+88x_21596+90x_21597+20x_21598+72x_21599+75x_21600+57x_21601+77x_21602+76x_21603+64x_21604+54x_21605+60x_21606+33x_21607+10x_21608+49x_21609+46x_21610+45x_21611+79x_21612+25x_21613+45x_21614+81x_21615+100x_21616+67x_21617+59x_21618+56x_21619+97x_21620+11x_21621+19x_21622+17x_21623+39x_21624+41x_21625+95x_21626+23x_21627+85x_21628+21x_21629+100x_21630+78x_21631+7x_21632+66x_21633+13x_21634+96x_21635+54x_21636+47x_21637+36x_21638+19x_21639+58x_21640+26x_21641+51x_21642+24x_21643+66x_21644+75x_21645+38x_21646+5x_21647+57x_21648+83x_21649+54x_21650+5x_21651+66x_21652+100x_21653+5x_21654+100x_21655+98x_21656+53x_21657+2x_21658+26x_21659+97x_21660+77x_21661+61x_21662+64x_21663+60x_21664+16x_21665+92x_21666+20x_21667+99x_21668+59x_21669+96x_21670+91x_21671+25x_21672+23x_21673+83x_21674+75x_21675+4x_21676+51x_21677+22x_21678+17x_21679+85x_21680+44x_21681+79x_21682+66x_21683+32x_21684+87x_21685+16x_21686+74x_21687+61x_21688+98x_21689+88x_21690+19x_21691+58x_21692+78x_21693+42x_21694+39x_21695+100x_21696+77x_21697+8x_21698+63x_21699+15x_21700+49x_21701+65x_21702+83x_21703+64x_21704+96x_21705+68x_21706+57x_21707+75x_21708+28x_21709+15x_21710+8x_21711+81x_21712+17x_21713+85x_21714+60x_21715+25x_21716+63x_21717+33x_21718+41x_21719+57x_21720+60x_21721+52x_21722+76x_21723+77x_21724+35x_21725+88x_21726+66x_21727+15x_21728+5x_21729+48x_21730+51x_21731+87x_21732+32x_21733+41x_21734+89x_21735+90x_21736+57x_21737+75x_21738+93x_21739+88x_21740+86x_21741+46x_21742+4x_21743+10x_21744+32x_21745+23x_21746+13x_21747+63x_21748+100x_21749+27x_21750+56x_21751+3x_21752+80x_21753+54x_21754+65x_21755+x_21756+31x_21757+11x_21758+71x_21759+69x_21760+86x_21761+67x_21762+62x_21763+26x_21764+49x_21765+6x_21766+73x_21767+45x_21768+87x_21769+66x_21770+99x_21771+9x_21772+77x_21773+24x_21774+8x_21775+20x_21776+62x_21777+49x_21778+46x_21779+42x_21780+30x_21781+95x_21782+33x_21783+56x_21784+80x_21785+12x_21786+64x_21787+48x_21788+5x_21789+24x_21790+32x_21791+7x_21792+86x_21793+71x_21794+72x_21795+97x_21796+76x_21797+37x_21798+25x_21799+11x_21800+48x_21801+93x_21802+56x_21803+47x_21804+40x_21805+52x_21806+75x_21807+65x_21808+78x_21809+62x_21810+50x_21811+85x_21812+58x_21813+29x_21814+45x_21815+2x_21816+85x_21817+92x_21818+41x_21819+85x_21820+24x_21821+13x_21822+97x_21823+5x_21824+34x_21825+19x_21826+53x_21827+89x_21828+87x_21829+81x_21830+63x_21831+82x_21832+85x_21833+39x_21834+8x_21835+33x_21836+83x_21837+59x_21838+6x_21839+66x_21840+68x_21841+93x_21842+33x_21843+39x_21844+31x_21845+66x_21846+41x_21847+54x_21848+8x_21849+43x_21850+11x_21851+12x_21852+66x_21853+99x_21854+37x_21855+92x_21856+3x_21857+65x_21858+37x_21859+14x_21860+62x_21861+7x_21862+91x_21863+61x_21864+43x_21865+10x_21866+74x_21867+89x_21868+79x_21869+16x_21870+45x_21871+43x_21872+29x_21873+94x_21874+72x_21875+16x_21876+38x_21877+73x_21878+70x_21879+56x_21880+37x_21881+99x_21882+29x_21883+57x_21884+39x_21885+45x_21886+50x_21887+75x_21888+96x_21889+51x_21890+76x_21891+82x_21892+65x_21893+12x_21894+7x_21895+70x_21896+52x_21897+10x_21898+47x_21899+25x_21900+46x_21901+91x_21902+15x_21903+51x_21904+72x_21905+29x_21906+94x_21907+46x_21908+92x_21909+54x_21910+67x_21911+14x_21912+25x_21913+46x_21914+74x_21915+70x_21916+90x_21917+30x_21918+34x_21919+82x_21920+56x_21921+84x_21922+81x_21923+93x_21924+3x_21925+83x_21926+66x_21927+97x_21928+31x_21929+54x_21930+82x_21931+8x_21932+23x_21933+85x_21934+59x_21935+62x_21936+43x_21937+53x_21938+30x_21939+47x_21940+20x_21941+9x_21942+79x_21943+5x_21944+15x_21945+84x_21946+97x_21947+70x_21948+94x_21949+47x_21950+65x_21951+100x_21952+7x_21953+7x_21954+48x_21955+93x_21956+36x_21957+13x_21958+36x_21959+93x_21960+72x_21961+24x_21962+9x_21963+58x_21964+91x_21965+12x_21966+53x_21967+42x_21968+71x_21969+75x_21970+14x_21971+63x_21972+28x_21973+54x_21974+89x_21975+73x_21976+64x_21977+48x_21978+33x_21979+18x_21980+26x_21981+9x_21982+21x_21983+58x_21984+31x_21985+4x_21986+68x_21987+11x_21988+63x_21989+69x_21990+47x_21991+14x_21992+98x_21993+51x_21994+23x_21995+23x_21996+69x_21997+72x_21998+99x_21999+11x_22000+82x_22001+84x_22002+90x_22003+67x_22004+43x_22005+85x_22006+77x_22007+77x_22008+95x_22009+93x_22010+27x_22011+6x_22012+31x_22013+55x_22014+50x_22015+70x_22016+39x_22017+70x_22018+51x_22019+35x_22020+58x_22021+88x_22022+98x_22023+61x_22024+21x_22025+63x_22026+81x_22027+93x_22028+20x_22029+86x_22030+84x_22031+10x_22032+20x_22033+18x_22034+21x_22035+3x_22036+25x_22037+46x_22038+10x_22039+87x_22040+27x_22041+79x_22042+17x_22043+39x_22044+98x_22045+20x_22046+98x_22047+24x_22048+83x_22049+94x_22050+27x_22051+64x_22052+87x_22053+57x_22054+28x_22055+27x_22056+82x_22057+29x_22058+92x_22059+99x_22060+11x_22061+23x_22062+39x_22063+15x_22064+91x_22065+35x_22066+48x_22067+26x_22068+31x_22069+63x_22070+19x_22071+36x_22072+72x_22073+23x_22074+7x_22075+30x_22076+61x_22077+39x_22078+78x_22079+71x_22080+55x_22081+78x_22082+34x_22083+41x_22084+41x_22085+59x_22086+75x_22087+82x_22088+74x_22089+97x_22090+17x_22091+79x_22092+46x_22093+5x_22094+95x_22095+99x_22096+19x_22097+66x_22098+46x_22099+40x_22100+77x_22101+13x_22102+28x_22103+44x_22104+86x_22105+81x_22106+60x_22107+82x_22108+57x_22109+78x_22110+x_22111+33x_22112+89x_22113+32x_22114+33x_22115+80x_22116+2x_22117+51x_22118+40x_22119+80x_22120+98x_22121+46x_22122+67x_22123+48x_22124+28x_22125+66x_22126+67x_22127+40x_22128+56x_22129+40x_22130+27x_22131+41x_22132+95x_22133+87x_22134+5x_22135+74x_22136+42x_22137+29x_22138+11x_22139+68x_22140+62x_22141+19x_22142+83x_22143+55x_22144+36x_22145+33x_22146+80x_22147+29x_22148+54x_22149+100x_22150+50x_22151+90x_22152+65x_22153+36x_22154+62x_22155+6x_22156+49x_22157+11x_22158+61x_22159+37x_22160+35x_22161+20x_22162+74x_22163+55x_22164+69x_22165+64x_22166+83x_22167+55x_22168+30x_22169+91x_22170+24x_22171+60x_22172+13x_22173+49x_22174+63x_22175+40x_22176+17x_22177+52x_22178+41x_22179+81x_22180+5x_22181+34x_22182+9x_22183+40x_22184+24x_22185+25x_22186+21x_22187+32x_22188+74x_22189+6x_22190+61x_22191+2x_22192+6x_22193+39x_22194+71x_22195+73x_22196+32x_22197+38x_22198+19x_22199+4x_22200+50x_22201+10x_22202+43x_22203+49x_22204+2x_22205+94x_22206+63x_22207+4x_22208+82x_22209+87x_22210+55x_22211+89x_22212+85x_22213+74x_22214+44x_22215+73x_22216+23x_22217+94x_22218+80x_22219+88x_22220+41x_22221+48x_22222+99x_22223+37x_22224+72x_22225+93x_22226+48x_22227+79x_22228+19x_22229+72x_22230+5x_22231+65x_22232+91x_22233+28x_22234+62x_22235+3x_22236+55x_22237+29x_22238+65x_22239+13x_22240+80x_22241+64x_22242+34x_22243+17x_22244+81x_22245+62x_22246+33x_22247+57x_22248+17x_22249+3x_22250+81x_22251+92x_22252+65x_22253+4x_22254+82x_22255+28x_22256+35x_22257+43x_22258+91x_22259+31x_22260+3x_22261+93x_22262+89x_22263+94x_22264+x_22265+87x_22266+15x_22267+30x_22268+74x_22269+47x_22270+34x_22271+66x_22272+84x_22273+84x_22274+38x_22275+37x_22276+97x_22277+84x_22278+77x_22279+49x_22280+32x_22281+21x_22282+80x_22283+20x_22284+58x_22285+52x_22286+40x_22287+80x_22288+75x_22289+28x_22290+45x_22291+51x_22292+14x_22293+99x_22294+48x_22295+x_22296+55x_22297+40x_22298+55x_22299+18x_22300+95x_22301+95x_22302+51x_22303+77x_22304+32x_22305+4x_22306+51x_22307+20x_22308+54x_22309+78x_22310+16x_22311+36x_22312+7x_22313+92x_22314+21x_22315+39x_22316+55x_22317+74x_22318+24x_22319+82x_22320+61x_22321+75x_22322+5x_22323+26x_22324+20x_22325+45x_22326+5x_22327+71x_22328+76x_22329+52x_22330+85x_22331+38x_22332+64x_22333+65x_22334+99x_22335+98x_22336+15x_22337+64x_22338+50x_22339+46x_22340+30x_22341+25x_22342+80x_22343+61x_22344+59x_22345+28x_22346+48x_22347+12x_22348+65x_22349+82x_22350+50x_22351+21x_22352+59x_22353+60x_22354+68x_22355+83x_22356+40x_22357+78x_22358+77x_22359+35x_22360+69x_22361+82x_22362+96x_22363+43x_22364+16x_22365+93x_22366+85x_22367+86x_22368+49x_22369+7x_22370+35x_22371+8x_22372+60x_22373+13x_22374+16x_22375+52x_22376+92x_22377+68x_22378+69x_22379+72x_22380+20x_22381+85x_22382+12x_22383+43x_22384+92x_22385+19x_22386+100x_22387+79x_22388+67x_22389+22x_22390+70x_22391+19x_22392+67x_22393+68x_22394+62x_22395+75x_22396+x_22397+69x_22398+56x_22399+65x_22400+50x_22401+47x_22402+92x_22403+30x_22404+45x_22405+96x_22406+47x_22407+15x_22408+23x_22409+55x_22410+70x_22411+38x_22412+58x_22413+37x_22414+8x_22415+75x_22416+53x_22417+55x_22418+64x_22419+93x_22420+61x_22421+53x_22422+52x_22423+79x_22424+17x_22425+2x_22426+89x_22427+99x_22428+46x_22429+14x_22430+50x_22431+20x_22432+24x_22433+20x_22434+6x_22435+23x_22436+16x_22437+27x_22438+83x_22439+41x_22440+88x_22441+100x_22442+58x_22443+96x_22444+100x_22445+7x_22446+33x_22447+83x_22448+82x_22449+84x_22450+91x_22451+57x_22452+84x_22453+95x_22454+2x_22455+56x_22456+49x_22457+93x_22458+90x_22459+30x_22460+96x_22461+71x_22462+49x_22463+55x_22464+49x_22465+46x_22466+80x_22467+31x_22468+22x_22469+72x_22470+18x_22471+57x_22472+77x_22473+80x_22474+61x_22475+27x_22476+30x_22477+99x_22478+21x_22479+34x_22480+47x_22481+71x_22482+25x_22483+12x_22484+96x_22485+17x_22486+55x_22487+66x_22488+91x_22489+45x_22490+31x_22491+43x_22492+58x_22493+18x_22494+94x_22495+76x_22496+78x_22497+32x_22498+7x_22499+43x_22500+26x_22501+88x_22502+2x_22503+98x_22504+43x_22505+19x_22506+31x_22507+51x_22508+94x_22509+10x_22510+10x_22511+80x_22512+52x_22513+67x_22514+88x_22515+79x_22516+44x_22517+36x_22518+91x_22519+24x_22520+90x_22521+17x_22522+90x_22523+35x_22524+13x_22525+67x_22526+63x_22527+59x_22528+65x_22529+55x_22530+x_22531+70x_22532+48x_22533+11x_22534+97x_22535+23x_22536+64x_22537+73x_22538+89x_22539+36x_22540+61x_22541+38x_22542+67x_22543+71x_22544+78x_22545+63x_22546+67x_22547+89x_22548+79x_22549+76x_22550+75x_22551+53x_22552+19x_22553+36x_22554+38x_22555+34x_22556+53x_22557+12x_22558+86x_22559+39x_22560+21x_22561+53x_22562+47x_22563+80x_22564+19x_22565+44x_22566+79x_22567+56x_22568+16x_22569+46x_22570+59x_22571+81x_22572+40x_22573+11x_22574+30x_22575+52x_22576+85x_22577+18x_22578+42x_22579+64x_22580+38x_22581+30x_22582+26x_22583+96x_22584+39x_22585+19x_22586+52x_22587+98x_22588+89x_22589+58x_22590+79x_22591+86x_22592+55x_22593+93x_22594+28x_22595+25x_22596+55x_22597+74x_22598+75x_22599+43x_22600+19x_22601+46x_22602+88x_22603+65x_22604+61x_22605+51x_22606+19x_22607+15x_22608+50x_22609+42x_22610+52x_22611+57x_22612+41x_22613+88x_22614+55x_22615+88x_22616+71x_22617+40x_22618+35x_22619+53x_22620+35x_22621+57x_22622+39x_22623+72x_22624+35x_22625+17x_22626+31x_22627+84x_22628+38x_22629+47x_22630+67x_22631+93x_22632+32x_22633+5x_22634+93x_22635+42x_22636+60x_22637+95x_22638+52x_22639+72x_22640+44x_22641+79x_22642+80x_22643+41x_22644+72x_22645+32x_22646+64x_22647+32x_22648+94x_22649+15x_22650+82x_22651+31x_22652+18x_22653+96x_22654+66x_22655+60x_22656+40x_22657+85x_22658+86x_22659+96x_22660+96x_22661+14x_22662+13x_22663+79x_22664+27x_22665+11x_22666+11x_22667+91x_22668+90x_22669+64x_22670+84x_22671+67x_22672+68x_22673+61x_22674+68x_22675+38x_22676+79x_22677+86x_22678+96x_22679+58x_22680+32x_22681+69x_22682+5x_22683+30x_22684+89x_22685+10x_22686+49x_22687+94x_22688+30x_22689+71x_22690+17x_22691+69x_22692+89x_22693+31x_22694+67x_22695+93x_22696+31x_22697+65x_22698+87x_22699+84x_22700+11x_22701+33x_22702+59x_22703+76x_22704+62x_22705+85x_22706+11x_22707+27x_22708+93x_22709+62x_22710+45x_22711+33x_22712+68x_22713+78x_22714+45x_22715+93x_22716+78x_22717+35x_22718+83x_22719+74x_22720+44x_22721+33x_22722+44x_22723+9x_22724+59x_22725+17x_22726+48x_22727+52x_22728+63x_22729+75x_22730+33x_22731+18x_22732+65x_22733+4x_22734+19x_22735+87x_22736+21x_22737+94x_22738+85x_22739+95x_22740+30x_22741+85x_22742+23x_22743+72x_22744+69x_22745+74x_22746+98x_22747+58x_22748+54x_22749+6x_22750+96x_22751+52x_22752+14x_22753+50x_22754+83x_22755+31x_22756+37x_22757+17x_22758+66x_22759+57x_22760+16x_22761+92x_22762+5x_22763+8x_22764+85x_22765+70x_22766+55x_22767+40x_22768+39x_22769+83x_22770+94x_22771+99x_22772+71x_22773+37x_22774+26x_22775+92x_22776+14x_22777+79x_22778+40x_22779+14x_22780+75x_22781+28x_22782+17x_22783+44x_22784+67x_22785+2x_22786+2x_22787+61x_22788+80x_22789+93x_22790+87x_22791+36x_22792+89x_22793+61x_22794+62x_22795+33x_22796+50x_22797+7x_22798+16x_22799+27x_22800+31x_22801+6x_22802+17x_22803+7x_22804+6x_22805+28x_22806+32x_22807+19x_22808+67x_22809+18x_22810+90x_22811+78x_22812+23x_22813+49x_22814+35x_22815+76x_22816+44x_22817+56x_22818+100x_22819+98x_22820+55x_22821+67x_22822+57x_22823+51x_22824+78x_22825+51x_22826+97x_22827+96x_22828+90x_22829+44x_22830+33x_22831+65x_22832+4x_22833+23x_22834+40x_22835+15x_22836+99x_22837+12x_22838+98x_22839+19x_22840+76x_22841+63x_22842+27x_22843+18x_22844+36x_22845+47x_22846+97x_22847+69x_22848+62x_22849+19x_22850+77x_22851+30x_22852+77x_22853+94x_22854+45x_22855+50x_22856+44x_22857+94x_22858+34x_22859+90x_22860+85x_22861+54x_22862+82x_22863+13x_22864+9x_22865+23x_22866+97x_22867+39x_22868+36x_22869+78x_22870+41x_22871+61x_22872+41x_22873+13x_22874+68x_22875+59x_22876+64x_22877+99x_22878+20x_22879+59x_22880+27x_22881+23x_22882+34x_22883+15x_22884+20x_22885+90x_22886+73x_22887+49x_22888+57x_22889+48x_22890+93x_22891+23x_22892+18x_22893+22x_22894+90x_22895+15x_22896+42x_22897+96x_22898+9x_22899+79x_22900+75x_22901+34x_22902+48x_22903+42x_22904+51x_22905+9x_22906+2x_22907+48x_22908+80x_22909+2x_22910+27x_22911+76x_22912+68x_22913+35x_22914+41x_22915+52x_22916+72x_22917+68x_22918+42x_22919+26x_22920+99x_22921+51x_22922+22x_22923+78x_22924+38x_22925+95x_22926+9x_22927+86x_22928+72x_22929+77x_22930+71x_22931+16x_22932+72x_22933+63x_22934+58x_22935+23x_22936+56x_22937+43x_22938+86x_22939+31x_22940+55x_22941+76x_22942+15x_22943+52x_22944+44x_22945+77x_22946+2x_22947+54x_22948+55x_22949+97x_22950+27x_22951+18x_22952+65x_22953+3x_22954+22x_22955+91x_22956+8x_22957+81x_22958+51x_22959+2x_22960+30x_22961+72x_22962+45x_22963+75x_22964+22x_22965+100x_22966+46x_22967+72x_22968+92x_22969+97x_22970+77x_22971+93x_22972+48x_22973+15x_22974+56x_22975+51x_22976+4x_22977+63x_22978+63x_22979+49x_22980+13x_22981+75x_22982+35x_22983+70x_22984+46x_22985+96x_22986+60x_22987+56x_22988+7x_22989+74x_22990+35x_22991+76x_22992+66x_22993+91x_22994+41x_22995+4x_22996+85x_22997+23x_22998+58x_22999+9x_23000+76x_23001+29x_23002+23x_23003+53x_23004+88x_23005+5x_23006+7x_23007+28x_23008+63x_23009+26x_23010+65x_23011+45x_23012+83x_23013+96x_23014+29x_23015+82x_23016+96x_23017+61x_23018+98x_23019+78x_23020+71x_23021+9x_23022+53x_23023+51x_23024+30x_23025+11x_23026+49x_23027+9x_23028+75x_23029+5x_23030+63x_23031+20x_23032+52x_23033+12x_23034+9x_23035+18x_23036+7x_23037+81x_23038+48x_23039+9x_23040+87x_23041+71x_23042+85x_23043+82x_23044+12x_23045+71x_23046+49x_23047+3x_23048+51x_23049+86x_23050+52x_23051+23x_23052+68x_23053+67x_23054+26x_23055+5x_23056+5x_23057+63x_23058+66x_23059+61x_23060+51x_23061+50x_23062+13x_23063+31x_23064+43x_23065+99x_23066+65x_23067+99x_23068+18x_23069+65x_23070+8x_23071+89x_23072+14x_23073+50x_23074+91x_23075+62x_23076+60x_23077+21x_23078+2x_23079+16x_23080+7x_23081+34x_23082+95x_23083+14x_23084+93x_23085+60x_23086+94x_23087+20x_23088+83x_23089+45x_23090+49x_23091+89x_23092+46x_23093+84x_23094+18x_23095+66x_23096+10x_23097+3x_23098+54x_23099+60x_23100+67x_23101+94x_23102+11x_23103+51x_23104+76x_23105+24x_23106+50x_23107+10x_23108+98x_23109+16x_23110+29x_23111+99x_23112+66x_23113+49x_23114+66x_23115+8x_23116+98x_23117+87x_23118+15x_23119+48x_23120+54x_23121+44x_23122+29x_23123+88x_23124+22x_23125+31x_23126+51x_23127+89x_23128+74x_23129+70x_23130+98x_23131+26x_23132+66x_23133+99x_23134+82x_23135+82x_23136+86x_23137+98x_23138+29x_23139+74x_23140+92x_23141+41x_23142+15x_23143+24x_23144+77x_23145+29x_23146+49x_23147+51x_23148+83x_23149+78x_23150+86x_23151+52x_23152+33x_23153+76x_23154+38x_23155+81x_23156+28x_23157+15x_23158+53x_23159+7x_23160+2x_23161+26x_23162+79x_23163+82x_23164+35x_23165+86x_23166+48x_23167+25x_23168+58x_23169+49x_23170+12x_23171+41x_23172+76x_23173+87x_23174+5x_23175+90x_23176+31x_23177+39x_23178+77x_23179+68x_23180+24x_23181+32x_23182+48x_23183+24x_23184+53x_23185+9x_23186+42x_23187+98x_23188+12x_23189+49x_23190+5x_23191+52x_23192+50x_23193+47x_23194+4x_23195+30x_23196+54x_23197+95x_23198+30x_23199+97x_23200+63x_23201+92x_23202+33x_23203+92x_23204+75x_23205+38x_23206+28x_23207+52x_23208+72x_23209+53x_23210+36x_23211+87x_23212+6x_23213+15x_23214+14x_23215+26x_23216+22x_23217+81x_23218+67x_23219+21x_23220+5x_23221+97x_23222+56x_23223+81x_23224+24x_23225+31x_23226+49x_23227+49x_23228+22x_23229+65x_23230+84x_23231+59x_23232+11x_23233+65x_23234+53x_23235+51x_23236+96x_23237+33x_23238+19x_23239+50x_23240+75x_23241+12x_23242+55x_23243+91x_23244+83x_23245+44x_23246+67x_23247+x_23248+18x_23249+67x_23250+46x_23251+68x_23252+78x_23253+80x_23254+23x_23255+95x_23256+64x_23257+3x_23258+25x_23259+53x_23260+25x_23261+28x_23262+47x_23263+93x_23264+22x_23265+61x_23266+42x_23267+91x_23268+38x_23269+51x_23270+100x_23271+2x_23272+15x_23273+2x_23274+92x_23275+7x_23276+61x_23277+84x_23278+16x_23279+74x_23280+69x_23281+24x_23282+16x_23283+51x_23284+77x_23285+21x_23286+66x_23287+79x_23288+7x_23289+90x_23290+83x_23291+93x_23292+77x_23293+90x_23294+20x_23295+97x_23296+72x_23297+21x_23298+78x_23299+18x_23300+67x_23301+78x_23302+84x_23303+85x_23304+77x_23305+81x_23306+89x_23307+15x_23308+19x_23309+86x_23310+37x_23311+91x_23312+79x_23313+50x_23314+52x_23315+57x_23316+73x_23317+39x_23318+4x_23319+32x_23320+83x_23321+7x_23322+74x_23323+100x_23324+40x_23325+44x_23326+58x_23327+27x_23328+87x_23329+59x_23330+34x_23331+60x_23332+95x_23333+2x_23334+94x_23335+76x_23336+69x_23337+98x_23338+64x_23339+44x_23340+42x_23341+64x_23342+21x_23343+86x_23344+68x_23345+75x_23346+11x_23347+52x_23348+5x_23349+90x_23350+54x_23351+7x_23352+20x_23353+57x_23354+21x_23355+76x_23356+52x_23357+11x_23358+23x_23359+37x_23360+28x_23361+90x_23362+75x_23363+34x_23364+64x_23365+85x_23366+76x_23367+34x_23368+25x_23369+21x_23370+73x_23371+61x_23372+52x_23373+97x_23374+43x_23375+77x_23376+4x_23377+95x_23378+27x_23379+19x_23380+57x_23381+85x_23382+44x_23383+8x_23384+67x_23385+28x_23386+62x_23387+64x_23388+35x_23389+32x_23390+8x_23391+26x_23392+47x_23393+15x_23394+42x_23395+27x_23396+5x_23397+35x_23398+40x_23399+16x_23400+96x_23401+78x_23402+16x_23403+42x_23404+39x_23405+12x_23406+10x_23407+71x_23408+37x_23409+47x_23410+19x_23411+71x_23412+11x_23413+32x_23414+50x_23415+35x_23416+59x_23417+69x_23418+77x_23419+11x_23420+70x_23421+2x_23422+48x_23423+16x_23424+3x_23425+9x_23426+62x_23427+23x_23428+4x_23429+36x_23430+59x_23431+63x_23432+63x_23433+54x_23434+63x_23435+92x_23436+44x_23437+12x_23438+94x_23439+94x_23440+41x_23441+70x_23442+77x_23443+78x_23444+83x_23445+29x_23446+34x_23447+73x_23448+75x_23449+68x_23450+15x_23451+13x_23452+14x_23453+9x_23454+68x_23455+80x_23456+25x_23457+66x_23458+71x_23459+81x_23460+52x_23461+26x_23462+6x_23463+66x_23464+74x_23465+35x_23466+27x_23467+49x_23468+54x_23469+46x_23470+69x_23471+30x_23472+78x_23473+18x_23474+31x_23475+82x_23476+17x_23477+24x_23478+29x_23479+38x_23480+34x_23481+25x_23482+41x_23483+39x_23484+67x_23485+90x_23486+40x_23487+39x_23488+55x_23489+79x_23490+4x_23491+45x_23492+95x_23493+41x_23494+44x_23495+92x_23496+50x_23497+13x_23498+4x_23499+23x_23500+17x_23501+4x_23502+71x_23503+11x_23504+41x_23505+17x_23506+10x_23507+14x_23508+5x_23509+69x_23510+51x_23511+29x_23512+72x_23513+85x_23514+11x_23515+63x_23516+98x_23517+60x_23518+92x_23519+8x_23520+6x_23521+84x_23522+20x_23523+64x_23524+83x_23525+28x_23526+7x_23527+55x_23528+29x_23529+94x_23530+62x_23531+33x_23532+13x_23533+66x_23534+100x_23535+53x_23536+88x_23537+47x_23538+97x_23539+70x_23540+57x_23541+63x_23542+36x_23543+10x_23544+10x_23545+5x_23546+72x_23547+95x_23548+70x_23549+37x_23550+19x_23551+31x_23552+48x_23553+59x_23554+97x_23555+86x_23556+83x_23557+47x_23558+59x_23559+7x_23560+30x_23561+64x_23562+x_23563+96x_23564+62x_23565+18x_23566+93x_23567+93x_23568+46x_23569+29x_23570+51x_23571+x_23572+75x_23573+14x_23574+81x_23575+13x_23576+53x_23577+23x_23578+52x_23579+67x_23580+40x_23581+80x_23582+86x_23583+46x_23584+7x_23585+24x_23586+58x_23587+92x_23588+22x_23589+89x_23590+6x_23591+49x_23592+47x_23593+99x_23594+94x_23595+23x_23596+83x_23597+74x_23598+16x_23599+51x_23600+73x_23601+28x_23602+98x_23603+27x_23604+72x_23605+7x_23606+98x_23607+37x_23608+61x_23609+65x_23610+96x_23611+48x_23612+45x_23613+49x_23614+96x_23615+72x_23616+80x_23617+78x_23618+10x_23619+47x_23620+89x_23621+81x_23622+84x_23623+88x_23624+65x_23625+39x_23626+86x_23627+98x_23628+94x_23629+25x_23630+100x_23631+79x_23632+25x_23633+100x_23634+49x_23635+10x_23636+3x_23637+20x_23638+42x_23639+52x_23640+52x_23641+81x_23642+85x_23643+84x_23644+18x_23645+68x_23646+62x_23647+52x_23648+100x_23649+87x_23650+34x_23651+43x_23652+69x_23653+71x_23654+13x_23655+31x_23656+21x_23657+38x_23658+81x_23659+82x_23660+36x_23661+68x_23662+88x_23663+43x_23664+62x_23665+29x_23666+79x_23667+16x_23668+96x_23669+75x_23670+5x_23671+76x_23672+48x_23673+68x_23674+29x_23675+55x_23676+58x_23677+20x_23678+34x_23679+83x_23680+59x_23681+49x_23682+89x_23683+47x_23684+20x_23685+50x_23686+41x_23687+49x_23688+88x_23689+2x_23690+62x_23691+13x_23692+34x_23693+85x_23694+13x_23695+39x_23696+16x_23697+37x_23698+46x_23699+14x_23700+80x_23701+96x_23702+27x_23703+72x_23704+17x_23705+71x_23706+29x_23707+100x_23708+62x_23709+52x_23710+18x_23711+83x_23712+61x_23713+15x_23714+22x_23715+26x_23716+67x_23717+72x_23718+33x_23719+52x_23720+45x_23721+20x_23722+74x_23723+73x_23724+33x_23725+58x_23726+89x_23727+86x_23728+36x_23729+46x_23730+92x_23731+72x_23732+84x_23733+42x_23734+34x_23735+30x_23736+37x_23737+96x_23738+78x_23739+17x_23740+28x_23741+97x_23742+9x_23743+81x_23744+59x_23745+45x_23746+89x_23747+7x_23748+29x_23749+34x_23750+92x_23751+46x_23752+81x_23753+56x_23754+72x_23755+71x_23756+42x_23757+90x_23758+76x_23759+55x_23760+47x_23761+62x_23762+22x_23763+18x_23764+16x_23765+7x_23766+x_23767+16x_23768+69x_23769+72x_23770+61x_23771+36x_23772+25x_23773+56x_23774+21x_23775+87x_23776+34x_23777+4x_23778+38x_23779+25x_23780+28x_23781+51x_23782+41x_23783+5x_23784+8x_23785+44x_23786+63x_23787+30x_23788+62x_23789+79x_23790+53x_23791+85x_23792+64x_23793+61x_23794+58x_23795+25x_23796+72x_23797+13x_23798+71x_23799+9x_23800+29x_23801+74x_23802+88x_23803+79x_23804+51x_23805+20x_23806+48x_23807+29x_23808+14x_23809+26x_23810+87x_23811+22x_23812+90x_23813+33x_23814+59x_23815+74x_23816+44x_23817+56x_23818+57x_23819+29x_23820+28x_23821+77x_23822+22x_23823+2x_23824+x_23825+30x_23826+31x_23827+34x_23828+49x_23829+97x_23830+31x_23831+60x_23832+45x_23833+75x_23834+96x_23835+13x_23836+9x_23837+30x_23838+60x_23839+21x_23840+21x_23841+77x_23842+10x_23843+55x_23844+77x_23845+37x_23846+32x_23847+19x_23848+24x_23849+36x_23850+3x_23851+86x_23852+83x_23853+53x_23854+84x_23855+55x_23856+62x_23857+24x_23858+78x_23859+100x_23860+93x_23861+97x_23862+56x_23863+39x_23864+54x_23865+100x_23866+30x_23867+78x_23868+94x_23869+6x_23870+54x_23871+92x_23872+13x_23873+43x_23874+90x_23875+51x_23876+47x_23877+11x_23878+32x_23879+65x_23880+8x_23881+46x_23882+6x_23883+12x_23884+17x_23885+32x_23886+96x_23887+31x_23888+78x_23889+31x_23890+78x_23891+23x_23892+82x_23893+59x_23894+44x_23895+51x_23896+33x_23897+34x_23898+96x_23899+78x_23900+23x_23901+33x_23902+32x_23903+4x_23904+99x_23905+45x_23906+14x_23907+53x_23908+57x_23909+33x_23910+99x_23911+18x_23912+87x_23913+44x_23914+97x_23915+6x_23916+94x_23917+53x_23918+98x_23919+2x_23920+76x_23921+56x_23922+41x_23923+19x_23924+65x_23925+5x_23926+27x_23927+45x_23928+99x_23929+77x_23930+97x_23931+84x_23932+43x_23933+28x_23934+29x_23935+56x_23936+85x_23937+62x_23938+78x_23939+96x_23940+67x_23941+91x_23942+29x_23943+60x_23944+38x_23945+20x_23946+37x_23947+39x_23948+47x_23949+62x_23950+76x_23951+57x_23952+75x_23953+98x_23954+96x_23955+69x_23956+33x_23957+48x_23958+33x_23959+51x_23960+81x_23961+42x_23962+28x_23963+86x_23964+15x_23965+48x_23966+20x_23967+53x_23968+42x_23969+42x_23970+2x_23971+58x_23972+92x_23973+x_23974+42x_23975+31x_23976+80x_23977+68x_23978+37x_23979+73x_23980+8x_23981+69x_23982+75x_23983+33x_23984+6x_23985+17x_23986+37x_23987+11x_23988+25x_23989+41x_23990+57x_23991+88x_23992+61x_23993+47x_23994+32x_23995+43x_23996+55x_23997+77x_23998+39x_23999+94x_24000+6x_24001+13x_24002+85x_24003+52x_24004+67x_24005+38x_24006+64x_24007+100x_24008+43x_24009+43x_24010+44x_24011+30x_24012+39x_24013+5x_24014+42x_24015+71x_24016+44x_24017+7x_24018+59x_24019+67x_24020+99x_24021+7x_24022+17x_24023+45x_24024+47x_24025+4x_24026+60x_24027+76x_24028+93x_24029+57x_24030+16x_24031+14x_24032+11x_24033+97x_24034+74x_24035+89x_24036+58x_24037+30x_24038+61x_24039+74x_24040+68x_24041+4x_24042+91x_24043+45x_24044+32x_24045+43x_24046+3x_24047+12x_24048+40x_24049+90x_24050+86x_24051+62x_24052+38x_24053+80x_24054+19x_24055+77x_24056+8x_24057+82x_24058+23x_24059+2x_24060+96x_24061+60x_24062+21x_24063+61x_24064+27x_24065+89x_24066+4x_24067+18x_24068+31x_24069+55x_24070+38x_24071+33x_24072+32x_24073+48x_24074+6x_24075+73x_24076+53x_24077+5x_24078+55x_24079+19x_24080+96x_24081+53x_24082+48x_24083+35x_24084+24x_24085+9x_24086+36x_24087+89x_24088+69x_24089+57x_24090+47x_24091+99x_24092+76x_24093+72x_24094+40x_24095+21x_24096+64x_24097+96x_24098+51x_24099+13x_24100+43x_24101+32x_24102+7x_24103+15x_24104+68x_24105+83x_24106+9x_24107+73x_24108+20x_24109+23x_24110+49x_24111+3x_24112+38x_24113+72x_24114+65x_24115+72x_24116+70x_24117+42x_24118+74x_24119+44x_24120+19x_24121+27x_24122+75x_24123+75x_24124+8x_24125+81x_24126+57x_24127+21x_24128+64x_24129+93x_24130+47x_24131+89x_24132+98x_24133+75x_24134+44x_24135+76x_24136+79x_24137+74x_24138+88x_24139+80x_24140+65x_24141+71x_24142+61x_24143+60x_24144+37x_24145+92x_24146+10x_24147+7x_24148+48x_24149+23x_24150+35x_24151+11x_24152+37x_24153+46x_24154+2x_24155+73x_24156+51x_24157+23x_24158+65x_24159+91x_24160+31x_24161+21x_24162+3x_24163+32x_24164+67x_24165+52x_24166+59x_24167+23x_24168+99x_24169+93x_24170+65x_24171+48x_24172+60x_24173+48x_24174+57x_24175+12x_24176+70x_24177+38x_24178+63x_24179+51x_24180+60x_24181+82x_24182+21x_24183+14x_24184+55x_24185+4x_24186+70x_24187+37x_24188+93x_24189+48x_24190+6x_24191+65x_24192+76x_24193+54x_24194+95x_24195+53x_24196+39x_24197+30x_24198+52x_24199+52x_24200+17x_24201+x_24202+41x_24203+83x_24204+77x_24205+98x_24206+31x_24207+98x_24208+80x_24209+99x_24210+11x_24211+94x_24212+35x_24213+2x_24214+86x_24215+45x_24216+18x_24217+22x_24218+72x_24219+16x_24220+72x_24221+100x_24222+49x_24223+65x_24224+47x_24225+83x_24226+96x_24227+79x_24228+32x_24229+19x_24230+62x_24231+44x_24232+98x_24233+60x_24234+98x_24235+56x_24236+81x_24237+87x_24238+75x_24239+24x_24240+46x_24241+68x_24242+48x_24243+92x_24244+18x_24245+27x_24246+68x_24247+77x_24248+49x_24249+25x_24250+53x_24251+64x_24252+16x_24253+37x_24254+100x_24255+35x_24256+54x_24257+61x_24258+47x_24259+41x_24260+57x_24261+80x_24262+7x_24263+58x_24264+73x_24265+94x_24266+44x_24267+74x_24268+26x_24269+61x_24270+3x_24271+37x_24272+80x_24273+26x_24274+98x_24275+45x_24276+81x_24277+67x_24278+69x_24279+98x_24280+56x_24281+13x_24282+57x_24283+28x_24284+40x_24285+11x_24286+15x_24287+50x_24288+92x_24289+11x_24290+12x_24291+65x_24292+87x_24293+x_24294+73x_24295+76x_24296+19x_24297+55x_24298+62x_24299+26x_24300+12x_24301+16x_24302+52x_24303+39x_24304+6x_24305+76x_24306+54x_24307+84x_24308+7x_24309+62x_24310+78x_24311+73x_24312+62x_24313+68x_24314+14x_24315+86x_24316+74x_24317+56x_24318+48x_24319+97x_24320+24x_24321+79x_24322+37x_24323+79x_24324+97x_24325+77x_24326+62x_24327+70x_24328+98x_24329+66x_24330+98x_24331+71x_24332+55x_24333+43x_24334+32x_24335+74x_24336+31x_24337+67x_24338+12x_24339+8x_24340+85x_24341+73x_24342+4x_24343+69x_24344+30x_24345+69x_24346+79x_24347+3x_24348+31x_24349+68x_24350+89x_24351+38x_24352+85x_24353+53x_24354+66x_24355+95x_24356+75x_24357+49x_24358+77x_24359+7x_24360+21x_24361+61x_24362+68x_24363+56x_24364+72x_24365+24x_24366+61x_24367+18x_24368+60x_24369+64x_24370+35x_24371+71x_24372+37x_24373+34x_24374+21x_24375+17x_24376+82x_24377+11x_24378+71x_24379+70x_24380+71x_24381+69x_24382+3x_24383+4x_24384+17x_24385+3x_24386+22x_24387+13x_24388+94x_24389+98x_24390+30x_24391+93x_24392+36x_24393+94x_24394+42x_24395+68x_24396+5x_24397+96x_24398+33x_24399+97x_24400+69x_24401+15x_24402+30x_24403+26x_24404+37x_24405+67x_24406+44x_24407+21x_24408+91x_24409+66x_24410+2x_24411+70x_24412+78x_24413+52x_24414+30x_24415+58x_24416+100x_24417+55x_24418+19x_24419+85x_24420+46x_24421+39x_24422+79x_24423+25x_24424+7x_24425+36x_24426+36x_24427+49x_24428+62x_24429+23x_24430+18x_24431+95x_24432+6x_24433+45x_24434+27x_24435+83x_24436+20x_24437+48x_24438+53x_24439+4x_24440+24x_24441+36x_24442+54x_24443+91x_24444+31x_24445+19x_24446+71x_24447+63x_24448+8x_24449+68x_24450+78x_24451+12x_24452+75x_24453+69x_24454+38x_24455+77x_24456+82x_24457+86x_24458+x_24459+88x_24460+75x_24461+69x_24462+40x_24463+76x_24464+60x_24465+80x_24466+27x_24467+89x_24468+72x_24469+33x_24470+88x_24471+24x_24472+72x_24473+49x_24474+84x_24475+60x_24476+93x_24477+24x_24478+95x_24479+64x_24480+65x_24481+69x_24482+50x_24483+43x_24484+82x_24485+57x_24486+3x_24487+81x_24488+98x_24489+59x_24490+94x_24491+83x_24492+21x_24493+75x_24494+56x_24495+35x_24496+2x_24497+72x_24498+98x_24499+96x_24500+96x_24501+41x_24502+41x_24503+17x_24504+71x_24505+42x_24506+26x_24507+58x_24508+68x_24509+66x_24510+87x_24511+5x_24512+79x_24513+67x_24514+3x_24515+59x_24516+78x_24517+95x_24518+27x_24519+98x_24520+53x_24521+42x_24522+57x_24523+93x_24524+29x_24525+16x_24526+89x_24527+25x_24528+36x_24529+28x_24530+14x_24531+29x_24532+10x_24533+82x_24534+35x_24535+79x_24536+45x_24537+59x_24538+50x_24539+75x_24540+40x_24541+74x_24542+91x_24543+45x_24544+23x_24545+25x_24546+89x_24547+76x_24548+73x_24549+x_24550+32x_24551+32x_24552+37x_24553+58x_24554+40x_24555+43x_24556+46x_24557+31x_24558+54x_24559+31x_24560+83x_24561+23x_24562+40x_24563+60x_24564+56x_24565+40x_24566+77x_24567+12x_24568+71x_24569+13x_24570+94x_24571+68x_24572+68x_24573+74x_24574+21x_24575+62x_24576+80x_24577+52x_24578+85x_24579+20x_24580+56x_24581+65x_24582+68x_24583+92x_24584+42x_24585+52x_24586+91x_24587+54x_24588+59x_24589+43x_24590+81x_24591+75x_24592+54x_24593+49x_24594+76x_24595+61x_24596+62x_24597+51x_24598+27x_24599+9x_24600+38x_24601+63x_24602+80x_24603+74x_24604+42x_24605+49x_24606+30x_24607+57x_24608+16x_24609+69x_24610+100x_24611+55x_24612+31x_24613+50x_24614+16x_24615+84x_24616+19x_24617+96x_24618+35x_24619+29x_24620+97x_24621+69x_24622+83x_24623+59x_24624+63x_24625+61x_24626+68x_24627+62x_24628+57x_24629+42x_24630+60x_24631+93x_24632+74x_24633+7x_24634+89x_24635+63x_24636+86x_24637+21x_24638+29x_24639+90x_24640+12x_24641+63x_24642+39x_24643+65x_24644+43x_24645+69x_24646+75x_24647+26x_24648+99x_24649+81x_24650+12x_24651+87x_24652+31x_24653+87x_24654+83x_24655+40x_24656+33x_24657+14x_24658+10x_24659+78x_24660+72x_24661+72x_24662+6x_24663+42x_24664+39x_24665+55x_24666+5x_24667+7x_24668+98x_24669+67x_24670+52x_24671+64x_24672+68x_24673+98x_24674+38x_24675+43x_24676+30x_24677+22x_24678+8x_24679+80x_24680+6x_24681+33x_24682+14x_24683+97x_24684+84x_24685+44x_24686+3x_24687+95x_24688+35x_24689+11x_24690+98x_24691+52x_24692+51x_24693+37x_24694+9x_24695+6x_24696+87x_24697+24x_24698+13x_24699+78x_24700+98x_24701+49x_24702+76x_24703+52x_24704+70x_24705+29x_24706+17x_24707+55x_24708+11x_24709+22x_24710+74x_24711+x_24712+12x_24713+9x_24714+60x_24715+88x_24716+77x_24717+34x_24718+16x_24719+30x_24720+85x_24721+4x_24722+77x_24723+13x_24724+12x_24725+48x_24726+13x_24727+34x_24728+59x_24729+6x_24730+3x_24731+89x_24732+95x_24733+100x_24734+86x_24735+80x_24736+74x_24737+44x_24738+12x_24739+37x_24740+65x_24741+75x_24742+96x_24743+15x_24744+55x_24745+31x_24746+98x_24747+50x_24748+10x_24749+94x_24750+83x_24751+21x_24752+96x_24753+96x_24754+95x_24755+36x_24756+69x_24757+67x_24758+87x_24759+70x_24760+77x_24761+92x_24762+87x_24763+29x_24764+55x_24765+22x_24766+13x_24767+49x_24768+12x_24769+73x_24770+17x_24771+93x_24772+68x_24773+97x_24774+43x_24775+29x_24776+96x_24777+64x_24778+30x_24779+32x_24780+61x_24781+95x_24782+33x_24783+2x_24784+58x_24785+59x_24786+18x_24787+16x_24788+96x_24789+52x_24790+7x_24791+x_24792+69x_24793+14x_24794+94x_24795+70x_24796+41x_24797+81x_24798+23x_24799+93x_24800+19x_24801+67x_24802+14x_24803+6x_24804+6x_24805+21x_24806+89x_24807+35x_24808+90x_24809+23x_24810+49x_24811+79x_24812+60x_24813+35x_24814+24x_24815+4x_24816+74x_24817+90x_24818+41x_24819+40x_24820+52x_24821+x_24822+87x_24823+15x_24824+35x_24825+63x_24826+51x_24827+14x_24828+48x_24829+66x_24830+9x_24831+98x_24832+42x_24833+6x_24834+70x_24835+93x_24836+87x_24837+92x_24838+57x_24839+72x_24840+40x_24841+14x_24842+36x_24843+85x_24844+13x_24845+59x_24846+14x_24847+85x_24848+49x_24849+88x_24850+46x_24851+79x_24852+31x_24853+72x_24854+7x_24855+52x_24856+33x_24857+10x_24858+2x_24859+40x_24860+76x_24861+31x_24862+79x_24863+4x_24864+35x_24865+3x_24866+91x_24867+97x_24868+58x_24869+51x_24870+20x_24871+42x_24872+41x_24873+59x_24874+92x_24875+43x_24876+12x_24877+70x_24878+20x_24879+81x_24880+81x_24881+5x_24882+98x_24883+39x_24884+6x_24885+69x_24886+5x_24887+88x_24888+58x_24889+33x_24890+92x_24891+71x_24892+93x_24893+59x_24894+61x_24895+66x_24896+21x_24897+7x_24898+64x_24899+80x_24900+59x_24901+57x_24902+60x_24903+87x_24904+42x_24905+21x_24906+81x_24907+63x_24908+51x_24909+29x_24910+41x_24911+58x_24912+8x_24913+4x_24914+49x_24915+22x_24916+78x_24917+23x_24918+73x_24919+20x_24920+60x_24921+27x_24922+43x_24923+42x_24924+10x_24925+11x_24926+28x_24927+32x_24928+32x_24929+55x_24930+80x_24931+82x_24932+100x_24933+7x_24934+78x_24935+21x_24936+84x_24937+98x_24938+38x_24939+20x_24940+11x_24941+99x_24942+33x_24943+37x_24944+23x_24945+100x_24946+37x_24947+54x_24948+32x_24949+29x_24950+67x_24951+68x_24952+86x_24953+19x_24954+45x_24955+8x_24956+10x_24957+7x_24958+18x_24959+88x_24960+46x_24961+69x_24962+65x_24963+94x_24964+22x_24965+31x_24966+41x_24967+25x_24968+92x_24969+95x_24970+39x_24971+54x_24972+71x_24973+75x_24974+84x_24975+22x_24976+77x_24977+36x_24978+68x_24979+5x_24980+12x_24981+84x_24982+42x_24983+83x_24984+68x_24985+44x_24986+55x_24987+42x_24988+83x_24989+53x_24990+12x_24991+88x_24992+34x_24993+91x_24994+89x_24995+43x_24996+75x_24997+78x_24998+37x_24999+15x_25000+10x_25001+75x_25002+31x_25003+51x_25004+52x_25005+51x_25006+56x_25007+28x_25008+8x_25009+87x_25010+24x_25011+21x_25012+65x_25013+19x_25014+81x_25015+12x_25016+39x_25017+80x_25018+78x_25019+78x_25020+40x_25021+37x_25022+12x_25023+18x_25024+26x_25025+3x_25026+45x_25027+69x_25028+82x_25029+57x_25030+87x_25031+29x_25032+46x_25033+4x_25034+46x_25035+62x_25036+7x_25037+13x_25038+37x_25039+94x_25040+81x_25041+63x_25042+68x_25043+71x_25044+71x_25045+71x_25046+81x_25047+100x_25048+69x_25049+23x_25050+12x_25051+62x_25052+62x_25053+33x_25054+100x_25055+50x_25056+25x_25057+10x_25058+79x_25059+87x_25060+32x_25061+77x_25062+64x_25063+6x_25064+2x_25065+100x_25066+37x_25067+24x_25068+35x_25069+7x_25070+7x_25071+62x_25072+90x_25073+48x_25074+63x_25075+68x_25076+70x_25077+49x_25078+96x_25079+54x_25080+75x_25081+43x_25082+60x_25083+87x_25084+44x_25085+40x_25086+79x_25087+28x_25088+40x_25089+97x_25090+7x_25091+68x_25092+64x_25093+12x_25094+39x_25095+99x_25096+11x_25097+6x_25098+4x_25099+64x_25100+70x_25101+71x_25102+10x_25103+88x_25104+52x_25105+77x_25106+65x_25107+99x_25108+72x_25109+15x_25110+88x_25111+64x_25112+33x_25113+37x_25114+66x_25115+10x_25116+43x_25117+76x_25118+71x_25119+84x_25120+88x_25121+74x_25122+46x_25123+88x_25124+73x_25125+48x_25126+88x_25127+54x_25128+78x_25129+86x_25130+38x_25131+56x_25132+x_25133+94x_25134+29x_25135+20x_25136+54x_25137+85x_25138+68x_25139+45x_25140+19x_25141+52x_25142+83x_25143+11x_25144+17x_25145+45x_25146+77x_25147+21x_25148+59x_25149+91x_25150+33x_25151+37x_25152+75x_25153+30x_25154+81x_25155+47x_25156+24x_25157+21x_25158+34x_25159+11x_25160+55x_25161+11x_25162+29x_25163+12x_25164+18x_25165+100x_25166+21x_25167+71x_25168+46x_25169+63x_25170+9x_25171+54x_25172+48x_25173+54x_25174+23x_25175+84x_25176+36x_25177+30x_25178+14x_25179+41x_25180+23x_25181+88x_25182+42x_25183+35x_25184+93x_25185+27x_25186+81x_25187+91x_25188+14x_25189+27x_25190+90x_25191+44x_25192+88x_25193+51x_25194+74x_25195+23x_25196+7x_25197+45x_25198+58x_25199+14x_25200+20x_25201+38x_25202+31x_25203+76x_25204+6x_25205+75x_25206+89x_25207+4x_25208+87x_25209+12x_25210+7x_25211+29x_25212+34x_25213+11x_25214+4x_25215+46x_25216+91x_25217+50x_25218+56x_25219+16x_25220+30x_25221+88x_25222+76x_25223+20x_25224+18x_25225+53x_25226+81x_25227+80x_25228+93x_25229+64x_25230+62x_25231+44x_25232+83x_25233+97x_25234+100x_25235+30x_25236+53x_25237+78x_25238+4x_25239+89x_25240+12x_25241+69x_25242+46x_25243+55x_25244+63x_25245+47x_25246+40x_25247+27x_25248+55x_25249+44x_25250+5x_25251+97x_25252+47x_25253+16x_25254+87x_25255+61x_25256+35x_25257+74x_25258+53x_25259+81x_25260+30x_25261+9x_25262+72x_25263+68x_25264+8x_25265+27x_25266+83x_25267+54x_25268+41x_25269+97x_25270+23x_25271+69x_25272+18x_25273+65x_25274+51x_25275+13x_25276+20x_25277+96x_25278+89x_25279+31x_25280+44x_25281+19x_25282+80x_25283+27x_25284+32x_25285+73x_25286+20x_25287+40x_25288+44x_25289+21x_25290+16x_25291+53x_25292+96x_25293+14x_25294+91x_25295+31x_25296+45x_25297+12x_25298+60x_25299+38x_25300+27x_25301+72x_25302+82x_25303+51x_25304+40x_25305+48x_25306+30x_25307+39x_25308+6x_25309+12x_25310+47x_25311+81x_25312+86x_25313+4x_25314+58x_25315+70x_25316+82x_25317+9x_25318+33x_25319+12x_25320+78x_25321+76x_25322+34x_25323+13x_25324+35x_25325+48x_25326+70x_25327+99x_25328+70x_25329+7x_25330+42x_25331+41x_25332+89x_25333+42x_25334+31x_25335+66x_25336+84x_25337+33x_25338+83x_25339+74x_25340+78x_25341+29x_25342+73x_25343+54x_25344+40x_25345+79x_25346+94x_25347+56x_25348+81x_25349+45x_25350+79x_25351+26x_25352+88x_25353+89x_25354+63x_25355+59x_25356+64x_25357+93x_25358+40x_25359+94x_25360+96x_25361+96x_25362+33x_25363+36x_25364+4x_25365+87x_25366+47x_25367+87x_25368+82x_25369+28x_25370+35x_25371+4x_25372+71x_25373+71x_25374+63x_25375+74x_25376+57x_25377+88x_25378+55x_25379+75x_25380+70x_25381+67x_25382+67x_25383+22x_25384+44x_25385+33x_25386+63x_25387+49x_25388+89x_25389+34x_25390+97x_25391+32x_25392+80x_25393+67x_25394+99x_25395+96x_25396+62x_25397+32x_25398+96x_25399+74x_25400+82x_25401+61x_25402+20x_25403+60x_25404+8x_25405+52x_25406+34x_25407+100x_25408+89x_25409+72x_25410+21x_25411+81x_25412+94x_25413+29x_25414+68x_25415+5x_25416+20x_25417+66x_25418+x_25419+74x_25420+12x_25421+38x_25422+51x_25423+77x_25424+10x_25425+12x_25426+90x_25427+49x_25428+6x_25429+22x_25430+59x_25431+100x_25432+95x_25433+73x_25434+35x_25435+20x_25436+24x_25437+31x_25438+80x_25439+99x_25440+15x_25441+72x_25442+33x_25443+72x_25444+53x_25445+63x_25446+15x_25447+28x_25448+72x_25449+62x_25450+69x_25451+14x_25452+36x_25453+79x_25454+45x_25455+29x_25456+39x_25457+97x_25458+52x_25459+71x_25460+3x_25461+97x_25462+49x_25463+13x_25464+48x_25465+13x_25466+30x_25467+66x_25468+3x_25469+81x_25470+15x_25471+84x_25472+14x_25473+99x_25474+70x_25475+36x_25476+48x_25477+89x_25478+69x_25479+89x_25480+23x_25481+90x_25482+x_25483+92x_25484+98x_25485+61x_25486+60x_25487+38x_25488+11x_25489+95x_25490+72x_25491+34x_25492+51x_25493+60x_25494+34x_25495+84x_25496+91x_25497+18x_25498+68x_25499+40x_25500+85x_25501+92x_25502+27x_25503+19x_25504+76x_25505+71x_25506+91x_25507+74x_25508+63x_25509+40x_25510+56x_25511+94x_25512+6x_25513+44x_25514+100x_25515+43x_25516+52x_25517+62x_25518+31x_25519+52x_25520+91x_25521+5x_25522+26x_25523+95x_25524+44x_25525+91x_25526+25x_25527+82x_25528+90x_25529+44x_25530+26x_25531+82x_25532+82x_25533+91x_25534+83x_25535+59x_25536+39x_25537+61x_25538+28x_25539+57x_25540+99x_25541+9x_25542+53x_25543+45x_25544+64x_25545+78x_25546+84x_25547+10x_25548+12x_25549+84x_25550+58x_25551+36x_25552+89x_25553+92x_25554+21x_25555+48x_25556+68x_25557+67x_25558+79x_25559+32x_25560+77x_25561+17x_25562+59x_25563+31x_25564+94x_25565+39x_25566+34x_25567+11x_25568+100x_25569+77x_25570+36x_25571+37x_25572+77x_25573+35x_25574+43x_25575+34x_25576+33x_25577+20x_25578+89x_25579+50x_25580+67x_25581+53x_25582+32x_25583+7x_25584+24x_25585+83x_25586+13x_25587+52x_25588+88x_25589+38x_25590+7x_25591+22x_25592+5x_25593+33x_25594+51x_25595+4x_25596+84x_25597+73x_25598+61x_25599+98x_25600+21x_25601+37x_25602+21x_25603+17x_25604+13x_25605+45x_25606+91x_25607+88x_25608+84x_25609+15x_25610+66x_25611+61x_25612+45x_25613+63x_25614+4x_25615+2x_25616+18x_25617+5x_25618+62x_25619+87x_25620+5x_25621+84x_25622+50x_25623+3x_25624+31x_25625+87x_25626+69x_25627+57x_25628+22x_25629+19x_25630+25x_25631+56x_25632+28x_25633+35x_25634+51x_25635+69x_25636+71x_25637+70x_25638+5x_25639+79x_25640+82x_25641+87x_25642+70x_25643+16x_25644+41x_25645+78x_25646+26x_25647+18x_25648+79x_25649+84x_25650+40x_25651+89x_25652+x_25653+66x_25654+2x_25655+7x_25656+87x_25657+89x_25658+62x_25659+72x_25660+95x_25661+x_25662+57x_25663+25x_25664+30x_25665+29x_25666+7x_25667+73x_25668+91x_25669+50x_25670+90x_25671+12x_25672+40x_25673+45x_25674+91x_25675+12x_25676+63x_25677+45x_25678+28x_25679+79x_25680+6x_25681+17x_25682+27x_25683+23x_25684+25x_25685+66x_25686+96x_25687+27x_25688+51x_25689+59x_25690+41x_25691+30x_25692+87x_25693+95x_25694+7x_25695+30x_25696+98x_25697+42x_25698+83x_25699+19x_25700+99x_25701+41x_25702+19x_25703+7x_25704+96x_25705+52x_25706+36x_25707+48x_25708+42x_25709+34x_25710+62x_25711+65x_25712+96x_25713+6x_25714+32x_25715+86x_25716+57x_25717+x_25718+84x_25719+10x_25720+37x_25721+83x_25722+47x_25723+2x_25724+27x_25725+60x_25726+x_25727+54x_25728+76x_25729+6x_25730+79x_25731+85x_25732+27x_25733+2x_25734+22x_25735+83x_25736+52x_25737+45x_25738+63x_25739+44x_25740+84x_25741+13x_25742+25x_25743+100x_25744+86x_25745+39x_25746+72x_25747+47x_25748+59x_25749+13x_25750+18x_25751+6x_25752+38x_25753+5x_25754+34x_25755+13x_25756+94x_25757+86x_25758+80x_25759+x_25760+86x_25761+62x_25762+71x_25763+6x_25764+69x_25765+76x_25766+27x_25767+25x_25768+21x_25769+28x_25770+22x_25771+71x_25772+33x_25773+33x_25774+68x_25775+78x_25776+99x_25777+74x_25778+22x_25779+31x_25780+28x_25781+78x_25782+93x_25783+36x_25784+86x_25785+91x_25786+86x_25787+95x_25788+11x_25789+78x_25790+71x_25791+40x_25792+7x_25793+4x_25794+86x_25795+35x_25796+86x_25797+100x_25798+23x_25799+94x_25800+4x_25801+55x_25802+59x_25803+2x_25804+19x_25805+11x_25806+85x_25807+98x_25808+4x_25809+8x_25810+35x_25811+35x_25812+22x_25813+38x_25814+90x_25815+52x_25816+49x_25817+28x_25818+24x_25819+48x_25820+80x_25821+39x_25822+93x_25823+63x_25824+71x_25825+83x_25826+59x_25827+43x_25828+18x_25829+86x_25830+98x_25831+47x_25832+3x_25833+21x_25834+73x_25835+47x_25836+12x_25837+26x_25838+55x_25839+57x_25840+83x_25841+91x_25842+10x_25843+77x_25844+60x_25845+38x_25846+51x_25847+2x_25848+53x_25849+29x_25850+53x_25851+60x_25852+75x_25853+81x_25854+28x_25855+51x_25856+12x_25857+22x_25858+53x_25859+77x_25860+4x_25861+67x_25862+82x_25863+70x_25864+34x_25865+43x_25866+31x_25867+39x_25868+14x_25869+76x_25870+13x_25871+4x_25872+25x_25873+53x_25874+76x_25875+31x_25876+6x_25877+56x_25878+82x_25879+83x_25880+94x_25881+39x_25882+27x_25883+86x_25884+84x_25885+15x_25886+54x_25887+63x_25888+37x_25889+96x_25890+90x_25891+88x_25892+24x_25893+26x_25894+67x_25895+77x_25896+70x_25897+88x_25898+44x_25899+80x_25900+35x_25901+29x_25902+54x_25903+69x_25904+39x_25905+34x_25906+71x_25907+63x_25908+78x_25909+3x_25910+26x_25911+67x_25912+24x_25913+65x_25914+22x_25915+80x_25916+46x_25917+39x_25918+65x_25919+39x_25920+29x_25921+93x_25922+3x_25923+7x_25924+32x_25925+53x_25926+43x_25927+98x_25928+52x_25929+45x_25930+60x_25931+94x_25932+65x_25933+61x_25934+76x_25935+15x_25936+8x_25937+34x_25938+64x_25939+34x_25940+27x_25941+56x_25942+29x_25943+38x_25944+52x_25945+35x_25946+17x_25947+26x_25948+58x_25949+3x_25950+68x_25951+81x_25952+73x_25953+31x_25954+98x_25955+71x_25956+99x_25957+2x_25958+77x_25959+88x_25960+98x_25961+35x_25962+12x_25963+22x_25964+48x_25965+73x_25966+25x_25967+11x_25968+94x_25969+23x_25970+61x_25971+47x_25972+x_25973+81x_25974+83x_25975+81x_25976+41x_25977+42x_25978+40x_25979+55x_25980+50x_25981+41x_25982+86x_25983+36x_25984+12x_25985+70x_25986+32x_25987+50x_25988+41x_25989+x_25990+76x_25991+95x_25992+16x_25993+55x_25994+20x_25995+32x_25996+35x_25997+30x_25998+94x_25999+31x_26000+11x_26001+93x_26002+78x_26003+77x_26004+85x_26005+71x_26006+34x_26007+38x_26008+91x_26009+62x_26010+70x_26011+45x_26012+28x_26013+7x_26014+54x_26015+39x_26016+62x_26017+55x_26018+93x_26019+86x_26020+85x_26021+64x_26022+88x_26023+69x_26024+60x_26025+35x_26026+54x_26027+11x_26028+62x_26029+9x_26030+59x_26031+2x_26032+22x_26033+15x_26034+27x_26035+67x_26036+35x_26037+13x_26038+54x_26039+51x_26040+40x_26041+13x_26042+65x_26043+95x_26044+x_26045+69x_26046+76x_26047+63x_26048+62x_26049+15x_26050+31x_26051+53x_26052+73x_26053+71x_26054+58x_26055+90x_26056+65x_26057+90x_26058+20x_26059+82x_26060+48x_26061+90x_26062+75x_26063+15x_26064+53x_26065+48x_26066+40x_26067+85x_26068+52x_26069+39x_26070+4x_26071+17x_26072+49x_26073+43x_26074+x_26075+60x_26076+77x_26077+85x_26078+86x_26079+25x_26080+46x_26081+98x_26082+39x_26083+36x_26084+64x_26085+12x_26086+91x_26087+50x_26088+81x_26089+52x_26090+77x_26091+80x_26092+76x_26093+85x_26094+53x_26095+47x_26096+19x_26097+87x_26098+93x_26099+36x_26100+14x_26101+76x_26102+16x_26103+9x_26104+89x_26105+87x_26106+16x_26107+28x_26108+44x_26109+57x_26110+82x_26111+30x_26112+55x_26113+33x_26114+32x_26115+86x_26116+68x_26117+16x_26118+x_26119+25x_26120+36x_26121+60x_26122+63x_26123+37x_26124+69x_26125+7x_26126+42x_26127+84x_26128+36x_26129+2x_26130+37x_26131+74x_26132+19x_26133+64x_26134+32x_26135+50x_26136+25x_26137+41x_26138+87x_26139+70x_26140+29x_26141+85x_26142+32x_26143+58x_26144+65x_26145+74x_26146+79x_26147+30x_26148+81x_26149+70x_26150+98x_26151+44x_26152+36x_26153+94x_26154+86x_26155+82x_26156+100x_26157+39x_26158+80x_26159+90x_26160+53x_26161+44x_26162+97x_26163+32x_26164+80x_26165+42x_26166+93x_26167+21x_26168+74x_26169+2x_26170+74x_26171+7x_26172+57x_26173+58x_26174+59x_26175+17x_26176+38x_26177+6x_26178+17x_26179+100x_26180+86x_26181+86x_26182+36x_26183+78x_26184+5x_26185+9x_26186+7x_26187+26x_26188+29x_26189+6x_26190+51x_26191+93x_26192+56x_26193+19x_26194+50x_26195+81x_26196+87x_26197+78x_26198+6x_26199+48x_26200+49x_26201+27x_26202+28x_26203+99x_26204+53x_26205+3x_26206+36x_26207+74x_26208+52x_26209+61x_26210+62x_26211+39x_26212+97x_26213+68x_26214+79x_26215+43x_26216+75x_26217+98x_26218+x_26219+100x_26220+7x_26221+92x_26222+x_26223+48x_26224+13x_26225+64x_26226+67x_26227+60x_26228+33x_26229+57x_26230+37x_26231+63x_26232+13x_26233+36x_26234+47x_26235+90x_26236+61x_26237+79x_26238+13x_26239+66x_26240+26x_26241+44x_26242+73x_26243+34x_26244+78x_26245+75x_26246+75x_26247+93x_26248+23x_26249+78x_26250+46x_26251+31x_26252+99x_26253+50x_26254+27x_26255+86x_26256+67x_26257+100x_26258+3x_26259+60x_26260+53x_26261+23x_26262+73x_26263+16x_26264+9x_26265+43x_26266+88x_26267+44x_26268+22x_26269+4x_26270+76x_26271+16x_26272+6x_26273+94x_26274+16x_26275+17x_26276+31x_26277+79x_26278+82x_26279+40x_26280+37x_26281+25x_26282+27x_26283+68x_26284+35x_26285+75x_26286+62x_26287+85x_26288+66x_26289+46x_26290+25x_26291+13x_26292+29x_26293+18x_26294+92x_26295+66x_26296+19x_26297+91x_26298+4x_26299+75x_26300+85x_26301+92x_26302+3x_26303+78x_26304+34x_26305+72x_26306+63x_26307+44x_26308+5x_26309+6x_26310+51x_26311+57x_26312+12x_26313+6x_26314+9x_26315+63x_26316+8x_26317+50x_26318+63x_26319+78x_26320+42x_26321+24x_26322+84x_26323+44x_26324+47x_26325+47x_26326+7x_26327+41x_26328+28x_26329+4x_26330+67x_26331+56x_26332+83x_26333+21x_26334+47x_26335+23x_26336+85x_26337+23x_26338+78x_26339+12x_26340+16x_26341+53x_26342+73x_26343+3x_26344+21x_26345+52x_26346+10x_26347+38x_26348+79x_26349+60x_26350+97x_26351+31x_26352+46x_26353+70x_26354+12x_26355+26x_26356+7x_26357+12x_26358+75x_26359+31x_26360+38x_26361+64x_26362+9x_26363+67x_26364+4x_26365+62x_26366+65x_26367+97x_26368+76x_26369+97x_26370+95x_26371+69x_26372+30x_26373+71x_26374+38x_26375+63x_26376+41x_26377+91x_26378+2x_26379+30x_26380+2x_26381+80x_26382+70x_26383+94x_26384+75x_26385+79x_26386+73x_26387+58x_26388+24x_26389+13x_26390+76x_26391+59x_26392+62x_26393+94x_26394+83x_26395+71x_26396+63x_26397+33x_26398+46x_26399+47x_26400+92x_26401+2x_26402+33x_26403+7x_26404+32x_26405+52x_26406+30x_26407+11x_26408+64x_26409+96x_26410+31x_26411+52x_26412+67x_26413+91x_26414+59x_26415+82x_26416+91x_26417+48x_26418+11x_26419+54x_26420+82x_26421+43x_26422+2x_26423+47x_26424+3x_26425+32x_26426+75x_26427+99x_26428+66x_26429+16x_26430+24x_26431+75x_26432+20x_26433+38x_26434+78x_26435+7x_26436+53x_26437+27x_26438+31x_26439+85x_26440+99x_26441+34x_26442+67x_26443+9x_26444+14x_26445+26x_26446+30x_26447+27x_26448+7x_26449+46x_26450+79x_26451+13x_26452+65x_26453+56x_26454+75x_26455+76x_26456+75x_26457+88x_26458+58x_26459+24x_26460+36x_26461+24x_26462+89x_26463+66x_26464+89x_26465+8x_26466+84x_26467+75x_26468+40x_26469+4x_26470+40x_26471+71x_26472+34x_26473+19x_26474+7x_26475+62x_26476+46x_26477+74x_26478+52x_26479+71x_26480+75x_26481+97x_26482+26x_26483+54x_26484+51x_26485+77x_26486+47x_26487+43x_26488+89x_26489+37x_26490+72x_26491+47x_26492+3x_26493+25x_26494+73x_26495+98x_26496+22x_26497+36x_26498+6x_26499+36x_26500+11x_26501+80x_26502+31x_26503+75x_26504+63x_26505+80x_26506+48x_26507+16x_26508+90x_26509+33x_26510+23x_26511+17x_26512+39x_26513+18x_26514+27x_26515+7x_26516+83x_26517+15x_26518+32x_26519+61x_26520+27x_26521+41x_26522+78x_26523+77x_26524+99x_26525+87x_26526+42x_26527+73x_26528+97x_26529+78x_26530+95x_26531+57x_26532+46x_26533+20x_26534+39x_26535+92x_26536+49x_26537+97x_26538+100x_26539+17x_26540+66x_26541+94x_26542+99x_26543+57x_26544+72x_26545+39x_26546+94x_26547+23x_26548+46x_26549+67x_26550+80x_26551+16x_26552+34x_26553+35x_26554+2x_26555+69x_26556+12x_26557+80x_26558+28x_26559+58x_26560+98x_26561+35x_26562+69x_26563+47x_26564+79x_26565+29x_26566+5x_26567+24x_26568+94x_26569+77x_26570+84x_26571+44x_26572+47x_26573+87x_26574+47x_26575+47x_26576+76x_26577+53x_26578+78x_26579+93x_26580+60x_26581+59x_26582+42x_26583+57x_26584+50x_26585+8x_26586+35x_26587+71x_26588+94x_26589+40x_26590+99x_26591+48x_26592+65x_26593+33x_26594+77x_26595+61x_26596+24x_26597+100x_26598+66x_26599+99x_26600+76x_26601+97x_26602+39x_26603+16x_26604+78x_26605+52x_26606+41x_26607+62x_26608+20x_26609+81x_26610+77x_26611+32x_26612+83x_26613+10x_26614+78x_26615+93x_26616+59x_26617+36x_26618+89x_26619+5x_26620+20x_26621+31x_26622+26x_26623+68x_26624+15x_26625+23x_26626+51x_26627+82x_26628+93x_26629+74x_26630+87x_26631+22x_26632+55x_26633+97x_26634+36x_26635+58x_26636+44x_26637+41x_26638+74x_26639+78x_26640+56x_26641+86x_26642+24x_26643+13x_26644+16x_26645+27x_26646+40x_26647+71x_26648+30x_26649+77x_26650+3x_26651+8x_26652+73x_26653+99x_26654+20x_26655+45x_26656+31x_26657+22x_26658+89x_26659+12x_26660+78x_26661+47x_26662+77x_26663+86x_26664+78x_26665+49x_26666+13x_26667+29x_26668+81x_26669+17x_26670+56x_26671+84x_26672+77x_26673+68x_26674+92x_26675+92x_26676+6x_26677+79x_26678+64x_26679+42x_26680+57x_26681+31x_26682+98x_26683+88x_26684+90x_26685+24x_26686+36x_26687+24x_26688+9x_26689+43x_26690+4x_26691+35x_26692+47x_26693+37x_26694+29x_26695+18x_26696+4x_26697+83x_26698+20x_26699+27x_26700+84x_26701+38x_26702+10x_26703+21x_26704+65x_26705+28x_26706+81x_26707+51x_26708+52x_26709+69x_26710+89x_26711+92x_26712+94x_26713+66x_26714+15x_26715+8x_26716+33x_26717+81x_26718+68x_26719+40x_26720+97x_26721+68x_26722+14x_26723+3x_26724+33x_26725+88x_26726+35x_26727+83x_26728+94x_26729+76x_26730+27x_26731+79x_26732+63x_26733+18x_26734+77x_26735+34x_26736+88x_26737+93x_26738+69x_26739+91x_26740+16x_26741+61x_26742+76x_26743+11x_26744+33x_26745+54x_26746+69x_26747+10x_26748+73x_26749+36x_26750+61x_26751+27x_26752+46x_26753+17x_26754+35x_26755+76x_26756+71x_26757+40x_26758+2x_26759+94x_26760+9x_26761+58x_26762+79x_26763+60x_26764+49x_26765+77x_26766+12x_26767+92x_26768+23x_26769+68x_26770+66x_26771+69x_26772+19x_26773+83x_26774+95x_26775+49x_26776+33x_26777+89x_26778+90x_26779+37x_26780+16x_26781+54x_26782+5x_26783+78x_26784+5x_26785+94x_26786+17x_26787+53x_26788+24x_26789+66x_26790+33x_26791+47x_26792+87x_26793+48x_26794+97x_26795+92x_26796+74x_26797+69x_26798+54x_26799+21x_26800+27x_26801+75x_26802+60x_26803+89x_26804+62x_26805+58x_26806+60x_26807+85x_26808+2x_26809+90x_26810+54x_26811+x_26812+73x_26813+100x_26814+21x_26815+100x_26816+38x_26817+47x_26818+62x_26819+42x_26820+20x_26821+6x_26822+21x_26823+31x_26824+41x_26825+40x_26826+29x_26827+62x_26828+60x_26829+79x_26830+44x_26831+55x_26832+19x_26833+100x_26834+80x_26835+47x_26836+62x_26837+71x_26838+32x_26839+64x_26840+34x_26841+40x_26842+10x_26843+32x_26844+5x_26845+23x_26846+84x_26847+8x_26848+35x_26849+x_26850+94x_26851+25x_26852+4x_26853+4x_26854+84x_26855+32x_26856+77x_26857+8x_26858+23x_26859+40x_26860+53x_26861+30x_26862+24x_26863+61x_26864+93x_26865+x_26866+83x_26867+81x_26868+95x_26869+16x_26870+8x_26871+45x_26872+9x_26873+14x_26874+14x_26875+94x_26876+84x_26877+46x_26878+17x_26879+16x_26880+81x_26881+98x_26882+43x_26883+38x_26884+85x_26885+31x_26886+11x_26887+10x_26888+98x_26889+26x_26890+43x_26891+50x_26892+36x_26893+37x_26894+11x_26895+32x_26896+14x_26897+95x_26898+32x_26899+97x_26900+69x_26901+14x_26902+75x_26903+100x_26904+97x_26905+61x_26906+94x_26907+77x_26908+8x_26909+3x_26910+x_26911+57x_26912+43x_26913+42x_26914+x_26915+85x_26916+57x_26917+17x_26918+2x_26919+40x_26920+62x_26921+92x_26922+87x_26923+85x_26924+38x_26925+63x_26926+5x_26927+93x_26928+93x_26929+97x_26930+62x_26931+78x_26932+71x_26933+88x_26934+66x_26935+60x_26936+46x_26937+65x_26938+70x_26939+61x_26940+78x_26941+55x_26942+58x_26943+84x_26944+69x_26945+64x_26946+80x_26947+86x_26948+48x_26949+64x_26950+13x_26951+89x_26952+36x_26953+74x_26954+53x_26955+45x_26956+89x_26957+53x_26958+81x_26959+97x_26960+45x_26961+80x_26962+34x_26963+46x_26964+100x_26965+63x_26966+19x_26967+76x_26968+93x_26969+33x_26970+85x_26971+74x_26972+57x_26973+50x_26974+71x_26975+89x_26976+16x_26977+51x_26978+94x_26979+13x_26980+24x_26981+16x_26982+49x_26983+65x_26984+80x_26985+31x_26986+46x_26987+57x_26988+33x_26989+5x_26990+90x_26991+78x_26992+34x_26993+79x_26994+11x_26995+72x_26996+99x_26997+65x_26998+66x_26999+36x_27000+28x_27001+11x_27002+39x_27003+24x_27004+3x_27005+32x_27006+79x_27007+49x_27008+25x_27009+45x_27010+84x_27011+39x_27012+17x_27013+80x_27014+3x_27015+87x_27016+39x_27017+11x_27018+69x_27019+5x_27020+3x_27021+48x_27022+60x_27023+38x_27024+7x_27025+34x_27026+44x_27027+28x_27028+7x_27029+99x_27030+13x_27031+65x_27032+21x_27033+9x_27034+57x_27035+4x_27036+67x_27037+7x_27038+5x_27039+23x_27040+x_27041+77x_27042+17x_27043+52x_27044+79x_27045+92x_27046+33x_27047+88x_27048+39x_27049+24x_27050+2x_27051+93x_27052+75x_27053+10x_27054+x_27055+28x_27056+69x_27057+84x_27058+61x_27059+98x_27060+11x_27061+64x_27062+14x_27063+73x_27064+16x_27065+91x_27066+62x_27067+59x_27068+5x_27069+41x_27070+10x_27071+56x_27072+78x_27073+20x_27074+52x_27075+67x_27076+72x_27077+68x_27078+73x_27079+69x_27080+10x_27081+11x_27082+43x_27083+13x_27084+x_27085+7x_27086+16x_27087+49x_27088+35x_27089+72x_27090+44x_27091+58x_27092+58x_27093+37x_27094+12x_27095+79x_27096+33x_27097+39x_27098+64x_27099+13x_27100+23x_27101+65x_27102+4x_27103+65x_27104+80x_27105+40x_27106+100x_27107+59x_27108+48x_27109+59x_27110+37x_27111+96x_27112+81x_27113+10x_27114+7x_27115+86x_27116+45x_27117+62x_27118+49x_27119+40x_27120+26x_27121+16x_27122+99x_27123+50x_27124+98x_27125+85x_27126+35x_27127+53x_27128+92x_27129+6x_27130+60x_27131+20x_27132+66x_27133+3x_27134+95x_27135+56x_27136+47x_27137+79x_27138+61x_27139+73x_27140+36x_27141+7x_27142+37x_27143+63x_27144+50x_27145+74x_27146+17x_27147+7x_27148+7x_27149+66x_27150+2x_27151+30x_27152+75x_27153+82x_27154+72x_27155+30x_27156+63x_27157+53x_27158+97x_27159+77x_27160+95x_27161+6x_27162+50x_27163+61x_27164+56x_27165+59x_27166+25x_27167+97x_27168+35x_27169+50x_27170+22x_27171+66x_27172+13x_27173+47x_27174+96x_27175+30x_27176+24x_27177+55x_27178+26x_27179+10x_27180+45x_27181+49x_27182+29x_27183+47x_27184+11x_27185+64x_27186+49x_27187+54x_27188+49x_27189+87x_27190+22x_27191+18x_27192+7x_27193+98x_27194+88x_27195+60x_27196+92x_27197+32x_27198+33x_27199+13x_27200+3x_27201+30x_27202+24x_27203+54x_27204+52x_27205+27x_27206+58x_27207+78x_27208+92x_27209+71x_27210+87x_27211+43x_27212+x_27213+17x_27214+80x_27215+5x_27216+99x_27217+79x_27218+12x_27219+35x_27220+17x_27221+91x_27222+91x_27223+x_27224+27x_27225+61x_27226+30x_27227+3x_27228+89x_27229+15x_27230+62x_27231+30x_27232+29x_27233+69x_27234+95x_27235+72x_27236+21x_27237+9x_27238+14x_27239+50x_27240+15x_27241+96x_27242+55x_27243+21x_27244+53x_27245+86x_27246+39x_27247+48x_27248+64x_27249+84x_27250+82x_27251+34x_27252+6x_27253+77x_27254+62x_27255+99x_27256+31x_27257+19x_27258+19x_27259+59x_27260+82x_27261+90x_27262+87x_27263+90x_27264+53x_27265+48x_27266+90x_27267+57x_27268+x_27269+47x_27270+19x_27271+66x_27272+27x_27273+19x_27274+31x_27275+97x_27276+79x_27277+38x_27278+9x_27279+15x_27280+7x_27281+72x_27282+33x_27283+52x_27284+15x_27285+17x_27286+35x_27287+79x_27288+30x_27289+21x_27290+62x_27291+91x_27292+20x_27293+8x_27294+19x_27295+32x_27296+5x_27297+51x_27298+84x_27299+28x_27300+96x_27301+12x_27302+38x_27303+44x_27304+30x_27305+42x_27306+36x_27307+47x_27308+19x_27309+81x_27310+23x_27311+92x_27312+15x_27313+12x_27314+34x_27315+7x_27316+35x_27317+71x_27318+29x_27319+57x_27320+10x_27321+100x_27322+24x_27323+43x_27324+3x_27325+50x_27326+99x_27327+79x_27328+3x_27329+22x_27330+12x_27331+6x_27332+62x_27333+34x_27334+18x_27335+92x_27336+94x_27337+37x_27338+10x_27339+80x_27340+85x_27341+87x_27342+49x_27343+31x_27344+84x_27345+64x_27346+72x_27347+44x_27348+36x_27349+25x_27350+71x_27351+35x_27352+20x_27353+64x_27354+30x_27355+55x_27356+80x_27357+75x_27358+34x_27359+23x_27360+64x_27361+73x_27362+69x_27363+68x_27364+99x_27365+88x_27366+45x_27367+33x_27368+77x_27369+23x_27370+67x_27371+59x_27372+100x_27373+26x_27374+72x_27375+3x_27376+51x_27377+42x_27378+39x_27379+84x_27380+58x_27381+51x_27382+13x_27383+38x_27384+83x_27385+2x_27386+30x_27387+41x_27388+95x_27389+4x_27390+21x_27391+58x_27392+33x_27393+87x_27394+26x_27395+3x_27396+17x_27397+30x_27398+91x_27399+89x_27400+96x_27401+49x_27402+86x_27403+4x_27404+12x_27405+24x_27406+14x_27407+34x_27408+44x_27409+75x_27410+89x_27411+2x_27412+70x_27413+70x_27414+53x_27415+29x_27416+98x_27417+50x_27418+62x_27419+14x_27420+53x_27421+47x_27422+57x_27423+92x_27424+89x_27425+99x_27426+28x_27427+3x_27428+96x_27429+79x_27430+82x_27431+59x_27432+2x_27433+49x_27434+67x_27435+79x_27436+61x_27437+97x_27438+14x_27439+48x_27440+91x_27441+34x_27442+7x_27443+91x_27444+25x_27445+69x_27446+68x_27447+16x_27448+27x_27449+42x_27450+80x_27451+31x_27452+7x_27453+28x_27454+74x_27455+44x_27456+47x_27457+33x_27458+x_27459+73x_27460+32x_27461+49x_27462+87x_27463+67x_27464+42x_27465+27x_27466+23x_27467+30x_27468+34x_27469+74x_27470+71x_27471+81x_27472+18x_27473+94x_27474+72x_27475+57x_27476+82x_27477+34x_27478+15x_27479+100x_27480+x_27481+93x_27482+17x_27483+75x_27484+20x_27485+12x_27486+43x_27487+57x_27488+18x_27489+48x_27490+31x_27491+60x_27492+68x_27493+x_27494+62x_27495+43x_27496+98x_27497+43x_27498+36x_27499+49x_27500+87x_27501+31x_27502+29x_27503+24x_27504+37x_27505+52x_27506+90x_27507+45x_27508+24x_27509+21x_27510+89x_27511+90x_27512+68x_27513+86x_27514+25x_27515+24x_27516+67x_27517+5x_27518+23x_27519+51x_27520+50x_27521+12x_27522+59x_27523+59x_27524+15x_27525+20x_27526+39x_27527+45x_27528+26x_27529+50x_27530+30x_27531+25x_27532+12x_27533+91x_27534+24x_27535+61x_27536+31x_27537+14x_27538+66x_27539+14x_27540+98x_27541+89x_27542+89x_27543+51x_27544+80x_27545+5x_27546+63x_27547+21x_27548+75x_27549+35x_27550+4x_27551+75x_27552+47x_27553+68x_27554+69x_27555+59x_27556+100x_27557+11x_27558+9x_27559+31x_27560+33x_27561+20x_27562+19x_27563+44x_27564+62x_27565+40x_27566+40x_27567+68x_27568+99x_27569+78x_27570+x_27571+16x_27572+27x_27573+71x_27574+69x_27575+99x_27576+x_27577+9x_27578+6x_27579+24x_27580+74x_27581+6x_27582+19x_27583+69x_27584+30x_27585+29x_27586+75x_27587+31x_27588+91x_27589+37x_27590+45x_27591+66x_27592+74x_27593+89x_27594+11x_27595+61x_27596+94x_27597+69x_27598+74x_27599+68x_27600+65x_27601+93x_27602+54x_27603+6x_27604+66x_27605+55x_27606+85x_27607+81x_27608+46x_27609+58x_27610+22x_27611+70x_27612+42x_27613+32x_27614+91x_27615+87x_27616+48x_27617+24x_27618+72x_27619+53x_27620+28x_27621+91x_27622+72x_27623+71x_27624+32x_27625+100x_27626+60x_27627+38x_27628+43x_27629+87x_27630+6x_27631+51x_27632+81x_27633+2x_27634+22x_27635+17x_27636+67x_27637+97x_27638+87x_27639+79x_27640+87x_27641+38x_27642+97x_27643+9x_27644+29x_27645+72x_27646+65x_27647+2x_27648+67x_27649+21x_27650+12x_27651+70x_27652+85x_27653+92x_27654+91x_27655+52x_27656+11x_27657+71x_27658+99x_27659+96x_27660+50x_27661+16x_27662+29x_27663+50x_27664+33x_27665+25x_27666+17x_27667+92x_27668+40x_27669+92x_27670+99x_27671+23x_27672+27x_27673+83x_27674+85x_27675+39x_27676+39x_27677+96x_27678+92x_27679+83x_27680+31x_27681+68x_27682+70x_27683+59x_27684+4x_27685+83x_27686+92x_27687+25x_27688+76x_27689+82x_27690+40x_27691+69x_27692+57x_27693+68x_27694+44x_27695+5x_27696+24x_27697+75x_27698+91x_27699+10x_27700+81x_27701+94x_27702+6x_27703+39x_27704+16x_27705+81x_27706+46x_27707+70x_27708+68x_27709+86x_27710+59x_27711+28x_27712+7x_27713+33x_27714+62x_27715+62x_27716+44x_27717+98x_27718+85x_27719+6x_27720+85x_27721+100x_27722+58x_27723+66x_27724+74x_27725+82x_27726+46x_27727+81x_27728+34x_27729+37x_27730+41x_27731+11x_27732+44x_27733+19x_27734+22x_27735+34x_27736+82x_27737+2x_27738+52x_27739+34x_27740+89x_27741+94x_27742+9x_27743+53x_27744+77x_27745+47x_27746+86x_27747+42x_27748+48x_27749+46x_27750+78x_27751+47x_27752+88x_27753+71x_27754+62x_27755+13x_27756+54x_27757+33x_27758+65x_27759+84x_27760+64x_27761+90x_27762+18x_27763+98x_27764+54x_27765+8x_27766+93x_27767+15x_27768+95x_27769+23x_27770+91x_27771+33x_27772+2x_27773+26x_27774+62x_27775+82x_27776+21x_27777+29x_27778+89x_27779+48x_27780+81x_27781+24x_27782+91x_27783+89x_27784+35x_27785+70x_27786+13x_27787+51x_27788+9x_27789+20x_27790+3x_27791+26x_27792+67x_27793+71x_27794+49x_27795+66x_27796+16x_27797+91x_27798+96x_27799+71x_27800+78x_27801+96x_27802+50x_27803+19x_27804+35x_27805+93x_27806+38x_27807+60x_27808+90x_27809+33x_27810+23x_27811+80x_27812+15x_27813+58x_27814+86x_27815+83x_27816+48x_27817+69x_27818+34x_27819+70x_27820+19x_27821+x_27822+25x_27823+82x_27824+90x_27825+23x_27826+20x_27827+18x_27828+4x_27829+24x_27830+4x_27831+77x_27832+58x_27833+25x_27834+x_27835+43x_27836+60x_27837+49x_27838+32x_27839+54x_27840+88x_27841+51x_27842+11x_27843+82x_27844+63x_27845+2x_27846+12x_27847+20x_27848+10x_27849+95x_27850+8x_27851+32x_27852+52x_27853+19x_27854+67x_27855+66x_27856+46x_27857+10x_27858+77x_27859+34x_27860+99x_27861+88x_27862+7x_27863+90x_27864+49x_27865+84x_27866+8x_27867+25x_27868+27x_27869+5x_27870+26x_27871+50x_27872+17x_27873+95x_27874+18x_27875+38x_27876+100x_27877+87x_27878+83x_27879+77x_27880+3x_27881+19x_27882+21x_27883+2x_27884+12x_27885+32x_27886+26x_27887+19x_27888+71x_27889+43x_27890+45x_27891+60x_27892+85x_27893+56x_27894+11x_27895+35x_27896+94x_27897+13x_27898+47x_27899+77x_27900+40x_27901+4x_27902+81x_27903+63x_27904+18x_27905+12x_27906+94x_27907+51x_27908+25x_27909+75x_27910+29x_27911+26x_27912+42x_27913+87x_27914+x_27915+26x_27916+38x_27917+66x_27918+82x_27919+19x_27920+22x_27921+25x_27922+21x_27923+95x_27924+45x_27925+72x_27926+48x_27927+45x_27928+3x_27929+37x_27930+93x_27931+82x_27932+57x_27933+96x_27934+9x_27935+78x_27936+31x_27937+32x_27938+77x_27939+49x_27940+46x_27941+87x_27942+66x_27943+66x_27944+14x_27945+28x_27946+97x_27947+87x_27948+100x_27949+7x_27950+23x_27951+17x_27952+49x_27953+x_27954+14x_27955+92x_27956+22x_27957+50x_27958+97x_27959+27x_27960+12x_27961+94x_27962+76x_27963+21x_27964+33x_27965+49x_27966+93x_27967+96x_27968+13x_27969+48x_27970+80x_27971+44x_27972+70x_27973+17x_27974+13x_27975+97x_27976+96x_27977+50x_27978+13x_27979+x_27980+55x_27981+41x_27982+70x_27983+53x_27984+85x_27985+49x_27986+62x_27987+13x_27988+9x_27989+74x_27990+78x_27991+33x_27992+93x_27993+91x_27994+7x_27995+88x_27996+75x_27997+43x_27998+6x_27999+14x_28000+8x_28001+41x_28002+78x_28003+25x_28004+13x_28005+97x_28006+63x_28007+12x_28008+78x_28009+81x_28010+37x_28011+84x_28012+96x_28013+85x_28014+11x_28015+8x_28016+61x_28017+35x_28018+96x_28019+65x_28020+7x_28021+3x_28022+86x_28023+15x_28024+57x_28025+88x_28026+68x_28027+63x_28028+41x_28029+5x_28030+80x_28031+80x_28032+59x_28033+36x_28034+71x_28035+68x_28036+17x_28037+30x_28038+21x_28039+10x_28040+26x_28041+75x_28042+19x_28043+15x_28044+70x_28045+26x_28046+37x_28047+63x_28048+86x_28049+12x_28050+19x_28051+62x_28052+34x_28053+38x_28054+62x_28055+53x_28056+49x_28057+69x_28058+80x_28059+25x_28060+56x_28061+49x_28062+39x_28063+52x_28064+24x_28065+97x_28066+90x_28067+7x_28068+2x_28069+85x_28070+19x_28071+36x_28072+97x_28073+97x_28074+64x_28075+7x_28076+97x_28077+71x_28078+66x_28079+85x_28080+94x_28081+91x_28082+78x_28083+6x_28084+23x_28085+4x_28086+85x_28087+21x_28088+48x_28089+26x_28090+21x_28091+3x_28092+66x_28093+35x_28094+39x_28095+24x_28096+39x_28097+57x_28098+37x_28099+63x_28100+49x_28101+15x_28102+82x_28103+44x_28104+3x_28105+81x_28106+34x_28107+30x_28108+46x_28109+11x_28110+29x_28111+41x_28112+41x_28113+69x_28114+53x_28115+49x_28116+4x_28117+56x_28118+44x_28119+21x_28120+36x_28121+94x_28122+57x_28123+82x_28124+28x_28125+3x_28126+8x_28127+56x_28128+5x_28129+27x_28130+88x_28131+39x_28132+62x_28133+32x_28134+33x_28135+76x_28136+85x_28137+92x_28138+22x_28139+14x_28140+47x_28141+9x_28142+65x_28143+58x_28144+88x_28145+70x_28146+74x_28147+48x_28148+92x_28149+9x_28150+52x_28151+33x_28152+67x_28153+27x_28154+7x_28155+95x_28156+11x_28157+41x_28158+63x_28159+57x_28160+59x_28161+76x_28162+24x_28163+4x_28164+33x_28165+45x_28166+18x_28167+38x_28168+31x_28169+43x_28170+30x_28171+29x_28172+46x_28173+78x_28174+88x_28175+44x_28176+59x_28177+59x_28178+31x_28179+83x_28180+22x_28181+88x_28182+72x_28183+79x_28184+30x_28185+41x_28186+11x_28187+22x_28188+43x_28189+87x_28190+23x_28191+75x_28192+22x_28193+50x_28194+18x_28195+81x_28196+87x_28197+71x_28198+80x_28199+46x_28200+35x_28201+2x_28202+22x_28203+55x_28204+19x_28205+42x_28206+12x_28207+3x_28208+5x_28209+89x_28210+9x_28211+97x_28212+63x_28213+35x_28214+72x_28215+20x_28216+47x_28217+56x_28218+26x_28219+98x_28220+x_28221+55x_28222+44x_28223+13x_28224+84x_28225+12x_28226+35x_28227+86x_28228+36x_28229+27x_28230+59x_28231+41x_28232+92x_28233+94x_28234+11x_28235+48x_28236+82x_28237+51x_28238+83x_28239+56x_28240+64x_28241+18x_28242+79x_28243+16x_28244+72x_28245+x_28246+84x_28247+66x_28248+41x_28249+96x_28250+25x_28251+25x_28252+65x_28253+81x_28254+35x_28255+82x_28256+91x_28257+16x_28258+46x_28259+30x_28260+46x_28261+31x_28262+72x_28263+20x_28264+29x_28265+51x_28266+69x_28267+13x_28268+78x_28269+59x_28270+50x_28271+49x_28272+82x_28273+12x_28274+56x_28275+36x_28276+33x_28277+56x_28278+94x_28279+6x_28280+50x_28281+100x_28282+13x_28283+3x_28284+23x_28285+5x_28286+17x_28287+61x_28288+5x_28289+34x_28290+30x_28291+67x_28292+96x_28293+27x_28294+98x_28295+47x_28296+90x_28297+51x_28298+62x_28299+71x_28300+91x_28301+38x_28302+57x_28303+25x_28304+37x_28305+18x_28306+70x_28307+8x_28308+7x_28309+78x_28310+60x_28311+99x_28312+5x_28313+72x_28314+37x_28315+42x_28316+32x_28317+68x_28318+47x_28319+91x_28320+52x_28321+93x_28322+22x_28323+55x_28324+68x_28325+90x_28326+30x_28327+66x_28328+90x_28329+93x_28330+20x_28331+14x_28332+46x_28333+92x_28334+97x_28335+48x_28336+15x_28337+47x_28338+74x_28339+22x_28340+65x_28341+78x_28342+48x_28343+26x_28344+4x_28345+53x_28346+16x_28347+x_28348+93x_28349+98x_28350+83x_28351+99x_28352+85x_28353+78x_28354+2x_28355+36x_28356+76x_28357+43x_28358+46x_28359+73x_28360+56x_28361+26x_28362+35x_28363+62x_28364+61x_28365+99x_28366+9x_28367+84x_28368+76x_28369+17x_28370+83x_28371+49x_28372+25x_28373+17x_28374+78x_28375+9x_28376+44x_28377+25x_28378+69x_28379+28x_28380+21x_28381+88x_28382+98x_28383+95x_28384+99x_28385+19x_28386+2x_28387+4x_28388+36x_28389+45x_28390+49x_28391+41x_28392+27x_28393+50x_28394+59x_28395+99x_28396+84x_28397+55x_28398+83x_28399+66x_28400+54x_28401+40x_28402+28x_28403+46x_28404+47x_28405+42x_28406+57x_28407+64x_28408+35x_28409+27x_28410+41x_28411+52x_28412+90x_28413+16x_28414+2x_28415+32x_28416+43x_28417+74x_28418+81x_28419+83x_28420+65x_28421+24x_28422+90x_28423+78x_28424+82x_28425+49x_28426+30x_28427+95x_28428+46x_28429+39x_28430+61x_28431+51x_28432+61x_28433+65x_28434+17x_28435+43x_28436+2x_28437+92x_28438+20x_28439+72x_28440+79x_28441+41x_28442+45x_28443+71x_28444+27x_28445+51x_28446+26x_28447+79x_28448+9x_28449+75x_28450+8x_28451+12x_28452+45x_28453+48x_28454+41x_28455+27x_28456+75x_28457+26x_28458+97x_28459+98x_28460+96x_28461+36x_28462+x_28463+48x_28464+85x_28465+46x_28466+97x_28467+95x_28468+80x_28469+75x_28470+16x_28471+28x_28472+41x_28473+5x_28474+100x_28475+70x_28476+38x_28477+50x_28478+71x_28479+9x_28480+10x_28481+25x_28482+84x_28483+90x_28484+12x_28485+86x_28486+45x_28487+13x_28488+12x_28489+10x_28490+17x_28491+12x_28492+18x_28493+67x_28494+78x_28495+61x_28496+52x_28497+81x_28498+45x_28499+74x_28500+28x_28501+70x_28502+79x_28503+26x_28504+22x_28505+50x_28506+53x_28507+94x_28508+36x_28509+45x_28510+52x_28511+48x_28512+97x_28513+85x_28514+53x_28515+10x_28516+7x_28517+10x_28518+24x_28519+6x_28520+9x_28521+55x_28522+94x_28523+58x_28524+27x_28525+16x_28526+77x_28527+16x_28528+2x_28529+50x_28530+43x_28531+14x_28532+42x_28533+98x_28534+19x_28535+73x_28536+77x_28537+59x_28538+7x_28539+50x_28540+62x_28541+69x_28542+53x_28543+65x_28544+35x_28545+13x_28546+35x_28547+35x_28548+26x_28549+25x_28550+6x_28551+74x_28552+18x_28553+79x_28554+85x_28555+57x_28556+55x_28557+26x_28558+82x_28559+60x_28560+45x_28561+54x_28562+15x_28563+6x_28564+31x_28565+9x_28566+62x_28567+25x_28568+77x_28569+80x_28570+81x_28571+18x_28572+83x_28573+51x_28574+39x_28575+9x_28576+8x_28577+79x_28578+48x_28579+12x_28580+82x_28581+47x_28582+78x_28583+53x_28584+4x_28585+89x_28586+48x_28587+6x_28588+49x_28589+94x_28590+83x_28591+62x_28592+44x_28593+21x_28594+47x_28595+91x_28596+18x_28597+17x_28598+23x_28599+23x_28600+61x_28601+96x_28602+2x_28603+75x_28604+32x_28605+59x_28606+53x_28607+47x_28608+29x_28609+84x_28610+33x_28611+10x_28612+23x_28613+55x_28614+28x_28615+81x_28616+45x_28617+16x_28618+x_28619+58x_28620+24x_28621+63x_28622+8x_28623+34x_28624+3x_28625+23x_28626+27x_28627+61x_28628+68x_28629+90x_28630+41x_28631+27x_28632+16x_28633+64x_28634+23x_28635+59x_28636+72x_28637+68x_28638+45x_28639+83x_28640+100x_28641+68x_28642+56x_28643+53x_28644+11x_28645+14x_28646+8x_28647+38x_28648+59x_28649+94x_28650+19x_28651+6x_28652+9x_28653+42x_28654+9x_28655+88x_28656+18x_28657+68x_28658+33x_28659+71x_28660+65x_28661+65x_28662+83x_28663+98x_28664+63x_28665+3x_28666+35x_28667+77x_28668+87x_28669+6x_28670+52x_28671+83x_28672+83x_28673+85x_28674+68x_28675+82x_28676+8x_28677+5x_28678+30x_28679+20x_28680+74x_28681+32x_28682+89x_28683+99x_28684+87x_28685+34x_28686+54x_28687+85x_28688+51x_28689+25x_28690+27x_28691+43x_28692+16x_28693+75x_28694+17x_28695+x_28696+97x_28697+52x_28698+53x_28699+86x_28700+93x_28701+54x_28702+72x_28703+97x_28704+60x_28705+37x_28706+69x_28707+4x_28708+30x_28709+95x_28710+82x_28711+57x_28712+93x_28713+27x_28714+82x_28715+43x_28716+x_28717+54x_28718+80x_28719+93x_28720+55x_28721+61x_28722+5x_28723+65x_28724+67x_28725+76x_28726+45x_28727+15x_28728+12x_28729+78x_28730+39x_28731+65x_28732+10x_28733+30x_28734+26x_28735+91x_28736+55x_28737+24x_28738+10x_28739+81x_28740+29x_28741+85x_28742+67x_28743+66x_28744+35x_28745+40x_28746+98x_28747+15x_28748+36x_28749+22x_28750+67x_28751+66x_28752+49x_28753+26x_28754+96x_28755+78x_28756+41x_28757+56x_28758+11x_28759+48x_28760+20x_28761+82x_28762+34x_28763+66x_28764+6x_28765+20x_28766+34x_28767+8x_28768+47x_28769+19x_28770+44x_28771+83x_28772+52x_28773+78x_28774+92x_28775+49x_28776+83x_28777+85x_28778+21x_28779+20x_28780+69x_28781+47x_28782+28x_28783+58x_28784+86x_28785+98x_28786+3x_28787+85x_28788+60x_28789+54x_28790+73x_28791+87x_28792+79x_28793+7x_28794+8x_28795+8x_28796+48x_28797+63x_28798+33x_28799+89x_28800+21x_28801+95x_28802+43x_28803+86x_28804+68x_28805+59x_28806+74x_28807+55x_28808+43x_28809+40x_28810+12x_28811+66x_28812+43x_28813+85x_28814+44x_28815+23x_28816+63x_28817+5x_28818+27x_28819+92x_28820+81x_28821+69x_28822+51x_28823+61x_28824+17x_28825+18x_28826+71x_28827+59x_28828+72x_28829+21x_28830+98x_28831+74x_28832+31x_28833+51x_28834+57x_28835+45x_28836+94x_28837+38x_28838+52x_28839+25x_28840+51x_28841+42x_28842+36x_28843+14x_28844+5x_28845+57x_28846+25x_28847+6x_28848+90x_28849+30x_28850+35x_28851+14x_28852+100x_28853+59x_28854+4x_28855+7x_28856+11x_28857+83x_28858+13x_28859+9x_28860+79x_28861+19x_28862+81x_28863+38x_28864+13x_28865+20x_28866+40x_28867+9x_28868+35x_28869+6x_28870+24x_28871+75x_28872+77x_28873+69x_28874+90x_28875+74x_28876+16x_28877+39x_28878+70x_28879+11x_28880+24x_28881+10x_28882+40x_28883+40x_28884+64x_28885+54x_28886+2x_28887+75x_28888+36x_28889+47x_28890+20x_28891+36x_28892+6x_28893+59x_28894+81x_28895+52x_28896+55x_28897+33x_28898+51x_28899+23x_28900+61x_28901+81x_28902+14x_28903+97x_28904+2x_28905+15x_28906+59x_28907+75x_28908+12x_28909+86x_28910+71x_28911+94x_28912+68x_28913+90x_28914+60x_28915+47x_28916+73x_28917+80x_28918+10x_28919+51x_28920+31x_28921+80x_28922+15x_28923+92x_28924+32x_28925+42x_28926+72x_28927+73x_28928+42x_28929+79x_28930+77x_28931+91x_28932+50x_28933+88x_28934+85x_28935+82x_28936+87x_28937+89x_28938+15x_28939+55x_28940+20x_28941+30x_28942+74x_28943+36x_28944+44x_28945+45x_28946+33x_28947+15x_28948+30x_28949+60x_28950+36x_28951+46x_28952+21x_28953+35x_28954+29x_28955+95x_28956+21x_28957+59x_28958+17x_28959+81x_28960+20x_28961+65x_28962+87x_28963+57x_28964+41x_28965+10x_28966+41x_28967+x_28968+12x_28969+80x_28970+87x_28971+39x_28972+35x_28973+14x_28974+9x_28975+60x_28976+83x_28977+30x_28978+47x_28979+57x_28980+100x_28981+5x_28982+81x_28983+51x_28984+65x_28985+100x_28986+23x_28987+9x_28988+70x_28989+3x_28990+45x_28991+55x_28992+91x_28993+86x_28994+21x_28995+9x_28996+73x_28997+81x_28998+82x_28999+33x_29000+100x_29001+44x_29002+21x_29003+66x_29004+3x_29005+75x_29006+75x_29007+61x_29008+87x_29009+56x_29010+11x_29011+25x_29012+95x_29013+69x_29014+23x_29015+65x_29016+11x_29017+84x_29018+28x_29019+91x_29020+82x_29021+61x_29022+34x_29023+3x_29024+9x_29025+39x_29026+94x_29027+85x_29028+85x_29029+71x_29030+50x_29031+26x_29032+58x_29033+83x_29034+16x_29035+92x_29036+37x_29037+64x_29038+68x_29039+37x_29040+71x_29041+35x_29042+25x_29043+19x_29044+71x_29045+83x_29046+81x_29047+89x_29048+59x_29049+68x_29050+67x_29051+59x_29052+47x_29053+96x_29054+77x_29055+33x_29056+55x_29057+24x_29058+18x_29059+64x_29060+78x_29061+48x_29062+93x_29063+11x_29064+86x_29065+25x_29066+59x_29067+76x_29068+57x_29069+27x_29070+4x_29071+95x_29072+97x_29073+39x_29074+83x_29075+23x_29076+75x_29077+26x_29078+90x_29079+8x_29080+x_29081+58x_29082+7x_29083+27x_29084+18x_29085+86x_29086+27x_29087+22x_29088+59x_29089+80x_29090+25x_29091+x_29092+10x_29093+9x_29094+6x_29095+85x_29096+23x_29097+86x_29098+47x_29099+53x_29100+74x_29101+20x_29102+55x_29103+94x_29104+22x_29105+67x_29106+46x_29107+72x_29108+52x_29109+6x_29110+6x_29111+45x_29112+24x_29113+10x_29114+100x_29115+26x_29116+44x_29117+49x_29118+69x_29119+99x_29120+51x_29121+3x_29122+56x_29123+84x_29124+86x_29125+22x_29126+7x_29127+50x_29128+57x_29129+27x_29130+13x_29131+5x_29132+68x_29133+54x_29134+65x_29135+51x_29136+41x_29137+77x_29138+91x_29139+57x_29140+77x_29141+26x_29142+96x_29143+32x_29144+8x_29145+17x_29146+x_29147+38x_29148+83x_29149+26x_29150+38x_29151+5x_29152+75x_29153+100x_29154+x_29155+20x_29156+83x_29157+94x_29158+74x_29159+85x_29160+28x_29161+25x_29162+32x_29163+82x_29164+41x_29165+18x_29166+82x_29167+8x_29168+68x_29169+13x_29170+19x_29171+93x_29172+5x_29173+61x_29174+51x_29175+42x_29176+79x_29177+30x_29178+73x_29179+59x_29180+32x_29181+11x_29182+38x_29183+19x_29184+52x_29185+x_29186+84x_29187+15x_29188+87x_29189+27x_29190+58x_29191+85x_29192+22x_29193+49x_29194+48x_29195+56x_29196+9x_29197+86x_29198+88x_29199+99x_29200+88x_29201+38x_29202+11x_29203+26x_29204+37x_29205+98x_29206+18x_29207+78x_29208+26x_29209+68x_29210+17x_29211+13x_29212+64x_29213+76x_29214+3x_29215+69x_29216+80x_29217+12x_29218+11x_29219+89x_29220+84x_29221+30x_29222+50x_29223+94x_29224+58x_29225+41x_29226+72x_29227+40x_29228+57x_29229+67x_29230+18x_29231+65x_29232+16x_29233+32x_29234+18x_29235+62x_29236+20x_29237+16x_29238+63x_29239+18x_29240+78x_29241+90x_29242+67x_29243+x_29244+100x_29245+63x_29246+62x_29247+94x_29248+48x_29249+75x_29250+60x_29251+7x_29252+77x_29253+43x_29254+79x_29255+7x_29256+66x_29257+15x_29258+82x_29259+45x_29260+86x_29261+7x_29262+66x_29263+9x_29264+83x_29265+28x_29266+44x_29267+16x_29268+93x_29269+66x_29270+47x_29271+83x_29272+81x_29273+4x_29274+31x_29275+16x_29276+29x_29277+82x_29278+60x_29279+64x_29280+72x_29281+89x_29282+6x_29283+73x_29284+79x_29285+60x_29286+91x_29287+x_29288+20x_29289+48x_29290+93x_29291+23x_29292+44x_29293+55x_29294+84x_29295+74x_29296+60x_29297+95x_29298+78x_29299+58x_29300+53x_29301+36x_29302+22x_29303+42x_29304+86x_29305+48x_29306+100x_29307+99x_29308+22x_29309+93x_29310+70x_29311+5x_29312+62x_29313+95x_29314+80x_29315+95x_29316+23x_29317+37x_29318+28x_29319+90x_29320+54x_29321+79x_29322+32x_29323+17x_29324+47x_29325+97x_29326+73x_29327+48x_29328+54x_29329+30x_29330+52x_29331+89x_29332+32x_29333+41x_29334+18x_29335+24x_29336+60x_29337+9x_29338+19x_29339+71x_29340+74x_29341+95x_29342+7x_29343+40x_29344+2x_29345+70x_29346+51x_29347+7x_29348+50x_29349+97x_29350+44x_29351+5x_29352+21x_29353+90x_29354+10x_29355+49x_29356+6x_29357+43x_29358+7x_29359+36x_29360+35x_29361+86x_29362+47x_29363+58x_29364+30x_29365+15x_29366+91x_29367+87x_29368+57x_29369+92x_29370+47x_29371+60x_29372+5x_29373+5x_29374+64x_29375+80x_29376+45x_29377+51x_29378+37x_29379+15x_29380+65x_29381+27x_29382+93x_29383+31x_29384+36x_29385+16x_29386+32x_29387+51x_29388+73x_29389+89x_29390+84x_29391+44x_29392+58x_29393+82x_29394+80x_29395+16x_29396+7x_29397+21x_29398+66x_29399+30x_29400+32x_29401+15x_29402+11x_29403+58x_29404+49x_29405+23x_29406+58x_29407+46x_29408+68x_29409+67x_29410+54x_29411+85x_29412+11x_29413+63x_29414+6x_29415+17x_29416+67x_29417+23x_29418+60x_29419+53x_29420+66x_29421+84x_29422+30x_29423+20x_29424+35x_29425+62x_29426+x_29427+68x_29428+41x_29429+100x_29430+88x_29431+34x_29432+75x_29433+42x_29434+59x_29435+83x_29436+12x_29437+72x_29438+36x_29439+74x_29440+50x_29441+57x_29442+86x_29443+78x_29444+78x_29445+94x_29446+81x_29447+92x_29448+53x_29449+77x_29450+x_29451+19x_29452+62x_29453+47x_29454+52x_29455+53x_29456+29x_29457+98x_29458+43x_29459+58x_29460+64x_29461+79x_29462+79x_29463+61x_29464+64x_29465+98x_29466+92x_29467+75x_29468+76x_29469+59x_29470+29x_29471+37x_29472+26x_29473+28x_29474+96x_29475+98x_29476+95x_29477+39x_29478+52x_29479+29x_29480+94x_29481+77x_29482+53x_29483+59x_29484+44x_29485+37x_29486+14x_29487+36x_29488+36x_29489+54x_29490+86x_29491+38x_29492+97x_29493+12x_29494+56x_29495+87x_29496+94x_29497+6x_29498+75x_29499+8x_29500+19x_29501+11x_29502+40x_29503+63x_29504+85x_29505+8x_29506+96x_29507+30x_29508+60x_29509+72x_29510+74x_29511+76x_29512+53x_29513+93x_29514+95x_29515+32x_29516+35x_29517+31x_29518+89x_29519+46x_29520+75x_29521+x_29522+12x_29523+36x_29524+49x_29525+94x_29526+87x_29527+18x_29528+42x_29529+81x_29530+82x_29531+76x_29532+81x_29533+83x_29534+53x_29535+35x_29536+84x_29537+47x_29538+67x_29539+69x_29540+74x_29541+62x_29542+75x_29543+25x_29544+37x_29545+65x_29546+18x_29547+21x_29548+32x_29549+98x_29550+45x_29551+96x_29552+76x_29553+31x_29554+50x_29555+23x_29556+25x_29557+12x_29558+80x_29559+45x_29560+59x_29561+53x_29562+13x_29563+76x_29564+89x_29565+69x_29566+52x_29567+38x_29568+80x_29569+96x_29570+22x_29571+18x_29572+31x_29573+40x_29574+7x_29575+45x_29576+61x_29577+99x_29578+73x_29579+59x_29580+64x_29581+85x_29582+85x_29583+3x_29584+20x_29585+2x_29586+78x_29587+43x_29588+69x_29589+82x_29590+30x_29591+78x_29592+37x_29593+67x_29594+74x_29595+36x_29596+6x_29597+68x_29598+43x_29599+25x_29600+83x_29601+9x_29602+14x_29603+11x_29604+6x_29605+22x_29606+77x_29607+48x_29608+60x_29609+64x_29610+13x_29611+88x_29612+55x_29613+78x_29614+54x_29615+14x_29616+95x_29617+55x_29618+63x_29619+80x_29620+44x_29621+66x_29622+11x_29623+6x_29624+38x_29625+3x_29626+36x_29627+79x_29628+7x_29629+47x_29630+69x_29631+80x_29632+50x_29633+27x_29634+80x_29635+97x_29636+9x_29637+53x_29638+42x_29639+61x_29640+2x_29641+87x_29642+99x_29643+47x_29644+20x_29645+74x_29646+64x_29647+50x_29648+42x_29649+93x_29650+70x_29651+45x_29652+57x_29653+59x_29654+96x_29655+81x_29656+57x_29657+29x_29658+65x_29659+38x_29660+12x_29661+11x_29662+64x_29663+52x_29664+89x_29665+78x_29666+78x_29667+24x_29668+8x_29669+39x_29670+56x_29671+38x_29672+73x_29673+20x_29674+43x_29675+3x_29676+23x_29677+99x_29678+83x_29679+61x_29680+60x_29681+70x_29682+12x_29683+83x_29684+63x_29685+79x_29686+2x_29687+47x_29688+53x_29689+20x_29690+79x_29691+73x_29692+59x_29693+48x_29694+68x_29695+5x_29696+20x_29697+5x_29698+66x_29699+82x_29700+46x_29701+99x_29702+49x_29703+94x_29704+69x_29705+86x_29706+24x_29707+58x_29708+27x_29709+80x_29710+10x_29711+73x_29712+86x_29713+50x_29714+3x_29715+63x_29716+64x_29717+33x_29718+75x_29719+48x_29720+33x_29721+32x_29722+19x_29723+32x_29724+33x_29725+91x_29726+63x_29727+61x_29728+59x_29729+25x_29730+92x_29731+64x_29732+61x_29733+65x_29734+97x_29735+45x_29736+32x_29737+99x_29738+13x_29739+17x_29740+45x_29741+98x_29742+75x_29743+41x_29744+40x_29745+46x_29746+84x_29747+81x_29748+91x_29749+22x_29750+11x_29751+33x_29752+21x_29753+31x_29754+53x_29755+72x_29756+100x_29757+24x_29758+12x_29759+84x_29760+89x_29761+3x_29762+35x_29763+87x_29764+79x_29765+53x_29766+39x_29767+3x_29768+68x_29769+5x_29770+69x_29771+81x_29772+63x_29773+42x_29774+58x_29775+53x_29776+29x_29777+16x_29778+43x_29779+89x_29780+75x_29781+34x_29782+96x_29783+93x_29784+34x_29785+53x_29786+95x_29787+4x_29788+58x_29789+7x_29790+6x_29791+34x_29792+23x_29793+28x_29794+56x_29795+92x_29796+37x_29797+6x_29798+67x_29799+25x_29800+22x_29801+68x_29802+66x_29803+78x_29804+52x_29805+99x_29806+31x_29807+11x_29808+74x_29809+74x_29810+45x_29811+16x_29812+20x_29813+60x_29814+60x_29815+19x_29816+92x_29817+81x_29818+8x_29819+13x_29820+16x_29821+7x_29822+63x_29823+83x_29824+18x_29825+73x_29826+7x_29827+75x_29828+90x_29829+44x_29830+5x_29831+60x_29832+68x_29833+41x_29834+30x_29835+89x_29836+78x_29837+80x_29838+68x_29839+68x_29840+46x_29841+52x_29842+14x_29843+43x_29844+52x_29845+48x_29846+85x_29847+62x_29848+56x_29849+69x_29850+94x_29851+71x_29852+61x_29853+76x_29854+19x_29855+43x_29856+39x_29857+56x_29858+73x_29859+21x_29860+83x_29861+17x_29862+91x_29863+22x_29864+16x_29865+13x_29866+38x_29867+90x_29868+43x_29869+52x_29870+31x_29871+60x_29872+20x_29873+64x_29874+92x_29875+91x_29876+34x_29877+33x_29878+16x_29879+97x_29880+52x_29881+92x_29882+40x_29883+86x_29884+30x_29885+21x_29886+13x_29887+2x_29888+84x_29889+81x_29890+7x_29891+39x_29892+69x_29893+70x_29894+62x_29895+25x_29896+80x_29897+42x_29898+31x_29899+2x_29900+43x_29901+35x_29902+60x_29903+94x_29904+41x_29905+29x_29906+49x_29907+74x_29908+93x_29909+49x_29910+29x_29911+91x_29912+47x_29913+92x_29914+18x_29915+16x_29916+90x_29917+21x_29918+10x_29919+56x_29920+93x_29921+29x_29922+79x_29923+74x_29924+22x_29925+16x_29926+8x_29927+37x_29928+57x_29929+77x_29930+62x_29931+96x_29932+83x_29933+88x_29934+75x_29935+79x_29936+47x_29937+13x_29938+9x_29939+57x_29940+47x_29941+51x_29942+94x_29943+37x_29944+41x_29945+9x_29946+60x_29947+12x_29948+94x_29949+39x_29950+42x_29951+92x_29952+62x_29953+5x_29954+19x_29955+71x_29956+34x_29957+31x_29958+98x_29959+87x_29960+87x_29961+48x_29962+47x_29963+17x_29964+87x_29965+86x_29966+98x_29967+8x_29968+80x_29969+85x_29970+2x_29971+78x_29972+52x_29973+95x_29974+12x_29975+25x_29976+61x_29977+91x_29978+37x_29979+53x_29980+x_29981+26x_29982+96x_29983+39x_29984+72x_29985+39x_29986+26x_29987+33x_29988+26x_29989+72x_29990+99x_29991+92x_29992+57x_29993+54x_29994+63x_29995+73x_29996+65x_29997+67x_29998+68x_29999+32x_30000+29x_30001+34x_30002+65x_30003+92x_30004+67x_30005+61x_30006+96x_30007+73x_30008+15x_30009+86x_30010+57x_30011+91x_30012+77x_30013+100x_30014+98x_30015+9x_30016+31x_30017+25x_30018+67x_30019+57x_30020+5x_30021+76x_30022+62x_30023+15x_30024+4x_30025+76x_30026+76x_30027+74x_30028+2x_30029+67x_30030+87x_30031+74x_30032+3x_30033+49x_30034+71x_30035+43x_30036+60x_30037+67x_30038+77x_30039+22x_30040+15x_30041+11x_30042+95x_30043+32x_30044+80x_30045+52x_30046+66x_30047+47x_30048+13x_30049+48x_30050+21x_30051+15x_30052+41x_30053+29x_30054+79x_30055+63x_30056+3x_30057+81x_30058+23x_30059+96x_30060+88x_30061+56x_30062+x_30063+50x_30064+8x_30065+56x_30066+47x_30067+52x_30068+88x_30069+19x_30070+97x_30071+68x_30072+26x_30073+46x_30074+66x_30075+44x_30076+68x_30077+13x_30078+71x_30079+52x_30080+5x_30081+71x_30082+17x_30083+31x_30084+79x_30085+82x_30086+2x_30087+42x_30088+71x_30089+75x_30090+77x_30091+58x_30092+36x_30093+84x_30094+99x_30095+98x_30096+59x_30097+17x_30098+81x_30099+43x_30100+92x_30101+24x_30102+21x_30103+41x_30104+80x_30105+56x_30106+39x_30107+44x_30108+74x_30109+61x_30110+33x_30111+53x_30112+72x_30113+80x_30114+61x_30115+99x_30116+39x_30117+60x_30118+72x_30119+73x_30120+4x_30121+18x_30122+81x_30123+32x_30124+42x_30125+74x_30126+34x_30127+63x_30128+26x_30129+65x_30130+86x_30131+62x_30132+17x_30133+32x_30134+28x_30135+46x_30136+36x_30137+79x_30138+96x_30139+59x_30140+75x_30141+8x_30142+7x_30143+73x_30144+59x_30145+22x_30146+99x_30147+84x_30148+18x_30149+63x_30150+24x_30151+81x_30152+87x_30153+23x_30154+32x_30155+77x_30156+12x_30157+91x_30158+51x_30159+27x_30160+12x_30161+44x_30162+25x_30163+7x_30164+5x_30165+68x_30166+51x_30167+37x_30168+29x_30169+95x_30170+99x_30171+79x_30172+49x_30173+99x_30174+43x_30175+95x_30176+67x_30177+92x_30178+92x_30179+17x_30180+64x_30181+99x_30182+65x_30183+80x_30184+45x_30185+16x_30186+35x_30187+12x_30188+88x_30189+12x_30190+3x_30191+68x_30192+82x_30193+70x_30194+80x_30195+81x_30196+23x_30197+15x_30198+94x_30199+99x_30200+43x_30201+42x_30202+14x_30203+99x_30204+x_30205+90x_30206+89x_30207+61x_30208+100x_30209+34x_30210+6x_30211+59x_30212+88x_30213+28x_30214+100x_30215+79x_30216+82x_30217+77x_30218+5x_30219+37x_30220+16x_30221+86x_30222+19x_30223+65x_30224+18x_30225+71x_30226+17x_30227+2x_30228+55x_30229+13x_30230+32x_30231+14x_30232+74x_30233+58x_30234+17x_30235+52x_30236+80x_30237+54x_30238+9x_30239+32x_30240+76x_30241+51x_30242+95x_30243+90x_30244+58x_30245+22x_30246+13x_30247+23x_30248+17x_30249+64x_30250+68x_30251+49x_30252+13x_30253+70x_30254+31x_30255+100x_30256+16x_30257+50x_30258+80x_30259+47x_30260+65x_30261+22x_30262+54x_30263+67x_30264+35x_30265+37x_30266+85x_30267+51x_30268+64x_30269+61x_30270+12x_30271+48x_30272+32x_30273+88x_30274+84x_30275+40x_30276+75x_30277+22x_30278+38x_30279+24x_30280+28x_30281+25x_30282+10x_30283+96x_30284+27x_30285+78x_30286+16x_30287+80x_30288+84x_30289+40x_30290+93x_30291+68x_30292+73x_30293+7x_30294+21x_30295+72x_30296+21x_30297+45x_30298+26x_30299+69x_30300+53x_30301+17x_30302+17x_30303+4x_30304+82x_30305+96x_30306+77x_30307+78x_30308+14x_30309+42x_30310+33x_30311+28x_30312+50x_30313+90x_30314+72x_30315+88x_30316+82x_30317+89x_30318+20x_30319+50x_30320+33x_30321+20x_30322+2x_30323+78x_30324+62x_30325+45x_30326+7x_30327+68x_30328+41x_30329+77x_30330+51x_30331+77x_30332+84x_30333+81x_30334+38x_30335+82x_30336+31x_30337+61x_30338+40x_30339+66x_30340+21x_30341+6x_30342+41x_30343+56x_30344+46x_30345+93x_30346+71x_30347+73x_30348+83x_30349+91x_30350+29x_30351+33x_30352+76x_30353+89x_30354+19x_30355+60x_30356+88x_30357+2x_30358+98x_30359+93x_30360+93x_30361+37x_30362+88x_30363+5x_30364+40x_30365+81x_30366+73x_30367+76x_30368+30x_30369+85x_30370+86x_30371+35x_30372+26x_30373+28x_30374+64x_30375+14x_30376+37x_30377+25x_30378+60x_30379+82x_30380+8x_30381+47x_30382+73x_30383+13x_30384+38x_30385+29x_30386+60x_30387+69x_30388+90x_30389+39x_30390+8x_30391+69x_30392+81x_30393+99x_30394+62x_30395+50x_30396+9x_30397+72x_30398+6x_30399+43x_30400+69x_30401+39x_30402+100x_30403+26x_30404+94x_30405+84x_30406+95x_30407+86x_30408+47x_30409+87x_30410+32x_30411+93x_30412+2x_30413+97x_30414+88x_30415+15x_30416+65x_30417+81x_30418+18x_30419+10x_30420+86x_30421+6x_30422+80x_30423+56x_30424+62x_30425+40x_30426+100x_30427+27x_30428+9x_30429+96x_30430+75x_30431+92x_30432+42x_30433+75x_30434+97x_30435+86x_30436+27x_30437+65x_30438+67x_30439+15x_30440+12x_30441+6x_30442+24x_30443+3x_30444+67x_30445+15x_30446+78x_30447+42x_30448+32x_30449+14x_30450+83x_30451+52x_30452+50x_30453+54x_30454+66x_30455+64x_30456+71x_30457+76x_30458+30x_30459+40x_30460+29x_30461+37x_30462+86x_30463+84x_30464+91x_30465+51x_30466+68x_30467+99x_30468+57x_30469+36x_30470+26x_30471+6x_30472+65x_30473+59x_30474+52x_30475+86x_30476+90x_30477+99x_30478+17x_30479+56x_30480+55x_30481+72x_30482+28x_30483+54x_30484+63x_30485+67x_30486+15x_30487+33x_30488+15x_30489+33x_30490+81x_30491+93x_30492+44x_30493+91x_30494+48x_30495+98x_30496+65x_30497+93x_30498+62x_30499+40x_30500+73x_30501+10x_30502+45x_30503+54x_30504+35x_30505+31x_30506+56x_30507+74x_30508+66x_30509+64x_30510+51x_30511+24x_30512+85x_30513+94x_30514+91x_30515+64x_30516+40x_30517+52x_30518+x_30519+71x_30520+52x_30521+42x_30522+92x_30523+31x_30524+35x_30525+73x_30526+13x_30527+51x_30528+42x_30529+69x_30530+69x_30531+51x_30532+79x_30533+87x_30534+78x_30535+46x_30536+63x_30537+53x_30538+7x_30539+27x_30540+77x_30541+69x_30542+8x_30543+51x_30544+31x_30545+25x_30546+2x_30547+93x_30548+86x_30549+15x_30550+43x_30551+75x_30552+95x_30553+96x_30554+87x_30555+95x_30556+92x_30557+46x_30558+26x_30559+77x_30560+66x_30561+14x_30562+63x_30563+63x_30564+24x_30565+48x_30566+36x_30567+4x_30568+49x_30569+27x_30570+45x_30571+90x_30572+76x_30573+43x_30574+34x_30575+3x_30576+38x_30577+92x_30578+9x_30579+45x_30580+60x_30581+88x_30582+36x_30583+100x_30584+18x_30585+35x_30586+26x_30587+16x_30588+x_30589+18x_30590+73x_30591+52x_30592+45x_30593+86x_30594+28x_30595+25x_30596+58x_30597+82x_30598+40x_30599+34x_30600+98x_30601+17x_30602+69x_30603+94x_30604+69x_30605+68x_30606+44x_30607+10x_30608+33x_30609+30x_30610+100x_30611+91x_30612+35x_30613+67x_30614+61x_30615+2x_30616+92x_30617+63x_30618+9x_30619+65x_30620+23x_30621+33x_30622+63x_30623+5x_30624+71x_30625+92x_30626+47x_30627+19x_30628+x_30629+56x_30630+97x_30631+87x_30632+89x_30633+26x_30634+15x_30635+95x_30636+71x_30637+9x_30638+86x_30639+4x_30640+49x_30641+100x_30642+83x_30643+28x_30644+43x_30645+39x_30646+19x_30647+30x_30648+58x_30649+80x_30650+67x_30651+34x_30652+57x_30653+66x_30654+41x_30655+48x_30656+97x_30657+90x_30658+29x_30659+8x_30660+65x_30661+4x_30662+32x_30663+72x_30664+50x_30665+67x_30666+9x_30667+65x_30668+52x_30669+95x_30670+60x_30671+68x_30672+47x_30673+11x_30674+45x_30675+66x_30676+14x_30677+35x_30678+8x_30679+94x_30680+81x_30681+79x_30682+2x_30683+99x_30684+89x_30685+37x_30686+90x_30687+53x_30688+51x_30689+43x_30690+99x_30691+47x_30692+19x_30693+12x_30694+52x_30695+90x_30696+31x_30697+42x_30698+77x_30699+66x_30700+33x_30701+31x_30702+18x_30703+67x_30704+38x_30705+94x_30706+94x_30707+81x_30708+100x_30709+97x_30710+33x_30711+71x_30712+54x_30713+34x_30714+89x_30715+45x_30716+61x_30717+89x_30718+53x_30719+48x_30720+48x_30721+36x_30722+97x_30723+10x_30724+75x_30725+13x_30726+94x_30727+22x_30728+61x_30729+77x_30730+24x_30731+55x_30732+6x_30733+82x_30734+27x_30735+53x_30736+81x_30737+29x_30738+61x_30739+36x_30740+52x_30741+80x_30742+99x_30743+27x_30744+64x_30745+86x_30746+21x_30747+47x_30748+59x_30749+42x_30750+50x_30751+74x_30752+85x_30753+30x_30754+77x_30755+77x_30756+18x_30757+8x_30758+62x_30759+12x_30760+17x_30761+45x_30762+36x_30763+57x_30764+68x_30765+41x_30766+68x_30767+8x_30768+85x_30769+57x_30770+43x_30771+97x_30772+11x_30773+34x_30774+48x_30775+66x_30776+37x_30777+2x_30778+84x_30779+18x_30780+69x_30781+91x_30782+84x_30783+29x_30784+58x_30785+23x_30786+45x_30787+27x_30788+80x_30789+33x_30790+36x_30791+52x_30792+7x_30793+62x_30794+84x_30795+19x_30796+46x_30797+68x_30798+79x_30799+75x_30800+16x_30801+12x_30802+100x_30803+48x_30804+40x_30805+23x_30806+81x_30807+28x_30808+5x_30809+43x_30810+61x_30811+22x_30812+48x_30813+13x_30814+72x_30815+91x_30816+33x_30817+16x_30818+48x_30819+87x_30820+43x_30821+78x_30822+65x_30823+32x_30824+74x_30825+71x_30826+65x_30827+97x_30828+27x_30829+95x_30830+81x_30831+76x_30832+88x_30833+11x_30834+67x_30835+8x_30836+5x_30837+91x_30838+10x_30839+56x_30840+25x_30841+69x_30842+22x_30843+12x_30844+16x_30845+13x_30846+3x_30847+60x_30848+34x_30849+9x_30850+61x_30851+71x_30852+55x_30853+90x_30854+82x_30855+11x_30856+55x_30857+36x_30858+82x_30859+99x_30860+49x_30861+61x_30862+70x_30863+23x_30864+75x_30865+14x_30866+12x_30867+19x_30868+52x_30869+95x_30870+87x_30871+16x_30872+2x_30873+29x_30874+39x_30875+46x_30876+42x_30877+97x_30878+10x_30879+56x_30880+12x_30881+55x_30882+26x_30883+23x_30884+92x_30885+63x_30886+71x_30887+75x_30888+98x_30889+86x_30890+28x_30891+27x_30892+24x_30893+79x_30894+62x_30895+91x_30896+59x_30897+64x_30898+55x_30899+66x_30900+93x_30901+75x_30902+68x_30903+10x_30904+48x_30905+24x_30906+20x_30907+84x_30908+53x_30909+38x_30910+33x_30911+56x_30912+33x_30913+54x_30914+19x_30915+87x_30916+3x_30917+44x_30918+55x_30919+21x_30920+40x_30921+55x_30922+59x_30923+57x_30924+18x_30925+35x_30926+93x_30927+78x_30928+99x_30929+92x_30930+41x_30931+93x_30932+57x_30933+8x_30934+75x_30935+3x_30936+8x_30937+64x_30938+52x_30939+28x_30940+37x_30941+15x_30942+95x_30943+28x_30944+78x_30945+72x_30946+56x_30947+8x_30948+99x_30949+98x_30950+38x_30951+43x_30952+37x_30953+22x_30954+97x_30955+99x_30956+94x_30957+52x_30958+30x_30959+50x_30960+60x_30961+20x_30962+65x_30963+35x_30964+37x_30965+95x_30966+63x_30967+67x_30968+97x_30969+15x_30970+84x_30971+24x_30972+10x_30973+23x_30974+46x_30975+87x_30976+23x_30977+88x_30978+79x_30979+82x_30980+100x_30981+36x_30982+49x_30983+9x_30984+25x_30985+88x_30986+70x_30987+69x_30988+64x_30989+55x_30990+13x_30991+67x_30992+34x_30993+39x_30994+23x_30995+49x_30996+14x_30997+86x_30998+96x_30999+10x_31000+14x_31001+22x_31002+59x_31003+67x_31004+74x_31005+81x_31006+19x_31007+5x_31008+28x_31009+87x_31010+43x_31011+73x_31012+40x_31013+50x_31014+91x_31015+29x_31016+46x_31017+14x_31018+73x_31019+11x_31020+84x_31021+87x_31022+11x_31023+52x_31024+89x_31025+62x_31026+24x_31027+10x_31028+76x_31029+34x_31030+82x_31031+52x_31032+31x_31033+76x_31034+33x_31035+47x_31036+14x_31037+15x_31038+20x_31039+55x_31040+94x_31041+20x_31042+58x_31043+89x_31044+78x_31045+27x_31046+57x_31047+89x_31048+38x_31049+10x_31050+89x_31051+5x_31052+77x_31053+26x_31054+5x_31055+16x_31056+42x_31057+84x_31058+14x_31059+5x_31060+87x_31061+100x_31062+67x_31063+46x_31064+83x_31065+7x_31066+78x_31067+29x_31068+24x_31069+60x_31070+23x_31071+15x_31072+30x_31073+39x_31074+8x_31075+66x_31076+90x_31077+15x_31078+18x_31079+3x_31080+72x_31081+71x_31082+65x_31083+53x_31084+13x_31085+26x_31086+58x_31087+55x_31088+44x_31089+26x_31090+10x_31091+25x_31092+77x_31093+59x_31094+67x_31095+53x_31096+18x_31097+76x_31098+40x_31099+84x_31100+15x_31101+72x_31102+67x_31103+52x_31104+48x_31105+73x_31106+62x_31107+28x_31108+59x_31109+44x_31110+42x_31111+6x_31112+92x_31113+88x_31114+90x_31115+7x_31116+54x_31117+58x_31118+53x_31119+50x_31120+3x_31121+71x_31122+23x_31123+13x_31124+91x_31125+82x_31126+82x_31127+74x_31128+8x_31129+78x_31130+47x_31131+38x_31132+52x_31133+19x_31134+42x_31135+24x_31136+43x_31137+44x_31138+90x_31139+88x_31140+67x_31141+89x_31142+93x_31143+6x_31144+56x_31145+54x_31146+18x_31147+12x_31148+97x_31149+39x_31150+32x_31151+26x_31152+33x_31153+97x_31154+76x_31155+63x_31156+46x_31157+79x_31158+6x_31159+9x_31160+x_31161+69x_31162+55x_31163+98x_31164+61x_31165+31x_31166+69x_31167+65x_31168+24x_31169+16x_31170+61x_31171+79x_31172+24x_31173+43x_31174+38x_31175+80x_31176+67x_31177+84x_31178+14x_31179+26x_31180+70x_31181+78x_31182+80x_31183+37x_31184+8x_31185+33x_31186+41x_31187+6x_31188+40x_31189+94x_31190+59x_31191+45x_31192+27x_31193+21x_31194+89x_31195+30x_31196+33x_31197+13x_31198+98x_31199+24x_31200+100x_31201+x_31202+51x_31203+62x_31204+76x_31205+19x_31206+80x_31207+51x_31208+53x_31209+36x_31210+49x_31211+39x_31212+7x_31213+55x_31214+17x_31215+81x_31216+12x_31217+57x_31218+53x_31219+86x_31220+40x_31221+28x_31222+66x_31223+x_31224+4x_31225+42x_31226+100x_31227+18x_31228+30x_31229+85x_31230+31x_31231+x_31232+24x_31233+30x_31234+34x_31235+72x_31236+71x_31237+54x_31238+90x_31239+32x_31240+83x_31241+57x_31242+100x_31243+51x_31244+8x_31245+35x_31246+13x_31247+22x_31248+69x_31249+93x_31250+36x_31251+77x_31252+71x_31253+74x_31254+41x_31255+49x_31256+45x_31257+58x_31258+39x_31259+19x_31260+96x_31261+31x_31262+11x_31263+2x_31264+80x_31265+37x_31266+13x_31267+23x_31268+96x_31269+86x_31270+4x_31271+76x_31272+82x_31273+21x_31274+65x_31275+34x_31276+17x_31277+78x_31278+21x_31279+94x_31280+51x_31281+18x_31282+83x_31283+39x_31284+44x_31285+37x_31286+46x_31287+88x_31288+41x_31289+76x_31290+22x_31291+4x_31292+86x_31293+73x_31294+63x_31295+93x_31296+10x_31297+83x_31298+28x_31299+31x_31300+12x_31301+44x_31302+31x_31303+82x_31304+33x_31305+14x_31306+12x_31307+33x_31308+91x_31309+88x_31310+37x_31311+87x_31312+47x_31313+99x_31314+70x_31315+75x_31316+99x_31317+26x_31318+19x_31319+33x_31320+82x_31321+55x_31322+68x_31323+41x_31324+34x_31325+61x_31326+66x_31327+96x_31328+18x_31329+64x_31330+8x_31331+97x_31332+54x_31333+48x_31334+33x_31335+38x_31336+8x_31337+55x_31338+38x_31339+71x_31340+13x_31341+69x_31342+x_31343+70x_31344+63x_31345+65x_31346+83x_31347+21x_31348+47x_31349+24x_31350+28x_31351+37x_31352+52x_31353+78x_31354+88x_31355+45x_31356+40x_31357+2x_31358+43x_31359+17x_31360+50x_31361+66x_31362+49x_31363+51x_31364+33x_31365+51x_31366+12x_31367+10x_31368+52x_31369+26x_31370+86x_31371+34x_31372+59x_31373+40x_31374+49x_31375+26x_31376+84x_31377+82x_31378+16x_31379+68x_31380+50x_31381+51x_31382+93x_31383+69x_31384+65x_31385+13x_31386+17x_31387+85x_31388+7x_31389+86x_31390+46x_31391+39x_31392+4x_31393+76x_31394+91x_31395+61x_31396+47x_31397+100x_31398+34x_31399+27x_31400+47x_31401+60x_31402+18x_31403+28x_31404+90x_31405+19x_31406+31x_31407+96x_31408+32x_31409+93x_31410+24x_31411+95x_31412+38x_31413+99x_31414+49x_31415+61x_31416+32x_31417+26x_31418+90x_31419+66x_31420+24x_31421+98x_31422+48x_31423+20x_31424+78x_31425+99x_31426+11x_31427+18x_31428+76x_31429+14x_31430+59x_31431+72x_31432+83x_31433+38x_31434+34x_31435+79x_31436+31x_31437+82x_31438+91x_31439+19x_31440+28x_31441+35x_31442+93x_31443+35x_31444+92x_31445+16x_31446+35x_31447+95x_31448+9x_31449+100x_31450+56x_31451+81x_31452+56x_31453+10x_31454+31x_31455+98x_31456+70x_31457+53x_31458+48x_31459+75x_31460+43x_31461+93x_31462+30x_31463+68x_31464+59x_31465+24x_31466+82x_31467+14x_31468+65x_31469+40x_31470+76x_31471+58x_31472+18x_31473+60x_31474+33x_31475+29x_31476+67x_31477+31x_31478+61x_31479+68x_31480+31x_31481+92x_31482+36x_31483+52x_31484+94x_31485+37x_31486+65x_31487+25x_31488+53x_31489+72x_31490+100x_31491+29x_31492+65x_31493+25x_31494+90x_31495+x_31496+54x_31497+67x_31498+88x_31499+83x_31500+97x_31501+20x_31502+41x_31503+58x_31504+32x_31505+26x_31506+62x_31507+69x_31508+43x_31509+10x_31510+x_31511+54x_31512+87x_31513+59x_31514+87x_31515+47x_31516+26x_31517+71x_31518+93x_31519+44x_31520+93x_31521+70x_31522+50x_31523+21x_31524+21x_31525+60x_31526+12x_31527+63x_31528+77x_31529+65x_31530+9x_31531+88x_31532+30x_31533+77x_31534+51x_31535+38x_31536+43x_31537+50x_31538+74x_31539+94x_31540+83x_31541+34x_31542+99x_31543+91x_31544+29x_31545+43x_31546+21x_31547+37x_31548+95x_31549+39x_31550+20x_31551+12x_31552+56x_31553+93x_31554+7x_31555+36x_31556+23x_31557+27x_31558+28x_31559+36x_31560+82x_31561+70x_31562+9x_31563+47x_31564+57x_31565+45x_31566+12x_31567+64x_31568+16x_31569+85x_31570+84x_31571+50x_31572+24x_31573+23x_31574+72x_31575+51x_31576+21x_31577+42x_31578+72x_31579+92x_31580+21x_31581+88x_31582+77x_31583+97x_31584+12x_31585+35x_31586+88x_31587+82x_31588+9x_31589+94x_31590+22x_31591+59x_31592+17x_31593+74x_31594+40x_31595+80x_31596+27x_31597+75x_31598+17x_31599+50x_31600+44x_31601+43x_31602+99x_31603+100x_31604+84x_31605+66x_31606+33x_31607+51x_31608+2x_31609+66x_31610+11x_31611+46x_31612+13x_31613+58x_31614+24x_31615+95x_31616+13x_31617+27x_31618+18x_31619+25x_31620+36x_31621+73x_31622+25x_31623+14x_31624+30x_31625+47x_31626+70x_31627+76x_31628+73x_31629+16x_31630+85x_31631+54x_31632+13x_31633+26x_31634+74x_31635+71x_31636+33x_31637+24x_31638+58x_31639+70x_31640+48x_31641+64x_31642+95x_31643+15x_31644+94x_31645+42x_31646+26x_31647+12x_31648+100x_31649+86x_31650+74x_31651+8x_31652+16x_31653+81x_31654+47x_31655+71x_31656+41x_31657+57x_31658+17x_31659+59x_31660+82x_31661+3x_31662+92x_31663+94x_31664+55x_31665+61x_31666+25x_31667+72x_31668+43x_31669+71x_31670+81x_31671+91x_31672+21x_31673+17x_31674+3x_31675+83x_31676+19x_31677+x_31678+30x_31679+6x_31680+66x_31681+32x_31682+2x_31683+x_31684+70x_31685+20x_31686+40x_31687+56x_31688+77x_31689+17x_31690+79x_31691+88x_31692+33x_31693+64x_31694+98x_31695+78x_31696+87x_31697+81x_31698+64x_31699+97x_31700+93x_31701+85x_31702+28x_31703+58x_31704+38x_31705+7x_31706+15x_31707+5x_31708+80x_31709+9x_31710+42x_31711+30x_31712+56x_31713+93x_31714+91x_31715+48x_31716+5x_31717+59x_31718+19x_31719+42x_31720+71x_31721+15x_31722+86x_31723+16x_31724+20x_31725+67x_31726+64x_31727+12x_31728+14x_31729+88x_31730+47x_31731+57x_31732+31x_31733+38x_31734+23x_31735+33x_31736+88x_31737+67x_31738+11x_31739+69x_31740+48x_31741+91x_31742+26x_31743+51x_31744+43x_31745+91x_31746+77x_31747+4x_31748+35x_31749+38x_31750+45x_31751+64x_31752+31x_31753+35x_31754+46x_31755+97x_31756+58x_31757+59x_31758+80x_31759+50x_31760+39x_31761+62x_31762+52x_31763+60x_31764+60x_31765+48x_31766+54x_31767+19x_31768+66x_31769+73x_31770+23x_31771+100x_31772+35x_31773+98x_31774+76x_31775+97x_31776+41x_31777+13x_31778+75x_31779+41x_31780+71x_31781+94x_31782+7x_31783+52x_31784+82x_31785+16x_31786+28x_31787+42x_31788+84x_31789+59x_31790+36x_31791+38x_31792+32x_31793+51x_31794+81x_31795+99x_31796+9x_31797+89x_31798+51x_31799+93x_31800+89x_31801+60x_31802+33x_31803+59x_31804+87x_31805+97x_31806+66x_31807+11x_31808+49x_31809+83x_31810+75x_31811+13x_31812+41x_31813+32x_31814+27x_31815+44x_31816+85x_31817+24x_31818+54x_31819+8x_31820+31x_31821+15x_31822+30x_31823+47x_31824+50x_31825+25x_31826+87x_31827+49x_31828+28x_31829+3x_31830+63x_31831+43x_31832+3x_31833+68x_31834+95x_31835+32x_31836+55x_31837+3x_31838+38x_31839+22x_31840+45x_31841+4x_31842+27x_31843+18x_31844+65x_31845+62x_31846+45x_31847+59x_31848+36x_31849+91x_31850+89x_31851+13x_31852+32x_31853+61x_31854+93x_31855+71x_31856+17x_31857+13x_31858+59x_31859+85x_31860+25x_31861+26x_31862+40x_31863+12x_31864+65x_31865+9x_31866+72x_31867+32x_31868+25x_31869+55x_31870+22x_31871+68x_31872+7x_31873+73x_31874+19x_31875+14x_31876+73x_31877+70x_31878+12x_31879+80x_31880+63x_31881+69x_31882+68x_31883+23x_31884+23x_31885+68x_31886+88x_31887+97x_31888+31x_31889+36x_31890+44x_31891+24x_31892+40x_31893+4x_31894+91x_31895+71x_31896+85x_31897+20x_31898+66x_31899+57x_31900+2x_31901+15x_31902+11x_31903+16x_31904+10x_31905+20x_31906+59x_31907+8x_31908+16x_31909+x_31910+30x_31911+58x_31912+31x_31913+90x_31914+3x_31915+98x_31916+63x_31917+93x_31918+29x_31919+69x_31920+43x_31921+26x_31922+52x_31923+19x_31924+90x_31925+14x_31926+31x_31927+71x_31928+63x_31929+62x_31930+90x_31931+73x_31932+5x_31933+59x_31934+85x_31935+66x_31936+37x_31937+13x_31938+9x_31939+43x_31940+8x_31941+68x_31942+x_31943+13x_31944+37x_31945+21x_31946+39x_31947+10x_31948+53x_31949+79x_31950+96x_31951+69x_31952+96x_31953+37x_31954+64x_31955+34x_31956+67x_31957+91x_31958+56x_31959+65x_31960+20x_31961+79x_31962+96x_31963+10x_31964+76x_31965+49x_31966+7x_31967+86x_31968+25x_31969+3x_31970+92x_31971+71x_31972+7x_31973+61x_31974+26x_31975+83x_31976+29x_31977+70x_31978+15x_31979+94x_31980+34x_31981+55x_31982+4x_31983+28x_31984+71x_31985+22x_31986+72x_31987+16x_31988+36x_31989+28x_31990+87x_31991+34x_31992+30x_31993+84x_31994+61x_31995+73x_31996+96x_31997+71x_31998+88x_31999+50x_32000+x_32001+20x_32002+45x_32003+31x_32004+50x_32005+89x_32006+79x_32007+7x_32008+45x_32009+21x_32010+24x_32011+24x_32012+24x_32013+7x_32014+30x_32015+79x_32016+64x_32017+91x_32018+85x_32019+10x_32020+44x_32021+61x_32022+79x_32023+50x_32024+30x_32025+60x_32026+39x_32027+57x_32028+82x_32029+5x_32030+15x_32031+45x_32032+80x_32033+73x_32034+81x_32035+79x_32036+52x_32037+20x_32038+50x_32039+64x_32040+49x_32041+60x_32042+98x_32043+9x_32044+40x_32045+73x_32046+100x_32047+59x_32048+51x_32049+81x_32050+31x_32051+42x_32052+60x_32053+60x_32054+58x_32055+4x_32056+74x_32057+42x_32058+23x_32059+42x_32060+41x_32061+26x_32062+75x_32063+64x_32064+4x_32065+93x_32066+86x_32067+43x_32068+2x_32069+45x_32070+55x_32071+27x_32072+45x_32073+67x_32074+34x_32075+31x_32076+5x_32077+86x_32078+75x_32079+40x_32080+77x_32081+31x_32082+10x_32083+55x_32084+69x_32085+94x_32086+57x_32087+29x_32088+43x_32089+92x_32090+96x_32091+7x_32092+8x_32093+67x_32094+96x_32095+95x_32096+16x_32097+19x_32098+75x_32099+54x_32100+41x_32101+20x_32102+95x_32103+73x_32104+3x_32105+42x_32106+25x_32107+21x_32108+17x_32109+13x_32110+21x_32111+54x_32112+99x_32113+17x_32114+100x_32115+80x_32116+32x_32117+90x_32118+81x_32119+53x_32120+70x_32121+21x_32122+66x_32123+66x_32124+56x_32125+13x_32126+64x_32127+73x_32128+36x_32129+2x_32130+53x_32131+100x_32132+55x_32133+85x_32134+2x_32135+80x_32136+8x_32137+96x_32138+11x_32139+45x_32140+64x_32141+99x_32142+70x_32143+84x_32144+94x_32145+94x_32146+99x_32147+54x_32148+100x_32149+24x_32150+52x_32151+46x_32152+45x_32153+60x_32154+72x_32155+83x_32156+7x_32157+44x_32158+24x_32159+80x_32160+56x_32161+75x_32162+84x_32163+71x_32164+82x_32165+99x_32166+30x_32167+62x_32168+63x_32169+71x_32170+44x_32171+4x_32172+89x_32173+17x_32174+64x_32175+81x_32176+8x_32177+15x_32178+68x_32179+x_32180+32x_32181+19x_32182+6x_32183+37x_32184+80x_32185+58x_32186+71x_32187+79x_32188+39x_32189+58x_32190+x_32191+99x_32192+83x_32193+68x_32194+53x_32195+52x_32196+64x_32197+69x_32198+22x_32199+51x_32200+66x_32201+93x_32202+45x_32203+74x_32204+3x_32205+30x_32206+77x_32207+2x_32208+85x_32209+49x_32210+64x_32211+30x_32212+33x_32213+58x_32214+100x_32215+50x_32216+68x_32217+42x_32218+9x_32219+89x_32220+47x_32221+65x_32222+50x_32223+69x_32224+36x_32225+x_32226+91x_32227+11x_32228+5x_32229+13x_32230+45x_32231+87x_32232+75x_32233+13x_32234+21x_32235+87x_32236+34x_32237+7x_32238+44x_32239+31x_32240+89x_32241+19x_32242+91x_32243+51x_32244+34x_32245+38x_32246+13x_32247+3x_32248+36x_32249+7x_32250+10x_32251+93x_32252+84x_32253+27x_32254+79x_32255+36x_32256+9x_32257+37x_32258+4x_32259+56x_32260+80x_32261+31x_32262+42x_32263+20x_32264+19x_32265+19x_32266+32x_32267+22x_32268+92x_32269+76x_32270+95x_32271+93x_32272+16x_32273+29x_32274+55x_32275+2x_32276+44x_32277+10x_32278+12x_32279+40x_32280+70x_32281+63x_32282+30x_32283+32x_32284+45x_32285+80x_32286+19x_32287+7x_32288+11x_32289+60x_32290+7x_32291+6x_32292+88x_32293+46x_32294+69x_32295+14x_32296+50x_32297+38x_32298+96x_32299+93x_32300+72x_32301+10x_32302+7x_32303+76x_32304+49x_32305+39x_32306+87x_32307+59x_32308+66x_32309+95x_32310+50x_32311+24x_32312+93x_32313+27x_32314+67x_32315+x_32316+57x_32317+80x_32318+44x_32319+2x_32320+48x_32321+66x_32322+10x_32323+54x_32324+57x_32325+4x_32326+7x_32327+19x_32328+10x_32329+73x_32330+39x_32331+9x_32332+38x_32333+48x_32334+79x_32335+87x_32336+28x_32337+88x_32338+67x_32339+51x_32340+19x_32341+49x_32342+95x_32343+49x_32344+64x_32345+41x_32346+23x_32347+65x_32348+72x_32349+89x_32350+97x_32351+58x_32352+97x_32353+98x_32354+6x_32355+24x_32356+5x_32357+24x_32358+54x_32359+47x_32360+17x_32361+87x_32362+51x_32363+64x_32364+44x_32365+60x_32366+17x_32367+69x_32368+21x_32369+78x_32370+27x_32371+54x_32372+18x_32373+10x_32374+30x_32375+99x_32376+4x_32377+20x_32378+53x_32379+38x_32380+18x_32381+48x_32382+88x_32383+25x_32384+30x_32385+30x_32386+64x_32387+94x_32388+47x_32389+54x_32390+93x_32391+71x_32392+23x_32393+24x_32394+3x_32395+99x_32396+74x_32397+37x_32398+54x_32399+28x_32400+4x_32401+91x_32402+49x_32403+62x_32404+27x_32405+40x_32406+40x_32407+22x_32408+96x_32409+70x_32410+25x_32411+98x_32412+x_32413+20x_32414+22x_32415+92x_32416+48x_32417+93x_32418+47x_32419+88x_32420+31x_32421+38x_32422+97x_32423+26x_32424+16x_32425+18x_32426+67x_32427+99x_32428+64x_32429+64x_32430+95x_32431+72x_32432+45x_32433+32x_32434+92x_32435+52x_32436+64x_32437+7x_32438+2x_32439+17x_32440+64x_32441+99x_32442+7x_32443+54x_32444+98x_32445+59x_32446+35x_32447+92x_32448+72x_32449+88x_32450+5x_32451+27x_32452+47x_32453+58x_32454+90x_32455+65x_32456+60x_32457+25x_32458+76x_32459+14x_32460+84x_32461+33x_32462+93x_32463+49x_32464+36x_32465+93x_32466+28x_32467+82x_32468+10x_32469+38x_32470+36x_32471+44x_32472+86x_32473+70x_32474+27x_32475+30x_32476+71x_32477+27x_32478+84x_32479+27x_32480+93x_32481+78x_32482+76x_32483+67x_32484+54x_32485+39x_32486+38x_32487+7x_32488+46x_32489+72x_32490+95x_32491+46x_32492+38x_32493+76x_32494+15x_32495+91x_32496+46x_32497+90x_32498+49x_32499+22x_32500+98x_32501+57x_32502+54x_32503+22x_32504+50x_32505+31x_32506+81x_32507+99x_32508+2x_32509+10x_32510+53x_32511+52x_32512+49x_32513+2x_32514+69x_32515+16x_32516+49x_32517+30x_32518+29x_32519+51x_32520+70x_32521+72x_32522+13x_32523+23x_32524+93x_32525+98x_32526+70x_32527+97x_32528+18x_32529+78x_32530+98x_32531+69x_32532+39x_32533+20x_32534+99x_32535+94x_32536+15x_32537+64x_32538+18x_32539+10x_32540+99x_32541+42x_32542+40x_32543+88x_32544+56x_32545+71x_32546+58x_32547+57x_32548+99x_32549+3x_32550+55x_32551+81x_32552+86x_32553+20x_32554+32x_32555+46x_32556+87x_32557+100x_32558+8x_32559+40x_32560+85x_32561+36x_32562+57x_32563+26x_32564+15x_32565+11x_32566+45x_32567+52x_32568+32x_32569+60x_32570+21x_32571+59x_32572+52x_32573+15x_32574+95x_32575+86x_32576+50x_32577+77x_32578+58x_32579+90x_32580+14x_32581+61x_32582+92x_32583+88x_32584+66x_32585+2x_32586+15x_32587+51x_32588+40x_32589+24x_32590+37x_32591+46x_32592+73x_32593+5x_32594+34x_32595+41x_32596+40x_32597+91x_32598+21x_32599+75x_32600+59x_32601+19x_32602+88x_32603+31x_32604+51x_32605+66x_32606+42x_32607+36x_32608+76x_32609+3x_32610+50x_32611+28x_32612+56x_32613+93x_32614+62x_32615+16x_32616+96x_32617+21x_32618+86x_32619+12x_32620+41x_32621+83x_32622+46x_32623+84x_32624+100x_32625+29x_32626+50x_32627+8x_32628+11x_32629+23x_32630+86x_32631+38x_32632+19x_32633+36x_32634+79x_32635+2x_32636+80x_32637+85x_32638+88x_32639+69x_32640+85x_32641+35x_32642+21x_32643+13x_32644+12x_32645+56x_32646+48x_32647+88x_32648+91x_32649+33x_32650+32x_32651+70x_32652+47x_32653+7x_32654+5x_32655+25x_32656+17x_32657+86x_32658+62x_32659+73x_32660+90x_32661+85x_32662+7x_32663+62x_32664+56x_32665+71x_32666+17x_32667+16x_32668+32x_32669+94x_32670+82x_32671+36x_32672+68x_32673+33x_32674+30x_32675+96x_32676+81x_32677+72x_32678+98x_32679+67x_32680+85x_32681+21x_32682+77x_32683+73x_32684+36x_32685+57x_32686+25x_32687+71x_32688+36x_32689+13x_32690+27x_32691+13x_32692+5x_32693+53x_32694+56x_32695+51x_32696+84x_32697+61x_32698+51x_32699+80x_32700+23x_32701+69x_32702+85x_32703+24x_32704+58x_32705+x_32706+43x_32707+4x_32708+99x_32709+9x_32710+90x_32711+68x_32712+13x_32713+74x_32714+95x_32715+44x_32716+58x_32717+57x_32718+56x_32719+18x_32720+25x_32721+28x_32722+40x_32723+88x_32724+83x_32725+4x_32726+30x_32727+96x_32728+77x_32729+77x_32730+88x_32731+37x_32732+7x_32733+63x_32734+37x_32735+69x_32736+58x_32737+71x_32738+15x_32739+27x_32740+83x_32741+52x_32742+57x_32743+23x_32744+49x_32745+37x_32746+76x_32747+12x_32748+5x_32749+27x_32750+99x_32751+7x_32752+58x_32753+35x_32754+99x_32755+84x_32756+68x_32757+15x_32758+63x_32759+40x_32760+75x_32761+21x_32762+23x_32763+72x_32764+19x_32765+56x_32766+96x_32767+10x_32768+52x_32769+90x_32770+23x_32771+97x_32772+96x_32773+26x_32774+21x_32775+99x_32776+17x_32777+53x_32778+44x_32779+10x_32780+53x_32781+91x_32782+23x_32783+22x_32784+3x_32785+96x_32786+77x_32787+97x_32788+55x_32789+54x_32790+97x_32791+92x_32792+36x_32793+18x_32794+27x_32795+79x_32796+48x_32797+5x_32798+36x_32799+92x_32800+41x_32801+63x_32802+47x_32803+76x_32804+39x_32805+59x_32806+5x_32807+24x_32808+57x_32809+68x_32810+16x_32811+12x_32812+35x_32813+63x_32814+86x_32815+29x_32816+35x_32817+2x_32818+38x_32819+11x_32820+31x_32821+31x_32822+94x_32823+21x_32824+58x_32825+74x_32826+84x_32827+35x_32828+10x_32829+99x_32830+87x_32831+91x_32832+11x_32833+99x_32834+6x_32835+73x_32836+4x_32837+84x_32838+53x_32839+9x_32840+95x_32841+27x_32842+57x_32843+56x_32844+46x_32845+97x_32846+87x_32847+54x_32848+40x_32849+25x_32850+14x_32851+68x_32852+53x_32853+70x_32854+74x_32855+32x_32856+94x_32857+25x_32858+5x_32859+21x_32860+83x_32861+45x_32862+84x_32863+20x_32864+34x_32865+43x_32866+54x_32867+38x_32868+60x_32869+100x_32870+92x_32871+63x_32872+79x_32873+53x_32874+30x_32875+8x_32876+40x_32877+96x_32878+87x_32879+9x_32880+63x_32881+24x_32882+52x_32883+24x_32884+16x_32885+5x_32886+42x_32887+79x_32888+51x_32889+77x_32890+78x_32891+27x_32892+12x_32893+75x_32894+81x_32895+54x_32896+18x_32897+46x_32898+13x_32899+20x_32900+6x_32901+14x_32902+34x_32903+86x_32904+2x_32905+17x_32906+26x_32907+29x_32908+48x_32909+95x_32910+24x_32911+79x_32912+55x_32913+36x_32914+88x_32915+42x_32916+48x_32917+85x_32918+27x_32919+88x_32920+26x_32921+41x_32922+63x_32923+29x_32924+97x_32925+46x_32926+16x_32927+25x_32928+24x_32929+19x_32930+91x_32931+26x_32932+50x_32933+36x_32934+24x_32935+51x_32936+28x_32937+27x_32938+24x_32939+54x_32940+77x_32941+54x_32942+33x_32943+51x_32944+89x_32945+70x_32946+20x_32947+69x_32948+38x_32949+98x_32950+77x_32951+70x_32952+76x_32953+33x_32954+99x_32955+91x_32956+33x_32957+65x_32958+37x_32959+17x_32960+74x_32961+36x_32962+48x_32963+98x_32964+53x_32965+15x_32966+9x_32967+92x_32968+74x_32969+45x_32970+27x_32971+65x_32972+60x_32973+93x_32974+49x_32975+42x_32976+58x_32977+100x_32978+86x_32979+100x_32980+80x_32981+42x_32982+70x_32983+43x_32984+86x_32985+92x_32986+44x_32987+57x_32988+95x_32989+73x_32990+39x_32991+99x_32992+91x_32993+9x_32994+50x_32995+84x_32996+38x_32997+91x_32998+87x_32999+75x_33000+35x_33001+79x_33002+66x_33003+57x_33004+48x_33005+49x_33006+12x_33007+64x_33008+81x_33009+36x_33010+69x_33011+51x_33012+55x_33013+67x_33014+62x_33015+44x_33016+50x_33017+56x_33018+18x_33019+62x_33020+32x_33021+25x_33022+76x_33023+65x_33024+16x_33025+99x_33026+77x_33027+21x_33028+5x_33029+70x_33030+45x_33031+79x_33032+82x_33033+6x_33034+81x_33035+93x_33036+7x_33037+93x_33038+52x_33039+42x_33040+79x_33041+35x_33042+56x_33043+32x_33044+57x_33045+84x_33046+34x_33047+87x_33048+20x_33049+15x_33050+22x_33051+3x_33052+57x_33053+80x_33054+76x_33055+83x_33056+17x_33057+84x_33058+39x_33059+34x_33060+79x_33061+37x_33062+17x_33063+90x_33064+63x_33065+3x_33066+65x_33067+81x_33068+49x_33069+74x_33070+23x_33071+66x_33072+25x_33073+13x_33074+9x_33075+71x_33076+x_33077+97x_33078+26x_33079+97x_33080+80x_33081+27x_33082+26x_33083+70x_33084+73x_33085+42x_33086+8x_33087+73x_33088+46x_33089+75x_33090+91x_33091+72x_33092+93x_33093+87x_33094+51x_33095+22x_33096+4x_33097+10x_33098+98x_33099+85x_33100+47x_33101+87x_33102+36x_33103+26x_33104+91x_33105+88x_33106+97x_33107+16x_33108+58x_33109+72x_33110+x_33111+58x_33112+22x_33113+6x_33114+x_33115+74x_33116+95x_33117+84x_33118+94x_33119+42x_33120+45x_33121+21x_33122+80x_33123+29x_33124+2x_33125+78x_33126+18x_33127+78x_33128+59x_33129+16x_33130+96x_33131+61x_33132+32x_33133+87x_33134+x_33135+85x_33136+80x_33137+34x_33138+31x_33139+100x_33140+51x_33141+65x_33142+50x_33143+57x_33144+46x_33145+76x_33146+68x_33147+16x_33148+95x_33149+89x_33150+100x_33151+23x_33152+35x_33153+74x_33154+78x_33155+49x_33156+35x_33157+55x_33158+14x_33159+94x_33160+81x_33161+18x_33162+41x_33163+35x_33164+4x_33165+67x_33166+47x_33167+30x_33168+83x_33169+89x_33170+35x_33171+43x_33172+92x_33173+7x_33174+87x_33175+88x_33176+65x_33177+35x_33178+73x_33179+27x_33180+10x_33181+37x_33182+61x_33183+69x_33184+24x_33185+54x_33186+60x_33187+93x_33188+96x_33189+83x_33190+89x_33191+55x_33192+62x_33193+73x_33194+40x_33195+31x_33196+82x_33197+16x_33198+50x_33199+56x_33200+8x_33201+20x_33202+x_33203+90x_33204+47x_33205+15x_33206+20x_33207+88x_33208+10x_33209+83x_33210+93x_33211+16x_33212+83x_33213+94x_33214+22x_33215+65x_33216+92x_33217+64x_33218+93x_33219+43x_33220+48x_33221+81x_33222+3x_33223+39x_33224+48x_33225+3x_33226+34x_33227+46x_33228+3x_33229+58x_33230+51x_33231+89x_33232+28x_33233+68x_33234+53x_33235+25x_33236+48x_33237+19x_33238+23x_33239+100x_33240+3x_33241+100x_33242+8x_33243+4x_33244+60x_33245+43x_33246+54x_33247+47x_33248+78x_33249+87x_33250+95x_33251+35x_33252+23x_33253+25x_33254+99x_33255+15x_33256+45x_33257+30x_33258+15x_33259+80x_33260+88x_33261+98x_33262+47x_33263+62x_33264+99x_33265+3x_33266+x_33267+15x_33268+81x_33269+67x_33270+37x_33271+97x_33272+59x_33273+78x_33274+79x_33275+67x_33276+71x_33277+97x_33278+95x_33279+65x_33280+72x_33281+64x_33282+78x_33283+76x_33284+12x_33285+58x_33286+55x_33287+78x_33288+38x_33289+100x_33290+94x_33291+49x_33292+75x_33293+9x_33294+2x_33295+96x_33296+33x_33297+98x_33298+23x_33299+40x_33300+18x_33301+16x_33302+49x_33303+83x_33304+62x_33305+35x_33306+56x_33307+69x_33308+93x_33309+31x_33310+76x_33311+79x_33312+29x_33313+58x_33314+56x_33315+91x_33316+34x_33317+11x_33318+74x_33319+17x_33320+16x_33321+15x_33322+14x_33323+17x_33324+48x_33325+8x_33326+89x_33327+77x_33328+6x_33329+36x_33330+38x_33331+16x_33332+77x_33333+55x_33334+78x_33335+67x_33336+42x_33337+86x_33338+97x_33339+11x_33340+78x_33341+17x_33342+74x_33343+8x_33344+10x_33345+80x_33346+49x_33347+52x_33348+87x_33349+94x_33350+37x_33351+76x_33352+49x_33353+76x_33354+24x_33355+100x_33356+52x_33357+2x_33358+66x_33359+65x_33360+15x_33361+45x_33362+29x_33363+60x_33364+13x_33365+80x_33366+96x_33367+93x_33368+56x_33369+71x_33370+60x_33371+9x_33372+76x_33373+21x_33374+49x_33375+87x_33376+68x_33377+91x_33378+32x_33379+11x_33380+39x_33381+27x_33382+46x_33383+12x_33384+40x_33385+45x_33386+98x_33387+99x_33388+95x_33389+52x_33390+13x_33391+57x_33392+23x_33393+95x_33394+57x_33395+46x_33396+78x_33397+x_33398+75x_33399+95x_33400+90x_33401+95x_33402+2x_33403+49x_33404+23x_33405+41x_33406+46x_33407+76x_33408+15x_33409+75x_33410+38x_33411+22x_33412+52x_33413+16x_33414+63x_33415+93x_33416+52x_33417+20x_33418+45x_33419+22x_33420+28x_33421+91x_33422+46x_33423+96x_33424+49x_33425+31x_33426+89x_33427+8x_33428+65x_33429+58x_33430+22x_33431+13x_33432+35x_33433+29x_33434+36x_33435+77x_33436+81x_33437+53x_33438+54x_33439+51x_33440+24x_33441+76x_33442+7x_33443+14x_33444+89x_33445+71x_33446+36x_33447+36x_33448+84x_33449+23x_33450+98x_33451+2x_33452+87x_33453+11x_33454+78x_33455+32x_33456+82x_33457+75x_33458+35x_33459+12x_33460+11x_33461+87x_33462+21x_33463+85x_33464+65x_33465+96x_33466+59x_33467+66x_33468+60x_33469+10x_33470+9x_33471+86x_33472+85x_33473+32x_33474+51x_33475+10x_33476+96x_33477+96x_33478+64x_33479+42x_33480+6x_33481+72x_33482+35x_33483+12x_33484+10x_33485+x_33486+85x_33487+x_33488+40x_33489+66x_33490+96x_33491+100x_33492+20x_33493+50x_33494+12x_33495+79x_33496+31x_33497+18x_33498+37x_33499+38x_33500+34x_33501+92x_33502+77x_33503+19x_33504+51x_33505+51x_33506+8x_33507+86x_33508+33x_33509+59x_33510+69x_33511+35x_33512+92x_33513+7x_33514+55x_33515+46x_33516+52x_33517+40x_33518+76x_33519+9x_33520+56x_33521+93x_33522+80x_33523+51x_33524+95x_33525+77x_33526+15x_33527+39x_33528+31x_33529+55x_33530+28x_33531+57x_33532+95x_33533+15x_33534+75x_33535+44x_33536+72x_33537+14x_33538+47x_33539+29x_33540+98x_33541+83x_33542+85x_33543+40x_33544+14x_33545+67x_33546+22x_33547+89x_33548+68x_33549+89x_33550+73x_33551+79x_33552+39x_33553+66x_33554+58x_33555+54x_33556+96x_33557+37x_33558+39x_33559+8x_33560+18x_33561+96x_33562+99x_33563+85x_33564+62x_33565+36x_33566+57x_33567+62x_33568+46x_33569+62x_33570+47x_33571+19x_33572+71x_33573+96x_33574+39x_33575+79x_33576+33x_33577+49x_33578+16x_33579+59x_33580+36x_33581+27x_33582+80x_33583+53x_33584+65x_33585+25x_33586+78x_33587+67x_33588+37x_33589+96x_33590+32x_33591+59x_33592+53x_33593+72x_33594+35x_33595+57x_33596+61x_33597+78x_33598+75x_33599+49x_33600+55x_33601+38x_33602+14x_33603+99x_33604+5x_33605+59x_33606+42x_33607+31x_33608+74x_33609+9x_33610+71x_33611+63x_33612+81x_33613+56x_33614+42x_33615+38x_33616+32x_33617+8x_33618+76x_33619+19x_33620+56x_33621+46x_33622+5x_33623+32x_33624+91x_33625+48x_33626+67x_33627+74x_33628+23x_33629+23x_33630+14x_33631+51x_33632+48x_33633+75x_33634+53x_33635+5x_33636+72x_33637+96x_33638+74x_33639+80x_33640+92x_33641+10x_33642+26x_33643+65x_33644+31x_33645+7x_33646+84x_33647+25x_33648+56x_33649+16x_33650+70x_33651+95x_33652+19x_33653+32x_33654+34x_33655+81x_33656+45x_33657+40x_33658+75x_33659+99x_33660+35x_33661+6x_33662+59x_33663+33x_33664+25x_33665+95x_33666+29x_33667+72x_33668+18x_33669+3x_33670+46x_33671+27x_33672+88x_33673+27x_33674+30x_33675+98x_33676+36x_33677+32x_33678+98x_33679+27x_33680+80x_33681+76x_33682+31x_33683+77x_33684+82x_33685+63x_33686+30x_33687+32x_33688+66x_33689+62x_33690+80x_33691+35x_33692+57x_33693+18x_33694+21x_33695+31x_33696+76x_33697+95x_33698+14x_33699+72x_33700+5x_33701+7x_33702+65x_33703+53x_33704+36x_33705+70x_33706+19x_33707+70x_33708+68x_33709+50x_33710+55x_33711+3x_33712+56x_33713+25x_33714+4x_33715+66x_33716+62x_33717+53x_33718+88x_33719+68x_33720+70x_33721+96x_33722+49x_33723+32x_33724+83x_33725+80x_33726+11x_33727+48x_33728+43x_33729+30x_33730+14x_33731+76x_33732+46x_33733+27x_33734+88x_33735+88x_33736+85x_33737+7x_33738+54x_33739+41x_33740+2x_33741+58x_33742+6x_33743+66x_33744+52x_33745+50x_33746+38x_33747+98x_33748+95x_33749+7x_33750+26x_33751+72x_33752+76x_33753+69x_33754+60x_33755+42x_33756+78x_33757+36x_33758+94x_33759+16x_33760+68x_33761+99x_33762+45x_33763+38x_33764+3x_33765+72x_33766+35x_33767+72x_33768+61x_33769+77x_33770+62x_33771+11x_33772+11x_33773+70x_33774+72x_33775+6x_33776+30x_33777+41x_33778+22x_33779+15x_33780+47x_33781+88x_33782+92x_33783+77x_33784+89x_33785+87x_33786+79x_33787+67x_33788+5x_33789+7x_33790+46x_33791+64x_33792+81x_33793+80x_33794+3x_33795+73x_33796+21x_33797+98x_33798+62x_33799+56x_33800+70x_33801+10x_33802+87x_33803+91x_33804+21x_33805+27x_33806+46x_33807+78x_33808+8x_33809+34x_33810+5x_33811+24x_33812+18x_33813+80x_33814+47x_33815+27x_33816+25x_33817+34x_33818+61x_33819+40x_33820+65x_33821+96x_33822+72x_33823+34x_33824+83x_33825+7x_33826+56x_33827+96x_33828+58x_33829+52x_33830+84x_33831+19x_33832+6x_33833+42x_33834+71x_33835+34x_33836+37x_33837+5x_33838+82x_33839+64x_33840+15x_33841+27x_33842+91x_33843+43x_33844+72x_33845+92x_33846+34x_33847+60x_33848+21x_33849+26x_33850+11x_33851+45x_33852+90x_33853+39x_33854+57x_33855+75x_33856+11x_33857+59x_33858+13x_33859+43x_33860+42x_33861+31x_33862+34x_33863+89x_33864+31x_33865+82x_33866+30x_33867+65x_33868+79x_33869+2x_33870+52x_33871+91x_33872+82x_33873+5x_33874+19x_33875+95x_33876+60x_33877+46x_33878+21x_33879+66x_33880+47x_33881+33x_33882+33x_33883+44x_33884+85x_33885+19x_33886+95x_33887+82x_33888+9x_33889+74x_33890+55x_33891+63x_33892+85x_33893+74x_33894+33x_33895+99x_33896+71x_33897+86x_33898+99x_33899+19x_33900+15x_33901+4x_33902+40x_33903+83x_33904+2x_33905+45x_33906+97x_33907+77x_33908+72x_33909+8x_33910+47x_33911+35x_33912+38x_33913+77x_33914+88x_33915+67x_33916+58x_33917+84x_33918+8x_33919+30x_33920+41x_33921+12x_33922+44x_33923+67x_33924+41x_33925+84x_33926+44x_33927+65x_33928+73x_33929+88x_33930+87x_33931+27x_33932+76x_33933+33x_33934+65x_33935+4x_33936+98x_33937+75x_33938+8x_33939+49x_33940+93x_33941+66x_33942+88x_33943+63x_33944+41x_33945+38x_33946+28x_33947+60x_33948+99x_33949+16x_33950+67x_33951+31x_33952+35x_33953+x_33954+63x_33955+17x_33956+52x_33957+52x_33958+66x_33959+73x_33960+33x_33961+50x_33962+67x_33963+23x_33964+91x_33965+58x_33966+46x_33967+33x_33968+28x_33969+67x_33970+55x_33971+6x_33972+3x_33973+27x_33974+12x_33975+26x_33976+75x_33977+8x_33978+38x_33979+88x_33980+52x_33981+35x_33982+79x_33983+47x_33984+87x_33985+20x_33986+60x_33987+69x_33988+11x_33989+62x_33990+100x_33991+36x_33992+91x_33993+95x_33994+56x_33995+70x_33996+41x_33997+2x_33998+42x_33999+55x_34000+51x_34001+68x_34002+69x_34003+31x_34004+34x_34005+99x_34006+55x_34007+76x_34008+99x_34009+12x_34010+90x_34011+90x_34012+32x_34013+84x_34014+41x_34015+2x_34016+7x_34017+60x_34018+88x_34019+10x_34020+28x_34021+57x_34022+40x_34023+15x_34024+88x_34025+12x_34026+63x_34027+39x_34028+91x_34029+16x_34030+93x_34031+63x_34032+74x_34033+72x_34034+77x_34035+21x_34036+74x_34037+26x_34038+12x_34039+95x_34040+75x_34041+63x_34042+15x_34043+66x_34044+32x_34045+11x_34046+92x_34047+34x_34048+23x_34049+24x_34050+78x_34051+8x_34052+61x_34053+49x_34054+87x_34055+23x_34056+61x_34057+57x_34058+75x_34059+70x_34060+89x_34061+45x_34062+17x_34063+11x_34064+65x_34065+24x_34066+2x_34067+42x_34068+33x_34069+57x_34070+58x_34071+x_34072+66x_34073+45x_34074+84x_34075+61x_34076+10x_34077+90x_34078+95x_34079+100x_34080+17x_34081+60x_34082+37x_34083+81x_34084+50x_34085+100x_34086+20x_34087+83x_34088+11x_34089+26x_34090+68x_34091+54x_34092+81x_34093+96x_34094+14x_34095+82x_34096+57x_34097+61x_34098+35x_34099+74x_34100+99x_34101+2x_34102+18x_34103+4x_34104+20x_34105+65x_34106+79x_34107+86x_34108+17x_34109+52x_34110+29x_34111+18x_34112+26x_34113+4x_34114+22x_34115+48x_34116+80x_34117+100x_34118+90x_34119+70x_34120+75x_34121+89x_34122+31x_34123+10x_34124+5x_34125+25x_34126+34x_34127+x_34128+19x_34129+38x_34130+68x_34131+31x_34132+3x_34133+3x_34134+25x_34135+14x_34136+43x_34137+100x_34138+22x_34139+86x_34140+22x_34141+35x_34142+69x_34143+6x_34144+88x_34145+85x_34146+69x_34147+63x_34148+86x_34149+14x_34150+29x_34151+50x_34152+23x_34153+71x_34154+23x_34155+40x_34156+31x_34157+10x_34158+12x_34159+62x_34160+50x_34161+41x_34162+62x_34163+30x_34164+8x_34165+51x_34166+13x_34167+72x_34168+48x_34169+47x_34170+78x_34171+95x_34172+36x_34173+7x_34174+4x_34175+58x_34176+77x_34177+35x_34178+25x_34179+78x_34180+31x_34181+14x_34182+8x_34183+45x_34184+27x_34185+35x_34186+19x_34187+83x_34188+9x_34189+59x_34190+45x_34191+28x_34192+63x_34193+25x_34194+17x_34195+88x_34196+15x_34197+87x_34198+83x_34199+28x_34200+57x_34201+25x_34202+21x_34203+x_34204+34x_34205+65x_34206+8x_34207+11x_34208+29x_34209+78x_34210+73x_34211+x_34212+60x_34213+13x_34214+50x_34215+50x_34216+60x_34217+50x_34218+38x_34219+88x_34220+93x_34221+49x_34222+78x_34223+38x_34224+38x_34225+58x_34226+94x_34227+74x_34228+80x_34229+26x_34230+3x_34231+8x_34232+68x_34233+14x_34234+80x_34235+x_34236+69x_34237+85x_34238+83x_34239+8x_34240+72x_34241+96x_34242+45x_34243+8x_34244+76x_34245+26x_34246+48x_34247+9x_34248+33x_34249+44x_34250+43x_34251+2x_34252+67x_34253+21x_34254+39x_34255+66x_34256+33x_34257+77x_34258+10x_34259+20x_34260+94x_34261+50x_34262+87x_34263+71x_34264+70x_34265+94x_34266+65x_34267+89x_34268+44x_34269+57x_34270+100x_34271+73x_34272+21x_34273+31x_34274+77x_34275+15x_34276+24x_34277+28x_34278+30x_34279+46x_34280+38x_34281+19x_34282+59x_34283+99x_34284+12x_34285+53x_34286+53x_34287+36x_34288+73x_34289+96x_34290+60x_34291+85x_34292+27x_34293+23x_34294+3x_34295+26x_34296+40x_34297+68x_34298+37x_34299+34x_34300+41x_34301+11x_34302+18x_34303+86x_34304+35x_34305+92x_34306+29x_34307+43x_34308+43x_34309+43x_34310+82x_34311+61x_34312+44x_34313+93x_34314+44x_34315+37x_34316+41x_34317+53x_34318+22x_34319+8x_34320+99x_34321+22x_34322+24x_34323+75x_34324+22x_34325+2x_34326+4x_34327+33x_34328+6x_34329+27x_34330+54x_34331+91x_34332+24x_34333+84x_34334+32x_34335+64x_34336+64x_34337+61x_34338+92x_34339+23x_34340+97x_34341+42x_34342+14x_34343+90x_34344+14x_34345+81x_34346+77x_34347+78x_34348+31x_34349+25x_34350+38x_34351+55x_34352+28x_34353+35x_34354+49x_34355+62x_34356+37x_34357+94x_34358+10x_34359+94x_34360+81x_34361+78x_34362+70x_34363+70x_34364+13x_34365+96x_34366+46x_34367+87x_34368+51x_34369+25x_34370+88x_34371+38x_34372+49x_34373+78x_34374+99x_34375+76x_34376+41x_34377+18x_34378+62x_34379+45x_34380+8x_34381+29x_34382+94x_34383+82x_34384+12x_34385+23x_34386+99x_34387+52x_34388+6x_34389+5x_34390+43x_34391+96x_34392+11x_34393+45x_34394+58x_34395+82x_34396+71x_34397+72x_34398+51x_34399+63x_34400+52x_34401+80x_34402+51x_34403+69x_34404+49x_34405+57x_34406+72x_34407+21x_34408+76x_34409+78x_34410+100x_34411+62x_34412+34x_34413+28x_34414+33x_34415+46x_34416+5x_34417+25x_34418+15x_34419+87x_34420+24x_34421+79x_34422+82x_34423+51x_34424+71x_34425+67x_34426+58x_34427+9x_34428+5x_34429+28x_34430+22x_34431+59x_34432+57x_34433+95x_34434+55x_34435+12x_34436+17x_34437+21x_34438+84x_34439+x_34440+43x_34441+13x_34442+48x_34443+15x_34444+50x_34445+59x_34446+53x_34447+44x_34448+55x_34449+63x_34450+84x_34451+13x_34452+89x_34453+67x_34454+67x_34455+53x_34456+94x_34457+47x_34458+75x_34459+42x_34460+54x_34461+94x_34462+38x_34463+96x_34464+73x_34465+50x_34466+90x_34467+94x_34468+39x_34469+48x_34470+5x_34471+17x_34472+97x_34473+27x_34474+37x_34475+22x_34476+86x_34477+20x_34478+38x_34479+91x_34480+90x_34481+63x_34482+96x_34483+86x_34484+27x_34485+71x_34486+100x_34487+80x_34488+18x_34489+64x_34490+71x_34491+14x_34492+45x_34493+2x_34494+x_34495+41x_34496+47x_34497+68x_34498+96x_34499+19x_34500+8x_34501+2x_34502+66x_34503+73x_34504+41x_34505+79x_34506+60x_34507+10x_34508+91x_34509+45x_34510+28x_34511+64x_34512+77x_34513+49x_34514+92x_34515+31x_34516+44x_34517+52x_34518+9x_34519+59x_34520+x_34521+7x_34522+55x_34523+16x_34524+98x_34525+70x_34526+50x_34527+15x_34528+11x_34529+42x_34530+19x_34531+x_34532+99x_34533+46x_34534+90x_34535+19x_34536+24x_34537+34x_34538+22x_34539+40x_34540+6x_34541+97x_34542+9x_34543+76x_34544+4x_34545+40x_34546+43x_34547+9x_34548+25x_34549+87x_34550+98x_34551+43x_34552+19x_34553+75x_34554+83x_34555+46x_34556+82x_34557+27x_34558+16x_34559+77x_34560+26x_34561+53x_34562+80x_34563+69x_34564+55x_34565+11x_34566+100x_34567+25x_34568+47x_34569+77x_34570+14x_34571+41x_34572+92x_34573+86x_34574+52x_34575+64x_34576+27x_34577+36x_34578+57x_34579+53x_34580+80x_34581+6x_34582+57x_34583+33x_34584+14x_34585+6x_34586+23x_34587+33x_34588+8x_34589+24x_34590+92x_34591+4x_34592+69x_34593+25x_34594+95x_34595+87x_34596+57x_34597+54x_34598+19x_34599+96x_34600+72x_34601+75x_34602+72x_34603+19x_34604+5x_34605+89x_34606+28x_34607+75x_34608+20x_34609+4x_34610+58x_34611+72x_34612+6x_34613+23x_34614+96x_34615+67x_34616+2x_34617+69x_34618+44x_34619+38x_34620+97x_34621+73x_34622+91x_34623+57x_34624+18x_34625+96x_34626+46x_34627+x_34628+15x_34629+30x_34630+11x_34631+76x_34632+80x_34633+61x_34634+51x_34635+46x_34636+27x_34637+10x_34638+50x_34639+25x_34640+70x_34641+55x_34642+20x_34643+45x_34644+17x_34645+42x_34646+34x_34647+7x_34648+19x_34649+83x_34650+43x_34651+73x_34652+20x_34653+26x_34654+8x_34655+69x_34656+27x_34657+83x_34658+68x_34659+97x_34660+7x_34661+25x_34662+46x_34663+50x_34664+23x_34665+43x_34666+53x_34667+100x_34668+88x_34669+94x_34670+40x_34671+30x_34672+42x_34673+98x_34674+28x_34675+33x_34676+55x_34677+10x_34678+72x_34679+88x_34680+59x_34681+25x_34682+51x_34683+71x_34684+81x_34685+29x_34686+85x_34687+34x_34688+40x_34689+92x_34690+88x_34691+38x_34692+10x_34693+48x_34694+24x_34695+44x_34696+12x_34697+73x_34698+4x_34699+33x_34700+60x_34701+41x_34702+53x_34703+99x_34704+92x_34705+70x_34706+26x_34707+8x_34708+x_34709+34x_34710+37x_34711+79x_34712+73x_34713+14x_34714+35x_34715+89x_34716+37x_34717+9x_34718+53x_34719+24x_34720+76x_34721+x_34722+85x_34723+87x_34724+66x_34725+11x_34726+11x_34727+64x_34728+82x_34729+39x_34730+7x_34731+62x_34732+26x_34733+97x_34734+14x_34735+34x_34736+8x_34737+96x_34738+84x_34739+16x_34740+3x_34741+22x_34742+54x_34743+3x_34744+15x_34745+82x_34746+28x_34747+79x_34748+46x_34749+29x_34750+25x_34751+14x_34752+89x_34753+19x_34754+39x_34755+46x_34756+95x_34757+92x_34758+54x_34759+47x_34760+27x_34761+27x_34762+15x_34763+57x_34764+32x_34765+64x_34766+x_34767+52x_34768+90x_34769+17x_34770+26x_34771+6x_34772+47x_34773+45x_34774+86x_34775+2x_34776+11x_34777+46x_34778+44x_34779+9x_34780+64x_34781+67x_34782+95x_34783+31x_34784+58x_34785+65x_34786+42x_34787+2x_34788+95x_34789+26x_34790+86x_34791+59x_34792+35x_34793+28x_34794+34x_34795+65x_34796+33x_34797+16x_34798+16x_34799+32x_34800+4x_34801+47x_34802+76x_34803+62x_34804+59x_34805+85x_34806+25x_34807+29x_34808+87x_34809+43x_34810+89x_34811+59x_34812+33x_34813+20x_34814+10x_34815+37x_34816+16x_34817+87x_34818+39x_34819+53x_34820+70x_34821+7x_34822+4x_34823+89x_34824+71x_34825+65x_34826+39x_34827+21x_34828+21x_34829+82x_34830+30x_34831+62x_34832+80x_34833+3x_34834+13x_34835+41x_34836+47x_34837+36x_34838+63x_34839+65x_34840+36x_34841+24x_34842+37x_34843+46x_34844+61x_34845+95x_34846+80x_34847+69x_34848+66x_34849+55x_34850+89x_34851+16x_34852+98x_34853+87x_34854+53x_34855+87x_34856+35x_34857+95x_34858+30x_34859+95x_34860+22x_34861+98x_34862+72x_34863+100x_34864+59x_34865+78x_34866+81x_34867+19x_34868+85x_34869+13x_34870+44x_34871+28x_34872+47x_34873+19x_34874+59x_34875+31x_34876+78x_34877+57x_34878+76x_34879+93x_34880+44x_34881+40x_34882+10x_34883+52x_34884+87x_34885+42x_34886+52x_34887+67x_34888+15x_34889+81x_34890+2x_34891+9x_34892+88x_34893+72x_34894+81x_34895+17x_34896+81x_34897+100x_34898+5x_34899+89x_34900+33x_34901+51x_34902+78x_34903+55x_34904+33x_34905+28x_34906+98x_34907+2x_34908+56x_34909+62x_34910+x_34911+91x_34912+13x_34913+55x_34914+15x_34915+31x_34916+71x_34917+12x_34918+79x_34919+37x_34920+39x_34921+33x_34922+92x_34923+63x_34924+82x_34925+73x_34926+41x_34927+57x_34928+85x_34929+62x_34930+85x_34931+16x_34932+74x_34933+47x_34934+35x_34935+99x_34936+96x_34937+12x_34938+98x_34939+18x_34940+43x_34941+96x_34942+16x_34943+11x_34944+43x_34945+76x_34946+17x_34947+17x_34948+95x_34949+68x_34950+29x_34951+13x_34952+20x_34953+81x_34954+35x_34955+76x_34956+85x_34957+63x_34958+53x_34959+10x_34960+65x_34961+100x_34962+62x_34963+91x_34964+98x_34965+56x_34966+96x_34967+68x_34968+73x_34969+48x_34970+64x_34971+74x_34972+94x_34973+53x_34974+77x_34975+68x_34976+75x_34977+41x_34978+52x_34979+77x_34980+x_34981+86x_34982+89x_34983+94x_34984+68x_34985+45x_34986+69x_34987+40x_34988+25x_34989+34x_34990+81x_34991+11x_34992+42x_34993+30x_34994+40x_34995+36x_34996+29x_34997+31x_34998+83x_34999+55x_35000+87x_35001+73x_35002+31x_35003+83x_35004+84x_35005+61x_35006+5x_35007+17x_35008+99x_35009+30x_35010+56x_35011+9x_35012+48x_35013+99x_35014+94x_35015+94x_35016+65x_35017+25x_35018+58x_35019+66x_35020+50x_35021+13x_35022+69x_35023+30x_35024+42x_35025+41x_35026+33x_35027+26x_35028+23x_35029+26x_35030+54x_35031+99x_35032+38x_35033+100x_35034+74x_35035+27x_35036+53x_35037+3x_35038+24x_35039+78x_35040+19x_35041+77x_35042+75x_35043+47x_35044+46x_35045+36x_35046+98x_35047+99x_35048+76x_35049+41x_35050+71x_35051+x_35052+7x_35053+64x_35054+51x_35055+88x_35056+87x_35057+78x_35058+69x_35059+57x_35060+74x_35061+29x_35062+6x_35063+61x_35064+15x_35065+60x_35066+32x_35067+28x_35068+11x_35069+69x_35070+53x_35071+48x_35072+61x_35073+57x_35074+63x_35075+13x_35076+13x_35077+36x_35078+82x_35079+97x_35080+52x_35081+87x_35082+83x_35083+34x_35084+17x_35085+70x_35086+84x_35087+57x_35088+53x_35089+19x_35090+10x_35091+68x_35092+52x_35093+67x_35094+94x_35095+38x_35096+97x_35097+26x_35098+12x_35099+88x_35100+75x_35101+41x_35102+43x_35103+74x_35104+30x_35105+93x_35106+44x_35107+37x_35108+63x_35109+29x_35110+29x_35111+29x_35112+52x_35113+88x_35114+9x_35115+93x_35116+85x_35117+20x_35118+87x_35119+77x_35120+x_35121+16x_35122+68x_35123+19x_35124+48x_35125+72x_35126+36x_35127+21x_35128+92x_35129+77x_35130+27x_35131+42x_35132+46x_35133+24x_35134+97x_35135+26x_35136+95x_35137+83x_35138+96x_35139+98x_35140+41x_35141+49x_35142+70x_35143+99x_35144+71x_35145+8x_35146+41x_35147+34x_35148+78x_35149+53x_35150+32x_35151+30x_35152+37x_35153+96x_35154+88x_35155+99x_35156+93x_35157+73x_35158+55x_35159+30x_35160+15x_35161+13x_35162+42x_35163+47x_35164+91x_35165+97x_35166+13x_35167+21x_35168+85x_35169+11x_35170+30x_35171+49x_35172+29x_35173+48x_35174+53x_35175+78x_35176+74x_35177+48x_35178+22x_35179+68x_35180+47x_35181+50x_35182+5x_35183+12x_35184+70x_35185+3x_35186+58x_35187+21x_35188+12x_35189+64x_35190+33x_35191+11x_35192+87x_35193+11x_35194+37x_35195+10x_35196+51x_35197+17x_35198+44x_35199+92x_35200+14x_35201+66x_35202+34x_35203+x_35204+63x_35205+44x_35206+84x_35207+7x_35208+42x_35209+30x_35210+7x_35211+41x_35212+x_35213+28x_35214+16x_35215+82x_35216+18x_35217+26x_35218+34x_35219+95x_35220+20x_35221+90x_35222+14x_35223+50x_35224+23x_35225+66x_35226+54x_35227+98x_35228+60x_35229+66x_35230+75x_35231+79x_35232+70x_35233+32x_35234+31x_35235+22x_35236+65x_35237+20x_35238+83x_35239+86x_35240+5x_35241+47x_35242+28x_35243+96x_35244+38x_35245+52x_35246+18x_35247+91x_35248+22x_35249+39x_35250+65x_35251+31x_35252+10x_35253+98x_35254+94x_35255+30x_35256+39x_35257+35x_35258+96x_35259+82x_35260+19x_35261+47x_35262+70x_35263+79x_35264+23x_35265+100x_35266+60x_35267+25x_35268+32x_35269+56x_35270+90x_35271+46x_35272+85x_35273+2x_35274+94x_35275+58x_35276+48x_35277+60x_35278+14x_35279+10x_35280+35x_35281+51x_35282+21x_35283+39x_35284+x_35285+45x_35286+4x_35287+90x_35288+5x_35289+68x_35290+20x_35291+52x_35292+29x_35293+88x_35294+82x_35295+39x_35296+66x_35297+100x_35298+30x_35299+17x_35300+16x_35301+27x_35302+28x_35303+94x_35304+17x_35305+60x_35306+100x_35307+9x_35308+35x_35309+87x_35310+49x_35311+73x_35312+40x_35313+x_35314+42x_35315+95x_35316+49x_35317+31x_35318+74x_35319+73x_35320+48x_35321+55x_35322+80x_35323+28x_35324+12x_35325+99x_35326+16x_35327+9x_35328+49x_35329+93x_35330+81x_35331+70x_35332+81x_35333+23x_35334+69x_35335+43x_35336+47x_35337+90x_35338+x_35339+66x_35340+9x_35341+11x_35342+85x_35343+90x_35344+19x_35345+44x_35346+7x_35347+7x_35348+94x_35349+42x_35350+81x_35351+83x_35352+58x_35353+48x_35354+39x_35355+16x_35356+86x_35357+43x_35358+78x_35359+27x_35360+43x_35361+3x_35362+44x_35363+95x_35364+83x_35365+68x_35366+37x_35367+63x_35368+96x_35369+4x_35370+97x_35371+39x_35372+11x_35373+44x_35374+25x_35375+83x_35376+44x_35377+11x_35378+75x_35379+62x_35380+16x_35381+8x_35382+25x_35383+60x_35384+63x_35385+26x_35386+19x_35387+67x_35388+43x_35389+76x_35390+57x_35391+86x_35392+63x_35393+63x_35394+34x_35395+42x_35396+29x_35397+63x_35398+16x_35399+86x_35400+58x_35401+61x_35402+98x_35403+5x_35404+19x_35405+65x_35406+88x_35407+67x_35408+21x_35409+91x_35410+x_35411+55x_35412+33x_35413+46x_35414+71x_35415+66x_35416+69x_35417+25x_35418+34x_35419+14x_35420+56x_35421+36x_35422+89x_35423+75x_35424+63x_35425+58x_35426+48x_35427+74x_35428+93x_35429+79x_35430+50x_35431+99x_35432+84x_35433+89x_35434+40x_35435+64x_35436+43x_35437+34x_35438+75x_35439+96x_35440+33x_35441+88x_35442+73x_35443+65x_35444+97x_35445+7x_35446+14x_35447+76x_35448+100x_35449+99x_35450+37x_35451+39x_35452+8x_35453+44x_35454+38x_35455+27x_35456+68x_35457+28x_35458+98x_35459+12x_35460+6x_35461+3x_35462+48x_35463+14x_35464+43x_35465+96x_35466+75x_35467+87x_35468+29x_35469+13x_35470+65x_35471+73x_35472+81x_35473+48x_35474+72x_35475+40x_35476+10x_35477+7x_35478+62x_35479+49x_35480+73x_35481+99x_35482+18x_35483+22x_35484+6x_35485+88x_35486+33x_35487+96x_35488+63x_35489+83x_35490+99x_35491+7x_35492+51x_35493+52x_35494+4x_35495+23x_35496+2x_35497+45x_35498+37x_35499+42x_35500+15x_35501+4x_35502+43x_35503+10x_35504+95x_35505+18x_35506+6x_35507+76x_35508+74x_35509+28x_35510+79x_35511+40x_35512+70x_35513+64x_35514+64x_35515+27x_35516+96x_35517+25x_35518+76x_35519+47x_35520+74x_35521+70x_35522+97x_35523+4x_35524+64x_35525+56x_35526+74x_35527+23x_35528+89x_35529+49x_35530+22x_35531+94x_35532+10x_35533+48x_35534+93x_35535+12x_35536+67x_35537+75x_35538+81x_35539+8x_35540+58x_35541+24x_35542+71x_35543+7x_35544+42x_35545+61x_35546+78x_35547+98x_35548+77x_35549+92x_35550+30x_35551+2x_35552+2x_35553+68x_35554+95x_35555+65x_35556+88x_35557+11x_35558+38x_35559+72x_35560+14x_35561+6x_35562+71x_35563+42x_35564+28x_35565+84x_35566+45x_35567+45x_35568+42x_35569+91x_35570+17x_35571+36x_35572+63x_35573+97x_35574+85x_35575+55x_35576+20x_35577+74x_35578+97x_35579+30x_35580+84x_35581+65x_35582+22x_35583+7x_35584+38x_35585+5x_35586+93x_35587+12x_35588+41x_35589+86x_35590+44x_35591+20x_35592+x_35593+15x_35594+71x_35595+41x_35596+83x_35597+89x_35598+60x_35599+39x_35600+97x_35601+38x_35602+64x_35603+91x_35604+58x_35605+89x_35606+86x_35607+81x_35608+17x_35609+55x_35610+23x_35611+85x_35612+80x_35613+37x_35614+22x_35615+19x_35616+30x_35617+53x_35618+45x_35619+37x_35620+11x_35621+83x_35622+31x_35623+43x_35624+71x_35625+x_35626+82x_35627+98x_35628+46x_35629+60x_35630+85x_35631+78x_35632+30x_35633+58x_35634+54x_35635+90x_35636+30x_35637+68x_35638+27x_35639+40x_35640+51x_35641+99x_35642+10x_35643+16x_35644+2x_35645+86x_35646+49x_35647+93x_35648+37x_35649+64x_35650+24x_35651+68x_35652+98x_35653+94x_35654+68x_35655+3x_35656+14x_35657+44x_35658+71x_35659+10x_35660+66x_35661+72x_35662+38x_35663+2x_35664+40x_35665+9x_35666+75x_35667+49x_35668+49x_35669+64x_35670+91x_35671+56x_35672+58x_35673+76x_35674+2x_35675+38x_35676+14x_35677+21x_35678+68x_35679+21x_35680+17x_35681+14x_35682+39x_35683+97x_35684+25x_35685+70x_35686+15x_35687+5x_35688+63x_35689+74x_35690+7x_35691+13x_35692+62x_35693+67x_35694+78x_35695+49x_35696+25x_35697+83x_35698+81x_35699+82x_35700+100x_35701+90x_35702+25x_35703+34x_35704+72x_35705+87x_35706+76x_35707+6x_35708+74x_35709+37x_35710+33x_35711+14x_35712+91x_35713+x_35714+43x_35715+64x_35716+44x_35717+34x_35718+73x_35719+52x_35720+92x_35721+40x_35722+18x_35723+58x_35724+99x_35725+90x_35726+84x_35727+53x_35728+48x_35729+63x_35730+31x_35731+22x_35732+39x_35733+69x_35734+40x_35735+42x_35736+51x_35737+21x_35738+31x_35739+24x_35740+8x_35741+8x_35742+77x_35743+73x_35744+3x_35745+53x_35746+33x_35747+64x_35748+67x_35749+45x_35750+98x_35751+77x_35752+80x_35753+20x_35754+96x_35755+94x_35756+53x_35757+18x_35758+21x_35759+27x_35760+67x_35761+50x_35762+26x_35763+13x_35764+5x_35765+58x_35766+61x_35767+85x_35768+5x_35769+9x_35770+41x_35771+100x_35772+77x_35773+61x_35774+29x_35775+93x_35776+74x_35777+81x_35778+60x_35779+90x_35780+11x_35781+68x_35782+39x_35783+91x_35784+65x_35785+11x_35786+6x_35787+29x_35788+12x_35789+39x_35790+37x_35791+12x_35792+54x_35793+41x_35794+56x_35795+87x_35796+28x_35797+70x_35798+37x_35799+2x_35800+54x_35801+69x_35802+96x_35803+13x_35804+5x_35805+3x_35806+66x_35807+32x_35808+54x_35809+96x_35810+82x_35811+40x_35812+78x_35813+90x_35814+2x_35815+76x_35816+46x_35817+75x_35818+9x_35819+98x_35820+82x_35821+69x_35822+74x_35823+95x_35824+78x_35825+30x_35826+81x_35827+53x_35828+92x_35829+72x_35830+72x_35831+17x_35832+95x_35833+31x_35834+14x_35835+25x_35836+85x_35837+86x_35838+13x_35839+74x_35840+48x_35841+40x_35842+64x_35843+24x_35844+44x_35845+6x_35846+77x_35847+51x_35848+19x_35849+28x_35850+36x_35851+11x_35852+59x_35853+3x_35854+27x_35855+42x_35856+88x_35857+57x_35858+87x_35859+90x_35860+31x_35861+74x_35862+47x_35863+24x_35864+50x_35865+80x_35866+35x_35867+73x_35868+36x_35869+92x_35870+32x_35871+33x_35872+31x_35873+100x_35874+22x_35875+82x_35876+54x_35877+45x_35878+58x_35879+99x_35880+58x_35881+12x_35882+42x_35883+85x_35884+94x_35885+69x_35886+96x_35887+33x_35888+38x_35889+35x_35890+42x_35891+99x_35892+12x_35893+4x_35894+24x_35895+68x_35896+65x_35897+46x_35898+39x_35899+42x_35900+50x_35901+10x_35902+20x_35903+51x_35904+24x_35905+20x_35906+57x_35907+81x_35908+6x_35909+49x_35910+37x_35911+60x_35912+57x_35913+23x_35914+31x_35915+61x_35916+24x_35917+93x_35918+4x_35919+46x_35920+33x_35921+16x_35922+23x_35923+11x_35924+36x_35925+43x_35926+48x_35927+60x_35928+4x_35929+3x_35930+29x_35931+89x_35932+86x_35933+42x_35934+23x_35935+36x_35936+70x_35937+21x_35938+76x_35939+50x_35940+19x_35941+60x_35942+98x_35943+59x_35944+66x_35945+80x_35946+38x_35947+75x_35948+8x_35949+71x_35950+38x_35951+93x_35952+17x_35953+50x_35954+57x_35955+93x_35956+37x_35957+17x_35958+7x_35959+12x_35960+17x_35961+82x_35962+x_35963+93x_35964+39x_35965+65x_35966+95x_35967+74x_35968+97x_35969+65x_35970+64x_35971+59x_35972+99x_35973+85x_35974+39x_35975+54x_35976+13x_35977+39x_35978+61x_35979+4x_35980+89x_35981+76x_35982+76x_35983+87x_35984+24x_35985+16x_35986+86x_35987+95x_35988+67x_35989+18x_35990+x_35991+20x_35992+5x_35993+8x_35994+59x_35995+12x_35996+84x_35997+37x_35998+30x_35999+37x_36000+68x_36001+70x_36002+83x_36003+64x_36004+81x_36005+12x_36006+74x_36007+81x_36008+68x_36009+31x_36010+20x_36011+15x_36012+27x_36013+96x_36014+62x_36015+20x_36016+6x_36017+26x_36018+91x_36019+74x_36020+3x_36021+97x_36022+34x_36023+53x_36024+20x_36025+20x_36026+5x_36027+77x_36028+72x_36029+48x_36030+87x_36031+13x_36032+70x_36033+64x_36034+71x_36035+77x_36036+3x_36037+98x_36038+28x_36039+37x_36040+63x_36041+82x_36042+2x_36043+33x_36044+72x_36045+71x_36046+44x_36047+x_36048+34x_36049+26x_36050+62x_36051+80x_36052+14x_36053+73x_36054+28x_36055+23x_36056+98x_36057+90x_36058+63x_36059+69x_36060+96x_36061+22x_36062+36x_36063+18x_36064+69x_36065+19x_36066+46x_36067+60x_36068+19x_36069+37x_36070+33x_36071+19x_36072+100x_36073+34x_36074+67x_36075+53x_36076+37x_36077+24x_36078+3x_36079+94x_36080+58x_36081+81x_36082+100x_36083+38x_36084+78x_36085+61x_36086+46x_36087+58x_36088+55x_36089+51x_36090+71x_36091+14x_36092+33x_36093+80x_36094+70x_36095+60x_36096+39x_36097+8x_36098+67x_36099+63x_36100+34x_36101+60x_36102+91x_36103+57x_36104+62x_36105+90x_36106+97x_36107+31x_36108+27x_36109+7x_36110+80x_36111+89x_36112+36x_36113+18x_36114+77x_36115+97x_36116+31x_36117+14x_36118+70x_36119+67x_36120+61x_36121+42x_36122+8x_36123+29x_36124+70x_36125+34x_36126+85x_36127+27x_36128+22x_36129+89x_36130+8x_36131+88x_36132+61x_36133+18x_36134+59x_36135+46x_36136+78x_36137+10x_36138+89x_36139+x_36140+5x_36141+94x_36142+7x_36143+85x_36144+9x_36145+53x_36146+9x_36147+38x_36148+87x_36149+63x_36150+12x_36151+70x_36152+78x_36153+82x_36154+92x_36155+50x_36156+69x_36157+72x_36158+48x_36159+33x_36160+9x_36161+87x_36162+61x_36163+24x_36164+66x_36165+60x_36166+90x_36167+30x_36168+15x_36169+24x_36170+68x_36171+65x_36172+31x_36173+53x_36174+38x_36175+79x_36176+28x_36177+21x_36178+96x_36179+39x_36180+x_36181+20x_36182+21x_36183+84x_36184+14x_36185+31x_36186+28x_36187+38x_36188+38x_36189+64x_36190+73x_36191+71x_36192+93x_36193+83x_36194+66x_36195+93x_36196+7x_36197+23x_36198+92x_36199+64x_36200+91x_36201+35x_36202+18x_36203+56x_36204+8x_36205+69x_36206+92x_36207+40x_36208+77x_36209+17x_36210+50x_36211+69x_36212+21x_36213+63x_36214+6x_36215+54x_36216+32x_36217+7x_36218+39x_36219+52x_36220+40x_36221+2x_36222+67x_36223+51x_36224+26x_36225+92x_36226+81x_36227+57x_36228+91x_36229+10x_36230+6x_36231+99x_36232+18x_36233+77x_36234+90x_36235+31x_36236+62x_36237+73x_36238+8x_36239+62x_36240+56x_36241+67x_36242+27x_36243+80x_36244+59x_36245+56x_36246+87x_36247+29x_36248+44x_36249+65x_36250+42x_36251+44x_36252+60x_36253+53x_36254+63x_36255+80x_36256+19x_36257+41x_36258+51x_36259+73x_36260+77x_36261+63x_36262+83x_36263+72x_36264+41x_36265+63x_36266+58x_36267+50x_36268+15x_36269+60x_36270+44x_36271+41x_36272+97x_36273+42x_36274+94x_36275+8x_36276+93x_36277+73x_36278+42x_36279+39x_36280+92x_36281+67x_36282+14x_36283+33x_36284+29x_36285+56x_36286+92x_36287+25x_36288+56x_36289+18x_36290+97x_36291+32x_36292+73x_36293+58x_36294+14x_36295+66x_36296+83x_36297+12x_36298+44x_36299+51x_36300+18x_36301+39x_36302+7x_36303+26x_36304+4x_36305+88x_36306+88x_36307+69x_36308+55x_36309+5x_36310+10x_36311+51x_36312+8x_36313+21x_36314+53x_36315+6x_36316+99x_36317+41x_36318+24x_36319+51x_36320+37x_36321+31x_36322+40x_36323+10x_36324+43x_36325+45x_36326+21x_36327+84x_36328+80x_36329+38x_36330+16x_36331+60x_36332+73x_36333+78x_36334+32x_36335+89x_36336+88x_36337+18x_36338+66x_36339+90x_36340+95x_36341+24x_36342+50x_36343+51x_36344+14x_36345+7x_36346+3x_36347+7x_36348+81x_36349+12x_36350+62x_36351+42x_36352+45x_36353+57x_36354+21x_36355+47x_36356+54x_36357+58x_36358+75x_36359+20x_36360+91x_36361+32x_36362+14x_36363+26x_36364+37x_36365+81x_36366+3x_36367+82x_36368+86x_36369+66x_36370+62x_36371+53x_36372+95x_36373+37x_36374+51x_36375+7x_36376+3x_36377+67x_36378+54x_36379+27x_36380+74x_36381+42x_36382+85x_36383+95x_36384+54x_36385+13x_36386+42x_36387+99x_36388+15x_36389+95x_36390+4x_36391+100x_36392+62x_36393+62x_36394+89x_36395+25x_36396+33x_36397+13x_36398+98x_36399+64x_36400+15x_36401+88x_36402+3x_36403+91x_36404+76x_36405+39x_36406+98x_36407+71x_36408+98x_36409+68x_36410+16x_36411+81x_36412+32x_36413+75x_36414+37x_36415+85x_36416+19x_36417+28x_36418+79x_36419+44x_36420+57x_36421+14x_36422+77x_36423+84x_36424+74x_36425+62x_36426+5x_36427+70x_36428+93x_36429+9x_36430+91x_36431+19x_36432+18x_36433+32x_36434+77x_36435+59x_36436+67x_36437+40x_36438+92x_36439+15x_36440+5x_36441+43x_36442+70x_36443+95x_36444+26x_36445+66x_36446+21x_36447+x_36448+82x_36449+21x_36450+5x_36451+86x_36452+54x_36453+73x_36454+66x_36455+11x_36456+7x_36457+x_36458+3x_36459+30x_36460+21x_36461+80x_36462+93x_36463+80x_36464+27x_36465+49x_36466+77x_36467+44x_36468+40x_36469+63x_36470+53x_36471+56x_36472+35x_36473+51x_36474+91x_36475+58x_36476+63x_36477+27x_36478+24x_36479+20x_36480+82x_36481+88x_36482+53x_36483+39x_36484+51x_36485+92x_36486+52x_36487+38x_36488+47x_36489+96x_36490+27x_36491+91x_36492+54x_36493+23x_36494+15x_36495+78x_36496+97x_36497+72x_36498+88x_36499+55x_36500+2x_36501+81x_36502+95x_36503+x_36504+41x_36505+76x_36506+20x_36507+30x_36508+7x_36509+24x_36510+99x_36511+3x_36512+16x_36513+83x_36514+87x_36515+78x_36516+62x_36517+98x_36518+23x_36519+37x_36520+45x_36521+22x_36522+47x_36523+41x_36524+51x_36525+74x_36526+35x_36527+83x_36528+69x_36529+35x_36530+60x_36531+67x_36532+80x_36533+17x_36534+49x_36535+89x_36536+41x_36537+7x_36538+100x_36539+45x_36540+77x_36541+70x_36542+39x_36543+18x_36544+2x_36545+98x_36546+31x_36547+54x_36548+96x_36549+44x_36550+9x_36551+13x_36552+72x_36553+89x_36554+56x_36555+81x_36556+84x_36557+48x_36558+34x_36559+77x_36560+10x_36561+15x_36562+43x_36563+51x_36564+65x_36565+70x_36566+20x_36567+56x_36568+57x_36569+68x_36570+33x_36571+53x_36572+57x_36573+67x_36574+35x_36575+31x_36576+80x_36577+36x_36578+76x_36579+100x_36580+4x_36581+56x_36582+36x_36583+63x_36584+64x_36585+35x_36586+68x_36587+77x_36588+54x_36589+89x_36590+56x_36591+22x_36592+75x_36593+77x_36594+5x_36595+86x_36596+84x_36597+45x_36598+23x_36599+71x_36600+4x_36601+4x_36602+31x_36603+3x_36604+61x_36605+94x_36606+85x_36607+47x_36608+37x_36609+2x_36610+94x_36611+55x_36612+53x_36613+69x_36614+34x_36615+65x_36616+31x_36617+26x_36618+95x_36619+30x_36620+51x_36621+82x_36622+53x_36623+68x_36624+84x_36625+43x_36626+29x_36627+5x_36628+40x_36629+61x_36630+79x_36631+71x_36632+78x_36633+79x_36634+80x_36635+51x_36636+44x_36637+68x_36638+95x_36639+30x_36640+69x_36641+33x_36642+35x_36643+46x_36644+96x_36645+36x_36646+60x_36647+70x_36648+5x_36649+26x_36650+69x_36651+7x_36652+30x_36653+3x_36654+86x_36655+50x_36656+49x_36657+70x_36658+77x_36659+98x_36660+85x_36661+98x_36662+85x_36663+30x_36664+39x_36665+79x_36666+44x_36667+81x_36668+26x_36669+36x_36670+86x_36671+79x_36672+6x_36673+37x_36674+21x_36675+62x_36676+56x_36677+71x_36678+99x_36679+3x_36680+9x_36681+70x_36682+7x_36683+67x_36684+22x_36685+61x_36686+44x_36687+37x_36688+16x_36689+26x_36690+33x_36691+28x_36692+67x_36693+x_36694+63x_36695+71x_36696+28x_36697+80x_36698+23x_36699+52x_36700+86x_36701+45x_36702+14x_36703+45x_36704+4x_36705+17x_36706+51x_36707+80x_36708+38x_36709+41x_36710+47x_36711+70x_36712+33x_36713+87x_36714+49x_36715+98x_36716+92x_36717+23x_36718+18x_36719+39x_36720+37x_36721+6x_36722+35x_36723+32x_36724+37x_36725+10x_36726+26x_36727+53x_36728+4x_36729+57x_36730+91x_36731+72x_36732+84x_36733+85x_36734+26x_36735+41x_36736+83x_36737+85x_36738+85x_36739+62x_36740+20x_36741+73x_36742+44x_36743+34x_36744+78x_36745+32x_36746+48x_36747+98x_36748+81x_36749+28x_36750+78x_36751+2x_36752+32x_36753+95x_36754+4x_36755+27x_36756+98x_36757+59x_36758+64x_36759+13x_36760+73x_36761+5x_36762+38x_36763+82x_36764+68x_36765+52x_36766+39x_36767+63x_36768+13x_36769+38x_36770+91x_36771+44x_36772+7x_36773+12x_36774+75x_36775+91x_36776+66x_36777+59x_36778+61x_36779+33x_36780+77x_36781+21x_36782+33x_36783+63x_36784+75x_36785+77x_36786+52x_36787+13x_36788+21x_36789+16x_36790+65x_36791+7x_36792+44x_36793+66x_36794+82x_36795+15x_36796+27x_36797+82x_36798+75x_36799+99x_36800+19x_36801+89x_36802+50x_36803+12x_36804+57x_36805+62x_36806+30x_36807+85x_36808+59x_36809+44x_36810+98x_36811+17x_36812+3x_36813+53x_36814+54x_36815+73x_36816+60x_36817+58x_36818+73x_36819+27x_36820+14x_36821+89x_36822+30x_36823+2x_36824+56x_36825+69x_36826+64x_36827+90x_36828+31x_36829+58x_36830+61x_36831+70x_36832+19x_36833+31x_36834+56x_36835+47x_36836+17x_36837+56x_36838+90x_36839+13x_36840+36x_36841+69x_36842+6x_36843+8x_36844+77x_36845+41x_36846+63x_36847+26x_36848+100x_36849+27x_36850+31x_36851+97x_36852+34x_36853+8x_36854+65x_36855+9x_36856+25x_36857+49x_36858+99x_36859+82x_36860+18x_36861+17x_36862+33x_36863+26x_36864+40x_36865+90x_36866+43x_36867+74x_36868+51x_36869+23x_36870+72x_36871+56x_36872+63x_36873+52x_36874+63x_36875+98x_36876+31x_36877+51x_36878+23x_36879+26x_36880+34x_36881+70x_36882+40x_36883+33x_36884+16x_36885+x_36886+78x_36887+2x_36888+79x_36889+4x_36890+7x_36891+69x_36892+88x_36893+66x_36894+94x_36895+97x_36896+50x_36897+66x_36898+3x_36899+7x_36900+43x_36901+39x_36902+97x_36903+9x_36904+66x_36905+19x_36906+100x_36907+95x_36908+15x_36909+74x_36910+22x_36911+59x_36912+2x_36913+79x_36914+43x_36915+97x_36916+44x_36917+58x_36918+25x_36919+57x_36920+12x_36921+36x_36922+78x_36923+7x_36924+58x_36925+63x_36926+43x_36927+22x_36928+89x_36929+24x_36930+34x_36931+6x_36932+27x_36933+50x_36934+34x_36935+58x_36936+81x_36937+54x_36938+35x_36939+29x_36940+20x_36941+96x_36942+47x_36943+47x_36944+25x_36945+12x_36946+8x_36947+93x_36948+74x_36949+86x_36950+74x_36951+59x_36952+11x_36953+61x_36954+x_36955+32x_36956+49x_36957+70x_36958+4x_36959+91x_36960+41x_36961+31x_36962+87x_36963+74x_36964+47x_36965+16x_36966+89x_36967+38x_36968+80x_36969+83x_36970+43x_36971+10x_36972+86x_36973+26x_36974+46x_36975+16x_36976+87x_36977+87x_36978+84x_36979+22x_36980+34x_36981+86x_36982+13x_36983+84x_36984+76x_36985+74x_36986+91x_36987+29x_36988+51x_36989+57x_36990+69x_36991+79x_36992+54x_36993+25x_36994+35x_36995+54x_36996+43x_36997+36x_36998+95x_36999+8x_37000+89x_37001+40x_37002+x_37003+62x_37004+3x_37005+71x_37006+66x_37007+80x_37008+66x_37009+2x_37010+75x_37011+68x_37012+3x_37013+21x_37014+36x_37015+69x_37016+81x_37017+68x_37018+78x_37019+29x_37020+20x_37021+5x_37022+11x_37023+20x_37024+23x_37025+43x_37026+25x_37027+3x_37028+22x_37029+97x_37030+11x_37031+57x_37032+61x_37033+x_37034+12x_37035+86x_37036+10x_37037+92x_37038+7x_37039+7x_37040+81x_37041+55x_37042+68x_37043+52x_37044+81x_37045+57x_37046+64x_37047+9x_37048+87x_37049+90x_37050+84x_37051+65x_37052+36x_37053+48x_37054+97x_37055+58x_37056+30x_37057+81x_37058+49x_37059+17x_37060+63x_37061+37x_37062+99x_37063+65x_37064+23x_37065+61x_37066+86x_37067+88x_37068+49x_37069+28x_37070+30x_37071+59x_37072+24x_37073+63x_37074+39x_37075+73x_37076+70x_37077+45x_37078+19x_37079+34x_37080+35x_37081+57x_37082+49x_37083+78x_37084+83x_37085+54x_37086+75x_37087+81x_37088+66x_37089+69x_37090+23x_37091+71x_37092+11x_37093+53x_37094+14x_37095+38x_37096+65x_37097+29x_37098+68x_37099+73x_37100+8x_37101+76x_37102+64x_37103+94x_37104+56x_37105+74x_37106+88x_37107+77x_37108+56x_37109+69x_37110+97x_37111+95x_37112+84x_37113+11x_37114+65x_37115+73x_37116+21x_37117+77x_37118+68x_37119+13x_37120+75x_37121+51x_37122+89x_37123+50x_37124+25x_37125+56x_37126+44x_37127+50x_37128+13x_37129+35x_37130+16x_37131+x_37132+63x_37133+57x_37134+4x_37135+81x_37136+21x_37137+74x_37138+82x_37139+90x_37140+x_37141+28x_37142+52x_37143+20x_37144+74x_37145+48x_37146+79x_37147+38x_37148+16x_37149+60x_37150+9x_37151+15x_37152+5x_37153+56x_37154+92x_37155+97x_37156+9x_37157+72x_37158+90x_37159+97x_37160+86x_37161+12x_37162+11x_37163+51x_37164+61x_37165+67x_37166+69x_37167+100x_37168+86x_37169+73x_37170+97x_37171+20x_37172+65x_37173+84x_37174+64x_37175+4x_37176+87x_37177+44x_37178+80x_37179+31x_37180+98x_37181+34x_37182+14x_37183+46x_37184+42x_37185+50x_37186+85x_37187+44x_37188+29x_37189+30x_37190+51x_37191+84x_37192+9x_37193+17x_37194+25x_37195+9x_37196+10x_37197+54x_37198+21x_37199+84x_37200+92x_37201+88x_37202+43x_37203+29x_37204+80x_37205+24x_37206+11x_37207+14x_37208+14x_37209+57x_37210+66x_37211+49x_37212+48x_37213+98x_37214+25x_37215+75x_37216+56x_37217+88x_37218+14x_37219+85x_37220+66x_37221+27x_37222+18x_37223+43x_37224+65x_37225+47x_37226+3x_37227+49x_37228+47x_37229+76x_37230+26x_37231+x_37232+37x_37233+33x_37234+25x_37235+6x_37236+97x_37237+22x_37238+76x_37239+31x_37240+87x_37241+79x_37242+70x_37243+22x_37244+46x_37245+40x_37246+5x_37247+54x_37248+37x_37249+20x_37250+28x_37251+83x_37252+42x_37253+64x_37254+97x_37255+34x_37256+37x_37257+60x_37258+85x_37259+86x_37260+43x_37261+7x_37262+2x_37263+66x_37264+94x_37265+61x_37266+85x_37267+6x_37268+30x_37269+60x_37270+63x_37271+59x_37272+6x_37273+6x_37274+95x_37275+36x_37276+57x_37277+5x_37278+42x_37279+72x_37280+20x_37281+30x_37282+x_37283+92x_37284+89x_37285+12x_37286+12x_37287+5x_37288+14x_37289+49x_37290+41x_37291+73x_37292+68x_37293+17x_37294+71x_37295+45x_37296+56x_37297+76x_37298+32x_37299+76x_37300+69x_37301+19x_37302+56x_37303+71x_37304+80x_37305+64x_37306+49x_37307+37x_37308+31x_37309+80x_37310+94x_37311+30x_37312+22x_37313+50x_37314+15x_37315+4x_37316+88x_37317+61x_37318+92x_37319+9x_37320+98x_37321+65x_37322+28x_37323+69x_37324+7x_37325+70x_37326+70x_37327+66x_37328+72x_37329+53x_37330+21x_37331+82x_37332+17x_37333+55x_37334+8x_37335+99x_37336+84x_37337+96x_37338+9x_37339+64x_37340+74x_37341+41x_37342+18x_37343+10x_37344+7x_37345+81x_37346+84x_37347+87x_37348+16x_37349+90x_37350+15x_37351+50x_37352+38x_37353+85x_37354+86x_37355+62x_37356+39x_37357+82x_37358+6x_37359+44x_37360+6x_37361+75x_37362+78x_37363+11x_37364+73x_37365+44x_37366+59x_37367+92x_37368+81x_37369+84x_37370+69x_37371+62x_37372+4x_37373+56x_37374+75x_37375+44x_37376+19x_37377+77x_37378+76x_37379+47x_37380+39x_37381+8x_37382+88x_37383+58x_37384+93x_37385+60x_37386+5x_37387+71x_37388+9x_37389+81x_37390+x_37391+9x_37392+50x_37393+50x_37394+85x_37395+42x_37396+83x_37397+34x_37398+17x_37399+21x_37400+59x_37401+52x_37402+48x_37403+9x_37404+13x_37405+9x_37406+24x_37407+12x_37408+60x_37409+70x_37410+93x_37411+92x_37412+41x_37413+99x_37414+48x_37415+86x_37416+26x_37417+59x_37418+48x_37419+24x_37420+7x_37421+44x_37422+86x_37423+59x_37424+70x_37425+54x_37426+70x_37427+88x_37428+88x_37429+81x_37430+37x_37431+22x_37432+92x_37433+59x_37434+89x_37435+67x_37436+61x_37437+27x_37438+40x_37439+57x_37440+42x_37441+82x_37442+43x_37443+55x_37444+23x_37445+34x_37446+16x_37447+x_37448+85x_37449+4x_37450+57x_37451+30x_37452+3x_37453+66x_37454+89x_37455+42x_37456+40x_37457+39x_37458+99x_37459+66x_37460+85x_37461+7x_37462+92x_37463+62x_37464+24x_37465+91x_37466+25x_37467+9x_37468+49x_37469+31x_37470+77x_37471+29x_37472+86x_37473+96x_37474+95x_37475+53x_37476+64x_37477+85x_37478+52x_37479+11x_37480+11x_37481+26x_37482+47x_37483+51x_37484+2x_37485+78x_37486+4x_37487+78x_37488+71x_37489+59x_37490+47x_37491+48x_37492+59x_37493+20x_37494+93x_37495+16x_37496+79x_37497+76x_37498+46x_37499+87x_37500+20x_37501+9x_37502+22x_37503+99x_37504+59x_37505+20x_37506+79x_37507+84x_37508+85x_37509+72x_37510+38x_37511+76x_37512+8x_37513+77x_37514+45x_37515+15x_37516+5x_37517+56x_37518+48x_37519+98x_37520+84x_37521+28x_37522+67x_37523+14x_37524+56x_37525+38x_37526+29x_37527+25x_37528+12x_37529+82x_37530+53x_37531+68x_37532+97x_37533+76x_37534+67x_37535+27x_37536+62x_37537+58x_37538+22x_37539+61x_37540+25x_37541+82x_37542+43x_37543+16x_37544+60x_37545+72x_37546+9x_37547+53x_37548+68x_37549+5x_37550+49x_37551+2x_37552+48x_37553+69x_37554+55x_37555+58x_37556+80x_37557+91x_37558+69x_37559+69x_37560+13x_37561+24x_37562+64x_37563+58x_37564+41x_37565+83x_37566+36x_37567+16x_37568+28x_37569+41x_37570+5x_37571+18x_37572+57x_37573+70x_37574+98x_37575+77x_37576+72x_37577+16x_37578+84x_37579+36x_37580+82x_37581+34x_37582+5x_37583+27x_37584+62x_37585+72x_37586+20x_37587+37x_37588+40x_37589+61x_37590+50x_37591+48x_37592+79x_37593+84x_37594+53x_37595+44x_37596+25x_37597+15x_37598+30x_37599+31x_37600+88x_37601+8x_37602+40x_37603+40x_37604+14x_37605+14x_37606+98x_37607+95x_37608+77x_37609+53x_37610+18x_37611+95x_37612+36x_37613+94x_37614+x_37615+28x_37616+52x_37617+62x_37618+47x_37619+18x_37620+11x_37621+25x_37622+64x_37623+69x_37624+29x_37625+3x_37626+56x_37627+41x_37628+75x_37629+78x_37630+24x_37631+78x_37632+99x_37633+4x_37634+75x_37635+98x_37636+16x_37637+24x_37638+16x_37639+70x_37640+89x_37641+69x_37642+19x_37643+81x_37644+76x_37645+88x_37646+3x_37647+67x_37648+67x_37649+46x_37650+21x_37651+71x_37652+55x_37653+100x_37654+81x_37655+38x_37656+38x_37657+56x_37658+61x_37659+16x_37660+91x_37661+31x_37662+39x_37663+49x_37664+11x_37665+26x_37666+32x_37667+100x_37668+100x_37669+52x_37670+56x_37671+46x_37672+64x_37673+54x_37674+33x_37675+95x_37676+100x_37677+6x_37678+31x_37679+58x_37680+27x_37681+26x_37682+20x_37683+73x_37684+77x_37685+60x_37686+4x_37687+40x_37688+61x_37689+53x_37690+31x_37691+35x_37692+96x_37693+30x_37694+60x_37695+14x_37696+22x_37697+69x_37698+75x_37699+25x_37700+25x_37701+93x_37702+49x_37703+6x_37704+70x_37705+21x_37706+56x_37707+80x_37708+8x_37709+10x_37710+98x_37711+83x_37712+11x_37713+64x_37714+94x_37715+98x_37716+40x_37717+42x_37718+85x_37719+49x_37720+58x_37721+86x_37722+37x_37723+32x_37724+47x_37725+32x_37726+71x_37727+45x_37728+35x_37729+100x_37730+22x_37731+51x_37732+87x_37733+14x_37734+67x_37735+48x_37736+15x_37737+72x_37738+66x_37739+91x_37740+16x_37741+49x_37742+12x_37743+68x_37744+83x_37745+29x_37746+27x_37747+28x_37748+46x_37749+100x_37750+22x_37751+57x_37752+19x_37753+54x_37754+19x_37755+94x_37756+53x_37757+74x_37758+90x_37759+88x_37760+14x_37761+42x_37762+59x_37763+32x_37764+26x_37765+26x_37766+63x_37767+49x_37768+46x_37769+80x_37770+28x_37771+62x_37772+86x_37773+25x_37774+68x_37775+50x_37776+87x_37777+69x_37778+71x_37779+60x_37780+25x_37781+74x_37782+76x_37783+71x_37784+86x_37785+51x_37786+93x_37787+54x_37788+67x_37789+25x_37790+8x_37791+43x_37792+46x_37793+28x_37794+68x_37795+82x_37796+4x_37797+3x_37798+63x_37799+99x_37800+39x_37801+65x_37802+26x_37803+65x_37804+17x_37805+67x_37806+86x_37807+4x_37808+76x_37809+96x_37810+69x_37811+47x_37812+89x_37813+5x_37814+32x_37815+83x_37816+76x_37817+14x_37818+82x_37819+98x_37820+46x_37821+87x_37822+52x_37823+49x_37824+98x_37825+37x_37826+97x_37827+77x_37828+39x_37829+41x_37830+78x_37831+50x_37832+49x_37833+88x_37834+13x_37835+54x_37836+88x_37837+80x_37838+24x_37839+2x_37840+42x_37841+46x_37842+5x_37843+43x_37844+34x_37845+87x_37846+58x_37847+79x_37848+65x_37849+41x_37850+17x_37851+40x_37852+83x_37853+18x_37854+37x_37855+97x_37856+4x_37857+59x_37858+75x_37859+3x_37860+54x_37861+20x_37862+34x_37863+69x_37864+38x_37865+17x_37866+91x_37867+66x_37868+64x_37869+10x_37870+x_37871+45x_37872+96x_37873+96x_37874+76x_37875+11x_37876+94x_37877+21x_37878+68x_37879+42x_37880+62x_37881+23x_37882+93x_37883+22x_37884+74x_37885+74x_37886+26x_37887+65x_37888+54x_37889+29x_37890+42x_37891+28x_37892+36x_37893+73x_37894+46x_37895+75x_37896+93x_37897+85x_37898+19x_37899+50x_37900+15x_37901+88x_37902+67x_37903+96x_37904+32x_37905+8x_37906+25x_37907+47x_37908+89x_37909+27x_37910+31x_37911+94x_37912+84x_37913+68x_37914+33x_37915+16x_37916+65x_37917+30x_37918+49x_37919+20x_37920+25x_37921+85x_37922+18x_37923+49x_37924+27x_37925+71x_37926+89x_37927+46x_37928+28x_37929+50x_37930+58x_37931+23x_37932+9x_37933+18x_37934+87x_37935+27x_37936+78x_37937+59x_37938+83x_37939+49x_37940+81x_37941+2x_37942+96x_37943+93x_37944+68x_37945+81x_37946+37x_37947+33x_37948+33x_37949+32x_37950+45x_37951+86x_37952+99x_37953+93x_37954+23x_37955+48x_37956+69x_37957+85x_37958+63x_37959+99x_37960+41x_37961+x_37962+91x_37963+71x_37964+85x_37965+12x_37966+9x_37967+63x_37968+27x_37969+66x_37970+56x_37971+15x_37972+41x_37973+4x_37974+72x_37975+63x_37976+18x_37977+36x_37978+42x_37979+67x_37980+53x_37981+47x_37982+77x_37983+99x_37984+24x_37985+67x_37986+69x_37987+57x_37988+5x_37989+48x_37990+14x_37991+25x_37992+71x_37993+92x_37994+89x_37995+59x_37996+21x_37997+23x_37998+51x_37999+65x_38000+26x_38001+28x_38002+68x_38003+52x_38004+18x_38005+70x_38006+48x_38007+52x_38008+39x_38009+96x_38010+23x_38011+66x_38012+49x_38013+30x_38014+2x_38015+77x_38016+64x_38017+25x_38018+97x_38019+64x_38020+35x_38021+17x_38022+11x_38023+23x_38024+14x_38025+64x_38026+33x_38027+69x_38028+93x_38029+x_38030+83x_38031+75x_38032+21x_38033+52x_38034+57x_38035+41x_38036+11x_38037+14x_38038+59x_38039+26x_38040+6x_38041+93x_38042+86x_38043+93x_38044+49x_38045+31x_38046+61x_38047+19x_38048+52x_38049+86x_38050+93x_38051+15x_38052+29x_38053+33x_38054+39x_38055+50x_38056+58x_38057+38x_38058+8x_38059+92x_38060+77x_38061+33x_38062+74x_38063+41x_38064+97x_38065+85x_38066+68x_38067+77x_38068+2x_38069+61x_38070+46x_38071+45x_38072+99x_38073+38x_38074+76x_38075+63x_38076+82x_38077+61x_38078+7x_38079+92x_38080+46x_38081+28x_38082+33x_38083+77x_38084+95x_38085+22x_38086+10x_38087+56x_38088+9x_38089+40x_38090+83x_38091+93x_38092+84x_38093+37x_38094+49x_38095+x_38096+10x_38097+15x_38098+13x_38099+40x_38100+44x_38101+11x_38102+83x_38103+77x_38104+78x_38105+16x_38106+23x_38107+18x_38108+52x_38109+81x_38110+60x_38111+95x_38112+47x_38113+77x_38114+99x_38115+28x_38116+61x_38117+76x_38118+80x_38119+77x_38120+43x_38121+23x_38122+37x_38123+46x_38124+5x_38125+92x_38126+47x_38127+19x_38128+64x_38129+7x_38130+2x_38131+12x_38132+6x_38133+35x_38134+83x_38135+57x_38136+55x_38137+71x_38138+64x_38139+41x_38140+88x_38141+6x_38142+96x_38143+60x_38144+29x_38145+61x_38146+4x_38147+26x_38148+32x_38149+70x_38150+3x_38151+70x_38152+69x_38153+62x_38154+15x_38155+89x_38156+54x_38157+43x_38158+50x_38159+23x_38160+77x_38161+65x_38162+70x_38163+72x_38164+50x_38165+14x_38166+64x_38167+94x_38168+62x_38169+94x_38170+56x_38171+13x_38172+70x_38173+7x_38174+47x_38175+73x_38176+13x_38177+50x_38178+10x_38179+88x_38180+49x_38181+66x_38182+65x_38183+58x_38184+99x_38185+72x_38186+93x_38187+68x_38188+75x_38189+19x_38190+75x_38191+88x_38192+41x_38193+9x_38194+65x_38195+81x_38196+9x_38197+82x_38198+87x_38199+60x_38200+75x_38201+24x_38202+56x_38203+69x_38204+91x_38205+89x_38206+25x_38207+26x_38208+48x_38209+71x_38210+85x_38211+30x_38212+16x_38213+13x_38214+86x_38215+27x_38216+91x_38217+30x_38218+59x_38219+98x_38220+65x_38221+50x_38222+28x_38223+9x_38224+11x_38225+34x_38226+64x_38227+54x_38228+40x_38229+17x_38230+22x_38231+52x_38232+52x_38233+40x_38234+73x_38235+83x_38236+78x_38237+38x_38238+96x_38239+11x_38240+52x_38241+70x_38242+39x_38243+2x_38244+49x_38245+6x_38246+23x_38247+17x_38248+71x_38249+15x_38250+90x_38251+82x_38252+77x_38253+93x_38254+35x_38255+73x_38256+23x_38257+75x_38258+64x_38259+63x_38260+42x_38261+77x_38262+15x_38263+10x_38264+68x_38265+69x_38266+25x_38267+98x_38268+53x_38269+80x_38270+59x_38271+94x_38272+58x_38273+87x_38274+40x_38275+80x_38276+23x_38277+x_38278+64x_38279+41x_38280+65x_38281+2x_38282+78x_38283+55x_38284+95x_38285+87x_38286+14x_38287+7x_38288+46x_38289+65x_38290+95x_38291+61x_38292+28x_38293+21x_38294+56x_38295+15x_38296+38x_38297+53x_38298+97x_38299+98x_38300+62x_38301+83x_38302+31x_38303+13x_38304+26x_38305+90x_38306+76x_38307+39x_38308+11x_38309+18x_38310+92x_38311+54x_38312+97x_38313+69x_38314+30x_38315+38x_38316+22x_38317+23x_38318+30x_38319+30x_38320+71x_38321+9x_38322+x_38323+89x_38324+42x_38325+80x_38326+44x_38327+62x_38328+26x_38329+67x_38330+55x_38331+14x_38332+44x_38333+57x_38334+98x_38335+41x_38336+32x_38337+65x_38338+82x_38339+6x_38340+99x_38341+x_38342+80x_38343+6x_38344+75x_38345+10x_38346+93x_38347+10x_38348+86x_38349+58x_38350+4x_38351+67x_38352+38x_38353+95x_38354+53x_38355+68x_38356+47x_38357+67x_38358+53x_38359+43x_38360+x_38361+85x_38362+21x_38363+24x_38364+61x_38365+48x_38366+31x_38367+71x_38368+64x_38369+29x_38370+89x_38371+46x_38372+27x_38373+10x_38374+2x_38375+45x_38376+66x_38377+19x_38378+49x_38379+62x_38380+94x_38381+49x_38382+81x_38383+2x_38384+66x_38385+16x_38386+74x_38387+79x_38388+24x_38389+27x_38390+3x_38391+26x_38392+77x_38393+50x_38394+85x_38395+11x_38396+18x_38397+41x_38398+19x_38399+25x_38400+48x_38401+36x_38402+9x_38403+26x_38404+19x_38405+77x_38406+73x_38407+70x_38408+69x_38409+15x_38410+74x_38411+3x_38412+36x_38413+28x_38414+69x_38415+12x_38416+58x_38417+22x_38418+88x_38419+46x_38420+41x_38421+8x_38422+73x_38423+10x_38424+22x_38425+22x_38426+54x_38427+41x_38428+100x_38429+64x_38430+57x_38431+35x_38432+35x_38433+28x_38434+60x_38435+92x_38436+35x_38437+44x_38438+30x_38439+100x_38440+87x_38441+7x_38442+15x_38443+67x_38444+62x_38445+79x_38446+94x_38447+10x_38448+79x_38449+74x_38450+59x_38451+55x_38452+20x_38453+x_38454+7x_38455+91x_38456+20x_38457+21x_38458+15x_38459+19x_38460+9x_38461+x_38462+32x_38463+71x_38464+14x_38465+42x_38466+49x_38467+32x_38468+92x_38469+53x_38470+28x_38471+27x_38472+96x_38473+31x_38474+2x_38475+45x_38476+62x_38477+42x_38478+63x_38479+96x_38480+88x_38481+100x_38482+41x_38483+29x_38484+76x_38485+14x_38486+7x_38487+x_38488+2x_38489+8x_38490+54x_38491+60x_38492+46x_38493+86x_38494+49x_38495+79x_38496+6x_38497+57x_38498+69x_38499+62x_38500+94x_38501+31x_38502+44x_38503+29x_38504+39x_38505+58x_38506+29x_38507+84x_38508+35x_38509+2x_38510+82x_38511+88x_38512+88x_38513+97x_38514+23x_38515+7x_38516+75x_38517+4x_38518+66x_38519+41x_38520+89x_38521+54x_38522+33x_38523+75x_38524+55x_38525+71x_38526+68x_38527+50x_38528+48x_38529+99x_38530+x_38531+65x_38532+93x_38533+3x_38534+96x_38535+59x_38536+73x_38537+60x_38538+86x_38539+78x_38540+42x_38541+3x_38542+93x_38543+56x_38544+4x_38545+37x_38546+51x_38547+58x_38548+44x_38549+x_38550+52x_38551+7x_38552+34x_38553+40x_38554+65x_38555+97x_38556+73x_38557+60x_38558+x_38559+85x_38560+16x_38561+87x_38562+63x_38563+6x_38564+81x_38565+32x_38566+20x_38567+71x_38568+93x_38569+62x_38570+26x_38571+x_38572+92x_38573+77x_38574+74x_38575+97x_38576+12x_38577+17x_38578+100x_38579+54x_38580+25x_38581+66x_38582+39x_38583+10x_38584+60x_38585+29x_38586+13x_38587+84x_38588+56x_38589+3x_38590+97x_38591+90x_38592+32x_38593+82x_38594+62x_38595+18x_38596+22x_38597+65x_38598+26x_38599+38x_38600+98x_38601+27x_38602+5x_38603+71x_38604+14x_38605+21x_38606+100x_38607+9x_38608+5x_38609+21x_38610+55x_38611+42x_38612+74x_38613+62x_38614+76x_38615+84x_38616+28x_38617+35x_38618+69x_38619+26x_38620+95x_38621+34x_38622+65x_38623+92x_38624+48x_38625+93x_38626+84x_38627+19x_38628+31x_38629+97x_38630+18x_38631+88x_38632+75x_38633+46x_38634+40x_38635+65x_38636+48x_38637+66x_38638+25x_38639+63x_38640+63x_38641+20x_38642+43x_38643+10x_38644+97x_38645+52x_38646+51x_38647+93x_38648+80x_38649+64x_38650+49x_38651+92x_38652+92x_38653+45x_38654+39x_38655+5x_38656+90x_38657+26x_38658+30x_38659+6x_38660+40x_38661+8x_38662+97x_38663+18x_38664+67x_38665+96x_38666+33x_38667+11x_38668+44x_38669+4x_38670+31x_38671+21x_38672+5x_38673+22x_38674+43x_38675+94x_38676+61x_38677+72x_38678+29x_38679+68x_38680+54x_38681+78x_38682+81x_38683+72x_38684+77x_38685+54x_38686+89x_38687+26x_38688+42x_38689+22x_38690+35x_38691+64x_38692+17x_38693+97x_38694+32x_38695+48x_38696+70x_38697+33x_38698+42x_38699+95x_38700+33x_38701+77x_38702+92x_38703+91x_38704+x_38705+35x_38706+18x_38707+14x_38708+13x_38709+35x_38710+18x_38711+19x_38712+90x_38713+35x_38714+59x_38715+6x_38716+80x_38717+58x_38718+62x_38719+16x_38720+48x_38721+2x_38722+39x_38723+36x_38724+10x_38725+10x_38726+43x_38727+95x_38728+79x_38729+13x_38730+50x_38731+42x_38732+97x_38733+15x_38734+51x_38735+63x_38736+6x_38737+60x_38738+13x_38739+20x_38740+18x_38741+54x_38742+23x_38743+60x_38744+20x_38745+100x_38746+80x_38747+22x_38748+66x_38749+67x_38750+40x_38751+15x_38752+88x_38753+33x_38754+92x_38755+16x_38756+36x_38757+81x_38758+42x_38759+45x_38760+14x_38761+71x_38762+96x_38763+21x_38764+50x_38765+79x_38766+12x_38767+27x_38768+34x_38769+76x_38770+62x_38771+12x_38772+5x_38773+10x_38774+82x_38775+77x_38776+95x_38777+22x_38778+23x_38779+34x_38780+47x_38781+98x_38782+53x_38783+35x_38784+85x_38785+100x_38786+34x_38787+73x_38788+25x_38789+42x_38790+43x_38791+11x_38792+64x_38793+66x_38794+26x_38795+4x_38796+55x_38797+72x_38798+39x_38799+63x_38800+x_38801+85x_38802+62x_38803+38x_38804+21x_38805+40x_38806+19x_38807+61x_38808+x_38809+98x_38810+53x_38811+56x_38812+4x_38813+60x_38814+38x_38815+55x_38816+86x_38817+34x_38818+41x_38819+24x_38820+60x_38821+94x_38822+62x_38823+93x_38824+34x_38825+14x_38826+66x_38827+31x_38828+15x_38829+100x_38830+32x_38831+86x_38832+6x_38833+74x_38834+40x_38835+35x_38836+x_38837+78x_38838+98x_38839+48x_38840+13x_38841+60x_38842+31x_38843+65x_38844+92x_38845+59x_38846+25x_38847+93x_38848+28x_38849+9x_38850+98x_38851+83x_38852+91x_38853+100x_38854+86x_38855+95x_38856+20x_38857+83x_38858+22x_38859+14x_38860+16x_38861+60x_38862+75x_38863+30x_38864+71x_38865+29x_38866+56x_38867+52x_38868+94x_38869+85x_38870+97x_38871+10x_38872+30x_38873+3x_38874+74x_38875+15x_38876+63x_38877+80x_38878+57x_38879+95x_38880+40x_38881+99x_38882+70x_38883+74x_38884+45x_38885+72x_38886+35x_38887+46x_38888+45x_38889+65x_38890+70x_38891+95x_38892+62x_38893+77x_38894+23x_38895+58x_38896+67x_38897+77x_38898+98x_38899+47x_38900+28x_38901+89x_38902+37x_38903+90x_38904+97x_38905+78x_38906+14x_38907+48x_38908+38x_38909+5x_38910+49x_38911+50x_38912+32x_38913+26x_38914+67x_38915+16x_38916+73x_38917+23x_38918+7x_38919+97x_38920+57x_38921+67x_38922+52x_38923+96x_38924+x_38925+61x_38926+26x_38927+85x_38928+15x_38929+93x_38930+41x_38931+19x_38932+53x_38933+50x_38934+43x_38935+68x_38936+87x_38937+47x_38938+96x_38939+16x_38940+90x_38941+65x_38942+57x_38943+59x_38944+100x_38945+54x_38946+69x_38947+97x_38948+27x_38949+86x_38950+75x_38951+79x_38952+88x_38953+94x_38954+14x_38955+13x_38956+40x_38957+42x_38958+54x_38959+19x_38960+86x_38961+6x_38962+96x_38963+49x_38964+20x_38965+2x_38966+85x_38967+67x_38968+22x_38969+74x_38970+58x_38971+8x_38972+82x_38973+67x_38974+24x_38975+78x_38976+56x_38977+24x_38978+18x_38979+2x_38980+15x_38981+53x_38982+22x_38983+29x_38984+18x_38985+32x_38986+82x_38987+88x_38988+93x_38989+89x_38990+8x_38991+22x_38992+80x_38993+99x_38994+46x_38995+x_38996+7x_38997+65x_38998+32x_38999+22x_39000+77x_39001+18x_39002+31x_39003+45x_39004+99x_39005+56x_39006+18x_39007+40x_39008+10x_39009+23x_39010+68x_39011+61x_39012+59x_39013+14x_39014+55x_39015+89x_39016+77x_39017+27x_39018+35x_39019+62x_39020+62x_39021+75x_39022+65x_39023+54x_39024+18x_39025+5x_39026+14x_39027+13x_39028+78x_39029+62x_39030+86x_39031+8x_39032+3x_39033+50x_39034+41x_39035+26x_39036+71x_39037+40x_39038+2x_39039+88x_39040+21x_39041+51x_39042+49x_39043+83x_39044+58x_39045+49x_39046+98x_39047+79x_39048+92x_39049+30x_39050+64x_39051+17x_39052+34x_39053+17x_39054+29x_39055+35x_39056+92x_39057+97x_39058+21x_39059+x_39060+56x_39061+22x_39062+67x_39063+84x_39064+36x_39065+57x_39066+56x_39067+x_39068+98x_39069+23x_39070+31x_39071+38x_39072+81x_39073+69x_39074+10x_39075+68x_39076+23x_39077+26x_39078+43x_39079+41x_39080+82x_39081+25x_39082+31x_39083+63x_39084+34x_39085+2x_39086+77x_39087+66x_39088+65x_39089+41x_39090+25x_39091+76x_39092+89x_39093+32x_39094+47x_39095+61x_39096+18x_39097+81x_39098+21x_39099+93x_39100+14x_39101+25x_39102+99x_39103+42x_39104+15x_39105+42x_39106+77x_39107+76x_39108+6x_39109+32x_39110+72x_39111+53x_39112+5x_39113+88x_39114+39x_39115+53x_39116+89x_39117+42x_39118+13x_39119+26x_39120+11x_39121+16x_39122+63x_39123+94x_39124+83x_39125+23x_39126+6x_39127+89x_39128+26x_39129+46x_39130+34x_39131+16x_39132+100x_39133+98x_39134+68x_39135+43x_39136+75x_39137+88x_39138+9x_39139+6x_39140+61x_39141+74x_39142+79x_39143+78x_39144+5x_39145+84x_39146+66x_39147+6x_39148+96x_39149+82x_39150+91x_39151+64x_39152+61x_39153+26x_39154+31x_39155+11x_39156+92x_39157+15x_39158+94x_39159+26x_39160+45x_39161+74x_39162+4x_39163+7x_39164+12x_39165+16x_39166+45x_39167+65x_39168+100x_39169+76x_39170+58x_39171+14x_39172+38x_39173+82x_39174+66x_39175+55x_39176+60x_39177+56x_39178+59x_39179+98x_39180+7x_39181+46x_39182+7x_39183+56x_39184+x_39185+42x_39186+57x_39187+5x_39188+47x_39189+57x_39190+66x_39191+76x_39192+11x_39193+52x_39194+17x_39195+65x_39196+11x_39197+44x_39198+13x_39199+98x_39200+8x_39201+11x_39202+18x_39203+59x_39204+5x_39205+86x_39206+83x_39207+47x_39208+39x_39209+90x_39210+27x_39211+28x_39212+27x_39213+15x_39214+94x_39215+83x_39216+69x_39217+59x_39218+42x_39219+78x_39220+33x_39221+38x_39222+33x_39223+8x_39224+13x_39225+77x_39226+70x_39227+23x_39228+88x_39229+19x_39230+24x_39231+83x_39232+8x_39233+30x_39234+38x_39235+59x_39236+99x_39237+12x_39238+27x_39239+34x_39240+75x_39241+60x_39242+46x_39243+77x_39244+59x_39245+29x_39246+40x_39247+33x_39248+60x_39249+53x_39250+48x_39251+8x_39252+6x_39253+3x_39254+92x_39255+49x_39256+69x_39257+20x_39258+66x_39259+79x_39260+4x_39261+5x_39262+94x_39263+8x_39264+34x_39265+35x_39266+54x_39267+80x_39268+60x_39269+70x_39270+91x_39271+80x_39272+12x_39273+44x_39274+59x_39275+27x_39276+20x_39277+14x_39278+11x_39279+77x_39280+72x_39281+68x_39282+43x_39283+x_39284+52x_39285+66x_39286+21x_39287+11x_39288+51x_39289+43x_39290+91x_39291+70x_39292+7x_39293+18x_39294+75x_39295+36x_39296+69x_39297+12x_39298+51x_39299+50x_39300+42x_39301+14x_39302+41x_39303+34x_39304+52x_39305+10x_39306+4x_39307+28x_39308+22x_39309+19x_39310+99x_39311+10x_39312+100x_39313+22x_39314+7x_39315+80x_39316+83x_39317+38x_39318+2x_39319+38x_39320+43x_39321+37x_39322+21x_39323+62x_39324+x_39325+69x_39326+60x_39327+86x_39328+2x_39329+60x_39330+80x_39331+58x_39332+14x_39333+69x_39334+74x_39335+86x_39336+50x_39337+44x_39338+43x_39339+75x_39340+44x_39341+92x_39342+9x_39343+48x_39344+47x_39345+12x_39346+35x_39347+79x_39348+84x_39349+100x_39350+70x_39351+40x_39352+x_39353+3x_39354+29x_39355+54x_39356+21x_39357+25x_39358+65x_39359+90x_39360+19x_39361+43x_39362+84x_39363+10x_39364+26x_39365+76x_39366+72x_39367+51x_39368+20x_39369+57x_39370+40x_39371+67x_39372+55x_39373+28x_39374+46x_39375+74x_39376+13x_39377+70x_39378+29x_39379+84x_39380+28x_39381+100x_39382+43x_39383+15x_39384+52x_39385+6x_39386+64x_39387+24x_39388+43x_39389+19x_39390+27x_39391+3x_39392+68x_39393+19x_39394+26x_39395+68x_39396+10x_39397+96x_39398+81x_39399+97x_39400+4x_39401+66x_39402+50x_39403+35x_39404+14x_39405+91x_39406+52x_39407+38x_39408+75x_39409+62x_39410+30x_39411+48x_39412+39x_39413+96x_39414+60x_39415+32x_39416+21x_39417+55x_39418+61x_39419+99x_39420+41x_39421+4x_39422+69x_39423+9x_39424+83x_39425+21x_39426+71x_39427+81x_39428+87x_39429+36x_39430+60x_39431+35x_39432+3x_39433+76x_39434+21x_39435+43x_39436+10x_39437+28x_39438+98x_39439+76x_39440+39x_39441+53x_39442+47x_39443+47x_39444+99x_39445+65x_39446+74x_39447+59x_39448+44x_39449+14x_39450+69x_39451+49x_39452+64x_39453+95x_39454+83x_39455+19x_39456+6x_39457+67x_39458+66x_39459+96x_39460+65x_39461+47x_39462+32x_39463+7x_39464+3x_39465+50x_39466+27x_39467+15x_39468+66x_39469+x_39470+33x_39471+19x_39472+25x_39473+68x_39474+35x_39475+84x_39476+72x_39477+89x_39478+29x_39479+68x_39480+47x_39481+65x_39482+29x_39483+44x_39484+79x_39485+65x_39486+96x_39487+17x_39488+95x_39489+55x_39490+19x_39491+39x_39492+7x_39493+60x_39494+20x_39495+54x_39496+79x_39497+64x_39498+7x_39499+82x_39500+23x_39501+91x_39502+23x_39503+12x_39504+85x_39505+93x_39506+61x_39507+33x_39508+97x_39509+34x_39510+26x_39511+48x_39512+79x_39513+98x_39514+70x_39515+8x_39516+94x_39517+23x_39518+37x_39519+66x_39520+40x_39521+75x_39522+29x_39523+18x_39524+51x_39525+23x_39526+12x_39527+45x_39528+87x_39529+93x_39530+50x_39531+48x_39532+77x_39533+92x_39534+83x_39535+75x_39536+57x_39537+88x_39538+72x_39539+79x_39540+29x_39541+17x_39542+78x_39543+36x_39544+21x_39545+46x_39546+29x_39547+26x_39548+99x_39549+87x_39550+46x_39551+93x_39552+46x_39553+62x_39554+23x_39555+90x_39556+91x_39557+63x_39558+27x_39559+22x_39560+20x_39561+55x_39562+18x_39563+7x_39564+92x_39565+12x_39566+12x_39567+96x_39568+30x_39569+98x_39570+83x_39571+16x_39572+9x_39573+81x_39574+89x_39575+67x_39576+13x_39577+21x_39578+91x_39579+93x_39580+98x_39581+6x_39582+18x_39583+88x_39584+42x_39585+5x_39586+32x_39587+39x_39588+92x_39589+77x_39590+50x_39591+29x_39592+79x_39593+66x_39594+83x_39595+41x_39596+5x_39597+45x_39598+66x_39599+15x_39600+5x_39601+24x_39602+94x_39603+71x_39604+85x_39605+90x_39606+91x_39607+79x_39608+75x_39609+25x_39610+30x_39611+48x_39612+70x_39613+4x_39614+55x_39615+11x_39616+62x_39617+99x_39618+73x_39619+96x_39620+82x_39621+57x_39622+4x_39623+26x_39624+14x_39625+11x_39626+32x_39627+59x_39628+73x_39629+6x_39630+9x_39631+99x_39632+15x_39633+44x_39634+24x_39635+67x_39636+41x_39637+66x_39638+43x_39639+42x_39640+77x_39641+45x_39642+11x_39643+48x_39644+63x_39645+45x_39646+87x_39647+7x_39648+79x_39649+92x_39650+97x_39651+58x_39652+45x_39653+59x_39654+68x_39655+17x_39656+73x_39657+93x_39658+57x_39659+21x_39660+17x_39661+40x_39662+17x_39663+10x_39664+52x_39665+75x_39666+89x_39667+46x_39668+41x_39669+30x_39670+2x_39671+69x_39672+73x_39673+76x_39674+2x_39675+20x_39676+34x_39677+51x_39678+65x_39679+75x_39680+53x_39681+100x_39682+25x_39683+99x_39684+63x_39685+86x_39686+21x_39687+98x_39688+81x_39689+94x_39690+25x_39691+34x_39692+45x_39693+97x_39694+18x_39695+8x_39696+33x_39697+67x_39698+78x_39699+43x_39700+6x_39701+84x_39702+3x_39703+16x_39704+72x_39705+90x_39706+56x_39707+32x_39708+67x_39709+5x_39710+83x_39711+90x_39712+87x_39713+82x_39714+74x_39715+82x_39716+23x_39717+49x_39718+19x_39719+45x_39720+2x_39721+100x_39722+85x_39723+63x_39724+20x_39725+59x_39726+46x_39727+80x_39728+47x_39729+32x_39730+45x_39731+20x_39732+7x_39733+9x_39734+74x_39735+76x_39736+71x_39737+33x_39738+99x_39739+19x_39740+89x_39741+18x_39742+16x_39743+94x_39744+6x_39745+31x_39746+12x_39747+79x_39748+40x_39749+77x_39750+44x_39751+75x_39752+31x_39753+5x_39754+38x_39755+91x_39756+38x_39757+66x_39758+20x_39759+40x_39760+22x_39761+45x_39762+37x_39763+99x_39764+13x_39765+28x_39766+14x_39767+21x_39768+31x_39769+65x_39770+82x_39771+86x_39772+89x_39773+43x_39774+14x_39775+81x_39776+80x_39777+42x_39778+25x_39779+20x_39780+49x_39781+92x_39782+96x_39783+56x_39784+41x_39785+63x_39786+31x_39787+8x_39788+31x_39789+76x_39790+96x_39791+85x_39792+15x_39793+80x_39794+27x_39795+39x_39796+57x_39797+71x_39798+76x_39799+32x_39800+77x_39801+75x_39802+30x_39803+85x_39804+51x_39805+4x_39806+63x_39807+64x_39808+13x_39809+76x_39810+48x_39811+35x_39812+34x_39813+9x_39814+19x_39815+63x_39816+63x_39817+44x_39818+34x_39819+94x_39820+58x_39821+83x_39822+86x_39823+64x_39824+47x_39825+89x_39826+65x_39827+58x_39828+95x_39829+32x_39830+89x_39831+79x_39832+48x_39833+91x_39834+36x_39835+37x_39836+19x_39837+40x_39838+47x_39839+77x_39840+48x_39841+41x_39842+30x_39843+95x_39844+46x_39845+100x_39846+45x_39847+42x_39848+96x_39849+15x_39850+9x_39851+41x_39852+68x_39853+12x_39854+79x_39855+67x_39856+29x_39857+57x_39858+86x_39859+75x_39860+98x_39861+36x_39862+11x_39863+40x_39864+63x_39865+55x_39866+94x_39867+37x_39868+96x_39869+88x_39870+100x_39871+56x_39872+65x_39873+80x_39874+50x_39875+20x_39876+72x_39877+22x_39878+65x_39879+53x_39880+93x_39881+19x_39882+65x_39883+8x_39884+72x_39885+71x_39886+65x_39887+81x_39888+82x_39889+24x_39890+98x_39891+13x_39892+78x_39893+91x_39894+63x_39895+86x_39896+43x_39897+53x_39898+11x_39899+68x_39900+29x_39901+26x_39902+60x_39903+25x_39904+30x_39905+24x_39906+24x_39907+40x_39908+39x_39909+98x_39910+72x_39911+24x_39912+38x_39913+83x_39914+7x_39915+56x_39916+38x_39917+5x_39918+22x_39919+21x_39920+84x_39921+80x_39922+48x_39923+27x_39924+93x_39925+26x_39926+22x_39927+32x_39928+95x_39929+88x_39930+61x_39931+33x_39932+16x_39933+23x_39934+14x_39935+18x_39936+22x_39937+93x_39938+92x_39939+37x_39940+61x_39941+9x_39942+44x_39943+71x_39944+40x_39945+13x_39946+51x_39947+8x_39948+69x_39949+80x_39950+69x_39951+26x_39952+12x_39953+14x_39954+19x_39955+48x_39956+71x_39957+91x_39958+14x_39959+99x_39960+94x_39961+87x_39962+29x_39963+36x_39964+81x_39965+87x_39966+21x_39967+83x_39968+69x_39969+9x_39970+13x_39971+16x_39972+43x_39973+65x_39974+59x_39975+83x_39976+25x_39977+59x_39978+49x_39979+67x_39980+40x_39981+31x_39982+6x_39983+90x_39984+33x_39985+73x_39986+91x_39987+56x_39988+73x_39989+61x_39990+26x_39991+89x_39992+21x_39993+82x_39994+100x_39995+70x_39996+44x_39997+15x_39998+84x_39999+42x_40000+28x_40001+71x_40002+84x_40003+89x_40004+68x_40005+91x_40006+77x_40007+27x_40008+64x_40009+21x_40010+17x_40011+x_40012+52x_40013+79x_40014+12x_40015+90x_40016+23x_40017+67x_40018+35x_40019+67x_40020+51x_40021+93x_40022+34x_40023+41x_40024+47x_40025+53x_40026+17x_40027+22x_40028+7x_40029+11x_40030+34x_40031+95x_40032+97x_40033+87x_40034+5x_40035+8x_40036+59x_40037+31x_40038+81x_40039+67x_40040+55x_40041+84x_40042+20x_40043+68x_40044+53x_40045+7x_40046+31x_40047+96x_40048+34x_40049+57x_40050+52x_40051+97x_40052+65x_40053+93x_40054+62x_40055+100x_40056+24x_40057+33x_40058+52x_40059+96x_40060+30x_40061+42x_40062+63x_40063+6x_40064+61x_40065+8x_40066+68x_40067+22x_40068+13x_40069+56x_40070+43x_40071+3x_40072+87x_40073+43x_40074+34x_40075+17x_40076+13x_40077+92x_40078+81x_40079+77x_40080+60x_40081+83x_40082+44x_40083+58x_40084+80x_40085+5x_40086+39x_40087+76x_40088+71x_40089+100x_40090+66x_40091+33x_40092+52x_40093+98x_40094+79x_40095+70x_40096+50x_40097+80x_40098+42x_40099+47x_40100+85x_40101+19x_40102+29x_40103+95x_40104+79x_40105+61x_40106+52x_40107+97x_40108+10x_40109+14x_40110+70x_40111+55x_40112+19x_40113+62x_40114+3x_40115+82x_40116+82x_40117+83x_40118+10x_40119+90x_40120+27x_40121+77x_40122+57x_40123+22x_40124+73x_40125+45x_40126+13x_40127+47x_40128+82x_40129+41x_40130+44x_40131+95x_40132+57x_40133+39x_40134+8x_40135+13x_40136+81x_40137+10x_40138+96x_40139+63x_40140+35x_40141+88x_40142+90x_40143+3x_40144+69x_40145+90x_40146+6x_40147+29x_40148+82x_40149+70x_40150+33x_40151+16x_40152+13x_40153+94x_40154+32x_40155+7x_40156+71x_40157+91x_40158+x_40159+73x_40160+89x_40161+39x_40162+81x_40163+41x_40164+8x_40165+42x_40166+7x_40167+64x_40168+82x_40169+98x_40170+55x_40171+41x_40172+52x_40173+57x_40174+66x_40175+95x_40176+69x_40177+83x_40178+88x_40179+77x_40180+96x_40181+76x_40182+76x_40183+38x_40184+81x_40185+53x_40186+6x_40187+17x_40188+38x_40189+46x_40190+x_40191+27x_40192+14x_40193+72x_40194+32x_40195+87x_40196+54x_40197+43x_40198+45x_40199+57x_40200+23x_40201+80x_40202+100x_40203+15x_40204+6x_40205+20x_40206+70x_40207+97x_40208+31x_40209+45x_40210+53x_40211+96x_40212+100x_40213+10x_40214+68x_40215+82x_40216+43x_40217+82x_40218+18x_40219+50x_40220+11x_40221+53x_40222+28x_40223+90x_40224+11x_40225+89x_40226+56x_40227+6x_40228+2x_40229+28x_40230+78x_40231+81x_40232+57x_40233+3x_40234+36x_40235+23x_40236+25x_40237+75x_40238+78x_40239+93x_40240+63x_40241+42x_40242+9x_40243+98x_40244+91x_40245+16x_40246+87x_40247+19x_40248+54x_40249+22x_40250+98x_40251+5x_40252+67x_40253+42x_40254+58x_40255+45x_40256+62x_40257+21x_40258+92x_40259+20x_40260+80x_40261+35x_40262+48x_40263+38x_40264+36x_40265+2x_40266+49x_40267+72x_40268+100x_40269+42x_40270+54x_40271+31x_40272+16x_40273+96x_40274+20x_40275+36x_40276+82x_40277+24x_40278+72x_40279+5x_40280+63x_40281+13x_40282+90x_40283+82x_40284+18x_40285+74x_40286+17x_40287+16x_40288+59x_40289+8x_40290+52x_40291+35x_40292+89x_40293+57x_40294+61x_40295+32x_40296+83x_40297+39x_40298+69x_40299+82x_40300+41x_40301+86x_40302+10x_40303+51x_40304+96x_40305+44x_40306+50x_40307+98x_40308+34x_40309+52x_40310+48x_40311+46x_40312+56x_40313+5x_40314+61x_40315+49x_40316+42x_40317+60x_40318+59x_40319+9x_40320+35x_40321+96x_40322+98x_40323+72x_40324+65x_40325+47x_40326+100x_40327+88x_40328+91x_40329+17x_40330+35x_40331+72x_40332+82x_40333+76x_40334+4x_40335+99x_40336+62x_40337+93x_40338+3x_40339+43x_40340+55x_40341+67x_40342+24x_40343+8x_40344+x_40345+71x_40346+35x_40347+38x_40348+56x_40349+59x_40350+95x_40351+55x_40352+49x_40353+81x_40354+40x_40355+97x_40356+10x_40357+23x_40358+49x_40359+43x_40360+54x_40361+43x_40362+86x_40363+27x_40364+5x_40365+89x_40366+17x_40367+99x_40368+99x_40369+71x_40370+71x_40371+79x_40372+12x_40373+41x_40374+55x_40375+80x_40376+34x_40377+29x_40378+27x_40379+10x_40380+51x_40381+24x_40382+24x_40383+80x_40384+22x_40385+81x_40386+19x_40387+25x_40388+41x_40389+70x_40390+33x_40391+93x_40392+16x_40393+72x_40394+21x_40395+31x_40396+61x_40397+10x_40398+58x_40399+91x_40400+72x_40401+81x_40402+100x_40403+76x_40404+5x_40405+44x_40406+71x_40407+61x_40408+10x_40409+77x_40410+99x_40411+93x_40412+68x_40413+49x_40414+55x_40415+x_40416+11x_40417+6x_40418+33x_40419+11x_40420+42x_40421+48x_40422+83x_40423+64x_40424+85x_40425+19x_40426+95x_40427+x_40428+88x_40429+15x_40430+22x_40431+100x_40432+90x_40433+94x_40434+57x_40435+94x_40436+33x_40437+69x_40438+51x_40439+64x_40440+6x_40441+95x_40442+51x_40443+50x_40444+27x_40445+31x_40446+80x_40447+24x_40448+91x_40449+98x_40450+23x_40451+56x_40452+57x_40453+90x_40454+52x_40455+54x_40456+84x_40457+14x_40458+60x_40459+99x_40460+54x_40461+63x_40462+9x_40463+57x_40464+70x_40465+62x_40466+63x_40467+68x_40468+83x_40469+81x_40470+21x_40471+41x_40472+89x_40473+75x_40474+66x_40475+27x_40476+5x_40477+7x_40478+67x_40479+33x_40480+89x_40481+90x_40482+34x_40483+40x_40484+53x_40485+42x_40486+74x_40487+73x_40488+77x_40489+58x_40490+18x_40491+18x_40492+52x_40493+20x_40494+15x_40495+51x_40496+95x_40497+53x_40498+57x_40499+60x_40500+48x_40501+41x_40502+49x_40503+53x_40504+68x_40505+67x_40506+57x_40507+83x_40508+85x_40509+19x_40510+30x_40511+79x_40512+45x_40513+19x_40514+46x_40515+66x_40516+82x_40517+65x_40518+12x_40519+57x_40520+73x_40521+60x_40522+71x_40523+33x_40524+43x_40525+94x_40526+11x_40527+20x_40528+42x_40529+30x_40530+42x_40531+19x_40532+27x_40533+66x_40534+87x_40535+54x_40536+48x_40537+14x_40538+11x_40539+52x_40540+79x_40541+78x_40542+9x_40543+15x_40544+58x_40545+35x_40546+2x_40547+11x_40548+72x_40549+45x_40550+49x_40551+32x_40552+48x_40553+20x_40554+38x_40555+95x_40556+85x_40557+61x_40558+80x_40559+90x_40560+46x_40561+74x_40562+89x_40563+10x_40564+64x_40565+98x_40566+65x_40567+42x_40568+10x_40569+3x_40570+39x_40571+75x_40572+63x_40573+66x_40574+37x_40575+76x_40576+32x_40577+94x_40578+80x_40579+84x_40580+19x_40581+18x_40582+76x_40583+71x_40584+99x_40585+34x_40586+84x_40587+36x_40588+68x_40589+57x_40590+75x_40591+12x_40592+47x_40593+47x_40594+22x_40595+14x_40596+23x_40597+62x_40598+75x_40599+76x_40600+70x_40601+67x_40602+94x_40603+20x_40604+33x_40605+18x_40606+38x_40607+7x_40608+21x_40609+53x_40610+85x_40611+88x_40612+22x_40613+3x_40614+99x_40615+20x_40616+43x_40617+79x_40618+19x_40619+69x_40620+79x_40621+76x_40622+40x_40623+90x_40624+36x_40625+46x_40626+66x_40627+54x_40628+36x_40629+88x_40630+34x_40631+84x_40632+89x_40633+62x_40634+77x_40635+65x_40636+78x_40637+30x_40638+55x_40639+83x_40640+87x_40641+37x_40642+48x_40643+99x_40644+87x_40645+12x_40646+55x_40647+x_40648+29x_40649+80x_40650+64x_40651+17x_40652+67x_40653+77x_40654+87x_40655+35x_40656+17x_40657+x_40658+14x_40659+56x_40660+64x_40661+80x_40662+94x_40663+53x_40664+87x_40665+15x_40666+25x_40667+13x_40668+48x_40669+64x_40670+8x_40671+40x_40672+11x_40673+33x_40674+x_40675+48x_40676+58x_40677+80x_40678+78x_40679+46x_40680+15x_40681+6x_40682+32x_40683+42x_40684+40x_40685+74x_40686+30x_40687+39x_40688+78x_40689+16x_40690+30x_40691+84x_40692+48x_40693+62x_40694+81x_40695+20x_40696+65x_40697+20x_40698+86x_40699+8x_40700+95x_40701+4x_40702+79x_40703+74x_40704+90x_40705+54x_40706+34x_40707+18x_40708+45x_40709+43x_40710+54x_40711+83x_40712+23x_40713+99x_40714+69x_40715+29x_40716+93x_40717+14x_40718+94x_40719+42x_40720+100x_40721+17x_40722+26x_40723+87x_40724+3x_40725+41x_40726+24x_40727+17x_40728+38x_40729+62x_40730+12x_40731+90x_40732+72x_40733+15x_40734+38x_40735+25x_40736+40x_40737+90x_40738+61x_40739+57x_40740+61x_40741+45x_40742+31x_40743+26x_40744+44x_40745+32x_40746+78x_40747+81x_40748+29x_40749+95x_40750+67x_40751+75x_40752+36x_40753+28x_40754+32x_40755+61x_40756+100x_40757+25x_40758+75x_40759+97x_40760+40x_40761+88x_40762+74x_40763+66x_40764+92x_40765+81x_40766+21x_40767+36x_40768+4x_40769+71x_40770+98x_40771+26x_40772+81x_40773+60x_40774+83x_40775+85x_40776+92x_40777+15x_40778+98x_40779+25x_40780+53x_40781+21x_40782+74x_40783+54x_40784+x_40785+92x_40786+94x_40787+87x_40788+51x_40789+74x_40790+60x_40791+84x_40792+56x_40793+40x_40794+72x_40795+61x_40796+98x_40797+81x_40798+90x_40799+25x_40800+35x_40801+82x_40802+85x_40803+66x_40804+73x_40805+31x_40806+78x_40807+47x_40808+61x_40809+8x_40810+35x_40811+11x_40812+50x_40813+2x_40814+24x_40815+80x_40816+68x_40817+33x_40818+71x_40819+84x_40820+37x_40821+64x_40822+71x_40823+74x_40824+76x_40825+21x_40826+38x_40827+66x_40828+63x_40829+81x_40830+2x_40831+47x_40832+9x_40833+66x_40834+10x_40835+3x_40836+43x_40837+44x_40838+50x_40839+13x_40840+97x_40841+77x_40842+93x_40843+98x_40844+31x_40845+19x_40846+13x_40847+97x_40848+93x_40849+66x_40850+x_40851+12x_40852+62x_40853+4x_40854+16x_40855+36x_40856+52x_40857+48x_40858+85x_40859+42x_40860+94x_40861+24x_40862+50x_40863+92x_40864+13x_40865+58x_40866+10x_40867+61x_40868+61x_40869+76x_40870+87x_40871+83x_40872+85x_40873+51x_40874+3x_40875+73x_40876+53x_40877+86x_40878+96x_40879+95x_40880+96x_40881+52x_40882+2x_40883+4x_40884+62x_40885+69x_40886+55x_40887+36x_40888+4x_40889+98x_40890+79x_40891+62x_40892+10x_40893+46x_40894+10x_40895+83x_40896+89x_40897+86x_40898+20x_40899+27x_40900+78x_40901+7x_40902+x_40903+49x_40904+41x_40905+52x_40906+55x_40907+58x_40908+51x_40909+80x_40910+15x_40911+x_40912+45x_40913+86x_40914+76x_40915+73x_40916+69x_40917+84x_40918+51x_40919+26x_40920+6x_40921+22x_40922+54x_40923+34x_40924+8x_40925+83x_40926+12x_40927+33x_40928+51x_40929+7x_40930+100x_40931+50x_40932+96x_40933+19x_40934+65x_40935+87x_40936+71x_40937+47x_40938+17x_40939+57x_40940+92x_40941+62x_40942+50x_40943+21x_40944+42x_40945+30x_40946+20x_40947+41x_40948+10x_40949+94x_40950+11x_40951+22x_40952+57x_40953+54x_40954+22x_40955+8x_40956+91x_40957+54x_40958+42x_40959+58x_40960+18x_40961+51x_40962+53x_40963+84x_40964+8x_40965+53x_40966+4x_40967+20x_40968+98x_40969+87x_40970+7x_40971+38x_40972+71x_40973+30x_40974+x_40975+77x_40976+77x_40977+32x_40978+79x_40979+86x_40980+97x_40981+98x_40982+17x_40983+36x_40984+99x_40985+15x_40986+82x_40987+20x_40988+64x_40989+43x_40990+63x_40991+37x_40992+72x_40993+48x_40994+70x_40995+78x_40996+35x_40997+63x_40998+60x_40999+35x_41000+98x_41001+46x_41002+35x_41003+71x_41004+74x_41005+13x_41006+83x_41007+72x_41008+59x_41009+44x_41010+95x_41011+85x_41012+70x_41013+21x_41014+90x_41015+25x_41016+79x_41017+34x_41018+14x_41019+85x_41020+45x_41021+24x_41022+36x_41023+86x_41024+56x_41025+42x_41026+83x_41027+13x_41028+92x_41029+84x_41030+48x_41031+19x_41032+100x_41033+19x_41034+2x_41035+35x_41036+34x_41037+52x_41038+3x_41039+16x_41040+57x_41041+74x_41042+27x_41043+81x_41044+58x_41045+100x_41046+15x_41047+7x_41048+97x_41049+11x_41050+31x_41051+41x_41052+98x_41053+99x_41054+x_41055+68x_41056+86x_41057+59x_41058+63x_41059+32x_41060+83x_41061+35x_41062+74x_41063+53x_41064+95x_41065+20x_41066+68x_41067+45x_41068+28x_41069+51x_41070+12x_41071+99x_41072+77x_41073+25x_41074+16x_41075+58x_41076+95x_41077+70x_41078+43x_41079+51x_41080+37x_41081+7x_41082+45x_41083+59x_41084+52x_41085+10x_41086+64x_41087+27x_41088+89x_41089+80x_41090+16x_41091+96x_41092+35x_41093+44x_41094+29x_41095+37x_41096+50x_41097+12x_41098+88x_41099+39x_41100+79x_41101+72x_41102+41x_41103+25x_41104+37x_41105+29x_41106+19x_41107+90x_41108+80x_41109+51x_41110+89x_41111+32x_41112+75x_41113+29x_41114+93x_41115+7x_41116+82x_41117+50x_41118+58x_41119+25x_41120+79x_41121+54x_41122+83x_41123+19x_41124+22x_41125+50x_41126+11x_41127+40x_41128+52x_41129+38x_41130+35x_41131+5x_41132+81x_41133+14x_41134+83x_41135+89x_41136+32x_41137+59x_41138+49x_41139+88x_41140+28x_41141+3x_41142+55x_41143+23x_41144+81x_41145+25x_41146+28x_41147+56x_41148+76x_41149+19x_41150+14x_41151+30x_41152+75x_41153+56x_41154+60x_41155+95x_41156+89x_41157+50x_41158+49x_41159+13x_41160+60x_41161+82x_41162+61x_41163+48x_41164+20x_41165+21x_41166+38x_41167+95x_41168+94x_41169+33x_41170+91x_41171+66x_41172+38x_41173+95x_41174+99x_41175+19x_41176+49x_41177+87x_41178+74x_41179+87x_41180+53x_41181+57x_41182+96x_41183+33x_41184+75x_41185+86x_41186+17x_41187+24x_41188+48x_41189+61x_41190+92x_41191+62x_41192+83x_41193+17x_41194+86x_41195+89x_41196+86x_41197+34x_41198+16x_41199+77x_41200+49x_41201+82x_41202+73x_41203+71x_41204+81x_41205+21x_41206+30x_41207+40x_41208+74x_41209+97x_41210+36x_41211+50x_41212+46x_41213+55x_41214+24x_41215+58x_41216+56x_41217+11x_41218+18x_41219+7x_41220+29x_41221+60x_41222+28x_41223+27x_41224+62x_41225+57x_41226+41x_41227+80x_41228+15x_41229+9x_41230+8x_41231+84x_41232+20x_41233+87x_41234+5x_41235+66x_41236+46x_41237+96x_41238+19x_41239+57x_41240+19x_41241+10x_41242+99x_41243+67x_41244+62x_41245+27x_41246+37x_41247+78x_41248+52x_41249+11x_41250+79x_41251+49x_41252+82x_41253+47x_41254+20x_41255+18x_41256+42x_41257+3x_41258+49x_41259+3x_41260+65x_41261+73x_41262+91x_41263+56x_41264+78x_41265+51x_41266+85x_41267+35x_41268+18x_41269+61x_41270+15x_41271+58x_41272+3x_41273+73x_41274+39x_41275+27x_41276+100x_41277+32x_41278+82x_41279+71x_41280+84x_41281+5x_41282+36x_41283+65x_41284+55x_41285+8x_41286+64x_41287+27x_41288+73x_41289+31x_41290+43x_41291+16x_41292+68x_41293+48x_41294+28x_41295+84x_41296+37x_41297+85x_41298+55x_41299+70x_41300+84x_41301+61x_41302+67x_41303+56x_41304+13x_41305+2x_41306+95x_41307+84x_41308+16x_41309+27x_41310+58x_41311+86x_41312+x_41313+45x_41314+62x_41315+42x_41316+59x_41317+13x_41318+29x_41319+80x_41320+14x_41321+79x_41322+81x_41323+87x_41324+99x_41325+55x_41326+44x_41327+6x_41328+64x_41329+82x_41330+67x_41331+59x_41332+74x_41333+17x_41334+73x_41335+99x_41336+65x_41337+38x_41338+44x_41339+53x_41340+36x_41341+50x_41342+68x_41343+77x_41344+4x_41345+66x_41346+81x_41347+42x_41348+53x_41349+77x_41350+99x_41351+32x_41352+74x_41353+83x_41354+18x_41355+18x_41356+46x_41357+60x_41358+80x_41359+73x_41360+49x_41361+94x_41362+12x_41363+93x_41364+10x_41365+80x_41366+22x_41367+67x_41368+41x_41369+25x_41370+73x_41371+99x_41372+49x_41373+45x_41374+27x_41375+25x_41376+40x_41377+24x_41378+16x_41379+45x_41380+59x_41381+86x_41382+40x_41383+27x_41384+53x_41385+20x_41386+93x_41387+42x_41388+7x_41389+34x_41390+49x_41391+93x_41392+46x_41393+54x_41394+35x_41395+9x_41396+79x_41397+95x_41398+36x_41399+52x_41400+12x_41401+27x_41402+22x_41403+82x_41404+32x_41405+99x_41406+50x_41407+85x_41408+88x_41409+62x_41410+33x_41411+39x_41412+77x_41413+22x_41414+39x_41415+78x_41416+7x_41417+100x_41418+60x_41419+5x_41420+68x_41421+76x_41422+12x_41423+94x_41424+10x_41425+69x_41426+3x_41427+61x_41428+33x_41429+56x_41430+40x_41431+33x_41432+50x_41433+89x_41434+88x_41435+88x_41436+46x_41437+6x_41438+93x_41439+85x_41440+22x_41441+22x_41442+23x_41443+34x_41444+70x_41445+62x_41446+97x_41447+23x_41448+8x_41449+94x_41450+94x_41451+38x_41452+38x_41453+21x_41454+41x_41455+9x_41456+87x_41457+66x_41458+65x_41459+24x_41460+11x_41461+75x_41462+93x_41463+45x_41464+82x_41465+58x_41466+46x_41467+98x_41468+62x_41469+89x_41470+77x_41471+79x_41472+96x_41473+5x_41474+89x_41475+72x_41476+29x_41477+13x_41478+83x_41479+24x_41480+35x_41481+85x_41482+86x_41483+32x_41484+55x_41485+4x_41486+82x_41487+3x_41488+86x_41489+80x_41490+54x_41491+35x_41492+67x_41493+75x_41494+98x_41495+75x_41496+64x_41497+76x_41498+56x_41499+69x_41500+47x_41501+76x_41502+33x_41503+53x_41504+9x_41505+85x_41506+86x_41507+58x_41508+21x_41509+59x_41510+39x_41511+82x_41512+60x_41513+96x_41514+94x_41515+2x_41516+79x_41517+4x_41518+87x_41519+64x_41520+35x_41521+15x_41522+52x_41523+23x_41524+99x_41525+17x_41526+11x_41527+92x_41528+42x_41529+75x_41530+81x_41531+13x_41532+86x_41533+32x_41534+43x_41535+26x_41536+18x_41537+24x_41538+5x_41539+71x_41540+27x_41541+59x_41542+60x_41543+48x_41544+39x_41545+77x_41546+25x_41547+91x_41548+76x_41549+x_41550+67x_41551+84x_41552+23x_41553+67x_41554+90x_41555+70x_41556+47x_41557+12x_41558+39x_41559+3x_41560+83x_41561+85x_41562+38x_41563+28x_41564+41x_41565+73x_41566+28x_41567+94x_41568+19x_41569+84x_41570+72x_41571+76x_41572+19x_41573+56x_41574+59x_41575+17x_41576+10x_41577+92x_41578+2x_41579+47x_41580+39x_41581+67x_41582+82x_41583+61x_41584+20x_41585+68x_41586+99x_41587+23x_41588+61x_41589+22x_41590+98x_41591+8x_41592+43x_41593+72x_41594+6x_41595+89x_41596+50x_41597+66x_41598+39x_41599+97x_41600+91x_41601+17x_41602+40x_41603+x_41604+88x_41605+50x_41606+60x_41607+15x_41608+42x_41609+89x_41610+67x_41611+78x_41612+67x_41613+28x_41614+5x_41615+12x_41616+100x_41617+53x_41618+98x_41619+26x_41620+15x_41621+51x_41622+82x_41623+16x_41624+5x_41625+65x_41626+99x_41627+92x_41628+86x_41629+42x_41630+48x_41631+48x_41632+7x_41633+27x_41634+95x_41635+67x_41636+44x_41637+57x_41638+44x_41639+94x_41640+59x_41641+3x_41642+25x_41643+34x_41644+32x_41645+35x_41646+80x_41647+40x_41648+79x_41649+52x_41650+85x_41651+x_41652+39x_41653+46x_41654+8x_41655+27x_41656+93x_41657+48x_41658+86x_41659+52x_41660+44x_41661+55x_41662+92x_41663+50x_41664+38x_41665+7x_41666+63x_41667+97x_41668+16x_41669+67x_41670+86x_41671+28x_41672+17x_41673+19x_41674+48x_41675+73x_41676+17x_41677+x_41678+38x_41679+57x_41680+76x_41681+9x_41682+14x_41683+51x_41684+88x_41685+73x_41686+81x_41687+18x_41688+92x_41689+12x_41690+64x_41691+35x_41692+89x_41693+9x_41694+68x_41695+90x_41696+89x_41697+30x_41698+85x_41699+6x_41700+26x_41701+6x_41702+87x_41703+50x_41704+10x_41705+45x_41706+32x_41707+92x_41708+98x_41709+2x_41710+40x_41711+81x_41712+19x_41713+10x_41714+21x_41715+63x_41716+68x_41717+76x_41718+54x_41719+65x_41720+22x_41721+80x_41722+40x_41723+11x_41724+54x_41725+72x_41726+45x_41727+35x_41728+53x_41729+46x_41730+41x_41731+86x_41732+50x_41733+37x_41734+95x_41735+65x_41736+7x_41737+92x_41738+58x_41739+4x_41740+44x_41741+42x_41742+6x_41743+20x_41744+5x_41745+94x_41746+86x_41747+16x_41748+13x_41749+78x_41750+9x_41751+26x_41752+10x_41753+24x_41754+55x_41755+61x_41756+59x_41757+100x_41758+99x_41759+100x_41760+46x_41761+61x_41762+81x_41763+5x_41764+34x_41765+38x_41766+19x_41767+67x_41768+21x_41769+55x_41770+81x_41771+6x_41772+70x_41773+8x_41774+36x_41775+8x_41776+77x_41777+99x_41778+42x_41779+53x_41780+71x_41781+51x_41782+62x_41783+25x_41784+4x_41785+55x_41786+74x_41787+6x_41788+81x_41789+77x_41790+17x_41791+76x_41792+83x_41793+60x_41794+51x_41795+3x_41796+82x_41797+38x_41798+95x_41799+67x_41800+76x_41801+17x_41802+64x_41803+9x_41804+18x_41805+3x_41806+12x_41807+6x_41808+59x_41809+48x_41810+35x_41811+25x_41812+59x_41813+45x_41814+85x_41815+90x_41816+28x_41817+10x_41818+19x_41819+16x_41820+63x_41821+96x_41822+90x_41823+71x_41824+96x_41825+57x_41826+13x_41827+66x_41828+48x_41829+55x_41830+25x_41831+86x_41832+23x_41833+34x_41834+70x_41835+5x_41836+40x_41837+44x_41838+59x_41839+66x_41840+42x_41841+53x_41842+17x_41843+4x_41844+48x_41845+79x_41846+56x_41847+32x_41848+87x_41849+75x_41850+71x_41851+87x_41852+56x_41853+94x_41854+14x_41855+80x_41856+53x_41857+17x_41858+23x_41859+98x_41860+67x_41861+71x_41862+74x_41863+82x_41864+63x_41865+68x_41866+89x_41867+19x_41868+50x_41869+18x_41870+47x_41871+38x_41872+51x_41873+57x_41874+26x_41875+63x_41876+34x_41877+14x_41878+90x_41879+87x_41880+100x_41881+16x_41882+92x_41883+9x_41884+94x_41885+20x_41886+25x_41887+57x_41888+39x_41889+44x_41890+61x_41891+18x_41892+49x_41893+49x_41894+14x_41895+50x_41896+36x_41897+94x_41898+20x_41899+58x_41900+15x_41901+44x_41902+60x_41903+65x_41904+87x_41905+2x_41906+40x_41907+83x_41908+67x_41909+7x_41910+45x_41911+65x_41912+84x_41913+70x_41914+23x_41915+12x_41916+7x_41917+7x_41918+35x_41919+62x_41920+10x_41921+54x_41922+83x_41923+65x_41924+69x_41925+7x_41926+83x_41927+81x_41928+22x_41929+30x_41930+69x_41931+33x_41932+86x_41933+48x_41934+91x_41935+69x_41936+81x_41937+74x_41938+37x_41939+79x_41940+33x_41941+9x_41942+64x_41943+16x_41944+52x_41945+57x_41946+21x_41947+10x_41948+28x_41949+62x_41950+29x_41951+69x_41952+94x_41953+18x_41954+22x_41955+3x_41956+4x_41957+82x_41958+16x_41959+70x_41960+22x_41961+66x_41962+66x_41963+70x_41964+65x_41965+48x_41966+19x_41967+47x_41968+45x_41969+34x_41970+46x_41971+64x_41972+60x_41973+62x_41974+50x_41975+73x_41976+37x_41977+25x_41978+78x_41979+20x_41980+73x_41981+72x_41982+10x_41983+44x_41984+29x_41985+66x_41986+45x_41987+18x_41988+19x_41989+10x_41990+20x_41991+88x_41992+79x_41993+97x_41994+26x_41995+66x_41996+56x_41997+45x_41998+18x_41999+34x_42000+21x_42001+64x_42002+73x_42003+50x_42004+8x_42005+68x_42006+40x_42007+23x_42008+75x_42009+14x_42010+35x_42011+65x_42012+30x_42013+2x_42014+48x_42015+36x_42016+44x_42017+8x_42018+48x_42019+45x_42020+32x_42021+10x_42022+76x_42023+51x_42024+52x_42025+32x_42026+78x_42027+7x_42028+66x_42029+75x_42030+77x_42031+54x_42032+16x_42033+x_42034+23x_42035+24x_42036+15x_42037+69x_42038+29x_42039+83x_42040+37x_42041+9x_42042+24x_42043+65x_42044+58x_42045+x_42046+68x_42047+3x_42048+23x_42049+23x_42050+64x_42051+51x_42052+26x_42053+51x_42054+91x_42055+27x_42056+96x_42057+7x_42058+50x_42059+9x_42060+15x_42061+29x_42062+81x_42063+32x_42064+18x_42065+69x_42066+66x_42067+90x_42068+26x_42069+33x_42070+25x_42071+97x_42072+46x_42073+30x_42074+53x_42075+27x_42076+7x_42077+45x_42078+100x_42079+17x_42080+9x_42081+81x_42082+19x_42083+44x_42084+99x_42085+81x_42086+44x_42087+16x_42088+31x_42089+7x_42090+56x_42091+40x_42092+14x_42093+93x_42094+33x_42095+94x_42096+5x_42097+25x_42098+59x_42099+89x_42100+67x_42101+23x_42102+63x_42103+44x_42104+18x_42105+98x_42106+14x_42107+5x_42108+62x_42109+4x_42110+12x_42111+12x_42112+40x_42113+7x_42114+3x_42115+52x_42116+61x_42117+89x_42118+49x_42119+67x_42120+2x_42121+76x_42122+29x_42123+90x_42124+25x_42125+15x_42126+16x_42127+100x_42128+6x_42129+50x_42130+68x_42131+51x_42132+34x_42133+71x_42134+39x_42135+x_42136+75x_42137+49x_42138+22x_42139+87x_42140+68x_42141+73x_42142+79x_42143+28x_42144+18x_42145+32x_42146+47x_42147+50x_42148+48x_42149+95x_42150+42x_42151+71x_42152+60x_42153+66x_42154+16x_42155+83x_42156+4x_42157+90x_42158+74x_42159+100x_42160+29x_42161+43x_42162+11x_42163+66x_42164+92x_42165+23x_42166+93x_42167+81x_42168+84x_42169+29x_42170+62x_42171+41x_42172+56x_42173+96x_42174+65x_42175+17x_42176+83x_42177+84x_42178+35x_42179+48x_42180+38x_42181+87x_42182+4x_42183+6x_42184+20x_42185+59x_42186+40x_42187+56x_42188+100x_42189+50x_42190+23x_42191+14x_42192+79x_42193+49x_42194+21x_42195+97x_42196+56x_42197+8x_42198+54x_42199+95x_42200+37x_42201+30x_42202+94x_42203+73x_42204+14x_42205+47x_42206+70x_42207+4x_42208+12x_42209+6x_42210+79x_42211+10x_42212+23x_42213+54x_42214+98x_42215+37x_42216+53x_42217+62x_42218+78x_42219+8x_42220+84x_42221+69x_42222+63x_42223+27x_42224+63x_42225+67x_42226+65x_42227+47x_42228+51x_42229+67x_42230+34x_42231+21x_42232+23x_42233+81x_42234+4x_42235+33x_42236+x_42237+71x_42238+19x_42239+57x_42240+77x_42241+29x_42242+68x_42243+2x_42244+75x_42245+94x_42246+49x_42247+82x_42248+10x_42249+46x_42250+95x_42251+98x_42252+74x_42253+84x_42254+29x_42255+59x_42256+51x_42257+x_42258+36x_42259+28x_42260+89x_42261+87x_42262+89x_42263+19x_42264+16x_42265+3x_42266+49x_42267+91x_42268+65x_42269+81x_42270+66x_42271+38x_42272+21x_42273+92x_42274+16x_42275+4x_42276+83x_42277+41x_42278+66x_42279+33x_42280+85x_42281+77x_42282+90x_42283+39x_42284+10x_42285+41x_42286+48x_42287+35x_42288+3x_42289+17x_42290+25x_42291+71x_42292+2x_42293+65x_42294+40x_42295+72x_42296+58x_42297+83x_42298+49x_42299+92x_42300+46x_42301+68x_42302+80x_42303+98x_42304+92x_42305+41x_42306+61x_42307+78x_42308+64x_42309+45x_42310+94x_42311+30x_42312+3x_42313+26x_42314+82x_42315+94x_42316+20x_42317+64x_42318+75x_42319+95x_42320+62x_42321+33x_42322+80x_42323+95x_42324+68x_42325+43x_42326+90x_42327+48x_42328+57x_42329+95x_42330+67x_42331+75x_42332+56x_42333+52x_42334+5x_42335+63x_42336+x_42337+62x_42338+22x_42339+10x_42340+58x_42341+99x_42342+10x_42343+96x_42344+88x_42345+59x_42346+44x_42347+76x_42348+63x_42349+7x_42350+56x_42351+90x_42352+55x_42353+97x_42354+21x_42355+4x_42356+10x_42357+74x_42358+27x_42359+2x_42360+12x_42361+60x_42362+12x_42363+7x_42364+95x_42365+66x_42366+33x_42367+62x_42368+59x_42369+60x_42370+57x_42371+4x_42372+63x_42373+27x_42374+53x_42375+45x_42376+26x_42377+69x_42378+71x_42379+90x_42380+11x_42381+95x_42382+4x_42383+19x_42384+x_42385+96x_42386+72x_42387+44x_42388+18x_42389+96x_42390+99x_42391+98x_42392+33x_42393+8x_42394+88x_42395+67x_42396+22x_42397+22x_42398+10x_42399+6x_42400+73x_42401+82x_42402+15x_42403+18x_42404+100x_42405+72x_42406+38x_42407+x_42408+57x_42409+45x_42410+23x_42411+9x_42412+11x_42413+11x_42414+45x_42415+35x_42416+67x_42417+28x_42418+12x_42419+99x_42420+2x_42421+39x_42422+84x_42423+31x_42424+69x_42425+38x_42426+39x_42427+12x_42428+48x_42429+59x_42430+38x_42431+92x_42432+4x_42433+14x_42434+4x_42435+49x_42436+17x_42437+35x_42438+50x_42439+30x_42440+25x_42441+96x_42442+45x_42443+68x_42444+73x_42445+19x_42446+46x_42447+41x_42448+68x_42449+33x_42450+42x_42451+74x_42452+60x_42453+66x_42454+64x_42455+96x_42456+57x_42457+41x_42458+77x_42459+9x_42460+66x_42461+13x_42462+29x_42463+52x_42464+74x_42465+79x_42466+5x_42467+49x_42468+58x_42469+16x_42470+29x_42471+9x_42472+12x_42473+86x_42474+85x_42475+7x_42476+16x_42477+87x_42478+34x_42479+9x_42480+6x_42481+9x_42482+44x_42483+42x_42484+27x_42485+44x_42486+43x_42487+43x_42488+68x_42489+39x_42490+60x_42491+51x_42492+97x_42493+98x_42494+11x_42495+58x_42496+7x_42497+100x_42498+53x_42499+91x_42500+35x_42501+77x_42502+33x_42503+67x_42504+83x_42505+87x_42506+27x_42507+37x_42508+23x_42509+72x_42510+76x_42511+33x_42512+24x_42513+34x_42514+71x_42515+65x_42516+57x_42517+75x_42518+70x_42519+44x_42520+31x_42521+4x_42522+85x_42523+88x_42524+47x_42525+82x_42526+24x_42527+69x_42528+45x_42529+58x_42530+77x_42531+50x_42532+61x_42533+36x_42534+35x_42535+34x_42536+65x_42537+98x_42538+7x_42539+6x_42540+6x_42541+28x_42542+13x_42543+79x_42544+44x_42545+14x_42546+37x_42547+78x_42548+65x_42549+85x_42550+7x_42551+2x_42552+27x_42553+78x_42554+9x_42555+84x_42556+85x_42557+19x_42558+70x_42559+57x_42560+31x_42561+28x_42562+36x_42563+15x_42564+86x_42565+86x_42566+2x_42567+64x_42568+44x_42569+81x_42570+89x_42571+90x_42572+35x_42573+72x_42574+9x_42575+88x_42576+86x_42577+5x_42578+66x_42579+76x_42580+36x_42581+73x_42582+24x_42583+76x_42584+64x_42585+12x_42586+77x_42587+69x_42588+74x_42589+73x_42590+76x_42591+70x_42592+39x_42593+84x_42594+36x_42595+91x_42596+79x_42597+73x_42598+44x_42599+16x_42600+52x_42601+65x_42602+10x_42603+9x_42604+41x_42605+16x_42606+32x_42607+83x_42608+94x_42609+34x_42610+22x_42611+68x_42612+75x_42613+56x_42614+40x_42615+49x_42616+65x_42617+23x_42618+36x_42619+68x_42620+80x_42621+8x_42622+24x_42623+86x_42624+31x_42625+29x_42626+67x_42627+12x_42628+15x_42629+32x_42630+53x_42631+46x_42632+82x_42633+3x_42634+88x_42635+47x_42636+67x_42637+88x_42638+32x_42639+6x_42640+60x_42641+77x_42642+88x_42643+28x_42644+63x_42645+44x_42646+28x_42647+69x_42648+32x_42649+35x_42650+6x_42651+7x_42652+95x_42653+20x_42654+88x_42655+37x_42656+85x_42657+100x_42658+18x_42659+13x_42660+47x_42661+84x_42662+83x_42663+6x_42664+28x_42665+64x_42666+54x_42667+74x_42668+82x_42669+47x_42670+94x_42671+92x_42672+10x_42673+x_42674+59x_42675+89x_42676+26x_42677+88x_42678+3x_42679+11x_42680+96x_42681+36x_42682+71x_42683+79x_42684+3x_42685+60x_42686+98x_42687+85x_42688+46x_42689+45x_42690+12x_42691+9x_42692+42x_42693+44x_42694+5x_42695+63x_42696+6x_42697+92x_42698+62x_42699+36x_42700+41x_42701+88x_42702+51x_42703+50x_42704+8x_42705+13x_42706+36x_42707+67x_42708+67x_42709+27x_42710+56x_42711+53x_42712+97x_42713+91x_42714+53x_42715+76x_42716+2x_42717+43x_42718+50x_42719+81x_42720+37x_42721+64x_42722+62x_42723+41x_42724+16x_42725+73x_42726+85x_42727+84x_42728+20x_42729+47x_42730+54x_42731+88x_42732+31x_42733+15x_42734+62x_42735+50x_42736+41x_42737+37x_42738+96x_42739+79x_42740+33x_42741+51x_42742+56x_42743+72x_42744+72x_42745+58x_42746+27x_42747+46x_42748+24x_42749+43x_42750+53x_42751+63x_42752+9x_42753+45x_42754+53x_42755+55x_42756+41x_42757+88x_42758+59x_42759+60x_42760+2x_42761+29x_42762+83x_42763+81x_42764+19x_42765+11x_42766+3x_42767+21x_42768+46x_42769+92x_42770+86x_42771+88x_42772+53x_42773+89x_42774+58x_42775+49x_42776+5x_42777+64x_42778+78x_42779+95x_42780+17x_42781+13x_42782+56x_42783+43x_42784+19x_42785+67x_42786+4x_42787+41x_42788+15x_42789+67x_42790+73x_42791+37x_42792+67x_42793+49x_42794+93x_42795+93x_42796+72x_42797+15x_42798+94x_42799+43x_42800+85x_42801+5x_42802+87x_42803+34x_42804+75x_42805+27x_42806+43x_42807+21x_42808+58x_42809+33x_42810+11x_42811+40x_42812+92x_42813+78x_42814+46x_42815+9x_42816+5x_42817+70x_42818+53x_42819+34x_42820+41x_42821+33x_42822+38x_42823+62x_42824+93x_42825+62x_42826+79x_42827+48x_42828+8x_42829+2x_42830+52x_42831+43x_42832+17x_42833+85x_42834+14x_42835+85x_42836+30x_42837+76x_42838+18x_42839+97x_42840+10x_42841+89x_42842+79x_42843+26x_42844+63x_42845+17x_42846+14x_42847+30x_42848+100x_42849+31x_42850+25x_42851+4x_42852+56x_42853+80x_42854+94x_42855+14x_42856+58x_42857+6x_42858+16x_42859+94x_42860+76x_42861+61x_42862+56x_42863+79x_42864+45x_42865+81x_42866+54x_42867+84x_42868+57x_42869+61x_42870+30x_42871+70x_42872+10x_42873+71x_42874+34x_42875+9x_42876+98x_42877+56x_42878+19x_42879+98x_42880+99x_42881+20x_42882+79x_42883+84x_42884+18x_42885+98x_42886+34x_42887+76x_42888+79x_42889+33x_42890+93x_42891+62x_42892+58x_42893+83x_42894+54x_42895+69x_42896+60x_42897+84x_42898+82x_42899+44x_42900+93x_42901+49x_42902+82x_42903+13x_42904+94x_42905+54x_42906+37x_42907+74x_42908+57x_42909+51x_42910+10x_42911+62x_42912+37x_42913+68x_42914+2x_42915+3x_42916+30x_42917+76x_42918+5x_42919+47x_42920+86x_42921+90x_42922+39x_42923+34x_42924+56x_42925+31x_42926+54x_42927+69x_42928+41x_42929+68x_42930+24x_42931+88x_42932+4x_42933+56x_42934+35x_42935+8x_42936+15x_42937+2x_42938+7x_42939+23x_42940+94x_42941+53x_42942+49x_42943+76x_42944+41x_42945+44x_42946+54x_42947+20x_42948+9x_42949+16x_42950+34x_42951+92x_42952+98x_42953+78x_42954+100x_42955+87x_42956+83x_42957+67x_42958+24x_42959+2x_42960+11x_42961+94x_42962+23x_42963+93x_42964+58x_42965+45x_42966+53x_42967+33x_42968+50x_42969+30x_42970+15x_42971+6x_42972+20x_42973+68x_42974+71x_42975+13x_42976+78x_42977+13x_42978+24x_42979+9x_42980+33x_42981+70x_42982+35x_42983+88x_42984+83x_42985+88x_42986+56x_42987+12x_42988+38x_42989+70x_42990+57x_42991+76x_42992+79x_42993+27x_42994+34x_42995+53x_42996+80x_42997+77x_42998+82x_42999+53x_43000+37x_43001+63x_43002+26x_43003+27x_43004+36x_43005+26x_43006+93x_43007+96x_43008+84x_43009+56x_43010+55x_43011+20x_43012+65x_43013+100x_43014+65x_43015+2x_43016+40x_43017+56x_43018+94x_43019+77x_43020+63x_43021+17x_43022+52x_43023+89x_43024+94x_43025+71x_43026+14x_43027+31x_43028+14x_43029+2x_43030+12x_43031+92x_43032+32x_43033+71x_43034+81x_43035+58x_43036+52x_43037+27x_43038+2x_43039+21x_43040+80x_43041+29x_43042+77x_43043+12x_43044+34x_43045+82x_43046+83x_43047+34x_43048+33x_43049+94x_43050+26x_43051+73x_43052+38x_43053+91x_43054+15x_43055+42x_43056+39x_43057+69x_43058+5x_43059+22x_43060+12x_43061+88x_43062+5x_43063+13x_43064+39x_43065+56x_43066+45x_43067+38x_43068+7x_43069+76x_43070+43x_43071+59x_43072+22x_43073+98x_43074+100x_43075+37x_43076+76x_43077+52x_43078+16x_43079+33x_43080+31x_43081+63x_43082+17x_43083+82x_43084+76x_43085+17x_43086+56x_43087+22x_43088+48x_43089+74x_43090+29x_43091+63x_43092+48x_43093+43x_43094+77x_43095+75x_43096+14x_43097+35x_43098+40x_43099+42x_43100+63x_43101+19x_43102+98x_43103+8x_43104+40x_43105+15x_43106+43x_43107+56x_43108+4x_43109+28x_43110+84x_43111+18x_43112+5x_43113+86x_43114+70x_43115+95x_43116+54x_43117+21x_43118+49x_43119+96x_43120+54x_43121+13x_43122+28x_43123+81x_43124+28x_43125+2x_43126+78x_43127+12x_43128+66x_43129+76x_43130+13x_43131+99x_43132+9x_43133+51x_43134+19x_43135+42x_43136+25x_43137+23x_43138+35x_43139+62x_43140+12x_43141+8x_43142+18x_43143+57x_43144+57x_43145+87x_43146+15x_43147+69x_43148+7x_43149+9x_43150+49x_43151+49x_43152+24x_43153+39x_43154+70x_43155+48x_43156+5x_43157+32x_43158+53x_43159+98x_43160+40x_43161+61x_43162+48x_43163+28x_43164+59x_43165+53x_43166+87x_43167+16x_43168+43x_43169+43x_43170+61x_43171+49x_43172+67x_43173+24x_43174+65x_43175+37x_43176+52x_43177+83x_43178+2x_43179+20x_43180+60x_43181+56x_43182+59x_43183+47x_43184+74x_43185+9x_43186+57x_43187+53x_43188+9x_43189+95x_43190+24x_43191+51x_43192+90x_43193+13x_43194+7x_43195+19x_43196+12x_43197+87x_43198+10x_43199+44x_43200+50x_43201+72x_43202+2x_43203+35x_43204+39x_43205+60x_43206+36x_43207+91x_43208+28x_43209+32x_43210+66x_43211+15x_43212+86x_43213+x_43214+22x_43215+61x_43216+80x_43217+2x_43218+16x_43219+12x_43220+81x_43221+37x_43222+51x_43223+78x_43224+79x_43225+67x_43226+51x_43227+4x_43228+22x_43229+2x_43230+31x_43231+10x_43232+30x_43233+9x_43234+29x_43235+83x_43236+56x_43237+6x_43238+88x_43239+12x_43240+76x_43241+51x_43242+57x_43243+44x_43244+79x_43245+7x_43246+81x_43247+48x_43248+40x_43249+67x_43250+18x_43251+83x_43252+99x_43253+90x_43254+97x_43255+60x_43256+22x_43257+80x_43258+54x_43259+34x_43260+7x_43261+13x_43262+24x_43263+28x_43264+20x_43265+52x_43266+97x_43267+55x_43268+31x_43269+79x_43270+47x_43271+67x_43272+27x_43273+24x_43274+3x_43275+85x_43276+16x_43277+88x_43278+96x_43279+65x_43280+9x_43281+33x_43282+17x_43283+75x_43284+32x_43285+8x_43286+85x_43287+36x_43288+7x_43289+19x_43290+22x_43291+97x_43292+9x_43293+63x_43294+44x_43295+4x_43296+8x_43297+2x_43298+89x_43299+98x_43300+25x_43301+51x_43302+85x_43303+85x_43304+4x_43305+79x_43306+97x_43307+10x_43308+30x_43309+68x_43310+76x_43311+50x_43312+80x_43313+94x_43314+16x_43315+28x_43316+72x_43317+42x_43318+31x_43319+12x_43320+26x_43321+90x_43322+42x_43323+17x_43324+63x_43325+55x_43326+98x_43327+12x_43328+17x_43329+2x_43330+68x_43331+65x_43332+97x_43333+3x_43334+83x_43335+85x_43336+52x_43337+12x_43338+12x_43339+42x_43340+91x_43341+62x_43342+56x_43343+16x_43344+88x_43345+15x_43346+9x_43347+10x_43348+80x_43349+79x_43350+97x_43351+60x_43352+40x_43353+2x_43354+49x_43355+58x_43356+3x_43357+87x_43358+28x_43359+29x_43360+51x_43361+42x_43362+27x_43363+36x_43364+11x_43365+80x_43366+24x_43367+23x_43368+59x_43369+23x_43370+89x_43371+75x_43372+16x_43373+11x_43374+40x_43375+19x_43376+72x_43377+49x_43378+5x_43379+67x_43380+52x_43381+92x_43382+45x_43383+87x_43384+79x_43385+18x_43386+21x_43387+27x_43388+14x_43389+52x_43390+80x_43391+80x_43392+48x_43393+93x_43394+4x_43395+91x_43396+85x_43397+79x_43398+50x_43399+49x_43400+45x_43401+31x_43402+8x_43403+98x_43404+67x_43405+60x_43406+88x_43407+8x_43408+57x_43409+24x_43410+27x_43411+20x_43412+87x_43413+68x_43414+79x_43415+61x_43416+27x_43417+97x_43418+75x_43419+x_43420+56x_43421+56x_43422+28x_43423+76x_43424+15x_43425+9x_43426+97x_43427+32x_43428+5x_43429+75x_43430+16x_43431+61x_43432+22x_43433+99x_43434+57x_43435+78x_43436+45x_43437+18x_43438+7x_43439+73x_43440+96x_43441+100x_43442+20x_43443+51x_43444+32x_43445+78x_43446+96x_43447+96x_43448+12x_43449+38x_43450+30x_43451+73x_43452+10x_43453+59x_43454+11x_43455+11x_43456+51x_43457+x_43458+27x_43459+x_43460+91x_43461+82x_43462+71x_43463+83x_43464+15x_43465+42x_43466+100x_43467+52x_43468+12x_43469+23x_43470+5x_43471+81x_43472+52x_43473+31x_43474+93x_43475+74x_43476+77x_43477+4x_43478+38x_43479+17x_43480+35x_43481+80x_43482+52x_43483+93x_43484+10x_43485+41x_43486+16x_43487+34x_43488+93x_43489+47x_43490+91x_43491+99x_43492+14x_43493+60x_43494+40x_43495+20x_43496+77x_43497+2x_43498+23x_43499+17x_43500+65x_43501+41x_43502+52x_43503+51x_43504+100x_43505+21x_43506+68x_43507+x_43508+28x_43509+86x_43510+90x_43511+16x_43512+62x_43513+66x_43514+78x_43515+96x_43516+65x_43517+23x_43518+85x_43519+28x_43520+40x_43521+94x_43522+50x_43523+58x_43524+22x_43525+45x_43526+80x_43527+36x_43528+9x_43529+92x_43530+x_43531+47x_43532+33x_43533+16x_43534+8x_43535+46x_43536+54x_43537+90x_43538+60x_43539+75x_43540+81x_43541+23x_43542+45x_43543+3x_43544+73x_43545+66x_43546+8x_43547+92x_43548+19x_43549+49x_43550+9x_43551+30x_43552+70x_43553+3x_43554+49x_43555+60x_43556+65x_43557+44x_43558+77x_43559+32x_43560+19x_43561+27x_43562+24x_43563+47x_43564+10x_43565+55x_43566+70x_43567+14x_43568+2x_43569+61x_43570+8x_43571+12x_43572+10x_43573+100x_43574+76x_43575+43x_43576+4x_43577+68x_43578+5x_43579+50x_43580+71x_43581+79x_43582+76x_43583+67x_43584+24x_43585+45x_43586+46x_43587+42x_43588+95x_43589+13x_43590+88x_43591+79x_43592+7x_43593+100x_43594+58x_43595+52x_43596+98x_43597+88x_43598+22x_43599+33x_43600+6x_43601+99x_43602+61x_43603+25x_43604+8x_43605+3x_43606+43x_43607+59x_43608+50x_43609+2x_43610+96x_43611+86x_43612+81x_43613+41x_43614+29x_43615+96x_43616+4x_43617+39x_43618+11x_43619+98x_43620+64x_43621+88x_43622+44x_43623+31x_43624+55x_43625+23x_43626+53x_43627+75x_43628+68x_43629+99x_43630+44x_43631+90x_43632+85x_43633+82x_43634+15x_43635+28x_43636+45x_43637+51x_43638+86x_43639+29x_43640+80x_43641+38x_43642+12x_43643+76x_43644+x_43645+34x_43646+25x_43647+55x_43648+96x_43649+35x_43650+90x_43651+41x_43652+80x_43653+20x_43654+53x_43655+16x_43656+91x_43657+76x_43658+19x_43659+13x_43660+37x_43661+83x_43662+60x_43663+31x_43664+17x_43665+7x_43666+14x_43667+61x_43668+47x_43669+62x_43670+9x_43671+93x_43672+34x_43673+24x_43674+57x_43675+94x_43676+86x_43677+47x_43678+91x_43679+47x_43680+5x_43681+30x_43682+70x_43683+65x_43684+18x_43685+58x_43686+100x_43687+69x_43688+60x_43689+76x_43690+84x_43691+x_43692+18x_43693+100x_43694+43x_43695+15x_43696+65x_43697+60x_43698+37x_43699+66x_43700+23x_43701+72x_43702+58x_43703+71x_43704+85x_43705+74x_43706+66x_43707+52x_43708+26x_43709+50x_43710+31x_43711+64x_43712+65x_43713+63x_43714+75x_43715+43x_43716+48x_43717+37x_43718+97x_43719+25x_43720+12x_43721+96x_43722+73x_43723+2x_43724+95x_43725+25x_43726+22x_43727+99x_43728+43x_43729+2x_43730+83x_43731+70x_43732+100x_43733+95x_43734+46x_43735+37x_43736+65x_43737+94x_43738+41x_43739+48x_43740+24x_43741+5x_43742+67x_43743+63x_43744+67x_43745+22x_43746+73x_43747+28x_43748+40x_43749+34x_43750+20x_43751+24x_43752+96x_43753+68x_43754+60x_43755+82x_43756+50x_43757+41x_43758+93x_43759+49x_43760+88x_43761+59x_43762+85x_43763+34x_43764+28x_43765+55x_43766+66x_43767+50x_43768+95x_43769+24x_43770+32x_43771+35x_43772+40x_43773+35x_43774+13x_43775+99x_43776+28x_43777+4x_43778+88x_43779+53x_43780+48x_43781+25x_43782+50x_43783+69x_43784+95x_43785+20x_43786+63x_43787+28x_43788+44x_43789+100x_43790+71x_43791+15x_43792+91x_43793+37x_43794+19x_43795+93x_43796+69x_43797+26x_43798+88x_43799+87x_43800+28x_43801+38x_43802+99x_43803+35x_43804+48x_43805+10x_43806+69x_43807+30x_43808+32x_43809+31x_43810+26x_43811+12x_43812+21x_43813+85x_43814+61x_43815+6x_43816+54x_43817+50x_43818+49x_43819+100x_43820+15x_43821+51x_43822+53x_43823+4x_43824+60x_43825+52x_43826+59x_43827+79x_43828+22x_43829+14x_43830+28x_43831+57x_43832+24x_43833+26x_43834+26x_43835+96x_43836+91x_43837+89x_43838+83x_43839+99x_43840+8x_43841+6x_43842+28x_43843+10x_43844+57x_43845+94x_43846+86x_43847+90x_43848+90x_43849+34x_43850+50x_43851+33x_43852+90x_43853+14x_43854+87x_43855+47x_43856+10x_43857+32x_43858+51x_43859+89x_43860+x_43861+71x_43862+100x_43863+80x_43864+33x_43865+38x_43866+25x_43867+62x_43868+69x_43869+28x_43870+37x_43871+85x_43872+17x_43873+83x_43874+64x_43875+x_43876+21x_43877+9x_43878+33x_43879+55x_43880+8x_43881+9x_43882+10x_43883+68x_43884+6x_43885+42x_43886+x_43887+71x_43888+33x_43889+49x_43890+51x_43891+61x_43892+5x_43893+55x_43894+97x_43895+44x_43896+30x_43897+75x_43898+70x_43899+96x_43900+92x_43901+2x_43902+19x_43903+5x_43904+68x_43905+51x_43906+51x_43907+83x_43908+68x_43909+53x_43910+12x_43911+26x_43912+98x_43913+100x_43914+83x_43915+22x_43916+20x_43917+80x_43918+43x_43919+19x_43920+40x_43921+57x_43922+4x_43923+95x_43924+41x_43925+53x_43926+13x_43927+18x_43928+68x_43929+x_43930+73x_43931+61x_43932+44x_43933+24x_43934+34x_43935+79x_43936+68x_43937+83x_43938+80x_43939+13x_43940+79x_43941+19x_43942+61x_43943+20x_43944+67x_43945+21x_43946+18x_43947+6x_43948+45x_43949+89x_43950+51x_43951+54x_43952+31x_43953+75x_43954+51x_43955+46x_43956+61x_43957+77x_43958+94x_43959+31x_43960+81x_43961+28x_43962+63x_43963+8x_43964+17x_43965+18x_43966+82x_43967+29x_43968+51x_43969+39x_43970+59x_43971+94x_43972+100x_43973+50x_43974+2x_43975+3x_43976+56x_43977+91x_43978+14x_43979+15x_43980+63x_43981+51x_43982+69x_43983+73x_43984+4x_43985+25x_43986+52x_43987+37x_43988+13x_43989+93x_43990+21x_43991+80x_43992+13x_43993+83x_43994+78x_43995+91x_43996+15x_43997+66x_43998+85x_43999+53x_44000+97x_44001+91x_44002+71x_44003+72x_44004+66x_44005+79x_44006+60x_44007+12x_44008+66x_44009+69x_44010+51x_44011+21x_44012+14x_44013+32x_44014+38x_44015+8x_44016+48x_44017+72x_44018+45x_44019+2x_44020+79x_44021+30x_44022+27x_44023+26x_44024+24x_44025+15x_44026+72x_44027+68x_44028+49x_44029+27x_44030+92x_44031+14x_44032+55x_44033+77x_44034+48x_44035+52x_44036+43x_44037+6x_44038+90x_44039+33x_44040+62x_44041+82x_44042+13x_44043+81x_44044+25x_44045+65x_44046+27x_44047+37x_44048+47x_44049+52x_44050+43x_44051+51x_44052+11x_44053+82x_44054+15x_44055+56x_44056+84x_44057+68x_44058+91x_44059+56x_44060+7x_44061+18x_44062+3x_44063+8x_44064+33x_44065+8x_44066+95x_44067+x_44068+42x_44069+99x_44070+37x_44071+83x_44072+62x_44073+38x_44074+35x_44075+89x_44076+97x_44077+97x_44078+39x_44079+56x_44080+x_44081+31x_44082+38x_44083+55x_44084+46x_44085+98x_44086+16x_44087+19x_44088+66x_44089+86x_44090+43x_44091+92x_44092+26x_44093+48x_44094+24x_44095+22x_44096+10x_44097+95x_44098+32x_44099+5x_44100+63x_44101+47x_44102+90x_44103+10x_44104+43x_44105+65x_44106+7x_44107+62x_44108+41x_44109+66x_44110+27x_44111+38x_44112+22x_44113+30x_44114+77x_44115+97x_44116+93x_44117+50x_44118+20x_44119+41x_44120+29x_44121+19x_44122+38x_44123+38x_44124+44x_44125+31x_44126+64x_44127+92x_44128+44x_44129+56x_44130+71x_44131+72x_44132+12x_44133+38x_44134+94x_44135+78x_44136+75x_44137+19x_44138+27x_44139+64x_44140+84x_44141+46x_44142+82x_44143+69x_44144+39x_44145+82x_44146+71x_44147+38x_44148+57x_44149+17x_44150+62x_44151+38x_44152+83x_44153+87x_44154+58x_44155+53x_44156+82x_44157+x_44158+100x_44159+80x_44160+18x_44161+51x_44162+89x_44163+48x_44164+14x_44165+100x_44166+94x_44167+82x_44168+98x_44169+14x_44170+23x_44171+95x_44172+85x_44173+69x_44174+63x_44175+50x_44176+95x_44177+57x_44178+44x_44179+45x_44180+46x_44181+25x_44182+4x_44183+71x_44184+89x_44185+5x_44186+74x_44187+95x_44188+86x_44189+19x_44190+48x_44191+48x_44192+41x_44193+40x_44194+41x_44195+2x_44196+44x_44197+48x_44198+8x_44199+69x_44200+66x_44201+16x_44202+23x_44203+62x_44204+79x_44205+54x_44206+98x_44207+67x_44208+32x_44209+81x_44210+8x_44211+85x_44212+73x_44213+76x_44214+82x_44215+52x_44216+38x_44217+42x_44218+28x_44219+48x_44220+96x_44221+28x_44222+6x_44223+7x_44224+7x_44225+11x_44226+91x_44227+28x_44228+95x_44229+76x_44230+14x_44231+28x_44232+6x_44233+96x_44234+77x_44235+99x_44236+85x_44237+64x_44238+69x_44239+55x_44240+49x_44241+35x_44242+13x_44243+96x_44244+13x_44245+59x_44246+6x_44247+70x_44248+11x_44249+73x_44250+57x_44251+63x_44252+73x_44253+43x_44254+9x_44255+60x_44256+18x_44257+83x_44258+86x_44259+83x_44260+68x_44261+46x_44262+72x_44263+6x_44264+14x_44265+98x_44266+63x_44267+10x_44268+51x_44269+x_44270+48x_44271+82x_44272+64x_44273+84x_44274+99x_44275+68x_44276+x_44277+77x_44278+25x_44279+55x_44280+97x_44281+22x_44282+54x_44283+34x_44284+25x_44285+90x_44286+91x_44287+25x_44288+89x_44289+12x_44290+80x_44291+43x_44292+83x_44293+34x_44294+37x_44295+66x_44296+95x_44297+70x_44298+88x_44299+15x_44300+70x_44301+62x_44302+94x_44303+21x_44304+81x_44305+20x_44306+71x_44307+66x_44308+76x_44309+29x_44310+45x_44311+56x_44312+90x_44313+92x_44314+5x_44315+6x_44316+17x_44317+46x_44318+4x_44319+27x_44320+64x_44321+75x_44322+69x_44323+42x_44324+70x_44325+98x_44326+30x_44327+79x_44328+14x_44329+49x_44330+49x_44331+39x_44332+88x_44333+27x_44334+61x_44335+90x_44336+18x_44337+30x_44338+49x_44339+72x_44340+77x_44341+17x_44342+50x_44343+55x_44344+95x_44345+13x_44346+14x_44347+40x_44348+42x_44349+24x_44350+3x_44351+52x_44352+41x_44353+4x_44354+61x_44355+41x_44356+97x_44357+71x_44358+49x_44359+5x_44360+65x_44361+67x_44362+78x_44363+98x_44364+10x_44365+83x_44366+59x_44367+37x_44368+95x_44369+55x_44370+92x_44371+80x_44372+96x_44373+16x_44374+90x_44375+86x_44376+42x_44377+42x_44378+32x_44379+x_44380+72x_44381+15x_44382+19x_44383+50x_44384+5x_44385+83x_44386+18x_44387+13x_44388+94x_44389+42x_44390+46x_44391+86x_44392+22x_44393+56x_44394+80x_44395+33x_44396+7x_44397+2x_44398+94x_44399+15x_44400+25x_44401+x_44402+46x_44403+17x_44404+31x_44405+40x_44406+74x_44407+91x_44408+24x_44409+95x_44410+92x_44411+21x_44412+67x_44413+28x_44414+33x_44415+14x_44416+44x_44417+97x_44418+44x_44419+45x_44420+85x_44421+77x_44422+89x_44423+59x_44424+33x_44425+50x_44426+91x_44427+35x_44428+48x_44429+85x_44430+20x_44431+42x_44432+39x_44433+34x_44434+79x_44435+93x_44436+83x_44437+80x_44438+66x_44439+84x_44440+51x_44441+24x_44442+85x_44443+5x_44444+42x_44445+40x_44446+31x_44447+36x_44448+22x_44449+86x_44450+36x_44451+51x_44452+x_44453+10x_44454+53x_44455+48x_44456+31x_44457+52x_44458+73x_44459+68x_44460+83x_44461+2x_44462+34x_44463+58x_44464+14x_44465+92x_44466+68x_44467+6x_44468+8x_44469+43x_44470+78x_44471+2x_44472+91x_44473+27x_44474+93x_44475+77x_44476+41x_44477+76x_44478+21x_44479+36x_44480+93x_44481+10x_44482+36x_44483+33x_44484+41x_44485+79x_44486+63x_44487+6x_44488+43x_44489+33x_44490+90x_44491+26x_44492+68x_44493+78x_44494+45x_44495+91x_44496+11x_44497+29x_44498+7x_44499+87x_44500+27x_44501+40x_44502+65x_44503+67x_44504+71x_44505+3x_44506+43x_44507+47x_44508+31x_44509+37x_44510+85x_44511+65x_44512+35x_44513+80x_44514+87x_44515+22x_44516+35x_44517+90x_44518+76x_44519+25x_44520+42x_44521+67x_44522+69x_44523+67x_44524+98x_44525+10x_44526+5x_44527+85x_44528+70x_44529+69x_44530+5x_44531+70x_44532+8x_44533+60x_44534+10x_44535+54x_44536+96x_44537+97x_44538+34x_44539+95x_44540+24x_44541+53x_44542+72x_44543+81x_44544+51x_44545+46x_44546+85x_44547+56x_44548+20x_44549+86x_44550+48x_44551+100x_44552+23x_44553+94x_44554+53x_44555+85x_44556+44x_44557+82x_44558+86x_44559+37x_44560+93x_44561+13x_44562+10x_44563+98x_44564+39x_44565+2x_44566+65x_44567+61x_44568+57x_44569+x_44570+49x_44571+22x_44572+23x_44573+54x_44574+17x_44575+95x_44576+27x_44577+82x_44578+100x_44579+83x_44580+11x_44581+9x_44582+79x_44583+72x_44584+93x_44585+35x_44586+40x_44587+81x_44588+6x_44589+70x_44590+70x_44591+38x_44592+27x_44593+7x_44594+14x_44595+51x_44596+100x_44597+80x_44598+57x_44599+20x_44600+57x_44601+20x_44602+91x_44603+45x_44604+65x_44605+91x_44606+39x_44607+50x_44608+16x_44609+71x_44610+18x_44611+65x_44612+91x_44613+22x_44614+75x_44615+95x_44616+5x_44617+x_44618+19x_44619+38x_44620+63x_44621+59x_44622+24x_44623+54x_44624+46x_44625+51x_44626+41x_44627+22x_44628+91x_44629+64x_44630+20x_44631+94x_44632+77x_44633+20x_44634+52x_44635+73x_44636+99x_44637+46x_44638+76x_44639+36x_44640+79x_44641+40x_44642+27x_44643+96x_44644+32x_44645+46x_44646+99x_44647+59x_44648+97x_44649+83x_44650+20x_44651+97x_44652+68x_44653+43x_44654+49x_44655+69x_44656+22x_44657+23x_44658+89x_44659+66x_44660+96x_44661+39x_44662+91x_44663+46x_44664+80x_44665+26x_44666+67x_44667+14x_44668+32x_44669+45x_44670+52x_44671+55x_44672+17x_44673+98x_44674+68x_44675+59x_44676+7x_44677+97x_44678+97x_44679+4x_44680+57x_44681+93x_44682+10x_44683+4x_44684+46x_44685+58x_44686+22x_44687+39x_44688+42x_44689+27x_44690+79x_44691+13x_44692+98x_44693+60x_44694+70x_44695+41x_44696+12x_44697+17x_44698+89x_44699+74x_44700+94x_44701+38x_44702+97x_44703+32x_44704+9x_44705+66x_44706+28x_44707+93x_44708+13x_44709+69x_44710+88x_44711+80x_44712+14x_44713+99x_44714+98x_44715+66x_44716+3x_44717+26x_44718+85x_44719+13x_44720+41x_44721+64x_44722+30x_44723+72x_44724+44x_44725+19x_44726+29x_44727+53x_44728+6x_44729+34x_44730+52x_44731+59x_44732+11x_44733+18x_44734+90x_44735+x_44736+10x_44737+29x_44738+52x_44739+78x_44740+97x_44741+77x_44742+33x_44743+25x_44744+99x_44745+91x_44746+10x_44747+31x_44748+21x_44749+49x_44750+84x_44751+36x_44752+18x_44753+64x_44754+36x_44755+41x_44756+37x_44757+57x_44758+76x_44759+72x_44760+47x_44761+76x_44762+31x_44763+94x_44764+x_44765+65x_44766+73x_44767+83x_44768+9x_44769+68x_44770+39x_44771+63x_44772+36x_44773+13x_44774+66x_44775+63x_44776+81x_44777+77x_44778+46x_44779+x_44780+35x_44781+80x_44782+37x_44783+14x_44784+54x_44785+66x_44786+7x_44787+64x_44788+10x_44789+61x_44790+53x_44791+67x_44792+84x_44793+81x_44794+63x_44795+40x_44796+77x_44797+65x_44798+28x_44799+2x_44800+61x_44801+26x_44802+70x_44803+66x_44804+50x_44805+77x_44806+97x_44807+20x_44808+32x_44809+9x_44810+80x_44811+8x_44812+100x_44813+16x_44814+40x_44815+75x_44816+44x_44817+49x_44818+94x_44819+13x_44820+87x_44821+87x_44822+31x_44823+30x_44824+75x_44825+45x_44826+99x_44827+23x_44828+28x_44829+17x_44830+71x_44831+76x_44832+54x_44833+15x_44834+39x_44835+12x_44836+36x_44837+89x_44838+16x_44839+98x_44840+50x_44841+44x_44842+93x_44843+81x_44844+67x_44845+61x_44846+68x_44847+52x_44848+44x_44849+88x_44850+30x_44851+76x_44852+23x_44853+91x_44854+99x_44855+74x_44856+91x_44857+61x_44858+x_44859+80x_44860+19x_44861+34x_44862+54x_44863+83x_44864+61x_44865+96x_44866+67x_44867+42x_44868+47x_44869+61x_44870+97x_44871+81x_44872+8x_44873+22x_44874+35x_44875+39x_44876+17x_44877+10x_44878+68x_44879+67x_44880+98x_44881+39x_44882+96x_44883+84x_44884+93x_44885+69x_44886+33x_44887+27x_44888+26x_44889+5x_44890+96x_44891+70x_44892+83x_44893+71x_44894+65x_44895+36x_44896+42x_44897+32x_44898+50x_44899+56x_44900+55x_44901+x_44902+69x_44903+57x_44904+21x_44905+100x_44906+80x_44907+50x_44908+71x_44909+62x_44910+27x_44911+56x_44912+46x_44913+45x_44914+14x_44915+59x_44916+81x_44917+31x_44918+97x_44919+83x_44920+53x_44921+87x_44922+23x_44923+x_44924+98x_44925+66x_44926+71x_44927+51x_44928+46x_44929+49x_44930+29x_44931+12x_44932+90x_44933+71x_44934+56x_44935+9x_44936+27x_44937+98x_44938+74x_44939+69x_44940+62x_44941+79x_44942+22x_44943+80x_44944+87x_44945+29x_44946+17x_44947+69x_44948+74x_44949+8x_44950+34x_44951+81x_44952+59x_44953+12x_44954+38x_44955+87x_44956+36x_44957+20x_44958+34x_44959+3x_44960+20x_44961+46x_44962+77x_44963+23x_44964+66x_44965+17x_44966+73x_44967+81x_44968+21x_44969+9x_44970+62x_44971+25x_44972+99x_44973+18x_44974+31x_44975+31x_44976+42x_44977+7x_44978+12x_44979+90x_44980+60x_44981+68x_44982+69x_44983+72x_44984+71x_44985+64x_44986+71x_44987+87x_44988+97x_44989+72x_44990+59x_44991+50x_44992+57x_44993+69x_44994+59x_44995+100x_44996+9x_44997+74x_44998+18x_44999+45x_45000+91x_45001+73x_45002+97x_45003+37x_45004+94x_45005+29x_45006+90x_45007+94x_45008+87x_45009+66x_45010+38x_45011+15x_45012+96x_45013+11x_45014+90x_45015+91x_45016+98x_45017+99x_45018+94x_45019+33x_45020+24x_45021+2x_45022+23x_45023+98x_45024+59x_45025+13x_45026+35x_45027+6x_45028+39x_45029+54x_45030+20x_45031+75x_45032+12x_45033+47x_45034+52x_45035+17x_45036+53x_45037+x_45038+69x_45039+54x_45040+77x_45041+33x_45042+19x_45043+77x_45044+31x_45045+45x_45046+82x_45047+39x_45048+53x_45049+17x_45050+36x_45051+73x_45052+13x_45053+55x_45054+82x_45055+3x_45056+54x_45057+4x_45058+44x_45059+47x_45060+74x_45061+65x_45062+24x_45063+55x_45064+45x_45065+25x_45066+12x_45067+28x_45068+71x_45069+4x_45070+23x_45071+21x_45072+75x_45073+4x_45074+67x_45075+82x_45076+27x_45077+45x_45078+64x_45079+67x_45080+61x_45081+19x_45082+86x_45083+78x_45084+30x_45085+9x_45086+x_45087+100x_45088+10x_45089+25x_45090+45x_45091+73x_45092+77x_45093+14x_45094+33x_45095+87x_45096+39x_45097+30x_45098+53x_45099+98x_45100+51x_45101+95x_45102+27x_45103+100x_45104+37x_45105+30x_45106+40x_45107+10x_45108+100x_45109+12x_45110+36x_45111+10x_45112+14x_45113+31x_45114+4x_45115+13x_45116+14x_45117+57x_45118+64x_45119+17x_45120+63x_45121+53x_45122+82x_45123+21x_45124+20x_45125+84x_45126+72x_45127+61x_45128+53x_45129+23x_45130+54x_45131+78x_45132+13x_45133+x_45134+74x_45135+45x_45136+70x_45137+23x_45138+70x_45139+12x_45140+95x_45141+63x_45142+84x_45143+37x_45144+28x_45145+78x_45146+70x_45147+97x_45148+12x_45149+75x_45150+6x_45151+29x_45152+92x_45153+4x_45154+14x_45155+92x_45156+81x_45157+18x_45158+2x_45159+29x_45160+23x_45161+68x_45162+34x_45163+57x_45164+66x_45165+85x_45166+9x_45167+68x_45168+85x_45169+4x_45170+86x_45171+54x_45172+97x_45173+43x_45174+18x_45175+95x_45176+47x_45177+97x_45178+69x_45179+92x_45180+64x_45181+78x_45182+68x_45183+85x_45184+34x_45185+15x_45186+6x_45187+64x_45188+31x_45189+84x_45190+20x_45191+96x_45192+9x_45193+67x_45194+90x_45195+29x_45196+87x_45197+60x_45198+82x_45199+32x_45200+8x_45201+56x_45202+96x_45203+84x_45204+5x_45205+14x_45206+17x_45207+16x_45208+10x_45209+98x_45210+36x_45211+92x_45212+37x_45213+74x_45214+3x_45215+66x_45216+75x_45217+86x_45218+22x_45219+74x_45220+86x_45221+90x_45222+47x_45223+55x_45224+38x_45225+94x_45226+28x_45227+88x_45228+5x_45229+34x_45230+94x_45231+71x_45232+38x_45233+58x_45234+25x_45235+87x_45236+27x_45237+22x_45238+87x_45239+58x_45240+8x_45241+40x_45242+65x_45243+34x_45244+24x_45245+94x_45246+99x_45247+85x_45248+9x_45249+94x_45250+14x_45251+48x_45252+55x_45253+55x_45254+62x_45255+32x_45256+57x_45257+17x_45258+93x_45259+98x_45260+44x_45261+38x_45262+74x_45263+87x_45264+85x_45265+97x_45266+62x_45267+14x_45268+56x_45269+22x_45270+93x_45271+47x_45272+97x_45273+73x_45274+29x_45275+21x_45276+68x_45277+34x_45278+47x_45279+63x_45280+25x_45281+70x_45282+97x_45283+98x_45284+8x_45285+75x_45286+99x_45287+37x_45288+39x_45289+68x_45290+89x_45291+91x_45292+8x_45293+32x_45294+54x_45295+74x_45296+44x_45297+8x_45298+52x_45299+36x_45300+93x_45301+2x_45302+60x_45303+18x_45304+29x_45305+59x_45306+83x_45307+97x_45308+21x_45309+61x_45310+100x_45311+2x_45312+75x_45313+75x_45314+4x_45315+80x_45316+50x_45317+97x_45318+31x_45319+72x_45320+37x_45321+26x_45322+22x_45323+93x_45324+55x_45325+36x_45326+77x_45327+83x_45328+18x_45329+42x_45330+28x_45331+63x_45332+18x_45333+81x_45334+75x_45335+8x_45336+50x_45337+58x_45338+46x_45339+30x_45340+91x_45341+60x_45342+39x_45343+14x_45344+78x_45345+37x_45346+62x_45347+100x_45348+69x_45349+96x_45350+56x_45351+52x_45352+8x_45353+8x_45354+81x_45355+92x_45356+23x_45357+45x_45358+46x_45359+68x_45360+40x_45361+73x_45362+23x_45363+37x_45364+91x_45365+60x_45366+35x_45367+77x_45368+99x_45369+44x_45370+28x_45371+94x_45372+2x_45373+17x_45374+93x_45375+46x_45376+71x_45377+51x_45378+3x_45379+22x_45380+61x_45381+75x_45382+5x_45383+54x_45384+48x_45385+44x_45386+62x_45387+74x_45388+2x_45389+22x_45390+50x_45391+17x_45392+25x_45393+75x_45394+60x_45395+39x_45396+19x_45397+62x_45398+78x_45399+77x_45400+77x_45401+79x_45402+32x_45403+74x_45404+56x_45405+60x_45406+37x_45407+23x_45408+50x_45409+81x_45410+68x_45411+77x_45412+15x_45413+93x_45414+97x_45415+57x_45416+31x_45417+39x_45418+23x_45419+10x_45420+95x_45421+36x_45422+87x_45423+40x_45424+98x_45425+59x_45426+37x_45427+94x_45428+71x_45429+27x_45430+26x_45431+81x_45432+53x_45433+63x_45434+100x_45435+60x_45436+92x_45437+25x_45438+28x_45439+50x_45440+43x_45441+7x_45442+10x_45443+15x_45444+32x_45445+67x_45446+82x_45447+41x_45448+40x_45449+86x_45450+55x_45451+19x_45452+11x_45453+22x_45454+60x_45455+94x_45456+97x_45457+50x_45458+30x_45459+40x_45460+93x_45461+43x_45462+49x_45463+19x_45464+42x_45465+91x_45466+9x_45467+17x_45468+58x_45469+27x_45470+48x_45471+15x_45472+90x_45473+50x_45474+29x_45475+37x_45476+4x_45477+86x_45478+75x_45479+70x_45480+69x_45481+80x_45482+58x_45483+55x_45484+24x_45485+56x_45486+58x_45487+71x_45488+54x_45489+64x_45490+81x_45491+38x_45492+71x_45493+15x_45494+41x_45495+33x_45496+45x_45497+10x_45498+58x_45499+36x_45500+9x_45501+77x_45502+34x_45503+19x_45504+30x_45505+27x_45506+94x_45507+44x_45508+79x_45509+99x_45510+76x_45511+43x_45512+86x_45513+52x_45514+52x_45515+57x_45516+71x_45517+42x_45518+84x_45519+79x_45520+19x_45521+8x_45522+80x_45523+3x_45524+80x_45525+40x_45526+51x_45527+22x_45528+27x_45529+95x_45530+58x_45531+13x_45532+84x_45533+52x_45534+70x_45535+87x_45536+72x_45537+34x_45538+98x_45539+45x_45540+83x_45541+78x_45542+46x_45543+9x_45544+100x_45545+24x_45546+93x_45547+90x_45548+10x_45549+81x_45550+13x_45551+86x_45552+59x_45553+88x_45554+90x_45555+96x_45556+57x_45557+66x_45558+19x_45559+50x_45560+85x_45561+30x_45562+50x_45563+17x_45564+9x_45565+2x_45566+32x_45567+32x_45568+37x_45569+90x_45570+44x_45571+48x_45572+87x_45573+57x_45574+83x_45575+80x_45576+98x_45577+73x_45578+3x_45579+10x_45580+11x_45581+45x_45582+29x_45583+84x_45584+61x_45585+42x_45586+32x_45587+81x_45588+66x_45589+50x_45590+85x_45591+29x_45592+43x_45593+5x_45594+40x_45595+59x_45596+2x_45597+50x_45598+47x_45599+94x_45600+56x_45601+52x_45602+87x_45603+83x_45604+15x_45605+67x_45606+68x_45607+61x_45608+42x_45609+77x_45610+91x_45611+89x_45612+8x_45613+72x_45614+13x_45615+95x_45616+34x_45617+41x_45618+7x_45619+58x_45620+57x_45621+33x_45622+56x_45623+41x_45624+9x_45625+40x_45626+9x_45627+53x_45628+21x_45629+63x_45630+4x_45631+5x_45632+96x_45633+8x_45634+40x_45635+24x_45636+50x_45637+39x_45638+55x_45639+80x_45640+58x_45641+74x_45642+64x_45643+11x_45644+80x_45645+81x_45646+30x_45647+73x_45648+74x_45649+38x_45650+4x_45651+54x_45652+62x_45653+54x_45654+67x_45655+92x_45656+97x_45657+46x_45658+77x_45659+78x_45660+34x_45661+42x_45662+88x_45663+64x_45664+91x_45665+86x_45666+51x_45667+13x_45668+51x_45669+93x_45670+96x_45671+33x_45672+97x_45673+10x_45674+24x_45675+54x_45676+50x_45677+70x_45678+9x_45679+25x_45680+46x_45681+58x_45682+21x_45683+35x_45684+20x_45685+15x_45686+53x_45687+49x_45688+6x_45689+90x_45690+12x_45691+44x_45692+76x_45693+42x_45694+53x_45695+37x_45696+17x_45697+47x_45698+90x_45699+82x_45700+7x_45701+72x_45702+30x_45703+23x_45704+65x_45705+17x_45706+59x_45707+21x_45708+64x_45709+61x_45710+17x_45711+31x_45712+35x_45713+46x_45714+26x_45715+70x_45716+6x_45717+42x_45718+32x_45719+2x_45720+50x_45721+80x_45722+61x_45723+86x_45724+71x_45725+10x_45726+27x_45727+97x_45728+49x_45729+93x_45730+43x_45731+82x_45732+95x_45733+56x_45734+6x_45735+34x_45736+44x_45737+20x_45738+76x_45739+33x_45740+82x_45741+84x_45742+54x_45743+11x_45744+80x_45745+36x_45746+24x_45747+43x_45748+32x_45749+51x_45750+81x_45751+58x_45752+45x_45753+49x_45754+42x_45755+49x_45756+70x_45757+65x_45758+17x_45759+56x_45760+12x_45761+72x_45762+87x_45763+51x_45764+81x_45765+82x_45766+15x_45767+14x_45768+49x_45769+86x_45770+16x_45771+33x_45772+24x_45773+12x_45774+90x_45775+34x_45776+48x_45777+42x_45778+73x_45779+59x_45780+66x_45781+47x_45782+45x_45783+11x_45784+70x_45785+5x_45786+75x_45787+71x_45788+12x_45789+49x_45790+44x_45791+77x_45792+84x_45793+55x_45794+32x_45795+60x_45796+41x_45797+57x_45798+17x_45799+51x_45800+30x_45801+48x_45802+57x_45803+3x_45804+65x_45805+28x_45806+39x_45807+37x_45808+81x_45809+48x_45810+39x_45811+78x_45812+23x_45813+76x_45814+100x_45815+87x_45816+9x_45817+67x_45818+90x_45819+65x_45820+69x_45821+23x_45822+14x_45823+90x_45824+67x_45825+80x_45826+78x_45827+90x_45828+92x_45829+72x_45830+48x_45831+55x_45832+61x_45833+12x_45834+42x_45835+17x_45836+99x_45837+48x_45838+82x_45839+32x_45840+40x_45841+97x_45842+64x_45843+76x_45844+38x_45845+54x_45846+52x_45847+25x_45848+36x_45849+5x_45850+34x_45851+90x_45852+22x_45853+43x_45854+58x_45855+97x_45856+97x_45857+57x_45858+84x_45859+38x_45860+4x_45861+97x_45862+92x_45863+25x_45864+18x_45865+12x_45866+22x_45867+11x_45868+43x_45869+42x_45870+61x_45871+94x_45872+95x_45873+54x_45874+57x_45875+52x_45876+23x_45877+29x_45878+8x_45879+38x_45880+51x_45881+32x_45882+7x_45883+78x_45884+65x_45885+73x_45886+9x_45887+19x_45888+6x_45889+15x_45890+84x_45891+7x_45892+28x_45893+85x_45894+47x_45895+4x_45896+62x_45897+18x_45898+41x_45899+26x_45900+25x_45901+96x_45902+57x_45903+84x_45904+16x_45905+86x_45906+22x_45907+67x_45908+17x_45909+95x_45910+10x_45911+42x_45912+x_45913+99x_45914+28x_45915+40x_45916+49x_45917+71x_45918+68x_45919+90x_45920+81x_45921+20x_45922+40x_45923+97x_45924+60x_45925+71x_45926+44x_45927+28x_45928+58x_45929+98x_45930+38x_45931+28x_45932+35x_45933+7x_45934+5x_45935+55x_45936+19x_45937+82x_45938+72x_45939+17x_45940+78x_45941+88x_45942+26x_45943+55x_45944+89x_45945+54x_45946+11x_45947+80x_45948+56x_45949+45x_45950+40x_45951+32x_45952+55x_45953+76x_45954+87x_45955+34x_45956+97x_45957+75x_45958+8x_45959+19x_45960+75x_45961+39x_45962+28x_45963+96x_45964+64x_45965+60x_45966+87x_45967+97x_45968+88x_45969+26x_45970+49x_45971+68x_45972+75x_45973+4x_45974+89x_45975+81x_45976+21x_45977+85x_45978+90x_45979+49x_45980+71x_45981+10x_45982+10x_45983+83x_45984+54x_45985+82x_45986+78x_45987+44x_45988+69x_45989+35x_45990+65x_45991+30x_45992+22x_45993+30x_45994+62x_45995+12x_45996+92x_45997+81x_45998+94x_45999+36x_46000+49x_46001+11x_46002+36x_46003+48x_46004+10x_46005+93x_46006+17x_46007+3x_46008+17x_46009+41x_46010+28x_46011+29x_46012+64x_46013+37x_46014+67x_46015+53x_46016+27x_46017+58x_46018+88x_46019+67x_46020+52x_46021+49x_46022+90x_46023+99x_46024+85x_46025+76x_46026+90x_46027+19x_46028+82x_46029+10x_46030+99x_46031+85x_46032+31x_46033+25x_46034+50x_46035+35x_46036+13x_46037+69x_46038+71x_46039+40x_46040+40x_46041+19x_46042+5x_46043+13x_46044+x_46045+56x_46046+29x_46047+54x_46048+84x_46049+30x_46050+45x_46051+62x_46052+91x_46053+71x_46054+x_46055+64x_46056+33x_46057+19x_46058+77x_46059+34x_46060+12x_46061+87x_46062+52x_46063+48x_46064+58x_46065+86x_46066+37x_46067+89x_46068+3x_46069+67x_46070+50x_46071+77x_46072+70x_46073+10x_46074+15x_46075+80x_46076+77x_46077+100x_46078+81x_46079+37x_46080+32x_46081+20x_46082+35x_46083+69x_46084+6x_46085+34x_46086+92x_46087+47x_46088+28x_46089+49x_46090+3x_46091+42x_46092+28x_46093+51x_46094+11x_46095+82x_46096+90x_46097+63x_46098+47x_46099+10x_46100+71x_46101+85x_46102+26x_46103+24x_46104+91x_46105+97x_46106+21x_46107+33x_46108+8x_46109+51x_46110+28x_46111+77x_46112+14x_46113+63x_46114+11x_46115+62x_46116+81x_46117+89x_46118+13x_46119+43x_46120+43x_46121+61x_46122+71x_46123+60x_46124+46x_46125+55x_46126+51x_46127+99x_46128+19x_46129+37x_46130+3x_46131+39x_46132+41x_46133+14x_46134+2x_46135+74x_46136+81x_46137+97x_46138+67x_46139+40x_46140+85x_46141+97x_46142+56x_46143+7x_46144+66x_46145+64x_46146+89x_46147+32x_46148+78x_46149+48x_46150+44x_46151+9x_46152+48x_46153+61x_46154+59x_46155+33x_46156+56x_46157+14x_46158+89x_46159+40x_46160+66x_46161+x_46162+49x_46163+72x_46164+91x_46165+40x_46166+100x_46167+20x_46168+50x_46169+9x_46170+48x_46171+93x_46172+35x_46173+73x_46174+58x_46175+38x_46176+20x_46177+80x_46178+28x_46179+47x_46180+27x_46181+9x_46182+96x_46183+71x_46184+80x_46185+66x_46186+34x_46187+38x_46188+74x_46189+43x_46190+84x_46191+24x_46192+79x_46193+58x_46194+34x_46195+24x_46196+62x_46197+64x_46198+57x_46199+68x_46200+21x_46201+69x_46202+15x_46203+65x_46204+56x_46205+33x_46206+72x_46207+12x_46208+45x_46209+17x_46210+88x_46211+29x_46212+71x_46213+82x_46214+18x_46215+84x_46216+59x_46217+84x_46218+57x_46219+69x_46220+89x_46221+24x_46222+70x_46223+8x_46224+27x_46225+56x_46226+73x_46227+75x_46228+38x_46229+70x_46230+82x_46231+68x_46232+65x_46233+85x_46234+31x_46235+53x_46236+39x_46237+70x_46238+61x_46239+44x_46240+72x_46241+52x_46242+48x_46243+57x_46244+63x_46245+93x_46246+33x_46247+97x_46248+29x_46249+85x_46250+54x_46251+97x_46252+91x_46253+87x_46254+97x_46255+52x_46256+27x_46257+59x_46258+25x_46259+50x_46260+11x_46261+91x_46262+17x_46263+31x_46264+38x_46265+27x_46266+71x_46267+55x_46268+88x_46269+69x_46270+78x_46271+93x_46272+87x_46273+86x_46274+2x_46275+52x_46276+11x_46277+93x_46278+82x_46279+99x_46280+14x_46281+8x_46282+24x_46283+49x_46284+78x_46285+82x_46286+18x_46287+89x_46288+26x_46289+50x_46290+8x_46291+73x_46292+93x_46293+11x_46294+21x_46295+51x_46296+50x_46297+35x_46298+15x_46299+63x_46300+28x_46301+x_46302+73x_46303+3x_46304+74x_46305+66x_46306+6x_46307+26x_46308+64x_46309+45x_46310+73x_46311+53x_46312+10x_46313+12x_46314+36x_46315+86x_46316+41x_46317+86x_46318+7x_46319+57x_46320+72x_46321+73x_46322+70x_46323+23x_46324+87x_46325+96x_46326+61x_46327+53x_46328+2x_46329+58x_46330+55x_46331+34x_46332+63x_46333+22x_46334+25x_46335+12x_46336+74x_46337+25x_46338+45x_46339+69x_46340+7x_46341+56x_46342+3x_46343+26x_46344+69x_46345+31x_46346+39x_46347+47x_46348+30x_46349+17x_46350+61x_46351+24x_46352+38x_46353+78x_46354+63x_46355+49x_46356+29x_46357+25x_46358+18x_46359+46x_46360+37x_46361+7x_46362+23x_46363+50x_46364+41x_46365+87x_46366+75x_46367+70x_46368+54x_46369+87x_46370+17x_46371+78x_46372+67x_46373+5x_46374+52x_46375+86x_46376+32x_46377+95x_46378+7x_46379+40x_46380+82x_46381+59x_46382+27x_46383+35x_46384+97x_46385+45x_46386+20x_46387+97x_46388+31x_46389+48x_46390+36x_46391+52x_46392+23x_46393+23x_46394+53x_46395+46x_46396+14x_46397+99x_46398+49x_46399+4x_46400+38x_46401+27x_46402+26x_46403+79x_46404+4x_46405+72x_46406+31x_46407+23x_46408+50x_46409+40x_46410+37x_46411+5x_46412+50x_46413+16x_46414+47x_46415+43x_46416+57x_46417+41x_46418+x_46419+97x_46420+23x_46421+26x_46422+20x_46423+61x_46424+62x_46425+25x_46426+63x_46427+86x_46428+45x_46429+52x_46430+56x_46431+13x_46432+97x_46433+89x_46434+96x_46435+17x_46436+64x_46437+77x_46438+54x_46439+23x_46440+78x_46441+31x_46442+55x_46443+56x_46444+78x_46445+91x_46446+12x_46447+97x_46448+82x_46449+97x_46450+98x_46451+10x_46452+49x_46453+73x_46454+14x_46455+69x_46456+53x_46457+85x_46458+52x_46459+8x_46460+3x_46461+69x_46462+84x_46463+65x_46464+90x_46465+26x_46466+15x_46467+91x_46468+13x_46469+12x_46470+19x_46471+57x_46472+40x_46473+95x_46474+68x_46475+4x_46476+18x_46477+64x_46478+84x_46479+3x_46480+5x_46481+14x_46482+15x_46483+33x_46484+68x_46485+28x_46486+39x_46487+23x_46488+23x_46489+71x_46490+83x_46491+33x_46492+55x_46493+25x_46494+17x_46495+47x_46496+44x_46497+49x_46498+27x_46499+51x_46500+40x_46501+12x_46502+14x_46503+58x_46504+80x_46505+56x_46506+81x_46507+13x_46508+96x_46509+23x_46510+88x_46511+78x_46512+61x_46513+57x_46514+74x_46515+39x_46516+76x_46517+54x_46518+22x_46519+49x_46520+69x_46521+29x_46522+17x_46523+93x_46524+56x_46525+79x_46526+60x_46527+95x_46528+99x_46529+46x_46530+58x_46531+7x_46532+10x_46533+90x_46534+65x_46535+64x_46536+29x_46537+34x_46538+46x_46539+85x_46540+47x_46541+26x_46542+88x_46543+33x_46544+32x_46545+6x_46546+53x_46547+6x_46548+44x_46549+27x_46550+84x_46551+78x_46552+83x_46553+63x_46554+70x_46555+81x_46556+70x_46557+7x_46558+80x_46559+25x_46560+17x_46561+68x_46562+82x_46563+7x_46564+81x_46565+21x_46566+47x_46567+62x_46568+81x_46569+91x_46570+57x_46571+73x_46572+15x_46573+76x_46574+16x_46575+25x_46576+48x_46577+18x_46578+49x_46579+39x_46580+18x_46581+42x_46582+36x_46583+15x_46584+80x_46585+47x_46586+40x_46587+31x_46588+54x_46589+10x_46590+5x_46591+72x_46592+81x_46593+60x_46594+94x_46595+95x_46596+2x_46597+33x_46598+92x_46599+67x_46600+70x_46601+17x_46602+69x_46603+x_46604+62x_46605+77x_46606+8x_46607+2x_46608+58x_46609+87x_46610+31x_46611+63x_46612+13x_46613+74x_46614+24x_46615+71x_46616+64x_46617+42x_46618+17x_46619+55x_46620+68x_46621+95x_46622+33x_46623+34x_46624+40x_46625+78x_46626+52x_46627+61x_46628+7x_46629+96x_46630+74x_46631+73x_46632+4x_46633+71x_46634+2x_46635+26x_46636+37x_46637+78x_46638+13x_46639+67x_46640+100x_46641+90x_46642+5x_46643+37x_46644+20x_46645+73x_46646+59x_46647+47x_46648+96x_46649+3x_46650+69x_46651+57x_46652+98x_46653+88x_46654+8x_46655+88x_46656+86x_46657+68x_46658+77x_46659+97x_46660+87x_46661+31x_46662+24x_46663+52x_46664+48x_46665+91x_46666+72x_46667+19x_46668+91x_46669+90x_46670+39x_46671+3x_46672+36x_46673+81x_46674+91x_46675+14x_46676+77x_46677+32x_46678+100x_46679+99x_46680+33x_46681+38x_46682+8x_46683+48x_46684+27x_46685+89x_46686+79x_46687+57x_46688+19x_46689+20x_46690+92x_46691+94x_46692+24x_46693+66x_46694+90x_46695+15x_46696+84x_46697+17x_46698+91x_46699+41x_46700+9x_46701+24x_46702+86x_46703+59x_46704+21x_46705+76x_46706+70x_46707+8x_46708+78x_46709+31x_46710+57x_46711+54x_46712+33x_46713+31x_46714+41x_46715+11x_46716+78x_46717+46x_46718+12x_46719+30x_46720+22x_46721+38x_46722+2x_46723+21x_46724+64x_46725+18x_46726+56x_46727+73x_46728+77x_46729+96x_46730+22x_46731+2x_46732+41x_46733+25x_46734+57x_46735+16x_46736+94x_46737+2x_46738+20x_46739+45x_46740+14x_46741+75x_46742+82x_46743+73x_46744+91x_46745+30x_46746+3x_46747+19x_46748+15x_46749+9x_46750+63x_46751+9x_46752+81x_46753+16x_46754+38x_46755+69x_46756+99x_46757+89x_46758+36x_46759+14x_46760+19x_46761+85x_46762+58x_46763+52x_46764+44x_46765+35x_46766+87x_46767+84x_46768+63x_46769+86x_46770+16x_46771+14x_46772+6x_46773+52x_46774+99x_46775+65x_46776+15x_46777+78x_46778+43x_46779+95x_46780+17x_46781+14x_46782+59x_46783+11x_46784+29x_46785+19x_46786+51x_46787+67x_46788+43x_46789+28x_46790+29x_46791+55x_46792+23x_46793+81x_46794+44x_46795+49x_46796+63x_46797+94x_46798+79x_46799+20x_46800+20x_46801+7x_46802+63x_46803+76x_46804+42x_46805+87x_46806+30x_46807+6x_46808+68x_46809+84x_46810+34x_46811+10x_46812+47x_46813+64x_46814+56x_46815+77x_46816+34x_46817+64x_46818+98x_46819+71x_46820+3x_46821+30x_46822+55x_46823+19x_46824+53x_46825+55x_46826+41x_46827+80x_46828+77x_46829+88x_46830+46x_46831+29x_46832+72x_46833+61x_46834+42x_46835+73x_46836+30x_46837+54x_46838+49x_46839+95x_46840+43x_46841+19x_46842+8x_46843+3x_46844+48x_46845+7x_46846+33x_46847+26x_46848+20x_46849+54x_46850+30x_46851+71x_46852+5x_46853+36x_46854+26x_46855+13x_46856+2x_46857+23x_46858+10x_46859+17x_46860+42x_46861+87x_46862+31x_46863+44x_46864+55x_46865+87x_46866+18x_46867+36x_46868+67x_46869+100x_46870+93x_46871+98x_46872+81x_46873+99x_46874+30x_46875+45x_46876+89x_46877+9x_46878+59x_46879+63x_46880+15x_46881+36x_46882+88x_46883+78x_46884+87x_46885+56x_46886+30x_46887+28x_46888+50x_46889+34x_46890+92x_46891+74x_46892+47x_46893+18x_46894+50x_46895+50x_46896+59x_46897+26x_46898+85x_46899+57x_46900+34x_46901+61x_46902+75x_46903+13x_46904+69x_46905+62x_46906+18x_46907+76x_46908+33x_46909+55x_46910+20x_46911+59x_46912+50x_46913+31x_46914+93x_46915+100x_46916+61x_46917+100x_46918+77x_46919+66x_46920+59x_46921+52x_46922+51x_46923+98x_46924+28x_46925+98x_46926+46x_46927+85x_46928+45x_46929+87x_46930+91x_46931+54x_46932+7x_46933+72x_46934+77x_46935+98x_46936+2x_46937+52x_46938+40x_46939+72x_46940+96x_46941+61x_46942+76x_46943+80x_46944+x_46945+40x_46946+3x_46947+63x_46948+65x_46949+32x_46950+55x_46951+69x_46952+27x_46953+3x_46954+60x_46955+40x_46956+23x_46957+13x_46958+70x_46959+44x_46960+63x_46961+53x_46962+38x_46963+82x_46964+23x_46965+76x_46966+56x_46967+87x_46968+8x_46969+53x_46970+18x_46971+42x_46972+9x_46973+48x_46974+14x_46975+81x_46976+51x_46977+61x_46978+43x_46979+70x_46980+69x_46981+94x_46982+63x_46983+82x_46984+33x_46985+73x_46986+74x_46987+8x_46988+63x_46989+64x_46990+63x_46991+10x_46992+80x_46993+35x_46994+77x_46995+28x_46996+92x_46997+43x_46998+93x_46999+7x_47000+54x_47001+2x_47002+13x_47003+3x_47004+44x_47005+22x_47006+32x_47007+78x_47008+9x_47009+52x_47010+79x_47011+69x_47012+70x_47013+5x_47014+67x_47015+47x_47016+31x_47017+43x_47018+91x_47019+31x_47020+18x_47021+90x_47022+55x_47023+50x_47024+27x_47025+97x_47026+60x_47027+19x_47028+71x_47029+66x_47030+83x_47031+12x_47032+63x_47033+55x_47034+71x_47035+63x_47036+20x_47037+68x_47038+24x_47039+7x_47040+99x_47041+41x_47042+90x_47043+8x_47044+94x_47045+5x_47046+94x_47047+100x_47048+75x_47049+19x_47050+69x_47051+47x_47052+13x_47053+4x_47054+61x_47055+97x_47056+89x_47057+27x_47058+10x_47059+38x_47060+55x_47061+87x_47062+88x_47063+95x_47064+53x_47065+90x_47066+39x_47067+14x_47068+74x_47069+43x_47070+39x_47071+87x_47072+97x_47073+89x_47074+79x_47075+35x_47076+44x_47077+36x_47078+81x_47079+76x_47080+12x_47081+48x_47082+77x_47083+31x_47084+79x_47085+63x_47086+78x_47087+53x_47088+81x_47089+80x_47090+63x_47091+64x_47092+94x_47093+6x_47094+34x_47095+48x_47096+24x_47097+16x_47098+61x_47099+68x_47100+67x_47101+39x_47102+13x_47103+35x_47104+86x_47105+68x_47106+75x_47107+71x_47108+18x_47109+84x_47110+79x_47111+54x_47112+66x_47113+95x_47114+17x_47115+18x_47116+2x_47117+17x_47118+84x_47119+75x_47120+66x_47121+11x_47122+69x_47123+8x_47124+46x_47125+68x_47126+100x_47127+80x_47128+35x_47129+5x_47130+100x_47131+75x_47132+54x_47133+44x_47134+87x_47135+97x_47136+46x_47137+6x_47138+x_47139+6x_47140+36x_47141+8x_47142+66x_47143+38x_47144+4x_47145+46x_47146+10x_47147+15x_47148+38x_47149+69x_47150+19x_47151+25x_47152+8x_47153+40x_47154+100x_47155+94x_47156+41x_47157+29x_47158+7x_47159+57x_47160+63x_47161+18x_47162+96x_47163+18x_47164+89x_47165+91x_47166+68x_47167+97x_47168+3x_47169+40x_47170+57x_47171+32x_47172+93x_47173+77x_47174+57x_47175+48x_47176+69x_47177+53x_47178+39x_47179+95x_47180+71x_47181+29x_47182+94x_47183+49x_47184+66x_47185+94x_47186+69x_47187+90x_47188+95x_47189+54x_47190+45x_47191+36x_47192+29x_47193+19x_47194+39x_47195+66x_47196+37x_47197+72x_47198+61x_47199+70x_47200+94x_47201+72x_47202+59x_47203+92x_47204+38x_47205+24x_47206+38x_47207+99x_47208+50x_47209+53x_47210+27x_47211+25x_47212+39x_47213+17x_47214+41x_47215+74x_47216+47x_47217+5x_47218+22x_47219+77x_47220+84x_47221+20x_47222+46x_47223+81x_47224+2x_47225+90x_47226+97x_47227+x_47228+98x_47229+98x_47230+82x_47231+34x_47232+81x_47233+4x_47234+71x_47235+69x_47236+59x_47237+10x_47238+44x_47239+68x_47240+94x_47241+77x_47242+72x_47243+30x_47244+75x_47245+41x_47246+64x_47247+22x_47248+36x_47249+23x_47250+7x_47251+6x_47252+56x_47253+51x_47254+38x_47255+28x_47256+14x_47257+44x_47258+40x_47259+67x_47260+54x_47261+15x_47262+45x_47263+89x_47264+31x_47265+65x_47266+97x_47267+24x_47268+29x_47269+47x_47270+23x_47271+40x_47272+84x_47273+78x_47274+95x_47275+74x_47276+12x_47277+61x_47278+92x_47279+98x_47280+79x_47281+13x_47282+52x_47283+58x_47284+60x_47285+81x_47286+94x_47287+80x_47288+86x_47289+84x_47290+68x_47291+54x_47292+23x_47293+47x_47294+59x_47295+68x_47296+22x_47297+78x_47298+73x_47299+22x_47300+77x_47301+18x_47302+100x_47303+85x_47304+47x_47305+88x_47306+11x_47307+57x_47308+11x_47309+76x_47310+16x_47311+39x_47312+5x_47313+58x_47314+17x_47315+17x_47316+67x_47317+42x_47318+81x_47319+9x_47320+98x_47321+2x_47322+71x_47323+2x_47324+67x_47325+65x_47326+37x_47327+72x_47328+95x_47329+40x_47330+54x_47331+87x_47332+9x_47333+84x_47334+50x_47335+66x_47336+26x_47337+38x_47338+40x_47339+20x_47340+89x_47341+30x_47342+25x_47343+100x_47344+2x_47345+27x_47346+14x_47347+2x_47348+14x_47349+58x_47350+38x_47351+6x_47352+19x_47353+35x_47354+x_47355+23x_47356+15x_47357+43x_47358+73x_47359+97x_47360+23x_47361+89x_47362+15x_47363+46x_47364+80x_47365+98x_47366+61x_47367+32x_47368+16x_47369+94x_47370+5x_47371+20x_47372+100x_47373+26x_47374+96x_47375+75x_47376+38x_47377+84x_47378+80x_47379+17x_47380+59x_47381+36x_47382+49x_47383+60x_47384+78x_47385+100x_47386+81x_47387+99x_47388+89x_47389+57x_47390+87x_47391+75x_47392+10x_47393+71x_47394+17x_47395+x_47396+54x_47397+12x_47398+84x_47399+61x_47400+43x_47401+86x_47402+24x_47403+63x_47404+71x_47405+47x_47406+29x_47407+6x_47408+61x_47409+33x_47410+71x_47411+48x_47412+46x_47413+4x_47414+46x_47415+90x_47416+6x_47417+27x_47418+8x_47419+7x_47420+40x_47421+27x_47422+64x_47423+2x_47424+24x_47425+64x_47426+43x_47427+54x_47428+88x_47429+24x_47430+41x_47431+18x_47432+96x_47433+75x_47434+49x_47435+86x_47436+28x_47437+14x_47438+99x_47439+95x_47440+65x_47441+94x_47442+11x_47443+32x_47444+62x_47445+80x_47446+43x_47447+76x_47448+41x_47449+37x_47450+37x_47451+82x_47452+34x_47453+77x_47454+20x_47455+45x_47456+21x_47457+4x_47458+93x_47459+72x_47460+86x_47461+72x_47462+67x_47463+45x_47464+16x_47465+10x_47466+22x_47467+78x_47468+62x_47469+44x_47470+34x_47471+31x_47472+82x_47473+35x_47474+33x_47475+53x_47476+53x_47477+26x_47478+85x_47479+35x_47480+43x_47481+9x_47482+22x_47483+36x_47484+19x_47485+92x_47486+22x_47487+15x_47488+56x_47489+73x_47490+72x_47491+29x_47492+62x_47493+51x_47494+16x_47495+35x_47496+3x_47497+x_47498+71x_47499+18x_47500+55x_47501+33x_47502+15x_47503+95x_47504+17x_47505+78x_47506+26x_47507+77x_47508+98x_47509+65x_47510+90x_47511+46x_47512+44x_47513+44x_47514+83x_47515+59x_47516+x_47517+60x_47518+61x_47519+5x_47520+62x_47521+x_47522+91x_47523+66x_47524+82x_47525+61x_47526+92x_47527+52x_47528+6x_47529+80x_47530+62x_47531+9x_47532+29x_47533+20x_47534+49x_47535+83x_47536+78x_47537+39x_47538+16x_47539+17x_47540+21x_47541+16x_47542+74x_47543+53x_47544+24x_47545+84x_47546+20x_47547+40x_47548+73x_47549+14x_47550+45x_47551+80x_47552+5x_47553+30x_47554+38x_47555+75x_47556+13x_47557+95x_47558+53x_47559+29x_47560+42x_47561+38x_47562+2x_47563+41x_47564+70x_47565+78x_47566+15x_47567+44x_47568+82x_47569+49x_47570+87x_47571+11x_47572+24x_47573+61x_47574+68x_47575+2x_47576+21x_47577+22x_47578+57x_47579+7x_47580+59x_47581+17x_47582+12x_47583+12x_47584+35x_47585+3x_47586+96x_47587+98x_47588+4x_47589+9x_47590+68x_47591+76x_47592+14x_47593+46x_47594+53x_47595+97x_47596+75x_47597+71x_47598+98x_47599+65x_47600+100x_47601+96x_47602+49x_47603+12x_47604+9x_47605+88x_47606+18x_47607+34x_47608+22x_47609+30x_47610+93x_47611+54x_47612+45x_47613+65x_47614+81x_47615+98x_47616+73x_47617+17x_47618+92x_47619+42x_47620+18x_47621+60x_47622+16x_47623+50x_47624+71x_47625+76x_47626+7x_47627+65x_47628+70x_47629+95x_47630+9x_47631+45x_47632+47x_47633+72x_47634+58x_47635+74x_47636+33x_47637+97x_47638+74x_47639+38x_47640+23x_47641+71x_47642+79x_47643+89x_47644+27x_47645+93x_47646+99x_47647+56x_47648+42x_47649+47x_47650+44x_47651+50x_47652+24x_47653+79x_47654+51x_47655+56x_47656+92x_47657+10x_47658+23x_47659+88x_47660+25x_47661+41x_47662+2x_47663+50x_47664+49x_47665+33x_47666+9x_47667+4x_47668+18x_47669+25x_47670+11x_47671+55x_47672+43x_47673+49x_47674+16x_47675+5x_47676+48x_47677+43x_47678+30x_47679+63x_47680+29x_47681+42x_47682+49x_47683+85x_47684+39x_47685+100x_47686+90x_47687+2x_47688+72x_47689+39x_47690+31x_47691+51x_47692+32x_47693+7x_47694+25x_47695+34x_47696+53x_47697+4x_47698+26x_47699+92x_47700+12x_47701+75x_47702+75x_47703+53x_47704+66x_47705+55x_47706+12x_47707+99x_47708+11x_47709+89x_47710+58x_47711+4x_47712+76x_47713+20x_47714+56x_47715+59x_47716+98x_47717+66x_47718+37x_47719+48x_47720+58x_47721+23x_47722+88x_47723+8x_47724+61x_47725+5x_47726+59x_47727+6x_47728+61x_47729+92x_47730+20x_47731+76x_47732+21x_47733+59x_47734+73x_47735+40x_47736+13x_47737+49x_47738+99x_47739+89x_47740+36x_47741+19x_47742+50x_47743+2x_47744+95x_47745+44x_47746+100x_47747+53x_47748+27x_47749+16x_47750+78x_47751+21x_47752+65x_47753+74x_47754+55x_47755+64x_47756+22x_47757+79x_47758+59x_47759+39x_47760+26x_47761+20x_47762+57x_47763+55x_47764+11x_47765+61x_47766+38x_47767+88x_47768+38x_47769+18x_47770+82x_47771+75x_47772+7x_47773+40x_47774+71x_47775+37x_47776+83x_47777+27x_47778+47x_47779+73x_47780+70x_47781+60x_47782+18x_47783+53x_47784+63x_47785+7x_47786+20x_47787+35x_47788+15x_47789+x_47790+64x_47791+59x_47792+50x_47793+x_47794+37x_47795+59x_47796+46x_47797+77x_47798+98x_47799+34x_47800+81x_47801+63x_47802+22x_47803+94x_47804+42x_47805+24x_47806+12x_47807+34x_47808+45x_47809+14x_47810+70x_47811+27x_47812+47x_47813+19x_47814+79x_47815+16x_47816+60x_47817+80x_47818+100x_47819+89x_47820+33x_47821+50x_47822+36x_47823+58x_47824+93x_47825+22x_47826+73x_47827+37x_47828+31x_47829+97x_47830+6x_47831+68x_47832+10x_47833+92x_47834+32x_47835+21x_47836+61x_47837+27x_47838+50x_47839+80x_47840+21x_47841+22x_47842+32x_47843+76x_47844+91x_47845+31x_47846+60x_47847+50x_47848+33x_47849+29x_47850+97x_47851+47x_47852+54x_47853+29x_47854+43x_47855+15x_47856+66x_47857+18x_47858+44x_47859+3x_47860+48x_47861+8x_47862+34x_47863+41x_47864+36x_47865+75x_47866+59x_47867+46x_47868+81x_47869+86x_47870+20x_47871+34x_47872+35x_47873+80x_47874+71x_47875+5x_47876+23x_47877+27x_47878+7x_47879+60x_47880+58x_47881+13x_47882+43x_47883+96x_47884+46x_47885+84x_47886+42x_47887+x_47888+55x_47889+76x_47890+74x_47891+19x_47892+29x_47893+66x_47894+6x_47895+91x_47896+28x_47897+70x_47898+32x_47899+12x_47900+87x_47901+48x_47902+5x_47903+38x_47904+95x_47905+85x_47906+86x_47907+29x_47908+90x_47909+42x_47910+78x_47911+27x_47912+6x_47913+15x_47914+50x_47915+74x_47916+4x_47917+37x_47918+33x_47919+37x_47920+67x_47921+44x_47922+26x_47923+49x_47924+96x_47925+78x_47926+58x_47927+47x_47928+98x_47929+23x_47930+75x_47931+6x_47932+62x_47933+23x_47934+24x_47935+7x_47936+3x_47937+38x_47938+34x_47939+17x_47940+10x_47941+20x_47942+76x_47943+54x_47944+32x_47945+46x_47946+5x_47947+35x_47948+23x_47949+55x_47950+72x_47951+3x_47952+15x_47953+66x_47954+99x_47955+7x_47956+44x_47957+83x_47958+28x_47959+88x_47960+91x_47961+97x_47962+81x_47963+37x_47964+90x_47965+77x_47966+96x_47967+69x_47968+61x_47969+22x_47970+77x_47971+97x_47972+64x_47973+72x_47974+16x_47975+11x_47976+21x_47977+53x_47978+91x_47979+50x_47980+96x_47981+52x_47982+66x_47983+19x_47984+6x_47985+38x_47986+85x_47987+69x_47988+69x_47989+9x_47990+55x_47991+51x_47992+65x_47993+52x_47994+100x_47995+90x_47996+32x_47997+30x_47998+95x_47999+38x_48000+57x_48001+32x_48002+35x_48003+40x_48004+86x_48005+44x_48006+45x_48007+10x_48008+2x_48009+56x_48010+75x_48011+41x_48012+91x_48013+5x_48014+87x_48015+48x_48016+9x_48017+54x_48018+54x_48019+95x_48020+39x_48021+31x_48022+41x_48023+47x_48024+5x_48025+90x_48026+74x_48027+8x_48028+75x_48029+43x_48030+54x_48031+62x_48032+76x_48033+49x_48034+8x_48035+34x_48036+28x_48037+59x_48038+63x_48039+49x_48040+43x_48041+54x_48042+52x_48043+39x_48044+10x_48045+50x_48046+93x_48047+81x_48048+91x_48049+26x_48050+75x_48051+64x_48052+80x_48053+28x_48054+78x_48055+18x_48056+47x_48057+43x_48058+9x_48059+81x_48060+47x_48061+66x_48062+26x_48063+86x_48064+78x_48065+97x_48066+54x_48067+98x_48068+16x_48069+49x_48070+9x_48071+21x_48072+94x_48073+71x_48074+43x_48075+28x_48076+61x_48077+29x_48078+97x_48079+2x_48080+74x_48081+5x_48082+83x_48083+89x_48084+24x_48085+9x_48086+50x_48087+88x_48088+63x_48089+55x_48090+9x_48091+53x_48092+98x_48093+100x_48094+52x_48095+16x_48096+57x_48097+64x_48098+55x_48099+26x_48100+78x_48101+x_48102+51x_48103+19x_48104+53x_48105+39x_48106+77x_48107+36x_48108+80x_48109+69x_48110+86x_48111+58x_48112+6x_48113+30x_48114+77x_48115+73x_48116+60x_48117+84x_48118+50x_48119+7x_48120+50x_48121+53x_48122+59x_48123+86x_48124+47x_48125+22x_48126+79x_48127+50x_48128+62x_48129+8x_48130+76x_48131+61x_48132+98x_48133+85x_48134+35x_48135+6x_48136+87x_48137+93x_48138+68x_48139+64x_48140+49x_48141+33x_48142+44x_48143+77x_48144+69x_48145+76x_48146+84x_48147+7x_48148+23x_48149+73x_48150+12x_48151+40x_48152+40x_48153+81x_48154+43x_48155+69x_48156+96x_48157+88x_48158+53x_48159+3x_48160+57x_48161+26x_48162+50x_48163+39x_48164+7x_48165+93x_48166+73x_48167+3x_48168+7x_48169+46x_48170+6x_48171+51x_48172+2x_48173+87x_48174+18x_48175+13x_48176+16x_48177+40x_48178+75x_48179+8x_48180+50x_48181+18x_48182+44x_48183+24x_48184+86x_48185+51x_48186+66x_48187+97x_48188+76x_48189+23x_48190+11x_48191+95x_48192+64x_48193+88x_48194+40x_48195+66x_48196+40x_48197+41x_48198+15x_48199+52x_48200+52x_48201+80x_48202+13x_48203+49x_48204+48x_48205+21x_48206+57x_48207+36x_48208+81x_48209+29x_48210+40x_48211+23x_48212+40x_48213+57x_48214+32x_48215+4x_48216+54x_48217+24x_48218+51x_48219+56x_48220+3x_48221+68x_48222+55x_48223+30x_48224+70x_48225+5x_48226+8x_48227+44x_48228+50x_48229+4x_48230+36x_48231+7x_48232+74x_48233+93x_48234+61x_48235+91x_48236+55x_48237+16x_48238+89x_48239+97x_48240+80x_48241+60x_48242+74x_48243+85x_48244+30x_48245+75x_48246+54x_48247+26x_48248+76x_48249+61x_48250+90x_48251+40x_48252+68x_48253+39x_48254+5x_48255+9x_48256+6x_48257+74x_48258+8x_48259+100x_48260+33x_48261+8x_48262+89x_48263+86x_48264+15x_48265+52x_48266+44x_48267+92x_48268+96x_48269+30x_48270+85x_48271+71x_48272+96x_48273+72x_48274+26x_48275+90x_48276+30x_48277+6x_48278+33x_48279+77x_48280+18x_48281+67x_48282+13x_48283+86x_48284+12x_48285+54x_48286+96x_48287+72x_48288+87x_48289+98x_48290+53x_48291+11x_48292+18x_48293+81x_48294+46x_48295+47x_48296+22x_48297+88x_48298+15x_48299+43x_48300+6x_48301+17x_48302+61x_48303+24x_48304+33x_48305+80x_48306+25x_48307+72x_48308+59x_48309+32x_48310+14x_48311+37x_48312+25x_48313+21x_48314+83x_48315+84x_48316+16x_48317+74x_48318+48x_48319+17x_48320+64x_48321+30x_48322+8x_48323+40x_48324+48x_48325+22x_48326+29x_48327+25x_48328+44x_48329+91x_48330+6x_48331+31x_48332+18x_48333+29x_48334+84x_48335+27x_48336+56x_48337+66x_48338+86x_48339+13x_48340+98x_48341+4x_48342+80x_48343+35x_48344+29x_48345+5x_48346+21x_48347+99x_48348+x_48349+92x_48350+64x_48351+31x_48352+37x_48353+11x_48354+30x_48355+69x_48356+70x_48357+99x_48358+89x_48359+46x_48360+64x_48361+82x_48362+99x_48363+71x_48364+38x_48365+71x_48366+37x_48367+28x_48368+81x_48369+10x_48370+81x_48371+39x_48372+58x_48373+x_48374+54x_48375+72x_48376+53x_48377+41x_48378+24x_48379+97x_48380+43x_48381+91x_48382+10x_48383+2x_48384+92x_48385+62x_48386+34x_48387+11x_48388+39x_48389+2x_48390+26x_48391+x_48392+63x_48393+48x_48394+18x_48395+36x_48396+60x_48397+3x_48398+20x_48399+7x_48400+27x_48401+51x_48402+8x_48403+75x_48404+x_48405+64x_48406+67x_48407+46x_48408+90x_48409+4x_48410+60x_48411+99x_48412+35x_48413+6x_48414+2x_48415+46x_48416+54x_48417+55x_48418+2x_48419+44x_48420+73x_48421+98x_48422+58x_48423+3x_48424+62x_48425+75x_48426+2x_48427+71x_48428+12x_48429+45x_48430+79x_48431+92x_48432+38x_48433+58x_48434+5x_48435+54x_48436+87x_48437+89x_48438+93x_48439+12x_48440+11x_48441+12x_48442+40x_48443+50x_48444+37x_48445+51x_48446+62x_48447+5x_48448+32x_48449+92x_48450+45x_48451+60x_48452+52x_48453+3x_48454+41x_48455+3x_48456+12x_48457+65x_48458+50x_48459+87x_48460+97x_48461+79x_48462+86x_48463+28x_48464+28x_48465+39x_48466+73x_48467+80x_48468+94x_48469+72x_48470+40x_48471+49x_48472+70x_48473+62x_48474+72x_48475+64x_48476+17x_48477+65x_48478+90x_48479+x_48480+24x_48481+4x_48482+77x_48483+100x_48484+80x_48485+18x_48486+86x_48487+93x_48488+38x_48489+14x_48490+52x_48491+49x_48492+64x_48493+69x_48494+80x_48495+45x_48496+10x_48497+95x_48498+35x_48499+96x_48500+25x_48501+18x_48502+69x_48503+55x_48504+91x_48505+4x_48506+14x_48507+19x_48508+94x_48509+72x_48510+55x_48511+35x_48512+2x_48513+8x_48514+36x_48515+69x_48516+59x_48517+52x_48518+90x_48519+84x_48520+99x_48521+96x_48522+14x_48523+11x_48524+53x_48525+26x_48526+62x_48527+66x_48528+58x_48529+76x_48530+35x_48531+28x_48532+95x_48533+21x_48534+56x_48535+18x_48536+74x_48537+59x_48538+75x_48539+80x_48540+66x_48541+x_48542+63x_48543+34x_48544+6x_48545+80x_48546+43x_48547+83x_48548+15x_48549+85x_48550+71x_48551+58x_48552+83x_48553+42x_48554+55x_48555+4x_48556+41x_48557+72x_48558+69x_48559+13x_48560+52x_48561+43x_48562+98x_48563+17x_48564+73x_48565+77x_48566+16x_48567+37x_48568+65x_48569+93x_48570+82x_48571+100x_48572+60x_48573+33x_48574+100x_48575+13x_48576+96x_48577+51x_48578+20x_48579+36x_48580+91x_48581+63x_48582+10x_48583+86x_48584+90x_48585+80x_48586+3x_48587+67x_48588+50x_48589+38x_48590+46x_48591+26x_48592+12x_48593+60x_48594+37x_48595+67x_48596+58x_48597+77x_48598+32x_48599+72x_48600+93x_48601+24x_48602+52x_48603+67x_48604+54x_48605+82x_48606+79x_48607+46x_48608+63x_48609+75x_48610+82x_48611+28x_48612+7x_48613+66x_48614+99x_48615+45x_48616+84x_48617+51x_48618+94x_48619+68x_48620+88x_48621+99x_48622+97x_48623+45x_48624+29x_48625+69x_48626+63x_48627+63x_48628+77x_48629+98x_48630+32x_48631+74x_48632+18x_48633+65x_48634+41x_48635+80x_48636+69x_48637+25x_48638+49x_48639+91x_48640+28x_48641+53x_48642+34x_48643+33x_48644+67x_48645+8x_48646+69x_48647+54x_48648+39x_48649+88x_48650+32x_48651+44x_48652+42x_48653+74x_48654+71x_48655+60x_48656+57x_48657+94x_48658+22x_48659+79x_48660+70x_48661+83x_48662+27x_48663+11x_48664+16x_48665+8x_48666+14x_48667+27x_48668+65x_48669+87x_48670+36x_48671+38x_48672+93x_48673+58x_48674+30x_48675+59x_48676+46x_48677+17x_48678+81x_48679+64x_48680+55x_48681+80x_48682+24x_48683+100x_48684+75x_48685+50x_48686+52x_48687+85x_48688+99x_48689+94x_48690+24x_48691+22x_48692+10x_48693+17x_48694+72x_48695+17x_48696+83x_48697+43x_48698+28x_48699+66x_48700+35x_48701+40x_48702+x_48703+2x_48704+42x_48705+87x_48706+12x_48707+83x_48708+92x_48709+73x_48710+25x_48711+44x_48712+89x_48713+40x_48714+4x_48715+17x_48716+41x_48717+34x_48718+54x_48719+2x_48720+26x_48721+14x_48722+84x_48723+11x_48724+80x_48725+90x_48726+37x_48727+69x_48728+90x_48729+7x_48730+69x_48731+71x_48732+44x_48733+91x_48734+49x_48735+86x_48736+40x_48737+24x_48738+49x_48739+45x_48740+83x_48741+22x_48742+47x_48743+11x_48744+69x_48745+36x_48746+72x_48747+64x_48748+43x_48749+43x_48750+31x_48751+29x_48752+62x_48753+40x_48754+70x_48755+90x_48756+17x_48757+22x_48758+14x_48759+71x_48760+38x_48761+39x_48762+x_48763+68x_48764+15x_48765+42x_48766+27x_48767+67x_48768+21x_48769+38x_48770+23x_48771+24x_48772+32x_48773+2x_48774+9x_48775+39x_48776+37x_48777+73x_48778+13x_48779+91x_48780+69x_48781+75x_48782+2x_48783+94x_48784+62x_48785+70x_48786+95x_48787+16x_48788+3x_48789+44x_48790+73x_48791+83x_48792+77x_48793+88x_48794+48x_48795+84x_48796+6x_48797+65x_48798+27x_48799+91x_48800+95x_48801+72x_48802+94x_48803+93x_48804+54x_48805+21x_48806+4x_48807+60x_48808+70x_48809+9x_48810+83x_48811+53x_48812+87x_48813+61x_48814+26x_48815+64x_48816+56x_48817+78x_48818+16x_48819+71x_48820+17x_48821+x_48822+4x_48823+93x_48824+80x_48825+70x_48826+13x_48827+66x_48828+54x_48829+72x_48830+80x_48831+36x_48832+98x_48833+84x_48834+25x_48835+44x_48836+57x_48837+45x_48838+64x_48839+63x_48840+61x_48841+67x_48842+22x_48843+56x_48844+20x_48845+65x_48846+19x_48847+2x_48848+11x_48849+86x_48850+38x_48851+87x_48852+30x_48853+2x_48854+91x_48855+95x_48856+89x_48857+72x_48858+65x_48859+94x_48860+51x_48861+81x_48862+94x_48863+36x_48864+51x_48865+75x_48866+50x_48867+9x_48868+29x_48869+72x_48870+57x_48871+43x_48872+9x_48873+75x_48874+6x_48875+64x_48876+88x_48877+46x_48878+21x_48879+38x_48880+60x_48881+67x_48882+56x_48883+88x_48884+70x_48885+88x_48886+12x_48887+74x_48888+6x_48889+53x_48890+33x_48891+61x_48892+6x_48893+71x_48894+100x_48895+26x_48896+59x_48897+2x_48898+20x_48899+42x_48900+75x_48901+89x_48902+70x_48903+45x_48904+74x_48905+19x_48906+61x_48907+72x_48908+7x_48909+7x_48910+95x_48911+6x_48912+95x_48913+26x_48914+89x_48915+45x_48916+34x_48917+74x_48918+54x_48919+61x_48920+75x_48921+40x_48922+10x_48923+64x_48924+52x_48925+70x_48926+59x_48927+54x_48928+18x_48929+14x_48930+80x_48931+93x_48932+82x_48933+6x_48934+54x_48935+52x_48936+76x_48937+83x_48938+32x_48939+66x_48940+13x_48941+10x_48942+53x_48943+80x_48944+51x_48945+92x_48946+80x_48947+23x_48948+84x_48949+64x_48950+28x_48951+100x_48952+13x_48953+45x_48954+50x_48955+16x_48956+76x_48957+5x_48958+25x_48959+100x_48960+38x_48961+76x_48962+70x_48963+5x_48964+17x_48965+23x_48966+10x_48967+2x_48968+53x_48969+43x_48970+19x_48971+74x_48972+43x_48973+24x_48974+56x_48975+64x_48976+16x_48977+90x_48978+28x_48979+38x_48980+92x_48981+43x_48982+67x_48983+95x_48984+36x_48985+37x_48986+3x_48987+65x_48988+34x_48989+82x_48990+59x_48991+40x_48992+16x_48993+51x_48994+76x_48995+23x_48996+14x_48997+86x_48998+98x_48999+2x_49000+34x_49001+74x_49002+46x_49003+49x_49004+23x_49005+42x_49006+19x_49007+86x_49008+21x_49009+80x_49010+83x_49011+18x_49012+82x_49013+83x_49014+12x_49015+84x_49016+3x_49017+14x_49018+70x_49019+82x_49020+44x_49021+71x_49022+49x_49023+68x_49024+7x_49025+65x_49026+54x_49027+33x_49028+78x_49029+33x_49030+91x_49031+37x_49032+5x_49033+56x_49034+52x_49035+3x_49036+68x_49037+2x_49038+78x_49039+20x_49040+65x_49041+82x_49042+47x_49043+2x_49044+27x_49045+78x_49046+37x_49047+13x_49048+56x_49049+94x_49050+58x_49051+10x_49052+13x_49053+44x_49054+79x_49055+x_49056+4x_49057+89x_49058+63x_49059+22x_49060+5x_49061+93x_49062+4x_49063+67x_49064+68x_49065+32x_49066+52x_49067+6x_49068+97x_49069+87x_49070+95x_49071+39x_49072+73x_49073+85x_49074+4x_49075+11x_49076+54x_49077+41x_49078+58x_49079+4x_49080+11x_49081+97x_49082+36x_49083+88x_49084+20x_49085+92x_49086+35x_49087+55x_49088+54x_49089+56x_49090+16x_49091+88x_49092+40x_49093+95x_49094+35x_49095+4x_49096+21x_49097+79x_49098+54x_49099+24x_49100+94x_49101+76x_49102+45x_49103+4x_49104+74x_49105+99x_49106+42x_49107+9x_49108+98x_49109+80x_49110+66x_49111+3x_49112+97x_49113+59x_49114+80x_49115+41x_49116+65x_49117+54x_49118+69x_49119+88x_49120+91x_49121+78x_49122+86x_49123+9x_49124+57x_49125+10x_49126+57x_49127+72x_49128+90x_49129+23x_49130+58x_49131+66x_49132+88x_49133+68x_49134+87x_49135+86x_49136+62x_49137+69x_49138+49x_49139+76x_49140+92x_49141+66x_49142+19x_49143+3x_49144+85x_49145+70x_49146+66x_49147+92x_49148+84x_49149+85x_49150+52x_49151+31x_49152+19x_49153+7x_49154+46x_49155+59x_49156+95x_49157+85x_49158+13x_49159+52x_49160+100x_49161+90x_49162+19x_49163+21x_49164+5x_49165+78x_49166+49x_49167+71x_49168+72x_49169+22x_49170+86x_49171+52x_49172+11x_49173+10x_49174+100x_49175+42x_49176+98x_49177+97x_49178+5x_49179+84x_49180+82x_49181+87x_49182+67x_49183+39x_49184+40x_49185+64x_49186+80x_49187+65x_49188+91x_49189+87x_49190+52x_49191+39x_49192+73x_49193+46x_49194+93x_49195+43x_49196+100x_49197+47x_49198+5x_49199+10x_49200+9x_49201+76x_49202+48x_49203+90x_49204+79x_49205+66x_49206+64x_49207+90x_49208+89x_49209+13x_49210+19x_49211+74x_49212+99x_49213+60x_49214+77x_49215+97x_49216+69x_49217+15x_49218+58x_49219+75x_49220+75x_49221+14x_49222+92x_49223+92x_49224+60x_49225+82x_49226+76x_49227+53x_49228+29x_49229+25x_49230+100x_49231+65x_49232+28x_49233+93x_49234+32x_49235+46x_49236+79x_49237+39x_49238+62x_49239+98x_49240+100x_49241+88x_49242+24x_49243+71x_49244+75x_49245+94x_49246+64x_49247+23x_49248+11x_49249+21x_49250+41x_49251+37x_49252+52x_49253+20x_49254+32x_49255+81x_49256+20x_49257+21x_49258+62x_49259+24x_49260+36x_49261+90x_49262+31x_49263+67x_49264+100x_49265+55x_49266+26x_49267+85x_49268+54x_49269+91x_49270+57x_49271+22x_49272+34x_49273+45x_49274+85x_49275+65x_49276+97x_49277+11x_49278+67x_49279+86x_49280+21x_49281+16x_49282+22x_49283+65x_49284+44x_49285+76x_49286+12x_49287+80x_49288+21x_49289+3x_49290+39x_49291+66x_49292+99x_49293+26x_49294+14x_49295+31x_49296+18x_49297+11x_49298+20x_49299+83x_49300+38x_49301+34x_49302+14x_49303+59x_49304+25x_49305+84x_49306+18x_49307+34x_49308+6x_49309+25x_49310+59x_49311+34x_49312+21x_49313+14x_49314+35x_49315+57x_49316+83x_49317+32x_49318+54x_49319+27x_49320+41x_49321+48x_49322+18x_49323+85x_49324+81x_49325+5x_49326+24x_49327+7x_49328+85x_49329+23x_49330+10x_49331+46x_49332+76x_49333+50x_49334+65x_49335+77x_49336+43x_49337+48x_49338+83x_49339+21x_49340+39x_49341+62x_49342+32x_49343+63x_49344+61x_49345+100x_49346+7x_49347+58x_49348+18x_49349+29x_49350+38x_49351+52x_49352+63x_49353+21x_49354+89x_49355+36x_49356+54x_49357+93x_49358+25x_49359+36x_49360+61x_49361+63x_49362+45x_49363+24x_49364+45x_49365+32x_49366+13x_49367+83x_49368+64x_49369+43x_49370+78x_49371+19x_49372+42x_49373+5x_49374+30x_49375+99x_49376+68x_49377+30x_49378+45x_49379+85x_49380+46x_49381+89x_49382+65x_49383+60x_49384+26x_49385+33x_49386+97x_49387+34x_49388+20x_49389+45x_49390+71x_49391+41x_49392+19x_49393+38x_49394+77x_49395+34x_49396+66x_49397+33x_49398+86x_49399+23x_49400+11x_49401+93x_49402+94x_49403+74x_49404+15x_49405+48x_49406+98x_49407+73x_49408+81x_49409+66x_49410+70x_49411+21x_49412+98x_49413+74x_49414+42x_49415+39x_49416+24x_49417+66x_49418+99x_49419+13x_49420+99x_49421+78x_49422+100x_49423+9x_49424+99x_49425+19x_49426+68x_49427+32x_49428+x_49429+43x_49430+12x_49431+4x_49432+11x_49433+61x_49434+100x_49435+48x_49436+63x_49437+24x_49438+81x_49439+92x_49440+76x_49441+65x_49442+92x_49443+71x_49444+45x_49445+76x_49446+22x_49447+72x_49448+97x_49449+61x_49450+18x_49451+76x_49452+31x_49453+91x_49454+66x_49455+12x_49456+36x_49457+38x_49458+83x_49459+76x_49460+56x_49461+80x_49462+81x_49463+52x_49464+68x_49465+74x_49466+91x_49467+76x_49468+12x_49469+100x_49470+48x_49471+3x_49472+86x_49473+69x_49474+41x_49475+19x_49476+97x_49477+93x_49478+74x_49479+68x_49480+100x_49481+30x_49482+5x_49483+66x_49484+64x_49485+6x_49486+21x_49487+76x_49488+75x_49489+83x_49490+9x_49491+9x_49492+79x_49493+47x_49494+71x_49495+67x_49496+50x_49497+38x_49498+56x_49499+9x_49500+11x_49501+59x_49502+52x_49503+70x_49504+57x_49505+23x_49506+14x_49507+21x_49508+69x_49509+47x_49510+47x_49511+37x_49512+2x_49513+x_49514+29x_49515+80x_49516+36x_49517+13x_49518+2x_49519+33x_49520+48x_49521+12x_49522+25x_49523+24x_49524+2x_49525+26x_49526+89x_49527+19x_49528+54x_49529+10x_49530+91x_49531+93x_49532+46x_49533+98x_49534+53x_49535+88x_49536+46x_49537+44x_49538+34x_49539+81x_49540+70x_49541+84x_49542+3x_49543+40x_49544+71x_49545+74x_49546+35x_49547+49x_49548+48x_49549+58x_49550+45x_49551+48x_49552+76x_49553+91x_49554+96x_49555+31x_49556+55x_49557+83x_49558+45x_49559+60x_49560+56x_49561+45x_49562+65x_49563+36x_49564+44x_49565+2x_49566+46x_49567+89x_49568+9x_49569+79x_49570+90x_49571+41x_49572+39x_49573+96x_49574+94x_49575+18x_49576+54x_49577+3x_49578+81x_49579+51x_49580+32x_49581+70x_49582+83x_49583+80x_49584+5x_49585+26x_49586+15x_49587+45x_49588+55x_49589+34x_49590+70x_49591+74x_49592+87x_49593+11x_49594+58x_49595+25x_49596+24x_49597+39x_49598+43x_49599+47x_49600+21x_49601+31x_49602+2x_49603+47x_49604+36x_49605+25x_49606+77x_49607+6x_49608+15x_49609+10x_49610+x_49611+31x_49612+19x_49613+49x_49614+43x_49615+59x_49616+40x_49617+31x_49618+8x_49619+10x_49620+67x_49621+84x_49622+55x_49623+73x_49624+52x_49625+16x_49626+6x_49627+13x_49628+53x_49629+70x_49630+66x_49631+76x_49632+64x_49633+36x_49634+82x_49635+36x_49636+64x_49637+31x_49638+44x_49639+43x_49640+81x_49641+97x_49642+79x_49643+29x_49644+24x_49645+99x_49646+48x_49647+45x_49648+82x_49649+89x_49650+76x_49651+46x_49652+74x_49653+64x_49654+70x_49655+96x_49656+57x_49657+42x_49658+4x_49659+51x_49660+48x_49661+35x_49662+58x_49663+65x_49664+65x_49665+99x_49666+26x_49667+2x_49668+27x_49669+x_49670+15x_49671+93x_49672+17x_49673+57x_49674+95x_49675+47x_49676+7x_49677+43x_49678+30x_49679+93x_49680+55x_49681+45x_49682+8x_49683+72x_49684+97x_49685+22x_49686+68x_49687+22x_49688+40x_49689+56x_49690+64x_49691+66x_49692+23x_49693+53x_49694+51x_49695+90x_49696+25x_49697+27x_49698+73x_49699+70x_49700+93x_49701+45x_49702+28x_49703+3x_49704+54x_49705+85x_49706+32x_49707+67x_49708+9x_49709+32x_49710+27x_49711+38x_49712+84x_49713+45x_49714+54x_49715+87x_49716+55x_49717+69x_49718+78x_49719+31x_49720+26x_49721+20x_49722+34x_49723+60x_49724+48x_49725+37x_49726+93x_49727+57x_49728+11x_49729+17x_49730+30x_49731+17x_49732+85x_49733+51x_49734+100x_49735+18x_49736+95x_49737+36x_49738+54x_49739+10x_49740+87x_49741+52x_49742+97x_49743+29x_49744+95x_49745+15x_49746+98x_49747+29x_49748+42x_49749+97x_49750+18x_49751+66x_49752+20x_49753+40x_49754+61x_49755+61x_49756+8x_49757+58x_49758+56x_49759+31x_49760+59x_49761+38x_49762+83x_49763+4x_49764+72x_49765+8x_49766+34x_49767+41x_49768+70x_49769+63x_49770+84x_49771+100x_49772+93x_49773+40x_49774+27x_49775+65x_49776+51x_49777+9x_49778+14x_49779+51x_49780+77x_49781+x_49782+90x_49783+69x_49784+89x_49785+78x_49786+55x_49787+22x_49788+26x_49789+83x_49790+31x_49791+52x_49792+74x_49793+88x_49794+54x_49795+49x_49796+3x_49797+14x_49798+11x_49799+100x_49800+60x_49801+46x_49802+30x_49803+8x_49804+15x_49805+92x_49806+64x_49807+14x_49808+82x_49809+36x_49810+95x_49811+20x_49812+43x_49813+66x_49814+15x_49815+46x_49816+42x_49817+84x_49818+66x_49819+72x_49820+23x_49821+56x_49822+78x_49823+100x_49824+31x_49825+78x_49826+10x_49827+93x_49828+88x_49829+80x_49830+7x_49831+44x_49832+29x_49833+59x_49834+72x_49835+13x_49836+68x_49837+79x_49838+46x_49839+23x_49840+20x_49841+84x_49842+26x_49843+97x_49844+87x_49845+67x_49846+23x_49847+15x_49848+95x_49849+55x_49850+92x_49851+52x_49852+74x_49853+50x_49854+54x_49855+91x_49856+60x_49857+22x_49858+59x_49859+46x_49860+91x_49861+16x_49862+80x_49863+58x_49864+6x_49865+61x_49866+93x_49867+38x_49868+92x_49869+3x_49870+62x_49871+32x_49872+61x_49873+24x_49874+33x_49875+90x_49876+64x_49877+42x_49878+66x_49879+81x_49880+12x_49881+23x_49882+31x_49883+35x_49884+73x_49885+72x_49886+43x_49887+99x_49888+50x_49889+59x_49890+43x_49891+88x_49892+64x_49893+32x_49894+42x_49895+5x_49896+74x_49897+81x_49898+62x_49899+36x_49900+3x_49901+23x_49902+28x_49903+23x_49904+88x_49905+86x_49906+9x_49907+64x_49908+25x_49909+83x_49910+12x_49911+97x_49912+49x_49913+31x_49914+24x_49915+95x_49916+2x_49917+100x_49918+96x_49919+75x_49920+42x_49921+3x_49922+76x_49923+x_49924+96x_49925+8x_49926+18x_49927+72x_49928+67x_49929+82x_49930+3x_49931+91x_49932+76x_49933+42x_49934+40x_49935+69x_49936+21x_49937+23x_49938+26x_49939+28x_49940+41x_49941+85x_49942+30x_49943+54x_49944+17x_49945+50x_49946+65x_49947+88x_49948+53x_49949+91x_49950+83x_49951+47x_49952+67x_49953+30x_49954+83x_49955+66x_49956+83x_49957+37x_49958+34x_49959+23x_49960+12x_49961+53x_49962+95x_49963+90x_49964+88x_49965+86x_49966+81x_49967+62x_49968+74x_49969+2x_49970+45x_49971+68x_49972+72x_49973+77x_49974+15x_49975+3x_49976+90x_49977+32x_49978+44x_49979+25x_49980+84x_49981+33x_49982+92x_49983+2x_49984+65x_49985+27x_49986+74x_49987+79x_49988+39x_49989+95x_49990+64x_49991+14x_49992+32x_49993+28x_49994+45x_49995+31x_49996+71x_49997+53x_49998+81x_49999+55x_50000+61x_50001+55x_50002+47x_50003+73x_50004+64x_50005+9x_50006+14x_50007+17x_50008+41x_50009+26x_50010+33x_50011+99x_50012+10x_50013+40x_50014+31x_50015+78x_50016+80x_50017+74x_50018+12x_50019+75x_50020+36x_50021+12x_50022+87x_50023+12x_50024+29x_50025+61x_50026+x_50027+28x_50028+8x_50029+75x_50030+73x_50031+93x_50032+45x_50033+27x_50034+12x_50035+7x_50036+83x_50037+6x_50038+67x_50039+32x_50040+78x_50041+85x_50042+100x_50043+82x_50044+98x_50045+37x_50046+58x_50047+31x_50048+7x_50049+63x_50050+70x_50051+72x_50052+73x_50053+55x_50054+94x_50055+82x_50056+50x_50057+34x_50058+5x_50059+39x_50060+2x_50061+73x_50062+69x_50063+70x_50064+12x_50065+67x_50066+96x_50067+36x_50068+81x_50069+50x_50070+85x_50071+16x_50072+8x_50073+36x_50074+99x_50075+25x_50076+39x_50077+2x_50078+32x_50079+17x_50080+24x_50081+49x_50082+89x_50083+7x_50084+35x_50085+5x_50086+66x_50087+68x_50088+82x_50089+89x_50090+30x_50091+54x_50092+56x_50093+21x_50094+66x_50095+65x_50096+76x_50097+7x_50098+3x_50099+89x_50100+18x_50101+53x_50102+32x_50103+90x_50104+60x_50105+70x_50106+60x_50107+59x_50108+56x_50109+23x_50110+31x_50111+95x_50112+12x_50113+44x_50114+71x_50115+30x_50116+100x_50117+22x_50118+82x_50119+58x_50120+98x_50121+47x_50122+63x_50123+84x_50124+49x_50125+50x_50126+21x_50127+44x_50128+53x_50129+13x_50130+83x_50131+66x_50132+71x_50133+83x_50134+76x_50135+72x_50136+55x_50137+33x_50138+45x_50139+22x_50140+97x_50141+26x_50142+53x_50143+79x_50144+19x_50145+78x_50146+13x_50147+38x_50148+64x_50149+44x_50150+x_50151+75x_50152+x_50153+74x_50154+79x_50155+71x_50156+74x_50157+24x_50158+75x_50159+79x_50160+61x_50161+4x_50162+28x_50163+41x_50164+32x_50165+54x_50166+66x_50167+26x_50168+15x_50169+34x_50170+22x_50171+64x_50172+89x_50173+88x_50174+84x_50175+17x_50176+75x_50177+83x_50178+46x_50179+100x_50180+80x_50181+20x_50182+75x_50183+23x_50184+13x_50185+2x_50186+70x_50187+89x_50188+6x_50189+25x_50190+94x_50191+75x_50192+84x_50193+90x_50194+21x_50195+98x_50196+30x_50197+13x_50198+38x_50199+11x_50200+76x_50201+39x_50202+65x_50203+88x_50204+17x_50205+50x_50206+57x_50207+14x_50208+6x_50209+52x_50210+92x_50211+100x_50212+86x_50213+59x_50214+8x_50215+62x_50216+53x_50217+89x_50218+80x_50219+65x_50220+90x_50221+21x_50222+10x_50223+36x_50224+8x_50225+37x_50226+2x_50227+24x_50228+84x_50229+99x_50230+71x_50231+5x_50232+62x_50233+26x_50234+59x_50235+26x_50236+70x_50237+99x_50238+75x_50239+58x_50240+15x_50241+x_50242+75x_50243+12x_50244+21x_50245+89x_50246+88x_50247+70x_50248+50x_50249+87x_50250+48x_50251+11x_50252+78x_50253+87x_50254+77x_50255+31x_50256+92x_50257+55x_50258+27x_50259+39x_50260+55x_50261+3x_50262+82x_50263+98x_50264+43x_50265+97x_50266+10x_50267+9x_50268+14x_50269+36x_50270+69x_50271+93x_50272+9x_50273+28x_50274+55x_50275+91x_50276+88x_50277+17x_50278+36x_50279+39x_50280+84x_50281+30x_50282+4x_50283+54x_50284+85x_50285+52x_50286+84x_50287+39x_50288+49x_50289+23x_50290+21x_50291+29x_50292+100x_50293+80x_50294+45x_50295+30x_50296+59x_50297+13x_50298+26x_50299+39x_50300+48x_50301+27x_50302+65x_50303+15x_50304+93x_50305+97x_50306+33x_50307+20x_50308+45x_50309+35x_50310+6x_50311+39x_50312+10x_50313+98x_50314+12x_50315+26x_50316+44x_50317+54x_50318+53x_50319+20x_50320+89x_50321+16x_50322+34x_50323+84x_50324+19x_50325+49x_50326+95x_50327+54x_50328+13x_50329+96x_50330+87x_50331+36x_50332+54x_50333+43x_50334+82x_50335+99x_50336+48x_50337+90x_50338+80x_50339+42x_50340+77x_50341+41x_50342+66x_50343+64x_50344+77x_50345+81x_50346+62x_50347+62x_50348+26x_50349+28x_50350+41x_50351+87x_50352+57x_50353+27x_50354+65x_50355+18x_50356+33x_50357+42x_50358+67x_50359+12x_50360+38x_50361+56x_50362+60x_50363+8x_50364+19x_50365+41x_50366+64x_50367+93x_50368+98x_50369+32x_50370+27x_50371+47x_50372+52x_50373+75x_50374+43x_50375+42x_50376+68x_50377+39x_50378+73x_50379+53x_50380+17x_50381+41x_50382+60x_50383+83x_50384+53x_50385+74x_50386+44x_50387+91x_50388+94x_50389+45x_50390+55x_50391+86x_50392+39x_50393+54x_50394+48x_50395+31x_50396+88x_50397+4x_50398+86x_50399+48x_50400+25x_50401+19x_50402+83x_50403+48x_50404+80x_50405+67x_50406+58x_50407+65x_50408+60x_50409+17x_50410+27x_50411+95x_50412+61x_50413+90x_50414+48x_50415+27x_50416+96x_50417+99x_50418+77x_50419+64x_50420+17x_50421+30x_50422+79x_50423+59x_50424+74x_50425+10x_50426+22x_50427+100x_50428+99x_50429+93x_50430+4x_50431+61x_50432+63x_50433+25x_50434+84x_50435+99x_50436+58x_50437+16x_50438+2x_50439+69x_50440+59x_50441+6x_50442+47x_50443+50x_50444+50x_50445+77x_50446+75x_50447+64x_50448+22x_50449+86x_50450+38x_50451+77x_50452+x_50453+70x_50454+94x_50455+97x_50456+6x_50457+2x_50458+11x_50459+55x_50460+93x_50461+13x_50462+16x_50463+90x_50464+x_50465+7x_50466+15x_50467+88x_50468+8x_50469+56x_50470+93x_50471+42x_50472+55x_50473+58x_50474+53x_50475+97x_50476+92x_50477+37x_50478+39x_50479+86x_50480+91x_50481+23x_50482+95x_50483+19x_50484+63x_50485+74x_50486+52x_50487+54x_50488+98x_50489+30x_50490+85x_50491+37x_50492+35x_50493+80x_50494+86x_50495+31x_50496+49x_50497+29x_50498+4x_50499+55x_50500+59x_50501+44x_50502+39x_50503+47x_50504+79x_50505+43x_50506+96x_50507+8x_50508+63x_50509+53x_50510+48x_50511+71x_50512+52x_50513+40x_50514+46x_50515+34x_50516+30x_50517+73x_50518+24x_50519+45x_50520+82x_50521+91x_50522+63x_50523+28x_50524+31x_50525+57x_50526+86x_50527+47x_50528+41x_50529+x_50530+8x_50531+26x_50532+96x_50533+64x_50534+100x_50535+74x_50536+52x_50537+44x_50538+82x_50539+46x_50540+31x_50541+64x_50542+98x_50543+56x_50544+45x_50545+69x_50546+91x_50547+x_50548+65x_50549+84x_50550+85x_50551+83x_50552+75x_50553+20x_50554+62x_50555+93x_50556+74x_50557+52x_50558+85x_50559+45x_50560+20x_50561+52x_50562+23x_50563+37x_50564+38x_50565+28x_50566+67x_50567+95x_50568+92x_50569+91x_50570+54x_50571+3x_50572+28x_50573+18x_50574+72x_50575+42x_50576+33x_50577+14x_50578+38x_50579+42x_50580+31x_50581+20x_50582+52x_50583+99x_50584+58x_50585+51x_50586+32x_50587+76x_50588+73x_50589+37x_50590+49x_50591+85x_50592+96x_50593+80x_50594+31x_50595+92x_50596+34x_50597+81x_50598+x_50599+82x_50600+22x_50601+59x_50602+88x_50603+28x_50604+99x_50605+91x_50606+73x_50607+55x_50608+4x_50609+53x_50610+61x_50611+40x_50612+12x_50613+12x_50614+63x_50615+30x_50616+37x_50617+92x_50618+78x_50619+6x_50620+69x_50621+5x_50622+43x_50623+83x_50624+68x_50625+34x_50626+17x_50627+14x_50628+51x_50629+72x_50630+71x_50631+68x_50632+54x_50633+45x_50634+6x_50635+59x_50636+92x_50637+14x_50638+17x_50639+12x_50640+41x_50641+76x_50642+79x_50643+54x_50644+19x_50645+50x_50646+3x_50647+11x_50648+38x_50649+18x_50650+63x_50651+81x_50652+51x_50653+75x_50654+57x_50655+19x_50656+83x_50657+44x_50658+20x_50659+76x_50660+88x_50661+30x_50662+86x_50663+67x_50664+42x_50665+80x_50666+5x_50667+86x_50668+78x_50669+55x_50670+72x_50671+2x_50672+89x_50673+54x_50674+98x_50675+29x_50676+25x_50677+73x_50678+24x_50679+23x_50680+63x_50681+5x_50682+94x_50683+59x_50684+89x_50685+74x_50686+77x_50687+9x_50688+74x_50689+81x_50690+72x_50691+3x_50692+10x_50693+25x_50694+72x_50695+96x_50696+12x_50697+90x_50698+49x_50699+42x_50700+67x_50701+3x_50702+30x_50703+19x_50704+66x_50705+69x_50706+24x_50707+82x_50708+84x_50709+33x_50710+55x_50711+79x_50712+68x_50713+77x_50714+7x_50715+96x_50716+68x_50717+91x_50718+77x_50719+20x_50720+81x_50721+6x_50722+23x_50723+28x_50724+46x_50725+63x_50726+73x_50727+74x_50728+58x_50729+71x_50730+9x_50731+93x_50732+89x_50733+9x_50734+64x_50735+20x_50736+98x_50737+73x_50738+77x_50739+67x_50740+69x_50741+90x_50742+59x_50743+79x_50744+38x_50745+30x_50746+63x_50747+96x_50748+45x_50749+53x_50750+46x_50751+3x_50752+77x_50753+82x_50754+12x_50755+85x_50756+87x_50757+99x_50758+89x_50759+90x_50760+79x_50761+7x_50762+26x_50763+x_50764+29x_50765+92x_50766+x_50767+15x_50768+54x_50769+64x_50770+4x_50771+96x_50772+20x_50773+40x_50774+13x_50775+23x_50776+11x_50777+98x_50778+85x_50779+4x_50780+10x_50781+96x_50782+98x_50783+33x_50784+68x_50785+49x_50786+40x_50787+82x_50788+73x_50789+3x_50790+16x_50791+63x_50792+28x_50793+52x_50794+75x_50795+100x_50796+91x_50797+57x_50798+92x_50799+53x_50800+81x_50801+25x_50802+82x_50803+55x_50804+45x_50805+42x_50806+25x_50807+10x_50808+28x_50809+51x_50810+47x_50811+43x_50812+69x_50813+20x_50814+69x_50815+52x_50816+93x_50817+41x_50818+11x_50819+94x_50820+47x_50821+71x_50822+81x_50823+65x_50824+52x_50825+24x_50826+20x_50827+92x_50828+35x_50829+95x_50830+82x_50831+x_50832+57x_50833+22x_50834+61x_50835+55x_50836+17x_50837+2x_50838+68x_50839+44x_50840+3x_50841+73x_50842+77x_50843+24x_50844+95x_50845+5x_50846+99x_50847+x_50848+75x_50849+20x_50850+36x_50851+90x_50852+85x_50853+82x_50854+89x_50855+4x_50856+48x_50857+76x_50858+99x_50859+17x_50860+41x_50861+94x_50862+54x_50863+19x_50864+28x_50865+93x_50866+14x_50867+83x_50868+35x_50869+2x_50870+56x_50871+78x_50872+81x_50873+99x_50874+84x_50875+68x_50876+42x_50877+99x_50878+43x_50879+37x_50880+75x_50881+24x_50882+64x_50883+97x_50884+44x_50885+37x_50886+57x_50887+33x_50888+59x_50889+96x_50890+10x_50891+61x_50892+4x_50893+65x_50894+65x_50895+18x_50896+86x_50897+28x_50898+10x_50899+18x_50900+82x_50901+78x_50902+51x_50903+49x_50904+19x_50905+46x_50906+53x_50907+90x_50908+x_50909+36x_50910+80x_50911+72x_50912+15x_50913+10x_50914+32x_50915+79x_50916+34x_50917+4x_50918+47x_50919+21x_50920+80x_50921+88x_50922+77x_50923+72x_50924+73x_50925+75x_50926+66x_50927+13x_50928+27x_50929+32x_50930+38x_50931+31x_50932+11x_50933+85x_50934+59x_50935+73x_50936+12x_50937+42x_50938+6x_50939+93x_50940+69x_50941+6x_50942+28x_50943+40x_50944+7x_50945+67x_50946+12x_50947+77x_50948+74x_50949+35x_50950+11x_50951+94x_50952+14x_50953+82x_50954+18x_50955+50x_50956+55x_50957+86x_50958+15x_50959+90x_50960+39x_50961+82x_50962+81x_50963+17x_50964+15x_50965+44x_50966+22x_50967+29x_50968+84x_50969+97x_50970+56x_50971+x_50972+22x_50973+72x_50974+92x_50975+73x_50976+2x_50977+9x_50978+61x_50979+98x_50980+64x_50981+53x_50982+75x_50983+3x_50984+18x_50985+26x_50986+81x_50987+73x_50988+25x_50989+33x_50990+83x_50991+23x_50992+25x_50993+46x_50994+3x_50995+61x_50996+32x_50997+40x_50998+88x_50999+10x_51000+98x_51001+16x_51002+21x_51003+69x_51004+84x_51005+75x_51006+68x_51007+47x_51008+84x_51009+6x_51010+68x_51011+35x_51012+13x_51013+59x_51014+35x_51015+3x_51016+81x_51017+79x_51018+89x_51019+59x_51020+74x_51021+41x_51022+76x_51023+49x_51024+93x_51025+14x_51026+83x_51027+42x_51028+20x_51029+53x_51030+88x_51031+56x_51032+40x_51033+34x_51034+95x_51035+24x_51036+5x_51037+79x_51038+7x_51039+31x_51040+73x_51041+16x_51042+20x_51043+51x_51044+51x_51045+51x_51046+39x_51047+47x_51048+97x_51049+96x_51050+68x_51051+22x_51052+82x_51053+30x_51054+42x_51055+85x_51056+41x_51057+12x_51058+56x_51059+70x_51060+77x_51061+21x_51062+83x_51063+21x_51064+16x_51065+89x_51066+37x_51067+48x_51068+66x_51069+44x_51070+21x_51071+59x_51072+3x_51073+89x_51074+35x_51075+27x_51076+93x_51077+21x_51078+99x_51079+19x_51080+35x_51081+50x_51082+64x_51083+17x_51084+34x_51085+77x_51086+74x_51087+27x_51088+94x_51089+86x_51090+31x_51091+22x_51092+3x_51093+95x_51094+27x_51095+74x_51096+59x_51097+36x_51098+79x_51099+77x_51100+19x_51101+99x_51102+97x_51103+13x_51104+72x_51105+53x_51106+37x_51107+98x_51108+16x_51109+96x_51110+52x_51111+27x_51112+26x_51113+14x_51114+57x_51115+76x_51116+9x_51117+61x_51118+30x_51119+39x_51120+36x_51121+96x_51122+94x_51123+25x_51124+51x_51125+68x_51126+100x_51127+41x_51128+54x_51129+95x_51130+36x_51131+83x_51132+4x_51133+32x_51134+50x_51135+8x_51136+79x_51137+10x_51138+25x_51139+20x_51140+40x_51141+45x_51142+98x_51143+44x_51144+50x_51145+92x_51146+94x_51147+22x_51148+100x_51149+64x_51150+93x_51151+37x_51152+43x_51153+38x_51154+57x_51155+50x_51156+35x_51157+17x_51158+87x_51159+25x_51160+37x_51161+32x_51162+11x_51163+92x_51164+90x_51165+81x_51166+83x_51167+77x_51168+26x_51169+28x_51170+49x_51171+90x_51172+31x_51173+76x_51174+98x_51175+19x_51176+85x_51177+24x_51178+15x_51179+23x_51180+96x_51181+45x_51182+22x_51183+88x_51184+64x_51185+46x_51186+29x_51187+28x_51188+81x_51189+46x_51190+5x_51191+4x_51192+18x_51193+46x_51194+9x_51195+37x_51196+56x_51197+68x_51198+53x_51199+36x_51200+72x_51201+16x_51202+30x_51203+30x_51204+52x_51205+10x_51206+36x_51207+67x_51208+75x_51209+5x_51210+37x_51211+76x_51212+72x_51213+79x_51214+47x_51215+36x_51216+4x_51217+6x_51218+14x_51219+62x_51220+30x_51221+13x_51222+58x_51223+97x_51224+32x_51225+21x_51226+64x_51227+70x_51228+84x_51229+60x_51230+93x_51231+36x_51232+100x_51233+81x_51234+3x_51235+94x_51236+6x_51237+52x_51238+58x_51239+73x_51240+8x_51241+15x_51242+45x_51243+74x_51244+19x_51245+63x_51246+11x_51247+39x_51248+56x_51249+15x_51250+72x_51251+41x_51252+24x_51253+42x_51254+34x_51255+41x_51256+3x_51257+43x_51258+63x_51259+5x_51260+66x_51261+9x_51262+82x_51263+49x_51264+91x_51265+97x_51266+58x_51267+35x_51268+84x_51269+39x_51270+92x_51271+54x_51272+55x_51273+85x_51274+14x_51275+97x_51276+11x_51277+63x_51278+90x_51279+5x_51280+58x_51281+15x_51282+60x_51283+94x_51284+93x_51285+92x_51286+5x_51287+21x_51288+23x_51289+87x_51290+55x_51291+78x_51292+x_51293+94x_51294+56x_51295+77x_51296+84x_51297+30x_51298+50x_51299+27x_51300+14x_51301+43x_51302+72x_51303+91x_51304+x_51305+99x_51306+83x_51307+42x_51308+77x_51309+80x_51310+9x_51311+44x_51312+27x_51313+66x_51314+63x_51315+20x_51316+10x_51317+57x_51318+x_51319+93x_51320+49x_51321+59x_51322+70x_51323+35x_51324+69x_51325+67x_51326+4x_51327+66x_51328+21x_51329+69x_51330+39x_51331+76x_51332+38x_51333+81x_51334+42x_51335+53x_51336+5x_51337+51x_51338+97x_51339+81x_51340+47x_51341+100x_51342+35x_51343+54x_51344+49x_51345+72x_51346+7x_51347+42x_51348+41x_51349+2x_51350+94x_51351+27x_51352+82x_51353+38x_51354+68x_51355+66x_51356+10x_51357+2x_51358+8x_51359+90x_51360+100x_51361+88x_51362+65x_51363+24x_51364+68x_51365+14x_51366+76x_51367+74x_51368+82x_51369+90x_51370+88x_51371+10x_51372+70x_51373+44x_51374+85x_51375+55x_51376+98x_51377+x_51378+84x_51379+49x_51380+78x_51381+41x_51382+6x_51383+45x_51384+41x_51385+60x_51386+56x_51387+57x_51388+100x_51389+78x_51390+12x_51391+91x_51392+88x_51393+59x_51394+86x_51395+98x_51396+70x_51397+75x_51398+44x_51399+33x_51400+82x_51401+63x_51402+89x_51403+86x_51404+52x_51405+59x_51406+8x_51407+52x_51408+86x_51409+74x_51410+77x_51411+x_51412+34x_51413+53x_51414+15x_51415+39x_51416+18x_51417+55x_51418+19x_51419+37x_51420+48x_51421+77x_51422+57x_51423+27x_51424+26x_51425+75x_51426+78x_51427+36x_51428+57x_51429+18x_51430+9x_51431+63x_51432+92x_51433+9x_51434+74x_51435+95x_51436+59x_51437+41x_51438+90x_51439+89x_51440+50x_51441+15x_51442+72x_51443+84x_51444+70x_51445+80x_51446+30x_51447+38x_51448+31x_51449+68x_51450+19x_51451+95x_51452+50x_51453+76x_51454+17x_51455+48x_51456+81x_51457+10x_51458+93x_51459+19x_51460+6x_51461+69x_51462+100x_51463+56x_51464+24x_51465+34x_51466+97x_51467+51x_51468+27x_51469+50x_51470+44x_51471+10x_51472+65x_51473+2x_51474+43x_51475+54x_51476+32x_51477+74x_51478+75x_51479+28x_51480+35x_51481+94x_51482+11x_51483+56x_51484+75x_51485+13x_51486+49x_51487+47x_51488+81x_51489+58x_51490+96x_51491+9x_51492+48x_51493+78x_51494+41x_51495+32x_51496+71x_51497+5x_51498+59x_51499+54x_51500+97x_51501+12x_51502+7x_51503+63x_51504+17x_51505+77x_51506+21x_51507+68x_51508+55x_51509+39x_51510+71x_51511+94x_51512+68x_51513+89x_51514+92x_51515+46x_51516+12x_51517+51x_51518+15x_51519+59x_51520+98x_51521+65x_51522+89x_51523+75x_51524+6x_51525+28x_51526+17x_51527+88x_51528+72x_51529+43x_51530+23x_51531+87x_51532+33x_51533+57x_51534+25x_51535+28x_51536+19x_51537+22x_51538+80x_51539+28x_51540+83x_51541+83x_51542+18x_51543+96x_51544+9x_51545+52x_51546+53x_51547+35x_51548+45x_51549+74x_51550+72x_51551+28x_51552+36x_51553+20x_51554+21x_51555+73x_51556+15x_51557+15x_51558+43x_51559+85x_51560+61x_51561+27x_51562+92x_51563+72x_51564+12x_51565+47x_51566+55x_51567+89x_51568+85x_51569+81x_51570+51x_51571+50x_51572+29x_51573+37x_51574+9x_51575+31x_51576+97x_51577+40x_51578+27x_51579+79x_51580+31x_51581+21x_51582+89x_51583+77x_51584+61x_51585+45x_51586+31x_51587+10x_51588+48x_51589+74x_51590+97x_51591+51x_51592+41x_51593+81x_51594+95x_51595+76x_51596+90x_51597+19x_51598+30x_51599+69x_51600+58x_51601+32x_51602+18x_51603+66x_51604+20x_51605+55x_51606+13x_51607+34x_51608+53x_51609+48x_51610+4x_51611+29x_51612+31x_51613+88x_51614+37x_51615+17x_51616+13x_51617+92x_51618+29x_51619+3x_51620+85x_51621+78x_51622+9x_51623+73x_51624+31x_51625+29x_51626+38x_51627+41x_51628+100x_51629+31x_51630+64x_51631+58x_51632+91x_51633+56x_51634+56x_51635+10x_51636+25x_51637+44x_51638+97x_51639+7x_51640+56x_51641+41x_51642+9x_51643+89x_51644+68x_51645+38x_51646+69x_51647+59x_51648+13x_51649+98x_51650+13x_51651+45x_51652+65x_51653+90x_51654+10x_51655+56x_51656+88x_51657+94x_51658+26x_51659+40x_51660+52x_51661+52x_51662+97x_51663+92x_51664+49x_51665+63x_51666+62x_51667+67x_51668+80x_51669+69x_51670+90x_51671+30x_51672+13x_51673+90x_51674+16x_51675+48x_51676+52x_51677+12x_51678+21x_51679+17x_51680+43x_51681+3x_51682+27x_51683+77x_51684+31x_51685+20x_51686+73x_51687+70x_51688+23x_51689+68x_51690+39x_51691+3x_51692+13x_51693+3x_51694+93x_51695+3x_51696+60x_51697+69x_51698+17x_51699+99x_51700+46x_51701+57x_51702+2x_51703+77x_51704+85x_51705+100x_51706+21x_51707+40x_51708+82x_51709+34x_51710+94x_51711+15x_51712+35x_51713+73x_51714+10x_51715+68x_51716+59x_51717+25x_51718+61x_51719+10x_51720+97x_51721+21x_51722+31x_51723+100x_51724+60x_51725+97x_51726+2x_51727+70x_51728+64x_51729+24x_51730+61x_51731+69x_51732+33x_51733+97x_51734+55x_51735+91x_51736+81x_51737+18x_51738+64x_51739+38x_51740+21x_51741+82x_51742+73x_51743+93x_51744+47x_51745+95x_51746+11x_51747+45x_51748+87x_51749+37x_51750+67x_51751+90x_51752+70x_51753+12x_51754+80x_51755+83x_51756+69x_51757+82x_51758+84x_51759+60x_51760+63x_51761+62x_51762+32x_51763+100x_51764+66x_51765+71x_51766+51x_51767+77x_51768+57x_51769+41x_51770+88x_51771+81x_51772+36x_51773+84x_51774+27x_51775+2x_51776+x_51777+3x_51778+93x_51779+79x_51780+84x_51781+28x_51782+79x_51783+34x_51784+38x_51785+97x_51786+29x_51787+85x_51788+6x_51789+69x_51790+43x_51791+46x_51792+44x_51793+78x_51794+55x_51795+13x_51796+45x_51797+x_51798+65x_51799+29x_51800+47x_51801+31x_51802+46x_51803+40x_51804+56x_51805+99x_51806+53x_51807+59x_51808+79x_51809+8x_51810+6x_51811+88x_51812+91x_51813+37x_51814+23x_51815+30x_51816+70x_51817+7x_51818+71x_51819+73x_51820+51x_51821+76x_51822+43x_51823+97x_51824+25x_51825+22x_51826+5x_51827+93x_51828+62x_51829+29x_51830+39x_51831+58x_51832+64x_51833+62x_51834+9x_51835+61x_51836+9x_51837+61x_51838+74x_51839+92x_51840+66x_51841+67x_51842+x_51843+95x_51844+6x_51845+28x_51846+8x_51847+75x_51848+51x_51849+37x_51850+64x_51851+70x_51852+37x_51853+26x_51854+82x_51855+6x_51856+83x_51857+13x_51858+76x_51859+70x_51860+45x_51861+87x_51862+18x_51863+5x_51864+64x_51865+90x_51866+51x_51867+14x_51868+12x_51869+100x_51870+19x_51871+74x_51872+31x_51873+46x_51874+90x_51875+29x_51876+66x_51877+55x_51878+42x_51879+89x_51880+80x_51881+79x_51882+66x_51883+49x_51884+54x_51885+100x_51886+50x_51887+67x_51888+81x_51889+33x_51890+2x_51891+99x_51892+43x_51893+94x_51894+30x_51895+23x_51896+70x_51897+98x_51898+10x_51899+x_51900+92x_51901+80x_51902+6x_51903+35x_51904+84x_51905+44x_51906+92x_51907+52x_51908+52x_51909+51x_51910+4x_51911+31x_51912+4x_51913+88x_51914+20x_51915+72x_51916+86x_51917+21x_51918+53x_51919+85x_51920+95x_51921+42x_51922+76x_51923+47x_51924+14x_51925+3x_51926+87x_51927+19x_51928+13x_51929+87x_51930+27x_51931+87x_51932+47x_51933+61x_51934+22x_51935+12x_51936+18x_51937+97x_51938+7x_51939+9x_51940+47x_51941+7x_51942+51x_51943+84x_51944+19x_51945+83x_51946+47x_51947+71x_51948+16x_51949+27x_51950+58x_51951+60x_51952+76x_51953+71x_51954+48x_51955+37x_51956+14x_51957+45x_51958+71x_51959+66x_51960+x_51961+81x_51962+58x_51963+79x_51964+100x_51965+58x_51966+37x_51967+97x_51968+31x_51969+51x_51970+48x_51971+55x_51972+34x_51973+79x_51974+43x_51975+29x_51976+56x_51977+88x_51978+19x_51979+45x_51980+52x_51981+30x_51982+35x_51983+73x_51984+38x_51985+2x_51986+67x_51987+95x_51988+26x_51989+40x_51990+53x_51991+52x_51992+41x_51993+14x_51994+39x_51995+88x_51996+40x_51997+81x_51998+44x_51999+97x_52000+33x_52001+23x_52002+2x_52003+7x_52004+37x_52005+53x_52006+90x_52007+81x_52008+30x_52009+66x_52010+62x_52011+49x_52012+25x_52013+59x_52014+58x_52015+80x_52016+94x_52017+86x_52018+32x_52019+92x_52020+65x_52021+71x_52022+81x_52023+83x_52024+95x_52025+45x_52026+52x_52027+92x_52028+21x_52029+32x_52030+45x_52031+21x_52032+98x_52033+96x_52034+13x_52035+17x_52036+55x_52037+65x_52038+58x_52039+45x_52040+80x_52041+33x_52042+35x_52043+23x_52044+69x_52045+42x_52046+89x_52047+92x_52048+10x_52049+50x_52050+56x_52051+70x_52052+89x_52053+50x_52054+42x_52055+16x_52056+97x_52057+77x_52058+63x_52059+45x_52060+84x_52061+14x_52062+88x_52063+88x_52064+74x_52065+26x_52066+93x_52067+26x_52068+10x_52069+66x_52070+84x_52071+x_52072+71x_52073+x_52074+35x_52075+14x_52076+10x_52077+16x_52078+65x_52079+66x_52080+36x_52081+33x_52082+90x_52083+21x_52084+47x_52085+34x_52086+5x_52087+98x_52088+11x_52089+36x_52090+25x_52091+6x_52092+36x_52093+93x_52094+65x_52095+23x_52096+72x_52097+98x_52098+14x_52099+72x_52100+4x_52101+37x_52102+7x_52103+33x_52104+48x_52105+91x_52106+64x_52107+38x_52108+46x_52109+6x_52110+35x_52111+34x_52112+62x_52113+56x_52114+84x_52115+12x_52116+64x_52117+24x_52118+9x_52119+88x_52120+93x_52121+13x_52122+x_52123+56x_52124+20x_52125+31x_52126+54x_52127+58x_52128+43x_52129+96x_52130+52x_52131+98x_52132+54x_52133+77x_52134+73x_52135+58x_52136+6x_52137+48x_52138+75x_52139+93x_52140+14x_52141+2x_52142+66x_52143+25x_52144+94x_52145+96x_52146+52x_52147+24x_52148+88x_52149+69x_52150+7x_52151+98x_52152+68x_52153+19x_52154+64x_52155+31x_52156+86x_52157+82x_52158+98x_52159+28x_52160+50x_52161+36x_52162+21x_52163+15x_52164+13x_52165+x_52166+33x_52167+11x_52168+53x_52169+15x_52170+9x_52171+58x_52172+33x_52173+40x_52174+32x_52175+50x_52176+8x_52177+100x_52178+32x_52179+15x_52180+92x_52181+x_52182+37x_52183+90x_52184+95x_52185+3x_52186+14x_52187+43x_52188+51x_52189+x_52190+66x_52191+33x_52192+94x_52193+70x_52194+29x_52195+29x_52196+57x_52197+73x_52198+5x_52199+91x_52200+40x_52201+70x_52202+59x_52203+46x_52204+98x_52205+25x_52206+90x_52207+41x_52208+10x_52209+57x_52210+77x_52211+59x_52212+64x_52213+44x_52214+67x_52215+13x_52216+95x_52217+16x_52218+67x_52219+14x_52220+76x_52221+61x_52222+50x_52223+49x_52224+15x_52225+62x_52226+93x_52227+56x_52228+9x_52229+8x_52230+8x_52231+2x_52232+43x_52233+33x_52234+24x_52235+57x_52236+96x_52237+56x_52238+93x_52239+67x_52240+65x_52241+83x_52242+100x_52243+65x_52244+99x_52245+82x_52246+40x_52247+15x_52248+48x_52249+21x_52250+97x_52251+24x_52252+27x_52253+6x_52254+6x_52255+37x_52256+81x_52257+38x_52258+46x_52259+38x_52260+6x_52261+59x_52262+47x_52263+4x_52264+25x_52265+30x_52266+56x_52267+25x_52268+29x_52269+41x_52270+32x_52271+57x_52272+23x_52273+4x_52274+63x_52275+52x_52276+42x_52277+92x_52278+84x_52279+58x_52280+44x_52281+61x_52282+96x_52283+32x_52284+20x_52285+10x_52286+94x_52287+40x_52288+4x_52289+4x_52290+91x_52291+32x_52292+20x_52293+88x_52294+24x_52295+38x_52296+83x_52297+91x_52298+52x_52299+11x_52300+83x_52301+90x_52302+13x_52303+46x_52304+75x_52305+55x_52306+61x_52307+32x_52308+56x_52309+70x_52310+12x_52311+35x_52312+44x_52313+37x_52314+87x_52315+92x_52316+55x_52317+63x_52318+85x_52319+19x_52320+3x_52321+20x_52322+93x_52323+44x_52324+55x_52325+90x_52326+67x_52327+14x_52328+94x_52329+88x_52330+12x_52331+6x_52332+73x_52333+5x_52334+9x_52335+44x_52336+76x_52337+62x_52338+32x_52339+23x_52340+86x_52341+38x_52342+70x_52343+84x_52344+42x_52345+16x_52346+19x_52347+23x_52348+x_52349+50x_52350+77x_52351+60x_52352+89x_52353+90x_52354+32x_52355+37x_52356+82x_52357+35x_52358+90x_52359+24x_52360+40x_52361+32x_52362+14x_52363+37x_52364+90x_52365+40x_52366+92x_52367+48x_52368+54x_52369+8x_52370+31x_52371+85x_52372+71x_52373+67x_52374+42x_52375+60x_52376+54x_52377+58x_52378+58x_52379+25x_52380+94x_52381+69x_52382+29x_52383+40x_52384+95x_52385+27x_52386+97x_52387+57x_52388+89x_52389+88x_52390+95x_52391+8x_52392+82x_52393+87x_52394+15x_52395+41x_52396+30x_52397+100x_52398+12x_52399+29x_52400+69x_52401+63x_52402+46x_52403+32x_52404+17x_52405+58x_52406+43x_52407+91x_52408+36x_52409+65x_52410+86x_52411+72x_52412+87x_52413+41x_52414+96x_52415+70x_52416+24x_52417+53x_52418+53x_52419+79x_52420+97x_52421+26x_52422+62x_52423+16x_52424+35x_52425+33x_52426+86x_52427+83x_52428+19x_52429+98x_52430+38x_52431+27x_52432+58x_52433+10x_52434+100x_52435+87x_52436+21x_52437+64x_52438+33x_52439+51x_52440+17x_52441+93x_52442+19x_52443+73x_52444+37x_52445+100x_52446+31x_52447+32x_52448+54x_52449+88x_52450+90x_52451+26x_52452+91x_52453+25x_52454+56x_52455+22x_52456+52x_52457+63x_52458+3x_52459+58x_52460+29x_52461+7x_52462+86x_52463+42x_52464+52x_52465+39x_52466+44x_52467+8x_52468+18x_52469+23x_52470+69x_52471+95x_52472+47x_52473+69x_52474+35x_52475+78x_52476+6x_52477+96x_52478+31x_52479+93x_52480+61x_52481+33x_52482+26x_52483+17x_52484+45x_52485+33x_52486+2x_52487+78x_52488+2x_52489+3x_52490+11x_52491+40x_52492+88x_52493+87x_52494+21x_52495+71x_52496+5x_52497+86x_52498+97x_52499+16x_52500+45x_52501+33x_52502+63x_52503+x_52504+91x_52505+52x_52506+55x_52507+45x_52508+11x_52509+64x_52510+19x_52511+56x_52512+56x_52513+4x_52514+44x_52515+25x_52516+53x_52517+29x_52518+45x_52519+21x_52520+8x_52521+93x_52522+32x_52523+77x_52524+55x_52525+23x_52526+85x_52527+x_52528+42x_52529+52x_52530+44x_52531+37x_52532+48x_52533+57x_52534+68x_52535+28x_52536+24x_52537+40x_52538+80x_52539+10x_52540+9x_52541+41x_52542+2x_52543+79x_52544+76x_52545+72x_52546+39x_52547+98x_52548+17x_52549+26x_52550+23x_52551+76x_52552+20x_52553+17x_52554+19x_52555+4x_52556+62x_52557+12x_52558+63x_52559+79x_52560+65x_52561+73x_52562+38x_52563+88x_52564+79x_52565+34x_52566+16x_52567+60x_52568+32x_52569+17x_52570+50x_52571+97x_52572+7x_52573+99x_52574+41x_52575+90x_52576+77x_52577+22x_52578+26x_52579+60x_52580+87x_52581+21x_52582+25x_52583+52x_52584+85x_52585+12x_52586+43x_52587+24x_52588+91x_52589+25x_52590+79x_52591+98x_52592+33x_52593+57x_52594+55x_52595+45x_52596+95x_52597+32x_52598+83x_52599+93x_52600+61x_52601+54x_52602+63x_52603+46x_52604+36x_52605+22x_52606+4x_52607+84x_52608+87x_52609+53x_52610+16x_52611+24x_52612+5x_52613+44x_52614+71x_52615+73x_52616+33x_52617+90x_52618+87x_52619+81x_52620+82x_52621+84x_52622+69x_52623+63x_52624+100x_52625+15x_52626+57x_52627+73x_52628+63x_52629+74x_52630+78x_52631+22x_52632+67x_52633+64x_52634+95x_52635+67x_52636+93x_52637+8x_52638+86x_52639+80x_52640+22x_52641+46x_52642+16x_52643+42x_52644+93x_52645+79x_52646+81x_52647+31x_52648+7x_52649+54x_52650+11x_52651+87x_52652+21x_52653+44x_52654+53x_52655+96x_52656+18x_52657+33x_52658+18x_52659+92x_52660+52x_52661+74x_52662+85x_52663+81x_52664+92x_52665+63x_52666+5x_52667+44x_52668+100x_52669+70x_52670+49x_52671+51x_52672+16x_52673+32x_52674+80x_52675+68x_52676+38x_52677+x_52678+51x_52679+50x_52680+55x_52681+77x_52682+90x_52683+20x_52684+12x_52685+100x_52686+66x_52687+83x_52688+5x_52689+18x_52690+69x_52691+10x_52692+61x_52693+36x_52694+72x_52695+78x_52696+4x_52697+48x_52698+91x_52699+82x_52700+78x_52701+38x_52702+91x_52703+3x_52704+57x_52705+7x_52706+49x_52707+32x_52708+75x_52709+10x_52710+4x_52711+34x_52712+57x_52713+65x_52714+69x_52715+27x_52716+48x_52717+28x_52718+20x_52719+12x_52720+92x_52721+45x_52722+50x_52723+23x_52724+38x_52725+66x_52726+69x_52727+49x_52728+69x_52729+13x_52730+35x_52731+97x_52732+19x_52733+11x_52734+74x_52735+80x_52736+32x_52737+82x_52738+78x_52739+55x_52740+32x_52741+98x_52742+36x_52743+67x_52744+92x_52745+32x_52746+53x_52747+62x_52748+100x_52749+99x_52750+25x_52751+78x_52752+32x_52753+54x_52754+3x_52755+55x_52756+9x_52757+96x_52758+6x_52759+76x_52760+31x_52761+62x_52762+42x_52763+42x_52764+26x_52765+9x_52766+50x_52767+58x_52768+16x_52769+60x_52770+62x_52771+95x_52772+72x_52773+62x_52774+84x_52775+82x_52776+60x_52777+9x_52778+85x_52779+14x_52780+33x_52781+17x_52782+45x_52783+46x_52784+69x_52785+91x_52786+27x_52787+47x_52788+82x_52789+50x_52790+18x_52791+3x_52792+23x_52793+65x_52794+77x_52795+91x_52796+43x_52797+89x_52798+10x_52799+36x_52800+38x_52801+83x_52802+42x_52803+39x_52804+72x_52805+8x_52806+74x_52807+27x_52808+73x_52809+39x_52810+45x_52811+24x_52812+8x_52813+52x_52814+83x_52815+81x_52816+75x_52817+93x_52818+40x_52819+10x_52820+69x_52821+15x_52822+34x_52823+58x_52824+90x_52825+38x_52826+21x_52827+62x_52828+60x_52829+36x_52830+77x_52831+6x_52832+38x_52833+61x_52834+90x_52835+69x_52836+4x_52837+67x_52838+87x_52839+24x_52840+5x_52841+20x_52842+92x_52843+82x_52844+x_52845+87x_52846+94x_52847+2x_52848+x_52849+20x_52850+67x_52851+27x_52852+5x_52853+66x_52854+46x_52855+14x_52856+94x_52857+41x_52858+4x_52859+28x_52860+41x_52861+91x_52862+43x_52863+89x_52864+43x_52865+18x_52866+22x_52867+88x_52868+96x_52869+89x_52870+75x_52871+84x_52872+29x_52873+51x_52874+14x_52875+42x_52876+26x_52877+35x_52878+54x_52879+98x_52880+61x_52881+25x_52882+74x_52883+25x_52884+60x_52885+9x_52886+25x_52887+15x_52888+10x_52889+42x_52890+52x_52891+5x_52892+17x_52893+26x_52894+91x_52895+49x_52896+78x_52897+19x_52898+51x_52899+85x_52900+51x_52901+98x_52902+76x_52903+15x_52904+98x_52905+42x_52906+56x_52907+31x_52908+47x_52909+3x_52910+45x_52911+22x_52912+11x_52913+100x_52914+43x_52915+48x_52916+78x_52917+96x_52918+29x_52919+93x_52920+62x_52921+49x_52922+11x_52923+61x_52924+53x_52925+75x_52926+42x_52927+71x_52928+67x_52929+98x_52930+3x_52931+80x_52932+75x_52933+80x_52934+14x_52935+53x_52936+43x_52937+30x_52938+21x_52939+12x_52940+39x_52941+60x_52942+13x_52943+62x_52944+78x_52945+53x_52946+61x_52947+45x_52948+18x_52949+48x_52950+70x_52951+56x_52952+64x_52953+83x_52954+38x_52955+82x_52956+85x_52957+95x_52958+6x_52959+52x_52960+54x_52961+51x_52962+33x_52963+32x_52964+95x_52965+26x_52966+57x_52967+22x_52968+40x_52969+18x_52970+40x_52971+95x_52972+71x_52973+97x_52974+69x_52975+34x_52976+17x_52977+39x_52978+86x_52979+4x_52980+22x_52981+33x_52982+73x_52983+7x_52984+63x_52985+82x_52986+63x_52987+18x_52988+99x_52989+90x_52990+25x_52991+47x_52992+7x_52993+31x_52994+76x_52995+66x_52996+50x_52997+53x_52998+66x_52999+64x_53000+94x_53001+73x_53002+20x_53003+9x_53004+78x_53005+78x_53006+98x_53007+31x_53008+79x_53009+19x_53010+63x_53011+6x_53012+4x_53013+53x_53014+85x_53015+31x_53016+42x_53017+3x_53018+96x_53019+76x_53020+47x_53021+3x_53022+3x_53023+99x_53024+24x_53025+58x_53026+79x_53027+54x_53028+81x_53029+44x_53030+51x_53031+59x_53032+50x_53033+14x_53034+98x_53035+41x_53036+80x_53037+85x_53038+77x_53039+65x_53040+76x_53041+86x_53042+41x_53043+62x_53044+71x_53045+31x_53046+43x_53047+87x_53048+17x_53049+44x_53050+20x_53051+6x_53052+25x_53053+54x_53054+80x_53055+92x_53056+59x_53057+30x_53058+67x_53059+38x_53060+96x_53061+43x_53062+29x_53063+23x_53064+80x_53065+10x_53066+57x_53067+61x_53068+96x_53069+58x_53070+8x_53071+96x_53072+90x_53073+91x_53074+67x_53075+30x_53076+x_53077+55x_53078+99x_53079+79x_53080+89x_53081+34x_53082+83x_53083+6x_53084+3x_53085+57x_53086+58x_53087+46x_53088+56x_53089+5x_53090+29x_53091+95x_53092+50x_53093+99x_53094+56x_53095+47x_53096+43x_53097+48x_53098+88x_53099+17x_53100+58x_53101+10x_53102+56x_53103+19x_53104+98x_53105+64x_53106+45x_53107+96x_53108+22x_53109+85x_53110+9x_53111+21x_53112+94x_53113+21x_53114+3x_53115+46x_53116+29x_53117+47x_53118+28x_53119+89x_53120+3x_53121+4x_53122+52x_53123+41x_53124+61x_53125+93x_53126+56x_53127+72x_53128+74x_53129+81x_53130+48x_53131+6x_53132+32x_53133+72x_53134+51x_53135+81x_53136+65x_53137+3x_53138+53x_53139+56x_53140+18x_53141+41x_53142+85x_53143+42x_53144+52x_53145+35x_53146+36x_53147+84x_53148+14x_53149+93x_53150+54x_53151+9x_53152+28x_53153+13x_53154+94x_53155+97x_53156+38x_53157+3x_53158+46x_53159+40x_53160+81x_53161+43x_53162+74x_53163+93x_53164+81x_53165+27x_53166+41x_53167+17x_53168+3x_53169+39x_53170+69x_53171+97x_53172+44x_53173+51x_53174+92x_53175+76x_53176+94x_53177+68x_53178+93x_53179+48x_53180+29x_53181+25x_53182+91x_53183+87x_53184+93x_53185+44x_53186+5x_53187+92x_53188+42x_53189+89x_53190+67x_53191+98x_53192+79x_53193+37x_53194+92x_53195+32x_53196+8x_53197+20x_53198+17x_53199+84x_53200+44x_53201+56x_53202+24x_53203+62x_53204+75x_53205+49x_53206+89x_53207+52x_53208+59x_53209+91x_53210+40x_53211+82x_53212+6x_53213+9x_53214+7x_53215+96x_53216+60x_53217+36x_53218+2x_53219+93x_53220+69x_53221+6x_53222+41x_53223+41x_53224+23x_53225+23x_53226+98x_53227+55x_53228+13x_53229+44x_53230+58x_53231+42x_53232+51x_53233+94x_53234+51x_53235+36x_53236+49x_53237+4x_53238+85x_53239+66x_53240+32x_53241+3x_53242+8x_53243+72x_53244+76x_53245+14x_53246+53x_53247+70x_53248+86x_53249+59x_53250+69x_53251+55x_53252+3x_53253+45x_53254+10x_53255+61x_53256+67x_53257+60x_53258+78x_53259+55x_53260+36x_53261+68x_53262+77x_53263+20x_53264+10x_53265+46x_53266+89x_53267+45x_53268+63x_53269+60x_53270+30x_53271+45x_53272+80x_53273+19x_53274+16x_53275+73x_53276+75x_53277+29x_53278+75x_53279+7x_53280+45x_53281+41x_53282+23x_53283+80x_53284+45x_53285+30x_53286+67x_53287+8x_53288+23x_53289+58x_53290+50x_53291+5x_53292+60x_53293+24x_53294+79x_53295+30x_53296+10x_53297+81x_53298+65x_53299+87x_53300+81x_53301+5x_53302+44x_53303+37x_53304+17x_53305+97x_53306+79x_53307+73x_53308+74x_53309+81x_53310+47x_53311+48x_53312+74x_53313+27x_53314+96x_53315+62x_53316+21x_53317+5x_53318+8x_53319+71x_53320+65x_53321+63x_53322+94x_53323+24x_53324+41x_53325+46x_53326+90x_53327+92x_53328+98x_53329+84x_53330+6x_53331+48x_53332+99x_53333+21x_53334+97x_53335+76x_53336+77x_53337+68x_53338+24x_53339+91x_53340+30x_53341+4x_53342+68x_53343+68x_53344+30x_53345+15x_53346+33x_53347+61x_53348+53x_53349+69x_53350+67x_53351+50x_53352+7x_53353+86x_53354+10x_53355+69x_53356+90x_53357+94x_53358+95x_53359+97x_53360+46x_53361+40x_53362+74x_53363+3x_53364+3x_53365+57x_53366+31x_53367+9x_53368+50x_53369+26x_53370+32x_53371+50x_53372+32x_53373+3x_53374+53x_53375+88x_53376+77x_53377+5x_53378+13x_53379+75x_53380+52x_53381+x_53382+25x_53383+94x_53384+18x_53385+30x_53386+4x_53387+94x_53388+75x_53389+98x_53390+4x_53391+53x_53392+55x_53393+39x_53394+63x_53395+63x_53396+77x_53397+100x_53398+62x_53399+21x_53400+78x_53401+26x_53402+12x_53403+50x_53404+27x_53405+12x_53406+84x_53407+60x_53408+44x_53409+60x_53410+97x_53411+67x_53412+89x_53413+36x_53414+100x_53415+6x_53416+38x_53417+x_53418+93x_53419+93x_53420+32x_53421+80x_53422+76x_53423+84x_53424+39x_53425+10x_53426+64x_53427+2x_53428+44x_53429+73x_53430+73x_53431+49x_53432+79x_53433+13x_53434+77x_53435+86x_53436+99x_53437+16x_53438+87x_53439+64x_53440+81x_53441+82x_53442+79x_53443+10x_53444+2x_53445+68x_53446+68x_53447+86x_53448+74x_53449+99x_53450+18x_53451+30x_53452+65x_53453+47x_53454+66x_53455+92x_53456+50x_53457+27x_53458+56x_53459+12x_53460+36x_53461+8x_53462+53x_53463+9x_53464+32x_53465+79x_53466+64x_53467+25x_53468+87x_53469+82x_53470+92x_53471+11x_53472+88x_53473+18x_53474+27x_53475+78x_53476+35x_53477+5x_53478+59x_53479+25x_53480+21x_53481+30x_53482+52x_53483+26x_53484+87x_53485+20x_53486+31x_53487+33x_53488+12x_53489+23x_53490+66x_53491+40x_53492+83x_53493+61x_53494+13x_53495+61x_53496+4x_53497+26x_53498+4x_53499+61x_53500+92x_53501+68x_53502+20x_53503+71x_53504+80x_53505+53x_53506+73x_53507+8x_53508+99x_53509+31x_53510+25x_53511+42x_53512+13x_53513+32x_53514+73x_53515+4x_53516+99x_53517+12x_53518+85x_53519+69x_53520+80x_53521+74x_53522+17x_53523+80x_53524+66x_53525+14x_53526+55x_53527+33x_53528+82x_53529+87x_53530+11x_53531+43x_53532+86x_53533+64x_53534+100x_53535+33x_53536+20x_53537+50x_53538+75x_53539+37x_53540+8x_53541+59x_53542+15x_53543+12x_53544+29x_53545+x_53546+76x_53547+28x_53548+29x_53549+5x_53550+64x_53551+58x_53552+36x_53553+32x_53554+90x_53555+71x_53556+73x_53557+35x_53558+18x_53559+34x_53560+84x_53561+40x_53562+12x_53563+41x_53564+39x_53565+86x_53566+86x_53567+53x_53568+77x_53569+73x_53570+67x_53571+80x_53572+59x_53573+6x_53574+9x_53575+12x_53576+2x_53577+73x_53578+39x_53579+12x_53580+32x_53581+55x_53582+76x_53583+92x_53584+86x_53585+15x_53586+99x_53587+7x_53588+2x_53589+94x_53590+89x_53591+98x_53592+20x_53593+51x_53594+19x_53595+54x_53596+50x_53597+60x_53598+2x_53599+4x_53600+39x_53601+13x_53602+15x_53603+15x_53604+51x_53605+24x_53606+62x_53607+12x_53608+51x_53609+16x_53610+88x_53611+7x_53612+49x_53613+34x_53614+90x_53615+30x_53616+11x_53617+16x_53618+11x_53619+3x_53620+100x_53621+30x_53622+67x_53623+74x_53624+33x_53625+47x_53626+21x_53627+63x_53628+8x_53629+11x_53630+88x_53631+7x_53632+60x_53633+48x_53634+40x_53635+97x_53636+79x_53637+20x_53638+62x_53639+93x_53640+54x_53641+6x_53642+49x_53643+26x_53644+53x_53645+58x_53646+74x_53647+33x_53648+22x_53649+8x_53650+55x_53651+61x_53652+47x_53653+22x_53654+80x_53655+27x_53656+12x_53657+12x_53658+34x_53659+90x_53660+8x_53661+95x_53662+97x_53663+4x_53664+11x_53665+24x_53666+2x_53667+45x_53668+8x_53669+44x_53670+95x_53671+54x_53672+10x_53673+31x_53674+25x_53675+53x_53676+21x_53677+15x_53678+17x_53679+7x_53680+75x_53681+30x_53682+43x_53683+62x_53684+67x_53685+87x_53686+94x_53687+87x_53688+52x_53689+68x_53690+13x_53691+89x_53692+77x_53693+55x_53694+81x_53695+66x_53696+60x_53697+40x_53698+42x_53699+47x_53700+59x_53701+90x_53702+57x_53703+29x_53704+82x_53705+92x_53706+89x_53707+43x_53708+69x_53709+74x_53710+47x_53711+92x_53712+34x_53713+65x_53714+31x_53715+69x_53716+97x_53717+100x_53718+20x_53719+28x_53720+72x_53721+85x_53722+91x_53723+19x_53724+28x_53725+47x_53726+28x_53727+75x_53728+41x_53729+88x_53730+68x_53731+26x_53732+26x_53733+75x_53734+12x_53735+5x_53736+97x_53737+67x_53738+70x_53739+29x_53740+72x_53741+89x_53742+22x_53743+94x_53744+85x_53745+99x_53746+45x_53747+59x_53748+84x_53749+28x_53750+82x_53751+25x_53752+50x_53753+78x_53754+65x_53755+10x_53756+61x_53757+74x_53758+7x_53759+79x_53760+11x_53761+81x_53762+32x_53763+94x_53764+49x_53765+71x_53766+20x_53767+45x_53768+79x_53769+18x_53770+29x_53771+45x_53772+20x_53773+63x_53774+48x_53775+12x_53776+51x_53777+19x_53778+27x_53779+10x_53780+30x_53781+59x_53782+39x_53783+15x_53784+92x_53785+54x_53786+42x_53787+31x_53788+92x_53789+22x_53790+17x_53791+14x_53792+98x_53793+38x_53794+65x_53795+14x_53796+4x_53797+67x_53798+72x_53799+71x_53800+7x_53801+22x_53802+60x_53803+34x_53804+82x_53805+62x_53806+16x_53807+59x_53808+86x_53809+71x_53810+16x_53811+37x_53812+51x_53813+4x_53814+23x_53815+6x_53816+65x_53817+67x_53818+69x_53819+31x_53820+19x_53821+71x_53822+16x_53823+26x_53824+46x_53825+89x_53826+60x_53827+56x_53828+12x_53829+35x_53830+98x_53831+93x_53832+18x_53833+44x_53834+12x_53835+16x_53836+89x_53837+68x_53838+8x_53839+28x_53840+98x_53841+11x_53842+17x_53843+21x_53844+85x_53845+55x_53846+54x_53847+71x_53848+99x_53849+39x_53850+90x_53851+18x_53852+15x_53853+41x_53854+88x_53855+66x_53856+16x_53857+81x_53858+54x_53859+4x_53860+12x_53861+80x_53862+87x_53863+62x_53864+6x_53865+47x_53866+98x_53867+90x_53868+38x_53869+100x_53870+17x_53871+23x_53872+25x_53873+9x_53874+23x_53875+89x_53876+100x_53877+52x_53878+87x_53879+58x_53880+61x_53881+11x_53882+80x_53883+17x_53884+64x_53885+7x_53886+3x_53887+20x_53888+34x_53889+26x_53890+28x_53891+86x_53892+72x_53893+14x_53894+59x_53895+x_53896+45x_53897+79x_53898+21x_53899+51x_53900+15x_53901+67x_53902+30x_53903+39x_53904+4x_53905+44x_53906+83x_53907+23x_53908+56x_53909+85x_53910+87x_53911+11x_53912+89x_53913+6x_53914+42x_53915+62x_53916+13x_53917+25x_53918+62x_53919+85x_53920+68x_53921+27x_53922+86x_53923+52x_53924+48x_53925+48x_53926+91x_53927+73x_53928+72x_53929+12x_53930+23x_53931+11x_53932+10x_53933+54x_53934+18x_53935+53x_53936+80x_53937+28x_53938+95x_53939+47x_53940+40x_53941+23x_53942+50x_53943+70x_53944+68x_53945+7x_53946+89x_53947+98x_53948+59x_53949+13x_53950+37x_53951+44x_53952+90x_53953+87x_53954+6x_53955+62x_53956+88x_53957+82x_53958+47x_53959+61x_53960+7x_53961+73x_53962+78x_53963+77x_53964+44x_53965+22x_53966+8x_53967+89x_53968+22x_53969+68x_53970+61x_53971+33x_53972+89x_53973+90x_53974+91x_53975+59x_53976+22x_53977+82x_53978+23x_53979+92x_53980+38x_53981+62x_53982+88x_53983+84x_53984+32x_53985+86x_53986+53x_53987+58x_53988+91x_53989+39x_53990+98x_53991+65x_53992+17x_53993+52x_53994+24x_53995+76x_53996+81x_53997+80x_53998+34x_53999+41x_54000+91x_54001+21x_54002+100x_54003+48x_54004+74x_54005+92x_54006+69x_54007+38x_54008+43x_54009+100x_54010+29x_54011+66x_54012+92x_54013+59x_54014+40x_54015+49x_54016+32x_54017+27x_54018+64x_54019+82x_54020+60x_54021+62x_54022+65x_54023+35x_54024+57x_54025+64x_54026+94x_54027+95x_54028+94x_54029+83x_54030+29x_54031+59x_54032+44x_54033+33x_54034+19x_54035+67x_54036+11x_54037+52x_54038+78x_54039+27x_54040+6x_54041+78x_54042+5x_54043+53x_54044+50x_54045+8x_54046+51x_54047+63x_54048+80x_54049+32x_54050+54x_54051+71x_54052+2x_54053+8x_54054+81x_54055+59x_54056+49x_54057+x_54058+27x_54059+19x_54060+52x_54061+63x_54062+32x_54063+83x_54064+23x_54065+8x_54066+93x_54067+49x_54068+77x_54069+35x_54070+33x_54071+44x_54072+96x_54073+98x_54074+12x_54075+71x_54076+7x_54077+75x_54078+46x_54079+73x_54080+89x_54081+75x_54082+89x_54083+39x_54084+95x_54085+44x_54086+55x_54087+28x_54088+72x_54089+32x_54090+5x_54091+8x_54092+56x_54093+23x_54094+97x_54095+18x_54096+93x_54097+25x_54098+30x_54099+5x_54100+98x_54101+46x_54102+96x_54103+89x_54104+67x_54105+36x_54106+80x_54107+93x_54108+73x_54109+4x_54110+89x_54111+44x_54112+7x_54113+47x_54114+63x_54115+17x_54116+26x_54117+52x_54118+72x_54119+94x_54120+73x_54121+18x_54122+80x_54123+83x_54124+49x_54125+55x_54126+91x_54127+45x_54128+44x_54129+45x_54130+65x_54131+58x_54132+35x_54133+65x_54134+52x_54135+81x_54136+15x_54137+47x_54138+89x_54139+76x_54140+38x_54141+9x_54142+26x_54143+60x_54144+50x_54145+92x_54146+47x_54147+38x_54148+45x_54149+97x_54150+94x_54151+12x_54152+55x_54153+20x_54154+50x_54155+9x_54156+12x_54157+38x_54158+88x_54159+20x_54160+11x_54161+89x_54162+47x_54163+29x_54164+92x_54165+29x_54166+61x_54167+50x_54168+45x_54169+70x_54170+31x_54171+48x_54172+52x_54173+19x_54174+11x_54175+18x_54176+16x_54177+80x_54178+65x_54179+80x_54180+48x_54181+46x_54182+91x_54183+89x_54184+90x_54185+36x_54186+53x_54187+93x_54188+17x_54189+34x_54190+63x_54191+56x_54192+54x_54193+12x_54194+20x_54195+4x_54196+46x_54197+84x_54198+20x_54199+92x_54200+40x_54201+82x_54202+64x_54203+26x_54204+12x_54205+82x_54206+83x_54207+92x_54208+62x_54209+57x_54210+49x_54211+13x_54212+96x_54213+78x_54214+91x_54215+41x_54216+57x_54217+94x_54218+64x_54219+68x_54220+77x_54221+64x_54222+80x_54223+99x_54224+55x_54225+85x_54226+61x_54227+10x_54228+47x_54229+48x_54230+47x_54231+86x_54232+83x_54233+67x_54234+83x_54235+82x_54236+82x_54237+98x_54238+64x_54239+64x_54240+2x_54241+18x_54242+54x_54243+27x_54244+51x_54245+70x_54246+61x_54247+9x_54248+31x_54249+43x_54250+92x_54251+91x_54252+21x_54253+4x_54254+64x_54255+9x_54256+85x_54257+24x_54258+90x_54259+47x_54260+90x_54261+76x_54262+24x_54263+53x_54264+11x_54265+94x_54266+28x_54267+9x_54268+97x_54269+53x_54270+55x_54271+11x_54272+51x_54273+13x_54274+22x_54275+46x_54276+88x_54277+66x_54278+13x_54279+60x_54280+24x_54281+17x_54282+53x_54283+23x_54284+63x_54285+18x_54286+48x_54287+61x_54288+52x_54289+29x_54290+71x_54291+33x_54292+76x_54293+51x_54294+9x_54295+29x_54296+95x_54297+30x_54298+90x_54299+46x_54300+42x_54301+62x_54302+14x_54303+42x_54304+72x_54305+37x_54306+81x_54307+62x_54308+61x_54309+73x_54310+92x_54311+12x_54312+8x_54313+85x_54314+83x_54315+26x_54316+92x_54317+72x_54318+63x_54319+91x_54320+91x_54321+3x_54322+76x_54323+32x_54324+94x_54325+51x_54326+64x_54327+76x_54328+50x_54329+87x_54330+98x_54331+88x_54332+56x_54333+76x_54334+86x_54335+51x_54336+35x_54337+90x_54338+5x_54339+35x_54340+50x_54341+58x_54342+40x_54343+80x_54344+47x_54345+60x_54346+29x_54347+70x_54348+32x_54349+16x_54350+84x_54351+55x_54352+10x_54353+x_54354+71x_54355+91x_54356+97x_54357+3x_54358+30x_54359+20x_54360+28x_54361+58x_54362+92x_54363+56x_54364+67x_54365+11x_54366+7x_54367+7x_54368+3x_54369+12x_54370+30x_54371+24x_54372+49x_54373+16x_54374+61x_54375+55x_54376+97x_54377+3x_54378+96x_54379+69x_54380+89x_54381+99x_54382+76x_54383+39x_54384+77x_54385+80x_54386+42x_54387+x_54388+11x_54389+53x_54390+61x_54391+97x_54392+6x_54393+78x_54394+33x_54395+83x_54396+56x_54397+99x_54398+85x_54399+41x_54400+18x_54401+67x_54402+46x_54403+85x_54404+17x_54405+84x_54406+8x_54407+17x_54408+21x_54409+8x_54410+63x_54411+73x_54412+59x_54413+98x_54414+21x_54415+12x_54416+19x_54417+84x_54418+34x_54419+54x_54420+94x_54421+94x_54422+23x_54423+82x_54424+8x_54425+4x_54426+97x_54427+30x_54428+88x_54429+95x_54430+8x_54431+43x_54432+98x_54433+56x_54434+87x_54435+54x_54436+18x_54437+26x_54438+17x_54439+97x_54440+53x_54441+65x_54442+79x_54443+59x_54444+11x_54445+19x_54446+42x_54447+25x_54448+91x_54449+65x_54450+83x_54451+32x_54452+45x_54453+94x_54454+62x_54455+50x_54456+74x_54457+32x_54458+20x_54459+74x_54460+7x_54461+23x_54462+99x_54463+40x_54464+81x_54465+90x_54466+44x_54467+95x_54468+59x_54469+68x_54470+22x_54471+82x_54472+44x_54473+71x_54474+58x_54475+30x_54476+83x_54477+90x_54478+90x_54479+100x_54480+19x_54481+2x_54482+62x_54483+46x_54484+88x_54485+32x_54486+85x_54487+34x_54488+22x_54489+89x_54490+37x_54491+57x_54492+92x_54493+56x_54494+53x_54495+9x_54496+7x_54497+52x_54498+95x_54499+53x_54500+34x_54501+41x_54502+51x_54503+39x_54504+55x_54505+64x_54506+94x_54507+52x_54508+4x_54509+96x_54510+69x_54511+26x_54512+49x_54513+79x_54514+67x_54515+10x_54516+61x_54517+57x_54518+24x_54519+11x_54520+5x_54521+2x_54522+11x_54523+12x_54524+15x_54525+2x_54526+42x_54527+49x_54528+13x_54529+36x_54530+21x_54531+66x_54532+20x_54533+57x_54534+76x_54535+23x_54536+27x_54537+64x_54538+73x_54539+30x_54540+11x_54541+78x_54542+40x_54543+13x_54544+58x_54545+37x_54546+10x_54547+66x_54548+42x_54549+87x_54550+61x_54551+44x_54552+55x_54553+89x_54554+20x_54555+69x_54556+3x_54557+33x_54558+60x_54559+80x_54560+73x_54561+45x_54562+72x_54563+97x_54564+66x_54565+72x_54566+28x_54567+2x_54568+57x_54569+27x_54570+57x_54571+92x_54572+84x_54573+35x_54574+77x_54575+41x_54576+79x_54577+83x_54578+39x_54579+57x_54580+94x_54581+74x_54582+10x_54583+42x_54584+88x_54585+33x_54586+12x_54587+41x_54588+10x_54589+75x_54590+61x_54591+41x_54592+50x_54593+16x_54594+75x_54595+88x_54596+48x_54597+12x_54598+69x_54599+29x_54600+4x_54601+8x_54602+84x_54603+62x_54604+68x_54605+16x_54606+79x_54607+29x_54608+62x_54609+76x_54610+2x_54611+36x_54612+72x_54613+90x_54614+21x_54615+29x_54616+45x_54617+55x_54618+11x_54619+30x_54620+32x_54621+87x_54622+71x_54623+89x_54624+5x_54625+34x_54626+92x_54627+100x_54628+16x_54629+41x_54630+71x_54631+55x_54632+59x_54633+67x_54634+15x_54635+76x_54636+60x_54637+57x_54638+95x_54639+91x_54640+84x_54641+55x_54642+63x_54643+12x_54644+55x_54645+63x_54646+3x_54647+32x_54648+51x_54649+59x_54650+2x_54651+95x_54652+58x_54653+64x_54654+83x_54655+48x_54656+41x_54657+36x_54658+79x_54659+53x_54660+19x_54661+66x_54662+39x_54663+90x_54664+83x_54665+71x_54666+36x_54667+57x_54668+97x_54669+85x_54670+x_54671+43x_54672+23x_54673+91x_54674+91x_54675+6x_54676+79x_54677+57x_54678+29x_54679+60x_54680+82x_54681+61x_54682+51x_54683+45x_54684+87x_54685+8x_54686+62x_54687+46x_54688+26x_54689+26x_54690+66x_54691+20x_54692+29x_54693+31x_54694+4x_54695+99x_54696+3x_54697+4x_54698+33x_54699+72x_54700+24x_54701+76x_54702+32x_54703+13x_54704+2x_54705+4x_54706+71x_54707+42x_54708+18x_54709+21x_54710+63x_54711+47x_54712+63x_54713+24x_54714+82x_54715+41x_54716+55x_54717+17x_54718+58x_54719+2x_54720+12x_54721+26x_54722+71x_54723+24x_54724+66x_54725+30x_54726+16x_54727+21x_54728+8x_54729+93x_54730+54x_54731+91x_54732+81x_54733+6x_54734+84x_54735+79x_54736+13x_54737+29x_54738+66x_54739+79x_54740+66x_54741+35x_54742+98x_54743+10x_54744+25x_54745+39x_54746+89x_54747+69x_54748+2x_54749+26x_54750+74x_54751+53x_54752+84x_54753+69x_54754+x_54755+66x_54756+63x_54757+93x_54758+85x_54759+15x_54760+9x_54761+46x_54762+47x_54763+86x_54764+85x_54765+51x_54766+27x_54767+10x_54768+34x_54769+66x_54770+24x_54771+90x_54772+91x_54773+43x_54774+88x_54775+66x_54776+98x_54777+60x_54778+92x_54779+17x_54780+10x_54781+84x_54782+65x_54783+89x_54784+58x_54785+90x_54786+87x_54787+99x_54788+71x_54789+25x_54790+32x_54791+98x_54792+x_54793+99x_54794+22x_54795+29x_54796+87x_54797+4x_54798+33x_54799+80x_54800+96x_54801+48x_54802+82x_54803+30x_54804+89x_54805+39x_54806+64x_54807+93x_54808+51x_54809+58x_54810+48x_54811+61x_54812+72x_54813+46x_54814+87x_54815+56x_54816+71x_54817+76x_54818+50x_54819+94x_54820+9x_54821+26x_54822+x_54823+19x_54824+12x_54825+92x_54826+69x_54827+59x_54828+87x_54829+46x_54830+8x_54831+13x_54832+11x_54833+27x_54834+80x_54835+44x_54836+47x_54837+3x_54838+15x_54839+93x_54840+37x_54841+58x_54842+20x_54843+69x_54844+62x_54845+74x_54846+11x_54847+12x_54848+49x_54849+76x_54850+46x_54851+14x_54852+94x_54853+25x_54854+94x_54855+41x_54856+87x_54857+95x_54858+43x_54859+98x_54860+75x_54861+81x_54862+96x_54863+77x_54864+7x_54865+74x_54866+12x_54867+81x_54868+19x_54869+x_54870+88x_54871+67x_54872+56x_54873+9x_54874+75x_54875+100x_54876+64x_54877+34x_54878+42x_54879+95x_54880+86x_54881+62x_54882+95x_54883+28x_54884+98x_54885+85x_54886+19x_54887+56x_54888+6x_54889+15x_54890+39x_54891+96x_54892+5x_54893+66x_54894+35x_54895+49x_54896+52x_54897+80x_54898+4x_54899+98x_54900+19x_54901+75x_54902+69x_54903+9x_54904+53x_54905+52x_54906+8x_54907+46x_54908+91x_54909+33x_54910+84x_54911+5x_54912+71x_54913+46x_54914+55x_54915+12x_54916+16x_54917+23x_54918+24x_54919+40x_54920+88x_54921+22x_54922+37x_54923+77x_54924+40x_54925+56x_54926+69x_54927+93x_54928+93x_54929+96x_54930+61x_54931+67x_54932+100x_54933+88x_54934+36x_54935+90x_54936+36x_54937+14x_54938+67x_54939+98x_54940+87x_54941+25x_54942+42x_54943+19x_54944+60x_54945+87x_54946+35x_54947+29x_54948+5x_54949+19x_54950+30x_54951+16x_54952+68x_54953+56x_54954+7x_54955+9x_54956+97x_54957+8x_54958+55x_54959+38x_54960+67x_54961+13x_54962+2x_54963+36x_54964+87x_54965+53x_54966+53x_54967+15x_54968+12x_54969+93x_54970+10x_54971+11x_54972+49x_54973+3x_54974+57x_54975+23x_54976+22x_54977+98x_54978+66x_54979+8x_54980+21x_54981+49x_54982+46x_54983+29x_54984+2x_54985+33x_54986+56x_54987+32x_54988+84x_54989+69x_54990+32x_54991+21x_54992+91x_54993+26x_54994+99x_54995+38x_54996+11x_54997+99x_54998+44x_54999+4x_55000+27x_55001+71x_55002+55x_55003+2x_55004+68x_55005+17x_55006+99x_55007+69x_55008+19x_55009+18x_55010+27x_55011+74x_55012+91x_55013+67x_55014+29x_55015+21x_55016+97x_55017+25x_55018+5x_55019+32x_55020+63x_55021+75x_55022+50x_55023+13x_55024+6x_55025+87x_55026+91x_55027+92x_55028+83x_55029+28x_55030+55x_55031+33x_55032+28x_55033+20x_55034+39x_55035+56x_55036+81x_55037+34x_55038+79x_55039+83x_55040+28x_55041+70x_55042+39x_55043+79x_55044+75x_55045+25x_55046+23x_55047+90x_55048+47x_55049+88x_55050+17x_55051+12x_55052+42x_55053+86x_55054+21x_55055+19x_55056+92x_55057+79x_55058+64x_55059+34x_55060+25x_55061+22x_55062+80x_55063+31x_55064+59x_55065+40x_55066+5x_55067+14x_55068+66x_55069+73x_55070+91x_55071+67x_55072+81x_55073+3x_55074+29x_55075+26x_55076+96x_55077+2x_55078+23x_55079+15x_55080+65x_55081+31x_55082+96x_55083+37x_55084+43x_55085+x_55086+17x_55087+16x_55088+32x_55089+26x_55090+64x_55091+73x_55092+32x_55093+93x_55094+25x_55095+48x_55096+65x_55097+16x_55098+24x_55099+56x_55100+41x_55101+17x_55102+60x_55103+58x_55104+81x_55105+12x_55106+99x_55107+16x_55108+46x_55109+64x_55110+66x_55111+11x_55112+78x_55113+36x_55114+86x_55115+15x_55116+25x_55117+97x_55118+38x_55119+94x_55120+79x_55121+59x_55122+90x_55123+19x_55124+59x_55125+25x_55126+78x_55127+9x_55128+25x_55129+78x_55130+69x_55131+76x_55132+69x_55133+49x_55134+90x_55135+75x_55136+78x_55137+91x_55138+11x_55139+57x_55140+77x_55141+36x_55142+75x_55143+98x_55144+23x_55145+77x_55146+80x_55147+97x_55148+54x_55149+26x_55150+72x_55151+17x_55152+37x_55153+96x_55154+24x_55155+77x_55156+46x_55157+4x_55158+59x_55159+32x_55160+9x_55161+39x_55162+13x_55163+74x_55164+46x_55165+52x_55166+89x_55167+43x_55168+96x_55169+3x_55170+72x_55171+83x_55172+44x_55173+45x_55174+24x_55175+18x_55176+50x_55177+28x_55178+83x_55179+93x_55180+39x_55181+60x_55182+14x_55183+48x_55184+13x_55185+97x_55186+18x_55187+67x_55188+16x_55189+23x_55190+75x_55191+7x_55192+11x_55193+61x_55194+81x_55195+65x_55196+48x_55197+87x_55198+99x_55199+3x_55200+25x_55201+68x_55202+53x_55203+24x_55204+22x_55205+38x_55206+65x_55207+74x_55208+77x_55209+39x_55210+10x_55211+27x_55212+27x_55213+16x_55214+67x_55215+51x_55216+24x_55217+90x_55218+81x_55219+60x_55220+75x_55221+47x_55222+60x_55223+10x_55224+9x_55225+9x_55226+58x_55227+53x_55228+62x_55229+80x_55230+84x_55231+83x_55232+33x_55233+65x_55234+46x_55235+44x_55236+65x_55237+38x_55238+3x_55239+72x_55240+100x_55241+10x_55242+52x_55243+14x_55244+22x_55245+72x_55246+95x_55247+70x_55248+88x_55249+5x_55250+93x_55251+75x_55252+95x_55253+6x_55254+39x_55255+6x_55256+97x_55257+66x_55258+96x_55259+22x_55260+5x_55261+46x_55262+63x_55263+56x_55264+39x_55265+96x_55266+87x_55267+67x_55268+48x_55269+62x_55270+78x_55271+24x_55272+49x_55273+74x_55274+83x_55275+85x_55276+18x_55277+54x_55278+28x_55279+72x_55280+63x_55281+99x_55282+97x_55283+60x_55284+28x_55285+29x_55286+78x_55287+45x_55288+25x_55289+77x_55290+53x_55291+23x_55292+58x_55293+25x_55294+81x_55295+14x_55296+14x_55297+84x_55298+63x_55299+49x_55300+44x_55301+49x_55302+27x_55303+99x_55304+13x_55305+96x_55306+14x_55307+11x_55308+36x_55309+98x_55310+38x_55311+77x_55312+27x_55313+85x_55314+57x_55315+29x_55316+53x_55317+94x_55318+74x_55319+4x_55320+74x_55321+10x_55322+20x_55323+82x_55324+43x_55325+71x_55326+38x_55327+63x_55328+74x_55329+17x_55330+77x_55331+74x_55332+97x_55333+37x_55334+63x_55335+86x_55336+25x_55337+38x_55338+42x_55339+37x_55340+21x_55341+64x_55342+87x_55343+73x_55344+52x_55345+65x_55346+49x_55347+27x_55348+94x_55349+93x_55350+67x_55351+44x_55352+60x_55353+6x_55354+20x_55355+19x_55356+89x_55357+92x_55358+75x_55359+2x_55360+67x_55361+95x_55362+29x_55363+11x_55364+89x_55365+26x_55366+16x_55367+8x_55368+93x_55369+98x_55370+93x_55371+36x_55372+30x_55373+74x_55374+65x_55375+34x_55376+41x_55377+47x_55378+62x_55379+10x_55380+17x_55381+91x_55382+16x_55383+62x_55384+28x_55385+75x_55386+28x_55387+70x_55388+29x_55389+14x_55390+66x_55391+67x_55392+24x_55393+78x_55394+26x_55395+18x_55396+72x_55397+67x_55398+85x_55399+64x_55400+x_55401+48x_55402+13x_55403+87x_55404+21x_55405+35x_55406+95x_55407+37x_55408+64x_55409+40x_55410+86x_55411+82x_55412+90x_55413+64x_55414+78x_55415+10x_55416+3x_55417+51x_55418+18x_55419+80x_55420+93x_55421+76x_55422+48x_55423+5x_55424+97x_55425+83x_55426+11x_55427+77x_55428+78x_55429+48x_55430+76x_55431+40x_55432+65x_55433+30x_55434+29x_55435+15x_55436+31x_55437+19x_55438+13x_55439+22x_55440+81x_55441+36x_55442+81x_55443+97x_55444+3x_55445+83x_55446+48x_55447+77x_55448+18x_55449+97x_55450+39x_55451+14x_55452+15x_55453+14x_55454+39x_55455+2x_55456+14x_55457+24x_55458+86x_55459+20x_55460+5x_55461+21x_55462+34x_55463+24x_55464+21x_55465+95x_55466+16x_55467+22x_55468+73x_55469+13x_55470+6x_55471+35x_55472+86x_55473+65x_55474+22x_55475+63x_55476+36x_55477+4x_55478+68x_55479+93x_55480+91x_55481+83x_55482+60x_55483+6x_55484+88x_55485+51x_55486+6x_55487+25x_55488+24x_55489+63x_55490+69x_55491+73x_55492+83x_55493+35x_55494+65x_55495+55x_55496+32x_55497+x_55498+96x_55499+35x_55500+41x_55501+27x_55502+33x_55503+7x_55504+28x_55505+32x_55506+83x_55507+7x_55508+45x_55509+56x_55510+65x_55511+100x_55512+94x_55513+14x_55514+87x_55515+41x_55516+41x_55517+78x_55518+67x_55519+51x_55520+13x_55521+12x_55522+3x_55523+54x_55524+56x_55525+43x_55526+3x_55527+47x_55528+85x_55529+43x_55530+74x_55531+x_55532+37x_55533+64x_55534+76x_55535+58x_55536+39x_55537+32x_55538+34x_55539+83x_55540+79x_55541+73x_55542+44x_55543+57x_55544+49x_55545+36x_55546+13x_55547+49x_55548+18x_55549+91x_55550+67x_55551+27x_55552+51x_55553+23x_55554+88x_55555+50x_55556+8x_55557+56x_55558+43x_55559+48x_55560+55x_55561+51x_55562+79x_55563+38x_55564+33x_55565+49x_55566+65x_55567+16x_55568+79x_55569+80x_55570+19x_55571+50x_55572+75x_55573+96x_55574+40x_55575+31x_55576+28x_55577+64x_55578+73x_55579+29x_55580+7x_55581+19x_55582+98x_55583+10x_55584+91x_55585+52x_55586+63x_55587+92x_55588+85x_55589+4x_55590+9x_55591+60x_55592+64x_55593+98x_55594+79x_55595+78x_55596+47x_55597+12x_55598+15x_55599+68x_55600+89x_55601+79x_55602+75x_55603+13x_55604+60x_55605+92x_55606+5x_55607+3x_55608+35x_55609+37x_55610+88x_55611+62x_55612+6x_55613+55x_55614+96x_55615+7x_55616+98x_55617+90x_55618+13x_55619+58x_55620+6x_55621+98x_55622+9x_55623+32x_55624+x_55625+67x_55626+14x_55627+99x_55628+13x_55629+53x_55630+34x_55631+6x_55632+81x_55633+93x_55634+60x_55635+44x_55636+76x_55637+98x_55638+85x_55639+81x_55640+52x_55641+57x_55642+72x_55643+34x_55644+23x_55645+80x_55646+59x_55647+67x_55648+71x_55649+40x_55650+83x_55651+93x_55652+8x_55653+34x_55654+17x_55655+76x_55656+32x_55657+67x_55658+52x_55659+76x_55660+2x_55661+66x_55662+43x_55663+70x_55664+13x_55665+73x_55666+76x_55667+5x_55668+7x_55669+84x_55670+6x_55671+54x_55672+21x_55673+37x_55674+76x_55675+43x_55676+64x_55677+41x_55678+79x_55679+7x_55680+76x_55681+22x_55682+20x_55683+98x_55684+77x_55685+32x_55686+85x_55687+20x_55688+10x_55689+33x_55690+69x_55691+28x_55692+71x_55693+29x_55694+59x_55695+35x_55696+61x_55697+65x_55698+32x_55699+73x_55700+14x_55701+32x_55702+78x_55703+24x_55704+36x_55705+70x_55706+18x_55707+69x_55708+55x_55709+21x_55710+42x_55711+10x_55712+24x_55713+67x_55714+46x_55715+71x_55716+61x_55717+56x_55718+45x_55719+11x_55720+30x_55721+62x_55722+24x_55723+67x_55724+97x_55725+43x_55726+16x_55727+42x_55728+11x_55729+44x_55730+30x_55731+99x_55732+47x_55733+67x_55734+90x_55735+64x_55736+3x_55737+72x_55738+88x_55739+2x_55740+29x_55741+74x_55742+44x_55743+63x_55744+70x_55745+65x_55746+70x_55747+17x_55748+40x_55749+4x_55750+80x_55751+96x_55752+20x_55753+94x_55754+92x_55755+93x_55756+4x_55757+30x_55758+28x_55759+98x_55760+24x_55761+37x_55762+17x_55763+62x_55764+14x_55765+7x_55766+5x_55767+68x_55768+67x_55769+27x_55770+39x_55771+81x_55772+16x_55773+92x_55774+30x_55775+82x_55776+44x_55777+69x_55778+40x_55779+93x_55780+28x_55781+42x_55782+32x_55783+59x_55784+83x_55785+9x_55786+30x_55787+96x_55788+93x_55789+21x_55790+67x_55791+22x_55792+63x_55793+86x_55794+74x_55795+87x_55796+18x_55797+70x_55798+74x_55799+11x_55800+20x_55801+54x_55802+59x_55803+74x_55804+88x_55805+12x_55806+90x_55807+23x_55808+80x_55809+4x_55810+80x_55811+11x_55812+81x_55813+41x_55814+23x_55815+80x_55816+7x_55817+37x_55818+74x_55819+57x_55820+69x_55821+53x_55822+66x_55823+x_55824+31x_55825+37x_55826+x_55827+37x_55828+52x_55829+26x_55830+57x_55831+37x_55832+44x_55833+17x_55834+37x_55835+21x_55836+26x_55837+12x_55838+33x_55839+54x_55840+89x_55841+27x_55842+29x_55843+40x_55844+18x_55845+64x_55846+19x_55847+100x_55848+70x_55849+69x_55850+25x_55851+61x_55852+51x_55853+64x_55854+93x_55855+31x_55856+5x_55857+72x_55858+19x_55859+19x_55860+12x_55861+99x_55862+25x_55863+38x_55864+52x_55865+4x_55866+57x_55867+74x_55868+17x_55869+64x_55870+97x_55871+24x_55872+17x_55873+50x_55874+37x_55875+6x_55876+56x_55877+76x_55878+91x_55879+30x_55880+57x_55881+42x_55882+88x_55883+78x_55884+75x_55885+79x_55886+49x_55887+52x_55888+45x_55889+19x_55890+18x_55891+62x_55892+77x_55893+53x_55894+84x_55895+7x_55896+6x_55897+35x_55898+19x_55899+94x_55900+38x_55901+52x_55902+94x_55903+70x_55904+57x_55905+63x_55906+6x_55907+17x_55908+23x_55909+72x_55910+34x_55911+12x_55912+35x_55913+25x_55914+76x_55915+14x_55916+16x_55917+17x_55918+5x_55919+27x_55920+42x_55921+20x_55922+4x_55923+90x_55924+61x_55925+54x_55926+70x_55927+78x_55928+82x_55929+40x_55930+37x_55931+6x_55932+35x_55933+77x_55934+63x_55935+24x_55936+51x_55937+87x_55938+37x_55939+32x_55940+99x_55941+61x_55942+29x_55943+43x_55944+64x_55945+98x_55946+12x_55947+44x_55948+16x_55949+92x_55950+80x_55951+38x_55952+2x_55953+70x_55954+17x_55955+51x_55956+22x_55957+85x_55958+67x_55959+73x_55960+60x_55961+15x_55962+99x_55963+95x_55964+44x_55965+90x_55966+91x_55967+85x_55968+73x_55969+x_55970+94x_55971+98x_55972+32x_55973+48x_55974+55x_55975+68x_55976+6x_55977+83x_55978+44x_55979+10x_55980+7x_55981+68x_55982+44x_55983+38x_55984+4x_55985+45x_55986+85x_55987+84x_55988+44x_55989+52x_55990+89x_55991+7x_55992+62x_55993+93x_55994+15x_55995+81x_55996+71x_55997+74x_55998+71x_55999+93x_56000+93x_56001+92x_56002+22x_56003+81x_56004+36x_56005+73x_56006+93x_56007+35x_56008+45x_56009+75x_56010+84x_56011+100x_56012+62x_56013+60x_56014+66x_56015+9x_56016+37x_56017+30x_56018+85x_56019+73x_56020+81x_56021+26x_56022+84x_56023+47x_56024+29x_56025+38x_56026+18x_56027+72x_56028+43x_56029+15x_56030+44x_56031+36x_56032+11x_56033+72x_56034+67x_56035+36x_56036+40x_56037+87x_56038+18x_56039+76x_56040+35x_56041+28x_56042+91x_56043+41x_56044+63x_56045+x_56046+79x_56047+29x_56048+10x_56049+4x_56050+60x_56051+7x_56052+38x_56053+67x_56054+94x_56055+2x_56056+69x_56057+x_56058+78x_56059+57x_56060+29x_56061+48x_56062+75x_56063+7x_56064+52x_56065+35x_56066+44x_56067+51x_56068+96x_56069+16x_56070+50x_56071+93x_56072+26x_56073+81x_56074+76x_56075+12x_56076+56x_56077+78x_56078+47x_56079+5x_56080+66x_56081+74x_56082+89x_56083+69x_56084+37x_56085+50x_56086+31x_56087+25x_56088+99x_56089+90x_56090+37x_56091+97x_56092+41x_56093+53x_56094+35x_56095+56x_56096+47x_56097+76x_56098+45x_56099+46x_56100+21x_56101+92x_56102+15x_56103+55x_56104+x_56105+63x_56106+29x_56107+60x_56108+69x_56109+56x_56110+21x_56111+42x_56112+17x_56113+13x_56114+93x_56115+4x_56116+12x_56117+41x_56118+49x_56119+16x_56120+89x_56121+59x_56122+35x_56123+48x_56124+47x_56125+58x_56126+5x_56127+11x_56128+57x_56129+36x_56130+87x_56131+37x_56132+90x_56133+59x_56134+47x_56135+76x_56136+44x_56137+93x_56138+20x_56139+41x_56140+98x_56141+62x_56142+84x_56143+27x_56144+71x_56145+48x_56146+88x_56147+89x_56148+12x_56149+69x_56150+15x_56151+56x_56152+7x_56153+11x_56154+33x_56155+33x_56156+x_56157+52x_56158+40x_56159+21x_56160+36x_56161+67x_56162+79x_56163+35x_56164+10x_56165+59x_56166+9x_56167+9x_56168+74x_56169+47x_56170+90x_56171+63x_56172+4x_56173+41x_56174+35x_56175+66x_56176+30x_56177+97x_56178+84x_56179+98x_56180+68x_56181+96x_56182+47x_56183+39x_56184+76x_56185+67x_56186+4x_56187+23x_56188+38x_56189+5x_56190+80x_56191+22x_56192+34x_56193+87x_56194+5x_56195+59x_56196+51x_56197+13x_56198+61x_56199+62x_56200+45x_56201+52x_56202+94x_56203+92x_56204+52x_56205+7x_56206+55x_56207+91x_56208+90x_56209+30x_56210+86x_56211+28x_56212+24x_56213+92x_56214+26x_56215+68x_56216+53x_56217+52x_56218+96x_56219+70x_56220+50x_56221+21x_56222+12x_56223+62x_56224+x_56225+18x_56226+63x_56227+31x_56228+48x_56229+51x_56230+86x_56231+91x_56232+57x_56233+10x_56234+97x_56235+79x_56236+81x_56237+84x_56238+63x_56239+27x_56240+66x_56241+61x_56242+29x_56243+81x_56244+71x_56245+79x_56246+27x_56247+77x_56248+54x_56249+68x_56250+32x_56251+35x_56252+39x_56253+49x_56254+68x_56255+49x_56256+12x_56257+35x_56258+48x_56259+91x_56260+36x_56261+94x_56262+17x_56263+42x_56264+46x_56265+59x_56266+4x_56267+10x_56268+95x_56269+59x_56270+46x_56271+74x_56272+7x_56273+40x_56274+97x_56275+74x_56276+71x_56277+75x_56278+70x_56279+10x_56280+63x_56281+20x_56282+99x_56283+30x_56284+67x_56285+14x_56286+71x_56287+63x_56288+24x_56289+7x_56290+75x_56291+80x_56292+36x_56293+6x_56294+63x_56295+86x_56296+2x_56297+x_56298+95x_56299+66x_56300+79x_56301+13x_56302+76x_56303+6x_56304+80x_56305+9x_56306+21x_56307+98x_56308+15x_56309+31x_56310+21x_56311+76x_56312+89x_56313+42x_56314+69x_56315+100x_56316+31x_56317+98x_56318+7x_56319+65x_56320+93x_56321+93x_56322+27x_56323+82x_56324+39x_56325+36x_56326+9x_56327+91x_56328+26x_56329+95x_56330+84x_56331+88x_56332+61x_56333+69x_56334+16x_56335+67x_56336+88x_56337+77x_56338+26x_56339+75x_56340+82x_56341+97x_56342+70x_56343+72x_56344+39x_56345+13x_56346+73x_56347+2x_56348+18x_56349+77x_56350+78x_56351+93x_56352+33x_56353+89x_56354+62x_56355+32x_56356+91x_56357+31x_56358+56x_56359+72x_56360+83x_56361+90x_56362+78x_56363+67x_56364+89x_56365+17x_56366+30x_56367+83x_56368+63x_56369+84x_56370+100x_56371+47x_56372+7x_56373+58x_56374+8x_56375+x_56376+50x_56377+60x_56378+83x_56379+95x_56380+100x_56381+82x_56382+66x_56383+71x_56384+7x_56385+41x_56386+19x_56387+43x_56388+4x_56389+82x_56390+48x_56391+17x_56392+48x_56393+68x_56394+57x_56395+30x_56396+25x_56397+x_56398+45x_56399+89x_56400+25x_56401+54x_56402+52x_56403+20x_56404+82x_56405+76x_56406+28x_56407+83x_56408+13x_56409+69x_56410+12x_56411+23x_56412+66x_56413+44x_56414+44x_56415+41x_56416+68x_56417+49x_56418+91x_56419+61x_56420+80x_56421+10x_56422+87x_56423+74x_56424+54x_56425+74x_56426+86x_56427+30x_56428+14x_56429+51x_56430+35x_56431+35x_56432+60x_56433+x_56434+46x_56435+74x_56436+62x_56437+63x_56438+82x_56439+93x_56440+58x_56441+78x_56442+60x_56443+89x_56444+53x_56445+90x_56446+92x_56447+57x_56448+99x_56449+80x_56450+64x_56451+67x_56452+22x_56453+83x_56454+31x_56455+15x_56456+46x_56457+9x_56458+62x_56459+9x_56460+41x_56461+66x_56462+38x_56463+88x_56464+x_56465+8x_56466+31x_56467+11x_56468+74x_56469+2x_56470+58x_56471+72x_56472+77x_56473+45x_56474+79x_56475+54x_56476+67x_56477+89x_56478+87x_56479+13x_56480+88x_56481+75x_56482+60x_56483+29x_56484+78x_56485+82x_56486+45x_56487+29x_56488+18x_56489+3x_56490+32x_56491+21x_56492+7x_56493+10x_56494+80x_56495+61x_56496+76x_56497+96x_56498+14x_56499+36x_56500+68x_56501+72x_56502+4x_56503+11x_56504+100x_56505+31x_56506+80x_56507+56x_56508+92x_56509+96x_56510+51x_56511+94x_56512+x_56513+63x_56514+91x_56515+93x_56516+33x_56517+5x_56518+20x_56519+44x_56520+97x_56521+39x_56522+34x_56523+66x_56524+58x_56525+71x_56526+52x_56527+31x_56528+51x_56529+47x_56530+24x_56531+92x_56532+68x_56533+86x_56534+91x_56535+68x_56536+5x_56537+98x_56538+69x_56539+x_56540+48x_56541+40x_56542+59x_56543+67x_56544+72x_56545+18x_56546+84x_56547+28x_56548+12x_56549+3x_56550+77x_56551+36x_56552+64x_56553+7x_56554+56x_56555+31x_56556+91x_56557+71x_56558+20x_56559+32x_56560+65x_56561+32x_56562+42x_56563+100x_56564+75x_56565+18x_56566+16x_56567+54x_56568+9x_56569+24x_56570+3x_56571+69x_56572+4x_56573+9x_56574+50x_56575+20x_56576+69x_56577+95x_56578+71x_56579+42x_56580+36x_56581+55x_56582+25x_56583+74x_56584+11x_56585+86x_56586+23x_56587+77x_56588+73x_56589+23x_56590+73x_56591+45x_56592+40x_56593+21x_56594+40x_56595+90x_56596+93x_56597+22x_56598+80x_56599+18x_56600+44x_56601+92x_56602+93x_56603+30x_56604+65x_56605+72x_56606+67x_56607+48x_56608+72x_56609+9x_56610+30x_56611+25x_56612+22x_56613+57x_56614+42x_56615+75x_56616+17x_56617+19x_56618+46x_56619+71x_56620+94x_56621+37x_56622+14x_56623+25x_56624+53x_56625+28x_56626+14x_56627+23x_56628+68x_56629+48x_56630+62x_56631+79x_56632+41x_56633+82x_56634+31x_56635+48x_56636+37x_56637+91x_56638+86x_56639+23x_56640+87x_56641+87x_56642+8x_56643+88x_56644+57x_56645+2x_56646+77x_56647+100x_56648+98x_56649+14x_56650+60x_56651+72x_56652+34x_56653+88x_56654+44x_56655+40x_56656+52x_56657+82x_56658+76x_56659+99x_56660+3x_56661+6x_56662+79x_56663+55x_56664+56x_56665+10x_56666+30x_56667+40x_56668+36x_56669+81x_56670+97x_56671+96x_56672+81x_56673+28x_56674+74x_56675+83x_56676+4x_56677+43x_56678+45x_56679+11x_56680+83x_56681+14x_56682+19x_56683+67x_56684+71x_56685+6x_56686+50x_56687+11x_56688+83x_56689+61x_56690+86x_56691+96x_56692+75x_56693+x_56694+57x_56695+98x_56696+6x_56697+8x_56698+29x_56699+40x_56700+35x_56701+80x_56702+76x_56703+16x_56704+50x_56705+81x_56706+69x_56707+62x_56708+63x_56709+95x_56710+28x_56711+65x_56712+90x_56713+67x_56714+32x_56715+16x_56716+12x_56717+16x_56718+65x_56719+70x_56720+35x_56721+43x_56722+24x_56723+17x_56724+22x_56725+54x_56726+14x_56727+41x_56728+14x_56729+37x_56730+40x_56731+64x_56732+23x_56733+44x_56734+17x_56735+71x_56736+16x_56737+88x_56738+31x_56739+93x_56740+52x_56741+31x_56742+50x_56743+39x_56744+3x_56745+7x_56746+50x_56747+87x_56748+66x_56749+28x_56750+10x_56751+79x_56752+25x_56753+36x_56754+13x_56755+52x_56756+29x_56757+57x_56758+76x_56759+57x_56760+64x_56761+44x_56762+64x_56763+9x_56764+73x_56765+76x_56766+7x_56767+100x_56768+4x_56769+90x_56770+45x_56771+62x_56772+44x_56773+x_56774+56x_56775+5x_56776+93x_56777+4x_56778+94x_56779+36x_56780+80x_56781+13x_56782+7x_56783+36x_56784+32x_56785+13x_56786+98x_56787+92x_56788+46x_56789+77x_56790+80x_56791+34x_56792+66x_56793+6x_56794+48x_56795+10x_56796+73x_56797+25x_56798+39x_56799+6x_56800+46x_56801+38x_56802+41x_56803+59x_56804+54x_56805+46x_56806+97x_56807+7x_56808+18x_56809+99x_56810+11x_56811+58x_56812+89x_56813+42x_56814+70x_56815+20x_56816+36x_56817+7x_56818+13x_56819+79x_56820+40x_56821+2x_56822+98x_56823+4x_56824+90x_56825+42x_56826+90x_56827+96x_56828+18x_56829+72x_56830+73x_56831+78x_56832+13x_56833+13x_56834+85x_56835+93x_56836+49x_56837+69x_56838+23x_56839+36x_56840+52x_56841+96x_56842+8x_56843+61x_56844+96x_56845+38x_56846+66x_56847+62x_56848+11x_56849+38x_56850+54x_56851+13x_56852+90x_56853+57x_56854+21x_56855+78x_56856+72x_56857+91x_56858+19x_56859+86x_56860+20x_56861+14x_56862+94x_56863+70x_56864+11x_56865+66x_56866+95x_56867+42x_56868+78x_56869+67x_56870+54x_56871+47x_56872+34x_56873+79x_56874+16x_56875+76x_56876+69x_56877+75x_56878+90x_56879+34x_56880+39x_56881+50x_56882+59x_56883+48x_56884+16x_56885+30x_56886+55x_56887+4x_56888+87x_56889+96x_56890+41x_56891+78x_56892+25x_56893+68x_56894+98x_56895+65x_56896+91x_56897+80x_56898+100x_56899+30x_56900+35x_56901+65x_56902+68x_56903+8x_56904+84x_56905+21x_56906+100x_56907+52x_56908+51x_56909+42x_56910+64x_56911+28x_56912+35x_56913+65x_56914+43x_56915+49x_56916+61x_56917+x_56918+61x_56919+94x_56920+63x_56921+56x_56922+69x_56923+44x_56924+7x_56925+61x_56926+48x_56927+61x_56928+18x_56929+61x_56930+6x_56931+40x_56932+52x_56933+16x_56934+12x_56935+x_56936+59x_56937+5x_56938+65x_56939+89x_56940+71x_56941+18x_56942+5x_56943+8x_56944+32x_56945+55x_56946+87x_56947+72x_56948+31x_56949+41x_56950+43x_56951+48x_56952+55x_56953+43x_56954+24x_56955+43x_56956+68x_56957+28x_56958+11x_56959+94x_56960+82x_56961+6x_56962+40x_56963+66x_56964+76x_56965+75x_56966+54x_56967+29x_56968+95x_56969+16x_56970+25x_56971+15x_56972+31x_56973+93x_56974+60x_56975+12x_56976+41x_56977+14x_56978+8x_56979+52x_56980+62x_56981+80x_56982+75x_56983+88x_56984+74x_56985+46x_56986+91x_56987+86x_56988+57x_56989+57x_56990+45x_56991+20x_56992+79x_56993+57x_56994+33x_56995+47x_56996+54x_56997+11x_56998+79x_56999+19x_57000+22x_57001+38x_57002+16x_57003+54x_57004+4x_57005+55x_57006+85x_57007+46x_57008+94x_57009+72x_57010+5x_57011+61x_57012+85x_57013+19x_57014+26x_57015+35x_57016+59x_57017+77x_57018+39x_57019+54x_57020+85x_57021+63x_57022+95x_57023+20x_57024+64x_57025+31x_57026+64x_57027+64x_57028+47x_57029+57x_57030+64x_57031+26x_57032+x_57033+35x_57034+100x_57035+22x_57036+66x_57037+30x_57038+67x_57039+10x_57040+29x_57041+27x_57042+59x_57043+62x_57044+25x_57045+97x_57046+82x_57047+93x_57048+42x_57049+22x_57050+96x_57051+17x_57052+32x_57053+2x_57054+76x_57055+35x_57056+9x_57057+81x_57058+79x_57059+92x_57060+37x_57061+74x_57062+69x_57063+42x_57064+72x_57065+6x_57066+31x_57067+90x_57068+76x_57069+22x_57070+79x_57071+54x_57072+75x_57073+50x_57074+11x_57075+93x_57076+50x_57077+99x_57078+93x_57079+45x_57080+66x_57081+75x_57082+51x_57083+41x_57084+75x_57085+68x_57086+82x_57087+88x_57088+23x_57089+75x_57090+44x_57091+67x_57092+86x_57093+4x_57094+59x_57095+100x_57096+23x_57097+59x_57098+43x_57099+13x_57100+9x_57101+83x_57102+4x_57103+40x_57104+87x_57105+47x_57106+2x_57107+60x_57108+96x_57109+14x_57110+43x_57111+11x_57112+34x_57113+68x_57114+81x_57115+52x_57116+89x_57117+19x_57118+67x_57119+67x_57120+32x_57121+38x_57122+86x_57123+98x_57124+5x_57125+64x_57126+49x_57127+38x_57128+4x_57129+63x_57130+98x_57131+91x_57132+77x_57133+30x_57134+95x_57135+11x_57136+27x_57137+91x_57138+45x_57139+73x_57140+13x_57141+70x_57142+36x_57143+66x_57144+20x_57145+45x_57146+25x_57147+x_57148+43x_57149+83x_57150+96x_57151+47x_57152+43x_57153+12x_57154+68x_57155+83x_57156+24x_57157+77x_57158+4x_57159+49x_57160+92x_57161+84x_57162+87x_57163+4x_57164+34x_57165+54x_57166+76x_57167+92x_57168+19x_57169+35x_57170+16x_57171+3x_57172+12x_57173+x_57174+55x_57175+11x_57176+98x_57177+60x_57178+18x_57179+23x_57180+23x_57181+65x_57182+17x_57183+87x_57184+88x_57185+62x_57186+17x_57187+68x_57188+24x_57189+96x_57190+75x_57191+47x_57192+7x_57193+87x_57194+39x_57195+34x_57196+18x_57197+100x_57198+16x_57199+39x_57200+78x_57201+85x_57202+7x_57203+84x_57204+21x_57205+36x_57206+88x_57207+98x_57208+90x_57209+74x_57210+17x_57211+60x_57212+29x_57213+42x_57214+85x_57215+39x_57216+100x_57217+26x_57218+92x_57219+81x_57220+15x_57221+40x_57222+19x_57223+4x_57224+37x_57225+26x_57226+9x_57227+14x_57228+54x_57229+10x_57230+29x_57231+66x_57232+77x_57233+27x_57234+81x_57235+58x_57236+45x_57237+28x_57238+63x_57239+56x_57240+8x_57241+12x_57242+68x_57243+86x_57244+17x_57245+87x_57246+26x_57247+77x_57248+97x_57249+74x_57250+75x_57251+3x_57252+68x_57253+9x_57254+42x_57255+59x_57256+2x_57257+26x_57258+82x_57259+82x_57260+11x_57261+10x_57262+30x_57263+30x_57264+99x_57265+87x_57266+98x_57267+x_57268+29x_57269+99x_57270+22x_57271+89x_57272+81x_57273+74x_57274+x_57275+28x_57276+44x_57277+12x_57278+78x_57279+87x_57280+20x_57281+57x_57282+88x_57283+32x_57284+24x_57285+24x_57286+19x_57287+12x_57288+13x_57289+26x_57290+34x_57291+60x_57292+49x_57293+60x_57294+4x_57295+42x_57296+13x_57297+59x_57298+81x_57299+86x_57300+77x_57301+48x_57302+46x_57303+53x_57304+4x_57305+72x_57306+69x_57307+12x_57308+59x_57309+18x_57310+37x_57311+46x_57312+99x_57313+96x_57314+69x_57315+79x_57316+39x_57317+6x_57318+87x_57319+18x_57320+91x_57321+28x_57322+77x_57323+12x_57324+94x_57325+11x_57326+46x_57327+60x_57328+13x_57329+75x_57330+83x_57331+81x_57332+78x_57333+43x_57334+58x_57335+25x_57336+42x_57337+62x_57338+32x_57339+85x_57340+31x_57341+94x_57342+4x_57343+38x_57344+97x_57345+53x_57346+10x_57347+91x_57348+71x_57349+32x_57350+75x_57351+68x_57352+75x_57353+94x_57354+32x_57355+65x_57356+24x_57357+9x_57358+86x_57359+13x_57360+44x_57361+7x_57362+10x_57363+86x_57364+13x_57365+82x_57366+24x_57367+27x_57368+37x_57369+28x_57370+95x_57371+39x_57372+82x_57373+98x_57374+3x_57375+58x_57376+68x_57377+6x_57378+31x_57379+2x_57380+93x_57381+97x_57382+29x_57383+99x_57384+78x_57385+36x_57386+65x_57387+79x_57388+3x_57389+100x_57390+9x_57391+14x_57392+6x_57393+23x_57394+44x_57395+72x_57396+72x_57397+57x_57398+x_57399+46x_57400+53x_57401+73x_57402+66x_57403+x_57404+24x_57405+73x_57406+26x_57407+62x_57408+40x_57409+25x_57410+43x_57411+23x_57412+93x_57413+23x_57414+20x_57415+95x_57416+16x_57417+15x_57418+75x_57419+42x_57420+23x_57421+96x_57422+37x_57423+96x_57424+40x_57425+34x_57426+19x_57427+100x_57428+53x_57429+88x_57430+3x_57431+73x_57432+35x_57433+23x_57434+91x_57435+72x_57436+16x_57437+36x_57438+88x_57439+x_57440+10x_57441+16x_57442+71x_57443+78x_57444+40x_57445+90x_57446+53x_57447+71x_57448+97x_57449+76x_57450+70x_57451+95x_57452+59x_57453+5x_57454+24x_57455+81x_57456+42x_57457+32x_57458+38x_57459+28x_57460+100x_57461+7x_57462+10x_57463+56x_57464+96x_57465+62x_57466+24x_57467+18x_57468+48x_57469+49x_57470+2x_57471+9x_57472+81x_57473+74x_57474+100x_57475+90x_57476+66x_57477+14x_57478+18x_57479+60x_57480+72x_57481+9x_57482+80x_57483+81x_57484+70x_57485+89x_57486+32x_57487+28x_57488+23x_57489+2x_57490+88x_57491+80x_57492+37x_57493+25x_57494+58x_57495+86x_57496+26x_57497+50x_57498+43x_57499+90x_57500+72x_57501+32x_57502+23x_57503+44x_57504+95x_57505+24x_57506+15x_57507+98x_57508+34x_57509+22x_57510+72x_57511+74x_57512+10x_57513+87x_57514+55x_57515+8x_57516+53x_57517+94x_57518+25x_57519+66x_57520+66x_57521+64x_57522+48x_57523+73x_57524+39x_57525+4x_57526+37x_57527+90x_57528+61x_57529+35x_57530+32x_57531+70x_57532+68x_57533+13x_57534+3x_57535+71x_57536+92x_57537+53x_57538+73x_57539+29x_57540+56x_57541+38x_57542+63x_57543+95x_57544+22x_57545+13x_57546+79x_57547+60x_57548+53x_57549+94x_57550+75x_57551+44x_57552+52x_57553+86x_57554+92x_57555+49x_57556+53x_57557+78x_57558+4x_57559+96x_57560+55x_57561+81x_57562+99x_57563+18x_57564+29x_57565+73x_57566+28x_57567+12x_57568+58x_57569+3x_57570+49x_57571+8x_57572+65x_57573+47x_57574+10x_57575+42x_57576+92x_57577+25x_57578+11x_57579+42x_57580+80x_57581+62x_57582+6x_57583+18x_57584+9x_57585+3x_57586+96x_57587+46x_57588+64x_57589+68x_57590+39x_57591+33x_57592+82x_57593+97x_57594+37x_57595+66x_57596+62x_57597+75x_57598+90x_57599+95x_57600+11x_57601+27x_57602+9x_57603+54x_57604+56x_57605+52x_57606+52x_57607+50x_57608+70x_57609+73x_57610+48x_57611+84x_57612+5x_57613+8x_57614+11x_57615+58x_57616+68x_57617+3x_57618+60x_57619+25x_57620+42x_57621+86x_57622+74x_57623+29x_57624+49x_57625+46x_57626+6x_57627+95x_57628+10x_57629+86x_57630+42x_57631+84x_57632+13x_57633+48x_57634+62x_57635+49x_57636+92x_57637+59x_57638+36x_57639+84x_57640+46x_57641+99x_57642+99x_57643+47x_57644+38x_57645+45x_57646+14x_57647+73x_57648+56x_57649+41x_57650+87x_57651+57x_57652+89x_57653+24x_57654+39x_57655+26x_57656+32x_57657+66x_57658+96x_57659+29x_57660+78x_57661+82x_57662+34x_57663+30x_57664+99x_57665+26x_57666+46x_57667+2x_57668+12x_57669+36x_57670+10x_57671+77x_57672+72x_57673+31x_57674+6x_57675+34x_57676+65x_57677+34x_57678+31x_57679+7x_57680+70x_57681+48x_57682+30x_57683+96x_57684+10x_57685+75x_57686+25x_57687+45x_57688+57x_57689+53x_57690+79x_57691+52x_57692+92x_57693+81x_57694+37x_57695+10x_57696+69x_57697+88x_57698+52x_57699+14x_57700+22x_57701+71x_57702+61x_57703+70x_57704+81x_57705+46x_57706+36x_57707+59x_57708+11x_57709+12x_57710+50x_57711+92x_57712+74x_57713+89x_57714+19x_57715+21x_57716+17x_57717+20x_57718+74x_57719+65x_57720+32x_57721+17x_57722+62x_57723+21x_57724+26x_57725+63x_57726+95x_57727+82x_57728+100x_57729+97x_57730+63x_57731+41x_57732+3x_57733+55x_57734+75x_57735+49x_57736+45x_57737+56x_57738+89x_57739+70x_57740+29x_57741+3x_57742+12x_57743+99x_57744+38x_57745+46x_57746+70x_57747+72x_57748+3x_57749+46x_57750+32x_57751+26x_57752+80x_57753+69x_57754+42x_57755+48x_57756+57x_57757+25x_57758+57x_57759+63x_57760+90x_57761+7x_57762+9x_57763+14x_57764+58x_57765+97x_57766+88x_57767+56x_57768+43x_57769+44x_57770+71x_57771+85x_57772+19x_57773+71x_57774+29x_57775+48x_57776+92x_57777+52x_57778+93x_57779+68x_57780+27x_57781+57x_57782+39x_57783+9x_57784+66x_57785+7x_57786+74x_57787+43x_57788+71x_57789+34x_57790+3x_57791+35x_57792+68x_57793+91x_57794+30x_57795+12x_57796+26x_57797+10x_57798+93x_57799+79x_57800+70x_57801+39x_57802+75x_57803+30x_57804+92x_57805+51x_57806+94x_57807+66x_57808+26x_57809+48x_57810+32x_57811+78x_57812+96x_57813+56x_57814+13x_57815+21x_57816+99x_57817+84x_57818+81x_57819+42x_57820+39x_57821+31x_57822+83x_57823+82x_57824+13x_57825+47x_57826+96x_57827+99x_57828+73x_57829+78x_57830+5x_57831+85x_57832+42x_57833+52x_57834+5x_57835+64x_57836+52x_57837+38x_57838+93x_57839+84x_57840+63x_57841+42x_57842+90x_57843+71x_57844+72x_57845+78x_57846+54x_57847+54x_57848+20x_57849+51x_57850+23x_57851+74x_57852+58x_57853+64x_57854+61x_57855+14x_57856+99x_57857+99x_57858+29x_57859+30x_57860+34x_57861+73x_57862+7x_57863+9x_57864+85x_57865+77x_57866+28x_57867+87x_57868+64x_57869+50x_57870+99x_57871+62x_57872+9x_57873+67x_57874+68x_57875+51x_57876+92x_57877+47x_57878+30x_57879+98x_57880+88x_57881+4x_57882+33x_57883+8x_57884+58x_57885+50x_57886+64x_57887+93x_57888+51x_57889+68x_57890+91x_57891+96x_57892+10x_57893+83x_57894+35x_57895+25x_57896+74x_57897+31x_57898+3x_57899+36x_57900+97x_57901+38x_57902+85x_57903+58x_57904+98x_57905+2x_57906+3x_57907+99x_57908+23x_57909+62x_57910+x_57911+2x_57912+53x_57913+63x_57914+21x_57915+75x_57916+41x_57917+77x_57918+45x_57919+9x_57920+9x_57921+29x_57922+26x_57923+7x_57924+59x_57925+83x_57926+6x_57927+22x_57928+23x_57929+49x_57930+12x_57931+22x_57932+75x_57933+41x_57934+10x_57935+10x_57936+58x_57937+66x_57938+26x_57939+81x_57940+9x_57941+26x_57942+36x_57943+63x_57944+69x_57945+2x_57946+28x_57947+28x_57948+2x_57949+22x_57950+96x_57951+89x_57952+82x_57953+22x_57954+6x_57955+x_57956+91x_57957+38x_57958+20x_57959+53x_57960+43x_57961+60x_57962+68x_57963+35x_57964+49x_57965+58x_57966+74x_57967+60x_57968+23x_57969+63x_57970+82x_57971+39x_57972+35x_57973+19x_57974+53x_57975+23x_57976+18x_57977+49x_57978+54x_57979+48x_57980+44x_57981+68x_57982+55x_57983+97x_57984+55x_57985+92x_57986+94x_57987+43x_57988+35x_57989+76x_57990+100x_57991+83x_57992+100x_57993+88x_57994+41x_57995+5x_57996+27x_57997+45x_57998+37x_57999+59x_58000+52x_58001+40x_58002+5x_58003+73x_58004+62x_58005+91x_58006+31x_58007+48x_58008+72x_58009+18x_58010+74x_58011+23x_58012+41x_58013+52x_58014+90x_58015+61x_58016+25x_58017+34x_58018+21x_58019+85x_58020+72x_58021+3x_58022+99x_58023+82x_58024+99x_58025+43x_58026+60x_58027+98x_58028+11x_58029+74x_58030+49x_58031+29x_58032+63x_58033+11x_58034+42x_58035+54x_58036+37x_58037+16x_58038+60x_58039+85x_58040+68x_58041+16x_58042+22x_58043+63x_58044+85x_58045+88x_58046+4x_58047+49x_58048+3x_58049+51x_58050+67x_58051+96x_58052+63x_58053+30x_58054+81x_58055+99x_58056+32x_58057+28x_58058+93x_58059+22x_58060+34x_58061+51x_58062+54x_58063+92x_58064+89x_58065+100x_58066+44x_58067+21x_58068+4x_58069+36x_58070+49x_58071+88x_58072+34x_58073+70x_58074+63x_58075+36x_58076+3x_58077+6x_58078+6x_58079+76x_58080+14x_58081+48x_58082+83x_58083+3x_58084+16x_58085+28x_58086+61x_58087+70x_58088+83x_58089+x_58090+42x_58091+30x_58092+28x_58093+43x_58094+93x_58095+86x_58096+7x_58097+60x_58098+33x_58099+60x_58100+82x_58101+75x_58102+45x_58103+87x_58104+77x_58105+21x_58106+12x_58107+77x_58108+45x_58109+19x_58110+79x_58111+59x_58112+74x_58113+58x_58114+30x_58115+100x_58116+58x_58117+72x_58118+57x_58119+11x_58120+17x_58121+19x_58122+58x_58123+55x_58124+25x_58125+45x_58126+75x_58127+80x_58128+79x_58129+69x_58130+97x_58131+12x_58132+40x_58133+68x_58134+37x_58135+59x_58136+17x_58137+x_58138+x_58139+2x_58140+14x_58141+70x_58142+50x_58143+31x_58144+47x_58145+4x_58146+47x_58147+41x_58148+12x_58149+55x_58150+65x_58151+4x_58152+7x_58153+89x_58154+43x_58155+27x_58156+68x_58157+30x_58158+80x_58159+73x_58160+12x_58161+77x_58162+75x_58163+91x_58164+2x_58165+11x_58166+83x_58167+70x_58168+87x_58169+18x_58170+18x_58171+64x_58172+8x_58173+52x_58174+80x_58175+95x_58176+95x_58177+95x_58178+9x_58179+21x_58180+13x_58181+57x_58182+43x_58183+49x_58184+52x_58185+85x_58186+72x_58187+85x_58188+13x_58189+92x_58190+94x_58191+59x_58192+11x_58193+67x_58194+28x_58195+40x_58196+71x_58197+90x_58198+96x_58199+31x_58200+26x_58201+96x_58202+97x_58203+86x_58204+27x_58205+96x_58206+95x_58207+26x_58208+31x_58209+x_58210+16x_58211+40x_58212+31x_58213+31x_58214+82x_58215+9x_58216+90x_58217+14x_58218+86x_58219+99x_58220+68x_58221+57x_58222+31x_58223+31x_58224+6x_58225+14x_58226+5x_58227+76x_58228+38x_58229+18x_58230+50x_58231+23x_58232+26x_58233+96x_58234+64x_58235+88x_58236+17x_58237+99x_58238+77x_58239+84x_58240+24x_58241+34x_58242+28x_58243+49x_58244+42x_58245+51x_58246+47x_58247+52x_58248+4x_58249+70x_58250+84x_58251+46x_58252+46x_58253+58x_58254+21x_58255+53x_58256+65x_58257+39x_58258+78x_58259+25x_58260+52x_58261+8x_58262+9x_58263+14x_58264+29x_58265+15x_58266+14x_58267+22x_58268+63x_58269+14x_58270+31x_58271+63x_58272+81x_58273+48x_58274+67x_58275+37x_58276+92x_58277+19x_58278+98x_58279+16x_58280+72x_58281+89x_58282+80x_58283+92x_58284+94x_58285+39x_58286+43x_58287+58x_58288+47x_58289+51x_58290+22x_58291+42x_58292+75x_58293+63x_58294+12x_58295+46x_58296+93x_58297+20x_58298+38x_58299+94x_58300+55x_58301+30x_58302+93x_58303+x_58304+15x_58305+42x_58306+64x_58307+85x_58308+98x_58309+58x_58310+21x_58311+55x_58312+11x_58313+97x_58314+16x_58315+30x_58316+30x_58317+99x_58318+41x_58319+68x_58320+64x_58321+27x_58322+42x_58323+72x_58324+95x_58325+62x_58326+24x_58327+91x_58328+33x_58329+65x_58330+84x_58331+12x_58332+83x_58333+58x_58334+54x_58335+82x_58336+42x_58337+9x_58338+19x_58339+93x_58340+66x_58341+94x_58342+28x_58343+20x_58344+95x_58345+43x_58346+93x_58347+49x_58348+64x_58349+32x_58350+84x_58351+15x_58352+50x_58353+69x_58354+17x_58355+97x_58356+56x_58357+65x_58358+77x_58359+3x_58360+3x_58361+66x_58362+49x_58363+52x_58364+91x_58365+8x_58366+26x_58367+27x_58368+73x_58369+5x_58370+16x_58371+12x_58372+12x_58373+91x_58374+98x_58375+64x_58376+17x_58377+100x_58378+60x_58379+99x_58380+72x_58381+70x_58382+90x_58383+24x_58384+85x_58385+82x_58386+2x_58387+64x_58388+11x_58389+15x_58390+90x_58391+100x_58392+61x_58393+84x_58394+36x_58395+54x_58396+39x_58397+43x_58398+48x_58399+76x_58400+91x_58401+58x_58402+82x_58403+81x_58404+53x_58405+29x_58406+75x_58407+33x_58408+69x_58409+51x_58410+60x_58411+37x_58412+54x_58413+35x_58414+67x_58415+27x_58416+59x_58417+87x_58418+48x_58419+14x_58420+24x_58421+67x_58422+22x_58423+42x_58424+68x_58425+33x_58426+95x_58427+62x_58428+12x_58429+74x_58430+3x_58431+26x_58432+85x_58433+70x_58434+53x_58435+16x_58436+42x_58437+29x_58438+5x_58439+26x_58440+18x_58441+54x_58442+52x_58443+45x_58444+76x_58445+45x_58446+77x_58447+39x_58448+95x_58449+47x_58450+37x_58451+35x_58452+63x_58453+88x_58454+61x_58455+77x_58456+43x_58457+84x_58458+78x_58459+28x_58460+87x_58461+72x_58462+96x_58463+75x_58464+23x_58465+17x_58466+3x_58467+95x_58468+9x_58469+26x_58470+16x_58471+21x_58472+64x_58473+75x_58474+88x_58475+4x_58476+15x_58477+68x_58478+28x_58479+9x_58480+62x_58481+98x_58482+77x_58483+43x_58484+56x_58485+90x_58486+87x_58487+13x_58488+72x_58489+86x_58490+85x_58491+52x_58492+11x_58493+9x_58494+93x_58495+68x_58496+25x_58497+4x_58498+42x_58499+65x_58500+23x_58501+92x_58502+43x_58503+80x_58504+57x_58505+43x_58506+85x_58507+61x_58508+90x_58509+35x_58510+63x_58511+81x_58512+22x_58513+60x_58514+25x_58515+80x_58516+77x_58517+73x_58518+90x_58519+51x_58520+14x_58521+66x_58522+86x_58523+26x_58524+56x_58525+18x_58526+78x_58527+87x_58528+86x_58529+93x_58530+56x_58531+55x_58532+98x_58533+61x_58534+11x_58535+22x_58536+69x_58537+10x_58538+11x_58539+50x_58540+59x_58541+72x_58542+63x_58543+51x_58544+85x_58545+7x_58546+57x_58547+47x_58548+32x_58549+14x_58550+95x_58551+33x_58552+15x_58553+13x_58554+76x_58555+96x_58556+29x_58557+90x_58558+22x_58559+83x_58560+77x_58561+68x_58562+89x_58563+28x_58564+68x_58565+16x_58566+87x_58567+54x_58568+73x_58569+70x_58570+86x_58571+100x_58572+21x_58573+91x_58574+11x_58575+2x_58576+89x_58577+24x_58578+30x_58579+78x_58580+25x_58581+89x_58582+14x_58583+66x_58584+89x_58585+73x_58586+95x_58587+60x_58588+36x_58589+23x_58590+17x_58591+68x_58592+17x_58593+23x_58594+43x_58595+30x_58596+99x_58597+91x_58598+27x_58599+88x_58600+48x_58601+67x_58602+2x_58603+81x_58604+71x_58605+36x_58606+91x_58607+52x_58608+83x_58609+64x_58610+43x_58611+42x_58612+18x_58613+50x_58614+40x_58615+33x_58616+19x_58617+22x_58618+58x_58619+78x_58620+81x_58621+79x_58622+74x_58623+82x_58624+60x_58625+90x_58626+12x_58627+96x_58628+14x_58629+45x_58630+93x_58631+39x_58632+30x_58633+36x_58634+25x_58635+79x_58636+71x_58637+52x_58638+7x_58639+10x_58640+68x_58641+44x_58642+29x_58643+86x_58644+69x_58645+94x_58646+74x_58647+19x_58648+39x_58649+48x_58650+68x_58651+77x_58652+78x_58653+54x_58654+94x_58655+84x_58656+69x_58657+66x_58658+88x_58659+49x_58660+69x_58661+28x_58662+74x_58663+23x_58664+78x_58665+35x_58666+18x_58667+44x_58668+7x_58669+93x_58670+83x_58671+31x_58672+2x_58673+8x_58674+70x_58675+14x_58676+22x_58677+20x_58678+82x_58679+81x_58680+24x_58681+48x_58682+35x_58683+38x_58684+68x_58685+21x_58686+24x_58687+67x_58688+7x_58689+4x_58690+36x_58691+35x_58692+97x_58693+25x_58694+83x_58695+48x_58696+66x_58697+49x_58698+38x_58699+2x_58700+5x_58701+64x_58702+29x_58703+75x_58704+56x_58705+55x_58706+46x_58707+83x_58708+6x_58709+55x_58710+8x_58711+95x_58712+4x_58713+52x_58714+92x_58715+61x_58716+32x_58717+76x_58718+68x_58719+86x_58720+39x_58721+8x_58722+8x_58723+56x_58724+71x_58725+65x_58726+19x_58727+29x_58728+2x_58729+13x_58730+72x_58731+37x_58732+59x_58733+60x_58734+73x_58735+85x_58736+14x_58737+68x_58738+27x_58739+92x_58740+12x_58741+96x_58742+31x_58743+66x_58744+69x_58745+70x_58746+37x_58747+18x_58748+64x_58749+4x_58750+84x_58751+50x_58752+84x_58753+22x_58754+74x_58755+98x_58756+99x_58757+95x_58758+14x_58759+95x_58760+80x_58761+79x_58762+3x_58763+100x_58764+18x_58765+71x_58766+9x_58767+18x_58768+68x_58769+36x_58770+3x_58771+13x_58772+85x_58773+31x_58774+94x_58775+19x_58776+7x_58777+12x_58778+10x_58779+34x_58780+40x_58781+84x_58782+21x_58783+53x_58784+73x_58785+77x_58786+60x_58787+32x_58788+81x_58789+58x_58790+14x_58791+72x_58792+94x_58793+91x_58794+26x_58795+31x_58796+11x_58797+86x_58798+62x_58799+48x_58800+39x_58801+91x_58802+55x_58803+47x_58804+4x_58805+45x_58806+52x_58807+58x_58808+69x_58809+77x_58810+10x_58811+81x_58812+27x_58813+61x_58814+47x_58815+16x_58816+88x_58817+5x_58818+32x_58819+60x_58820+57x_58821+58x_58822+68x_58823+98x_58824+12x_58825+26x_58826+86x_58827+74x_58828+44x_58829+20x_58830+42x_58831+89x_58832+45x_58833+74x_58834+10x_58835+3x_58836+7x_58837+68x_58838+31x_58839+26x_58840+14x_58841+80x_58842+77x_58843+77x_58844+54x_58845+69x_58846+31x_58847+76x_58848+5x_58849+52x_58850+66x_58851+69x_58852+62x_58853+74x_58854+71x_58855+14x_58856+100x_58857+3x_58858+8x_58859+88x_58860+42x_58861+97x_58862+60x_58863+95x_58864+92x_58865+53x_58866+70x_58867+81x_58868+80x_58869+50x_58870+73x_58871+3x_58872+22x_58873+10x_58874+87x_58875+79x_58876+9x_58877+36x_58878+86x_58879+3x_58880+52x_58881+34x_58882+79x_58883+68x_58884+22x_58885+75x_58886+90x_58887+5x_58888+24x_58889+38x_58890+74x_58891+55x_58892+49x_58893+78x_58894+42x_58895+70x_58896+35x_58897+86x_58898+59x_58899+2x_58900+98x_58901+9x_58902+43x_58903+91x_58904+91x_58905+8x_58906+49x_58907+26x_58908+56x_58909+75x_58910+12x_58911+62x_58912+20x_58913+39x_58914+71x_58915+40x_58916+53x_58917+45x_58918+21x_58919+70x_58920+88x_58921+43x_58922+29x_58923+63x_58924+92x_58925+72x_58926+78x_58927+70x_58928+85x_58929+6x_58930+39x_58931+36x_58932+100x_58933+54x_58934+11x_58935+94x_58936+58x_58937+2x_58938+2x_58939+58x_58940+32x_58941+59x_58942+51x_58943+2x_58944+34x_58945+76x_58946+89x_58947+81x_58948+63x_58949+62x_58950+16x_58951+14x_58952+25x_58953+54x_58954+43x_58955+66x_58956+21x_58957+66x_58958+14x_58959+19x_58960+29x_58961+61x_58962+94x_58963+71x_58964+71x_58965+52x_58966+82x_58967+45x_58968+74x_58969+19x_58970+20x_58971+30x_58972+28x_58973+67x_58974+84x_58975+71x_58976+70x_58977+53x_58978+9x_58979+40x_58980+99x_58981+12x_58982+3x_58983+19x_58984+25x_58985+89x_58986+20x_58987+61x_58988+45x_58989+70x_58990+96x_58991+27x_58992+8x_58993+39x_58994+84x_58995+82x_58996+36x_58997+60x_58998+26x_58999+98x_59000+95x_59001+22x_59002+86x_59003+80x_59004+23x_59005+4x_59006+89x_59007+4x_59008+95x_59009+17x_59010+58x_59011+20x_59012+30x_59013+86x_59014+97x_59015+10x_59016+57x_59017+61x_59018+86x_59019+21x_59020+28x_59021+36x_59022+58x_59023+17x_59024+94x_59025+6x_59026+99x_59027+97x_59028+20x_59029+24x_59030+55x_59031+42x_59032+35x_59033+3x_59034+70x_59035+18x_59036+68x_59037+x_59038+26x_59039+86x_59040+15x_59041+21x_59042+52x_59043+3x_59044+54x_59045+42x_59046+15x_59047+100x_59048+6x_59049+27x_59050+36x_59051+70x_59052+75x_59053+53x_59054+27x_59055+9x_59056+19x_59057+81x_59058+57x_59059+39x_59060+33x_59061+12x_59062+87x_59063+30x_59064+58x_59065+13x_59066+x_59067+61x_59068+82x_59069+75x_59070+8x_59071+14x_59072+34x_59073+6x_59074+71x_59075+47x_59076+26x_59077+67x_59078+10x_59079+81x_59080+74x_59081+89x_59082+25x_59083+58x_59084+22x_59085+24x_59086+70x_59087+14x_59088+16x_59089+96x_59090+77x_59091+3x_59092+49x_59093+2x_59094+32x_59095+25x_59096+7x_59097+38x_59098+49x_59099+85x_59100+40x_59101+47x_59102+50x_59103+23x_59104+45x_59105+57x_59106+90x_59107+42x_59108+44x_59109+14x_59110+5x_59111+49x_59112+42x_59113+8x_59114+24x_59115+88x_59116+82x_59117+34x_59118+91x_59119+8x_59120+91x_59121+38x_59122+84x_59123+61x_59124+83x_59125+35x_59126+50x_59127+50x_59128+80x_59129+49x_59130+36x_59131+15x_59132+10x_59133+80x_59134+100x_59135+17x_59136+47x_59137+82x_59138+51x_59139+26x_59140+71x_59141+4x_59142+48x_59143+89x_59144+66x_59145+24x_59146+36x_59147+43x_59148+74x_59149+57x_59150+62x_59151+44x_59152+x_59153+24x_59154+89x_59155+33x_59156+49x_59157+48x_59158+55x_59159+51x_59160+68x_59161+26x_59162+65x_59163+69x_59164+27x_59165+80x_59166+79x_59167+62x_59168+85x_59169+9x_59170+89x_59171+47x_59172+36x_59173+2x_59174+37x_59175+92x_59176+46x_59177+89x_59178+62x_59179+61x_59180+96x_59181+16x_59182+83x_59183+29x_59184+96x_59185+24x_59186+49x_59187+85x_59188+15x_59189+42x_59190+70x_59191+59x_59192+30x_59193+76x_59194+28x_59195+79x_59196+94x_59197+52x_59198+80x_59199+38x_59200+88x_59201+90x_59202+55x_59203+53x_59204+67x_59205+46x_59206+92x_59207+8x_59208+79x_59209+89x_59210+79x_59211+58x_59212+86x_59213+85x_59214+26x_59215+91x_59216+72x_59217+23x_59218+11x_59219+86x_59220+70x_59221+82x_59222+9x_59223+93x_59224+22x_59225+51x_59226+41x_59227+43x_59228+84x_59229+92x_59230+83x_59231+90x_59232+25x_59233+99x_59234+39x_59235+64x_59236+64x_59237+20x_59238+12x_59239+75x_59240+81x_59241+52x_59242+57x_59243+69x_59244+61x_59245+12x_59246+25x_59247+3x_59248+30x_59249+57x_59250+91x_59251+46x_59252+56x_59253+19x_59254+90x_59255+63x_59256+5x_59257+60x_59258+72x_59259+90x_59260+74x_59261+75x_59262+23x_59263+45x_59264+10x_59265+36x_59266+100x_59267+56x_59268+95x_59269+16x_59270+x_59271+93x_59272+52x_59273+82x_59274+39x_59275+88x_59276+78x_59277+40x_59278+63x_59279+8x_59280+32x_59281+97x_59282+23x_59283+64x_59284+86x_59285+98x_59286+98x_59287+36x_59288+17x_59289+20x_59290+50x_59291+55x_59292+80x_59293+11x_59294+56x_59295+27x_59296+59x_59297+24x_59298+92x_59299+85x_59300+49x_59301+40x_59302+43x_59303+73x_59304+68x_59305+30x_59306+21x_59307+70x_59308+49x_59309+79x_59310+18x_59311+3x_59312+6x_59313+33x_59314+2x_59315+71x_59316+32x_59317+3x_59318+38x_59319+57x_59320+50x_59321+4x_59322+58x_59323+71x_59324+6x_59325+12x_59326+3x_59327+49x_59328+76x_59329+22x_59330+48x_59331+60x_59332+5x_59333+6x_59334+23x_59335+98x_59336+58x_59337+46x_59338+88x_59339+79x_59340+22x_59341+39x_59342+55x_59343+95x_59344+27x_59345+89x_59346+31x_59347+59x_59348+86x_59349+92x_59350+11x_59351+74x_59352+77x_59353+25x_59354+47x_59355+98x_59356+33x_59357+38x_59358+78x_59359+25x_59360+12x_59361+89x_59362+93x_59363+8x_59364+52x_59365+39x_59366+90x_59367+30x_59368+75x_59369+96x_59370+34x_59371+63x_59372+94x_59373+55x_59374+38x_59375+89x_59376+86x_59377+52x_59378+4x_59379+75x_59380+51x_59381+40x_59382+64x_59383+12x_59384+3x_59385+66x_59386+81x_59387+82x_59388+70x_59389+21x_59390+26x_59391+59x_59392+100x_59393+97x_59394+65x_59395+46x_59396+50x_59397+72x_59398+46x_59399+75x_59400+65x_59401+72x_59402+97x_59403+72x_59404+83x_59405+13x_59406+49x_59407+26x_59408+76x_59409+50x_59410+19x_59411+22x_59412+15x_59413+77x_59414+93x_59415+79x_59416+86x_59417+87x_59418+19x_59419+71x_59420+59x_59421+42x_59422+66x_59423+7x_59424+69x_59425+94x_59426+28x_59427+15x_59428+43x_59429+70x_59430+16x_59431+90x_59432+81x_59433+65x_59434+43x_59435+8x_59436+48x_59437+17x_59438+44x_59439+42x_59440+65x_59441+6x_59442+81x_59443+65x_59444+46x_59445+67x_59446+39x_59447+26x_59448+39x_59449+5x_59450+23x_59451+70x_59452+21x_59453+73x_59454+19x_59455+37x_59456+32x_59457+65x_59458+4x_59459+55x_59460+84x_59461+95x_59462+38x_59463+39x_59464+36x_59465+37x_59466+90x_59467+55x_59468+56x_59469+95x_59470+80x_59471+71x_59472+18x_59473+93x_59474+76x_59475+31x_59476+19x_59477+79x_59478+54x_59479+86x_59480+11x_59481+59x_59482+67x_59483+84x_59484+13x_59485+42x_59486+27x_59487+98x_59488+67x_59489+55x_59490+86x_59491+61x_59492+70x_59493+35x_59494+46x_59495+82x_59496+45x_59497+29x_59498+85x_59499+60x_59500+78x_59501+22x_59502+74x_59503+46x_59504+90x_59505+32x_59506+11x_59507+37x_59508+20x_59509+51x_59510+65x_59511+43x_59512+45x_59513+58x_59514+41x_59515+12x_59516+28x_59517+6x_59518+2x_59519+86x_59520+69x_59521+39x_59522+48x_59523+56x_59524+77x_59525+54x_59526+79x_59527+78x_59528+51x_59529+26x_59530+71x_59531+82x_59532+46x_59533+96x_59534+17x_59535+7x_59536+77x_59537+56x_59538+3x_59539+91x_59540+96x_59541+76x_59542+71x_59543+55x_59544+64x_59545+42x_59546+14x_59547+45x_59548+53x_59549+27x_59550+72x_59551+26x_59552+95x_59553+14x_59554+13x_59555+74x_59556+32x_59557+52x_59558+12x_59559+80x_59560+78x_59561+11x_59562+25x_59563+2x_59564+32x_59565+56x_59566+16x_59567+22x_59568+94x_59569+68x_59570+41x_59571+30x_59572+68x_59573+68x_59574+91x_59575+27x_59576+57x_59577+32x_59578+43x_59579+83x_59580+71x_59581+32x_59582+48x_59583+61x_59584+70x_59585+89x_59586+87x_59587+76x_59588+25x_59589+37x_59590+22x_59591+19x_59592+83x_59593+26x_59594+22x_59595+63x_59596+95x_59597+98x_59598+12x_59599+23x_59600+11x_59601+2x_59602+89x_59603+42x_59604+19x_59605+37x_59606+11x_59607+52x_59608+51x_59609+50x_59610+70x_59611+15x_59612+28x_59613+91x_59614+18x_59615+33x_59616+22x_59617+89x_59618+94x_59619+29x_59620+17x_59621+5x_59622+7x_59623+28x_59624+x_59625+18x_59626+66x_59627+77x_59628+25x_59629+94x_59630+92x_59631+36x_59632+43x_59633+13x_59634+26x_59635+89x_59636+89x_59637+24x_59638+64x_59639+74x_59640+27x_59641+100x_59642+46x_59643+38x_59644+58x_59645+60x_59646+45x_59647+x_59648+82x_59649+66x_59650+3x_59651+64x_59652+34x_59653+63x_59654+94x_59655+36x_59656+28x_59657+66x_59658+90x_59659+56x_59660+71x_59661+80x_59662+25x_59663+10x_59664+41x_59665+11x_59666+67x_59667+2x_59668+39x_59669+16x_59670+50x_59671+62x_59672+37x_59673+40x_59674+89x_59675+64x_59676+13x_59677+100x_59678+39x_59679+50x_59680+62x_59681+23x_59682+50x_59683+73x_59684+29x_59685+39x_59686+61x_59687+22x_59688+29x_59689+16x_59690+72x_59691+54x_59692+35x_59693+80x_59694+22x_59695+78x_59696+84x_59697+92x_59698+78x_59699+6x_59700+81x_59701+82x_59702+13x_59703+95x_59704+67x_59705+95x_59706+96x_59707+41x_59708+98x_59709+95x_59710+88x_59711+59x_59712+29x_59713+20x_59714+74x_59715+57x_59716+63x_59717+81x_59718+38x_59719+27x_59720+58x_59721+29x_59722+36x_59723+99x_59724+42x_59725+71x_59726+49x_59727+73x_59728+59x_59729+40x_59730+76x_59731+35x_59732+79x_59733+38x_59734+42x_59735+97x_59736+89x_59737+4x_59738+14x_59739+20x_59740+78x_59741+12x_59742+85x_59743+41x_59744+14x_59745+7x_59746+55x_59747+65x_59748+17x_59749+54x_59750+8x_59751+14x_59752+39x_59753+95x_59754+25x_59755+38x_59756+20x_59757+53x_59758+46x_59759+98x_59760+98x_59761+75x_59762+89x_59763+89x_59764+53x_59765+26x_59766+68x_59767+48x_59768+3x_59769+67x_59770+10x_59771+63x_59772+100x_59773+48x_59774+47x_59775+10x_59776+3x_59777+30x_59778+12x_59779+68x_59780+24x_59781+x_59782+53x_59783+100x_59784+2x_59785+55x_59786+16x_59787+63x_59788+26x_59789+34x_59790+66x_59791+59x_59792+26x_59793+33x_59794+58x_59795+53x_59796+85x_59797+84x_59798+99x_59799+12x_59800+32x_59801+19x_59802+94x_59803+64x_59804+43x_59805+61x_59806+3x_59807+54x_59808+21x_59809+88x_59810+53x_59811+26x_59812+33x_59813+52x_59814+55x_59815+89x_59816+33x_59817+49x_59818+81x_59819+25x_59820+56x_59821+87x_59822+15x_59823+36x_59824+37x_59825+30x_59826+49x_59827+9x_59828+85x_59829+78x_59830+57x_59831+98x_59832+74x_59833+77x_59834+67x_59835+41x_59836+76x_59837+7x_59838+13x_59839+17x_59840+25x_59841+76x_59842+86x_59843+31x_59844+68x_59845+73x_59846+26x_59847+62x_59848+34x_59849+51x_59850+37x_59851+94x_59852+71x_59853+65x_59854+78x_59855+57x_59856+34x_59857+87x_59858+55x_59859+50x_59860+23x_59861+95x_59862+37x_59863+80x_59864+7x_59865+40x_59866+22x_59867+87x_59868+69x_59869+42x_59870+28x_59871+26x_59872+33x_59873+41x_59874+9x_59875+36x_59876+30x_59877+77x_59878+35x_59879+65x_59880+27x_59881+80x_59882+23x_59883+74x_59884+3x_59885+x_59886+61x_59887+5x_59888+92x_59889+15x_59890+45x_59891+17x_59892+81x_59893+8x_59894+51x_59895+79x_59896+66x_59897+4x_59898+39x_59899+25x_59900+7x_59901+94x_59902+67x_59903+40x_59904+91x_59905+93x_59906+71x_59907+31x_59908+31x_59909+35x_59910+x_59911+45x_59912+69x_59913+8x_59914+16x_59915+63x_59916+3x_59917+14x_59918+49x_59919+98x_59920+100x_59921+48x_59922+23x_59923+93x_59924+66x_59925+58x_59926+40x_59927+61x_59928+52x_59929+18x_59930+6x_59931+37x_59932+61x_59933+50x_59934+3x_59935+43x_59936+84x_59937+16x_59938+6x_59939+99x_59940+100x_59941+50x_59942+50x_59943+80x_59944+24x_59945+62x_59946+38x_59947+54x_59948+69x_59949+35x_59950+100x_59951+30x_59952+7x_59953+81x_59954+100x_59955+55x_59956+77x_59957+79x_59958+94x_59959+100x_59960+44x_59961+49x_59962+74x_59963+95x_59964+46x_59965+94x_59966+100x_59967+95x_59968+53x_59969+35x_59970+71x_59971+47x_59972+96x_59973+65x_59974+83x_59975+91x_59976+92x_59977+87x_59978+90x_59979+78x_59980+97x_59981+71x_59982+45x_59983+68x_59984+92x_59985+55x_59986+3x_59987+51x_59988+40x_59989+46x_59990+x_59991+49x_59992+48x_59993+18x_59994+x_59995+30x_59996+95x_59997+49x_59998+61x_59999+41x_60000+58x_60001+62x_60002+40x_60003+16x_60004+88x_60005+88x_60006+79x_60007+31x_60008+66x_60009+12x_60010+95x_60011+56x_60012+77x_60013+98x_60014+82x_60015+18x_60016+63x_60017+5x_60018+95x_60019+36x_60020+100x_60021+11x_60022+100x_60023+23x_60024+3x_60025+74x_60026+17x_60027+5x_60028+26x_60029+5x_60030+22x_60031+70x_60032+73x_60033+34x_60034+66x_60035+98x_60036+59x_60037+68x_60038+10x_60039+60x_60040+43x_60041+43x_60042+64x_60043+20x_60044+64x_60045+100x_60046+68x_60047+95x_60048+39x_60049+69x_60050+10x_60051+74x_60052+60x_60053+24x_60054+88x_60055+93x_60056+39x_60057+10x_60058+57x_60059+60x_60060+66x_60061+68x_60062+67x_60063+84x_60064+58x_60065+30x_60066+53x_60067+67x_60068+58x_60069+11x_60070+64x_60071+52x_60072+61x_60073+77x_60074+62x_60075+38x_60076+95x_60077+13x_60078+58x_60079+15x_60080+28x_60081+31x_60082+72x_60083+100x_60084+37x_60085+56x_60086+81x_60087+48x_60088+46x_60089+55x_60090+90x_60091+92x_60092+20x_60093+62x_60094+44x_60095+49x_60096+54x_60097+41x_60098+2x_60099+17x_60100+68x_60101+9x_60102+25x_60103+4x_60104+10x_60105+32x_60106+5x_60107+87x_60108+4x_60109+86x_60110+100x_60111+56x_60112+96x_60113+71x_60114+59x_60115+2x_60116+45x_60117+29x_60118+39x_60119+95x_60120+16x_60121+36x_60122+62x_60123+29x_60124+6x_60125+72x_60126+15x_60127+56x_60128+23x_60129+52x_60130+33x_60131+18x_60132+77x_60133+78x_60134+56x_60135+67x_60136+71x_60137+53x_60138+68x_60139+90x_60140+62x_60141+34x_60142+78x_60143+57x_60144+46x_60145+94x_60146+39x_60147+62x_60148+28x_60149+75x_60150+8x_60151+64x_60152+47x_60153+60x_60154+36x_60155+33x_60156+35x_60157+11x_60158+12x_60159+94x_60160+64x_60161+70x_60162+63x_60163+17x_60164+34x_60165+36x_60166+61x_60167+15x_60168+87x_60169+56x_60170+99x_60171+66x_60172+62x_60173+89x_60174+55x_60175+7x_60176+47x_60177+24x_60178+76x_60179+68x_60180+4x_60181+13x_60182+22x_60183+75x_60184+64x_60185+87x_60186+98x_60187+27x_60188+53x_60189+39x_60190+63x_60191+67x_60192+37x_60193+94x_60194+46x_60195+21x_60196+53x_60197+65x_60198+59x_60199+24x_60200+70x_60201+35x_60202+31x_60203+52x_60204+5x_60205+83x_60206+33x_60207+37x_60208+18x_60209+18x_60210+48x_60211+50x_60212+59x_60213+46x_60214+60x_60215+13x_60216+69x_60217+65x_60218+3x_60219+64x_60220+97x_60221+63x_60222+7x_60223+3x_60224+19x_60225+78x_60226+49x_60227+99x_60228+8x_60229+93x_60230+19x_60231+12x_60232+63x_60233+7x_60234+67x_60235+87x_60236+89x_60237+77x_60238+78x_60239+12x_60240+14x_60241+20x_60242+18x_60243+94x_60244+79x_60245+20x_60246+60x_60247+65x_60248+34x_60249+60x_60250+92x_60251+60x_60252+81x_60253+49x_60254+21x_60255+4x_60256+23x_60257+25x_60258+69x_60259+47x_60260+78x_60261+22x_60262+10x_60263+99x_60264+59x_60265+22x_60266+30x_60267+85x_60268+92x_60269+90x_60270+46x_60271+11x_60272+33x_60273+x_60274+41x_60275+61x_60276+11x_60277+79x_60278+53x_60279+35x_60280+77x_60281+71x_60282+99x_60283+23x_60284+70x_60285+82x_60286+100x_60287+49x_60288+59x_60289+62x_60290+68x_60291+73x_60292+47x_60293+65x_60294+23x_60295+98x_60296+24x_60297+18x_60298+75x_60299+51x_60300+86x_60301+82x_60302+30x_60303+42x_60304+22x_60305+10x_60306+39x_60307+77x_60308+37x_60309+97x_60310+32x_60311+20x_60312+60x_60313+51x_60314+47x_60315+47x_60316+21x_60317+91x_60318+69x_60319+82x_60320+88x_60321+31x_60322+53x_60323+27x_60324+32x_60325+84x_60326+25x_60327+26x_60328+52x_60329+21x_60330+7x_60331+17x_60332+80x_60333+50x_60334+60x_60335+44x_60336+14x_60337+6x_60338+95x_60339+100x_60340+78x_60341+49x_60342+15x_60343+57x_60344+19x_60345+24x_60346+97x_60347+95x_60348+23x_60349+32x_60350+86x_60351+68x_60352+98x_60353+56x_60354+35x_60355+51x_60356+78x_60357+89x_60358+26x_60359+43x_60360+23x_60361+74x_60362+67x_60363+95x_60364+88x_60365+66x_60366+19x_60367+59x_60368+66x_60369+99x_60370+90x_60371+x_60372+45x_60373+39x_60374+33x_60375+88x_60376+89x_60377+64x_60378+55x_60379+41x_60380+89x_60381+23x_60382+18x_60383+82x_60384+2x_60385+28x_60386+14x_60387+3x_60388+5x_60389+55x_60390+54x_60391+68x_60392+69x_60393+72x_60394+43x_60395+47x_60396+20x_60397+80x_60398+20x_60399+78x_60400+60x_60401+87x_60402+17x_60403+18x_60404+97x_60405+47x_60406+41x_60407+71x_60408+7x_60409+49x_60410+86x_60411+68x_60412+36x_60413+48x_60414+62x_60415+80x_60416+8x_60417+95x_60418+62x_60419+31x_60420+30x_60421+69x_60422+35x_60423+26x_60424+29x_60425+95x_60426+31x_60427+9x_60428+79x_60429+54x_60430+83x_60431+9x_60432+18x_60433+58x_60434+6x_60435+73x_60436+49x_60437+91x_60438+19x_60439+50x_60440+97x_60441+58x_60442+21x_60443+35x_60444+68x_60445+28x_60446+54x_60447+69x_60448+35x_60449+72x_60450+33x_60451+51x_60452+97x_60453+74x_60454+49x_60455+29x_60456+3x_60457+49x_60458+93x_60459+6x_60460+40x_60461+16x_60462+7x_60463+20x_60464+10x_60465+95x_60466+92x_60467+28x_60468+78x_60469+38x_60470+5x_60471+76x_60472+52x_60473+16x_60474+98x_60475+91x_60476+75x_60477+90x_60478+100x_60479+62x_60480+81x_60481+33x_60482+7x_60483+93x_60484+88x_60485+2x_60486+66x_60487+34x_60488+3x_60489+33x_60490+4x_60491+12x_60492+39x_60493+85x_60494+28x_60495+56x_60496+78x_60497+72x_60498+10x_60499+99x_60500+54x_60501+x_60502+74x_60503+29x_60504+23x_60505+8x_60506+37x_60507+75x_60508+30x_60509+56x_60510+57x_60511+36x_60512+6x_60513+12x_60514+5x_60515+x_60516+63x_60517+54x_60518+53x_60519+62x_60520+70x_60521+24x_60522+76x_60523+14x_60524+68x_60525+33x_60526+5x_60527+82x_60528+x_60529+24x_60530+93x_60531+87x_60532+62x_60533+61x_60534+99x_60535+89x_60536+48x_60537+54x_60538+31x_60539+25x_60540+7x_60541+21x_60542+44x_60543+12x_60544+23x_60545+33x_60546+32x_60547+72x_60548+13x_60549+6x_60550+38x_60551+96x_60552+84x_60553+96x_60554+56x_60555+78x_60556+20x_60557+18x_60558+7x_60559+98x_60560+27x_60561+9x_60562+50x_60563+50x_60564+47x_60565+99x_60566+33x_60567+87x_60568+84x_60569+43x_60570+87x_60571+72x_60572+98x_60573+7x_60574+38x_60575+42x_60576+93x_60577+38x_60578+2x_60579+85x_60580+83x_60581+66x_60582+76x_60583+69x_60584+20x_60585+74x_60586+20x_60587+65x_60588+53x_60589+87x_60590+x_60591+96x_60592+65x_60593+80x_60594+32x_60595+68x_60596+78x_60597+92x_60598+13x_60599+93x_60600+29x_60601+81x_60602+59x_60603+84x_60604+2x_60605+18x_60606+90x_60607+18x_60608+49x_60609+86x_60610+4x_60611+67x_60612+64x_60613+27x_60614+39x_60615+36x_60616+15x_60617+29x_60618+49x_60619+96x_60620+25x_60621+62x_60622+99x_60623+89x_60624+86x_60625+56x_60626+47x_60627+26x_60628+27x_60629+25x_60630+23x_60631+39x_60632+39x_60633+23x_60634+18x_60635+47x_60636+49x_60637+70x_60638+92x_60639+73x_60640+31x_60641+45x_60642+20x_60643+58x_60644+75x_60645+31x_60646+68x_60647+45x_60648+99x_60649+88x_60650+14x_60651+38x_60652+60x_60653+16x_60654+79x_60655+45x_60656+59x_60657+51x_60658+80x_60659+38x_60660+25x_60661+9x_60662+86x_60663+58x_60664+11x_60665+17x_60666+44x_60667+26x_60668+41x_60669+89x_60670+76x_60671+89x_60672+18x_60673+50x_60674+43x_60675+9x_60676+55x_60677+59x_60678+21x_60679+96x_60680+26x_60681+27x_60682+100x_60683+31x_60684+95x_60685+43x_60686+100x_60687+67x_60688+53x_60689+66x_60690+98x_60691+34x_60692+4x_60693+37x_60694+54x_60695+8x_60696+24x_60697+39x_60698+5x_60699+79x_60700+7x_60701+62x_60702+14x_60703+45x_60704+22x_60705+31x_60706+23x_60707+x_60708+36x_60709+40x_60710+63x_60711+65x_60712+21x_60713+45x_60714+47x_60715+19x_60716+20x_60717+22x_60718+53x_60719+88x_60720+76x_60721+76x_60722+31x_60723+37x_60724+24x_60725+79x_60726+86x_60727+29x_60728+93x_60729+49x_60730+98x_60731+53x_60732+8x_60733+62x_60734+90x_60735+4x_60736+87x_60737+55x_60738+94x_60739+68x_60740+13x_60741+75x_60742+83x_60743+2x_60744+91x_60745+16x_60746+65x_60747+52x_60748+8x_60749+20x_60750+52x_60751+34x_60752+33x_60753+12x_60754+20x_60755+22x_60756+71x_60757+62x_60758+36x_60759+76x_60760+28x_60761+12x_60762+20x_60763+52x_60764+86x_60765+75x_60766+62x_60767+59x_60768+77x_60769+74x_60770+3x_60771+11x_60772+98x_60773+68x_60774+73x_60775+77x_60776+22x_60777+33x_60778+32x_60779+50x_60780+78x_60781+2x_60782+58x_60783+92x_60784+43x_60785+32x_60786+71x_60787+93x_60788+23x_60789+21x_60790+95x_60791+35x_60792+17x_60793+63x_60794+82x_60795+15x_60796+94x_60797+61x_60798+92x_60799+56x_60800+98x_60801+13x_60802+9x_60803+91x_60804+85x_60805+57x_60806+x_60807+72x_60808+36x_60809+41x_60810+83x_60811+23x_60812+28x_60813+49x_60814+90x_60815+64x_60816+40x_60817+4x_60818+74x_60819+98x_60820+14x_60821+78x_60822+13x_60823+40x_60824+80x_60825+49x_60826+80x_60827+17x_60828+35x_60829+74x_60830+25x_60831+45x_60832+20x_60833+57x_60834+55x_60835+54x_60836+24x_60837+16x_60838+73x_60839+31x_60840+28x_60841+45x_60842+28x_60843+83x_60844+82x_60845+80x_60846+51x_60847+79x_60848+72x_60849+67x_60850+74x_60851+97x_60852+6x_60853+12x_60854+64x_60855+98x_60856+5x_60857+86x_60858+62x_60859+74x_60860+78x_60861+10x_60862+92x_60863+76x_60864+15x_60865+94x_60866+86x_60867+30x_60868+83x_60869+81x_60870+23x_60871+7x_60872+49x_60873+42x_60874+91x_60875+69x_60876+2x_60877+23x_60878+86x_60879+95x_60880+14x_60881+33x_60882+42x_60883+22x_60884+52x_60885+x_60886+73x_60887+93x_60888+77x_60889+82x_60890+78x_60891+59x_60892+62x_60893+67x_60894+53x_60895+79x_60896+74x_60897+93x_60898+29x_60899+78x_60900+7x_60901+18x_60902+36x_60903+98x_60904+44x_60905+55x_60906+30x_60907+19x_60908+82x_60909+23x_60910+96x_60911+7x_60912+14x_60913+93x_60914+19x_60915+31x_60916+64x_60917+64x_60918+58x_60919+98x_60920+51x_60921+67x_60922+86x_60923+68x_60924+40x_60925+17x_60926+27x_60927+4x_60928+91x_60929+59x_60930+36x_60931+82x_60932+51x_60933+16x_60934+95x_60935+23x_60936+15x_60937+58x_60938+53x_60939+79x_60940+99x_60941+56x_60942+84x_60943+13x_60944+16x_60945+47x_60946+81x_60947+84x_60948+19x_60949+87x_60950+15x_60951+10x_60952+17x_60953+45x_60954+86x_60955+32x_60956+45x_60957+74x_60958+89x_60959+98x_60960+4x_60961+55x_60962+31x_60963+76x_60964+9x_60965+86x_60966+98x_60967+15x_60968+98x_60969+74x_60970+18x_60971+3x_60972+18x_60973+64x_60974+78x_60975+85x_60976+55x_60977+21x_60978+30x_60979+38x_60980+69x_60981+51x_60982+62x_60983+13x_60984+17x_60985+2x_60986+12x_60987+72x_60988+64x_60989+55x_60990+11x_60991+5x_60992+93x_60993+11x_60994+52x_60995+86x_60996+97x_60997+84x_60998+92x_60999+78x_61000+15x_61001+23x_61002+79x_61003+68x_61004+2x_61005+47x_61006+87x_61007+73x_61008+94x_61009+52x_61010+x_61011+37x_61012+88x_61013+55x_61014+66x_61015+56x_61016+52x_61017+50x_61018+66x_61019+95x_61020+26x_61021+43x_61022+37x_61023+15x_61024+34x_61025+72x_61026+88x_61027+89x_61028+81x_61029+59x_61030+45x_61031+38x_61032+17x_61033+98x_61034+23x_61035+40x_61036+46x_61037+67x_61038+5x_61039+99x_61040+32x_61041+63x_61042+84x_61043+57x_61044+67x_61045+5x_61046+4x_61047+53x_61048+6x_61049+72x_61050+80x_61051+37x_61052+54x_61053+38x_61054+81x_61055+87x_61056+85x_61057+62x_61058+39x_61059+9x_61060+62x_61061+25x_61062+48x_61063+80x_61064+71x_61065+79x_61066+36x_61067+54x_61068+50x_61069+88x_61070+26x_61071+49x_61072+39x_61073+90x_61074+45x_61075+80x_61076+28x_61077+12x_61078+81x_61079+11x_61080+5x_61081+51x_61082+11x_61083+18x_61084+20x_61085+48x_61086+11x_61087+59x_61088+47x_61089+8x_61090+2x_61091+56x_61092+13x_61093+50x_61094+42x_61095+51x_61096+39x_61097+31x_61098+36x_61099+16x_61100+33x_61101+48x_61102+27x_61103+89x_61104+68x_61105+48x_61106+86x_61107+54x_61108+64x_61109+32x_61110+3x_61111+22x_61112+24x_61113+10x_61114+77x_61115+74x_61116+70x_61117+29x_61118+78x_61119+62x_61120+83x_61121+14x_61122+95x_61123+100x_61124+32x_61125+66x_61126+27x_61127+81x_61128+49x_61129+26x_61130+71x_61131+12x_61132+94x_61133+32x_61134+53x_61135+97x_61136+97x_61137+90x_61138+17x_61139+84x_61140+41x_61141+56x_61142+77x_61143+26x_61144+45x_61145+33x_61146+21x_61147+38x_61148+18x_61149+65x_61150+55x_61151+77x_61152+100x_61153+82x_61154+30x_61155+42x_61156+15x_61157+43x_61158+40x_61159+69x_61160+7x_61161+57x_61162+75x_61163+67x_61164+9x_61165+68x_61166+33x_61167+40x_61168+100x_61169+8x_61170+56x_61171+45x_61172+2x_61173+88x_61174+50x_61175+25x_61176+85x_61177+75x_61178+56x_61179+44x_61180+97x_61181+10x_61182+95x_61183+59x_61184+75x_61185+99x_61186+47x_61187+98x_61188+94x_61189+72x_61190+82x_61191+39x_61192+63x_61193+71x_61194+86x_61195+63x_61196+x_61197+2x_61198+99x_61199+90x_61200+4x_61201+96x_61202+77x_61203+28x_61204+28x_61205+97x_61206+71x_61207+17x_61208+68x_61209+85x_61210+70x_61211+7x_61212+92x_61213+81x_61214+38x_61215+14x_61216+71x_61217+17x_61218+6x_61219+90x_61220+17x_61221+78x_61222+100x_61223+68x_61224+75x_61225+82x_61226+37x_61227+53x_61228+45x_61229+40x_61230+60x_61231+73x_61232+42x_61233+81x_61234+70x_61235+22x_61236+95x_61237+14x_61238+18x_61239+26x_61240+36x_61241+48x_61242+69x_61243+24x_61244+63x_61245+9x_61246+38x_61247+95x_61248+12x_61249+25x_61250+50x_61251+15x_61252+57x_61253+39x_61254+74x_61255+89x_61256+70x_61257+46x_61258+82x_61259+65x_61260+97x_61261+63x_61262+56x_61263+24x_61264+94x_61265+72x_61266+27x_61267+4x_61268+3x_61269+68x_61270+23x_61271+99x_61272+100x_61273+39x_61274+33x_61275+70x_61276+22x_61277+77x_61278+25x_61279+10x_61280+8x_61281+96x_61282+99x_61283+14x_61284+76x_61285+31x_61286+38x_61287+66x_61288+63x_61289+10x_61290+70x_61291+56x_61292+75x_61293+89x_61294+95x_61295+18x_61296+82x_61297+63x_61298+53x_61299+48x_61300+40x_61301+31x_61302+45x_61303+9x_61304+97x_61305+57x_61306+81x_61307+68x_61308+75x_61309+59x_61310+21x_61311+76x_61312+46x_61313+23x_61314+73x_61315+6x_61316+46x_61317+95x_61318+82x_61319+30x_61320+50x_61321+18x_61322+82x_61323+24x_61324+22x_61325+77x_61326+76x_61327+89x_61328+84x_61329+93x_61330+39x_61331+15x_61332+31x_61333+15x_61334+56x_61335+34x_61336+27x_61337+98x_61338+94x_61339+28x_61340+62x_61341+91x_61342+95x_61343+43x_61344+32x_61345+78x_61346+13x_61347+6x_61348+33x_61349+46x_61350+66x_61351+43x_61352+86x_61353+62x_61354+72x_61355+6x_61356+15x_61357+6x_61358+51x_61359+82x_61360+64x_61361+53x_61362+59x_61363+70x_61364+60x_61365+9x_61366+85x_61367+41x_61368+66x_61369+50x_61370+55x_61371+71x_61372+27x_61373+19x_61374+98x_61375+90x_61376+99x_61377+20x_61378+61x_61379+29x_61380+70x_61381+60x_61382+91x_61383+6x_61384+49x_61385+95x_61386+83x_61387+72x_61388+78x_61389+9x_61390+87x_61391+91x_61392+73x_61393+65x_61394+89x_61395+68x_61396+61x_61397+62x_61398+78x_61399+31x_61400+31x_61401+68x_61402+100x_61403+88x_61404+56x_61405+70x_61406+67x_61407+12x_61408+90x_61409+2x_61410+63x_61411+24x_61412+42x_61413+98x_61414+42x_61415+68x_61416+60x_61417+5x_61418+13x_61419+66x_61420+21x_61421+37x_61422+9x_61423+89x_61424+11x_61425+10x_61426+22x_61427+53x_61428+2x_61429+58x_61430+84x_61431+59x_61432+27x_61433+15x_61434+95x_61435+29x_61436+6x_61437+11x_61438+88x_61439+70x_61440+71x_61441+85x_61442+24x_61443+91x_61444+62x_61445+11x_61446+17x_61447+13x_61448+56x_61449+33x_61450+43x_61451+9x_61452+82x_61453+56x_61454+73x_61455+51x_61456+9x_61457+25x_61458+55x_61459+63x_61460+96x_61461+51x_61462+92x_61463+100x_61464+98x_61465+28x_61466+63x_61467+32x_61468+74x_61469+48x_61470+49x_61471+94x_61472+77x_61473+13x_61474+77x_61475+43x_61476+10x_61477+77x_61478+32x_61479+18x_61480+58x_61481+78x_61482+20x_61483+100x_61484+46x_61485+25x_61486+53x_61487+75x_61488+17x_61489+65x_61490+97x_61491+82x_61492+5x_61493+39x_61494+45x_61495+25x_61496+99x_61497+41x_61498+38x_61499+41x_61500+73x_61501+59x_61502+22x_61503+85x_61504+57x_61505+93x_61506+97x_61507+26x_61508+9x_61509+85x_61510+74x_61511+76x_61512+37x_61513+37x_61514+59x_61515+63x_61516+67x_61517+79x_61518+42x_61519+42x_61520+17x_61521+9x_61522+32x_61523+68x_61524+40x_61525+99x_61526+48x_61527+59x_61528+53x_61529+16x_61530+83x_61531+61x_61532+16x_61533+70x_61534+67x_61535+11x_61536+34x_61537+32x_61538+60x_61539+3x_61540+20x_61541+29x_61542+97x_61543+21x_61544+92x_61545+91x_61546+27x_61547+27x_61548+59x_61549+68x_61550+8x_61551+7x_61552+92x_61553+30x_61554+96x_61555+4x_61556+33x_61557+91x_61558+75x_61559+40x_61560+70x_61561+23x_61562+98x_61563+63x_61564+91x_61565+16x_61566+83x_61567+58x_61568+3x_61569+79x_61570+95x_61571+36x_61572+79x_61573+60x_61574+32x_61575+18x_61576+96x_61577+31x_61578+x_61579+30x_61580+96x_61581+78x_61582+61x_61583+72x_61584+46x_61585+89x_61586+24x_61587+78x_61588+14x_61589+63x_61590+93x_61591+91x_61592+82x_61593+70x_61594+75x_61595+92x_61596+3x_61597+66x_61598+x_61599+79x_61600+20x_61601+18x_61602+48x_61603+40x_61604+89x_61605+30x_61606+15x_61607+36x_61608+80x_61609+99x_61610+64x_61611+51x_61612+13x_61613+96x_61614+2x_61615+28x_61616+68x_61617+74x_61618+35x_61619+37x_61620+4x_61621+79x_61622+47x_61623+13x_61624+40x_61625+99x_61626+28x_61627+84x_61628+14x_61629+90x_61630+78x_61631+87x_61632+97x_61633+32x_61634+3x_61635+21x_61636+58x_61637+35x_61638+48x_61639+25x_61640+66x_61641+38x_61642+100x_61643+38x_61644+76x_61645+50x_61646+41x_61647+3x_61648+63x_61649+99x_61650+9x_61651+43x_61652+56x_61653+42x_61654+41x_61655+96x_61656+61x_61657+36x_61658+17x_61659+91x_61660+63x_61661+99x_61662+95x_61663+9x_61664+42x_61665+43x_61666+58x_61667+66x_61668+30x_61669+8x_61670+9x_61671+87x_61672+21x_61673+15x_61674+91x_61675+19x_61676+56x_61677+67x_61678+93x_61679+50x_61680+16x_61681+3x_61682+48x_61683+40x_61684+3x_61685+55x_61686+72x_61687+81x_61688+5x_61689+48x_61690+49x_61691+51x_61692+41x_61693+90x_61694+77x_61695+71x_61696+44x_61697+90x_61698+21x_61699+65x_61700+85x_61701+54x_61702+5x_61703+91x_61704+70x_61705+50x_61706+54x_61707+29x_61708+98x_61709+85x_61710+x_61711+23x_61712+79x_61713+36x_61714+22x_61715+2x_61716+33x_61717+51x_61718+4x_61719+6x_61720+46x_61721+44x_61722+78x_61723+87x_61724+14x_61725+15x_61726+24x_61727+56x_61728+58x_61729+5x_61730+45x_61731+55x_61732+46x_61733+57x_61734+15x_61735+51x_61736+63x_61737+86x_61738+85x_61739+53x_61740+26x_61741+17x_61742+33x_61743+x_61744+43x_61745+88x_61746+29x_61747+46x_61748+31x_61749+62x_61750+19x_61751+87x_61752+46x_61753+39x_61754+34x_61755+53x_61756+48x_61757+9x_61758+77x_61759+42x_61760+49x_61761+72x_61762+77x_61763+80x_61764+27x_61765+67x_61766+21x_61767+50x_61768+7x_61769+13x_61770+11x_61771+18x_61772+9x_61773+92x_61774+59x_61775+70x_61776+25x_61777+67x_61778+81x_61779+61x_61780+100x_61781+87x_61782+90x_61783+3x_61784+49x_61785+81x_61786+9x_61787+34x_61788+74x_61789+40x_61790+14x_61791+44x_61792+92x_61793+35x_61794+29x_61795+35x_61796+91x_61797+4x_61798+96x_61799+11x_61800+83x_61801+43x_61802+31x_61803+69x_61804+99x_61805+96x_61806+7x_61807+21x_61808+25x_61809+28x_61810+28x_61811+19x_61812+61x_61813+96x_61814+14x_61815+49x_61816+16x_61817+44x_61818+35x_61819+82x_61820+68x_61821+6x_61822+12x_61823+7x_61824+83x_61825+86x_61826+43x_61827+90x_61828+33x_61829+80x_61830+89x_61831+30x_61832+83x_61833+92x_61834+100x_61835+55x_61836+22x_61837+2x_61838+30x_61839+64x_61840+38x_61841+9x_61842+83x_61843+x_61844+86x_61845+36x_61846+19x_61847+74x_61848+20x_61849+4x_61850+48x_61851+91x_61852+29x_61853+6x_61854+78x_61855+3x_61856+91x_61857+60x_61858+21x_61859+27x_61860+100x_61861+67x_61862+67x_61863+73x_61864+26x_61865+15x_61866+32x_61867+78x_61868+70x_61869+49x_61870+47x_61871+33x_61872+26x_61873+95x_61874+63x_61875+98x_61876+32x_61877+21x_61878+78x_61879+43x_61880+50x_61881+60x_61882+16x_61883+43x_61884+49x_61885+22x_61886+49x_61887+55x_61888+49x_61889+18x_61890+68x_61891+94x_61892+92x_61893+8x_61894+37x_61895+77x_61896+5x_61897+3x_61898+55x_61899+92x_61900+2x_61901+26x_61902+15x_61903+63x_61904+48x_61905+21x_61906+17x_61907+74x_61908+18x_61909+43x_61910+53x_61911+48x_61912+90x_61913+5x_61914+76x_61915+10x_61916+37x_61917+10x_61918+57x_61919+94x_61920+26x_61921+66x_61922+36x_61923+2x_61924+15x_61925+49x_61926+92x_61927+31x_61928+41x_61929+21x_61930+41x_61931+x_61932+29x_61933+68x_61934+51x_61935+60x_61936+92x_61937+82x_61938+26x_61939+42x_61940+86x_61941+15x_61942+67x_61943+44x_61944+11x_61945+51x_61946+64x_61947+38x_61948+x_61949+96x_61950+69x_61951+49x_61952+46x_61953+99x_61954+25x_61955+48x_61956+97x_61957+46x_61958+87x_61959+11x_61960+16x_61961+46x_61962+37x_61963+56x_61964+56x_61965+11x_61966+70x_61967+58x_61968+47x_61969+80x_61970+12x_61971+85x_61972+49x_61973+80x_61974+74x_61975+23x_61976+97x_61977+65x_61978+40x_61979+10x_61980+32x_61981+72x_61982+33x_61983+93x_61984+50x_61985+78x_61986+94x_61987+91x_61988+42x_61989+10x_61990+48x_61991+52x_61992+56x_61993+83x_61994+98x_61995+50x_61996+95x_61997+64x_61998+18x_61999+51x_62000+36x_62001+62x_62002+11x_62003+52x_62004+54x_62005+94x_62006+67x_62007+66x_62008+3x_62009+26x_62010+5x_62011+61x_62012+43x_62013+17x_62014+84x_62015+86x_62016+44x_62017+89x_62018+55x_62019+77x_62020+76x_62021+70x_62022+95x_62023+87x_62024+48x_62025+72x_62026+84x_62027+69x_62028+63x_62029+22x_62030+93x_62031+46x_62032+52x_62033+53x_62034+21x_62035+98x_62036+27x_62037+10x_62038+81x_62039+49x_62040+42x_62041+72x_62042+20x_62043+5x_62044+19x_62045+66x_62046+56x_62047+94x_62048+49x_62049+79x_62050+65x_62051+53x_62052+70x_62053+67x_62054+70x_62055+62x_62056+68x_62057+83x_62058+15x_62059+31x_62060+76x_62061+84x_62062+x_62063+4x_62064+17x_62065+72x_62066+76x_62067+18x_62068+43x_62069+96x_62070+59x_62071+84x_62072+49x_62073+81x_62074+88x_62075+12x_62076+37x_62077+32x_62078+91x_62079+24x_62080+39x_62081+52x_62082+72x_62083+13x_62084+82x_62085+82x_62086+54x_62087+43x_62088+54x_62089+44x_62090+82x_62091+31x_62092+42x_62093+31x_62094+47x_62095+93x_62096+22x_62097+57x_62098+63x_62099+63x_62100+93x_62101+34x_62102+26x_62103+41x_62104+16x_62105+64x_62106+38x_62107+76x_62108+90x_62109+89x_62110+17x_62111+35x_62112+35x_62113+54x_62114+88x_62115+40x_62116+68x_62117+3x_62118+35x_62119+63x_62120+30x_62121+91x_62122+90x_62123+53x_62124+80x_62125+21x_62126+94x_62127+6x_62128+49x_62129+6x_62130+66x_62131+96x_62132+78x_62133+18x_62134+67x_62135+72x_62136+51x_62137+94x_62138+23x_62139+32x_62140+15x_62141+49x_62142+91x_62143+8x_62144+69x_62145+50x_62146+20x_62147+50x_62148+61x_62149+69x_62150+52x_62151+58x_62152+94x_62153+31x_62154+15x_62155+17x_62156+93x_62157+83x_62158+84x_62159+28x_62160+67x_62161+38x_62162+28x_62163+69x_62164+54x_62165+75x_62166+96x_62167+4x_62168+24x_62169+24x_62170+86x_62171+98x_62172+23x_62173+67x_62174+70x_62175+23x_62176+36x_62177+56x_62178+41x_62179+16x_62180+11x_62181+7x_62182+67x_62183+54x_62184+x_62185+28x_62186+83x_62187+9x_62188+5x_62189+19x_62190+22x_62191+8x_62192+35x_62193+8x_62194+83x_62195+33x_62196+25x_62197+76x_62198+13x_62199+91x_62200+35x_62201+63x_62202+21x_62203+38x_62204+61x_62205+80x_62206+23x_62207+62x_62208+23x_62209+85x_62210+30x_62211+71x_62212+38x_62213+74x_62214+77x_62215+78x_62216+2x_62217+33x_62218+13x_62219+90x_62220+47x_62221+45x_62222+89x_62223+2x_62224+97x_62225+70x_62226+77x_62227+43x_62228+50x_62229+27x_62230+84x_62231+18x_62232+99x_62233+46x_62234+72x_62235+27x_62236+21x_62237+16x_62238+38x_62239+49x_62240+78x_62241+12x_62242+14x_62243+77x_62244+32x_62245+x_62246+64x_62247+72x_62248+93x_62249+23x_62250+7x_62251+81x_62252+78x_62253+2x_62254+65x_62255+75x_62256+71x_62257+67x_62258+31x_62259+76x_62260+74x_62261+25x_62262+16x_62263+97x_62264+41x_62265+92x_62266+73x_62267+97x_62268+51x_62269+65x_62270+88x_62271+23x_62272+29x_62273+84x_62274+43x_62275+5x_62276+98x_62277+53x_62278+50x_62279+94x_62280+23x_62281+10x_62282+42x_62283+71x_62284+33x_62285+80x_62286+57x_62287+47x_62288+20x_62289+12x_62290+63x_62291+84x_62292+44x_62293+46x_62294+91x_62295+73x_62296+16x_62297+45x_62298+35x_62299+36x_62300+28x_62301+83x_62302+33x_62303+6x_62304+100x_62305+44x_62306+23x_62307+47x_62308+52x_62309+21x_62310+80x_62311+52x_62312+30x_62313+75x_62314+34x_62315+19x_62316+94x_62317+6x_62318+58x_62319+93x_62320+88x_62321+13x_62322+61x_62323+80x_62324+56x_62325+77x_62326+2x_62327+70x_62328+64x_62329+34x_62330+36x_62331+25x_62332+94x_62333+93x_62334+39x_62335+97x_62336+55x_62337+45x_62338+42x_62339+93x_62340+86x_62341+25x_62342+27x_62343+90x_62344+56x_62345+44x_62346+48x_62347+77x_62348+40x_62349+48x_62350+22x_62351+29x_62352+98x_62353+71x_62354+85x_62355+3x_62356+82x_62357+32x_62358+49x_62359+36x_62360+63x_62361+72x_62362+91x_62363+77x_62364+53x_62365+70x_62366+33x_62367+94x_62368+96x_62369+62x_62370+74x_62371+17x_62372+22x_62373+14x_62374+90x_62375+19x_62376+12x_62377+6x_62378+83x_62379+74x_62380+23x_62381+90x_62382+17x_62383+47x_62384+36x_62385+71x_62386+91x_62387+98x_62388+31x_62389+77x_62390+15x_62391+45x_62392+65x_62393+63x_62394+5x_62395+55x_62396+46x_62397+82x_62398+77x_62399+51x_62400+2x_62401+96x_62402+70x_62403+12x_62404+60x_62405+50x_62406+43x_62407+94x_62408+17x_62409+9x_62410+43x_62411+30x_62412+50x_62413+33x_62414+46x_62415+3x_62416+95x_62417+93x_62418+25x_62419+27x_62420+16x_62421+82x_62422+41x_62423+86x_62424+51x_62425+32x_62426+6x_62427+28x_62428+34x_62429+94x_62430+43x_62431+5x_62432+100x_62433+87x_62434+4x_62435+18x_62436+71x_62437+77x_62438+44x_62439+86x_62440+26x_62441+82x_62442+73x_62443+51x_62444+91x_62445+40x_62446+72x_62447+82x_62448+2x_62449+24x_62450+99x_62451+74x_62452+98x_62453+97x_62454+18x_62455+68x_62456+4x_62457+64x_62458+11x_62459+61x_62460+53x_62461+4x_62462+85x_62463+83x_62464+73x_62465+98x_62466+85x_62467+81x_62468+82x_62469+74x_62470+64x_62471+80x_62472+12x_62473+53x_62474+18x_62475+42x_62476+100x_62477+52x_62478+49x_62479+94x_62480+56x_62481+95x_62482+31x_62483+39x_62484+19x_62485+64x_62486+81x_62487+68x_62488+70x_62489+85x_62490+43x_62491+32x_62492+38x_62493+25x_62494+70x_62495+84x_62496+16x_62497+5x_62498+5x_62499+61x_62500+63x_62501+26x_62502+65x_62503+45x_62504+66x_62505+78x_62506+40x_62507+39x_62508+84x_62509+64x_62510+47x_62511+x_62512+18x_62513+69x_62514+57x_62515+100x_62516+63x_62517+67x_62518+18x_62519+79x_62520+10x_62521+88x_62522+45x_62523+82x_62524+66x_62525+26x_62526+35x_62527+53x_62528+53x_62529+21x_62530+46x_62531+33x_62532+98x_62533+12x_62534+54x_62535+16x_62536+79x_62537+93x_62538+45x_62539+22x_62540+23x_62541+72x_62542+37x_62543+38x_62544+93x_62545+42x_62546+7x_62547+57x_62548+24x_62549+91x_62550+7x_62551+85x_62552+38x_62553+72x_62554+30x_62555+50x_62556+52x_62557+82x_62558+8x_62559+86x_62560+33x_62561+14x_62562+37x_62563+10x_62564+23x_62565+75x_62566+36x_62567+51x_62568+3x_62569+33x_62570+53x_62571+26x_62572+50x_62573+51x_62574+41x_62575+71x_62576+85x_62577+57x_62578+19x_62579+58x_62580+41x_62581+35x_62582+18x_62583+x_62584+7x_62585+83x_62586+47x_62587+97x_62588+79x_62589+38x_62590+13x_62591+97x_62592+12x_62593+92x_62594+81x_62595+40x_62596+42x_62597+92x_62598+31x_62599+48x_62600+77x_62601+17x_62602+30x_62603+37x_62604+8x_62605+99x_62606+5x_62607+55x_62608+76x_62609+32x_62610+10x_62611+20x_62612+87x_62613+51x_62614+3x_62615+19x_62616+44x_62617+26x_62618+37x_62619+37x_62620+54x_62621+72x_62622+71x_62623+38x_62624+88x_62625+92x_62626+14x_62627+3x_62628+6x_62629+35x_62630+73x_62631+4x_62632+38x_62633+77x_62634+x_62635+91x_62636+92x_62637+14x_62638+6x_62639+68x_62640+77x_62641+77x_62642+4x_62643+96x_62644+75x_62645+89x_62646+34x_62647+88x_62648+39x_62649+39x_62650+15x_62651+94x_62652+54x_62653+70x_62654+81x_62655+44x_62656+90x_62657+58x_62658+42x_62659+30x_62660+37x_62661+60x_62662+94x_62663+70x_62664+54x_62665+9x_62666+99x_62667+21x_62668+95x_62669+98x_62670+50x_62671+72x_62672+95x_62673+72x_62674+98x_62675+53x_62676+15x_62677+57x_62678+57x_62679+97x_62680+98x_62681+45x_62682+70x_62683+7x_62684+83x_62685+71x_62686+19x_62687+10x_62688+44x_62689+20x_62690+78x_62691+67x_62692+78x_62693+53x_62694+87x_62695+22x_62696+57x_62697+42x_62698+80x_62699+12x_62700+33x_62701+50x_62702+98x_62703+9x_62704+99x_62705+70x_62706+77x_62707+28x_62708+53x_62709+58x_62710+96x_62711+93x_62712+100x_62713+96x_62714+7x_62715+59x_62716+6x_62717+82x_62718+20x_62719+47x_62720+45x_62721+86x_62722+99x_62723+44x_62724+51x_62725+47x_62726+60x_62727+87x_62728+84x_62729+80x_62730+22x_62731+58x_62732+33x_62733+11x_62734+23x_62735+100x_62736+71x_62737+85x_62738+81x_62739+7x_62740+54x_62741+84x_62742+84x_62743+95x_62744+35x_62745+30x_62746+50x_62747+26x_62748+55x_62749+17x_62750+84x_62751+81x_62752+55x_62753+59x_62754+75x_62755+76x_62756+23x_62757+68x_62758+65x_62759+89x_62760+48x_62761+27x_62762+74x_62763+90x_62764+56x_62765+69x_62766+23x_62767+59x_62768+40x_62769+15x_62770+43x_62771+20x_62772+64x_62773+59x_62774+63x_62775+78x_62776+21x_62777+40x_62778+27x_62779+96x_62780+20x_62781+55x_62782+46x_62783+95x_62784+21x_62785+89x_62786+85x_62787+73x_62788+71x_62789+63x_62790+77x_62791+45x_62792+83x_62793+76x_62794+92x_62795+74x_62796+31x_62797+30x_62798+41x_62799+88x_62800+41x_62801+68x_62802+63x_62803+43x_62804+70x_62805+9x_62806+54x_62807+39x_62808+25x_62809+12x_62810+16x_62811+73x_62812+79x_62813+70x_62814+32x_62815+82x_62816+88x_62817+85x_62818+x_62819+59x_62820+83x_62821+2x_62822+96x_62823+28x_62824+23x_62825+76x_62826+53x_62827+40x_62828+45x_62829+26x_62830+70x_62831+6x_62832+34x_62833+22x_62834+36x_62835+94x_62836+75x_62837+86x_62838+93x_62839+89x_62840+63x_62841+26x_62842+24x_62843+25x_62844+29x_62845+84x_62846+91x_62847+2x_62848+22x_62849+23x_62850+43x_62851+55x_62852+90x_62853+87x_62854+68x_62855+79x_62856+54x_62857+29x_62858+11x_62859+55x_62860+30x_62861+88x_62862+34x_62863+72x_62864+41x_62865+14x_62866+36x_62867+56x_62868+19x_62869+29x_62870+18x_62871+42x_62872+90x_62873+14x_62874+14x_62875+56x_62876+55x_62877+15x_62878+55x_62879+86x_62880+58x_62881+2x_62882+74x_62883+42x_62884+59x_62885+45x_62886+53x_62887+11x_62888+38x_62889+53x_62890+90x_62891+39x_62892+93x_62893+89x_62894+95x_62895+85x_62896+50x_62897+8x_62898+92x_62899+52x_62900+8x_62901+81x_62902+73x_62903+51x_62904+54x_62905+12x_62906+99x_62907+10x_62908+81x_62909+2x_62910+31x_62911+61x_62912+40x_62913+63x_62914+34x_62915+49x_62916+15x_62917+49x_62918+4x_62919+61x_62920+10x_62921+95x_62922+76x_62923+67x_62924+91x_62925+71x_62926+57x_62927+43x_62928+20x_62929+6x_62930+95x_62931+52x_62932+83x_62933+75x_62934+23x_62935+17x_62936+11x_62937+39x_62938+30x_62939+23x_62940+96x_62941+32x_62942+87x_62943+54x_62944+30x_62945+83x_62946+23x_62947+22x_62948+8x_62949+51x_62950+62x_62951+40x_62952+74x_62953+8x_62954+30x_62955+38x_62956+28x_62957+91x_62958+54x_62959+96x_62960+26x_62961+75x_62962+67x_62963+47x_62964+49x_62965+35x_62966+38x_62967+29x_62968+65x_62969+42x_62970+36x_62971+35x_62972+34x_62973+70x_62974+2x_62975+93x_62976+12x_62977+70x_62978+10x_62979+36x_62980+53x_62981+7x_62982+82x_62983+98x_62984+96x_62985+78x_62986+7x_62987+46x_62988+30x_62989+12x_62990+71x_62991+5x_62992+91x_62993+27x_62994+53x_62995+67x_62996+96x_62997+14x_62998+96x_62999+62x_63000+66x_63001+62x_63002+48x_63003+4x_63004+37x_63005+8x_63006+29x_63007+8x_63008+60x_63009+56x_63010+93x_63011+96x_63012+31x_63013+39x_63014+99x_63015+44x_63016+49x_63017+89x_63018+x_63019+25x_63020+24x_63021+94x_63022+91x_63023+25x_63024+55x_63025+88x_63026+75x_63027+60x_63028+22x_63029+47x_63030+72x_63031+29x_63032+92x_63033+99x_63034+7x_63035+47x_63036+21x_63037+73x_63038+24x_63039+13x_63040+70x_63041+26x_63042+30x_63043+30x_63044+20x_63045+41x_63046+36x_63047+73x_63048+87x_63049+69x_63050+69x_63051+84x_63052+55x_63053+3x_63054+18x_63055+80x_63056+55x_63057+11x_63058+62x_63059+94x_63060+11x_63061+74x_63062+3x_63063+80x_63064+36x_63065+83x_63066+32x_63067+55x_63068+51x_63069+17x_63070+20x_63071+79x_63072+8x_63073+64x_63074+73x_63075+3x_63076+65x_63077+16x_63078+76x_63079+54x_63080+22x_63081+86x_63082+33x_63083+17x_63084+35x_63085+57x_63086+79x_63087+10x_63088+87x_63089+29x_63090+47x_63091+93x_63092+68x_63093+62x_63094+56x_63095+36x_63096+75x_63097+25x_63098+19x_63099+71x_63100+15x_63101+44x_63102+100x_63103+29x_63104+11x_63105+76x_63106+5x_63107+63x_63108+14x_63109+37x_63110+3x_63111+92x_63112+14x_63113+9x_63114+41x_63115+7x_63116+77x_63117+92x_63118+52x_63119+47x_63120+46x_63121+49x_63122+92x_63123+28x_63124+44x_63125+59x_63126+51x_63127+53x_63128+33x_63129+90x_63130+74x_63131+49x_63132+38x_63133+14x_63134+27x_63135+x_63136+5x_63137+99x_63138+20x_63139+52x_63140+100x_63141+77x_63142+15x_63143+7x_63144+83x_63145+57x_63146+x_63147+55x_63148+20x_63149+40x_63150+67x_63151+97x_63152+65x_63153+67x_63154+23x_63155+73x_63156+86x_63157+41x_63158+3x_63159+74x_63160+26x_63161+66x_63162+29x_63163+69x_63164+12x_63165+65x_63166+31x_63167+35x_63168+30x_63169+51x_63170+75x_63171+67x_63172+24x_63173+14x_63174+20x_63175+97x_63176+38x_63177+90x_63178+12x_63179+61x_63180+37x_63181+94x_63182+12x_63183+8x_63184+89x_63185+89x_63186+21x_63187+54x_63188+94x_63189+24x_63190+55x_63191+90x_63192+68x_63193+27x_63194+50x_63195+75x_63196+83x_63197+74x_63198+69x_63199+79x_63200+x_63201+75x_63202+31x_63203+81x_63204+9x_63205+4x_63206+35x_63207+66x_63208+72x_63209+20x_63210+33x_63211+70x_63212+92x_63213+33x_63214+20x_63215+59x_63216+13x_63217+49x_63218+41x_63219+16x_63220+50x_63221+40x_63222+86x_63223+43x_63224+56x_63225+10x_63226+21x_63227+37x_63228+95x_63229+82x_63230+86x_63231+32x_63232+19x_63233+71x_63234+68x_63235+98x_63236+83x_63237+44x_63238+17x_63239+73x_63240+37x_63241+86x_63242+18x_63243+54x_63244+71x_63245+55x_63246+100x_63247+35x_63248+99x_63249+49x_63250+63x_63251+79x_63252+66x_63253+36x_63254+73x_63255+11x_63256+31x_63257+66x_63258+39x_63259+64x_63260+64x_63261+5x_63262+55x_63263+3x_63264+93x_63265+36x_63266+62x_63267+43x_63268+89x_63269+20x_63270+92x_63271+79x_63272+37x_63273+21x_63274+68x_63275+32x_63276+57x_63277+55x_63278+96x_63279+95x_63280+43x_63281+53x_63282+66x_63283+92x_63284+61x_63285+12x_63286+46x_63287+2x_63288+61x_63289+2x_63290+72x_63291+35x_63292+61x_63293+68x_63294+17x_63295+97x_63296+54x_63297+55x_63298+39x_63299+76x_63300+65x_63301+44x_63302+22x_63303+53x_63304+38x_63305+26x_63306+x_63307+100x_63308+4x_63309+15x_63310+94x_63311+81x_63312+97x_63313+27x_63314+66x_63315+77x_63316+27x_63317+4x_63318+49x_63319+36x_63320+56x_63321+71x_63322+41x_63323+51x_63324+47x_63325+84x_63326+74x_63327+56x_63328+16x_63329+50x_63330+54x_63331+63x_63332+35x_63333+30x_63334+52x_63335+50x_63336+11x_63337+69x_63338+78x_63339+35x_63340+45x_63341+5x_63342+8x_63343+22x_63344+21x_63345+43x_63346+47x_63347+62x_63348+94x_63349+90x_63350+43x_63351+10x_63352+33x_63353+24x_63354+83x_63355+66x_63356+43x_63357+77x_63358+51x_63359+21x_63360+49x_63361+4x_63362+18x_63363+7x_63364+96x_63365+95x_63366+54x_63367+19x_63368+68x_63369+9x_63370+33x_63371+73x_63372+36x_63373+89x_63374+4x_63375+60x_63376+35x_63377+90x_63378+2x_63379+38x_63380+9x_63381+89x_63382+3x_63383+65x_63384+55x_63385+96x_63386+85x_63387+61x_63388+5x_63389+80x_63390+96x_63391+20x_63392+25x_63393+62x_63394+19x_63395+35x_63396+67x_63397+76x_63398+39x_63399+24x_63400+61x_63401+64x_63402+39x_63403+38x_63404+35x_63405+13x_63406+36x_63407+66x_63408+87x_63409+75x_63410+83x_63411+83x_63412+95x_63413+17x_63414+61x_63415+53x_63416+58x_63417+60x_63418+66x_63419+80x_63420+82x_63421+91x_63422+33x_63423+45x_63424+43x_63425+12x_63426+65x_63427+75x_63428+50x_63429+72x_63430+42x_63431+9x_63432+54x_63433+71x_63434+6x_63435+71x_63436+38x_63437+83x_63438+67x_63439+30x_63440+80x_63441+60x_63442+35x_63443+64x_63444+26x_63445+32x_63446+48x_63447+10x_63448+39x_63449+96x_63450+62x_63451+69x_63452+51x_63453+2x_63454+17x_63455+60x_63456+88x_63457+36x_63458+31x_63459+2x_63460+19x_63461+65x_63462+81x_63463+79x_63464+74x_63465+89x_63466+49x_63467+21x_63468+34x_63469+84x_63470+13x_63471+88x_63472+67x_63473+40x_63474+6x_63475+44x_63476+8x_63477+33x_63478+69x_63479+15x_63480+53x_63481+49x_63482+30x_63483+100x_63484+50x_63485+31x_63486+29x_63487+9x_63488+25x_63489+6x_63490+58x_63491+16x_63492+70x_63493+41x_63494+15x_63495+5x_63496+19x_63497+10x_63498+27x_63499+83x_63500+33x_63501+52x_63502+40x_63503+37x_63504+86x_63505+10x_63506+94x_63507+87x_63508+13x_63509+69x_63510+39x_63511+52x_63512+85x_63513+87x_63514+x_63515+12x_63516+6x_63517+83x_63518+87x_63519+83x_63520+3x_63521+91x_63522+41x_63523+45x_63524+27x_63525+6x_63526+16x_63527+81x_63528+42x_63529+21x_63530+11x_63531+86x_63532+28x_63533+10x_63534+86x_63535+67x_63536+16x_63537+4x_63538+26x_63539+5x_63540+13x_63541+80x_63542+66x_63543+20x_63544+44x_63545+51x_63546+88x_63547+58x_63548+6x_63549+49x_63550+12x_63551+4x_63552+2x_63553+14x_63554+27x_63555+62x_63556+25x_63557+89x_63558+5x_63559+16x_63560+59x_63561+65x_63562+78x_63563+55x_63564+84x_63565+77x_63566+69x_63567+35x_63568+96x_63569+34x_63570+64x_63571+5x_63572+84x_63573+89x_63574+66x_63575+36x_63576+61x_63577+59x_63578+50x_63579+22x_63580+25x_63581+91x_63582+47x_63583+26x_63584+24x_63585+48x_63586+49x_63587+61x_63588+77x_63589+77x_63590+49x_63591+53x_63592+84x_63593+78x_63594+75x_63595+52x_63596+x_63597+12x_63598+96x_63599+31x_63600+60x_63601+20x_63602+37x_63603+12x_63604+32x_63605+91x_63606+63x_63607+72x_63608+3x_63609+63x_63610+67x_63611+27x_63612+37x_63613+46x_63614+44x_63615+70x_63616+51x_63617+72x_63618+23x_63619+94x_63620+69x_63621+21x_63622+43x_63623+60x_63624+79x_63625+80x_63626+8x_63627+7x_63628+x_63629+86x_63630+27x_63631+4x_63632+36x_63633+59x_63634+67x_63635+40x_63636+68x_63637+38x_63638+8x_63639+36x_63640+56x_63641+91x_63642+63x_63643+87x_63644+87x_63645+66x_63646+20x_63647+66x_63648+91x_63649+40x_63650+54x_63651+72x_63652+24x_63653+x_63654+34x_63655+21x_63656+93x_63657+67x_63658+65x_63659+98x_63660+9x_63661+x_63662+39x_63663+x_63664+76x_63665+x_63666+22x_63667+68x_63668+70x_63669+68x_63670+78x_63671+35x_63672+18x_63673+76x_63674+44x_63675+90x_63676+44x_63677+73x_63678+79x_63679+43x_63680+55x_63681+84x_63682+27x_63683+56x_63684+59x_63685+6x_63686+58x_63687+37x_63688+27x_63689+35x_63690+58x_63691+24x_63692+87x_63693+4x_63694+39x_63695+76x_63696+59x_63697+72x_63698+11x_63699+27x_63700+31x_63701+22x_63702+29x_63703+26x_63704+39x_63705+24x_63706+28x_63707+15x_63708+13x_63709+73x_63710+22x_63711+79x_63712+88x_63713+85x_63714+28x_63715+89x_63716+46x_63717+85x_63718+42x_63719+27x_63720+13x_63721+15x_63722+69x_63723+12x_63724+83x_63725+35x_63726+68x_63727+94x_63728+71x_63729+47x_63730+88x_63731+14x_63732+67x_63733+28x_63734+91x_63735+97x_63736+72x_63737+32x_63738+18x_63739+21x_63740+54x_63741+73x_63742+20x_63743+85x_63744+66x_63745+90x_63746+6x_63747+86x_63748+66x_63749+70x_63750+48x_63751+45x_63752+57x_63753+7x_63754+66x_63755+49x_63756+10x_63757+45x_63758+52x_63759+47x_63760+8x_63761+67x_63762+47x_63763+93x_63764+83x_63765+31x_63766+9x_63767+31x_63768+94x_63769+40x_63770+49x_63771+54x_63772+49x_63773+20x_63774+85x_63775+27x_63776+36x_63777+40x_63778+25x_63779+94x_63780+4x_63781+21x_63782+83x_63783+57x_63784+29x_63785+39x_63786+20x_63787+59x_63788+83x_63789+5x_63790+81x_63791+58x_63792+24x_63793+32x_63794+84x_63795+24x_63796+14x_63797+15x_63798+71x_63799+76x_63800+29x_63801+7x_63802+52x_63803+3x_63804+67x_63805+38x_63806+66x_63807+18x_63808+62x_63809+91x_63810+17x_63811+20x_63812+60x_63813+21x_63814+82x_63815+14x_63816+90x_63817+100x_63818+22x_63819+47x_63820+100x_63821+24x_63822+97x_63823+35x_63824+26x_63825+84x_63826+87x_63827+47x_63828+10x_63829+21x_63830+85x_63831+16x_63832+25x_63833+31x_63834+57x_63835+99x_63836+76x_63837+89x_63838+65x_63839+24x_63840+15x_63841+39x_63842+40x_63843+50x_63844+4x_63845+87x_63846+67x_63847+35x_63848+38x_63849+99x_63850+42x_63851+5x_63852+53x_63853+37x_63854+32x_63855+85x_63856+70x_63857+50x_63858+19x_63859+70x_63860+56x_63861+42x_63862+21x_63863+79x_63864+18x_63865+96x_63866+96x_63867+68x_63868+29x_63869+12x_63870+42x_63871+79x_63872+66x_63873+11x_63874+51x_63875+63x_63876+90x_63877+87x_63878+82x_63879+68x_63880+79x_63881+63x_63882+x_63883+86x_63884+39x_63885+25x_63886+60x_63887+66x_63888+25x_63889+36x_63890+34x_63891+27x_63892+30x_63893+77x_63894+82x_63895+45x_63896+30x_63897+5x_63898+48x_63899+65x_63900+87x_63901+49x_63902+83x_63903+66x_63904+83x_63905+57x_63906+78x_63907+55x_63908+33x_63909+32x_63910+63x_63911+80x_63912+20x_63913+33x_63914+39x_63915+12x_63916+90x_63917+18x_63918+53x_63919+89x_63920+98x_63921+69x_63922+81x_63923+97x_63924+6x_63925+18x_63926+11x_63927+74x_63928+15x_63929+28x_63930+53x_63931+61x_63932+28x_63933+32x_63934+13x_63935+65x_63936+82x_63937+47x_63938+51x_63939+87x_63940+9x_63941+88x_63942+3x_63943+56x_63944+88x_63945+18x_63946+37x_63947+3x_63948+5x_63949+57x_63950+69x_63951+18x_63952+19x_63953+46x_63954+35x_63955+28x_63956+54x_63957+14x_63958+13x_63959+99x_63960+45x_63961+97x_63962+79x_63963+62x_63964+82x_63965+71x_63966+44x_63967+21x_63968+39x_63969+48x_63970+22x_63971+9x_63972+2x_63973+50x_63974+7x_63975+14x_63976+78x_63977+89x_63978+69x_63979+14x_63980+57x_63981+61x_63982+72x_63983+66x_63984+5x_63985+79x_63986+37x_63987+47x_63988+25x_63989+20x_63990+91x_63991+58x_63992+78x_63993+57x_63994+9x_63995+53x_63996+78x_63997+58x_63998+28x_63999+39x_64000+41x_64001+91x_64002+71x_64003+72x_64004+94x_64005+26x_64006+12x_64007+76x_64008+17x_64009+83x_64010+63x_64011+86x_64012+60x_64013+76x_64014+55x_64015+11x_64016+25x_64017+17x_64018+57x_64019+52x_64020+6x_64021+40x_64022+66x_64023+63x_64024+66x_64025+24x_64026+14x_64027+99x_64028+57x_64029+18x_64030+58x_64031+53x_64032+52x_64033+45x_64034+11x_64035+77x_64036+70x_64037+96x_64038+53x_64039+53x_64040+13x_64041+67x_64042+49x_64043+58x_64044+x_64045+34x_64046+5x_64047+38x_64048+29x_64049+86x_64050+86x_64051+40x_64052+21x_64053+81x_64054+55x_64055+41x_64056+x_64057+22x_64058+34x_64059+56x_64060+95x_64061+59x_64062+8x_64063+69x_64064+51x_64065+94x_64066+32x_64067+29x_64068+47x_64069+33x_64070+37x_64071+70x_64072+60x_64073+10x_64074+87x_64075+95x_64076+3x_64077+84x_64078+44x_64079+16x_64080+71x_64081+24x_64082+49x_64083+68x_64084+89x_64085+16x_64086+75x_64087+87x_64088+56x_64089+30x_64090+66x_64091+73x_64092+70x_64093+78x_64094+8x_64095+49x_64096+95x_64097+25x_64098+86x_64099+33x_64100+25x_64101+98x_64102+71x_64103+3x_64104+69x_64105+5x_64106+98x_64107+57x_64108+39x_64109+27x_64110+29x_64111+36x_64112+90x_64113+28x_64114+95x_64115+86x_64116+32x_64117+68x_64118+69x_64119+21x_64120+96x_64121+5x_64122+66x_64123+50x_64124+20x_64125+28x_64126+42x_64127+53x_64128+58x_64129+39x_64130+45x_64131+75x_64132+89x_64133+68x_64134+55x_64135+47x_64136+57x_64137+98x_64138+22x_64139+85x_64140+89x_64141+14x_64142+63x_64143+86x_64144+18x_64145+5x_64146+64x_64147+52x_64148+82x_64149+51x_64150+67x_64151+31x_64152+46x_64153+22x_64154+71x_64155+73x_64156+96x_64157+37x_64158+87x_64159+77x_64160+29x_64161+37x_64162+43x_64163+27x_64164+95x_64165+60x_64166+62x_64167+58x_64168+45x_64169+48x_64170+35x_64171+71x_64172+18x_64173+58x_64174+50x_64175+18x_64176+95x_64177+5x_64178+51x_64179+37x_64180+9x_64181+38x_64182+69x_64183+98x_64184+68x_64185+62x_64186+89x_64187+x_64188+25x_64189+41x_64190+91x_64191+46x_64192+49x_64193+89x_64194+49x_64195+29x_64196+24x_64197+67x_64198+94x_64199+67x_64200+59x_64201+47x_64202+55x_64203+72x_64204+55x_64205+99x_64206+5x_64207+41x_64208+3x_64209+43x_64210+92x_64211+65x_64212+84x_64213+36x_64214+10x_64215+38x_64216+10x_64217+25x_64218+43x_64219+21x_64220+48x_64221+70x_64222+81x_64223+30x_64224+78x_64225+70x_64226+69x_64227+24x_64228+21x_64229+76x_64230+78x_64231+69x_64232+53x_64233+86x_64234+35x_64235+98x_64236+47x_64237+88x_64238+44x_64239+39x_64240+53x_64241+59x_64242+50x_64243+18x_64244+70x_64245+74x_64246+38x_64247+94x_64248+28x_64249+38x_64250+2x_64251+49x_64252+58x_64253+57x_64254+72x_64255+9x_64256+98x_64257+76x_64258+75x_64259+82x_64260+94x_64261+17x_64262+76x_64263+89x_64264+79x_64265+53x_64266+18x_64267+85x_64268+52x_64269+47x_64270+35x_64271+54x_64272+39x_64273+8x_64274+48x_64275+29x_64276+100x_64277+95x_64278+79x_64279+51x_64280+75x_64281+57x_64282+23x_64283+41x_64284+45x_64285+91x_64286+38x_64287+67x_64288+69x_64289+49x_64290+95x_64291+67x_64292+69x_64293+77x_64294+24x_64295+17x_64296+9x_64297+26x_64298+25x_64299+33x_64300+55x_64301+20x_64302+20x_64303+8x_64304+46x_64305+42x_64306+28x_64307+22x_64308+34x_64309+40x_64310+50x_64311+58x_64312+52x_64313+10x_64314+9x_64315+37x_64316+63x_64317+58x_64318+58x_64319+58x_64320+47x_64321+80x_64322+58x_64323+73x_64324+65x_64325+14x_64326+28x_64327+77x_64328+79x_64329+7x_64330+29x_64331+11x_64332+95x_64333+46x_64334+71x_64335+41x_64336+96x_64337+14x_64338+40x_64339+17x_64340+61x_64341+7x_64342+26x_64343+47x_64344+84x_64345+22x_64346+11x_64347+63x_64348+71x_64349+4x_64350+56x_64351+17x_64352+77x_64353+82x_64354+94x_64355+73x_64356+88x_64357+63x_64358+42x_64359+3x_64360+12x_64361+26x_64362+6x_64363+80x_64364+32x_64365+14x_64366+40x_64367+80x_64368+70x_64369+62x_64370+77x_64371+81x_64372+67x_64373+14x_64374+87x_64375+43x_64376+10x_64377+72x_64378+47x_64379+28x_64380+48x_64381+42x_64382+73x_64383+13x_64384+73x_64385+68x_64386+63x_64387+25x_64388+33x_64389+64x_64390+25x_64391+94x_64392+37x_64393+67x_64394+24x_64395+8x_64396+27x_64397+13x_64398+33x_64399+86x_64400+94x_64401+100x_64402+64x_64403+16x_64404+35x_64405+9x_64406+6x_64407+68x_64408+16x_64409+24x_64410+4x_64411+49x_64412+4x_64413+55x_64414+97x_64415+93x_64416+39x_64417+93x_64418+51x_64419+16x_64420+95x_64421+17x_64422+2x_64423+85x_64424+87x_64425+79x_64426+68x_64427+9x_64428+100x_64429+42x_64430+66x_64431+x_64432+88x_64433+85x_64434+10x_64435+68x_64436+13x_64437+90x_64438+22x_64439+32x_64440+82x_64441+64x_64442+12x_64443+73x_64444+40x_64445+74x_64446+32x_64447+7x_64448+76x_64449+75x_64450+49x_64451+73x_64452+5x_64453+16x_64454+44x_64455+66x_64456+60x_64457+78x_64458+38x_64459+67x_64460+4x_64461+64x_64462+26x_64463+47x_64464+10x_64465+2x_64466+66x_64467+61x_64468+57x_64469+43x_64470+94x_64471+58x_64472+85x_64473+6x_64474+74x_64475+35x_64476+46x_64477+71x_64478+71x_64479+92x_64480+25x_64481+34x_64482+67x_64483+60x_64484+84x_64485+36x_64486+94x_64487+8x_64488+53x_64489+21x_64490+52x_64491+59x_64492+42x_64493+31x_64494+82x_64495+17x_64496+36x_64497+70x_64498+22x_64499+53x_64500+21x_64501+39x_64502+97x_64503+55x_64504+23x_64505+25x_64506+39x_64507+25x_64508+72x_64509+80x_64510+53x_64511+94x_64512+37x_64513+2x_64514+56x_64515+53x_64516+58x_64517+40x_64518+35x_64519+59x_64520+13x_64521+93x_64522+37x_64523+30x_64524+90x_64525+97x_64526+64x_64527+46x_64528+24x_64529+64x_64530+68x_64531+75x_64532+4x_64533+10x_64534+19x_64535+98x_64536+69x_64537+82x_64538+96x_64539+83x_64540+22x_64541+4x_64542+57x_64543+87x_64544+53x_64545+29x_64546+59x_64547+67x_64548+9x_64549+6x_64550+39x_64551+82x_64552+93x_64553+21x_64554+59x_64555+56x_64556+83x_64557+43x_64558+92x_64559+74x_64560+56x_64561+16x_64562+86x_64563+41x_64564+35x_64565+60x_64566+18x_64567+23x_64568+58x_64569+80x_64570+31x_64571+36x_64572+90x_64573+56x_64574+34x_64575+17x_64576+94x_64577+55x_64578+33x_64579+90x_64580+45x_64581+32x_64582+32x_64583+87x_64584+18x_64585+17x_64586+4x_64587+11x_64588+77x_64589+10x_64590+89x_64591+50x_64592+x_64593+91x_64594+55x_64595+27x_64596+69x_64597+27x_64598+69x_64599+52x_64600+21x_64601+6x_64602+91x_64603+92x_64604+71x_64605+68x_64606+84x_64607+76x_64608+39x_64609+84x_64610+61x_64611+55x_64612+21x_64613+89x_64614+72x_64615+75x_64616+92x_64617+94x_64618+91x_64619+70x_64620+12x_64621+84x_64622+99x_64623+68x_64624+4x_64625+55x_64626+57x_64627+61x_64628+100x_64629+59x_64630+97x_64631+76x_64632+27x_64633+91x_64634+30x_64635+74x_64636+98x_64637+4x_64638+76x_64639+96x_64640+72x_64641+99x_64642+65x_64643+15x_64644+100x_64645+24x_64646+83x_64647+78x_64648+91x_64649+57x_64650+66x_64651+18x_64652+53x_64653+59x_64654+42x_64655+60x_64656+55x_64657+47x_64658+24x_64659+98x_64660+57x_64661+84x_64662+96x_64663+21x_64664+21x_64665+x_64666+99x_64667+43x_64668+32x_64669+61x_64670+82x_64671+47x_64672+82x_64673+45x_64674+87x_64675+69x_64676+48x_64677+81x_64678+45x_64679+61x_64680+42x_64681+20x_64682+97x_64683+73x_64684+81x_64685+9x_64686+4x_64687+57x_64688+86x_64689+92x_64690+86x_64691+41x_64692+6x_64693+93x_64694+84x_64695+63x_64696+100x_64697+76x_64698+34x_64699+98x_64700+62x_64701+80x_64702+50x_64703+47x_64704+89x_64705+72x_64706+35x_64707+60x_64708+61x_64709+53x_64710+50x_64711+31x_64712+74x_64713+60x_64714+13x_64715+52x_64716+6x_64717+40x_64718+88x_64719+72x_64720+23x_64721+31x_64722+98x_64723+89x_64724+11x_64725+50x_64726+41x_64727+39x_64728+41x_64729+70x_64730+90x_64731+61x_64732+89x_64733+40x_64734+34x_64735+62x_64736+13x_64737+100x_64738+5x_64739+84x_64740+90x_64741+44x_64742+6x_64743+50x_64744+33x_64745+52x_64746+35x_64747+34x_64748+71x_64749+30x_64750+40x_64751+2x_64752+66x_64753+27x_64754+40x_64755+18x_64756+86x_64757+48x_64758+97x_64759+32x_64760+98x_64761+11x_64762+40x_64763+46x_64764+5x_64765+42x_64766+58x_64767+12x_64768+51x_64769+55x_64770+100x_64771+90x_64772+38x_64773+18x_64774+72x_64775+84x_64776+32x_64777+34x_64778+40x_64779+5x_64780+15x_64781+3x_64782+76x_64783+95x_64784+3x_64785+45x_64786+29x_64787+37x_64788+22x_64789+82x_64790+4x_64791+40x_64792+69x_64793+34x_64794+73x_64795+44x_64796+100x_64797+20x_64798+90x_64799+91x_64800+80x_64801+83x_64802+86x_64803+95x_64804+57x_64805+29x_64806+4x_64807+67x_64808+63x_64809+84x_64810+73x_64811+43x_64812+80x_64813+30x_64814+42x_64815+7x_64816+34x_64817+63x_64818+80x_64819+68x_64820+6x_64821+54x_64822+74x_64823+11x_64824+100x_64825+9x_64826+57x_64827+70x_64828+69x_64829+90x_64830+67x_64831+46x_64832+95x_64833+x_64834+25x_64835+3x_64836+16x_64837+96x_64838+64x_64839+32x_64840+26x_64841+49x_64842+80x_64843+6x_64844+77x_64845+4x_64846+49x_64847+47x_64848+62x_64849+96x_64850+69x_64851+96x_64852+61x_64853+52x_64854+4x_64855+2x_64856+19x_64857+38x_64858+5x_64859+5x_64860+53x_64861+83x_64862+6x_64863+72x_64864+27x_64865+19x_64866+25x_64867+93x_64868+47x_64869+51x_64870+39x_64871+43x_64872+85x_64873+81x_64874+52x_64875+53x_64876+15x_64877+16x_64878+53x_64879+95x_64880+5x_64881+78x_64882+58x_64883+38x_64884+2x_64885+66x_64886+65x_64887+91x_64888+58x_64889+29x_64890+61x_64891+9x_64892+81x_64893+9x_64894+52x_64895+49x_64896+10x_64897+21x_64898+13x_64899+59x_64900+10x_64901+54x_64902+79x_64903+56x_64904+7x_64905+4x_64906+63x_64907+77x_64908+89x_64909+15x_64910+19x_64911+50x_64912+59x_64913+38x_64914+89x_64915+70x_64916+64x_64917+81x_64918+9x_64919+43x_64920+83x_64921+72x_64922+86x_64923+74x_64924+83x_64925+77x_64926+90x_64927+79x_64928+23x_64929+55x_64930+32x_64931+5x_64932+56x_64933+10x_64934+59x_64935+17x_64936+37x_64937+8x_64938+67x_64939+85x_64940+4x_64941+72x_64942+2x_64943+20x_64944+49x_64945+34x_64946+48x_64947+83x_64948+74x_64949+46x_64950+32x_64951+15x_64952+95x_64953+93x_64954+88x_64955+73x_64956+64x_64957+69x_64958+33x_64959+87x_64960+20x_64961+48x_64962+52x_64963+22x_64964+93x_64965+9x_64966+23x_64967+7x_64968+43x_64969+49x_64970+25x_64971+20x_64972+52x_64973+65x_64974+71x_64975+92x_64976+63x_64977+15x_64978+96x_64979+98x_64980+12x_64981+25x_64982+21x_64983+62x_64984+20x_64985+16x_64986+13x_64987+57x_64988+22x_64989+68x_64990+64x_64991+23x_64992+84x_64993+99x_64994+90x_64995+54x_64996+68x_64997+38x_64998+36x_64999+18x_65000+42x_65001+60x_65002+55x_65003+58x_65004+64x_65005+2x_65006+49x_65007+37x_65008+43x_65009+97x_65010+43x_65011+25x_65012+24x_65013+55x_65014+82x_65015+54x_65016+87x_65017+25x_65018+96x_65019+32x_65020+59x_65021+55x_65022+21x_65023+99x_65024+69x_65025+44x_65026+37x_65027+44x_65028+100x_65029+94x_65030+47x_65031+11x_65032+9x_65033+56x_65034+73x_65035+76x_65036+36x_65037+43x_65038+71x_65039+16x_65040+28x_65041+90x_65042+5x_65043+23x_65044+84x_65045+95x_65046+22x_65047+32x_65048+11x_65049+29x_65050+9x_65051+64x_65052+60x_65053+92x_65054+68x_65055+38x_65056+93x_65057+65x_65058+55x_65059+66x_65060+16x_65061+51x_65062+21x_65063+98x_65064+9x_65065+6x_65066+2x_65067+87x_65068+73x_65069+55x_65070+31x_65071+58x_65072+83x_65073+94x_65074+65x_65075+72x_65076+31x_65077+97x_65078+92x_65079+85x_65080+91x_65081+72x_65082+52x_65083+74x_65084+11x_65085+3x_65086+33x_65087+44x_65088+16x_65089+57x_65090+70x_65091+13x_65092+44x_65093+76x_65094+82x_65095+x_65096+57x_65097+6x_65098+13x_65099+60x_65100+94x_65101+71x_65102+99x_65103+6x_65104+35x_65105+96x_65106+61x_65107+15x_65108+50x_65109+22x_65110+52x_65111+32x_65112+100x_65113+29x_65114+9x_65115+51x_65116+80x_65117+82x_65118+92x_65119+71x_65120+70x_65121+4x_65122+91x_65123+98x_65124+62x_65125+45x_65126+47x_65127+4x_65128+53x_65129+62x_65130+89x_65131+66x_65132+73x_65133+13x_65134+40x_65135+53x_65136+79x_65137+47x_65138+37x_65139+80x_65140+3x_65141+67x_65142+100x_65143+80x_65144+29x_65145+43x_65146+58x_65147+10x_65148+59x_65149+78x_65150+73x_65151+48x_65152+9x_65153+74x_65154+5x_65155+48x_65156+70x_65157+6x_65158+64x_65159+95x_65160+56x_65161+18x_65162+57x_65163+96x_65164+7x_65165+30x_65166+100x_65167+14x_65168+44x_65169+41x_65170+56x_65171+9x_65172+54x_65173+65x_65174+87x_65175+76x_65176+19x_65177+57x_65178+46x_65179+82x_65180+10x_65181+59x_65182+82x_65183+10x_65184+16x_65185+99x_65186+19x_65187+80x_65188+x_65189+44x_65190+32x_65191+16x_65192+60x_65193+10x_65194+24x_65195+71x_65196+64x_65197+6x_65198+90x_65199+11x_65200+61x_65201+77x_65202+69x_65203+26x_65204+52x_65205+26x_65206+11x_65207+79x_65208+6x_65209+70x_65210+11x_65211+78x_65212+80x_65213+83x_65214+10x_65215+78x_65216+44x_65217+30x_65218+27x_65219+14x_65220+66x_65221+9x_65222+78x_65223+95x_65224+92x_65225+6x_65226+40x_65227+32x_65228+54x_65229+35x_65230+65x_65231+21x_65232+66x_65233+53x_65234+69x_65235+37x_65236+97x_65237+91x_65238+91x_65239+30x_65240+49x_65241+83x_65242+56x_65243+40x_65244+14x_65245+63x_65246+37x_65247+x_65248+97x_65249+90x_65250+48x_65251+51x_65252+30x_65253+93x_65254+10x_65255+86x_65256+3x_65257+50x_65258+17x_65259+11x_65260+43x_65261+46x_65262+13x_65263+83x_65264+55x_65265+52x_65266+70x_65267+46x_65268+70x_65269+75x_65270+29x_65271+21x_65272+13x_65273+34x_65274+85x_65275+87x_65276+78x_65277+90x_65278+19x_65279+58x_65280+87x_65281+57x_65282+99x_65283+84x_65284+41x_65285+38x_65286+31x_65287+35x_65288+55x_65289+30x_65290+19x_65291+4x_65292+79x_65293+26x_65294+52x_65295+46x_65296+46x_65297+5x_65298+75x_65299+15x_65300+48x_65301+96x_65302+62x_65303+45x_65304+82x_65305+28x_65306+x_65307+36x_65308+31x_65309+2x_65310+82x_65311+22x_65312+38x_65313+77x_65314+45x_65315+4x_65316+82x_65317+50x_65318+13x_65319+52x_65320+38x_65321+55x_65322+49x_65323+13x_65324+16x_65325+87x_65326+6x_65327+65x_65328+5x_65329+66x_65330+3x_65331+96x_65332+45x_65333+84x_65334+9x_65335+73x_65336+78x_65337+73x_65338+15x_65339+99x_65340+64x_65341+87x_65342+83x_65343+68x_65344+10x_65345+45x_65346+56x_65347+96x_65348+56x_65349+46x_65350+91x_65351+23x_65352+62x_65353+87x_65354+22x_65355+86x_65356+5x_65357+96x_65358+26x_65359+31x_65360+x_65361+77x_65362+62x_65363+61x_65364+71x_65365+12x_65366+64x_65367+17x_65368+5x_65369+10x_65370+81x_65371+54x_65372+84x_65373+100x_65374+97x_65375+55x_65376+50x_65377+100x_65378+32x_65379+91x_65380+66x_65381+7x_65382+84x_65383+83x_65384+86x_65385+68x_65386+49x_65387+78x_65388+43x_65389+4x_65390+89x_65391+74x_65392+58x_65393+64x_65394+88x_65395+53x_65396+51x_65397+6x_65398+81x_65399+33x_65400+36x_65401+29x_65402+25x_65403+84x_65404+25x_65405+100x_65406+21x_65407+17x_65408+30x_65409+70x_65410+16x_65411+14x_65412+16x_65413+53x_65414+26x_65415+9x_65416+22x_65417+88x_65418+50x_65419+29x_65420+43x_65421+61x_65422+80x_65423+20x_65424+98x_65425+98x_65426+57x_65427+20x_65428+28x_65429+53x_65430+24x_65431+9x_65432+32x_65433+45x_65434+67x_65435+49x_65436+66x_65437+64x_65438+79x_65439+18x_65440+12x_65441+85x_65442+85x_65443+15x_65444+83x_65445+71x_65446+41x_65447+96x_65448+61x_65449+15x_65450+34x_65451+92x_65452+56x_65453+19x_65454+98x_65455+76x_65456+32x_65457+25x_65458+69x_65459+45x_65460+46x_65461+90x_65462+58x_65463+66x_65464+75x_65465+66x_65466+34x_65467+48x_65468+24x_65469+5x_65470+40x_65471+92x_65472+14x_65473+13x_65474+27x_65475+23x_65476+56x_65477+58x_65478+4x_65479+16x_65480+32x_65481+64x_65482+45x_65483+90x_65484+70x_65485+93x_65486+41x_65487+21x_65488+2x_65489+41x_65490+27x_65491+67x_65492+91x_65493+45x_65494+98x_65495+5x_65496+27x_65497+69x_65498+76x_65499+68x_65500+25x_65501+98x_65502+58x_65503+26x_65504+6x_65505+21x_65506+100x_65507+87x_65508+42x_65509+22x_65510+24x_65511+9x_65512+93x_65513+63x_65514+26x_65515+4x_65516+38x_65517+50x_65518+93x_65519+92x_65520+85x_65521+83x_65522+71x_65523+66x_65524+38x_65525+31x_65526+5x_65527+33x_65528+63x_65529+2x_65530+19x_65531+20x_65532+10x_65533+59x_65534+x_65535+91x_65536+15x_65537+28x_65538+15x_65539+82x_65540+88x_65541+100x_65542+16x_65543+45x_65544+99x_65545+58x_65546+4x_65547+47x_65548+41x_65549+72x_65550+38x_65551+19x_65552+8x_65553+70x_65554+91x_65555+47x_65556+16x_65557+58x_65558+94x_65559+92x_65560+65x_65561+5x_65562+15x_65563+87x_65564+59x_65565+94x_65566+56x_65567+26x_65568+46x_65569+75x_65570+56x_65571+61x_65572+58x_65573+13x_65574+93x_65575+41x_65576+50x_65577+41x_65578+59x_65579+11x_65580+84x_65581+84x_65582+89x_65583+51x_65584+23x_65585+98x_65586+65x_65587+53x_65588+64x_65589+94x_65590+72x_65591+23x_65592+22x_65593+64x_65594+72x_65595+27x_65596+24x_65597+6x_65598+51x_65599+13x_65600+85x_65601+18x_65602+21x_65603+2x_65604+87x_65605+71x_65606+2x_65607+23x_65608+99x_65609+29x_65610+12x_65611+48x_65612+94x_65613+52x_65614+42x_65615+19x_65616+54x_65617+81x_65618+99x_65619+12x_65620+56x_65621+60x_65622+70x_65623+18x_65624+78x_65625+80x_65626+57x_65627+92x_65628+88x_65629+49x_65630+32x_65631+68x_65632+67x_65633+27x_65634+24x_65635+24x_65636+50x_65637+93x_65638+46x_65639+59x_65640+21x_65641+39x_65642+53x_65643+x_65644+83x_65645+85x_65646+76x_65647+30x_65648+9x_65649+52x_65650+23x_65651+88x_65652+71x_65653+38x_65654+89x_65655+37x_65656+75x_65657+94x_65658+26x_65659+79x_65660+7x_65661+54x_65662+24x_65663+59x_65664+92x_65665+97x_65666+45x_65667+81x_65668+70x_65669+25x_65670+81x_65671+6x_65672+56x_65673+76x_65674+29x_65675+34x_65676+99x_65677+56x_65678+18x_65679+86x_65680+90x_65681+91x_65682+92x_65683+55x_65684+28x_65685+91x_65686+49x_65687+57x_65688+38x_65689+31x_65690+13x_65691+80x_65692+57x_65693+83x_65694+47x_65695+72x_65696+90x_65697+91x_65698+67x_65699+87x_65700+63x_65701+10x_65702+53x_65703+21x_65704+39x_65705+36x_65706+16x_65707+74x_65708+14x_65709+60x_65710+4x_65711+85x_65712+62x_65713+54x_65714+70x_65715+72x_65716+71x_65717+64x_65718+34x_65719+36x_65720+34x_65721+46x_65722+30x_65723+34x_65724+x_65725+81x_65726+19x_65727+19x_65728+50x_65729+19x_65730+82x_65731+31x_65732+59x_65733+42x_65734+86x_65735+4x_65736+95x_65737+4x_65738+52x_65739+5x_65740+92x_65741+43x_65742+46x_65743+74x_65744+13x_65745+19x_65746+8x_65747+7x_65748+52x_65749+9x_65750+27x_65751+47x_65752+50x_65753+81x_65754+75x_65755+100x_65756+28x_65757+87x_65758+98x_65759+25x_65760+15x_65761+44x_65762+72x_65763+79x_65764+53x_65765+6x_65766+66x_65767+10x_65768+94x_65769+91x_65770+92x_65771+25x_65772+5x_65773+54x_65774+7x_65775+26x_65776+11x_65777+72x_65778+96x_65779+28x_65780+88x_65781+26x_65782+80x_65783+53x_65784+11x_65785+88x_65786+4x_65787+80x_65788+39x_65789+88x_65790+5x_65791+35x_65792+96x_65793+59x_65794+50x_65795+45x_65796+34x_65797+60x_65798+37x_65799+40x_65800+53x_65801+92x_65802+77x_65803+9x_65804+39x_65805+34x_65806+6x_65807+93x_65808+72x_65809+46x_65810+23x_65811+62x_65812+100x_65813+53x_65814+21x_65815+23x_65816+34x_65817+64x_65818+78x_65819+71x_65820+80x_65821+19x_65822+48x_65823+34x_65824+39x_65825+85x_65826+19x_65827+22x_65828+40x_65829+30x_65830+9x_65831+47x_65832+77x_65833+99x_65834+7x_65835+74x_65836+44x_65837+97x_65838+41x_65839+22x_65840+29x_65841+51x_65842+100x_65843+21x_65844+67x_65845+34x_65846+75x_65847+38x_65848+50x_65849+82x_65850+81x_65851+59x_65852+85x_65853+87x_65854+97x_65855+84x_65856+33x_65857+100x_65858+23x_65859+25x_65860+91x_65861+41x_65862+43x_65863+55x_65864+96x_65865+51x_65866+41x_65867+23x_65868+85x_65869+92x_65870+63x_65871+10x_65872+85x_65873+56x_65874+19x_65875+66x_65876+58x_65877+2x_65878+62x_65879+17x_65880+60x_65881+47x_65882+97x_65883+34x_65884+48x_65885+51x_65886+63x_65887+34x_65888+23x_65889+65x_65890+42x_65891+38x_65892+28x_65893+42x_65894+44x_65895+51x_65896+69x_65897+17x_65898+2x_65899+20x_65900+54x_65901+90x_65902+12x_65903+11x_65904+79x_65905+54x_65906+17x_65907+60x_65908+36x_65909+36x_65910+51x_65911+69x_65912+21x_65913+17x_65914+9x_65915+93x_65916+21x_65917+33x_65918+89x_65919+82x_65920+79x_65921+94x_65922+73x_65923+87x_65924+46x_65925+16x_65926+11x_65927+67x_65928+59x_65929+41x_65930+36x_65931+37x_65932+8x_65933+18x_65934+93x_65935+79x_65936+65x_65937+87x_65938+85x_65939+34x_65940+56x_65941+33x_65942+26x_65943+61x_65944+89x_65945+19x_65946+81x_65947+41x_65948+97x_65949+81x_65950+3x_65951+53x_65952+45x_65953+5x_65954+22x_65955+61x_65956+92x_65957+75x_65958+92x_65959+95x_65960+59x_65961+20x_65962+72x_65963+71x_65964+96x_65965+6x_65966+45x_65967+65x_65968+19x_65969+21x_65970+29x_65971+33x_65972+50x_65973+42x_65974+90x_65975+36x_65976+35x_65977+72x_65978+17x_65979+77x_65980+83x_65981+19x_65982+37x_65983+87x_65984+61x_65985+9x_65986+25x_65987+76x_65988+x_65989+69x_65990+74x_65991+86x_65992+90x_65993+98x_65994+42x_65995+77x_65996+38x_65997+43x_65998+82x_65999+91x_66000+62x_66001+62x_66002+88x_66003+48x_66004+54x_66005+67x_66006+72x_66007+77x_66008+19x_66009+59x_66010+83x_66011+31x_66012+76x_66013+79x_66014+42x_66015+25x_66016+21x_66017+34x_66018+9x_66019+13x_66020+9x_66021+45x_66022+99x_66023+39x_66024+3x_66025+36x_66026+67x_66027+86x_66028+4x_66029+60x_66030+14x_66031+66x_66032+65x_66033+69x_66034+62x_66035+92x_66036+84x_66037+3x_66038+80x_66039+88x_66040+64x_66041+93x_66042+55x_66043+99x_66044+16x_66045+99x_66046+97x_66047+79x_66048+81x_66049+89x_66050+21x_66051+60x_66052+47x_66053+80x_66054+88x_66055+25x_66056+61x_66057+100x_66058+86x_66059+60x_66060+45x_66061+85x_66062+74x_66063+44x_66064+40x_66065+37x_66066+28x_66067+99x_66068+59x_66069+58x_66070+33x_66071+51x_66072+95x_66073+63x_66074+52x_66075+75x_66076+58x_66077+30x_66078+90x_66079+13x_66080+50x_66081+28x_66082+37x_66083+33x_66084+27x_66085+36x_66086+22x_66087+89x_66088+28x_66089+46x_66090+5x_66091+42x_66092+68x_66093+84x_66094+75x_66095+32x_66096+88x_66097+28x_66098+85x_66099+85x_66100+19x_66101+30x_66102+87x_66103+18x_66104+27x_66105+61x_66106+23x_66107+2x_66108+100x_66109+20x_66110+79x_66111+79x_66112+75x_66113+75x_66114+42x_66115+91x_66116+68x_66117+50x_66118+100x_66119+x_66120+16x_66121+81x_66122+48x_66123+8x_66124+97x_66125+30x_66126+3x_66127+3x_66128+60x_66129+84x_66130+8x_66131+41x_66132+84x_66133+49x_66134+57x_66135+63x_66136+86x_66137+27x_66138+61x_66139+69x_66140+72x_66141+100x_66142+25x_66143+94x_66144+9x_66145+33x_66146+31x_66147+63x_66148+91x_66149+78x_66150+58x_66151+10x_66152+50x_66153+27x_66154+23x_66155+68x_66156+39x_66157+27x_66158+54x_66159+56x_66160+68x_66161+47x_66162+44x_66163+36x_66164+3x_66165+42x_66166+77x_66167+53x_66168+13x_66169+50x_66170+24x_66171+12x_66172+81x_66173+37x_66174+x_66175+34x_66176+99x_66177+71x_66178+91x_66179+11x_66180+19x_66181+87x_66182+26x_66183+56x_66184+85x_66185+54x_66186+33x_66187+36x_66188+13x_66189+86x_66190+75x_66191+95x_66192+86x_66193+63x_66194+16x_66195+13x_66196+96x_66197+67x_66198+29x_66199+4x_66200+14x_66201+33x_66202+24x_66203+96x_66204+61x_66205+58x_66206+16x_66207+9x_66208+49x_66209+36x_66210+2x_66211+8x_66212+35x_66213+98x_66214+78x_66215+54x_66216+92x_66217+47x_66218+69x_66219+97x_66220+27x_66221+41x_66222+87x_66223+26x_66224+17x_66225+27x_66226+92x_66227+98x_66228+79x_66229+97x_66230+2x_66231+81x_66232+33x_66233+94x_66234+65x_66235+12x_66236+15x_66237+78x_66238+48x_66239+48x_66240+16x_66241+5x_66242+90x_66243+15x_66244+47x_66245+90x_66246+33x_66247+65x_66248+79x_66249+59x_66250+38x_66251+57x_66252+85x_66253+58x_66254+50x_66255+43x_66256+46x_66257+3x_66258+20x_66259+97x_66260+56x_66261+45x_66262+74x_66263+99x_66264+51x_66265+65x_66266+91x_66267+5x_66268+81x_66269+61x_66270+29x_66271+12x_66272+65x_66273+31x_66274+27x_66275+64x_66276+36x_66277+70x_66278+59x_66279+21x_66280+92x_66281+24x_66282+23x_66283+67x_66284+46x_66285+95x_66286+56x_66287+55x_66288+93x_66289+66x_66290+94x_66291+16x_66292+45x_66293+40x_66294+23x_66295+71x_66296+83x_66297+99x_66298+42x_66299+79x_66300+58x_66301+14x_66302+28x_66303+81x_66304+17x_66305+100x_66306+99x_66307+100x_66308+36x_66309+37x_66310+27x_66311+50x_66312+28x_66313+89x_66314+70x_66315+21x_66316+59x_66317+70x_66318+20x_66319+32x_66320+49x_66321+73x_66322+99x_66323+15x_66324+53x_66325+75x_66326+68x_66327+44x_66328+64x_66329+9x_66330+75x_66331+42x_66332+53x_66333+6x_66334+54x_66335+3x_66336+40x_66337+42x_66338+51x_66339+36x_66340+34x_66341+91x_66342+5x_66343+13x_66344+60x_66345+27x_66346+17x_66347+32x_66348+80x_66349+35x_66350+32x_66351+97x_66352+62x_66353+56x_66354+66x_66355+92x_66356+57x_66357+92x_66358+30x_66359+42x_66360+61x_66361+73x_66362+17x_66363+45x_66364+20x_66365+36x_66366+92x_66367+8x_66368+69x_66369+92x_66370+93x_66371+8x_66372+69x_66373+30x_66374+95x_66375+31x_66376+35x_66377+68x_66378+3x_66379+52x_66380+73x_66381+46x_66382+34x_66383+17x_66384+58x_66385+33x_66386+18x_66387+59x_66388+40x_66389+76x_66390+90x_66391+80x_66392+60x_66393+61x_66394+38x_66395+86x_66396+38x_66397+67x_66398+66x_66399+75x_66400+55x_66401+93x_66402+15x_66403+51x_66404+38x_66405+17x_66406+65x_66407+64x_66408+78x_66409+84x_66410+51x_66411+91x_66412+81x_66413+22x_66414+98x_66415+81x_66416+77x_66417+14x_66418+43x_66419+49x_66420+20x_66421+19x_66422+82x_66423+93x_66424+14x_66425+12x_66426+13x_66427+8x_66428+x_66429+32x_66430+73x_66431+80x_66432+3x_66433+58x_66434+48x_66435+48x_66436+62x_66437+54x_66438+89x_66439+36x_66440+93x_66441+85x_66442+69x_66443+67x_66444+98x_66445+45x_66446+13x_66447+11x_66448+53x_66449+27x_66450+11x_66451+57x_66452+69x_66453+92x_66454+88x_66455+46x_66456+27x_66457+95x_66458+48x_66459+15x_66460+53x_66461+65x_66462+83x_66463+82x_66464+80x_66465+60x_66466+48x_66467+90x_66468+31x_66469+16x_66470+9x_66471+10x_66472+100x_66473+48x_66474+21x_66475+27x_66476+98x_66477+18x_66478+89x_66479+74x_66480+63x_66481+47x_66482+56x_66483+39x_66484+96x_66485+70x_66486+82x_66487+99x_66488+68x_66489+64x_66490+28x_66491+32x_66492+100x_66493+75x_66494+77x_66495+91x_66496+62x_66497+81x_66498+25x_66499+x_66500+20x_66501+29x_66502+56x_66503+43x_66504+35x_66505+10x_66506+100x_66507+93x_66508+97x_66509+10x_66510+33x_66511+83x_66512+94x_66513+54x_66514+49x_66515+55x_66516+86x_66517+58x_66518+19x_66519+25x_66520+19x_66521+24x_66522+21x_66523+95x_66524+26x_66525+76x_66526+78x_66527+15x_66528+91x_66529+23x_66530+22x_66531+59x_66532+2x_66533+29x_66534+42x_66535+94x_66536+5x_66537+39x_66538+76x_66539+45x_66540+42x_66541+36x_66542+83x_66543+22x_66544+4x_66545+91x_66546+45x_66547+54x_66548+86x_66549+89x_66550+77x_66551+33x_66552+72x_66553+87x_66554+88x_66555+99x_66556+33x_66557+35x_66558+87x_66559+97x_66560+69x_66561+15x_66562+98x_66563+18x_66564+6x_66565+52x_66566+70x_66567+6x_66568+36x_66569+79x_66570+21x_66571+23x_66572+80x_66573+70x_66574+71x_66575+17x_66576+63x_66577+39x_66578+83x_66579+27x_66580+25x_66581+83x_66582+49x_66583+62x_66584+94x_66585+43x_66586+51x_66587+16x_66588+8x_66589+16x_66590+38x_66591+49x_66592+95x_66593+17x_66594+13x_66595+63x_66596+33x_66597+50x_66598+49x_66599+7x_66600+45x_66601+10x_66602+23x_66603+99x_66604+100x_66605+20x_66606+60x_66607+88x_66608+67x_66609+6x_66610+56x_66611+9x_66612+49x_66613+95x_66614+84x_66615+10x_66616+50x_66617+79x_66618+68x_66619+71x_66620+61x_66621+x_66622+67x_66623+55x_66624+65x_66625+69x_66626+32x_66627+52x_66628+5x_66629+94x_66630+91x_66631+100x_66632+51x_66633+96x_66634+46x_66635+2x_66636+89x_66637+47x_66638+53x_66639+96x_66640+65x_66641+64x_66642+99x_66643+73x_66644+81x_66645+83x_66646+69x_66647+30x_66648+49x_66649+65x_66650+98x_66651+47x_66652+32x_66653+9x_66654+97x_66655+41x_66656+18x_66657+61x_66658+24x_66659+65x_66660+11x_66661+70x_66662+40x_66663+81x_66664+66x_66665+61x_66666+22x_66667+40x_66668+95x_66669+89x_66670+63x_66671+62x_66672+53x_66673+50x_66674+70x_66675+27x_66676+70x_66677+16x_66678+21x_66679+31x_66680+14x_66681+46x_66682+19x_66683+70x_66684+42x_66685+64x_66686+63x_66687+16x_66688+93x_66689+87x_66690+61x_66691+32x_66692+85x_66693+18x_66694+35x_66695+39x_66696+63x_66697+19x_66698+24x_66699+2x_66700+26x_66701+79x_66702+56x_66703+50x_66704+48x_66705+23x_66706+52x_66707+80x_66708+93x_66709+32x_66710+78x_66711+46x_66712+49x_66713+65x_66714+26x_66715+66x_66716+38x_66717+41x_66718+8x_66719+87x_66720+17x_66721+56x_66722+92x_66723+31x_66724+3x_66725+14x_66726+93x_66727+39x_66728+63x_66729+25x_66730+41x_66731+27x_66732+31x_66733+43x_66734+72x_66735+52x_66736+43x_66737+27x_66738+75x_66739+69x_66740+95x_66741+75x_66742+72x_66743+88x_66744+25x_66745+14x_66746+21x_66747+29x_66748+23x_66749+10x_66750+43x_66751+40x_66752+68x_66753+42x_66754+44x_66755+4x_66756+24x_66757+84x_66758+56x_66759+42x_66760+59x_66761+79x_66762+84x_66763+59x_66764+64x_66765+39x_66766+67x_66767+67x_66768+13x_66769+4x_66770+96x_66771+19x_66772+71x_66773+98x_66774+88x_66775+73x_66776+81x_66777+23x_66778+85x_66779+39x_66780+59x_66781+66x_66782+41x_66783+92x_66784+67x_66785+14x_66786+72x_66787+8x_66788+68x_66789+47x_66790+53x_66791+3x_66792+28x_66793+36x_66794+84x_66795+50x_66796+85x_66797+67x_66798+8x_66799+73x_66800+76x_66801+63x_66802+77x_66803+29x_66804+15x_66805+39x_66806+33x_66807+98x_66808+67x_66809+8x_66810+81x_66811+33x_66812+56x_66813+58x_66814+98x_66815+21x_66816+79x_66817+77x_66818+70x_66819+57x_66820+3x_66821+61x_66822+8x_66823+32x_66824+17x_66825+93x_66826+28x_66827+91x_66828+97x_66829+87x_66830+61x_66831+50x_66832+82x_66833+4x_66834+37x_66835+89x_66836+8x_66837+68x_66838+50x_66839+21x_66840+10x_66841+15x_66842+55x_66843+57x_66844+x_66845+x_66846+79x_66847+21x_66848+99x_66849+90x_66850+100x_66851+19x_66852+94x_66853+9x_66854+35x_66855+39x_66856+11x_66857+64x_66858+25x_66859+40x_66860+44x_66861+9x_66862+83x_66863+71x_66864+60x_66865+57x_66866+99x_66867+68x_66868+93x_66869+26x_66870+94x_66871+13x_66872+23x_66873+65x_66874+85x_66875+44x_66876+83x_66877+35x_66878+31x_66879+58x_66880+61x_66881+54x_66882+46x_66883+51x_66884+70x_66885+11x_66886+64x_66887+23x_66888+10x_66889+12x_66890+69x_66891+9x_66892+61x_66893+62x_66894+65x_66895+79x_66896+11x_66897+90x_66898+8x_66899+49x_66900+98x_66901+49x_66902+22x_66903+100x_66904+82x_66905+52x_66906+75x_66907+72x_66908+30x_66909+21x_66910+43x_66911+52x_66912+57x_66913+44x_66914+55x_66915+13x_66916+64x_66917+10x_66918+59x_66919+17x_66920+74x_66921+55x_66922+31x_66923+38x_66924+93x_66925+10x_66926+49x_66927+80x_66928+77x_66929+34x_66930+44x_66931+92x_66932+44x_66933+42x_66934+15x_66935+59x_66936+53x_66937+41x_66938+66x_66939+87x_66940+73x_66941+82x_66942+25x_66943+36x_66944+23x_66945+86x_66946+24x_66947+86x_66948+x_66949+25x_66950+53x_66951+2x_66952+69x_66953+41x_66954+6x_66955+52x_66956+63x_66957+68x_66958+55x_66959+85x_66960+8x_66961+18x_66962+25x_66963+59x_66964+7x_66965+46x_66966+51x_66967+49x_66968+80x_66969+68x_66970+40x_66971+47x_66972+15x_66973+73x_66974+40x_66975+4x_66976+29x_66977+85x_66978+86x_66979+47x_66980+11x_66981+15x_66982+84x_66983+9x_66984+61x_66985+95x_66986+55x_66987+81x_66988+64x_66989+80x_66990+64x_66991+92x_66992+52x_66993+62x_66994+66x_66995+78x_66996+12x_66997+73x_66998+79x_66999+70x_67000+27x_67001+58x_67002+35x_67003+66x_67004+37x_67005+46x_67006+21x_67007+10x_67008+2x_67009+87x_67010+45x_67011+5x_67012+26x_67013+x_67014+39x_67015+40x_67016+10x_67017+53x_67018+49x_67019+41x_67020+81x_67021+6x_67022+31x_67023+47x_67024+61x_67025+6x_67026+53x_67027+77x_67028+2x_67029+25x_67030+21x_67031+100x_67032+64x_67033+64x_67034+6x_67035+83x_67036+55x_67037+81x_67038+72x_67039+62x_67040+63x_67041+82x_67042+82x_67043+11x_67044+25x_67045+50x_67046+43x_67047+15x_67048+17x_67049+59x_67050+100x_67051+57x_67052+24x_67053+50x_67054+50x_67055+100x_67056+8x_67057+65x_67058+36x_67059+48x_67060+11x_67061+55x_67062+75x_67063+87x_67064+12x_67065+17x_67066+65x_67067+84x_67068+21x_67069+71x_67070+11x_67071+95x_67072+33x_67073+16x_67074+8x_67075+58x_67076+47x_67077+89x_67078+81x_67079+3x_67080+80x_67081+26x_67082+38x_67083+18x_67084+45x_67085+6x_67086+75x_67087+2x_67088+94x_67089+79x_67090+42x_67091+41x_67092+2x_67093+37x_67094+5x_67095+11x_67096+14x_67097+34x_67098+41x_67099+48x_67100+71x_67101+15x_67102+97x_67103+31x_67104+64x_67105+40x_67106+17x_67107+4x_67108+81x_67109+80x_67110+36x_67111+92x_67112+47x_67113+43x_67114+37x_67115+30x_67116+22x_67117+96x_67118+68x_67119+3x_67120+62x_67121+96x_67122+64x_67123+32x_67124+68x_67125+6x_67126+10x_67127+57x_67128+95x_67129+64x_67130+21x_67131+98x_67132+56x_67133+19x_67134+77x_67135+74x_67136+50x_67137+61x_67138+7x_67139+42x_67140+30x_67141+88x_67142+63x_67143+62x_67144+6x_67145+5x_67146+53x_67147+17x_67148+2x_67149+46x_67150+72x_67151+53x_67152+100x_67153+91x_67154+2x_67155+31x_67156+30x_67157+36x_67158+77x_67159+96x_67160+24x_67161+45x_67162+64x_67163+5x_67164+87x_67165+44x_67166+63x_67167+34x_67168+37x_67169+2x_67170+92x_67171+46x_67172+65x_67173+7x_67174+5x_67175+18x_67176+69x_67177+29x_67178+6x_67179+63x_67180+80x_67181+28x_67182+45x_67183+74x_67184+39x_67185+52x_67186+41x_67187+32x_67188+57x_67189+8x_67190+17x_67191+4x_67192+3x_67193+72x_67194+81x_67195+93x_67196+40x_67197+8x_67198+79x_67199+81x_67200+5x_67201+28x_67202+20x_67203+32x_67204+94x_67205+95x_67206+64x_67207+35x_67208+93x_67209+25x_67210+68x_67211+52x_67212+50x_67213+14x_67214+28x_67215+18x_67216+34x_67217+61x_67218+82x_67219+33x_67220+31x_67221+81x_67222+50x_67223+94x_67224+74x_67225+73x_67226+100x_67227+82x_67228+35x_67229+77x_67230+63x_67231+3x_67232+7x_67233+50x_67234+43x_67235+40x_67236+62x_67237+74x_67238+72x_67239+31x_67240+41x_67241+64x_67242+91x_67243+29x_67244+9x_67245+31x_67246+65x_67247+11x_67248+10x_67249+46x_67250+61x_67251+66x_67252+72x_67253+6x_67254+45x_67255+25x_67256+8x_67257+50x_67258+52x_67259+65x_67260+41x_67261+58x_67262+71x_67263+23x_67264+17x_67265+100x_67266+88x_67267+44x_67268+52x_67269+50x_67270+20x_67271+27x_67272+46x_67273+35x_67274+73x_67275+8x_67276+74x_67277+92x_67278+38x_67279+36x_67280+62x_67281+38x_67282+89x_67283+39x_67284+68x_67285+70x_67286+2x_67287+87x_67288+31x_67289+37x_67290+47x_67291+42x_67292+29x_67293+47x_67294+71x_67295+11x_67296+77x_67297+x_67298+11x_67299+76x_67300+42x_67301+16x_67302+85x_67303+91x_67304+56x_67305+75x_67306+96x_67307+36x_67308+52x_67309+23x_67310+6x_67311+89x_67312+93x_67313+31x_67314+78x_67315+23x_67316+20x_67317+36x_67318+91x_67319+90x_67320+70x_67321+30x_67322+93x_67323+11x_67324+65x_67325+94x_67326+79x_67327+38x_67328+5x_67329+16x_67330+57x_67331+91x_67332+45x_67333+85x_67334+44x_67335+64x_67336+91x_67337+11x_67338+74x_67339+2x_67340+45x_67341+2x_67342+4x_67343+8x_67344+52x_67345+94x_67346+5x_67347+72x_67348+72x_67349+84x_67350+40x_67351+4x_67352+8x_67353+77x_67354+40x_67355+54x_67356+12x_67357+53x_67358+94x_67359+23x_67360+61x_67361+14x_67362+11x_67363+61x_67364+4x_67365+28x_67366+33x_67367+83x_67368+29x_67369+46x_67370+4x_67371+3x_67372+60x_67373+85x_67374+60x_67375+12x_67376+25x_67377+12x_67378+34x_67379+45x_67380+53x_67381+27x_67382+87x_67383+82x_67384+96x_67385+34x_67386+11x_67387+75x_67388+79x_67389+36x_67390+73x_67391+72x_67392+95x_67393+72x_67394+75x_67395+44x_67396+31x_67397+28x_67398+74x_67399+41x_67400+34x_67401+49x_67402+19x_67403+88x_67404+36x_67405+20x_67406+86x_67407+59x_67408+87x_67409+61x_67410+17x_67411+92x_67412+2x_67413+17x_67414+67x_67415+5x_67416+10x_67417+45x_67418+46x_67419+12x_67420+45x_67421+60x_67422+42x_67423+23x_67424+88x_67425+97x_67426+38x_67427+23x_67428+97x_67429+81x_67430+93x_67431+21x_67432+87x_67433+37x_67434+25x_67435+67x_67436+78x_67437+38x_67438+94x_67439+71x_67440+98x_67441+23x_67442+19x_67443+98x_67444+82x_67445+64x_67446+54x_67447+100x_67448+62x_67449+36x_67450+21x_67451+22x_67452+68x_67453+95x_67454+53x_67455+64x_67456+16x_67457+89x_67458+25x_67459+81x_67460+27x_67461+47x_67462+71x_67463+60x_67464+70x_67465+85x_67466+24x_67467+67x_67468+28x_67469+61x_67470+91x_67471+100x_67472+77x_67473+40x_67474+23x_67475+52x_67476+30x_67477+29x_67478+68x_67479+27x_67480+81x_67481+59x_67482+65x_67483+65x_67484+41x_67485+58x_67486+52x_67487+27x_67488+17x_67489+63x_67490+92x_67491+87x_67492+45x_67493+27x_67494+85x_67495+98x_67496+69x_67497+18x_67498+98x_67499+83x_67500+40x_67501+12x_67502+99x_67503+50x_67504+49x_67505+97x_67506+46x_67507+78x_67508+11x_67509+94x_67510+27x_67511+94x_67512+47x_67513+29x_67514+24x_67515+51x_67516+35x_67517+73x_67518+77x_67519+22x_67520+27x_67521+47x_67522+11x_67523+41x_67524+62x_67525+88x_67526+54x_67527+3x_67528+9x_67529+20x_67530+18x_67531+56x_67532+13x_67533+26x_67534+68x_67535+46x_67536+34x_67537+31x_67538+62x_67539+7x_67540+3x_67541+81x_67542+25x_67543+55x_67544+66x_67545+71x_67546+6x_67547+33x_67548+32x_67549+46x_67550+55x_67551+9x_67552+50x_67553+87x_67554+65x_67555+55x_67556+88x_67557+12x_67558+9x_67559+77x_67560+54x_67561+34x_67562+95x_67563+96x_67564+62x_67565+48x_67566+12x_67567+3x_67568+5x_67569+64x_67570+50x_67571+63x_67572+20x_67573+58x_67574+82x_67575+26x_67576+41x_67577+9x_67578+6x_67579+94x_67580+98x_67581+22x_67582+92x_67583+29x_67584+92x_67585+5x_67586+96x_67587+26x_67588+61x_67589+17x_67590+63x_67591+76x_67592+25x_67593+68x_67594+89x_67595+26x_67596+54x_67597+27x_67598+53x_67599+99x_67600+26x_67601+82x_67602+74x_67603+30x_67604+x_67605+100x_67606+40x_67607+15x_67608+69x_67609+84x_67610+x_67611+28x_67612+70x_67613+17x_67614+19x_67615+63x_67616+41x_67617+36x_67618+67x_67619+54x_67620+100x_67621+92x_67622+8x_67623+34x_67624+56x_67625+65x_67626+63x_67627+57x_67628+92x_67629+62x_67630+98x_67631+14x_67632+14x_67633+27x_67634+77x_67635+12x_67636+97x_67637+10x_67638+56x_67639+87x_67640+53x_67641+90x_67642+72x_67643+25x_67644+57x_67645+63x_67646+80x_67647+42x_67648+75x_67649+10x_67650+20x_67651+79x_67652+90x_67653+92x_67654+32x_67655+13x_67656+92x_67657+89x_67658+51x_67659+58x_67660+38x_67661+32x_67662+68x_67663+73x_67664+28x_67665+29x_67666+99x_67667+67x_67668+24x_67669+97x_67670+45x_67671+23x_67672+51x_67673+79x_67674+81x_67675+10x_67676+90x_67677+86x_67678+42x_67679+57x_67680+30x_67681+87x_67682+84x_67683+10x_67684+69x_67685+65x_67686+30x_67687+71x_67688+32x_67689+4x_67690+63x_67691+47x_67692+62x_67693+86x_67694+63x_67695+6x_67696+34x_67697+16x_67698+86x_67699+7x_67700+29x_67701+84x_67702+71x_67703+3x_67704+83x_67705+19x_67706+74x_67707+22x_67708+55x_67709+2x_67710+67x_67711+23x_67712+43x_67713+11x_67714+82x_67715+76x_67716+83x_67717+28x_67718+85x_67719+82x_67720+7x_67721+17x_67722+82x_67723+32x_67724+51x_67725+10x_67726+70x_67727+85x_67728+32x_67729+82x_67730+74x_67731+85x_67732+x_67733+5x_67734+29x_67735+43x_67736+95x_67737+92x_67738+97x_67739+79x_67740+13x_67741+21x_67742+3x_67743+47x_67744+50x_67745+19x_67746+50x_67747+13x_67748+76x_67749+80x_67750+68x_67751+96x_67752+49x_67753+47x_67754+20x_67755+48x_67756+30x_67757+45x_67758+69x_67759+89x_67760+29x_67761+44x_67762+68x_67763+93x_67764+38x_67765+85x_67766+92x_67767+41x_67768+65x_67769+32x_67770+94x_67771+39x_67772+20x_67773+35x_67774+28x_67775+94x_67776+45x_67777+17x_67778+2x_67779+46x_67780+38x_67781+15x_67782+89x_67783+89x_67784+44x_67785+61x_67786+8x_67787+55x_67788+41x_67789+31x_67790+16x_67791+31x_67792+61x_67793+56x_67794+96x_67795+70x_67796+100x_67797+17x_67798+99x_67799+17x_67800+88x_67801+85x_67802+69x_67803+76x_67804+65x_67805+87x_67806+10x_67807+24x_67808+60x_67809+10x_67810+48x_67811+5x_67812+93x_67813+45x_67814+37x_67815+23x_67816+46x_67817+89x_67818+62x_67819+2x_67820+75x_67821+80x_67822+58x_67823+71x_67824+24x_67825+10x_67826+12x_67827+39x_67828+98x_67829+7x_67830+30x_67831+36x_67832+88x_67833+14x_67834+21x_67835+39x_67836+31x_67837+20x_67838+78x_67839+63x_67840+15x_67841+56x_67842+46x_67843+15x_67844+100x_67845+12x_67846+62x_67847+13x_67848+70x_67849+96x_67850+30x_67851+85x_67852+63x_67853+99x_67854+85x_67855+51x_67856+38x_67857+5x_67858+70x_67859+77x_67860+12x_67861+18x_67862+9x_67863+66x_67864+52x_67865+87x_67866+44x_67867+28x_67868+60x_67869+39x_67870+17x_67871+75x_67872+7x_67873+100x_67874+73x_67875+72x_67876+16x_67877+8x_67878+5x_67879+47x_67880+40x_67881+42x_67882+31x_67883+30x_67884+36x_67885+11x_67886+27x_67887+99x_67888+20x_67889+33x_67890+72x_67891+32x_67892+86x_67893+13x_67894+91x_67895+22x_67896+24x_67897+70x_67898+64x_67899+70x_67900+12x_67901+99x_67902+53x_67903+11x_67904+43x_67905+47x_67906+44x_67907+99x_67908+69x_67909+56x_67910+26x_67911+5x_67912+40x_67913+85x_67914+17x_67915+82x_67916+48x_67917+40x_67918+53x_67919+83x_67920+82x_67921+34x_67922+28x_67923+99x_67924+28x_67925+61x_67926+65x_67927+22x_67928+89x_67929+x_67930+14x_67931+57x_67932+91x_67933+26x_67934+85x_67935+94x_67936+58x_67937+25x_67938+3x_67939+55x_67940+44x_67941+9x_67942+80x_67943+91x_67944+28x_67945+76x_67946+40x_67947+65x_67948+36x_67949+42x_67950+30x_67951+92x_67952+40x_67953+14x_67954+67x_67955+67x_67956+84x_67957+76x_67958+45x_67959+30x_67960+94x_67961+83x_67962+86x_67963+94x_67964+79x_67965+30x_67966+76x_67967+4x_67968+78x_67969+45x_67970+93x_67971+91x_67972+20x_67973+40x_67974+62x_67975+4x_67976+69x_67977+53x_67978+66x_67979+69x_67980+42x_67981+59x_67982+14x_67983+47x_67984+98x_67985+50x_67986+51x_67987+39x_67988+48x_67989+87x_67990+15x_67991+2x_67992+89x_67993+79x_67994+28x_67995+68x_67996+5x_67997+15x_67998+33x_67999+11x_68000+52x_68001+34x_68002+2x_68003+16x_68004+38x_68005+6x_68006+97x_68007+58x_68008+83x_68009+34x_68010+92x_68011+92x_68012+46x_68013+100x_68014+90x_68015+67x_68016+8x_68017+14x_68018+85x_68019+3x_68020+25x_68021+74x_68022+85x_68023+70x_68024+13x_68025+96x_68026+71x_68027+82x_68028+19x_68029+50x_68030+28x_68031+49x_68032+64x_68033+3x_68034+42x_68035+48x_68036+12x_68037+54x_68038+32x_68039+41x_68040+39x_68041+5x_68042+36x_68043+27x_68044+57x_68045+11x_68046+76x_68047+98x_68048+23x_68049+4x_68050+39x_68051+22x_68052+98x_68053+73x_68054+17x_68055+60x_68056+21x_68057+99x_68058+42x_68059+54x_68060+34x_68061+70x_68062+41x_68063+78x_68064+83x_68065+80x_68066+74x_68067+98x_68068+56x_68069+23x_68070+66x_68071+49x_68072+25x_68073+2x_68074+69x_68075+94x_68076+90x_68077+3x_68078+89x_68079+42x_68080+87x_68081+37x_68082+9x_68083+69x_68084+22x_68085+28x_68086+49x_68087+9x_68088+61x_68089+85x_68090+6x_68091+4x_68092+70x_68093+14x_68094+68x_68095+100x_68096+24x_68097+16x_68098+76x_68099+56x_68100+49x_68101+47x_68102+52x_68103+37x_68104+30x_68105+33x_68106+51x_68107+23x_68108+33x_68109+21x_68110+65x_68111+82x_68112+54x_68113+63x_68114+29x_68115+x_68116+97x_68117+81x_68118+53x_68119+3x_68120+79x_68121+33x_68122+9x_68123+47x_68124+44x_68125+88x_68126+12x_68127+64x_68128+16x_68129+60x_68130+18x_68131+56x_68132+75x_68133+16x_68134+12x_68135+40x_68136+12x_68137+68x_68138+73x_68139+58x_68140+42x_68141+65x_68142+96x_68143+21x_68144+98x_68145+30x_68146+37x_68147+17x_68148+42x_68149+23x_68150+29x_68151+60x_68152+42x_68153+2x_68154+93x_68155+37x_68156+69x_68157+48x_68158+98x_68159+38x_68160+21x_68161+65x_68162+52x_68163+9x_68164+82x_68165+9x_68166+26x_68167+79x_68168+69x_68169+33x_68170+61x_68171+23x_68172+84x_68173+99x_68174+87x_68175+95x_68176+30x_68177+60x_68178+62x_68179+53x_68180+27x_68181+93x_68182+37x_68183+37x_68184+33x_68185+93x_68186+9x_68187+69x_68188+89x_68189+100x_68190+18x_68191+20x_68192+89x_68193+71x_68194+75x_68195+22x_68196+26x_68197+8x_68198+63x_68199+92x_68200+31x_68201+70x_68202+99x_68203+50x_68204+54x_68205+85x_68206+96x_68207+71x_68208+78x_68209+35x_68210+72x_68211+72x_68212+72x_68213+x_68214+78x_68215+4x_68216+63x_68217+2x_68218+90x_68219+26x_68220+36x_68221+76x_68222+5x_68223+26x_68224+98x_68225+46x_68226+5x_68227+43x_68228+10x_68229+30x_68230+98x_68231+72x_68232+41x_68233+10x_68234+31x_68235+100x_68236+66x_68237+18x_68238+43x_68239+74x_68240+86x_68241+21x_68242+42x_68243+50x_68244+100x_68245+74x_68246+7x_68247+24x_68248+42x_68249+77x_68250+55x_68251+61x_68252+8x_68253+55x_68254+82x_68255+15x_68256+75x_68257+47x_68258+89x_68259+50x_68260+60x_68261+41x_68262+14x_68263+88x_68264+93x_68265+20x_68266+8x_68267+10x_68268+74x_68269+36x_68270+87x_68271+62x_68272+95x_68273+56x_68274+17x_68275+64x_68276+6x_68277+77x_68278+98x_68279+40x_68280+64x_68281+61x_68282+3x_68283+28x_68284+31x_68285+32x_68286+98x_68287+81x_68288+60x_68289+86x_68290+64x_68291+25x_68292+32x_68293+45x_68294+10x_68295+63x_68296+74x_68297+53x_68298+88x_68299+9x_68300+10x_68301+37x_68302+72x_68303+60x_68304+41x_68305+11x_68306+43x_68307+77x_68308+x_68309+96x_68310+85x_68311+94x_68312+57x_68313+13x_68314+66x_68315+62x_68316+75x_68317+38x_68318+76x_68319+90x_68320+91x_68321+3x_68322+85x_68323+30x_68324+7x_68325+9x_68326+24x_68327+55x_68328+94x_68329+x_68330+4x_68331+15x_68332+38x_68333+71x_68334+17x_68335+76x_68336+24x_68337+46x_68338+98x_68339+99x_68340+82x_68341+39x_68342+20x_68343+43x_68344+20x_68345+95x_68346+33x_68347+3x_68348+87x_68349+63x_68350+61x_68351+46x_68352+18x_68353+83x_68354+46x_68355+70x_68356+69x_68357+18x_68358+83x_68359+66x_68360+30x_68361+39x_68362+88x_68363+73x_68364+78x_68365+45x_68366+55x_68367+34x_68368+75x_68369+15x_68370+58x_68371+78x_68372+48x_68373+53x_68374+7x_68375+92x_68376+67x_68377+31x_68378+26x_68379+49x_68380+80x_68381+81x_68382+20x_68383+18x_68384+5x_68385+41x_68386+63x_68387+39x_68388+50x_68389+63x_68390+80x_68391+3x_68392+57x_68393+34x_68394+72x_68395+37x_68396+88x_68397+96x_68398+91x_68399+68x_68400+94x_68401+21x_68402+84x_68403+82x_68404+70x_68405+52x_68406+57x_68407+47x_68408+62x_68409+72x_68410+27x_68411+44x_68412+21x_68413+21x_68414+13x_68415+100x_68416+72x_68417+7x_68418+69x_68419+17x_68420+30x_68421+17x_68422+27x_68423+55x_68424+2x_68425+78x_68426+50x_68427+24x_68428+46x_68429+42x_68430+38x_68431+5x_68432+67x_68433+69x_68434+86x_68435+50x_68436+77x_68437+34x_68438+11x_68439+58x_68440+13x_68441+94x_68442+82x_68443+61x_68444+88x_68445+99x_68446+10x_68447+21x_68448+75x_68449+63x_68450+11x_68451+97x_68452+89x_68453+64x_68454+65x_68455+44x_68456+36x_68457+4x_68458+87x_68459+51x_68460+37x_68461+4x_68462+22x_68463+87x_68464+76x_68465+28x_68466+3x_68467+13x_68468+62x_68469+2x_68470+17x_68471+84x_68472+28x_68473+60x_68474+74x_68475+5x_68476+24x_68477+100x_68478+11x_68479+15x_68480+87x_68481+40x_68482+86x_68483+92x_68484+21x_68485+34x_68486+62x_68487+22x_68488+22x_68489+78x_68490+34x_68491+94x_68492+19x_68493+55x_68494+88x_68495+74x_68496+78x_68497+81x_68498+33x_68499+55x_68500+3x_68501+100x_68502+4x_68503+44x_68504+85x_68505+11x_68506+91x_68507+21x_68508+90x_68509+54x_68510+36x_68511+17x_68512+9x_68513+7x_68514+81x_68515+84x_68516+26x_68517+37x_68518+52x_68519+6x_68520+77x_68521+98x_68522+26x_68523+15x_68524+97x_68525+17x_68526+45x_68527+55x_68528+79x_68529+73x_68530+48x_68531+36x_68532+50x_68533+30x_68534+52x_68535+59x_68536+27x_68537+35x_68538+47x_68539+92x_68540+14x_68541+89x_68542+30x_68543+22x_68544+16x_68545+38x_68546+91x_68547+62x_68548+2x_68549+98x_68550+75x_68551+61x_68552+41x_68553+50x_68554+89x_68555+71x_68556+70x_68557+46x_68558+92x_68559+33x_68560+47x_68561+4x_68562+98x_68563+98x_68564+37x_68565+97x_68566+98x_68567+64x_68568+91x_68569+95x_68570+47x_68571+6x_68572+47x_68573+49x_68574+29x_68575+24x_68576+87x_68577+80x_68578+2x_68579+13x_68580+65x_68581+98x_68582+69x_68583+45x_68584+70x_68585+13x_68586+31x_68587+12x_68588+91x_68589+75x_68590+89x_68591+28x_68592+80x_68593+89x_68594+60x_68595+100x_68596+68x_68597+53x_68598+44x_68599+96x_68600+73x_68601+43x_68602+52x_68603+10x_68604+86x_68605+46x_68606+90x_68607+89x_68608+65x_68609+36x_68610+30x_68611+92x_68612+96x_68613+68x_68614+50x_68615+100x_68616+83x_68617+53x_68618+64x_68619+25x_68620+65x_68621+40x_68622+68x_68623+27x_68624+5x_68625+58x_68626+79x_68627+71x_68628+33x_68629+47x_68630+53x_68631+63x_68632+34x_68633+99x_68634+94x_68635+96x_68636+92x_68637+72x_68638+37x_68639+88x_68640+79x_68641+11x_68642+34x_68643+8x_68644+53x_68645+49x_68646+28x_68647+63x_68648+12x_68649+54x_68650+56x_68651+68x_68652+69x_68653+54x_68654+87x_68655+26x_68656+13x_68657+65x_68658+17x_68659+20x_68660+67x_68661+76x_68662+58x_68663+21x_68664+39x_68665+26x_68666+16x_68667+81x_68668+35x_68669+66x_68670+46x_68671+87x_68672+72x_68673+2x_68674+94x_68675+31x_68676+43x_68677+8x_68678+81x_68679+13x_68680+99x_68681+13x_68682+10x_68683+75x_68684+69x_68685+x_68686+99x_68687+96x_68688+60x_68689+19x_68690+95x_68691+91x_68692+49x_68693+82x_68694+97x_68695+74x_68696+7x_68697+4x_68698+83x_68699+92x_68700+90x_68701+15x_68702+64x_68703+73x_68704+80x_68705+46x_68706+100x_68707+85x_68708+44x_68709+37x_68710+38x_68711+94x_68712+63x_68713+86x_68714+x_68715+14x_68716+97x_68717+75x_68718+27x_68719+41x_68720+56x_68721+42x_68722+10x_68723+39x_68724+81x_68725+87x_68726+62x_68727+23x_68728+55x_68729+17x_68730+20x_68731+23x_68732+78x_68733+22x_68734+44x_68735+88x_68736+67x_68737+28x_68738+38x_68739+99x_68740+87x_68741+14x_68742+10x_68743+29x_68744+33x_68745+71x_68746+41x_68747+41x_68748+43x_68749+24x_68750+85x_68751+72x_68752+64x_68753+27x_68754+78x_68755+66x_68756+85x_68757+87x_68758+80x_68759+47x_68760+48x_68761+50x_68762+48x_68763+11x_68764+90x_68765+99x_68766+72x_68767+43x_68768+32x_68769+9x_68770+81x_68771+62x_68772+24x_68773+37x_68774+71x_68775+4x_68776+24x_68777+18x_68778+69x_68779+20x_68780+8x_68781+29x_68782+73x_68783+83x_68784+29x_68785+28x_68786+50x_68787+37x_68788+22x_68789+x_68790+97x_68791+18x_68792+29x_68793+52x_68794+9x_68795+8x_68796+75x_68797+29x_68798+47x_68799+8x_68800+40x_68801+22x_68802+16x_68803+7x_68804+59x_68805+68x_68806+41x_68807+91x_68808+20x_68809+91x_68810+100x_68811+40x_68812+29x_68813+60x_68814+12x_68815+34x_68816+59x_68817+84x_68818+38x_68819+33x_68820+53x_68821+66x_68822+43x_68823+66x_68824+63x_68825+61x_68826+4x_68827+67x_68828+89x_68829+3x_68830+15x_68831+85x_68832+28x_68833+27x_68834+25x_68835+34x_68836+93x_68837+21x_68838+4x_68839+22x_68840+99x_68841+43x_68842+49x_68843+80x_68844+35x_68845+3x_68846+92x_68847+60x_68848+21x_68849+80x_68850+96x_68851+86x_68852+30x_68853+46x_68854+70x_68855+29x_68856+71x_68857+5x_68858+73x_68859+60x_68860+19x_68861+52x_68862+87x_68863+5x_68864+28x_68865+79x_68866+79x_68867+55x_68868+74x_68869+85x_68870+52x_68871+36x_68872+3x_68873+83x_68874+20x_68875+93x_68876+12x_68877+43x_68878+41x_68879+16x_68880+31x_68881+8x_68882+15x_68883+44x_68884+10x_68885+12x_68886+28x_68887+89x_68888+85x_68889+87x_68890+81x_68891+56x_68892+25x_68893+35x_68894+35x_68895+39x_68896+9x_68897+61x_68898+73x_68899+x_68900+x_68901+59x_68902+30x_68903+96x_68904+31x_68905+51x_68906+8x_68907+7x_68908+99x_68909+23x_68910+39x_68911+70x_68912+60x_68913+97x_68914+80x_68915+18x_68916+37x_68917+74x_68918+55x_68919+46x_68920+96x_68921+42x_68922+x_68923+11x_68924+28x_68925+85x_68926+67x_68927+73x_68928+79x_68929+99x_68930+30x_68931+14x_68932+98x_68933+88x_68934+3x_68935+77x_68936+82x_68937+71x_68938+42x_68939+7x_68940+x_68941+13x_68942+75x_68943+39x_68944+97x_68945+29x_68946+4x_68947+48x_68948+15x_68949+13x_68950+57x_68951+34x_68952+54x_68953+22x_68954+72x_68955+8x_68956+75x_68957+13x_68958+36x_68959+71x_68960+56x_68961+23x_68962+57x_68963+83x_68964+69x_68965+98x_68966+88x_68967+100x_68968+21x_68969+34x_68970+22x_68971+70x_68972+13x_68973+28x_68974+78x_68975+98x_68976+75x_68977+92x_68978+89x_68979+15x_68980+61x_68981+93x_68982+74x_68983+13x_68984+98x_68985+81x_68986+60x_68987+71x_68988+36x_68989+68x_68990+52x_68991+78x_68992+52x_68993+13x_68994+55x_68995+59x_68996+97x_68997+20x_68998+41x_68999+14x_69000+17x_69001+38x_69002+83x_69003+63x_69004+51x_69005+71x_69006+23x_69007+98x_69008+42x_69009+94x_69010+38x_69011+37x_69012+77x_69013+19x_69014+61x_69015+85x_69016+46x_69017+73x_69018+71x_69019+48x_69020+54x_69021+2x_69022+55x_69023+45x_69024+97x_69025+74x_69026+11x_69027+42x_69028+x_69029+75x_69030+10x_69031+4x_69032+96x_69033+25x_69034+88x_69035+27x_69036+85x_69037+95x_69038+62x_69039+15x_69040+94x_69041+14x_69042+5x_69043+93x_69044+23x_69045+27x_69046+61x_69047+57x_69048+28x_69049+49x_69050+50x_69051+60x_69052+62x_69053+18x_69054+42x_69055+38x_69056+51x_69057+33x_69058+53x_69059+59x_69060+53x_69061+51x_69062+39x_69063+44x_69064+17x_69065+68x_69066+74x_69067+38x_69068+90x_69069+75x_69070+50x_69071+46x_69072+19x_69073+63x_69074+53x_69075+99x_69076+9x_69077+52x_69078+12x_69079+56x_69080+8x_69081+12x_69082+63x_69083+58x_69084+48x_69085+81x_69086+57x_69087+78x_69088+84x_69089+60x_69090+73x_69091+80x_69092+64x_69093+40x_69094+52x_69095+42x_69096+15x_69097+54x_69098+66x_69099+4x_69100+77x_69101+93x_69102+38x_69103+35x_69104+59x_69105+19x_69106+4x_69107+79x_69108+63x_69109+35x_69110+54x_69111+61x_69112+38x_69113+13x_69114+8x_69115+70x_69116+88x_69117+35x_69118+32x_69119+99x_69120+91x_69121+71x_69122+47x_69123+52x_69124+16x_69125+69x_69126+50x_69127+22x_69128+8x_69129+86x_69130+80x_69131+94x_69132+32x_69133+65x_69134+77x_69135+91x_69136+86x_69137+4x_69138+17x_69139+76x_69140+3x_69141+31x_69142+73x_69143+87x_69144+99x_69145+88x_69146+9x_69147+46x_69148+34x_69149+21x_69150+9x_69151+17x_69152+82x_69153+95x_69154+x_69155+10x_69156+21x_69157+49x_69158+2x_69159+14x_69160+98x_69161+56x_69162+59x_69163+37x_69164+25x_69165+14x_69166+18x_69167+39x_69168+47x_69169+84x_69170+41x_69171+70x_69172+36x_69173+9x_69174+8x_69175+4x_69176+30x_69177+43x_69178+61x_69179+75x_69180+79x_69181+50x_69182+51x_69183+36x_69184+60x_69185+29x_69186+35x_69187+6x_69188+62x_69189+31x_69190+45x_69191+57x_69192+49x_69193+78x_69194+33x_69195+21x_69196+84x_69197+53x_69198+31x_69199+28x_69200+91x_69201+41x_69202+14x_69203+4x_69204+55x_69205+30x_69206+32x_69207+90x_69208+14x_69209+21x_69210+71x_69211+50x_69212+92x_69213+86x_69214+32x_69215+29x_69216+67x_69217+11x_69218+8x_69219+77x_69220+6x_69221+25x_69222+3x_69223+91x_69224+69x_69225+74x_69226+87x_69227+44x_69228+53x_69229+17x_69230+99x_69231+70x_69232+79x_69233+12x_69234+2x_69235+68x_69236+38x_69237+26x_69238+77x_69239+39x_69240+47x_69241+47x_69242+20x_69243+51x_69244+66x_69245+36x_69246+44x_69247+41x_69248+31x_69249+7x_69250+57x_69251+100x_69252+53x_69253+52x_69254+91x_69255+45x_69256+76x_69257+28x_69258+4x_69259+5x_69260+3x_69261+43x_69262+10x_69263+71x_69264+91x_69265+59x_69266+37x_69267+17x_69268+85x_69269+67x_69270+98x_69271+53x_69272+19x_69273+18x_69274+80x_69275+63x_69276+3x_69277+72x_69278+100x_69279+36x_69280+35x_69281+75x_69282+63x_69283+16x_69284+54x_69285+15x_69286+38x_69287+78x_69288+76x_69289+16x_69290+7x_69291+56x_69292+98x_69293+45x_69294+53x_69295+60x_69296+46x_69297+9x_69298+34x_69299+64x_69300+94x_69301+79x_69302+50x_69303+85x_69304+83x_69305+77x_69306+57x_69307+69x_69308+90x_69309+43x_69310+16x_69311+71x_69312+55x_69313+33x_69314+30x_69315+81x_69316+19x_69317+18x_69318+48x_69319+30x_69320+38x_69321+21x_69322+59x_69323+10x_69324+3x_69325+28x_69326+63x_69327+68x_69328+47x_69329+19x_69330+91x_69331+32x_69332+14x_69333+22x_69334+85x_69335+61x_69336+23x_69337+72x_69338+41x_69339+16x_69340+76x_69341+23x_69342+94x_69343+87x_69344+51x_69345+35x_69346+64x_69347+62x_69348+60x_69349+3x_69350+89x_69351+70x_69352+72x_69353+56x_69354+78x_69355+61x_69356+72x_69357+2x_69358+73x_69359+12x_69360+26x_69361+32x_69362+74x_69363+21x_69364+76x_69365+99x_69366+78x_69367+18x_69368+76x_69369+36x_69370+31x_69371+41x_69372+18x_69373+48x_69374+99x_69375+34x_69376+74x_69377+37x_69378+26x_69379+29x_69380+23x_69381+93x_69382+71x_69383+56x_69384+9x_69385+71x_69386+33x_69387+60x_69388+80x_69389+23x_69390+67x_69391+3x_69392+23x_69393+78x_69394+81x_69395+85x_69396+43x_69397+55x_69398+19x_69399+51x_69400+29x_69401+63x_69402+67x_69403+45x_69404+31x_69405+47x_69406+39x_69407+65x_69408+27x_69409+99x_69410+27x_69411+15x_69412+87x_69413+100x_69414+16x_69415+5x_69416+71x_69417+64x_69418+50x_69419+49x_69420+90x_69421+82x_69422+64x_69423+44x_69424+62x_69425+15x_69426+40x_69427+20x_69428+48x_69429+89x_69430+82x_69431+5x_69432+79x_69433+28x_69434+14x_69435+6x_69436+76x_69437+64x_69438+63x_69439+8x_69440+25x_69441+33x_69442+38x_69443+23x_69444+93x_69445+93x_69446+52x_69447+75x_69448+15x_69449+66x_69450+81x_69451+98x_69452+57x_69453+13x_69454+77x_69455+36x_69456+91x_69457+50x_69458+51x_69459+61x_69460+39x_69461+37x_69462+23x_69463+38x_69464+38x_69465+7x_69466+21x_69467+27x_69468+58x_69469+83x_69470+94x_69471+4x_69472+54x_69473+74x_69474+25x_69475+72x_69476+79x_69477+48x_69478+39x_69479+21x_69480+97x_69481+38x_69482+3x_69483+41x_69484+9x_69485+10x_69486+8x_69487+52x_69488+85x_69489+30x_69490+45x_69491+48x_69492+41x_69493+77x_69494+92x_69495+35x_69496+94x_69497+52x_69498+100x_69499+85x_69500+30x_69501+98x_69502+3x_69503+19x_69504+77x_69505+3x_69506+26x_69507+58x_69508+18x_69509+70x_69510+74x_69511+29x_69512+33x_69513+32x_69514+66x_69515+99x_69516+19x_69517+68x_69518+4x_69519+68x_69520+72x_69521+61x_69522+60x_69523+64x_69524+49x_69525+84x_69526+66x_69527+91x_69528+96x_69529+97x_69530+92x_69531+40x_69532+90x_69533+11x_69534+66x_69535+2x_69536+82x_69537+39x_69538+87x_69539+22x_69540+61x_69541+12x_69542+74x_69543+79x_69544+69x_69545+100x_69546+29x_69547+65x_69548+62x_69549+23x_69550+96x_69551+13x_69552+45x_69553+25x_69554+8x_69555+95x_69556+92x_69557+22x_69558+48x_69559+18x_69560+20x_69561+54x_69562+72x_69563+93x_69564+50x_69565+99x_69566+31x_69567+20x_69568+75x_69569+92x_69570+28x_69571+28x_69572+93x_69573+94x_69574+14x_69575+73x_69576+77x_69577+28x_69578+39x_69579+31x_69580+60x_69581+58x_69582+41x_69583+49x_69584+27x_69585+6x_69586+44x_69587+36x_69588+51x_69589+59x_69590+87x_69591+68x_69592+98x_69593+28x_69594+72x_69595+26x_69596+24x_69597+87x_69598+62x_69599+100x_69600+72x_69601+64x_69602+67x_69603+27x_69604+28x_69605+11x_69606+23x_69607+87x_69608+21x_69609+92x_69610+69x_69611+73x_69612+88x_69613+42x_69614+9x_69615+30x_69616+3x_69617+82x_69618+37x_69619+17x_69620+94x_69621+91x_69622+31x_69623+31x_69624+41x_69625+79x_69626+93x_69627+84x_69628+3x_69629+67x_69630+67x_69631+29x_69632+52x_69633+77x_69634+25x_69635+20x_69636+37x_69637+53x_69638+8x_69639+4x_69640+15x_69641+27x_69642+48x_69643+58x_69644+80x_69645+26x_69646+86x_69647+23x_69648+87x_69649+72x_69650+46x_69651+26x_69652+92x_69653+73x_69654+35x_69655+25x_69656+83x_69657+67x_69658+88x_69659+81x_69660+44x_69661+21x_69662+23x_69663+82x_69664+10x_69665+60x_69666+91x_69667+29x_69668+98x_69669+79x_69670+x_69671+93x_69672+48x_69673+74x_69674+51x_69675+68x_69676+100x_69677+3x_69678+74x_69679+14x_69680+17x_69681+38x_69682+57x_69683+96x_69684+43x_69685+20x_69686+68x_69687+21x_69688+14x_69689+68x_69690+45x_69691+73x_69692+72x_69693+3x_69694+16x_69695+97x_69696+51x_69697+65x_69698+60x_69699+55x_69700+33x_69701+48x_69702+54x_69703+50x_69704+55x_69705+81x_69706+38x_69707+24x_69708+16x_69709+73x_69710+52x_69711+76x_69712+14x_69713+75x_69714+76x_69715+98x_69716+50x_69717+42x_69718+21x_69719+23x_69720+8x_69721+93x_69722+82x_69723+17x_69724+80x_69725+92x_69726+23x_69727+3x_69728+92x_69729+74x_69730+89x_69731+41x_69732+56x_69733+91x_69734+9x_69735+6x_69736+43x_69737+15x_69738+34x_69739+75x_69740+72x_69741+52x_69742+29x_69743+41x_69744+21x_69745+15x_69746+64x_69747+92x_69748+25x_69749+87x_69750+x_69751+87x_69752+82x_69753+68x_69754+84x_69755+8x_69756+44x_69757+43x_69758+41x_69759+91x_69760+49x_69761+5x_69762+41x_69763+27x_69764+12x_69765+x_69766+28x_69767+56x_69768+33x_69769+48x_69770+5x_69771+45x_69772+90x_69773+42x_69774+96x_69775+49x_69776+53x_69777+35x_69778+24x_69779+83x_69780+45x_69781+32x_69782+3x_69783+51x_69784+98x_69785+98x_69786+22x_69787+57x_69788+50x_69789+22x_69790+79x_69791+72x_69792+14x_69793+95x_69794+80x_69795+39x_69796+98x_69797+69x_69798+28x_69799+16x_69800+43x_69801+23x_69802+79x_69803+66x_69804+2x_69805+3x_69806+74x_69807+18x_69808+34x_69809+15x_69810+3x_69811+89x_69812+34x_69813+14x_69814+29x_69815+34x_69816+87x_69817+37x_69818+42x_69819+51x_69820+27x_69821+25x_69822+37x_69823+89x_69824+20x_69825+64x_69826+50x_69827+95x_69828+15x_69829+30x_69830+42x_69831+84x_69832+34x_69833+63x_69834+49x_69835+78x_69836+68x_69837+16x_69838+13x_69839+59x_69840+6x_69841+16x_69842+62x_69843+10x_69844+15x_69845+38x_69846+85x_69847+8x_69848+9x_69849+100x_69850+30x_69851+60x_69852+9x_69853+32x_69854+79x_69855+15x_69856+89x_69857+31x_69858+51x_69859+80x_69860+15x_69861+57x_69862+41x_69863+49x_69864+91x_69865+45x_69866+73x_69867+29x_69868+95x_69869+85x_69870+74x_69871+12x_69872+54x_69873+93x_69874+68x_69875+23x_69876+4x_69877+32x_69878+7x_69879+74x_69880+25x_69881+26x_69882+16x_69883+60x_69884+51x_69885+73x_69886+6x_69887+84x_69888+23x_69889+37x_69890+49x_69891+37x_69892+75x_69893+33x_69894+17x_69895+3x_69896+64x_69897+27x_69898+13x_69899+81x_69900+36x_69901+48x_69902+56x_69903+91x_69904+73x_69905+80x_69906+82x_69907+x_69908+26x_69909+22x_69910+36x_69911+44x_69912+2x_69913+21x_69914+100x_69915+71x_69916+82x_69917+53x_69918+53x_69919+47x_69920+20x_69921+16x_69922+24x_69923+56x_69924+78x_69925+49x_69926+10x_69927+22x_69928+87x_69929+37x_69930+86x_69931+21x_69932+26x_69933+45x_69934+13x_69935+73x_69936+37x_69937+53x_69938+44x_69939+7x_69940+9x_69941+95x_69942+59x_69943+26x_69944+54x_69945+64x_69946+82x_69947+33x_69948+97x_69949+12x_69950+96x_69951+87x_69952+9x_69953+97x_69954+84x_69955+46x_69956+83x_69957+79x_69958+36x_69959+38x_69960+9x_69961+37x_69962+51x_69963+16x_69964+6x_69965+73x_69966+69x_69967+13x_69968+93x_69969+53x_69970+84x_69971+60x_69972+47x_69973+29x_69974+50x_69975+20x_69976+93x_69977+x_69978+8x_69979+29x_69980+21x_69981+97x_69982+72x_69983+25x_69984+87x_69985+77x_69986+x_69987+x_69988+39x_69989+64x_69990+69x_69991+42x_69992+86x_69993+72x_69994+90x_69995+x_69996+56x_69997+74x_69998+x_69999+73x_70000+51x_70001+20x_70002+17x_70003+54x_70004+90x_70005+38x_70006+80x_70007+99x_70008+40x_70009+26x_70010+36x_70011+91x_70012+99x_70013+41x_70014+53x_70015+67x_70016+5x_70017+19x_70018+73x_70019+36x_70020+59x_70021+50x_70022+15x_70023+43x_70024+16x_70025+8x_70026+51x_70027+45x_70028+46x_70029+31x_70030+49x_70031+39x_70032+20x_70033+37x_70034+71x_70035+48x_70036+53x_70037+2x_70038+54x_70039+22x_70040+12x_70041+14x_70042+69x_70043+81x_70044+93x_70045+75x_70046+43x_70047+31x_70048+6x_70049+56x_70050+96x_70051+94x_70052+83x_70053+71x_70054+93x_70055+59x_70056+80x_70057+97x_70058+34x_70059+29x_70060+93x_70061+52x_70062+29x_70063+76x_70064+35x_70065+4x_70066+83x_70067+86x_70068+20x_70069+70x_70070+21x_70071+61x_70072+61x_70073+5x_70074+94x_70075+69x_70076+40x_70077+62x_70078+65x_70079+59x_70080+61x_70081+43x_70082+89x_70083+67x_70084+89x_70085+96x_70086+91x_70087+50x_70088+19x_70089+4x_70090+26x_70091+51x_70092+45x_70093+29x_70094+33x_70095+10x_70096+19x_70097+71x_70098+81x_70099+98x_70100+47x_70101+68x_70102+73x_70103+15x_70104+71x_70105+100x_70106+63x_70107+13x_70108+82x_70109+8x_70110+30x_70111+92x_70112+91x_70113+42x_70114+31x_70115+14x_70116+48x_70117+25x_70118+77x_70119+47x_70120+40x_70121+47x_70122+6x_70123+10x_70124+40x_70125+33x_70126+8x_70127+84x_70128+87x_70129+66x_70130+68x_70131+34x_70132+61x_70133+21x_70134+69x_70135+100x_70136+45x_70137+77x_70138+92x_70139+x_70140+62x_70141+13x_70142+21x_70143+5x_70144+66x_70145+13x_70146+29x_70147+75x_70148+54x_70149+7x_70150+80x_70151+79x_70152+51x_70153+53x_70154+46x_70155+47x_70156+43x_70157+85x_70158+47x_70159+61x_70160+62x_70161+86x_70162+17x_70163+29x_70164+10x_70165+95x_70166+4x_70167+66x_70168+90x_70169+9x_70170+9x_70171+56x_70172+12x_70173+23x_70174+77x_70175+14x_70176+84x_70177+30x_70178+51x_70179+28x_70180+97x_70181+55x_70182+26x_70183+66x_70184+100x_70185+51x_70186+99x_70187+65x_70188+94x_70189+79x_70190+88x_70191+21x_70192+85x_70193+39x_70194+3x_70195+33x_70196+94x_70197+44x_70198+77x_70199+70x_70200+45x_70201+41x_70202+79x_70203+47x_70204+68x_70205+37x_70206+13x_70207+55x_70208+55x_70209+44x_70210+60x_70211+74x_70212+97x_70213+89x_70214+7x_70215+9x_70216+2x_70217+62x_70218+19x_70219+97x_70220+31x_70221+77x_70222+64x_70223+90x_70224+14x_70225+90x_70226+87x_70227+21x_70228+71x_70229+81x_70230+11x_70231+8x_70232+76x_70233+24x_70234+64x_70235+48x_70236+78x_70237+92x_70238+42x_70239+14x_70240+24x_70241+37x_70242+93x_70243+82x_70244+9x_70245+49x_70246+74x_70247+51x_70248+63x_70249+65x_70250+35x_70251+56x_70252+46x_70253+4x_70254+11x_70255+19x_70256+93x_70257+91x_70258+85x_70259+41x_70260+24x_70261+88x_70262+76x_70263+88x_70264+96x_70265+82x_70266+84x_70267+13x_70268+98x_70269+94x_70270+42x_70271+59x_70272+58x_70273+43x_70274+77x_70275+35x_70276+71x_70277+53x_70278+50x_70279+2x_70280+54x_70281+46x_70282+48x_70283+87x_70284+20x_70285+34x_70286+59x_70287+79x_70288+68x_70289+18x_70290+29x_70291+37x_70292+70x_70293+8x_70294+15x_70295+28x_70296+3x_70297+44x_70298+35x_70299+67x_70300+12x_70301+3x_70302+26x_70303+46x_70304+29x_70305+74x_70306+36x_70307+30x_70308+64x_70309+51x_70310+59x_70311+41x_70312+51x_70313+75x_70314+18x_70315+43x_70316+32x_70317+64x_70318+75x_70319+69x_70320+45x_70321+64x_70322+45x_70323+68x_70324+66x_70325+92x_70326+17x_70327+63x_70328+75x_70329+9x_70330+21x_70331+61x_70332+91x_70333+52x_70334+49x_70335+7x_70336+55x_70337+68x_70338+98x_70339+60x_70340+20x_70341+41x_70342+13x_70343+93x_70344+69x_70345+20x_70346+83x_70347+10x_70348+24x_70349+11x_70350+79x_70351+75x_70352+76x_70353+22x_70354+20x_70355+11x_70356+43x_70357+98x_70358+44x_70359+10x_70360+74x_70361+84x_70362+42x_70363+88x_70364+59x_70365+27x_70366+31x_70367+17x_70368+10x_70369+76x_70370+47x_70371+89x_70372+95x_70373+57x_70374+78x_70375+46x_70376+2x_70377+36x_70378+46x_70379+10x_70380+84x_70381+71x_70382+14x_70383+96x_70384+15x_70385+60x_70386+99x_70387+30x_70388+31x_70389+89x_70390+37x_70391+64x_70392+66x_70393+66x_70394+96x_70395+91x_70396+57x_70397+30x_70398+53x_70399+96x_70400+43x_70401+47x_70402+76x_70403+61x_70404+39x_70405+68x_70406+5x_70407+53x_70408+86x_70409+64x_70410+50x_70411+8x_70412+38x_70413+16x_70414+43x_70415+52x_70416+82x_70417+62x_70418+24x_70419+x_70420+37x_70421+4x_70422+46x_70423+76x_70424+99x_70425+71x_70426+47x_70427+35x_70428+70x_70429+70x_70430+38x_70431+11x_70432+78x_70433+63x_70434+10x_70435+39x_70436+91x_70437+75x_70438+65x_70439+56x_70440+69x_70441+52x_70442+90x_70443+5x_70444+82x_70445+99x_70446+58x_70447+14x_70448+39x_70449+88x_70450+48x_70451+9x_70452+26x_70453+2x_70454+100x_70455+10x_70456+62x_70457+26x_70458+57x_70459+44x_70460+18x_70461+34x_70462+8x_70463+11x_70464+44x_70465+6x_70466+19x_70467+63x_70468+62x_70469+77x_70470+64x_70471+35x_70472+84x_70473+30x_70474+16x_70475+79x_70476+33x_70477+17x_70478+76x_70479+37x_70480+51x_70481+69x_70482+58x_70483+79x_70484+35x_70485+86x_70486+64x_70487+60x_70488+38x_70489+38x_70490+65x_70491+96x_70492+3x_70493+13x_70494+11x_70495+86x_70496+62x_70497+79x_70498+5x_70499+64x_70500+66x_70501+5x_70502+29x_70503+93x_70504+80x_70505+80x_70506+94x_70507+64x_70508+85x_70509+6x_70510+79x_70511+38x_70512+47x_70513+2x_70514+17x_70515+28x_70516+57x_70517+47x_70518+73x_70519+61x_70520+38x_70521+68x_70522+92x_70523+24x_70524+72x_70525+77x_70526+14x_70527+91x_70528+36x_70529+60x_70530+25x_70531+6x_70532+46x_70533+26x_70534+6x_70535+56x_70536+90x_70537+56x_70538+20x_70539+2x_70540+49x_70541+20x_70542+74x_70543+15x_70544+54x_70545+46x_70546+98x_70547+74x_70548+55x_70549+67x_70550+30x_70551+12x_70552+6x_70553+72x_70554+82x_70555+48x_70556+41x_70557+79x_70558+15x_70559+81x_70560+91x_70561+90x_70562+50x_70563+25x_70564+5x_70565+48x_70566+3x_70567+95x_70568+86x_70569+38x_70570+38x_70571+11x_70572+20x_70573+96x_70574+23x_70575+4x_70576+31x_70577+7x_70578+73x_70579+90x_70580+72x_70581+18x_70582+46x_70583+98x_70584+61x_70585+39x_70586+81x_70587+64x_70588+66x_70589+70x_70590+3x_70591+75x_70592+14x_70593+99x_70594+97x_70595+58x_70596+73x_70597+80x_70598+61x_70599+33x_70600+22x_70601+65x_70602+55x_70603+97x_70604+26x_70605+94x_70606+82x_70607+57x_70608+26x_70609+86x_70610+83x_70611+18x_70612+89x_70613+55x_70614+90x_70615+93x_70616+76x_70617+37x_70618+99x_70619+42x_70620+40x_70621+23x_70622+25x_70623+24x_70624+23x_70625+85x_70626+78x_70627+76x_70628+61x_70629+30x_70630+75x_70631+81x_70632+52x_70633+12x_70634+37x_70635+81x_70636+29x_70637+46x_70638+77x_70639+68x_70640+79x_70641+44x_70642+42x_70643+89x_70644+88x_70645+38x_70646+62x_70647+56x_70648+55x_70649+68x_70650+93x_70651+71x_70652+13x_70653+78x_70654+71x_70655+3x_70656+36x_70657+64x_70658+35x_70659+62x_70660+8x_70661+56x_70662+82x_70663+56x_70664+44x_70665+12x_70666+73x_70667+44x_70668+95x_70669+55x_70670+76x_70671+38x_70672+97x_70673+92x_70674+73x_70675+94x_70676+83x_70677+96x_70678+79x_70679+43x_70680+100x_70681+6x_70682+14x_70683+12x_70684+33x_70685+x_70686+14x_70687+54x_70688+72x_70689+38x_70690+36x_70691+63x_70692+70x_70693+39x_70694+3x_70695+13x_70696+65x_70697+70x_70698+100x_70699+30x_70700+3x_70701+47x_70702+93x_70703+34x_70704+34x_70705+10x_70706+79x_70707+24x_70708+48x_70709+5x_70710+25x_70711+67x_70712+19x_70713+13x_70714+19x_70715+6x_70716+32x_70717+62x_70718+42x_70719+97x_70720+65x_70721+28x_70722+10x_70723+71x_70724+84x_70725+82x_70726+17x_70727+86x_70728+30x_70729+94x_70730+12x_70731+54x_70732+42x_70733+44x_70734+3x_70735+86x_70736+14x_70737+40x_70738+65x_70739+45x_70740+80x_70741+81x_70742+71x_70743+41x_70744+89x_70745+91x_70746+77x_70747+36x_70748+77x_70749+47x_70750+86x_70751+4x_70752+79x_70753+68x_70754+38x_70755+55x_70756+5x_70757+76x_70758+9x_70759+43x_70760+11x_70761+6x_70762+41x_70763+28x_70764+97x_70765+48x_70766+3x_70767+61x_70768+45x_70769+44x_70770+94x_70771+53x_70772+88x_70773+54x_70774+37x_70775+94x_70776+23x_70777+74x_70778+92x_70779+60x_70780+50x_70781+76x_70782+80x_70783+59x_70784+2x_70785+17x_70786+42x_70787+9x_70788+91x_70789+13x_70790+15x_70791+22x_70792+16x_70793+53x_70794+33x_70795+82x_70796+34x_70797+43x_70798+99x_70799+88x_70800+81x_70801+8x_70802+50x_70803+42x_70804+35x_70805+39x_70806+100x_70807+33x_70808+2x_70809+20x_70810+20x_70811+87x_70812+99x_70813+99x_70814+98x_70815+80x_70816+98x_70817+83x_70818+x_70819+75x_70820+88x_70821+48x_70822+43x_70823+69x_70824+6x_70825+80x_70826+25x_70827+86x_70828+63x_70829+53x_70830+64x_70831+59x_70832+47x_70833+58x_70834+x_70835+72x_70836+65x_70837+15x_70838+75x_70839+97x_70840+80x_70841+37x_70842+46x_70843+30x_70844+88x_70845+78x_70846+42x_70847+78x_70848+94x_70849+6x_70850+61x_70851+58x_70852+45x_70853+55x_70854+65x_70855+80x_70856+71x_70857+57x_70858+58x_70859+69x_70860+71x_70861+41x_70862+92x_70863+55x_70864+9x_70865+27x_70866+75x_70867+3x_70868+18x_70869+25x_70870+6x_70871+53x_70872+17x_70873+83x_70874+92x_70875+57x_70876+71x_70877+82x_70878+79x_70879+38x_70880+77x_70881+97x_70882+98x_70883+30x_70884+60x_70885+74x_70886+7x_70887+14x_70888+12x_70889+27x_70890+56x_70891+65x_70892+85x_70893+67x_70894+18x_70895+86x_70896+35x_70897+41x_70898+17x_70899+53x_70900+99x_70901+7x_70902+66x_70903+91x_70904+30x_70905+93x_70906+94x_70907+65x_70908+64x_70909+70x_70910+13x_70911+26x_70912+15x_70913+32x_70914+6x_70915+57x_70916+35x_70917+23x_70918+35x_70919+41x_70920+30x_70921+97x_70922+87x_70923+74x_70924+41x_70925+61x_70926+93x_70927+36x_70928+87x_70929+69x_70930+68x_70931+22x_70932+97x_70933+95x_70934+67x_70935+22x_70936+13x_70937+44x_70938+45x_70939+46x_70940+90x_70941+92x_70942+32x_70943+89x_70944+46x_70945+33x_70946+28x_70947+33x_70948+100x_70949+86x_70950+x_70951+97x_70952+55x_70953+16x_70954+30x_70955+45x_70956+10x_70957+69x_70958+61x_70959+61x_70960+75x_70961+89x_70962+56x_70963+64x_70964+54x_70965+98x_70966+10x_70967+40x_70968+x_70969+64x_70970+52x_70971+15x_70972+32x_70973+18x_70974+97x_70975+40x_70976+41x_70977+31x_70978+73x_70979+23x_70980+100x_70981+32x_70982+86x_70983+54x_70984+43x_70985+47x_70986+99x_70987+43x_70988+97x_70989+23x_70990+4x_70991+48x_70992+68x_70993+51x_70994+66x_70995+33x_70996+25x_70997+42x_70998+76x_70999+15x_71000+23x_71001+68x_71002+7x_71003+100x_71004+32x_71005+84x_71006+96x_71007+56x_71008+3x_71009+82x_71010+39x_71011+68x_71012+5x_71013+25x_71014+43x_71015+92x_71016+18x_71017+75x_71018+34x_71019+74x_71020+22x_71021+60x_71022+85x_71023+31x_71024+71x_71025+48x_71026+25x_71027+26x_71028+21x_71029+51x_71030+56x_71031+57x_71032+45x_71033+34x_71034+9x_71035+83x_71036+68x_71037+98x_71038+27x_71039+24x_71040+85x_71041+45x_71042+49x_71043+27x_71044+43x_71045+48x_71046+22x_71047+27x_71048+44x_71049+89x_71050+94x_71051+82x_71052+39x_71053+86x_71054+94x_71055+65x_71056+98x_71057+53x_71058+70x_71059+8x_71060+33x_71061+2x_71062+40x_71063+64x_71064+74x_71065+87x_71066+20x_71067+52x_71068+16x_71069+39x_71070+74x_71071+98x_71072+39x_71073+31x_71074+69x_71075+5x_71076+27x_71077+71x_71078+30x_71079+17x_71080+42x_71081+81x_71082+71x_71083+33x_71084+59x_71085+38x_71086+41x_71087+26x_71088+2x_71089+62x_71090+8x_71091+33x_71092+81x_71093+84x_71094+71x_71095+5x_71096+29x_71097+34x_71098+63x_71099+31x_71100+44x_71101+19x_71102+3x_71103+28x_71104+28x_71105+44x_71106+62x_71107+43x_71108+71x_71109+70x_71110+97x_71111+85x_71112+70x_71113+61x_71114+89x_71115+49x_71116+33x_71117+22x_71118+69x_71119+56x_71120+8x_71121+37x_71122+47x_71123+13x_71124+98x_71125+50x_71126+40x_71127+46x_71128+14x_71129+9x_71130+53x_71131+92x_71132+50x_71133+23x_71134+16x_71135+86x_71136+2x_71137+10x_71138+19x_71139+26x_71140+37x_71141+26x_71142+87x_71143+85x_71144+87x_71145+74x_71146+66x_71147+5x_71148+33x_71149+63x_71150+64x_71151+37x_71152+34x_71153+34x_71154+21x_71155+27x_71156+61x_71157+41x_71158+18x_71159+73x_71160+100x_71161+69x_71162+9x_71163+51x_71164+33x_71165+73x_71166+93x_71167+37x_71168+6x_71169+41x_71170+96x_71171+46x_71172+80x_71173+69x_71174+3x_71175+26x_71176+41x_71177+43x_71178+84x_71179+33x_71180+66x_71181+66x_71182+x_71183+51x_71184+53x_71185+86x_71186+68x_71187+23x_71188+57x_71189+94x_71190+98x_71191+50x_71192+55x_71193+97x_71194+90x_71195+22x_71196+4x_71197+89x_71198+81x_71199+23x_71200+98x_71201+100x_71202+67x_71203+57x_71204+83x_71205+40x_71206+93x_71207+45x_71208+90x_71209+29x_71210+26x_71211+98x_71212+6x_71213+51x_71214+6x_71215+10x_71216+4x_71217+10x_71218+48x_71219+16x_71220+4x_71221+85x_71222+23x_71223+22x_71224+18x_71225+7x_71226+35x_71227+88x_71228+96x_71229+70x_71230+54x_71231+62x_71232+7x_71233+30x_71234+71x_71235+99x_71236+3x_71237+36x_71238+85x_71239+73x_71240+18x_71241+45x_71242+37x_71243+10x_71244+20x_71245+37x_71246+91x_71247+47x_71248+27x_71249+60x_71250+67x_71251+62x_71252+72x_71253+15x_71254+17x_71255+78x_71256+67x_71257+46x_71258+79x_71259+16x_71260+36x_71261+82x_71262+92x_71263+3x_71264+64x_71265+43x_71266+15x_71267+67x_71268+100x_71269+5x_71270+70x_71271+50x_71272+71x_71273+88x_71274+22x_71275+93x_71276+81x_71277+18x_71278+78x_71279+34x_71280+95x_71281+93x_71282+75x_71283+65x_71284+66x_71285+86x_71286+3x_71287+95x_71288+31x_71289+34x_71290+4x_71291+57x_71292+27x_71293+78x_71294+46x_71295+27x_71296+30x_71297+89x_71298+86x_71299+93x_71300+49x_71301+64x_71302+82x_71303+95x_71304+35x_71305+31x_71306+27x_71307+2x_71308+73x_71309+46x_71310+5x_71311+50x_71312+39x_71313+11x_71314+30x_71315+37x_71316+78x_71317+63x_71318+23x_71319+53x_71320+53x_71321+85x_71322+80x_71323+91x_71324+11x_71325+36x_71326+76x_71327+42x_71328+54x_71329+67x_71330+64x_71331+74x_71332+69x_71333+3x_71334+81x_71335+41x_71336+39x_71337+72x_71338+91x_71339+2x_71340+40x_71341+13x_71342+43x_71343+97x_71344+22x_71345+28x_71346+14x_71347+37x_71348+95x_71349+36x_71350+21x_71351+30x_71352+95x_71353+99x_71354+x_71355+99x_71356+66x_71357+46x_71358+30x_71359+60x_71360+38x_71361+69x_71362+80x_71363+38x_71364+19x_71365+12x_71366+93x_71367+45x_71368+8x_71369+52x_71370+21x_71371+98x_71372+25x_71373+19x_71374+76x_71375+85x_71376+100x_71377+60x_71378+92x_71379+11x_71380+22x_71381+49x_71382+58x_71383+18x_71384+30x_71385+76x_71386+18x_71387+22x_71388+96x_71389+3x_71390+31x_71391+18x_71392+45x_71393+80x_71394+51x_71395+57x_71396+6x_71397+68x_71398+63x_71399+20x_71400+78x_71401+68x_71402+94x_71403+70x_71404+89x_71405+97x_71406+36x_71407+61x_71408+19x_71409+7x_71410+59x_71411+84x_71412+8x_71413+10x_71414+75x_71415+52x_71416+77x_71417+44x_71418+29x_71419+62x_71420+63x_71421+69x_71422+21x_71423+8x_71424+96x_71425+37x_71426+3x_71427+51x_71428+58x_71429+78x_71430+53x_71431+42x_71432+8x_71433+45x_71434+38x_71435+70x_71436+58x_71437+9x_71438+15x_71439+5x_71440+78x_71441+8x_71442+98x_71443+89x_71444+75x_71445+36x_71446+95x_71447+72x_71448+23x_71449+34x_71450+11x_71451+57x_71452+58x_71453+37x_71454+64x_71455+95x_71456+94x_71457+52x_71458+47x_71459+59x_71460+88x_71461+46x_71462+87x_71463+67x_71464+84x_71465+12x_71466+72x_71467+83x_71468+64x_71469+65x_71470+14x_71471+93x_71472+59x_71473+71x_71474+60x_71475+69x_71476+16x_71477+75x_71478+26x_71479+20x_71480+72x_71481+51x_71482+90x_71483+54x_71484+45x_71485+12x_71486+10x_71487+82x_71488+6x_71489+84x_71490+81x_71491+20x_71492+3x_71493+46x_71494+35x_71495+94x_71496+42x_71497+71x_71498+25x_71499+17x_71500+69x_71501+59x_71502+11x_71503+68x_71504+40x_71505+37x_71506+61x_71507+40x_71508+8x_71509+18x_71510+81x_71511+86x_71512+37x_71513+97x_71514+83x_71515+82x_71516+89x_71517+3x_71518+67x_71519+97x_71520+85x_71521+47x_71522+46x_71523+30x_71524+50x_71525+73x_71526+17x_71527+37x_71528+73x_71529+26x_71530+69x_71531+68x_71532+17x_71533+6x_71534+70x_71535+56x_71536+28x_71537+8x_71538+48x_71539+26x_71540+44x_71541+88x_71542+21x_71543+50x_71544+35x_71545+13x_71546+60x_71547+15x_71548+11x_71549+47x_71550+10x_71551+5x_71552+30x_71553+4x_71554+60x_71555+100x_71556+91x_71557+24x_71558+74x_71559+25x_71560+x_71561+80x_71562+100x_71563+23x_71564+78x_71565+18x_71566+x_71567+83x_71568+86x_71569+8x_71570+82x_71571+21x_71572+51x_71573+99x_71574+76x_71575+17x_71576+64x_71577+26x_71578+39x_71579+34x_71580+93x_71581+32x_71582+16x_71583+31x_71584+30x_71585+43x_71586+100x_71587+84x_71588+65x_71589+23x_71590+39x_71591+63x_71592+75x_71593+51x_71594+33x_71595+50x_71596+63x_71597+55x_71598+35x_71599+28x_71600+78x_71601+15x_71602+85x_71603+56x_71604+53x_71605+54x_71606+30x_71607+20x_71608+11x_71609+92x_71610+23x_71611+65x_71612+33x_71613+28x_71614+12x_71615+41x_71616+52x_71617+33x_71618+14x_71619+x_71620+78x_71621+99x_71622+37x_71623+7x_71624+88x_71625+4x_71626+81x_71627+66x_71628+13x_71629+43x_71630+48x_71631+24x_71632+98x_71633+19x_71634+17x_71635+50x_71636+31x_71637+27x_71638+87x_71639+19x_71640+67x_71641+87x_71642+39x_71643+27x_71644+88x_71645+34x_71646+4x_71647+74x_71648+28x_71649+97x_71650+58x_71651+71x_71652+16x_71653+91x_71654+67x_71655+78x_71656+85x_71657+45x_71658+2x_71659+89x_71660+41x_71661+10x_71662+88x_71663+76x_71664+96x_71665+87x_71666+63x_71667+78x_71668+66x_71669+82x_71670+61x_71671+77x_71672+74x_71673+14x_71674+18x_71675+43x_71676+67x_71677+11x_71678+92x_71679+19x_71680+4x_71681+38x_71682+87x_71683+88x_71684+7x_71685+42x_71686+29x_71687+28x_71688+49x_71689+86x_71690+3x_71691+13x_71692+14x_71693+73x_71694+78x_71695+15x_71696+89x_71697+96x_71698+32x_71699+52x_71700+15x_71701+62x_71702+42x_71703+67x_71704+36x_71705+72x_71706+71x_71707+63x_71708+35x_71709+59x_71710+55x_71711+39x_71712+51x_71713+9x_71714+9x_71715+67x_71716+48x_71717+75x_71718+32x_71719+75x_71720+36x_71721+59x_71722+89x_71723+72x_71724+60x_71725+53x_71726+93x_71727+33x_71728+79x_71729+36x_71730+61x_71731+58x_71732+89x_71733+x_71734+50x_71735+75x_71736+97x_71737+31x_71738+38x_71739+29x_71740+87x_71741+23x_71742+53x_71743+3x_71744+92x_71745+12x_71746+80x_71747+23x_71748+90x_71749+75x_71750+10x_71751+22x_71752+81x_71753+47x_71754+24x_71755+23x_71756+36x_71757+2x_71758+29x_71759+50x_71760+45x_71761+44x_71762+2x_71763+17x_71764+47x_71765+42x_71766+30x_71767+70x_71768+64x_71769+47x_71770+96x_71771+32x_71772+68x_71773+62x_71774+26x_71775+34x_71776+x_71777+59x_71778+48x_71779+92x_71780+35x_71781+18x_71782+73x_71783+49x_71784+29x_71785+19x_71786+94x_71787+34x_71788+3x_71789+95x_71790+36x_71791+x_71792+58x_71793+36x_71794+41x_71795+7x_71796+83x_71797+26x_71798+6x_71799+2x_71800+53x_71801+58x_71802+98x_71803+74x_71804+48x_71805+39x_71806+19x_71807+40x_71808+74x_71809+72x_71810+30x_71811+54x_71812+10x_71813+7x_71814+7x_71815+68x_71816+39x_71817+64x_71818+48x_71819+30x_71820+95x_71821+14x_71822+58x_71823+23x_71824+82x_71825+88x_71826+4x_71827+38x_71828+77x_71829+46x_71830+60x_71831+71x_71832+29x_71833+7x_71834+25x_71835+82x_71836+50x_71837+54x_71838+96x_71839+74x_71840+71x_71841+20x_71842+35x_71843+86x_71844+37x_71845+29x_71846+71x_71847+15x_71848+67x_71849+6x_71850+62x_71851+21x_71852+90x_71853+82x_71854+10x_71855+80x_71856+33x_71857+31x_71858+89x_71859+12x_71860+69x_71861+76x_71862+50x_71863+8x_71864+31x_71865+16x_71866+52x_71867+70x_71868+91x_71869+100x_71870+63x_71871+35x_71872+64x_71873+67x_71874+5x_71875+67x_71876+79x_71877+59x_71878+37x_71879+27x_71880+94x_71881+16x_71882+40x_71883+76x_71884+52x_71885+59x_71886+13x_71887+96x_71888+23x_71889+93x_71890+94x_71891+62x_71892+40x_71893+83x_71894+92x_71895+16x_71896+x_71897+42x_71898+71x_71899+4x_71900+41x_71901+92x_71902+74x_71903+17x_71904+18x_71905+21x_71906+33x_71907+17x_71908+99x_71909+9x_71910+91x_71911+55x_71912+59x_71913+17x_71914+56x_71915+33x_71916+82x_71917+29x_71918+4x_71919+92x_71920+13x_71921+66x_71922+69x_71923+86x_71924+97x_71925+47x_71926+60x_71927+93x_71928+46x_71929+96x_71930+65x_71931+58x_71932+54x_71933+52x_71934+23x_71935+66x_71936+88x_71937+91x_71938+53x_71939+23x_71940+8x_71941+39x_71942+97x_71943+43x_71944+77x_71945+50x_71946+19x_71947+83x_71948+50x_71949+56x_71950+71x_71951+46x_71952+92x_71953+51x_71954+82x_71955+86x_71956+13x_71957+43x_71958+12x_71959+47x_71960+100x_71961+28x_71962+13x_71963+77x_71964+61x_71965+100x_71966+9x_71967+43x_71968+10x_71969+83x_71970+25x_71971+70x_71972+12x_71973+45x_71974+31x_71975+18x_71976+63x_71977+70x_71978+90x_71979+86x_71980+100x_71981+63x_71982+73x_71983+25x_71984+45x_71985+78x_71986+74x_71987+88x_71988+61x_71989+56x_71990+76x_71991+71x_71992+25x_71993+17x_71994+79x_71995+48x_71996+22x_71997+3x_71998+61x_71999+6x_72000+43x_72001+69x_72002+93x_72003+76x_72004+43x_72005+80x_72006+30x_72007+66x_72008+93x_72009+49x_72010+65x_72011+74x_72012+81x_72013+100x_72014+21x_72015+97x_72016+21x_72017+37x_72018+33x_72019+82x_72020+35x_72021+4x_72022+38x_72023+89x_72024+17x_72025+87x_72026+98x_72027+28x_72028+49x_72029+66x_72030+91x_72031+24x_72032+27x_72033+62x_72034+64x_72035+94x_72036+60x_72037+41x_72038+23x_72039+68x_72040+70x_72041+43x_72042+84x_72043+72x_72044+82x_72045+10x_72046+4x_72047+60x_72048+55x_72049+36x_72050+42x_72051+6x_72052+79x_72053+37x_72054+37x_72055+12x_72056+29x_72057+74x_72058+7x_72059+35x_72060+5x_72061+35x_72062+78x_72063+76x_72064+12x_72065+97x_72066+19x_72067+35x_72068+75x_72069+73x_72070+21x_72071+98x_72072+17x_72073+24x_72074+46x_72075+34x_72076+65x_72077+65x_72078+43x_72079+58x_72080+17x_72081+51x_72082+25x_72083+99x_72084+24x_72085+69x_72086+98x_72087+47x_72088+80x_72089+66x_72090+91x_72091+68x_72092+18x_72093+8x_72094+87x_72095+44x_72096+38x_72097+14x_72098+96x_72099+67x_72100+22x_72101+49x_72102+48x_72103+6x_72104+13x_72105+78x_72106+65x_72107+31x_72108+88x_72109+23x_72110+17x_72111+73x_72112+74x_72113+35x_72114+24x_72115+98x_72116+84x_72117+74x_72118+19x_72119+54x_72120+3x_72121+33x_72122+17x_72123+83x_72124+31x_72125+56x_72126+96x_72127+77x_72128+15x_72129+10x_72130+46x_72131+27x_72132+19x_72133+53x_72134+73x_72135+77x_72136+8x_72137+28x_72138+38x_72139+92x_72140+82x_72141+10x_72142+84x_72143+55x_72144+75x_72145+16x_72146+74x_72147+83x_72148+43x_72149+30x_72150+89x_72151+10x_72152+44x_72153+5x_72154+88x_72155+2x_72156+46x_72157+10x_72158+76x_72159+76x_72160+90x_72161+64x_72162+12x_72163+72x_72164+41x_72165+63x_72166+53x_72167+10x_72168+49x_72169+x_72170+15x_72171+79x_72172+32x_72173+34x_72174+58x_72175+34x_72176+90x_72177+10x_72178+80x_72179+49x_72180+55x_72181+17x_72182+16x_72183+61x_72184+30x_72185+95x_72186+25x_72187+74x_72188+94x_72189+30x_72190+99x_72191+40x_72192+46x_72193+57x_72194+17x_72195+61x_72196+17x_72197+94x_72198+56x_72199+91x_72200+61x_72201+18x_72202+62x_72203+2x_72204+83x_72205+82x_72206+99x_72207+72x_72208+48x_72209+87x_72210+66x_72211+5x_72212+58x_72213+82x_72214+65x_72215+67x_72216+52x_72217+17x_72218+10x_72219+83x_72220+87x_72221+66x_72222+2x_72223+73x_72224+3x_72225+47x_72226+53x_72227+63x_72228+47x_72229+39x_72230+6x_72231+17x_72232+21x_72233+39x_72234+45x_72235+78x_72236+57x_72237+34x_72238+30x_72239+100x_72240+7x_72241+30x_72242+62x_72243+20x_72244+12x_72245+88x_72246+86x_72247+36x_72248+65x_72249+40x_72250+79x_72251+59x_72252+89x_72253+100x_72254+11x_72255+21x_72256+68x_72257+33x_72258+53x_72259+27x_72260+66x_72261+77x_72262+47x_72263+82x_72264+46x_72265+17x_72266+4x_72267+30x_72268+76x_72269+92x_72270+81x_72271+62x_72272+2x_72273+95x_72274+37x_72275+33x_72276+68x_72277+87x_72278+85x_72279+45x_72280+14x_72281+x_72282+52x_72283+38x_72284+30x_72285+30x_72286+63x_72287+46x_72288+28x_72289+92x_72290+37x_72291+34x_72292+28x_72293+20x_72294+59x_72295+78x_72296+19x_72297+5x_72298+53x_72299+67x_72300+47x_72301+100x_72302+97x_72303+70x_72304+20x_72305+67x_72306+72x_72307+15x_72308+9x_72309+34x_72310+36x_72311+41x_72312+15x_72313+94x_72314+97x_72315+13x_72316+88x_72317+64x_72318+26x_72319+16x_72320+39x_72321+83x_72322+74x_72323+10x_72324+2x_72325+28x_72326+53x_72327+18x_72328+96x_72329+66x_72330+39x_72331+78x_72332+88x_72333+45x_72334+80x_72335+77x_72336+9x_72337+68x_72338+7x_72339+47x_72340+90x_72341+100x_72342+76x_72343+97x_72344+9x_72345+16x_72346+86x_72347+79x_72348+21x_72349+99x_72350+99x_72351+53x_72352+79x_72353+55x_72354+84x_72355+87x_72356+x_72357+44x_72358+51x_72359+9x_72360+68x_72361+22x_72362+47x_72363+x_72364+85x_72365+73x_72366+70x_72367+12x_72368+71x_72369+11x_72370+39x_72371+17x_72372+89x_72373+13x_72374+24x_72375+46x_72376+29x_72377+33x_72378+5x_72379+90x_72380+75x_72381+95x_72382+41x_72383+8x_72384+82x_72385+80x_72386+16x_72387+83x_72388+70x_72389+47x_72390+77x_72391+30x_72392+67x_72393+2x_72394+70x_72395+86x_72396+59x_72397+29x_72398+68x_72399+61x_72400+12x_72401+77x_72402+5x_72403+75x_72404+61x_72405+58x_72406+97x_72407+58x_72408+85x_72409+66x_72410+97x_72411+13x_72412+43x_72413+83x_72414+34x_72415+43x_72416+45x_72417+47x_72418+3x_72419+84x_72420+82x_72421+39x_72422+54x_72423+38x_72424+68x_72425+25x_72426+45x_72427+38x_72428+95x_72429+34x_72430+16x_72431+92x_72432+39x_72433+76x_72434+95x_72435+99x_72436+80x_72437+44x_72438+68x_72439+80x_72440+69x_72441+51x_72442+72x_72443+100x_72444+35x_72445+77x_72446+34x_72447+4x_72448+81x_72449+83x_72450+65x_72451+91x_72452+72x_72453+28x_72454+96x_72455+94x_72456+64x_72457+98x_72458+50x_72459+42x_72460+16x_72461+72x_72462+92x_72463+78x_72464+34x_72465+5x_72466+91x_72467+86x_72468+67x_72469+14x_72470+37x_72471+59x_72472+18x_72473+78x_72474+75x_72475+66x_72476+75x_72477+69x_72478+48x_72479+99x_72480+38x_72481+27x_72482+56x_72483+57x_72484+47x_72485+12x_72486+63x_72487+86x_72488+11x_72489+49x_72490+100x_72491+6x_72492+11x_72493+88x_72494+16x_72495+92x_72496+91x_72497+79x_72498+9x_72499+42x_72500+24x_72501+66x_72502+34x_72503+23x_72504+75x_72505+27x_72506+33x_72507+65x_72508+82x_72509+93x_72510+79x_72511+64x_72512+5x_72513+21x_72514+44x_72515+60x_72516+93x_72517+22x_72518+76x_72519+3x_72520+66x_72521+20x_72522+88x_72523+80x_72524+83x_72525+100x_72526+12x_72527+76x_72528+79x_72529+60x_72530+99x_72531+57x_72532+36x_72533+52x_72534+75x_72535+76x_72536+46x_72537+73x_72538+17x_72539+29x_72540+27x_72541+92x_72542+35x_72543+31x_72544+64x_72545+80x_72546+4x_72547+92x_72548+69x_72549+13x_72550+44x_72551+75x_72552+27x_72553+5x_72554+16x_72555+65x_72556+80x_72557+28x_72558+25x_72559+8x_72560+5x_72561+71x_72562+41x_72563+67x_72564+24x_72565+77x_72566+47x_72567+87x_72568+77x_72569+62x_72570+98x_72571+96x_72572+84x_72573+48x_72574+32x_72575+35x_72576+90x_72577+71x_72578+16x_72579+21x_72580+72x_72581+23x_72582+11x_72583+36x_72584+52x_72585+90x_72586+96x_72587+88x_72588+16x_72589+57x_72590+60x_72591+93x_72592+35x_72593+42x_72594+33x_72595+53x_72596+84x_72597+61x_72598+90x_72599+23x_72600+17x_72601+57x_72602+22x_72603+22x_72604+72x_72605+45x_72606+14x_72607+3x_72608+73x_72609+36x_72610+77x_72611+56x_72612+87x_72613+65x_72614+26x_72615+72x_72616+12x_72617+30x_72618+16x_72619+71x_72620+2x_72621+91x_72622+93x_72623+42x_72624+2x_72625+26x_72626+57x_72627+50x_72628+2x_72629+69x_72630+22x_72631+36x_72632+76x_72633+33x_72634+75x_72635+10x_72636+14x_72637+35x_72638+13x_72639+98x_72640+28x_72641+44x_72642+97x_72643+33x_72644+64x_72645+100x_72646+7x_72647+32x_72648+12x_72649+16x_72650+54x_72651+87x_72652+58x_72653+3x_72654+88x_72655+64x_72656+18x_72657+12x_72658+72x_72659+14x_72660+85x_72661+64x_72662+41x_72663+82x_72664+68x_72665+5x_72666+39x_72667+26x_72668+59x_72669+61x_72670+99x_72671+69x_72672+84x_72673+24x_72674+37x_72675+38x_72676+23x_72677+43x_72678+57x_72679+62x_72680+86x_72681+50x_72682+87x_72683+20x_72684+78x_72685+36x_72686+41x_72687+100x_72688+60x_72689+75x_72690+38x_72691+69x_72692+83x_72693+59x_72694+30x_72695+55x_72696+96x_72697+88x_72698+49x_72699+54x_72700+81x_72701+60x_72702+57x_72703+7x_72704+87x_72705+23x_72706+100x_72707+21x_72708+23x_72709+58x_72710+45x_72711+5x_72712+15x_72713+74x_72714+98x_72715+90x_72716+86x_72717+11x_72718+78x_72719+95x_72720+5x_72721+29x_72722+54x_72723+47x_72724+77x_72725+77x_72726+52x_72727+14x_72728+32x_72729+38x_72730+20x_72731+17x_72732+79x_72733+54x_72734+7x_72735+38x_72736+12x_72737+68x_72738+17x_72739+5x_72740+65x_72741+18x_72742+16x_72743+47x_72744+3x_72745+37x_72746+42x_72747+82x_72748+17x_72749+16x_72750+65x_72751+14x_72752+66x_72753+56x_72754+65x_72755+63x_72756+69x_72757+16x_72758+98x_72759+51x_72760+44x_72761+31x_72762+8x_72763+12x_72764+18x_72765+36x_72766+43x_72767+86x_72768+38x_72769+83x_72770+47x_72771+65x_72772+28x_72773+17x_72774+90x_72775+20x_72776+83x_72777+31x_72778+21x_72779+71x_72780+25x_72781+13x_72782+65x_72783+63x_72784+6x_72785+72x_72786+48x_72787+28x_72788+96x_72789+40x_72790+9x_72791+36x_72792+28x_72793+60x_72794+83x_72795+25x_72796+3x_72797+44x_72798+39x_72799+52x_72800+84x_72801+45x_72802+31x_72803+63x_72804+79x_72805+34x_72806+18x_72807+39x_72808+6x_72809+60x_72810+72x_72811+70x_72812+10x_72813+21x_72814+61x_72815+12x_72816+43x_72817+70x_72818+84x_72819+20x_72820+38x_72821+26x_72822+3x_72823+36x_72824+92x_72825+81x_72826+96x_72827+49x_72828+83x_72829+96x_72830+94x_72831+6x_72832+89x_72833+48x_72834+65x_72835+75x_72836+71x_72837+8x_72838+16x_72839+72x_72840+4x_72841+34x_72842+23x_72843+13x_72844+69x_72845+39x_72846+18x_72847+27x_72848+12x_72849+29x_72850+67x_72851+97x_72852+91x_72853+83x_72854+15x_72855+47x_72856+50x_72857+6x_72858+74x_72859+9x_72860+68x_72861+3x_72862+21x_72863+8x_72864+92x_72865+83x_72866+15x_72867+47x_72868+65x_72869+83x_72870+70x_72871+59x_72872+90x_72873+70x_72874+95x_72875+88x_72876+51x_72877+43x_72878+11x_72879+61x_72880+22x_72881+65x_72882+50x_72883+11x_72884+97x_72885+11x_72886+74x_72887+25x_72888+41x_72889+15x_72890+96x_72891+21x_72892+29x_72893+27x_72894+84x_72895+52x_72896+47x_72897+14x_72898+20x_72899+69x_72900+2x_72901+43x_72902+40x_72903+77x_72904+27x_72905+52x_72906+58x_72907+83x_72908+43x_72909+75x_72910+47x_72911+86x_72912+54x_72913+80x_72914+69x_72915+42x_72916+59x_72917+6x_72918+15x_72919+44x_72920+39x_72921+19x_72922+26x_72923+49x_72924+55x_72925+90x_72926+25x_72927+43x_72928+6x_72929+27x_72930+47x_72931+9x_72932+92x_72933+84x_72934+x_72935+28x_72936+25x_72937+31x_72938+11x_72939+84x_72940+49x_72941+83x_72942+79x_72943+30x_72944+x_72945+35x_72946+20x_72947+21x_72948+86x_72949+17x_72950+95x_72951+56x_72952+5x_72953+x_72954+66x_72955+81x_72956+99x_72957+7x_72958+50x_72959+39x_72960+82x_72961+2x_72962+19x_72963+38x_72964+95x_72965+87x_72966+47x_72967+53x_72968+40x_72969+26x_72970+19x_72971+28x_72972+62x_72973+52x_72974+18x_72975+94x_72976+19x_72977+22x_72978+x_72979+57x_72980+58x_72981+55x_72982+97x_72983+49x_72984+53x_72985+22x_72986+3x_72987+24x_72988+x_72989+x_72990+5x_72991+75x_72992+7x_72993+59x_72994+80x_72995+44x_72996+22x_72997+19x_72998+56x_72999+19x_73000+83x_73001+59x_73002+66x_73003+27x_73004+22x_73005+65x_73006+2x_73007+63x_73008+64x_73009+90x_73010+88x_73011+96x_73012+37x_73013+7x_73014+26x_73015+8x_73016+69x_73017+37x_73018+69x_73019+44x_73020+40x_73021+98x_73022+30x_73023+98x_73024+75x_73025+97x_73026+41x_73027+42x_73028+17x_73029+17x_73030+84x_73031+62x_73032+48x_73033+4x_73034+9x_73035+67x_73036+24x_73037+84x_73038+71x_73039+37x_73040+81x_73041+6x_73042+56x_73043+28x_73044+4x_73045+97x_73046+52x_73047+96x_73048+30x_73049+95x_73050+57x_73051+71x_73052+99x_73053+22x_73054+92x_73055+64x_73056+37x_73057+20x_73058+48x_73059+63x_73060+60x_73061+80x_73062+25x_73063+32x_73064+68x_73065+55x_73066+27x_73067+29x_73068+66x_73069+86x_73070+8x_73071+72x_73072+28x_73073+35x_73074+37x_73075+72x_73076+42x_73077+91x_73078+46x_73079+28x_73080+54x_73081+72x_73082+30x_73083+82x_73084+33x_73085+93x_73086+58x_73087+46x_73088+55x_73089+91x_73090+21x_73091+82x_73092+47x_73093+45x_73094+86x_73095+62x_73096+96x_73097+56x_73098+53x_73099+12x_73100+60x_73101+80x_73102+96x_73103+93x_73104+99x_73105+9x_73106+98x_73107+84x_73108+32x_73109+97x_73110+27x_73111+71x_73112+76x_73113+74x_73114+55x_73115+49x_73116+42x_73117+13x_73118+68x_73119+92x_73120+5x_73121+38x_73122+31x_73123+75x_73124+84x_73125+82x_73126+37x_73127+27x_73128+64x_73129+97x_73130+69x_73131+27x_73132+77x_73133+59x_73134+51x_73135+47x_73136+98x_73137+39x_73138+85x_73139+68x_73140+98x_73141+68x_73142+49x_73143+x_73144+86x_73145+45x_73146+43x_73147+5x_73148+81x_73149+71x_73150+97x_73151+20x_73152+87x_73153+86x_73154+99x_73155+58x_73156+83x_73157+65x_73158+9x_73159+21x_73160+37x_73161+56x_73162+x_73163+55x_73164+79x_73165+25x_73166+25x_73167+73x_73168+52x_73169+11x_73170+81x_73171+17x_73172+93x_73173+34x_73174+x_73175+69x_73176+99x_73177+25x_73178+61x_73179+52x_73180+32x_73181+41x_73182+92x_73183+40x_73184+100x_73185+71x_73186+21x_73187+x_73188+41x_73189+33x_73190+100x_73191+66x_73192+52x_73193+36x_73194+52x_73195+67x_73196+66x_73197+6x_73198+50x_73199+18x_73200+62x_73201+29x_73202+x_73203+67x_73204+51x_73205+52x_73206+65x_73207+24x_73208+46x_73209+2x_73210+73x_73211+80x_73212+30x_73213+99x_73214+18x_73215+48x_73216+64x_73217+61x_73218+10x_73219+86x_73220+49x_73221+92x_73222+65x_73223+8x_73224+37x_73225+35x_73226+96x_73227+42x_73228+53x_73229+47x_73230+34x_73231+30x_73232+7x_73233+61x_73234+3x_73235+98x_73236+17x_73237+60x_73238+5x_73239+68x_73240+35x_73241+74x_73242+86x_73243+27x_73244+81x_73245+42x_73246+90x_73247+26x_73248+7x_73249+93x_73250+9x_73251+62x_73252+85x_73253+52x_73254+44x_73255+95x_73256+x_73257+10x_73258+70x_73259+26x_73260+72x_73261+90x_73262+49x_73263+x_73264+24x_73265+91x_73266+45x_73267+11x_73268+2x_73269+41x_73270+15x_73271+68x_73272+29x_73273+89x_73274+16x_73275+47x_73276+12x_73277+7x_73278+42x_73279+72x_73280+88x_73281+13x_73282+29x_73283+68x_73284+93x_73285+70x_73286+56x_73287+93x_73288+70x_73289+44x_73290+40x_73291+42x_73292+71x_73293+68x_73294+82x_73295+86x_73296+31x_73297+5x_73298+4x_73299+78x_73300+42x_73301+83x_73302+x_73303+97x_73304+92x_73305+40x_73306+7x_73307+31x_73308+4x_73309+25x_73310+3x_73311+29x_73312+76x_73313+2x_73314+12x_73315+54x_73316+43x_73317+91x_73318+99x_73319+79x_73320+40x_73321+34x_73322+47x_73323+6x_73324+11x_73325+55x_73326+25x_73327+47x_73328+94x_73329+28x_73330+61x_73331+87x_73332+89x_73333+63x_73334+46x_73335+60x_73336+5x_73337+26x_73338+67x_73339+75x_73340+35x_73341+100x_73342+8x_73343+23x_73344+78x_73345+11x_73346+98x_73347+91x_73348+64x_73349+50x_73350+57x_73351+88x_73352+11x_73353+35x_73354+88x_73355+76x_73356+84x_73357+25x_73358+52x_73359+52x_73360+20x_73361+45x_73362+86x_73363+39x_73364+91x_73365+23x_73366+3x_73367+18x_73368+73x_73369+63x_73370+87x_73371+31x_73372+100x_73373+76x_73374+68x_73375+4x_73376+87x_73377+17x_73378+89x_73379+82x_73380+5x_73381+36x_73382+16x_73383+18x_73384+24x_73385+11x_73386+39x_73387+75x_73388+67x_73389+17x_73390+25x_73391+42x_73392+19x_73393+17x_73394+54x_73395+97x_73396+30x_73397+65x_73398+92x_73399+30x_73400+55x_73401+46x_73402+81x_73403+83x_73404+66x_73405+20x_73406+100x_73407+98x_73408+47x_73409+86x_73410+41x_73411+58x_73412+47x_73413+37x_73414+19x_73415+97x_73416+53x_73417+58x_73418+86x_73419+68x_73420+51x_73421+15x_73422+20x_73423+85x_73424+78x_73425+30x_73426+74x_73427+90x_73428+83x_73429+6x_73430+39x_73431+31x_73432+63x_73433+64x_73434+88x_73435+34x_73436+79x_73437+72x_73438+2x_73439+25x_73440+13x_73441+95x_73442+89x_73443+41x_73444+56x_73445+38x_73446+75x_73447+59x_73448+40x_73449+15x_73450+37x_73451+99x_73452+29x_73453+73x_73454+19x_73455+100x_73456+68x_73457+30x_73458+18x_73459+78x_73460+2x_73461+68x_73462+16x_73463+92x_73464+5x_73465+5x_73466+38x_73467+11x_73468+21x_73469+67x_73470+14x_73471+65x_73472+83x_73473+79x_73474+77x_73475+81x_73476+12x_73477+8x_73478+80x_73479+83x_73480+88x_73481+50x_73482+37x_73483+60x_73484+80x_73485+75x_73486+10x_73487+7x_73488+88x_73489+45x_73490+95x_73491+99x_73492+82x_73493+56x_73494+6x_73495+46x_73496+83x_73497+26x_73498+96x_73499+98x_73500+22x_73501+66x_73502+60x_73503+82x_73504+33x_73505+58x_73506+19x_73507+60x_73508+85x_73509+66x_73510+12x_73511+28x_73512+70x_73513+88x_73514+22x_73515+17x_73516+97x_73517+89x_73518+18x_73519+47x_73520+89x_73521+2x_73522+34x_73523+43x_73524+4x_73525+10x_73526+41x_73527+48x_73528+4x_73529+66x_73530+77x_73531+50x_73532+70x_73533+58x_73534+80x_73535+71x_73536+79x_73537+49x_73538+42x_73539+45x_73540+21x_73541+12x_73542+52x_73543+90x_73544+5x_73545+23x_73546+5x_73547+32x_73548+50x_73549+61x_73550+40x_73551+100x_73552+33x_73553+91x_73554+25x_73555+96x_73556+26x_73557+28x_73558+63x_73559+95x_73560+9x_73561+66x_73562+87x_73563+42x_73564+62x_73565+12x_73566+27x_73567+97x_73568+100x_73569+40x_73570+75x_73571+85x_73572+39x_73573+48x_73574+43x_73575+88x_73576+45x_73577+89x_73578+54x_73579+90x_73580+88x_73581+9x_73582+17x_73583+80x_73584+60x_73585+7x_73586+57x_73587+60x_73588+70x_73589+48x_73590+32x_73591+99x_73592+50x_73593+19x_73594+14x_73595+42x_73596+76x_73597+50x_73598+43x_73599+31x_73600+31x_73601+94x_73602+59x_73603+77x_73604+32x_73605+46x_73606+75x_73607+32x_73608+53x_73609+60x_73610+31x_73611+46x_73612+75x_73613+55x_73614+23x_73615+38x_73616+85x_73617+64x_73618+60x_73619+45x_73620+64x_73621+75x_73622+44x_73623+10x_73624+4x_73625+37x_73626+98x_73627+70x_73628+40x_73629+22x_73630+58x_73631+14x_73632+3x_73633+21x_73634+38x_73635+97x_73636+35x_73637+22x_73638+27x_73639+58x_73640+16x_73641+44x_73642+4x_73643+19x_73644+66x_73645+6x_73646+25x_73647+63x_73648+42x_73649+30x_73650+65x_73651+x_73652+6x_73653+70x_73654+34x_73655+83x_73656+100x_73657+18x_73658+12x_73659+89x_73660+74x_73661+75x_73662+74x_73663+83x_73664+81x_73665+39x_73666+12x_73667+94x_73668+84x_73669+94x_73670+48x_73671+91x_73672+70x_73673+90x_73674+37x_73675+61x_73676+69x_73677+27x_73678+74x_73679+3x_73680+90x_73681+98x_73682+90x_73683+5x_73684+2x_73685+61x_73686+13x_73687+84x_73688+86x_73689+90x_73690+32x_73691+45x_73692+19x_73693+12x_73694+48x_73695+33x_73696+53x_73697+16x_73698+65x_73699+36x_73700+17x_73701+7x_73702+85x_73703+31x_73704+60x_73705+98x_73706+77x_73707+62x_73708+9x_73709+53x_73710+84x_73711+78x_73712+14x_73713+91x_73714+70x_73715+81x_73716+52x_73717+98x_73718+5x_73719+61x_73720+25x_73721+42x_73722+98x_73723+33x_73724+5x_73725+76x_73726+71x_73727+29x_73728+34x_73729+65x_73730+93x_73731+24x_73732+17x_73733+51x_73734+70x_73735+14x_73736+9x_73737+4x_73738+88x_73739+8x_73740+34x_73741+57x_73742+47x_73743+85x_73744+25x_73745+76x_73746+51x_73747+39x_73748+64x_73749+28x_73750+48x_73751+100x_73752+51x_73753+6x_73754+79x_73755+18x_73756+90x_73757+25x_73758+22x_73759+87x_73760+21x_73761+53x_73762+17x_73763+82x_73764+11x_73765+x_73766+47x_73767+79x_73768+35x_73769+100x_73770+75x_73771+61x_73772+84x_73773+18x_73774+26x_73775+83x_73776+59x_73777+44x_73778+96x_73779+5x_73780+66x_73781+44x_73782+54x_73783+45x_73784+28x_73785+4x_73786+19x_73787+11x_73788+80x_73789+70x_73790+18x_73791+2x_73792+81x_73793+56x_73794+63x_73795+96x_73796+62x_73797+51x_73798+97x_73799+15x_73800+91x_73801+19x_73802+70x_73803+29x_73804+53x_73805+71x_73806+11x_73807+76x_73808+87x_73809+88x_73810+13x_73811+43x_73812+61x_73813+6x_73814+99x_73815+90x_73816+12x_73817+15x_73818+74x_73819+43x_73820+36x_73821+46x_73822+100x_73823+13x_73824+65x_73825+x_73826+82x_73827+9x_73828+94x_73829+38x_73830+2x_73831+9x_73832+44x_73833+50x_73834+79x_73835+34x_73836+60x_73837+42x_73838+5x_73839+58x_73840+73x_73841+66x_73842+31x_73843+26x_73844+87x_73845+57x_73846+95x_73847+81x_73848+5x_73849+76x_73850+98x_73851+91x_73852+16x_73853+64x_73854+36x_73855+70x_73856+83x_73857+99x_73858+17x_73859+26x_73860+47x_73861+62x_73862+7x_73863+8x_73864+99x_73865+30x_73866+80x_73867+89x_73868+6x_73869+32x_73870+x_73871+38x_73872+10x_73873+34x_73874+99x_73875+18x_73876+79x_73877+71x_73878+71x_73879+47x_73880+20x_73881+45x_73882+95x_73883+x_73884+30x_73885+87x_73886+43x_73887+10x_73888+69x_73889+99x_73890+42x_73891+39x_73892+14x_73893+62x_73894+49x_73895+38x_73896+80x_73897+59x_73898+95x_73899+77x_73900+10x_73901+66x_73902+84x_73903+7x_73904+55x_73905+50x_73906+41x_73907+6x_73908+21x_73909+44x_73910+61x_73911+68x_73912+41x_73913+44x_73914+23x_73915+23x_73916+64x_73917+40x_73918+5x_73919+14x_73920+88x_73921+38x_73922+5x_73923+81x_73924+57x_73925+82x_73926+68x_73927+40x_73928+36x_73929+90x_73930+87x_73931+30x_73932+97x_73933+81x_73934+90x_73935+44x_73936+100x_73937+100x_73938+5x_73939+93x_73940+96x_73941+x_73942+55x_73943+73x_73944+69x_73945+61x_73946+73x_73947+27x_73948+23x_73949+17x_73950+5x_73951+7x_73952+13x_73953+4x_73954+98x_73955+16x_73956+19x_73957+33x_73958+91x_73959+57x_73960+95x_73961+13x_73962+21x_73963+10x_73964+6x_73965+63x_73966+53x_73967+92x_73968+74x_73969+38x_73970+93x_73971+28x_73972+65x_73973+59x_73974+61x_73975+53x_73976+14x_73977+23x_73978+75x_73979+25x_73980+77x_73981+25x_73982+95x_73983+11x_73984+56x_73985+79x_73986+70x_73987+39x_73988+8x_73989+51x_73990+97x_73991+77x_73992+63x_73993+54x_73994+88x_73995+82x_73996+90x_73997+5x_73998+29x_73999+33x_74000+83x_74001+18x_74002+9x_74003+68x_74004+41x_74005+70x_74006+98x_74007+89x_74008+49x_74009+23x_74010+29x_74011+41x_74012+72x_74013+33x_74014+59x_74015+72x_74016+50x_74017+33x_74018+53x_74019+71x_74020+38x_74021+68x_74022+32x_74023+11x_74024+30x_74025+65x_74026+7x_74027+57x_74028+53x_74029+51x_74030+33x_74031+21x_74032+38x_74033+29x_74034+85x_74035+15x_74036+41x_74037+96x_74038+39x_74039+67x_74040+84x_74041+75x_74042+48x_74043+92x_74044+32x_74045+86x_74046+52x_74047+48x_74048+19x_74049+20x_74050+17x_74051+60x_74052+70x_74053+23x_74054+11x_74055+24x_74056+51x_74057+5x_74058+41x_74059+34x_74060+49x_74061+93x_74062+49x_74063+91x_74064+49x_74065+33x_74066+19x_74067+43x_74068+70x_74069+91x_74070+52x_74071+8x_74072+75x_74073+49x_74074+71x_74075+24x_74076+98x_74077+17x_74078+24x_74079+49x_74080+83x_74081+40x_74082+74x_74083+79x_74084+88x_74085+65x_74086+88x_74087+26x_74088+15x_74089+76x_74090+55x_74091+36x_74092+94x_74093+x_74094+18x_74095+79x_74096+58x_74097+84x_74098+95x_74099+53x_74100+62x_74101+34x_74102+37x_74103+51x_74104+39x_74105+97x_74106+2x_74107+51x_74108+36x_74109+78x_74110+95x_74111+54x_74112+43x_74113+88x_74114+63x_74115+57x_74116+2x_74117+4x_74118+98x_74119+16x_74120+44x_74121+29x_74122+8x_74123+51x_74124+32x_74125+32x_74126+11x_74127+94x_74128+39x_74129+21x_74130+13x_74131+22x_74132+51x_74133+98x_74134+36x_74135+45x_74136+18x_74137+96x_74138+2x_74139+40x_74140+34x_74141+2x_74142+60x_74143+47x_74144+27x_74145+60x_74146+56x_74147+5x_74148+94x_74149+76x_74150+58x_74151+97x_74152+22x_74153+19x_74154+64x_74155+68x_74156+78x_74157+30x_74158+80x_74159+18x_74160+3x_74161+84x_74162+97x_74163+95x_74164+8x_74165+26x_74166+7x_74167+66x_74168+67x_74169+79x_74170+99x_74171+17x_74172+100x_74173+86x_74174+33x_74175+99x_74176+5x_74177+13x_74178+96x_74179+94x_74180+86x_74181+75x_74182+95x_74183+63x_74184+55x_74185+98x_74186+39x_74187+84x_74188+3x_74189+77x_74190+48x_74191+21x_74192+3x_74193+39x_74194+49x_74195+17x_74196+41x_74197+17x_74198+45x_74199+58x_74200+42x_74201+73x_74202+70x_74203+19x_74204+64x_74205+8x_74206+51x_74207+44x_74208+90x_74209+15x_74210+61x_74211+15x_74212+82x_74213+39x_74214+55x_74215+70x_74216+84x_74217+36x_74218+50x_74219+31x_74220+72x_74221+28x_74222+95x_74223+37x_74224+16x_74225+23x_74226+88x_74227+47x_74228+60x_74229+45x_74230+24x_74231+30x_74232+69x_74233+44x_74234+77x_74235+48x_74236+80x_74237+10x_74238+78x_74239+45x_74240+24x_74241+41x_74242+29x_74243+16x_74244+65x_74245+79x_74246+29x_74247+88x_74248+82x_74249+23x_74250+23x_74251+85x_74252+23x_74253+82x_74254+51x_74255+39x_74256+88x_74257+19x_74258+43x_74259+71x_74260+80x_74261+42x_74262+83x_74263+88x_74264+45x_74265+42x_74266+78x_74267+23x_74268+59x_74269+64x_74270+55x_74271+48x_74272+23x_74273+7x_74274+90x_74275+3x_74276+49x_74277+31x_74278+70x_74279+58x_74280+81x_74281+7x_74282+4x_74283+61x_74284+65x_74285+7x_74286+71x_74287+40x_74288+29x_74289+37x_74290+13x_74291+43x_74292+17x_74293+60x_74294+97x_74295+96x_74296+69x_74297+56x_74298+4x_74299+69x_74300+72x_74301+13x_74302+42x_74303+51x_74304+48x_74305+27x_74306+45x_74307+70x_74308+49x_74309+72x_74310+93x_74311+75x_74312+55x_74313+35x_74314+99x_74315+95x_74316+13x_74317+9x_74318+3x_74319+11x_74320+97x_74321+41x_74322+93x_74323+72x_74324+93x_74325+79x_74326+66x_74327+8x_74328+33x_74329+59x_74330+41x_74331+32x_74332+15x_74333+99x_74334+65x_74335+39x_74336+4x_74337+44x_74338+8x_74339+32x_74340+61x_74341+79x_74342+91x_74343+77x_74344+92x_74345+75x_74346+28x_74347+88x_74348+23x_74349+73x_74350+52x_74351+36x_74352+6x_74353+57x_74354+55x_74355+32x_74356+55x_74357+59x_74358+85x_74359+35x_74360+81x_74361+44x_74362+20x_74363+93x_74364+40x_74365+82x_74366+88x_74367+13x_74368+14x_74369+38x_74370+37x_74371+66x_74372+41x_74373+55x_74374+48x_74375+99x_74376+42x_74377+29x_74378+99x_74379+79x_74380+25x_74381+37x_74382+11x_74383+35x_74384+50x_74385+97x_74386+60x_74387+30x_74388+4x_74389+66x_74390+40x_74391+60x_74392+12x_74393+58x_74394+92x_74395+39x_74396+77x_74397+97x_74398+19x_74399+74x_74400+38x_74401+26x_74402+92x_74403+61x_74404+40x_74405+52x_74406+31x_74407+67x_74408+90x_74409+85x_74410+11x_74411+75x_74412+92x_74413+17x_74414+7x_74415+24x_74416+44x_74417+17x_74418+100x_74419+28x_74420+92x_74421+25x_74422+33x_74423+21x_74424+85x_74425+45x_74426+61x_74427+47x_74428+35x_74429+44x_74430+66x_74431+19x_74432+47x_74433+72x_74434+49x_74435+61x_74436+72x_74437+26x_74438+13x_74439+70x_74440+46x_74441+71x_74442+x_74443+81x_74444+42x_74445+17x_74446+55x_74447+37x_74448+82x_74449+80x_74450+43x_74451+12x_74452+43x_74453+20x_74454+96x_74455+42x_74456+85x_74457+99x_74458+68x_74459+97x_74460+91x_74461+100x_74462+85x_74463+54x_74464+91x_74465+16x_74466+45x_74467+47x_74468+15x_74469+54x_74470+48x_74471+81x_74472+42x_74473+51x_74474+51x_74475+31x_74476+18x_74477+39x_74478+39x_74479+36x_74480+89x_74481+92x_74482+37x_74483+74x_74484+68x_74485+86x_74486+89x_74487+92x_74488+3x_74489+29x_74490+11x_74491+56x_74492+7x_74493+16x_74494+55x_74495+78x_74496+74x_74497+20x_74498+82x_74499+12x_74500+43x_74501+73x_74502+76x_74503+30x_74504+95x_74505+87x_74506+39x_74507+83x_74508+49x_74509+55x_74510+44x_74511+16x_74512+58x_74513+73x_74514+73x_74515+10x_74516+79x_74517+96x_74518+26x_74519+87x_74520+21x_74521+5x_74522+62x_74523+47x_74524+88x_74525+53x_74526+96x_74527+59x_74528+7x_74529+62x_74530+49x_74531+27x_74532+44x_74533+100x_74534+40x_74535+96x_74536+60x_74537+15x_74538+3x_74539+62x_74540+33x_74541+42x_74542+62x_74543+59x_74544+96x_74545+76x_74546+64x_74547+73x_74548+7x_74549+71x_74550+13x_74551+75x_74552+52x_74553+12x_74554+78x_74555+35x_74556+89x_74557+29x_74558+12x_74559+97x_74560+16x_74561+49x_74562+47x_74563+18x_74564+42x_74565+9x_74566+51x_74567+67x_74568+42x_74569+19x_74570+43x_74571+19x_74572+16x_74573+46x_74574+50x_74575+86x_74576+26x_74577+63x_74578+31x_74579+94x_74580+35x_74581+62x_74582+3x_74583+36x_74584+25x_74585+59x_74586+54x_74587+3x_74588+65x_74589+38x_74590+46x_74591+83x_74592+67x_74593+3x_74594+32x_74595+89x_74596+6x_74597+11x_74598+7x_74599+82x_74600+92x_74601+34x_74602+84x_74603+70x_74604+60x_74605+80x_74606+63x_74607+16x_74608+25x_74609+24x_74610+99x_74611+44x_74612+75x_74613+30x_74614+93x_74615+21x_74616+93x_74617+64x_74618+9x_74619+78x_74620+9x_74621+95x_74622+25x_74623+5x_74624+27x_74625+90x_74626+58x_74627+71x_74628+48x_74629+68x_74630+41x_74631+91x_74632+72x_74633+76x_74634+25x_74635+27x_74636+91x_74637+77x_74638+31x_74639+46x_74640+22x_74641+78x_74642+36x_74643+34x_74644+35x_74645+100x_74646+99x_74647+76x_74648+10x_74649+5x_74650+9x_74651+92x_74652+68x_74653+47x_74654+47x_74655+48x_74656+8x_74657+92x_74658+34x_74659+7x_74660+11x_74661+37x_74662+91x_74663+48x_74664+96x_74665+60x_74666+67x_74667+69x_74668+89x_74669+42x_74670+29x_74671+65x_74672+64x_74673+54x_74674+84x_74675+85x_74676+51x_74677+37x_74678+98x_74679+93x_74680+26x_74681+80x_74682+51x_74683+64x_74684+38x_74685+21x_74686+46x_74687+5x_74688+38x_74689+x_74690+71x_74691+85x_74692+58x_74693+94x_74694+34x_74695+81x_74696+51x_74697+84x_74698+81x_74699+88x_74700+28x_74701+34x_74702+11x_74703+9x_74704+15x_74705+8x_74706+76x_74707+90x_74708+89x_74709+97x_74710+22x_74711+26x_74712+90x_74713+96x_74714+79x_74715+33x_74716+49x_74717+22x_74718+52x_74719+27x_74720+7x_74721+74x_74722+22x_74723+17x_74724+4x_74725+28x_74726+42x_74727+91x_74728+86x_74729+9x_74730+41x_74731+44x_74732+34x_74733+64x_74734+16x_74735+57x_74736+94x_74737+80x_74738+83x_74739+57x_74740+94x_74741+68x_74742+19x_74743+98x_74744+67x_74745+29x_74746+58x_74747+8x_74748+27x_74749+96x_74750+53x_74751+52x_74752+72x_74753+68x_74754+18x_74755+36x_74756+68x_74757+19x_74758+48x_74759+95x_74760+6x_74761+92x_74762+59x_74763+46x_74764+60x_74765+67x_74766+79x_74767+84x_74768+5x_74769+40x_74770+31x_74771+73x_74772+12x_74773+77x_74774+91x_74775+57x_74776+39x_74777+33x_74778+24x_74779+5x_74780+58x_74781+54x_74782+34x_74783+96x_74784+5x_74785+12x_74786+31x_74787+72x_74788+23x_74789+99x_74790+52x_74791+17x_74792+34x_74793+82x_74794+76x_74795+49x_74796+33x_74797+50x_74798+94x_74799+82x_74800+34x_74801+53x_74802+75x_74803+55x_74804+36x_74805+65x_74806+19x_74807+5x_74808+74x_74809+33x_74810+62x_74811+5x_74812+42x_74813+7x_74814+4x_74815+100x_74816+3x_74817+67x_74818+86x_74819+82x_74820+18x_74821+85x_74822+20x_74823+32x_74824+43x_74825+61x_74826+32x_74827+97x_74828+5x_74829+23x_74830+75x_74831+29x_74832+31x_74833+17x_74834+48x_74835+34x_74836+4x_74837+48x_74838+70x_74839+34x_74840+57x_74841+10x_74842+80x_74843+16x_74844+7x_74845+41x_74846+17x_74847+37x_74848+75x_74849+37x_74850+49x_74851+92x_74852+60x_74853+98x_74854+50x_74855+30x_74856+26x_74857+95x_74858+72x_74859+84x_74860+4x_74861+39x_74862+44x_74863+33x_74864+19x_74865+16x_74866+17x_74867+23x_74868+24x_74869+10x_74870+64x_74871+26x_74872+45x_74873+48x_74874+66x_74875+61x_74876+88x_74877+69x_74878+7x_74879+42x_74880+60x_74881+14x_74882+57x_74883+28x_74884+18x_74885+18x_74886+92x_74887+42x_74888+78x_74889+66x_74890+64x_74891+92x_74892+87x_74893+12x_74894+17x_74895+33x_74896+98x_74897+46x_74898+43x_74899+38x_74900+48x_74901+38x_74902+59x_74903+83x_74904+86x_74905+2x_74906+73x_74907+88x_74908+42x_74909+95x_74910+26x_74911+27x_74912+43x_74913+86x_74914+52x_74915+97x_74916+93x_74917+15x_74918+78x_74919+63x_74920+57x_74921+35x_74922+24x_74923+83x_74924+45x_74925+14x_74926+55x_74927+12x_74928+16x_74929+87x_74930+27x_74931+35x_74932+52x_74933+10x_74934+76x_74935+73x_74936+23x_74937+66x_74938+52x_74939+42x_74940+31x_74941+x_74942+77x_74943+41x_74944+34x_74945+86x_74946+19x_74947+29x_74948+95x_74949+83x_74950+91x_74951+12x_74952+44x_74953+76x_74954+13x_74955+8x_74956+51x_74957+42x_74958+48x_74959+67x_74960+67x_74961+98x_74962+83x_74963+58x_74964+5x_74965+46x_74966+76x_74967+71x_74968+53x_74969+92x_74970+57x_74971+50x_74972+23x_74973+71x_74974+31x_74975+90x_74976+20x_74977+55x_74978+94x_74979+12x_74980+64x_74981+92x_74982+68x_74983+50x_74984+57x_74985+41x_74986+2x_74987+9x_74988+7x_74989+97x_74990+64x_74991+11x_74992+39x_74993+26x_74994+65x_74995+83x_74996+68x_74997+14x_74998+32x_74999+63x_75000+8x_75001+11x_75002+19x_75003+31x_75004+64x_75005+20x_75006+92x_75007+18x_75008+38x_75009+86x_75010+10x_75011+35x_75012+86x_75013+59x_75014+7x_75015+54x_75016+39x_75017+16x_75018+37x_75019+59x_75020+39x_75021+95x_75022+35x_75023+96x_75024+92x_75025+48x_75026+13x_75027+48x_75028+80x_75029+16x_75030+85x_75031+70x_75032+94x_75033+x_75034+11x_75035+45x_75036+68x_75037+57x_75038+61x_75039+37x_75040+10x_75041+87x_75042+32x_75043+27x_75044+56x_75045+55x_75046+16x_75047+59x_75048+57x_75049+91x_75050+85x_75051+93x_75052+62x_75053+61x_75054+29x_75055+25x_75056+87x_75057+30x_75058+45x_75059+35x_75060+48x_75061+47x_75062+98x_75063+95x_75064+87x_75065+16x_75066+37x_75067+12x_75068+54x_75069+65x_75070+77x_75071+60x_75072+59x_75073+52x_75074+88x_75075+18x_75076+60x_75077+82x_75078+50x_75079+17x_75080+51x_75081+13x_75082+60x_75083+99x_75084+47x_75085+26x_75086+2x_75087+10x_75088+80x_75089+75x_75090+67x_75091+48x_75092+83x_75093+100x_75094+20x_75095+13x_75096+18x_75097+69x_75098+35x_75099+93x_75100+27x_75101+96x_75102+76x_75103+21x_75104+28x_75105+64x_75106+23x_75107+77x_75108+29x_75109+43x_75110+49x_75111+89x_75112+58x_75113+98x_75114+80x_75115+36x_75116+58x_75117+23x_75118+96x_75119+37x_75120+67x_75121+95x_75122+49x_75123+42x_75124+16x_75125+31x_75126+75x_75127+40x_75128+46x_75129+79x_75130+29x_75131+79x_75132+65x_75133+13x_75134+90x_75135+30x_75136+79x_75137+11x_75138+99x_75139+16x_75140+2x_75141+48x_75142+89x_75143+43x_75144+30x_75145+85x_75146+25x_75147+42x_75148+59x_75149+59x_75150+71x_75151+75x_75152+52x_75153+11x_75154+33x_75155+26x_75156+90x_75157+46x_75158+41x_75159+46x_75160+13x_75161+18x_75162+62x_75163+19x_75164+84x_75165+60x_75166+15x_75167+59x_75168+71x_75169+53x_75170+92x_75171+63x_75172+66x_75173+42x_75174+85x_75175+38x_75176+17x_75177+30x_75178+36x_75179+50x_75180+92x_75181+80x_75182+13x_75183+87x_75184+61x_75185+38x_75186+95x_75187+44x_75188+85x_75189+82x_75190+90x_75191+88x_75192+50x_75193+15x_75194+76x_75195+x_75196+83x_75197+51x_75198+15x_75199+58x_75200+66x_75201+14x_75202+43x_75203+89x_75204+29x_75205+62x_75206+78x_75207+65x_75208+68x_75209+100x_75210+49x_75211+7x_75212+7x_75213+9x_75214+15x_75215+32x_75216+54x_75217+39x_75218+86x_75219+4x_75220+81x_75221+16x_75222+90x_75223+48x_75224+38x_75225+99x_75226+2x_75227+16x_75228+33x_75229+33x_75230+11x_75231+78x_75232+43x_75233+x_75234+86x_75235+35x_75236+100x_75237+29x_75238+40x_75239+36x_75240+20x_75241+81x_75242+63x_75243+40x_75244+80x_75245+10x_75246+40x_75247+98x_75248+60x_75249+10x_75250+65x_75251+37x_75252+24x_75253+22x_75254+45x_75255+4x_75256+39x_75257+12x_75258+24x_75259+15x_75260+25x_75261+49x_75262+16x_75263+80x_75264+8x_75265+4x_75266+14x_75267+70x_75268+4x_75269+18x_75270+30x_75271+9x_75272+37x_75273+89x_75274+61x_75275+57x_75276+58x_75277+42x_75278+99x_75279+14x_75280+34x_75281+90x_75282+2x_75283+36x_75284+14x_75285+97x_75286+30x_75287+9x_75288+93x_75289+23x_75290+88x_75291+60x_75292+7x_75293+66x_75294+71x_75295+57x_75296+73x_75297+64x_75298+68x_75299+81x_75300+70x_75301+35x_75302+41x_75303+93x_75304+62x_75305+11x_75306+99x_75307+50x_75308+42x_75309+67x_75310+15x_75311+9x_75312+14x_75313+67x_75314+75x_75315+42x_75316+62x_75317+17x_75318+25x_75319+12x_75320+54x_75321+71x_75322+33x_75323+65x_75324+62x_75325+84x_75326+97x_75327+59x_75328+56x_75329+21x_75330+78x_75331+x_75332+59x_75333+73x_75334+17x_75335+76x_75336+81x_75337+90x_75338+60x_75339+20x_75340+75x_75341+19x_75342+59x_75343+20x_75344+87x_75345+36x_75346+50x_75347+12x_75348+21x_75349+32x_75350+95x_75351+83x_75352+12x_75353+73x_75354+53x_75355+70x_75356+34x_75357+99x_75358+4x_75359+3x_75360+77x_75361+4x_75362+95x_75363+95x_75364+83x_75365+77x_75366+76x_75367+97x_75368+48x_75369+81x_75370+88x_75371+96x_75372+85x_75373+98x_75374+95x_75375+55x_75376+11x_75377+19x_75378+28x_75379+50x_75380+16x_75381+47x_75382+17x_75383+50x_75384+63x_75385+100x_75386+30x_75387+4x_75388+73x_75389+25x_75390+22x_75391+68x_75392+19x_75393+19x_75394+49x_75395+12x_75396+63x_75397+5x_75398+79x_75399+100x_75400+98x_75401+41x_75402+46x_75403+84x_75404+56x_75405+90x_75406+44x_75407+20x_75408+53x_75409+29x_75410+68x_75411+5x_75412+55x_75413+94x_75414+8x_75415+50x_75416+64x_75417+49x_75418+25x_75419+100x_75420+57x_75421+3x_75422+65x_75423+80x_75424+85x_75425+50x_75426+67x_75427+16x_75428+39x_75429+18x_75430+39x_75431+40x_75432+60x_75433+48x_75434+40x_75435+65x_75436+62x_75437+13x_75438+87x_75439+96x_75440+83x_75441+17x_75442+82x_75443+79x_75444+14x_75445+2x_75446+61x_75447+78x_75448+92x_75449+56x_75450+19x_75451+43x_75452+10x_75453+100x_75454+29x_75455+5x_75456+52x_75457+94x_75458+15x_75459+16x_75460+11x_75461+48x_75462+62x_75463+82x_75464+59x_75465+76x_75466+28x_75467+95x_75468+5x_75469+98x_75470+98x_75471+79x_75472+80x_75473+26x_75474+85x_75475+67x_75476+100x_75477+43x_75478+8x_75479+14x_75480+41x_75481+77x_75482+86x_75483+67x_75484+72x_75485+94x_75486+68x_75487+55x_75488+77x_75489+18x_75490+73x_75491+80x_75492+28x_75493+39x_75494+50x_75495+93x_75496+20x_75497+72x_75498+53x_75499+25x_75500+68x_75501+62x_75502+41x_75503+60x_75504+43x_75505+74x_75506+87x_75507+x_75508+19x_75509+14x_75510+82x_75511+100x_75512+4x_75513+63x_75514+21x_75515+47x_75516+10x_75517+51x_75518+39x_75519+88x_75520+28x_75521+63x_75522+50x_75523+35x_75524+88x_75525+21x_75526+97x_75527+80x_75528+22x_75529+27x_75530+100x_75531+60x_75532+3x_75533+27x_75534+62x_75535+29x_75536+79x_75537+11x_75538+86x_75539+78x_75540+6x_75541+79x_75542+99x_75543+74x_75544+76x_75545+3x_75546+60x_75547+10x_75548+92x_75549+70x_75550+55x_75551+95x_75552+5x_75553+55x_75554+51x_75555+81x_75556+90x_75557+64x_75558+64x_75559+27x_75560+11x_75561+31x_75562+20x_75563+53x_75564+33x_75565+85x_75566+40x_75567+44x_75568+57x_75569+21x_75570+65x_75571+71x_75572+46x_75573+95x_75574+60x_75575+34x_75576+82x_75577+97x_75578+41x_75579+55x_75580+80x_75581+80x_75582+3x_75583+4x_75584+81x_75585+73x_75586+22x_75587+12x_75588+2x_75589+64x_75590+39x_75591+22x_75592+58x_75593+72x_75594+89x_75595+86x_75596+40x_75597+42x_75598+9x_75599+14x_75600+71x_75601+40x_75602+66x_75603+7x_75604+20x_75605+51x_75606+81x_75607+51x_75608+95x_75609+17x_75610+6x_75611+75x_75612+66x_75613+78x_75614+15x_75615+63x_75616+77x_75617+12x_75618+24x_75619+79x_75620+2x_75621+6x_75622+59x_75623+72x_75624+79x_75625+37x_75626+70x_75627+7x_75628+9x_75629+28x_75630+62x_75631+82x_75632+84x_75633+x_75634+44x_75635+54x_75636+15x_75637+39x_75638+56x_75639+10x_75640+30x_75641+98x_75642+16x_75643+59x_75644+22x_75645+95x_75646+24x_75647+6x_75648+29x_75649+91x_75650+6x_75651+31x_75652+45x_75653+36x_75654+2x_75655+81x_75656+51x_75657+34x_75658+x_75659+49x_75660+14x_75661+27x_75662+55x_75663+97x_75664+34x_75665+73x_75666+73x_75667+50x_75668+70x_75669+23x_75670+79x_75671+48x_75672+83x_75673+39x_75674+3x_75675+74x_75676+65x_75677+39x_75678+19x_75679+80x_75680+74x_75681+38x_75682+82x_75683+76x_75684+10x_75685+94x_75686+92x_75687+42x_75688+76x_75689+73x_75690+84x_75691+77x_75692+97x_75693+16x_75694+55x_75695+59x_75696+60x_75697+23x_75698+15x_75699+18x_75700+83x_75701+19x_75702+14x_75703+33x_75704+66x_75705+27x_75706+31x_75707+44x_75708+x_75709+55x_75710+82x_75711+62x_75712+100x_75713+73x_75714+48x_75715+11x_75716+64x_75717+19x_75718+73x_75719+37x_75720+68x_75721+78x_75722+48x_75723+67x_75724+14x_75725+73x_75726+53x_75727+9x_75728+75x_75729+88x_75730+65x_75731+35x_75732+51x_75733+7x_75734+59x_75735+37x_75736+84x_75737+98x_75738+30x_75739+29x_75740+22x_75741+73x_75742+16x_75743+79x_75744+52x_75745+4x_75746+6x_75747+76x_75748+3x_75749+18x_75750+87x_75751+23x_75752+85x_75753+89x_75754+61x_75755+85x_75756+22x_75757+53x_75758+17x_75759+44x_75760+82x_75761+40x_75762+35x_75763+60x_75764+100x_75765+9x_75766+87x_75767+99x_75768+98x_75769+65x_75770+89x_75771+30x_75772+38x_75773+18x_75774+5x_75775+3x_75776+95x_75777+44x_75778+16x_75779+8x_75780+96x_75781+84x_75782+59x_75783+80x_75784+38x_75785+60x_75786+60x_75787+56x_75788+38x_75789+31x_75790+74x_75791+13x_75792+37x_75793+21x_75794+43x_75795+64x_75796+24x_75797+82x_75798+22x_75799+26x_75800+89x_75801+23x_75802+33x_75803+7x_75804+47x_75805+25x_75806+65x_75807+39x_75808+28x_75809+28x_75810+15x_75811+27x_75812+60x_75813+22x_75814+51x_75815+48x_75816+56x_75817+98x_75818+93x_75819+70x_75820+80x_75821+100x_75822+85x_75823+24x_75824+8x_75825+61x_75826+13x_75827+92x_75828+70x_75829+78x_75830+9x_75831+17x_75832+19x_75833+11x_75834+15x_75835+10x_75836+31x_75837+56x_75838+53x_75839+53x_75840+18x_75841+84x_75842+72x_75843+95x_75844+28x_75845+95x_75846+77x_75847+62x_75848+31x_75849+33x_75850+23x_75851+6x_75852+75x_75853+x_75854+13x_75855+91x_75856+37x_75857+9x_75858+42x_75859+41x_75860+71x_75861+60x_75862+3x_75863+19x_75864+74x_75865+47x_75866+29x_75867+81x_75868+39x_75869+93x_75870+54x_75871+83x_75872+91x_75873+20x_75874+5x_75875+39x_75876+54x_75877+43x_75878+96x_75879+86x_75880+88x_75881+84x_75882+36x_75883+78x_75884+14x_75885+16x_75886+15x_75887+55x_75888+28x_75889+97x_75890+33x_75891+44x_75892+37x_75893+34x_75894+72x_75895+53x_75896+61x_75897+21x_75898+15x_75899+90x_75900+63x_75901+46x_75902+52x_75903+75x_75904+93x_75905+99x_75906+88x_75907+29x_75908+35x_75909+22x_75910+65x_75911+45x_75912+85x_75913+52x_75914+9x_75915+21x_75916+76x_75917+80x_75918+87x_75919+50x_75920+49x_75921+91x_75922+78x_75923+32x_75924+68x_75925+58x_75926+69x_75927+99x_75928+98x_75929+20x_75930+67x_75931+49x_75932+91x_75933+21x_75934+92x_75935+24x_75936+78x_75937+83x_75938+60x_75939+10x_75940+81x_75941+96x_75942+34x_75943+82x_75944+40x_75945+79x_75946+76x_75947+98x_75948+52x_75949+11x_75950+3x_75951+96x_75952+45x_75953+42x_75954+94x_75955+51x_75956+73x_75957+58x_75958+57x_75959+31x_75960+19x_75961+55x_75962+92x_75963+47x_75964+9x_75965+44x_75966+2x_75967+67x_75968+53x_75969+73x_75970+42x_75971+44x_75972+91x_75973+27x_75974+97x_75975+18x_75976+19x_75977+32x_75978+49x_75979+11x_75980+36x_75981+12x_75982+73x_75983+95x_75984+97x_75985+50x_75986+92x_75987+41x_75988+47x_75989+8x_75990+89x_75991+38x_75992+60x_75993+70x_75994+6x_75995+25x_75996+83x_75997+40x_75998+21x_75999+84x_76000+23x_76001+58x_76002+84x_76003+17x_76004+83x_76005+95x_76006+67x_76007+25x_76008+81x_76009+29x_76010+8x_76011+94x_76012+33x_76013+98x_76014+90x_76015+76x_76016+3x_76017+92x_76018+75x_76019+82x_76020+97x_76021+75x_76022+88x_76023+91x_76024+28x_76025+40x_76026+62x_76027+64x_76028+14x_76029+62x_76030+64x_76031+66x_76032+35x_76033+42x_76034+93x_76035+7x_76036+20x_76037+97x_76038+87x_76039+71x_76040+88x_76041+6x_76042+98x_76043+98x_76044+30x_76045+13x_76046+14x_76047+100x_76048+32x_76049+51x_76050+52x_76051+53x_76052+82x_76053+20x_76054+9x_76055+29x_76056+41x_76057+16x_76058+80x_76059+12x_76060+83x_76061+79x_76062+86x_76063+42x_76064+79x_76065+21x_76066+94x_76067+21x_76068+94x_76069+5x_76070+38x_76071+42x_76072+86x_76073+36x_76074+45x_76075+82x_76076+99x_76077+15x_76078+58x_76079+16x_76080+43x_76081+15x_76082+60x_76083+28x_76084+13x_76085+71x_76086+4x_76087+17x_76088+81x_76089+48x_76090+20x_76091+18x_76092+43x_76093+5x_76094+13x_76095+28x_76096+36x_76097+75x_76098+45x_76099+90x_76100+64x_76101+84x_76102+x_76103+55x_76104+5x_76105+56x_76106+57x_76107+31x_76108+3x_76109+34x_76110+83x_76111+15x_76112+39x_76113+17x_76114+67x_76115+23x_76116+80x_76117+96x_76118+35x_76119+69x_76120+36x_76121+4x_76122+96x_76123+40x_76124+31x_76125+70x_76126+84x_76127+6x_76128+88x_76129+13x_76130+80x_76131+70x_76132+91x_76133+99x_76134+56x_76135+65x_76136+10x_76137+47x_76138+94x_76139+65x_76140+65x_76141+73x_76142+70x_76143+88x_76144+73x_76145+68x_76146+83x_76147+4x_76148+x_76149+94x_76150+10x_76151+58x_76152+66x_76153+97x_76154+22x_76155+16x_76156+42x_76157+83x_76158+10x_76159+29x_76160+97x_76161+77x_76162+22x_76163+81x_76164+25x_76165+58x_76166+40x_76167+7x_76168+4x_76169+10x_76170+82x_76171+65x_76172+81x_76173+11x_76174+8x_76175+69x_76176+95x_76177+28x_76178+4x_76179+45x_76180+68x_76181+4x_76182+x_76183+83x_76184+33x_76185+54x_76186+33x_76187+74x_76188+57x_76189+69x_76190+90x_76191+6x_76192+24x_76193+36x_76194+32x_76195+59x_76196+37x_76197+86x_76198+44x_76199+37x_76200+14x_76201+5x_76202+46x_76203+74x_76204+90x_76205+86x_76206+73x_76207+39x_76208+80x_76209+90x_76210+21x_76211+36x_76212+98x_76213+70x_76214+91x_76215+72x_76216+85x_76217+41x_76218+64x_76219+68x_76220+71x_76221+28x_76222+85x_76223+91x_76224+28x_76225+36x_76226+80x_76227+48x_76228+44x_76229+4x_76230+38x_76231+86x_76232+65x_76233+48x_76234+99x_76235+65x_76236+37x_76237+35x_76238+9x_76239+83x_76240+19x_76241+33x_76242+23x_76243+26x_76244+96x_76245+97x_76246+35x_76247+62x_76248+2x_76249+96x_76250+2x_76251+24x_76252+99x_76253+92x_76254+28x_76255+70x_76256+43x_76257+100x_76258+4x_76259+44x_76260+19x_76261+11x_76262+34x_76263+44x_76264+38x_76265+3x_76266+85x_76267+91x_76268+75x_76269+44x_76270+52x_76271+24x_76272+90x_76273+5x_76274+90x_76275+98x_76276+12x_76277+95x_76278+93x_76279+74x_76280+99x_76281+67x_76282+40x_76283+88x_76284+42x_76285+x_76286+95x_76287+44x_76288+55x_76289+42x_76290+11x_76291+51x_76292+30x_76293+24x_76294+14x_76295+75x_76296+63x_76297+35x_76298+39x_76299+63x_76300+36x_76301+100x_76302+52x_76303+18x_76304+36x_76305+84x_76306+30x_76307+58x_76308+72x_76309+59x_76310+24x_76311+13x_76312+95x_76313+59x_76314+29x_76315+83x_76316+90x_76317+x_76318+89x_76319+76x_76320+47x_76321+35x_76322+36x_76323+54x_76324+50x_76325+90x_76326+2x_76327+66x_76328+24x_76329+26x_76330+47x_76331+45x_76332+16x_76333+28x_76334+68x_76335+x_76336+69x_76337+88x_76338+79x_76339+97x_76340+33x_76341+2x_76342+36x_76343+44x_76344+70x_76345+x_76346+100x_76347+11x_76348+4x_76349+86x_76350+x_76351+46x_76352+46x_76353+76x_76354+94x_76355+40x_76356+40x_76357+74x_76358+3x_76359+x_76360+92x_76361+x_76362+34x_76363+39x_76364+57x_76365+36x_76366+38x_76367+81x_76368+76x_76369+71x_76370+71x_76371+61x_76372+41x_76373+45x_76374+49x_76375+8x_76376+33x_76377+69x_76378+40x_76379+29x_76380+65x_76381+95x_76382+82x_76383+40x_76384+89x_76385+68x_76386+50x_76387+15x_76388+13x_76389+15x_76390+69x_76391+82x_76392+54x_76393+47x_76394+29x_76395+x_76396+96x_76397+39x_76398+34x_76399+21x_76400+74x_76401+55x_76402+84x_76403+65x_76404+71x_76405+76x_76406+42x_76407+26x_76408+53x_76409+42x_76410+65x_76411+33x_76412+21x_76413+66x_76414+63x_76415+66x_76416+55x_76417+44x_76418+34x_76419+71x_76420+66x_76421+45x_76422+10x_76423+34x_76424+48x_76425+16x_76426+26x_76427+13x_76428+68x_76429+98x_76430+39x_76431+84x_76432+53x_76433+2x_76434+55x_76435+70x_76436+28x_76437+8x_76438+47x_76439+39x_76440+74x_76441+24x_76442+42x_76443+13x_76444+14x_76445+49x_76446+43x_76447+86x_76448+12x_76449+58x_76450+97x_76451+94x_76452+17x_76453+72x_76454+20x_76455+5x_76456+34x_76457+12x_76458+85x_76459+28x_76460+10x_76461+74x_76462+22x_76463+79x_76464+36x_76465+86x_76466+50x_76467+16x_76468+58x_76469+20x_76470+62x_76471+42x_76472+91x_76473+74x_76474+51x_76475+94x_76476+72x_76477+30x_76478+20x_76479+41x_76480+89x_76481+53x_76482+72x_76483+6x_76484+69x_76485+6x_76486+20x_76487+71x_76488+83x_76489+57x_76490+34x_76491+56x_76492+57x_76493+6x_76494+20x_76495+55x_76496+15x_76497+67x_76498+100x_76499+81x_76500+97x_76501+27x_76502+60x_76503+15x_76504+55x_76505+79x_76506+30x_76507+65x_76508+10x_76509+31x_76510+97x_76511+57x_76512+9x_76513+29x_76514+33x_76515+91x_76516+33x_76517+32x_76518+70x_76519+29x_76520+89x_76521+59x_76522+98x_76523+22x_76524+23x_76525+48x_76526+65x_76527+38x_76528+58x_76529+66x_76530+48x_76531+65x_76532+40x_76533+78x_76534+51x_76535+84x_76536+58x_76537+38x_76538+77x_76539+86x_76540+18x_76541+90x_76542+86x_76543+35x_76544+88x_76545+85x_76546+68x_76547+57x_76548+4x_76549+96x_76550+17x_76551+27x_76552+x_76553+49x_76554+9x_76555+43x_76556+43x_76557+53x_76558+90x_76559+52x_76560+80x_76561+68x_76562+62x_76563+8x_76564+84x_76565+56x_76566+33x_76567+26x_76568+10x_76569+51x_76570+18x_76571+30x_76572+43x_76573+87x_76574+56x_76575+72x_76576+81x_76577+64x_76578+11x_76579+45x_76580+26x_76581+83x_76582+4x_76583+35x_76584+50x_76585+61x_76586+91x_76587+19x_76588+94x_76589+16x_76590+15x_76591+4x_76592+38x_76593+5x_76594+88x_76595+24x_76596+9x_76597+35x_76598+17x_76599+2x_76600+92x_76601+46x_76602+12x_76603+52x_76604+5x_76605+50x_76606+7x_76607+85x_76608+79x_76609+57x_76610+43x_76611+92x_76612+38x_76613+97x_76614+6x_76615+22x_76616+60x_76617+59x_76618+20x_76619+4x_76620+100x_76621+7x_76622+75x_76623+25x_76624+39x_76625+43x_76626+28x_76627+55x_76628+39x_76629+27x_76630+85x_76631+53x_76632+97x_76633+22x_76634+97x_76635+64x_76636+94x_76637+33x_76638+75x_76639+19x_76640+85x_76641+46x_76642+50x_76643+30x_76644+11x_76645+85x_76646+33x_76647+90x_76648+94x_76649+34x_76650+75x_76651+40x_76652+45x_76653+53x_76654+95x_76655+86x_76656+35x_76657+60x_76658+63x_76659+78x_76660+18x_76661+46x_76662+13x_76663+11x_76664+55x_76665+91x_76666+75x_76667+9x_76668+25x_76669+89x_76670+9x_76671+92x_76672+17x_76673+4x_76674+84x_76675+87x_76676+91x_76677+27x_76678+x_76679+67x_76680+6x_76681+31x_76682+32x_76683+20x_76684+38x_76685+71x_76686+22x_76687+93x_76688+73x_76689+58x_76690+36x_76691+70x_76692+28x_76693+17x_76694+52x_76695+44x_76696+50x_76697+84x_76698+87x_76699+20x_76700+93x_76701+47x_76702+84x_76703+43x_76704+84x_76705+50x_76706+52x_76707+82x_76708+10x_76709+6x_76710+48x_76711+79x_76712+64x_76713+15x_76714+97x_76715+41x_76716+45x_76717+65x_76718+31x_76719+28x_76720+39x_76721+59x_76722+7x_76723+41x_76724+49x_76725+7x_76726+28x_76727+17x_76728+18x_76729+57x_76730+94x_76731+4x_76732+36x_76733+29x_76734+6x_76735+15x_76736+52x_76737+59x_76738+9x_76739+40x_76740+43x_76741+60x_76742+37x_76743+71x_76744+50x_76745+15x_76746+59x_76747+97x_76748+82x_76749+69x_76750+43x_76751+91x_76752+29x_76753+94x_76754+96x_76755+92x_76756+58x_76757+34x_76758+80x_76759+64x_76760+77x_76761+25x_76762+45x_76763+64x_76764+93x_76765+56x_76766+28x_76767+41x_76768+53x_76769+48x_76770+37x_76771+75x_76772+41x_76773+71x_76774+87x_76775+2x_76776+13x_76777+91x_76778+50x_76779+79x_76780+22x_76781+55x_76782+36x_76783+66x_76784+37x_76785+31x_76786+99x_76787+3x_76788+67x_76789+42x_76790+58x_76791+11x_76792+45x_76793+x_76794+31x_76795+94x_76796+36x_76797+96x_76798+36x_76799+75x_76800+32x_76801+63x_76802+31x_76803+37x_76804+45x_76805+38x_76806+14x_76807+78x_76808+53x_76809+11x_76810+8x_76811+62x_76812+24x_76813+27x_76814+53x_76815+58x_76816+40x_76817+85x_76818+35x_76819+39x_76820+84x_76821+79x_76822+50x_76823+52x_76824+61x_76825+2x_76826+67x_76827+59x_76828+87x_76829+62x_76830+44x_76831+82x_76832+41x_76833+69x_76834+68x_76835+2x_76836+66x_76837+86x_76838+61x_76839+17x_76840+55x_76841+53x_76842+66x_76843+32x_76844+45x_76845+92x_76846+83x_76847+18x_76848+17x_76849+63x_76850+36x_76851+82x_76852+45x_76853+93x_76854+43x_76855+55x_76856+4x_76857+2x_76858+81x_76859+83x_76860+37x_76861+36x_76862+10x_76863+57x_76864+94x_76865+83x_76866+12x_76867+77x_76868+94x_76869+43x_76870+57x_76871+78x_76872+45x_76873+19x_76874+39x_76875+27x_76876+35x_76877+29x_76878+95x_76879+77x_76880+23x_76881+23x_76882+79x_76883+62x_76884+91x_76885+58x_76886+94x_76887+88x_76888+31x_76889+52x_76890+64x_76891+96x_76892+57x_76893+34x_76894+86x_76895+84x_76896+75x_76897+42x_76898+60x_76899+91x_76900+42x_76901+67x_76902+96x_76903+50x_76904+32x_76905+21x_76906+46x_76907+8x_76908+22x_76909+86x_76910+30x_76911+x_76912+61x_76913+97x_76914+52x_76915+7x_76916+15x_76917+65x_76918+5x_76919+75x_76920+79x_76921+80x_76922+41x_76923+90x_76924+93x_76925+98x_76926+61x_76927+70x_76928+7x_76929+54x_76930+24x_76931+67x_76932+88x_76933+10x_76934+64x_76935+18x_76936+95x_76937+84x_76938+96x_76939+46x_76940+89x_76941+80x_76942+86x_76943+65x_76944+42x_76945+36x_76946+80x_76947+80x_76948+34x_76949+60x_76950+96x_76951+17x_76952+68x_76953+59x_76954+93x_76955+86x_76956+66x_76957+93x_76958+67x_76959+87x_76960+80x_76961+36x_76962+64x_76963+56x_76964+50x_76965+92x_76966+19x_76967+58x_76968+78x_76969+25x_76970+x_76971+96x_76972+4x_76973+24x_76974+60x_76975+5x_76976+51x_76977+34x_76978+93x_76979+76x_76980+66x_76981+25x_76982+31x_76983+58x_76984+41x_76985+89x_76986+20x_76987+78x_76988+61x_76989+46x_76990+23x_76991+51x_76992+34x_76993+22x_76994+91x_76995+66x_76996+47x_76997+23x_76998+45x_76999+28x_77000+66x_77001+81x_77002+60x_77003+25x_77004+54x_77005+84x_77006+83x_77007+59x_77008+56x_77009+12x_77010+23x_77011+96x_77012+65x_77013+15x_77014+34x_77015+37x_77016+74x_77017+45x_77018+17x_77019+100x_77020+96x_77021+56x_77022+60x_77023+24x_77024+80x_77025+56x_77026+96x_77027+26x_77028+2x_77029+51x_77030+57x_77031+3x_77032+40x_77033+85x_77034+67x_77035+20x_77036+70x_77037+21x_77038+92x_77039+37x_77040+65x_77041+52x_77042+38x_77043+16x_77044+90x_77045+73x_77046+66x_77047+35x_77048+3x_77049+31x_77050+16x_77051+39x_77052+98x_77053+19x_77054+65x_77055+45x_77056+3x_77057+86x_77058+11x_77059+17x_77060+77x_77061+42x_77062+47x_77063+61x_77064+75x_77065+91x_77066+69x_77067+57x_77068+7x_77069+23x_77070+13x_77071+33x_77072+8x_77073+38x_77074+26x_77075+98x_77076+55x_77077+98x_77078+88x_77079+55x_77080+73x_77081+49x_77082+8x_77083+47x_77084+26x_77085+40x_77086+8x_77087+90x_77088+88x_77089+15x_77090+33x_77091+71x_77092+3x_77093+62x_77094+86x_77095+80x_77096+96x_77097+90x_77098+93x_77099+11x_77100+92x_77101+48x_77102+33x_77103+43x_77104+21x_77105+56x_77106+69x_77107+62x_77108+27x_77109+64x_77110+58x_77111+66x_77112+96x_77113+76x_77114+50x_77115+91x_77116+27x_77117+2x_77118+75x_77119+3x_77120+69x_77121+90x_77122+55x_77123+85x_77124+26x_77125+82x_77126+87x_77127+30x_77128+19x_77129+71x_77130+39x_77131+66x_77132+32x_77133+53x_77134+96x_77135+51x_77136+50x_77137+72x_77138+76x_77139+90x_77140+23x_77141+25x_77142+41x_77143+96x_77144+12x_77145+77x_77146+53x_77147+29x_77148+20x_77149+92x_77150+75x_77151+91x_77152+32x_77153+72x_77154+92x_77155+18x_77156+57x_77157+39x_77158+18x_77159+46x_77160+82x_77161+91x_77162+77x_77163+37x_77164+94x_77165+6x_77166+93x_77167+40x_77168+55x_77169+45x_77170+11x_77171+55x_77172+44x_77173+23x_77174+38x_77175+x_77176+96x_77177+74x_77178+12x_77179+67x_77180+98x_77181+93x_77182+9x_77183+95x_77184+92x_77185+60x_77186+57x_77187+24x_77188+38x_77189+99x_77190+83x_77191+67x_77192+96x_77193+14x_77194+75x_77195+4x_77196+95x_77197+51x_77198+41x_77199+89x_77200+55x_77201+41x_77202+76x_77203+29x_77204+84x_77205+92x_77206+50x_77207+36x_77208+67x_77209+x_77210+96x_77211+4x_77212+31x_77213+86x_77214+86x_77215+42x_77216+98x_77217+18x_77218+78x_77219+52x_77220+9x_77221+42x_77222+20x_77223+14x_77224+48x_77225+75x_77226+42x_77227+60x_77228+21x_77229+71x_77230+67x_77231+22x_77232+43x_77233+29x_77234+74x_77235+53x_77236+58x_77237+10x_77238+36x_77239+100x_77240+32x_77241+11x_77242+55x_77243+44x_77244+45x_77245+30x_77246+99x_77247+63x_77248+76x_77249+80x_77250+60x_77251+17x_77252+45x_77253+47x_77254+19x_77255+71x_77256+87x_77257+48x_77258+84x_77259+50x_77260+60x_77261+21x_77262+55x_77263+97x_77264+2x_77265+94x_77266+69x_77267+42x_77268+9x_77269+53x_77270+51x_77271+49x_77272+63x_77273+85x_77274+56x_77275+67x_77276+4x_77277+69x_77278+39x_77279+78x_77280+35x_77281+7x_77282+29x_77283+43x_77284+67x_77285+75x_77286+77x_77287+32x_77288+36x_77289+81x_77290+34x_77291+50x_77292+73x_77293+23x_77294+81x_77295+22x_77296+19x_77297+69x_77298+43x_77299+86x_77300+71x_77301+24x_77302+80x_77303+15x_77304+75x_77305+10x_77306+6x_77307+99x_77308+71x_77309+100x_77310+80x_77311+48x_77312+59x_77313+91x_77314+99x_77315+30x_77316+36x_77317+23x_77318+20x_77319+56x_77320+75x_77321+54x_77322+75x_77323+14x_77324+62x_77325+13x_77326+42x_77327+79x_77328+48x_77329+72x_77330+45x_77331+79x_77332+20x_77333+73x_77334+29x_77335+19x_77336+98x_77337+6x_77338+71x_77339+14x_77340+37x_77341+7x_77342+2x_77343+36x_77344+28x_77345+17x_77346+97x_77347+61x_77348+29x_77349+10x_77350+62x_77351+26x_77352+26x_77353+86x_77354+4x_77355+66x_77356+42x_77357+50x_77358+90x_77359+70x_77360+88x_77361+55x_77362+39x_77363+97x_77364+66x_77365+79x_77366+94x_77367+26x_77368+86x_77369+43x_77370+2x_77371+40x_77372+93x_77373+7x_77374+15x_77375+18x_77376+32x_77377+46x_77378+99x_77379+8x_77380+38x_77381+90x_77382+97x_77383+94x_77384+50x_77385+59x_77386+18x_77387+40x_77388+2x_77389+4x_77390+6x_77391+18x_77392+44x_77393+16x_77394+96x_77395+39x_77396+37x_77397+18x_77398+7x_77399+76x_77400+94x_77401+75x_77402+84x_77403+2x_77404+17x_77405+68x_77406+66x_77407+58x_77408+85x_77409+39x_77410+13x_77411+15x_77412+49x_77413+74x_77414+55x_77415+23x_77416+100x_77417+35x_77418+2x_77419+75x_77420+31x_77421+13x_77422+98x_77423+7x_77424+99x_77425+45x_77426+76x_77427+86x_77428+72x_77429+64x_77430+16x_77431+46x_77432+74x_77433+77x_77434+26x_77435+16x_77436+9x_77437+94x_77438+42x_77439+46x_77440+71x_77441+4x_77442+82x_77443+5x_77444+79x_77445+52x_77446+66x_77447+65x_77448+61x_77449+27x_77450+8x_77451+85x_77452+86x_77453+87x_77454+5x_77455+33x_77456+83x_77457+8x_77458+9x_77459+70x_77460+30x_77461+6x_77462+10x_77463+10x_77464+11x_77465+54x_77466+52x_77467+89x_77468+32x_77469+43x_77470+60x_77471+18x_77472+62x_77473+49x_77474+81x_77475+87x_77476+33x_77477+42x_77478+64x_77479+84x_77480+20x_77481+81x_77482+20x_77483+31x_77484+48x_77485+34x_77486+x_77487+74x_77488+77x_77489+14x_77490+76x_77491+89x_77492+72x_77493+65x_77494+35x_77495+45x_77496+41x_77497+88x_77498+3x_77499+45x_77500+35x_77501+69x_77502+29x_77503+77x_77504+98x_77505+3x_77506+26x_77507+72x_77508+71x_77509+67x_77510+60x_77511+6x_77512+18x_77513+27x_77514+36x_77515+92x_77516+23x_77517+75x_77518+72x_77519+24x_77520+66x_77521+51x_77522+19x_77523+31x_77524+96x_77525+85x_77526+13x_77527+60x_77528+19x_77529+62x_77530+36x_77531+71x_77532+77x_77533+71x_77534+3x_77535+72x_77536+13x_77537+74x_77538+38x_77539+89x_77540+14x_77541+37x_77542+29x_77543+65x_77544+14x_77545+30x_77546+43x_77547+11x_77548+99x_77549+98x_77550+50x_77551+75x_77552+30x_77553+88x_77554+34x_77555+72x_77556+34x_77557+74x_77558+25x_77559+85x_77560+69x_77561+98x_77562+40x_77563+97x_77564+37x_77565+90x_77566+43x_77567+58x_77568+15x_77569+96x_77570+72x_77571+31x_77572+11x_77573+20x_77574+77x_77575+51x_77576+83x_77577+77x_77578+52x_77579+7x_77580+5x_77581+46x_77582+11x_77583+6x_77584+74x_77585+49x_77586+50x_77587+12x_77588+42x_77589+29x_77590+79x_77591+42x_77592+49x_77593+88x_77594+59x_77595+83x_77596+83x_77597+40x_77598+36x_77599+7x_77600+13x_77601+85x_77602+59x_77603+92x_77604+34x_77605+49x_77606+77x_77607+89x_77608+21x_77609+49x_77610+63x_77611+39x_77612+41x_77613+33x_77614+3x_77615+46x_77616+8x_77617+44x_77618+76x_77619+22x_77620+78x_77621+x_77622+70x_77623+75x_77624+69x_77625+24x_77626+49x_77627+44x_77628+36x_77629+61x_77630+92x_77631+38x_77632+43x_77633+83x_77634+50x_77635+23x_77636+24x_77637+15x_77638+42x_77639+98x_77640+92x_77641+97x_77642+29x_77643+79x_77644+56x_77645+68x_77646+58x_77647+64x_77648+28x_77649+21x_77650+86x_77651+100x_77652+44x_77653+2x_77654+51x_77655+51x_77656+36x_77657+34x_77658+57x_77659+3x_77660+23x_77661+23x_77662+26x_77663+15x_77664+10x_77665+31x_77666+35x_77667+32x_77668+84x_77669+68x_77670+23x_77671+13x_77672+36x_77673+19x_77674+42x_77675+87x_77676+55x_77677+5x_77678+63x_77679+63x_77680+5x_77681+93x_77682+98x_77683+87x_77684+96x_77685+34x_77686+20x_77687+83x_77688+20x_77689+53x_77690+19x_77691+19x_77692+58x_77693+27x_77694+35x_77695+28x_77696+77x_77697+10x_77698+6x_77699+50x_77700+57x_77701+70x_77702+44x_77703+84x_77704+65x_77705+97x_77706+77x_77707+89x_77708+85x_77709+22x_77710+46x_77711+18x_77712+84x_77713+50x_77714+3x_77715+40x_77716+99x_77717+22x_77718+95x_77719+80x_77720+83x_77721+89x_77722+87x_77723+76x_77724+64x_77725+3x_77726+34x_77727+68x_77728+4x_77729+27x_77730+86x_77731+79x_77732+96x_77733+67x_77734+88x_77735+45x_77736+39x_77737+46x_77738+81x_77739+56x_77740+68x_77741+90x_77742+29x_77743+3x_77744+9x_77745+x_77746+64x_77747+23x_77748+67x_77749+86x_77750+x_77751+48x_77752+28x_77753+18x_77754+57x_77755+4x_77756+65x_77757+61x_77758+98x_77759+65x_77760+73x_77761+68x_77762+x_77763+78x_77764+64x_77765+71x_77766+70x_77767+79x_77768+79x_77769+81x_77770+23x_77771+60x_77772+85x_77773+12x_77774+64x_77775+25x_77776+27x_77777+46x_77778+85x_77779+65x_77780+26x_77781+7x_77782+2x_77783+72x_77784+42x_77785+66x_77786+98x_77787+10x_77788+97x_77789+68x_77790+93x_77791+60x_77792+36x_77793+34x_77794+13x_77795+11x_77796+3x_77797+73x_77798+34x_77799+72x_77800+36x_77801+88x_77802+78x_77803+21x_77804+16x_77805+66x_77806+7x_77807+35x_77808+69x_77809+91x_77810+28x_77811+59x_77812+39x_77813+30x_77814+13x_77815+8x_77816+77x_77817+74x_77818+27x_77819+84x_77820+18x_77821+34x_77822+35x_77823+66x_77824+80x_77825+75x_77826+47x_77827+41x_77828+46x_77829+18x_77830+7x_77831+45x_77832+54x_77833+45x_77834+40x_77835+69x_77836+48x_77837+35x_77838+28x_77839+68x_77840+70x_77841+x_77842+58x_77843+14x_77844+3x_77845+90x_77846+46x_77847+58x_77848+68x_77849+52x_77850+76x_77851+74x_77852+33x_77853+73x_77854+67x_77855+69x_77856+11x_77857+x_77858+76x_77859+70x_77860+17x_77861+54x_77862+45x_77863+51x_77864+15x_77865+10x_77866+22x_77867+32x_77868+95x_77869+27x_77870+34x_77871+6x_77872+73x_77873+22x_77874+28x_77875+61x_77876+45x_77877+45x_77878+37x_77879+26x_77880+7x_77881+42x_77882+41x_77883+39x_77884+39x_77885+15x_77886+x_77887+70x_77888+67x_77889+52x_77890+20x_77891+97x_77892+88x_77893+38x_77894+87x_77895+36x_77896+61x_77897+20x_77898+61x_77899+87x_77900+55x_77901+81x_77902+2x_77903+79x_77904+12x_77905+98x_77906+19x_77907+87x_77908+78x_77909+98x_77910+13x_77911+95x_77912+38x_77913+25x_77914+31x_77915+25x_77916+25x_77917+58x_77918+39x_77919+43x_77920+15x_77921+65x_77922+66x_77923+26x_77924+57x_77925+66x_77926+31x_77927+73x_77928+20x_77929+16x_77930+49x_77931+44x_77932+96x_77933+60x_77934+93x_77935+38x_77936+15x_77937+32x_77938+13x_77939+95x_77940+89x_77941+43x_77942+48x_77943+9x_77944+93x_77945+74x_77946+86x_77947+19x_77948+82x_77949+47x_77950+11x_77951+98x_77952+31x_77953+24x_77954+42x_77955+28x_77956+8x_77957+48x_77958+9x_77959+88x_77960+76x_77961+7x_77962+82x_77963+48x_77964+22x_77965+85x_77966+67x_77967+37x_77968+7x_77969+96x_77970+14x_77971+41x_77972+90x_77973+48x_77974+65x_77975+74x_77976+94x_77977+74x_77978+x_77979+71x_77980+66x_77981+90x_77982+76x_77983+10x_77984+55x_77985+23x_77986+5x_77987+11x_77988+16x_77989+31x_77990+x_77991+51x_77992+100x_77993+60x_77994+37x_77995+44x_77996+100x_77997+28x_77998+75x_77999+30x_78000+55x_78001+99x_78002+60x_78003+75x_78004+45x_78005+56x_78006+34x_78007+91x_78008+34x_78009+65x_78010+75x_78011+87x_78012+96x_78013+71x_78014+33x_78015+44x_78016+67x_78017+18x_78018+52x_78019+100x_78020+33x_78021+95x_78022+29x_78023+99x_78024+20x_78025+57x_78026+57x_78027+19x_78028+12x_78029+97x_78030+57x_78031+34x_78032+18x_78033+89x_78034+46x_78035+35x_78036+72x_78037+15x_78038+59x_78039+47x_78040+86x_78041+91x_78042+61x_78043+35x_78044+91x_78045+72x_78046+6x_78047+27x_78048+43x_78049+38x_78050+32x_78051+71x_78052+86x_78053+78x_78054+34x_78055+x_78056+69x_78057+70x_78058+44x_78059+38x_78060+78x_78061+38x_78062+8x_78063+11x_78064+25x_78065+20x_78066+91x_78067+99x_78068+51x_78069+48x_78070+6x_78071+87x_78072+32x_78073+27x_78074+87x_78075+98x_78076+6x_78077+91x_78078+59x_78079+98x_78080+21x_78081+41x_78082+87x_78083+91x_78084+41x_78085+44x_78086+29x_78087+39x_78088+43x_78089+76x_78090+48x_78091+55x_78092+32x_78093+11x_78094+41x_78095+54x_78096+40x_78097+94x_78098+4x_78099+17x_78100+84x_78101+52x_78102+29x_78103+92x_78104+89x_78105+92x_78106+85x_78107+89x_78108+45x_78109+53x_78110+54x_78111+95x_78112+67x_78113+82x_78114+91x_78115+x_78116+45x_78117+8x_78118+16x_78119+67x_78120+70x_78121+25x_78122+97x_78123+89x_78124+72x_78125+82x_78126+87x_78127+x_78128+18x_78129+40x_78130+31x_78131+61x_78132+53x_78133+18x_78134+93x_78135+63x_78136+21x_78137+20x_78138+84x_78139+77x_78140+10x_78141+18x_78142+98x_78143+46x_78144+36x_78145+56x_78146+50x_78147+71x_78148+57x_78149+9x_78150+24x_78151+59x_78152+92x_78153+81x_78154+62x_78155+95x_78156+52x_78157+x_78158+12x_78159+55x_78160+59x_78161+9x_78162+15x_78163+37x_78164+40x_78165+60x_78166+15x_78167+38x_78168+51x_78169+56x_78170+82x_78171+63x_78172+30x_78173+54x_78174+37x_78175+44x_78176+59x_78177+48x_78178+49x_78179+50x_78180+55x_78181+11x_78182+87x_78183+86x_78184+79x_78185+26x_78186+46x_78187+26x_78188+74x_78189+4x_78190+40x_78191+77x_78192+42x_78193+54x_78194+84x_78195+26x_78196+90x_78197+83x_78198+59x_78199+17x_78200+82x_78201+60x_78202+47x_78203+86x_78204+14x_78205+67x_78206+41x_78207+56x_78208+38x_78209+73x_78210+63x_78211+26x_78212+86x_78213+23x_78214+30x_78215+27x_78216+17x_78217+79x_78218+95x_78219+41x_78220+58x_78221+40x_78222+14x_78223+70x_78224+24x_78225+38x_78226+24x_78227+29x_78228+89x_78229+91x_78230+83x_78231+48x_78232+100x_78233+12x_78234+51x_78235+3x_78236+15x_78237+96x_78238+31x_78239+55x_78240+50x_78241+86x_78242+42x_78243+60x_78244+24x_78245+46x_78246+45x_78247+28x_78248+70x_78249+90x_78250+62x_78251+8x_78252+84x_78253+19x_78254+82x_78255+23x_78256+45x_78257+2x_78258+42x_78259+27x_78260+74x_78261+46x_78262+58x_78263+42x_78264+26x_78265+67x_78266+24x_78267+33x_78268+39x_78269+18x_78270+45x_78271+x_78272+90x_78273+20x_78274+79x_78275+66x_78276+57x_78277+64x_78278+42x_78279+18x_78280+39x_78281+2x_78282+14x_78283+44x_78284+33x_78285+85x_78286+7x_78287+35x_78288+71x_78289+2x_78290+29x_78291+12x_78292+48x_78293+44x_78294+41x_78295+25x_78296+44x_78297+31x_78298+2x_78299+61x_78300+90x_78301+12x_78302+55x_78303+22x_78304+36x_78305+40x_78306+83x_78307+58x_78308+81x_78309+19x_78310+25x_78311+62x_78312+29x_78313+37x_78314+24x_78315+21x_78316+51x_78317+39x_78318+30x_78319+42x_78320+92x_78321+9x_78322+12x_78323+23x_78324+48x_78325+57x_78326+5x_78327+35x_78328+64x_78329+86x_78330+41x_78331+98x_78332+96x_78333+86x_78334+87x_78335+11x_78336+41x_78337+68x_78338+47x_78339+63x_78340+80x_78341+8x_78342+64x_78343+97x_78344+99x_78345+91x_78346+38x_78347+39x_78348+32x_78349+24x_78350+98x_78351+48x_78352+80x_78353+62x_78354+14x_78355+24x_78356+61x_78357+63x_78358+51x_78359+2x_78360+74x_78361+11x_78362+45x_78363+35x_78364+62x_78365+42x_78366+35x_78367+73x_78368+14x_78369+14x_78370+23x_78371+100x_78372+89x_78373+96x_78374+79x_78375+95x_78376+25x_78377+9x_78378+73x_78379+18x_78380+8x_78381+39x_78382+45x_78383+27x_78384+35x_78385+35x_78386+83x_78387+20x_78388+97x_78389+23x_78390+50x_78391+71x_78392+29x_78393+75x_78394+61x_78395+34x_78396+90x_78397+96x_78398+80x_78399+64x_78400+19x_78401+36x_78402+36x_78403+32x_78404+72x_78405+46x_78406+45x_78407+40x_78408+23x_78409+26x_78410+24x_78411+20x_78412+94x_78413+43x_78414+10x_78415+42x_78416+78x_78417+71x_78418+8x_78419+100x_78420+22x_78421+9x_78422+89x_78423+84x_78424+23x_78425+99x_78426+96x_78427+87x_78428+26x_78429+81x_78430+38x_78431+65x_78432+86x_78433+70x_78434+30x_78435+x_78436+97x_78437+27x_78438+26x_78439+32x_78440+31x_78441+57x_78442+76x_78443+16x_78444+72x_78445+99x_78446+49x_78447+23x_78448+4x_78449+98x_78450+58x_78451+92x_78452+86x_78453+91x_78454+9x_78455+80x_78456+62x_78457+69x_78458+43x_78459+6x_78460+20x_78461+97x_78462+59x_78463+47x_78464+70x_78465+50x_78466+46x_78467+33x_78468+83x_78469+66x_78470+86x_78471+48x_78472+4x_78473+87x_78474+95x_78475+72x_78476+40x_78477+69x_78478+85x_78479+2x_78480+45x_78481+75x_78482+51x_78483+93x_78484+20x_78485+30x_78486+45x_78487+78x_78488+90x_78489+93x_78490+16x_78491+82x_78492+65x_78493+60x_78494+29x_78495+16x_78496+21x_78497+4x_78498+51x_78499+62x_78500+5x_78501+17x_78502+92x_78503+12x_78504+15x_78505+5x_78506+99x_78507+18x_78508+40x_78509+29x_78510+10x_78511+43x_78512+92x_78513+45x_78514+27x_78515+52x_78516+35x_78517+81x_78518+88x_78519+66x_78520+10x_78521+52x_78522+93x_78523+40x_78524+43x_78525+56x_78526+70x_78527+34x_78528+27x_78529+40x_78530+74x_78531+52x_78532+2x_78533+81x_78534+39x_78535+29x_78536+29x_78537+59x_78538+19x_78539+96x_78540+32x_78541+18x_78542+58x_78543+78x_78544+27x_78545+8x_78546+2x_78547+87x_78548+57x_78549+87x_78550+13x_78551+96x_78552+86x_78553+90x_78554+56x_78555+72x_78556+70x_78557+12x_78558+19x_78559+94x_78560+34x_78561+30x_78562+36x_78563+89x_78564+15x_78565+25x_78566+100x_78567+27x_78568+26x_78569+45x_78570+33x_78571+76x_78572+63x_78573+54x_78574+67x_78575+39x_78576+64x_78577+18x_78578+35x_78579+14x_78580+95x_78581+17x_78582+14x_78583+31x_78584+13x_78585+58x_78586+10x_78587+95x_78588+50x_78589+70x_78590+56x_78591+96x_78592+21x_78593+34x_78594+6x_78595+87x_78596+3x_78597+47x_78598+66x_78599+85x_78600+79x_78601+23x_78602+66x_78603+98x_78604+69x_78605+74x_78606+83x_78607+100x_78608+55x_78609+51x_78610+3x_78611+60x_78612+37x_78613+35x_78614+96x_78615+28x_78616+21x_78617+58x_78618+8x_78619+13x_78620+57x_78621+36x_78622+7x_78623+27x_78624+83x_78625+41x_78626+20x_78627+10x_78628+80x_78629+81x_78630+36x_78631+63x_78632+28x_78633+23x_78634+68x_78635+75x_78636+24x_78637+45x_78638+42x_78639+84x_78640+11x_78641+64x_78642+48x_78643+61x_78644+74x_78645+76x_78646+82x_78647+17x_78648+73x_78649+6x_78650+41x_78651+81x_78652+96x_78653+39x_78654+61x_78655+72x_78656+35x_78657+26x_78658+39x_78659+37x_78660+88x_78661+40x_78662+71x_78663+20x_78664+42x_78665+16x_78666+15x_78667+95x_78668+94x_78669+x_78670+58x_78671+85x_78672+49x_78673+31x_78674+93x_78675+83x_78676+37x_78677+75x_78678+82x_78679+18x_78680+65x_78681+94x_78682+77x_78683+71x_78684+97x_78685+43x_78686+41x_78687+94x_78688+59x_78689+94x_78690+67x_78691+49x_78692+100x_78693+56x_78694+77x_78695+33x_78696+73x_78697+7x_78698+70x_78699+61x_78700+74x_78701+3x_78702+76x_78703+56x_78704+31x_78705+85x_78706+87x_78707+83x_78708+2x_78709+68x_78710+68x_78711+99x_78712+9x_78713+86x_78714+62x_78715+49x_78716+47x_78717+27x_78718+34x_78719+89x_78720+10x_78721+66x_78722+80x_78723+32x_78724+86x_78725+5x_78726+76x_78727+39x_78728+51x_78729+94x_78730+81x_78731+85x_78732+88x_78733+17x_78734+51x_78735+90x_78736+99x_78737+52x_78738+55x_78739+45x_78740+37x_78741+65x_78742+53x_78743+57x_78744+61x_78745+13x_78746+40x_78747+24x_78748+35x_78749+32x_78750+5x_78751+65x_78752+43x_78753+23x_78754+12x_78755+70x_78756+58x_78757+72x_78758+60x_78759+49x_78760+24x_78761+69x_78762+27x_78763+61x_78764+20x_78765+62x_78766+48x_78767+88x_78768+34x_78769+60x_78770+37x_78771+95x_78772+12x_78773+23x_78774+10x_78775+14x_78776+14x_78777+83x_78778+9x_78779+19x_78780+10x_78781+65x_78782+81x_78783+72x_78784+57x_78785+x_78786+69x_78787+73x_78788+94x_78789+66x_78790+x_78791+42x_78792+43x_78793+14x_78794+47x_78795+77x_78796+13x_78797+59x_78798+91x_78799+94x_78800+27x_78801+10x_78802+11x_78803+41x_78804+45x_78805+57x_78806+17x_78807+17x_78808+12x_78809+69x_78810+33x_78811+91x_78812+91x_78813+17x_78814+2x_78815+42x_78816+18x_78817+14x_78818+59x_78819+79x_78820+16x_78821+48x_78822+55x_78823+70x_78824+8x_78825+88x_78826+90x_78827+72x_78828+25x_78829+41x_78830+51x_78831+24x_78832+20x_78833+16x_78834+31x_78835+68x_78836+55x_78837+37x_78838+64x_78839+41x_78840+36x_78841+52x_78842+70x_78843+81x_78844+90x_78845+30x_78846+24x_78847+43x_78848+58x_78849+84x_78850+82x_78851+7x_78852+96x_78853+80x_78854+26x_78855+63x_78856+29x_78857+14x_78858+41x_78859+84x_78860+57x_78861+21x_78862+36x_78863+69x_78864+26x_78865+83x_78866+85x_78867+47x_78868+32x_78869+56x_78870+86x_78871+39x_78872+6x_78873+92x_78874+65x_78875+42x_78876+41x_78877+14x_78878+56x_78879+47x_78880+13x_78881+5x_78882+27x_78883+18x_78884+5x_78885+50x_78886+25x_78887+93x_78888+91x_78889+26x_78890+100x_78891+59x_78892+66x_78893+37x_78894+83x_78895+76x_78896+48x_78897+78x_78898+82x_78899+20x_78900+40x_78901+16x_78902+46x_78903+9x_78904+74x_78905+99x_78906+78x_78907+32x_78908+28x_78909+81x_78910+58x_78911+14x_78912+24x_78913+81x_78914+43x_78915+30x_78916+9x_78917+43x_78918+31x_78919+80x_78920+29x_78921+11x_78922+80x_78923+29x_78924+87x_78925+54x_78926+69x_78927+22x_78928+15x_78929+72x_78930+56x_78931+85x_78932+4x_78933+41x_78934+63x_78935+37x_78936+85x_78937+31x_78938+66x_78939+4x_78940+10x_78941+30x_78942+48x_78943+39x_78944+6x_78945+37x_78946+23x_78947+26x_78948+94x_78949+97x_78950+43x_78951+80x_78952+51x_78953+48x_78954+99x_78955+19x_78956+93x_78957+67x_78958+3x_78959+22x_78960+54x_78961+98x_78962+74x_78963+52x_78964+69x_78965+81x_78966+55x_78967+35x_78968+49x_78969+70x_78970+96x_78971+53x_78972+58x_78973+43x_78974+37x_78975+70x_78976+24x_78977+32x_78978+30x_78979+37x_78980+65x_78981+71x_78982+11x_78983+74x_78984+39x_78985+10x_78986+7x_78987+92x_78988+99x_78989+84x_78990+87x_78991+100x_78992+51x_78993+70x_78994+80x_78995+2x_78996+18x_78997+31x_78998+66x_78999+16x_79000+60x_79001+87x_79002+26x_79003+100x_79004+46x_79005+11x_79006+79x_79007+50x_79008+29x_79009+96x_79010+44x_79011+65x_79012+14x_79013+78x_79014+88x_79015+66x_79016+35x_79017+85x_79018+40x_79019+66x_79020+78x_79021+22x_79022+64x_79023+10x_79024+41x_79025+78x_79026+36x_79027+65x_79028+51x_79029+82x_79030+64x_79031+25x_79032+x_79033+68x_79034+72x_79035+42x_79036+64x_79037+54x_79038+x_79039+33x_79040+98x_79041+72x_79042+55x_79043+84x_79044+77x_79045+14x_79046+16x_79047+23x_79048+30x_79049+35x_79050+93x_79051+59x_79052+33x_79053+5x_79054+41x_79055+5x_79056+40x_79057+68x_79058+58x_79059+28x_79060+21x_79061+2x_79062+14x_79063+18x_79064+99x_79065+31x_79066+32x_79067+51x_79068+58x_79069+70x_79070+48x_79071+48x_79072+49x_79073+37x_79074+68x_79075+73x_79076+18x_79077+53x_79078+64x_79079+52x_79080+96x_79081+47x_79082+81x_79083+89x_79084+44x_79085+32x_79086+37x_79087+16x_79088+94x_79089+18x_79090+97x_79091+90x_79092+12x_79093+20x_79094+74x_79095+13x_79096+71x_79097+70x_79098+77x_79099+7x_79100+6x_79101+32x_79102+21x_79103+11x_79104+31x_79105+91x_79106+4x_79107+60x_79108+57x_79109+86x_79110+64x_79111+92x_79112+13x_79113+74x_79114+12x_79115+39x_79116+14x_79117+5x_79118+38x_79119+94x_79120+91x_79121+3x_79122+75x_79123+90x_79124+59x_79125+x_79126+71x_79127+25x_79128+12x_79129+82x_79130+38x_79131+99x_79132+2x_79133+54x_79134+25x_79135+3x_79136+77x_79137+83x_79138+33x_79139+56x_79140+64x_79141+39x_79142+98x_79143+64x_79144+67x_79145+17x_79146+57x_79147+89x_79148+72x_79149+13x_79150+37x_79151+57x_79152+36x_79153+63x_79154+64x_79155+4x_79156+53x_79157+44x_79158+96x_79159+19x_79160+27x_79161+43x_79162+2x_79163+34x_79164+x_79165+68x_79166+74x_79167+86x_79168+34x_79169+93x_79170+61x_79171+99x_79172+88x_79173+4x_79174+32x_79175+13x_79176+48x_79177+53x_79178+19x_79179+72x_79180+4x_79181+28x_79182+85x_79183+71x_79184+94x_79185+69x_79186+5x_79187+27x_79188+23x_79189+61x_79190+35x_79191+31x_79192+18x_79193+15x_79194+60x_79195+11x_79196+78x_79197+61x_79198+80x_79199+8x_79200+70x_79201+97x_79202+28x_79203+8x_79204+62x_79205+26x_79206+62x_79207+57x_79208+49x_79209+61x_79210+52x_79211+44x_79212+49x_79213+79x_79214+23x_79215+18x_79216+81x_79217+32x_79218+94x_79219+6x_79220+45x_79221+37x_79222+34x_79223+36x_79224+68x_79225+5x_79226+61x_79227+59x_79228+25x_79229+20x_79230+95x_79231+50x_79232+73x_79233+9x_79234+59x_79235+75x_79236+44x_79237+81x_79238+75x_79239+17x_79240+39x_79241+72x_79242+41x_79243+19x_79244+54x_79245+27x_79246+85x_79247+75x_79248+93x_79249+61x_79250+88x_79251+19x_79252+16x_79253+60x_79254+53x_79255+7x_79256+15x_79257+33x_79258+50x_79259+63x_79260+11x_79261+55x_79262+64x_79263+21x_79264+74x_79265+84x_79266+35x_79267+41x_79268+28x_79269+43x_79270+15x_79271+79x_79272+73x_79273+83x_79274+21x_79275+93x_79276+4x_79277+41x_79278+7x_79279+90x_79280+36x_79281+38x_79282+74x_79283+10x_79284+82x_79285+19x_79286+79x_79287+4x_79288+19x_79289+70x_79290+43x_79291+49x_79292+95x_79293+80x_79294+77x_79295+21x_79296+76x_79297+86x_79298+35x_79299+40x_79300+73x_79301+96x_79302+25x_79303+3x_79304+48x_79305+x_79306+44x_79307+47x_79308+88x_79309+46x_79310+21x_79311+33x_79312+63x_79313+18x_79314+93x_79315+79x_79316+47x_79317+45x_79318+65x_79319+96x_79320+7x_79321+81x_79322+99x_79323+17x_79324+25x_79325+55x_79326+40x_79327+13x_79328+52x_79329+34x_79330+20x_79331+44x_79332+80x_79333+3x_79334+27x_79335+18x_79336+58x_79337+30x_79338+13x_79339+21x_79340+22x_79341+30x_79342+35x_79343+81x_79344+5x_79345+82x_79346+16x_79347+21x_79348+20x_79349+20x_79350+77x_79351+40x_79352+27x_79353+58x_79354+68x_79355+24x_79356+49x_79357+62x_79358+69x_79359+79x_79360+16x_79361+35x_79362+78x_79363+15x_79364+56x_79365+50x_79366+36x_79367+25x_79368+9x_79369+48x_79370+52x_79371+85x_79372+67x_79373+18x_79374+88x_79375+40x_79376+75x_79377+48x_79378+7x_79379+92x_79380+77x_79381+88x_79382+74x_79383+34x_79384+24x_79385+45x_79386+64x_79387+22x_79388+91x_79389+84x_79390+18x_79391+63x_79392+28x_79393+57x_79394+99x_79395+22x_79396+72x_79397+46x_79398+10x_79399+64x_79400+33x_79401+47x_79402+57x_79403+30x_79404+76x_79405+55x_79406+41x_79407+30x_79408+31x_79409+43x_79410+31x_79411+80x_79412+93x_79413+87x_79414+63x_79415+88x_79416+73x_79417+87x_79418+6x_79419+21x_79420+75x_79421+95x_79422+82x_79423+55x_79424+32x_79425+51x_79426+27x_79427+71x_79428+27x_79429+43x_79430+45x_79431+40x_79432+83x_79433+73x_79434+64x_79435+97x_79436+19x_79437+36x_79438+96x_79439+84x_79440+39x_79441+11x_79442+61x_79443+58x_79444+90x_79445+2x_79446+20x_79447+2x_79448+75x_79449+77x_79450+41x_79451+100x_79452+58x_79453+25x_79454+50x_79455+61x_79456+21x_79457+95x_79458+11x_79459+80x_79460+75x_79461+47x_79462+94x_79463+66x_79464+46x_79465+55x_79466+82x_79467+26x_79468+24x_79469+95x_79470+13x_79471+72x_79472+74x_79473+35x_79474+82x_79475+93x_79476+20x_79477+30x_79478+72x_79479+2x_79480+19x_79481+87x_79482+38x_79483+13x_79484+77x_79485+69x_79486+64x_79487+90x_79488+2x_79489+82x_79490+6x_79491+68x_79492+74x_79493+93x_79494+52x_79495+97x_79496+55x_79497+31x_79498+87x_79499+55x_79500+44x_79501+63x_79502+39x_79503+23x_79504+33x_79505+100x_79506+59x_79507+2x_79508+16x_79509+75x_79510+65x_79511+66x_79512+23x_79513+66x_79514+55x_79515+31x_79516+2x_79517+27x_79518+63x_79519+69x_79520+36x_79521+59x_79522+70x_79523+51x_79524+85x_79525+51x_79526+80x_79527+53x_79528+18x_79529+84x_79530+19x_79531+93x_79532+41x_79533+19x_79534+9x_79535+81x_79536+8x_79537+3x_79538+72x_79539+17x_79540+11x_79541+16x_79542+48x_79543+45x_79544+67x_79545+15x_79546+98x_79547+69x_79548+69x_79549+84x_79550+6x_79551+57x_79552+47x_79553+70x_79554+84x_79555+77x_79556+81x_79557+54x_79558+47x_79559+25x_79560+83x_79561+50x_79562+78x_79563+38x_79564+73x_79565+81x_79566+16x_79567+74x_79568+46x_79569+97x_79570+28x_79571+12x_79572+46x_79573+7x_79574+12x_79575+98x_79576+28x_79577+97x_79578+35x_79579+34x_79580+90x_79581+76x_79582+24x_79583+60x_79584+24x_79585+30x_79586+26x_79587+35x_79588+83x_79589+44x_79590+33x_79591+93x_79592+21x_79593+92x_79594+6x_79595+26x_79596+38x_79597+84x_79598+6x_79599+53x_79600+36x_79601+65x_79602+19x_79603+12x_79604+53x_79605+47x_79606+5x_79607+49x_79608+31x_79609+18x_79610+22x_79611+63x_79612+11x_79613+4x_79614+15x_79615+16x_79616+81x_79617+44x_79618+57x_79619+63x_79620+62x_79621+90x_79622+48x_79623+36x_79624+83x_79625+36x_79626+90x_79627+5x_79628+26x_79629+32x_79630+40x_79631+83x_79632+10x_79633+31x_79634+8x_79635+37x_79636+87x_79637+65x_79638+9x_79639+63x_79640+9x_79641+4x_79642+66x_79643+18x_79644+54x_79645+11x_79646+57x_79647+83x_79648+74x_79649+83x_79650+58x_79651+42x_79652+82x_79653+67x_79654+52x_79655+79x_79656+6x_79657+65x_79658+76x_79659+48x_79660+37x_79661+39x_79662+34x_79663+94x_79664+28x_79665+42x_79666+20x_79667+46x_79668+50x_79669+10x_79670+13x_79671+63x_79672+22x_79673+70x_79674+49x_79675+61x_79676+94x_79677+48x_79678+28x_79679+62x_79680+73x_79681+34x_79682+48x_79683+90x_79684+83x_79685+48x_79686+84x_79687+8x_79688+56x_79689+7x_79690+88x_79691+90x_79692+80x_79693+29x_79694+7x_79695+4x_79696+39x_79697+90x_79698+59x_79699+52x_79700+83x_79701+48x_79702+55x_79703+79x_79704+86x_79705+21x_79706+35x_79707+48x_79708+83x_79709+56x_79710+28x_79711+55x_79712+64x_79713+67x_79714+25x_79715+64x_79716+61x_79717+78x_79718+47x_79719+19x_79720+41x_79721+94x_79722+76x_79723+2x_79724+99x_79725+32x_79726+37x_79727+69x_79728+3x_79729+23x_79730+82x_79731+66x_79732+4x_79733+34x_79734+88x_79735+6x_79736+17x_79737+4x_79738+29x_79739+52x_79740+72x_79741+74x_79742+35x_79743+40x_79744+x_79745+16x_79746+67x_79747+86x_79748+28x_79749+30x_79750+28x_79751+88x_79752+2x_79753+96x_79754+84x_79755+83x_79756+93x_79757+90x_79758+3x_79759+53x_79760+54x_79761+37x_79762+99x_79763+77x_79764+30x_79765+100x_79766+47x_79767+16x_79768+49x_79769+91x_79770+23x_79771+52x_79772+99x_79773+51x_79774+3x_79775+53x_79776+19x_79777+79x_79778+32x_79779+5x_79780+24x_79781+76x_79782+96x_79783+19x_79784+23x_79785+50x_79786+57x_79787+88x_79788+57x_79789+76x_79790+91x_79791+74x_79792+61x_79793+87x_79794+7x_79795+98x_79796+74x_79797+31x_79798+97x_79799+12x_79800+96x_79801+95x_79802+33x_79803+61x_79804+92x_79805+25x_79806+80x_79807+90x_79808+53x_79809+72x_79810+71x_79811+80x_79812+72x_79813+34x_79814+23x_79815+75x_79816+97x_79817+29x_79818+40x_79819+10x_79820+3x_79821+20x_79822+37x_79823+8x_79824+33x_79825+3x_79826+23x_79827+85x_79828+67x_79829+48x_79830+30x_79831+64x_79832+59x_79833+63x_79834+46x_79835+x_79836+21x_79837+90x_79838+64x_79839+59x_79840+74x_79841+x_79842+16x_79843+44x_79844+10x_79845+6x_79846+73x_79847+71x_79848+100x_79849+96x_79850+35x_79851+29x_79852+61x_79853+55x_79854+95x_79855+47x_79856+68x_79857+73x_79858+43x_79859+22x_79860+92x_79861+73x_79862+5x_79863+56x_79864+88x_79865+57x_79866+78x_79867+60x_79868+11x_79869+47x_79870+80x_79871+47x_79872+23x_79873+37x_79874+43x_79875+94x_79876+49x_79877+93x_79878+92x_79879+33x_79880+60x_79881+91x_79882+47x_79883+63x_79884+80x_79885+80x_79886+95x_79887+37x_79888+78x_79889+41x_79890+83x_79891+5x_79892+12x_79893+77x_79894+98x_79895+44x_79896+68x_79897+8x_79898+20x_79899+41x_79900+2x_79901+2x_79902+51x_79903+41x_79904+47x_79905+34x_79906+46x_79907+95x_79908+34x_79909+82x_79910+5x_79911+35x_79912+93x_79913+7x_79914+51x_79915+57x_79916+83x_79917+53x_79918+50x_79919+13x_79920+74x_79921+77x_79922+80x_79923+95x_79924+8x_79925+86x_79926+64x_79927+57x_79928+65x_79929+82x_79930+31x_79931+80x_79932+76x_79933+11x_79934+66x_79935+61x_79936+79x_79937+82x_79938+36x_79939+60x_79940+85x_79941+x_79942+53x_79943+2x_79944+16x_79945+98x_79946+75x_79947+30x_79948+41x_79949+94x_79950+46x_79951+93x_79952+48x_79953+60x_79954+55x_79955+20x_79956+73x_79957+66x_79958+97x_79959+72x_79960+83x_79961+12x_79962+40x_79963+32x_79964+88x_79965+14x_79966+19x_79967+26x_79968+84x_79969+9x_79970+48x_79971+47x_79972+33x_79973+29x_79974+36x_79975+22x_79976+73x_79977+33x_79978+70x_79979+54x_79980+93x_79981+29x_79982+85x_79983+40x_79984+80x_79985+27x_79986+81x_79987+56x_79988+8x_79989+58x_79990+94x_79991+79x_79992+89x_79993+57x_79994+40x_79995+21x_79996+58x_79997+90x_79998+47x_79999+70x_80000+29x_80001+26x_80002+56x_80003+27x_80004+56x_80005+33x_80006+61x_80007+99x_80008+62x_80009+76x_80010+45x_80011+54x_80012+46x_80013+16x_80014+59x_80015+81x_80016+70x_80017+7x_80018+92x_80019+23x_80020+80x_80021+76x_80022+23x_80023+72x_80024+100x_80025+70x_80026+31x_80027+53x_80028+81x_80029+68x_80030+90x_80031+95x_80032+46x_80033+88x_80034+84x_80035+7x_80036+7x_80037+40x_80038+70x_80039+70x_80040+97x_80041+90x_80042+85x_80043+88x_80044+38x_80045+98x_80046+48x_80047+41x_80048+25x_80049+50x_80050+35x_80051+50x_80052+44x_80053+100x_80054+39x_80055+78x_80056+40x_80057+25x_80058+28x_80059+80x_80060+53x_80061+80x_80062+94x_80063+37x_80064+46x_80065+11x_80066+32x_80067+7x_80068+97x_80069+90x_80070+54x_80071+48x_80072+29x_80073+53x_80074+60x_80075+x_80076+57x_80077+95x_80078+52x_80079+42x_80080+11x_80081+31x_80082+44x_80083+63x_80084+74x_80085+56x_80086+40x_80087+84x_80088+39x_80089+17x_80090+66x_80091+100x_80092+64x_80093+17x_80094+59x_80095+38x_80096+71x_80097+91x_80098+22x_80099+15x_80100+2x_80101+7x_80102+33x_80103+15x_80104+26x_80105+63x_80106+37x_80107+30x_80108+18x_80109+17x_80110+67x_80111+100x_80112+11x_80113+28x_80114+85x_80115+57x_80116+56x_80117+45x_80118+91x_80119+47x_80120+73x_80121+94x_80122+93x_80123+68x_80124+34x_80125+64x_80126+92x_80127+58x_80128+45x_80129+61x_80130+18x_80131+21x_80132+87x_80133+79x_80134+25x_80135+20x_80136+23x_80137+6x_80138+92x_80139+28x_80140+29x_80141+40x_80142+87x_80143+45x_80144+31x_80145+77x_80146+27x_80147+72x_80148+59x_80149+6x_80150+77x_80151+44x_80152+82x_80153+67x_80154+9x_80155+50x_80156+62x_80157+39x_80158+47x_80159+49x_80160+76x_80161+40x_80162+98x_80163+95x_80164+82x_80165+89x_80166+28x_80167+79x_80168+56x_80169+22x_80170+49x_80171+60x_80172+14x_80173+61x_80174+3x_80175+66x_80176+31x_80177+58x_80178+44x_80179+5x_80180+92x_80181+47x_80182+96x_80183+72x_80184+69x_80185+14x_80186+39x_80187+85x_80188+85x_80189+25x_80190+21x_80191+17x_80192+2x_80193+19x_80194+51x_80195+26x_80196+3x_80197+56x_80198+95x_80199+6x_80200+68x_80201+16x_80202+24x_80203+49x_80204+91x_80205+51x_80206+70x_80207+82x_80208+23x_80209+2x_80210+35x_80211+81x_80212+4x_80213+66x_80214+77x_80215+85x_80216+83x_80217+83x_80218+77x_80219+45x_80220+9x_80221+17x_80222+65x_80223+35x_80224+33x_80225+78x_80226+22x_80227+85x_80228+x_80229+33x_80230+x_80231+52x_80232+72x_80233+54x_80234+94x_80235+32x_80236+34x_80237+17x_80238+88x_80239+46x_80240+44x_80241+14x_80242+96x_80243+23x_80244+94x_80245+84x_80246+59x_80247+52x_80248+22x_80249+39x_80250+49x_80251+59x_80252+21x_80253+64x_80254+25x_80255+81x_80256+7x_80257+96x_80258+13x_80259+52x_80260+52x_80261+90x_80262+20x_80263+36x_80264+68x_80265+69x_80266+15x_80267+75x_80268+54x_80269+40x_80270+85x_80271+62x_80272+30x_80273+18x_80274+72x_80275+57x_80276+87x_80277+30x_80278+91x_80279+26x_80280+62x_80281+59x_80282+41x_80283+83x_80284+53x_80285+32x_80286+33x_80287+66x_80288+70x_80289+66x_80290+39x_80291+8x_80292+87x_80293+53x_80294+87x_80295+26x_80296+54x_80297+14x_80298+64x_80299+10x_80300+35x_80301+43x_80302+64x_80303+61x_80304+73x_80305+19x_80306+59x_80307+100x_80308+51x_80309+36x_80310+34x_80311+92x_80312+7x_80313+28x_80314+35x_80315+50x_80316+x_80317+28x_80318+90x_80319+87x_80320+90x_80321+13x_80322+88x_80323+20x_80324+37x_80325+x_80326+70x_80327+75x_80328+55x_80329+45x_80330+91x_80331+x_80332+67x_80333+57x_80334+22x_80335+76x_80336+11x_80337+70x_80338+75x_80339+2x_80340+60x_80341+39x_80342+13x_80343+67x_80344+42x_80345+79x_80346+73x_80347+71x_80348+8x_80349+22x_80350+75x_80351+27x_80352+61x_80353+38x_80354+96x_80355+96x_80356+71x_80357+25x_80358+20x_80359+9x_80360+71x_80361+87x_80362+36x_80363+92x_80364+80x_80365+76x_80366+59x_80367+54x_80368+96x_80369+75x_80370+56x_80371+100x_80372+28x_80373+42x_80374+94x_80375+16x_80376+5x_80377+29x_80378+73x_80379+44x_80380+39x_80381+12x_80382+93x_80383+56x_80384+8x_80385+63x_80386+71x_80387+81x_80388+48x_80389+99x_80390+88x_80391+58x_80392+36x_80393+90x_80394+61x_80395+68x_80396+25x_80397+64x_80398+100x_80399+25x_80400+25x_80401+28x_80402+90x_80403+12x_80404+36x_80405+23x_80406+66x_80407+97x_80408+99x_80409+75x_80410+28x_80411+76x_80412+100x_80413+68x_80414+56x_80415+30x_80416+72x_80417+34x_80418+67x_80419+18x_80420+20x_80421+66x_80422+6x_80423+24x_80424+17x_80425+x_80426+89x_80427+27x_80428+54x_80429+25x_80430+51x_80431+59x_80432+50x_80433+3x_80434+30x_80435+85x_80436+79x_80437+70x_80438+37x_80439+88x_80440+54x_80441+63x_80442+100x_80443+81x_80444+52x_80445+63x_80446+90x_80447+86x_80448+45x_80449+39x_80450+28x_80451+73x_80452+4x_80453+89x_80454+65x_80455+88x_80456+10x_80457+83x_80458+91x_80459+42x_80460+4x_80461+23x_80462+77x_80463+60x_80464+24x_80465+86x_80466+72x_80467+57x_80468+40x_80469+60x_80470+10x_80471+93x_80472+56x_80473+17x_80474+41x_80475+46x_80476+35x_80477+58x_80478+30x_80479+19x_80480+23x_80481+15x_80482+35x_80483+3x_80484+27x_80485+8x_80486+49x_80487+40x_80488+35x_80489+85x_80490+16x_80491+100x_80492+73x_80493+35x_80494+35x_80495+64x_80496+47x_80497+56x_80498+37x_80499+33x_80500+5x_80501+84x_80502+33x_80503+92x_80504+91x_80505+15x_80506+6x_80507+73x_80508+56x_80509+13x_80510+62x_80511+74x_80512+65x_80513+39x_80514+31x_80515+20x_80516+98x_80517+13x_80518+36x_80519+76x_80520+16x_80521+37x_80522+42x_80523+13x_80524+75x_80525+95x_80526+37x_80527+10x_80528+46x_80529+28x_80530+10x_80531+60x_80532+71x_80533+71x_80534+68x_80535+29x_80536+97x_80537+2x_80538+69x_80539+25x_80540+57x_80541+6x_80542+97x_80543+13x_80544+80x_80545+28x_80546+84x_80547+58x_80548+59x_80549+41x_80550+38x_80551+43x_80552+43x_80553+71x_80554+49x_80555+25x_80556+33x_80557+68x_80558+46x_80559+34x_80560+50x_80561+74x_80562+59x_80563+88x_80564+86x_80565+4x_80566+15x_80567+66x_80568+28x_80569+81x_80570+39x_80571+51x_80572+68x_80573+41x_80574+95x_80575+3x_80576+62x_80577+59x_80578+12x_80579+74x_80580+6x_80581+63x_80582+3x_80583+71x_80584+48x_80585+86x_80586+17x_80587+90x_80588+19x_80589+76x_80590+41x_80591+51x_80592+90x_80593+80x_80594+53x_80595+92x_80596+72x_80597+98x_80598+8x_80599+77x_80600+63x_80601+13x_80602+58x_80603+55x_80604+35x_80605+49x_80606+58x_80607+6x_80608+15x_80609+53x_80610+32x_80611+32x_80612+20x_80613+41x_80614+40x_80615+56x_80616+42x_80617+92x_80618+85x_80619+32x_80620+100x_80621+25x_80622+73x_80623+42x_80624+19x_80625+54x_80626+8x_80627+97x_80628+79x_80629+98x_80630+88x_80631+x_80632+40x_80633+87x_80634+54x_80635+2x_80636+56x_80637+60x_80638+85x_80639+22x_80640+15x_80641+50x_80642+92x_80643+93x_80644+35x_80645+29x_80646+82x_80647+43x_80648+x_80649+34x_80650+92x_80651+2x_80652+99x_80653+45x_80654+31x_80655+13x_80656+21x_80657+45x_80658+98x_80659+42x_80660+42x_80661+64x_80662+65x_80663+16x_80664+34x_80665+4x_80666+28x_80667+100x_80668+35x_80669+60x_80670+24x_80671+40x_80672+25x_80673+93x_80674+63x_80675+95x_80676+96x_80677+48x_80678+87x_80679+10x_80680+35x_80681+13x_80682+62x_80683+87x_80684+46x_80685+79x_80686+3x_80687+25x_80688+51x_80689+25x_80690+88x_80691+5x_80692+40x_80693+84x_80694+64x_80695+51x_80696+43x_80697+46x_80698+52x_80699+18x_80700+29x_80701+70x_80702+43x_80703+74x_80704+79x_80705+23x_80706+6x_80707+65x_80708+54x_80709+49x_80710+53x_80711+85x_80712+74x_80713+25x_80714+40x_80715+75x_80716+42x_80717+76x_80718+23x_80719+92x_80720+23x_80721+41x_80722+15x_80723+2x_80724+96x_80725+15x_80726+40x_80727+20x_80728+71x_80729+47x_80730+24x_80731+48x_80732+63x_80733+26x_80734+2x_80735+60x_80736+23x_80737+89x_80738+7x_80739+3x_80740+22x_80741+78x_80742+35x_80743+27x_80744+36x_80745+60x_80746+65x_80747+58x_80748+42x_80749+46x_80750+61x_80751+79x_80752+35x_80753+55x_80754+58x_80755+45x_80756+87x_80757+84x_80758+85x_80759+2x_80760+80x_80761+8x_80762+95x_80763+88x_80764+87x_80765+81x_80766+26x_80767+18x_80768+34x_80769+72x_80770+10x_80771+89x_80772+3x_80773+32x_80774+95x_80775+72x_80776+63x_80777+84x_80778+x_80779+15x_80780+85x_80781+31x_80782+97x_80783+46x_80784+91x_80785+70x_80786+33x_80787+46x_80788+55x_80789+64x_80790+35x_80791+75x_80792+4x_80793+93x_80794+48x_80795+67x_80796+57x_80797+13x_80798+96x_80799+73x_80800+70x_80801+78x_80802+82x_80803+57x_80804+51x_80805+45x_80806+47x_80807+54x_80808+51x_80809+71x_80810+76x_80811+30x_80812+50x_80813+49x_80814+13x_80815+60x_80816+34x_80817+94x_80818+96x_80819+84x_80820+93x_80821+51x_80822+91x_80823+71x_80824+55x_80825+100x_80826+54x_80827+43x_80828+36x_80829+87x_80830+49x_80831+31x_80832+77x_80833+53x_80834+69x_80835+93x_80836+64x_80837+83x_80838+46x_80839+59x_80840+26x_80841+41x_80842+87x_80843+34x_80844+53x_80845+23x_80846+72x_80847+34x_80848+30x_80849+x_80850+63x_80851+64x_80852+86x_80853+43x_80854+14x_80855+48x_80856+82x_80857+12x_80858+13x_80859+12x_80860+91x_80861+20x_80862+64x_80863+11x_80864+51x_80865+84x_80866+70x_80867+52x_80868+25x_80869+41x_80870+32x_80871+37x_80872+37x_80873+84x_80874+53x_80875+67x_80876+48x_80877+68x_80878+10x_80879+85x_80880+77x_80881+39x_80882+33x_80883+10x_80884+61x_80885+63x_80886+96x_80887+2x_80888+72x_80889+90x_80890+73x_80891+70x_80892+90x_80893+4x_80894+50x_80895+49x_80896+65x_80897+77x_80898+83x_80899+x_80900+40x_80901+56x_80902+71x_80903+90x_80904+12x_80905+75x_80906+14x_80907+11x_80908+31x_80909+16x_80910+26x_80911+46x_80912+93x_80913+26x_80914+26x_80915+22x_80916+50x_80917+7x_80918+75x_80919+10x_80920+37x_80921+51x_80922+33x_80923+9x_80924+93x_80925+12x_80926+60x_80927+36x_80928+48x_80929+35x_80930+16x_80931+85x_80932+26x_80933+53x_80934+81x_80935+10x_80936+21x_80937+76x_80938+92x_80939+36x_80940+89x_80941+18x_80942+58x_80943+72x_80944+16x_80945+81x_80946+80x_80947+92x_80948+38x_80949+94x_80950+48x_80951+42x_80952+53x_80953+51x_80954+74x_80955+24x_80956+64x_80957+16x_80958+22x_80959+49x_80960+82x_80961+100x_80962+73x_80963+22x_80964+2x_80965+8x_80966+14x_80967+29x_80968+34x_80969+41x_80970+51x_80971+83x_80972+37x_80973+73x_80974+43x_80975+58x_80976+70x_80977+x_80978+89x_80979+61x_80980+15x_80981+55x_80982+85x_80983+5x_80984+51x_80985+66x_80986+45x_80987+12x_80988+49x_80989+89x_80990+49x_80991+16x_80992+99x_80993+82x_80994+96x_80995+91x_80996+86x_80997+63x_80998+18x_80999+x_81000+9x_81001+69x_81002+83x_81003+87x_81004+57x_81005+74x_81006+44x_81007+20x_81008+39x_81009+84x_81010+42x_81011+54x_81012+3x_81013+25x_81014+27x_81015+62x_81016+69x_81017+81x_81018+12x_81019+76x_81020+100x_81021+98x_81022+61x_81023+8x_81024+9x_81025+2x_81026+80x_81027+15x_81028+4x_81029+17x_81030+82x_81031+13x_81032+60x_81033+52x_81034+56x_81035+60x_81036+27x_81037+34x_81038+21x_81039+89x_81040+46x_81041+81x_81042+2x_81043+67x_81044+16x_81045+61x_81046+76x_81047+23x_81048+7x_81049+30x_81050+68x_81051+2x_81052+59x_81053+21x_81054+67x_81055+16x_81056+41x_81057+67x_81058+84x_81059+17x_81060+6x_81061+15x_81062+52x_81063+61x_81064+63x_81065+38x_81066+37x_81067+3x_81068+90x_81069+94x_81070+71x_81071+65x_81072+58x_81073+32x_81074+23x_81075+25x_81076+86x_81077+90x_81078+22x_81079+37x_81080+90x_81081+24x_81082+92x_81083+83x_81084+30x_81085+79x_81086+82x_81087+62x_81088+71x_81089+97x_81090+27x_81091+74x_81092+91x_81093+100x_81094+24x_81095+89x_81096+34x_81097+42x_81098+41x_81099+67x_81100+80x_81101+60x_81102+76x_81103+24x_81104+53x_81105+14x_81106+14x_81107+41x_81108+74x_81109+94x_81110+81x_81111+86x_81112+17x_81113+22x_81114+43x_81115+15x_81116+47x_81117+4x_81118+32x_81119+98x_81120+22x_81121+57x_81122+19x_81123+21x_81124+32x_81125+13x_81126+56x_81127+61x_81128+23x_81129+22x_81130+14x_81131+75x_81132+40x_81133+37x_81134+68x_81135+9x_81136+69x_81137+36x_81138+36x_81139+10x_81140+86x_81141+55x_81142+77x_81143+90x_81144+97x_81145+95x_81146+67x_81147+36x_81148+89x_81149+63x_81150+37x_81151+56x_81152+58x_81153+16x_81154+14x_81155+52x_81156+64x_81157+62x_81158+91x_81159+71x_81160+10x_81161+88x_81162+20x_81163+71x_81164+32x_81165+6x_81166+4x_81167+15x_81168+63x_81169+52x_81170+52x_81171+39x_81172+27x_81173+15x_81174+55x_81175+49x_81176+46x_81177+2x_81178+31x_81179+65x_81180+92x_81181+34x_81182+63x_81183+14x_81184+27x_81185+13x_81186+40x_81187+83x_81188+47x_81189+7x_81190+67x_81191+81x_81192+25x_81193+87x_81194+68x_81195+38x_81196+39x_81197+30x_81198+94x_81199+18x_81200+63x_81201+67x_81202+11x_81203+43x_81204+51x_81205+96x_81206+87x_81207+86x_81208+85x_81209+100x_81210+38x_81211+62x_81212+85x_81213+37x_81214+87x_81215+80x_81216+9x_81217+7x_81218+57x_81219+8x_81220+67x_81221+69x_81222+71x_81223+39x_81224+45x_81225+54x_81226+91x_81227+33x_81228+79x_81229+52x_81230+18x_81231+61x_81232+35x_81233+90x_81234+70x_81235+54x_81236+59x_81237+63x_81238+37x_81239+92x_81240+5x_81241+87x_81242+79x_81243+75x_81244+60x_81245+14x_81246+13x_81247+14x_81248+28x_81249+98x_81250+89x_81251+17x_81252+63x_81253+14x_81254+87x_81255+57x_81256+49x_81257+40x_81258+47x_81259+15x_81260+63x_81261+92x_81262+83x_81263+x_81264+30x_81265+66x_81266+34x_81267+78x_81268+17x_81269+41x_81270+66x_81271+31x_81272+81x_81273+47x_81274+79x_81275+100x_81276+31x_81277+65x_81278+72x_81279+96x_81280+15x_81281+24x_81282+48x_81283+80x_81284+96x_81285+72x_81286+77x_81287+19x_81288+90x_81289+8x_81290+96x_81291+11x_81292+31x_81293+65x_81294+100x_81295+20x_81296+11x_81297+48x_81298+54x_81299+11x_81300+53x_81301+27x_81302+10x_81303+23x_81304+18x_81305+15x_81306+24x_81307+3x_81308+9x_81309+20x_81310+83x_81311+96x_81312+64x_81313+69x_81314+52x_81315+64x_81316+52x_81317+63x_81318+93x_81319+10x_81320+25x_81321+53x_81322+14x_81323+23x_81324+56x_81325+86x_81326+31x_81327+91x_81328+38x_81329+24x_81330+74x_81331+47x_81332+2x_81333+24x_81334+27x_81335+78x_81336+65x_81337+35x_81338+13x_81339+49x_81340+75x_81341+30x_81342+88x_81343+93x_81344+54x_81345+32x_81346+68x_81347+78x_81348+35x_81349+64x_81350+12x_81351+57x_81352+81x_81353+95x_81354+52x_81355+76x_81356+11x_81357+74x_81358+42x_81359+84x_81360+22x_81361+55x_81362+17x_81363+61x_81364+79x_81365+46x_81366+5x_81367+90x_81368+35x_81369+26x_81370+x_81371+97x_81372+85x_81373+68x_81374+11x_81375+38x_81376+81x_81377+55x_81378+28x_81379+91x_81380+48x_81381+47x_81382+19x_81383+65x_81384+50x_81385+65x_81386+53x_81387+66x_81388+18x_81389+43x_81390+35x_81391+50x_81392+41x_81393+47x_81394+52x_81395+10x_81396+3x_81397+46x_81398+2x_81399+77x_81400+45x_81401+54x_81402+94x_81403+69x_81404+50x_81405+64x_81406+41x_81407+77x_81408+73x_81409+67x_81410+57x_81411+3x_81412+71x_81413+26x_81414+30x_81415+41x_81416+69x_81417+35x_81418+41x_81419+25x_81420+86x_81421+41x_81422+21x_81423+6x_81424+66x_81425+90x_81426+67x_81427+11x_81428+76x_81429+64x_81430+36x_81431+27x_81432+89x_81433+38x_81434+61x_81435+41x_81436+84x_81437+49x_81438+6x_81439+55x_81440+56x_81441+16x_81442+54x_81443+74x_81444+93x_81445+27x_81446+35x_81447+6x_81448+84x_81449+78x_81450+20x_81451+34x_81452+66x_81453+42x_81454+58x_81455+24x_81456+44x_81457+x_81458+38x_81459+90x_81460+34x_81461+50x_81462+49x_81463+82x_81464+92x_81465+50x_81466+x_81467+89x_81468+71x_81469+86x_81470+12x_81471+41x_81472+77x_81473+62x_81474+15x_81475+88x_81476+67x_81477+30x_81478+68x_81479+91x_81480+98x_81481+69x_81482+64x_81483+62x_81484+40x_81485+22x_81486+41x_81487+63x_81488+59x_81489+71x_81490+15x_81491+92x_81492+87x_81493+74x_81494+7x_81495+7x_81496+25x_81497+45x_81498+40x_81499+65x_81500+99x_81501+49x_81502+85x_81503+70x_81504+25x_81505+42x_81506+33x_81507+95x_81508+72x_81509+96x_81510+21x_81511+57x_81512+33x_81513+40x_81514+47x_81515+78x_81516+62x_81517+93x_81518+62x_81519+27x_81520+55x_81521+81x_81522+2x_81523+4x_81524+89x_81525+75x_81526+63x_81527+85x_81528+56x_81529+50x_81530+22x_81531+29x_81532+23x_81533+21x_81534+63x_81535+5x_81536+72x_81537+33x_81538+50x_81539+98x_81540+2x_81541+50x_81542+25x_81543+71x_81544+59x_81545+84x_81546+95x_81547+20x_81548+52x_81549+53x_81550+31x_81551+26x_81552+34x_81553+19x_81554+69x_81555+4x_81556+76x_81557+18x_81558+55x_81559+70x_81560+8x_81561+57x_81562+84x_81563+77x_81564+25x_81565+75x_81566+38x_81567+75x_81568+93x_81569+9x_81570+34x_81571+74x_81572+97x_81573+55x_81574+13x_81575+67x_81576+47x_81577+77x_81578+32x_81579+88x_81580+67x_81581+24x_81582+11x_81583+33x_81584+96x_81585+48x_81586+50x_81587+96x_81588+91x_81589+x_81590+77x_81591+51x_81592+16x_81593+14x_81594+x_81595+80x_81596+88x_81597+71x_81598+12x_81599+55x_81600+82x_81601+8x_81602+57x_81603+51x_81604+62x_81605+58x_81606+65x_81607+60x_81608+97x_81609+24x_81610+47x_81611+79x_81612+45x_81613+40x_81614+37x_81615+83x_81616+64x_81617+50x_81618+50x_81619+68x_81620+54x_81621+8x_81622+56x_81623+38x_81624+27x_81625+76x_81626+56x_81627+x_81628+93x_81629+30x_81630+100x_81631+88x_81632+91x_81633+29x_81634+17x_81635+31x_81636+26x_81637+78x_81638+63x_81639+26x_81640+93x_81641+37x_81642+28x_81643+x_81644+32x_81645+79x_81646+67x_81647+98x_81648+59x_81649+74x_81650+87x_81651+31x_81652+15x_81653+43x_81654+29x_81655+60x_81656+40x_81657+54x_81658+38x_81659+36x_81660+72x_81661+10x_81662+42x_81663+62x_81664+14x_81665+69x_81666+48x_81667+17x_81668+34x_81669+39x_81670+24x_81671+11x_81672+15x_81673+13x_81674+67x_81675+88x_81676+65x_81677+58x_81678+100x_81679+6x_81680+2x_81681+42x_81682+19x_81683+30x_81684+59x_81685+88x_81686+77x_81687+97x_81688+16x_81689+96x_81690+65x_81691+83x_81692+62x_81693+73x_81694+96x_81695+73x_81696+x_81697+23x_81698+69x_81699+85x_81700+26x_81701+68x_81702+47x_81703+30x_81704+88x_81705+98x_81706+6x_81707+7x_81708+34x_81709+78x_81710+55x_81711+45x_81712+68x_81713+40x_81714+55x_81715+42x_81716+60x_81717+90x_81718+35x_81719+86x_81720+52x_81721+28x_81722+23x_81723+73x_81724+76x_81725+96x_81726+22x_81727+36x_81728+97x_81729+63x_81730+3x_81731+x_81732+26x_81733+73x_81734+97x_81735+74x_81736+75x_81737+56x_81738+33x_81739+36x_81740+59x_81741+83x_81742+31x_81743+83x_81744+96x_81745+52x_81746+14x_81747+86x_81748+23x_81749+39x_81750+14x_81751+56x_81752+28x_81753+85x_81754+79x_81755+64x_81756+11x_81757+72x_81758+34x_81759+22x_81760+4x_81761+45x_81762+86x_81763+69x_81764+66x_81765+39x_81766+13x_81767+92x_81768+94x_81769+62x_81770+84x_81771+13x_81772+95x_81773+x_81774+19x_81775+8x_81776+83x_81777+35x_81778+48x_81779+87x_81780+48x_81781+99x_81782+9x_81783+69x_81784+21x_81785+30x_81786+48x_81787+86x_81788+16x_81789+26x_81790+25x_81791+57x_81792+11x_81793+74x_81794+92x_81795+79x_81796+14x_81797+63x_81798+24x_81799+28x_81800+32x_81801+44x_81802+96x_81803+76x_81804+86x_81805+34x_81806+67x_81807+47x_81808+50x_81809+8x_81810+24x_81811+47x_81812+80x_81813+34x_81814+87x_81815+35x_81816+40x_81817+61x_81818+38x_81819+59x_81820+89x_81821+58x_81822+8x_81823+77x_81824+24x_81825+67x_81826+50x_81827+61x_81828+9x_81829+32x_81830+73x_81831+93x_81832+20x_81833+56x_81834+27x_81835+8x_81836+90x_81837+83x_81838+99x_81839+8x_81840+8x_81841+50x_81842+3x_81843+40x_81844+8x_81845+67x_81846+58x_81847+99x_81848+65x_81849+56x_81850+61x_81851+66x_81852+44x_81853+15x_81854+96x_81855+30x_81856+4x_81857+86x_81858+53x_81859+83x_81860+5x_81861+60x_81862+34x_81863+35x_81864+32x_81865+49x_81866+15x_81867+95x_81868+15x_81869+30x_81870+43x_81871+78x_81872+66x_81873+3x_81874+51x_81875+75x_81876+46x_81877+42x_81878+87x_81879+43x_81880+94x_81881+4x_81882+35x_81883+79x_81884+35x_81885+62x_81886+78x_81887+4x_81888+82x_81889+37x_81890+87x_81891+58x_81892+25x_81893+7x_81894+7x_81895+12x_81896+6x_81897+55x_81898+9x_81899+84x_81900+93x_81901+46x_81902+93x_81903+14x_81904+37x_81905+62x_81906+71x_81907+54x_81908+7x_81909+7x_81910+77x_81911+93x_81912+6x_81913+38x_81914+12x_81915+31x_81916+10x_81917+47x_81918+30x_81919+18x_81920+68x_81921+59x_81922+24x_81923+63x_81924+63x_81925+63x_81926+98x_81927+64x_81928+44x_81929+76x_81930+96x_81931+39x_81932+49x_81933+9x_81934+53x_81935+53x_81936+37x_81937+30x_81938+18x_81939+48x_81940+49x_81941+44x_81942+71x_81943+46x_81944+11x_81945+28x_81946+35x_81947+7x_81948+x_81949+94x_81950+53x_81951+24x_81952+92x_81953+60x_81954+23x_81955+76x_81956+31x_81957+87x_81958+78x_81959+76x_81960+66x_81961+23x_81962+15x_81963+85x_81964+63x_81965+18x_81966+20x_81967+62x_81968+23x_81969+27x_81970+55x_81971+26x_81972+40x_81973+25x_81974+50x_81975+73x_81976+16x_81977+65x_81978+33x_81979+22x_81980+92x_81981+48x_81982+9x_81983+35x_81984+33x_81985+24x_81986+67x_81987+36x_81988+42x_81989+87x_81990+48x_81991+76x_81992+x_81993+77x_81994+30x_81995+72x_81996+89x_81997+85x_81998+23x_81999+97x_82000+50x_82001+47x_82002+42x_82003+39x_82004+56x_82005+38x_82006+21x_82007+79x_82008+92x_82009+46x_82010+9x_82011+100x_82012+18x_82013+34x_82014+29x_82015+65x_82016+41x_82017+83x_82018+37x_82019+99x_82020+66x_82021+18x_82022+2x_82023+83x_82024+58x_82025+43x_82026+2x_82027+87x_82028+3x_82029+73x_82030+61x_82031+61x_82032+84x_82033+34x_82034+42x_82035+94x_82036+36x_82037+31x_82038+88x_82039+96x_82040+51x_82041+37x_82042+98x_82043+51x_82044+35x_82045+33x_82046+38x_82047+84x_82048+53x_82049+4x_82050+24x_82051+47x_82052+47x_82053+40x_82054+80x_82055+31x_82056+68x_82057+79x_82058+60x_82059+91x_82060+12x_82061+11x_82062+92x_82063+69x_82064+13x_82065+41x_82066+74x_82067+23x_82068+40x_82069+64x_82070+70x_82071+42x_82072+17x_82073+44x_82074+97x_82075+15x_82076+49x_82077+90x_82078+40x_82079+12x_82080+26x_82081+87x_82082+10x_82083+11x_82084+100x_82085+18x_82086+15x_82087+34x_82088+7x_82089+69x_82090+41x_82091+88x_82092+94x_82093+17x_82094+95x_82095+13x_82096+45x_82097+28x_82098+19x_82099+78x_82100+92x_82101+32x_82102+63x_82103+100x_82104+43x_82105+93x_82106+34x_82107+27x_82108+13x_82109+50x_82110+62x_82111+54x_82112+13x_82113+99x_82114+74x_82115+91x_82116+88x_82117+66x_82118+77x_82119+33x_82120+87x_82121+52x_82122+72x_82123+70x_82124+68x_82125+46x_82126+55x_82127+16x_82128+56x_82129+x_82130+84x_82131+30x_82132+53x_82133+38x_82134+87x_82135+93x_82136+53x_82137+20x_82138+73x_82139+70x_82140+68x_82141+73x_82142+20x_82143+21x_82144+9x_82145+16x_82146+29x_82147+33x_82148+65x_82149+31x_82150+x_82151+4x_82152+3x_82153+56x_82154+56x_82155+69x_82156+76x_82157+99x_82158+25x_82159+83x_82160+19x_82161+56x_82162+88x_82163+90x_82164+52x_82165+71x_82166+15x_82167+45x_82168+56x_82169+12x_82170+43x_82171+27x_82172+91x_82173+93x_82174+33x_82175+27x_82176+14x_82177+7x_82178+64x_82179+63x_82180+25x_82181+14x_82182+23x_82183+3x_82184+19x_82185+66x_82186+92x_82187+52x_82188+86x_82189+78x_82190+62x_82191+30x_82192+91x_82193+91x_82194+49x_82195+71x_82196+91x_82197+12x_82198+65x_82199+87x_82200+100x_82201+35x_82202+7x_82203+37x_82204+11x_82205+41x_82206+85x_82207+53x_82208+31x_82209+41x_82210+22x_82211+48x_82212+16x_82213+81x_82214+38x_82215+31x_82216+23x_82217+70x_82218+100x_82219+77x_82220+66x_82221+74x_82222+30x_82223+50x_82224+76x_82225+58x_82226+51x_82227+88x_82228+37x_82229+10x_82230+x_82231+8x_82232+67x_82233+52x_82234+57x_82235+85x_82236+63x_82237+15x_82238+14x_82239+25x_82240+55x_82241+27x_82242+36x_82243+71x_82244+96x_82245+76x_82246+4x_82247+25x_82248+9x_82249+42x_82250+51x_82251+30x_82252+68x_82253+38x_82254+69x_82255+7x_82256+73x_82257+59x_82258+33x_82259+67x_82260+83x_82261+39x_82262+97x_82263+96x_82264+62x_82265+58x_82266+8x_82267+87x_82268+93x_82269+25x_82270+83x_82271+91x_82272+14x_82273+18x_82274+80x_82275+51x_82276+66x_82277+82x_82278+96x_82279+35x_82280+42x_82281+6x_82282+9x_82283+50x_82284+30x_82285+36x_82286+38x_82287+88x_82288+51x_82289+27x_82290+64x_82291+87x_82292+69x_82293+38x_82294+27x_82295+18x_82296+27x_82297+25x_82298+4x_82299+12x_82300+18x_82301+47x_82302+95x_82303+29x_82304+51x_82305+50x_82306+4x_82307+58x_82308+12x_82309+10x_82310+36x_82311+47x_82312+67x_82313+73x_82314+34x_82315+83x_82316+4x_82317+77x_82318+34x_82319+45x_82320+65x_82321+71x_82322+4x_82323+25x_82324+44x_82325+19x_82326+91x_82327+42x_82328+73x_82329+95x_82330+60x_82331+24x_82332+38x_82333+36x_82334+6x_82335+69x_82336+72x_82337+86x_82338+80x_82339+79x_82340+34x_82341+9x_82342+77x_82343+23x_82344+72x_82345+x_82346+29x_82347+56x_82348+79x_82349+63x_82350+30x_82351+56x_82352+65x_82353+56x_82354+3x_82355+64x_82356+90x_82357+24x_82358+24x_82359+42x_82360+71x_82361+23x_82362+18x_82363+13x_82364+100x_82365+57x_82366+2x_82367+89x_82368+85x_82369+9x_82370+49x_82371+49x_82372+14x_82373+33x_82374+58x_82375+24x_82376+45x_82377+18x_82378+13x_82379+26x_82380+95x_82381+73x_82382+100x_82383+48x_82384+48x_82385+52x_82386+48x_82387+16x_82388+64x_82389+8x_82390+82x_82391+47x_82392+60x_82393+32x_82394+40x_82395+41x_82396+27x_82397+79x_82398+45x_82399+16x_82400+17x_82401+95x_82402+46x_82403+8x_82404+97x_82405+97x_82406+54x_82407+2x_82408+34x_82409+72x_82410+35x_82411+91x_82412+18x_82413+11x_82414+89x_82415+75x_82416+23x_82417+95x_82418+25x_82419+99x_82420+10x_82421+19x_82422+57x_82423+98x_82424+75x_82425+10x_82426+74x_82427+60x_82428+73x_82429+23x_82430+94x_82431+57x_82432+75x_82433+56x_82434+99x_82435+71x_82436+15x_82437+90x_82438+21x_82439+72x_82440+70x_82441+28x_82442+20x_82443+55x_82444+37x_82445+35x_82446+51x_82447+69x_82448+43x_82449+72x_82450+53x_82451+32x_82452+87x_82453+86x_82454+22x_82455+72x_82456+17x_82457+82x_82458+56x_82459+x_82460+100x_82461+87x_82462+66x_82463+30x_82464+37x_82465+29x_82466+89x_82467+27x_82468+65x_82469+21x_82470+60x_82471+55x_82472+95x_82473+34x_82474+69x_82475+82x_82476+69x_82477+85x_82478+57x_82479+35x_82480+84x_82481+39x_82482+96x_82483+3x_82484+28x_82485+48x_82486+29x_82487+33x_82488+60x_82489+20x_82490+52x_82491+90x_82492+77x_82493+29x_82494+77x_82495+14x_82496+99x_82497+8x_82498+29x_82499+56x_82500+91x_82501+43x_82502+40x_82503+13x_82504+6x_82505+53x_82506+75x_82507+34x_82508+70x_82509+41x_82510+5x_82511+44x_82512+27x_82513+90x_82514+23x_82515+31x_82516+21x_82517+55x_82518+51x_82519+89x_82520+45x_82521+90x_82522+30x_82523+28x_82524+92x_82525+56x_82526+40x_82527+92x_82528+33x_82529+89x_82530+44x_82531+56x_82532+90x_82533+87x_82534+29x_82535+62x_82536+39x_82537+44x_82538+73x_82539+37x_82540+65x_82541+29x_82542+38x_82543+88x_82544+26x_82545+35x_82546+86x_82547+69x_82548+53x_82549+15x_82550+52x_82551+78x_82552+76x_82553+8x_82554+65x_82555+47x_82556+95x_82557+15x_82558+22x_82559+34x_82560+26x_82561+20x_82562+76x_82563+39x_82564+65x_82565+60x_82566+19x_82567+43x_82568+93x_82569+54x_82570+98x_82571+21x_82572+56x_82573+100x_82574+89x_82575+59x_82576+28x_82577+15x_82578+80x_82579+53x_82580+49x_82581+20x_82582+14x_82583+12x_82584+84x_82585+78x_82586+67x_82587+22x_82588+95x_82589+33x_82590+89x_82591+21x_82592+11x_82593+84x_82594+20x_82595+68x_82596+40x_82597+43x_82598+17x_82599+92x_82600+75x_82601+68x_82602+x_82603+88x_82604+4x_82605+10x_82606+77x_82607+16x_82608+62x_82609+80x_82610+84x_82611+70x_82612+85x_82613+7x_82614+85x_82615+70x_82616+51x_82617+8x_82618+72x_82619+57x_82620+65x_82621+16x_82622+46x_82623+70x_82624+61x_82625+18x_82626+77x_82627+53x_82628+33x_82629+47x_82630+77x_82631+13x_82632+5x_82633+60x_82634+77x_82635+53x_82636+69x_82637+33x_82638+71x_82639+93x_82640+63x_82641+93x_82642+51x_82643+17x_82644+41x_82645+x_82646+24x_82647+64x_82648+37x_82649+54x_82650+71x_82651+100x_82652+31x_82653+41x_82654+63x_82655+92x_82656+59x_82657+22x_82658+28x_82659+27x_82660+49x_82661+47x_82662+27x_82663+25x_82664+33x_82665+86x_82666+84x_82667+54x_82668+x_82669+68x_82670+77x_82671+84x_82672+100x_82673+16x_82674+82x_82675+73x_82676+6x_82677+37x_82678+14x_82679+96x_82680+81x_82681+82x_82682+71x_82683+63x_82684+33x_82685+35x_82686+79x_82687+39x_82688+29x_82689+70x_82690+94x_82691+90x_82692+4x_82693+45x_82694+86x_82695+39x_82696+87x_82697+68x_82698+82x_82699+20x_82700+60x_82701+29x_82702+80x_82703+45x_82704+91x_82705+19x_82706+37x_82707+61x_82708+34x_82709+46x_82710+75x_82711+16x_82712+31x_82713+96x_82714+64x_82715+85x_82716+70x_82717+49x_82718+74x_82719+61x_82720+17x_82721+38x_82722+94x_82723+17x_82724+94x_82725+59x_82726+6x_82727+32x_82728+92x_82729+4x_82730+55x_82731+14x_82732+17x_82733+41x_82734+70x_82735+11x_82736+90x_82737+90x_82738+12x_82739+57x_82740+15x_82741+15x_82742+93x_82743+69x_82744+71x_82745+92x_82746+24x_82747+50x_82748+29x_82749+12x_82750+34x_82751+99x_82752+27x_82753+64x_82754+96x_82755+7x_82756+51x_82757+67x_82758+9x_82759+32x_82760+45x_82761+89x_82762+11x_82763+31x_82764+20x_82765+91x_82766+50x_82767+28x_82768+59x_82769+17x_82770+98x_82771+8x_82772+43x_82773+43x_82774+41x_82775+x_82776+2x_82777+63x_82778+29x_82779+98x_82780+38x_82781+86x_82782+89x_82783+30x_82784+44x_82785+9x_82786+70x_82787+81x_82788+40x_82789+97x_82790+18x_82791+92x_82792+12x_82793+45x_82794+68x_82795+5x_82796+63x_82797+39x_82798+19x_82799+26x_82800+43x_82801+34x_82802+66x_82803+95x_82804+61x_82805+7x_82806+9x_82807+79x_82808+9x_82809+26x_82810+37x_82811+19x_82812+66x_82813+27x_82814+61x_82815+86x_82816+77x_82817+22x_82818+77x_82819+53x_82820+65x_82821+66x_82822+71x_82823+75x_82824+48x_82825+10x_82826+71x_82827+17x_82828+56x_82829+26x_82830+35x_82831+83x_82832+39x_82833+67x_82834+71x_82835+13x_82836+35x_82837+17x_82838+80x_82839+73x_82840+83x_82841+7x_82842+82x_82843+54x_82844+21x_82845+76x_82846+26x_82847+85x_82848+48x_82849+97x_82850+46x_82851+17x_82852+84x_82853+76x_82854+47x_82855+73x_82856+92x_82857+32x_82858+99x_82859+89x_82860+52x_82861+88x_82862+22x_82863+87x_82864+24x_82865+99x_82866+84x_82867+84x_82868+13x_82869+51x_82870+37x_82871+19x_82872+12x_82873+21x_82874+36x_82875+90x_82876+57x_82877+2x_82878+74x_82879+90x_82880+10x_82881+83x_82882+57x_82883+45x_82884+4x_82885+12x_82886+88x_82887+32x_82888+46x_82889+50x_82890+7x_82891+60x_82892+17x_82893+100x_82894+87x_82895+86x_82896+23x_82897+20x_82898+44x_82899+10x_82900+52x_82901+40x_82902+58x_82903+65x_82904+43x_82905+16x_82906+66x_82907+4x_82908+9x_82909+33x_82910+40x_82911+8x_82912+60x_82913+82x_82914+26x_82915+29x_82916+6x_82917+35x_82918+70x_82919+82x_82920+96x_82921+96x_82922+56x_82923+94x_82924+21x_82925+36x_82926+84x_82927+21x_82928+60x_82929+64x_82930+72x_82931+90x_82932+15x_82933+4x_82934+71x_82935+7x_82936+36x_82937+33x_82938+85x_82939+61x_82940+70x_82941+17x_82942+78x_82943+19x_82944+52x_82945+73x_82946+39x_82947+75x_82948+26x_82949+61x_82950+82x_82951+87x_82952+84x_82953+73x_82954+55x_82955+68x_82956+7x_82957+34x_82958+16x_82959+34x_82960+55x_82961+82x_82962+95x_82963+55x_82964+65x_82965+13x_82966+87x_82967+93x_82968+71x_82969+9x_82970+17x_82971+18x_82972+73x_82973+96x_82974+23x_82975+43x_82976+67x_82977+96x_82978+78x_82979+74x_82980+89x_82981+54x_82982+21x_82983+58x_82984+99x_82985+30x_82986+98x_82987+60x_82988+62x_82989+66x_82990+62x_82991+8x_82992+65x_82993+50x_82994+25x_82995+87x_82996+27x_82997+94x_82998+53x_82999+91x_83000+99x_83001+76x_83002+19x_83003+13x_83004+33x_83005+24x_83006+74x_83007+89x_83008+98x_83009+46x_83010+10x_83011+46x_83012+43x_83013+8x_83014+99x_83015+43x_83016+10x_83017+37x_83018+86x_83019+29x_83020+86x_83021+64x_83022+47x_83023+42x_83024+29x_83025+10x_83026+37x_83027+11x_83028+97x_83029+7x_83030+83x_83031+56x_83032+12x_83033+97x_83034+83x_83035+14x_83036+56x_83037+13x_83038+22x_83039+63x_83040+98x_83041+74x_83042+24x_83043+98x_83044+8x_83045+96x_83046+88x_83047+90x_83048+3x_83049+70x_83050+43x_83051+69x_83052+80x_83053+46x_83054+80x_83055+25x_83056+36x_83057+27x_83058+55x_83059+87x_83060+51x_83061+39x_83062+23x_83063+30x_83064+94x_83065+77x_83066+73x_83067+39x_83068+36x_83069+26x_83070+100x_83071+41x_83072+67x_83073+83x_83074+45x_83075+3x_83076+10x_83077+40x_83078+2x_83079+85x_83080+80x_83081+42x_83082+45x_83083+2x_83084+15x_83085+21x_83086+13x_83087+50x_83088+41x_83089+63x_83090+68x_83091+39x_83092+89x_83093+65x_83094+84x_83095+80x_83096+12x_83097+85x_83098+79x_83099+81x_83100+77x_83101+16x_83102+58x_83103+65x_83104+15x_83105+24x_83106+90x_83107+42x_83108+12x_83109+17x_83110+6x_83111+73x_83112+28x_83113+46x_83114+20x_83115+100x_83116+97x_83117+94x_83118+91x_83119+4x_83120+44x_83121+97x_83122+96x_83123+52x_83124+30x_83125+46x_83126+86x_83127+95x_83128+83x_83129+21x_83130+57x_83131+95x_83132+41x_83133+34x_83134+51x_83135+37x_83136+97x_83137+99x_83138+72x_83139+20x_83140+92x_83141+79x_83142+24x_83143+86x_83144+35x_83145+40x_83146+97x_83147+71x_83148+27x_83149+82x_83150+35x_83151+78x_83152+55x_83153+2x_83154+68x_83155+36x_83156+67x_83157+96x_83158+58x_83159+32x_83160+72x_83161+24x_83162+88x_83163+79x_83164+62x_83165+21x_83166+23x_83167+24x_83168+14x_83169+13x_83170+62x_83171+86x_83172+63x_83173+41x_83174+5x_83175+54x_83176+72x_83177+58x_83178+30x_83179+66x_83180+x_83181+61x_83182+80x_83183+27x_83184+88x_83185+63x_83186+79x_83187+34x_83188+11x_83189+2x_83190+25x_83191+59x_83192+81x_83193+12x_83194+21x_83195+42x_83196+58x_83197+82x_83198+62x_83199+83x_83200+94x_83201+40x_83202+9x_83203+93x_83204+27x_83205+60x_83206+88x_83207+10x_83208+56x_83209+46x_83210+72x_83211+28x_83212+46x_83213+46x_83214+24x_83215+65x_83216+43x_83217+91x_83218+9x_83219+54x_83220+27x_83221+41x_83222+58x_83223+61x_83224+21x_83225+13x_83226+57x_83227+59x_83228+74x_83229+86x_83230+16x_83231+10x_83232+86x_83233+91x_83234+25x_83235+78x_83236+37x_83237+39x_83238+30x_83239+48x_83240+64x_83241+47x_83242+59x_83243+61x_83244+39x_83245+24x_83246+76x_83247+60x_83248+23x_83249+62x_83250+81x_83251+10x_83252+58x_83253+51x_83254+30x_83255+29x_83256+4x_83257+58x_83258+43x_83259+57x_83260+77x_83261+23x_83262+48x_83263+38x_83264+67x_83265+33x_83266+42x_83267+83x_83268+81x_83269+90x_83270+73x_83271+76x_83272+7x_83273+36x_83274+93x_83275+42x_83276+7x_83277+29x_83278+38x_83279+91x_83280+84x_83281+9x_83282+65x_83283+76x_83284+12x_83285+25x_83286+42x_83287+28x_83288+11x_83289+61x_83290+27x_83291+16x_83292+13x_83293+96x_83294+42x_83295+39x_83296+75x_83297+83x_83298+23x_83299+12x_83300+x_83301+20x_83302+40x_83303+92x_83304+70x_83305+9x_83306+97x_83307+59x_83308+15x_83309+36x_83310+51x_83311+11x_83312+34x_83313+59x_83314+61x_83315+34x_83316+33x_83317+16x_83318+37x_83319+32x_83320+73x_83321+9x_83322+30x_83323+3x_83324+63x_83325+2x_83326+31x_83327+25x_83328+48x_83329+65x_83330+82x_83331+2x_83332+x_83333+85x_83334+37x_83335+34x_83336+3x_83337+10x_83338+4x_83339+6x_83340+54x_83341+61x_83342+88x_83343+97x_83344+37x_83345+62x_83346+x_83347+5x_83348+40x_83349+75x_83350+26x_83351+26x_83352+41x_83353+85x_83354+22x_83355+50x_83356+60x_83357+10x_83358+32x_83359+8x_83360+41x_83361+41x_83362+97x_83363+87x_83364+90x_83365+86x_83366+25x_83367+77x_83368+69x_83369+27x_83370+9x_83371+87x_83372+48x_83373+34x_83374+56x_83375+95x_83376+85x_83377+10x_83378+23x_83379+97x_83380+44x_83381+21x_83382+28x_83383+50x_83384+74x_83385+75x_83386+60x_83387+22x_83388+3x_83389+34x_83390+65x_83391+51x_83392+69x_83393+49x_83394+12x_83395+68x_83396+26x_83397+70x_83398+90x_83399+41x_83400+42x_83401+44x_83402+63x_83403+99x_83404+87x_83405+28x_83406+38x_83407+63x_83408+16x_83409+86x_83410+73x_83411+22x_83412+12x_83413+31x_83414+19x_83415+27x_83416+98x_83417+78x_83418+99x_83419+46x_83420+56x_83421+59x_83422+82x_83423+44x_83424+77x_83425+79x_83426+79x_83427+71x_83428+10x_83429+7x_83430+55x_83431+70x_83432+81x_83433+16x_83434+68x_83435+77x_83436+44x_83437+18x_83438+22x_83439+93x_83440+43x_83441+73x_83442+22x_83443+57x_83444+36x_83445+92x_83446+42x_83447+6x_83448+11x_83449+31x_83450+38x_83451+30x_83452+53x_83453+52x_83454+98x_83455+x_83456+4x_83457+86x_83458+47x_83459+70x_83460+63x_83461+36x_83462+62x_83463+60x_83464+41x_83465+56x_83466+32x_83467+57x_83468+43x_83469+93x_83470+40x_83471+80x_83472+60x_83473+62x_83474+17x_83475+16x_83476+10x_83477+37x_83478+84x_83479+87x_83480+47x_83481+62x_83482+41x_83483+70x_83484+100x_83485+16x_83486+27x_83487+98x_83488+80x_83489+29x_83490+85x_83491+7x_83492+18x_83493+14x_83494+99x_83495+43x_83496+34x_83497+93x_83498+90x_83499+85x_83500+45x_83501+16x_83502+93x_83503+58x_83504+73x_83505+87x_83506+x_83507+2x_83508+47x_83509+61x_83510+63x_83511+25x_83512+24x_83513+89x_83514+24x_83515+77x_83516+68x_83517+84x_83518+7x_83519+41x_83520+52x_83521+84x_83522+34x_83523+23x_83524+68x_83525+53x_83526+41x_83527+35x_83528+49x_83529+89x_83530+52x_83531+24x_83532+53x_83533+40x_83534+56x_83535+4x_83536+62x_83537+32x_83538+91x_83539+48x_83540+39x_83541+40x_83542+39x_83543+88x_83544+63x_83545+22x_83546+44x_83547+19x_83548+92x_83549+100x_83550+6x_83551+20x_83552+75x_83553+41x_83554+67x_83555+61x_83556+20x_83557+6x_83558+59x_83559+35x_83560+64x_83561+74x_83562+20x_83563+67x_83564+62x_83565+62x_83566+57x_83567+98x_83568+25x_83569+33x_83570+50x_83571+46x_83572+81x_83573+35x_83574+24x_83575+64x_83576+21x_83577+83x_83578+64x_83579+36x_83580+50x_83581+44x_83582+77x_83583+94x_83584+57x_83585+47x_83586+59x_83587+12x_83588+94x_83589+85x_83590+45x_83591+10x_83592+79x_83593+44x_83594+52x_83595+94x_83596+37x_83597+38x_83598+47x_83599+66x_83600+9x_83601+26x_83602+95x_83603+73x_83604+94x_83605+10x_83606+16x_83607+82x_83608+72x_83609+95x_83610+97x_83611+84x_83612+44x_83613+30x_83614+47x_83615+89x_83616+37x_83617+79x_83618+77x_83619+37x_83620+85x_83621+44x_83622+36x_83623+55x_83624+28x_83625+49x_83626+68x_83627+5x_83628+50x_83629+55x_83630+41x_83631+91x_83632+83x_83633+95x_83634+12x_83635+15x_83636+89x_83637+23x_83638+33x_83639+99x_83640+35x_83641+51x_83642+98x_83643+16x_83644+20x_83645+91x_83646+71x_83647+13x_83648+12x_83649+25x_83650+24x_83651+70x_83652+92x_83653+21x_83654+41x_83655+9x_83656+23x_83657+16x_83658+47x_83659+48x_83660+37x_83661+27x_83662+3x_83663+3x_83664+69x_83665+37x_83666+79x_83667+70x_83668+64x_83669+89x_83670+48x_83671+12x_83672+78x_83673+66x_83674+45x_83675+35x_83676+50x_83677+16x_83678+74x_83679+33x_83680+6x_83681+46x_83682+79x_83683+2x_83684+87x_83685+80x_83686+57x_83687+94x_83688+65x_83689+79x_83690+41x_83691+88x_83692+44x_83693+25x_83694+70x_83695+30x_83696+23x_83697+78x_83698+77x_83699+43x_83700+13x_83701+32x_83702+44x_83703+72x_83704+66x_83705+84x_83706+72x_83707+47x_83708+90x_83709+59x_83710+88x_83711+16x_83712+19x_83713+6x_83714+76x_83715+79x_83716+98x_83717+89x_83718+86x_83719+64x_83720+77x_83721+26x_83722+43x_83723+16x_83724+96x_83725+35x_83726+5x_83727+8x_83728+99x_83729+80x_83730+14x_83731+17x_83732+38x_83733+80x_83734+100x_83735+45x_83736+75x_83737+56x_83738+89x_83739+46x_83740+78x_83741+82x_83742+85x_83743+60x_83744+46x_83745+51x_83746+97x_83747+20x_83748+43x_83749+79x_83750+90x_83751+71x_83752+26x_83753+59x_83754+46x_83755+52x_83756+4x_83757+49x_83758+20x_83759+53x_83760+48x_83761+78x_83762+53x_83763+96x_83764+50x_83765+17x_83766+20x_83767+31x_83768+93x_83769+98x_83770+57x_83771+31x_83772+54x_83773+13x_83774+74x_83775+76x_83776+76x_83777+48x_83778+29x_83779+96x_83780+75x_83781+58x_83782+97x_83783+74x_83784+82x_83785+93x_83786+40x_83787+38x_83788+44x_83789+69x_83790+88x_83791+42x_83792+34x_83793+27x_83794+20x_83795+18x_83796+28x_83797+90x_83798+60x_83799+42x_83800+13x_83801+10x_83802+23x_83803+42x_83804+32x_83805+15x_83806+93x_83807+84x_83808+18x_83809+4x_83810+61x_83811+30x_83812+16x_83813+33x_83814+54x_83815+94x_83816+27x_83817+72x_83818+30x_83819+100x_83820+98x_83821+100x_83822+39x_83823+95x_83824+96x_83825+91x_83826+40x_83827+15x_83828+24x_83829+14x_83830+8x_83831+59x_83832+34x_83833+35x_83834+43x_83835+57x_83836+12x_83837+38x_83838+91x_83839+56x_83840+36x_83841+24x_83842+72x_83843+26x_83844+39x_83845+84x_83846+53x_83847+31x_83848+56x_83849+58x_83850+99x_83851+31x_83852+25x_83853+73x_83854+24x_83855+85x_83856+29x_83857+77x_83858+25x_83859+42x_83860+19x_83861+48x_83862+11x_83863+41x_83864+35x_83865+20x_83866+56x_83867+76x_83868+2x_83869+34x_83870+95x_83871+59x_83872+89x_83873+34x_83874+100x_83875+11x_83876+34x_83877+86x_83878+33x_83879+17x_83880+25x_83881+36x_83882+9x_83883+22x_83884+90x_83885+13x_83886+17x_83887+49x_83888+26x_83889+73x_83890+66x_83891+47x_83892+52x_83893+56x_83894+6x_83895+67x_83896+19x_83897+24x_83898+48x_83899+86x_83900+53x_83901+41x_83902+33x_83903+61x_83904+3x_83905+59x_83906+11x_83907+27x_83908+88x_83909+45x_83910+19x_83911+11x_83912+71x_83913+30x_83914+100x_83915+99x_83916+52x_83917+96x_83918+75x_83919+93x_83920+67x_83921+34x_83922+30x_83923+33x_83924+98x_83925+42x_83926+61x_83927+27x_83928+76x_83929+51x_83930+31x_83931+73x_83932+71x_83933+74x_83934+50x_83935+71x_83936+38x_83937+54x_83938+45x_83939+42x_83940+65x_83941+85x_83942+87x_83943+30x_83944+2x_83945+36x_83946+44x_83947+21x_83948+62x_83949+83x_83950+90x_83951+24x_83952+43x_83953+28x_83954+98x_83955+6x_83956+81x_83957+65x_83958+50x_83959+18x_83960+72x_83961+18x_83962+63x_83963+3x_83964+88x_83965+8x_83966+51x_83967+95x_83968+19x_83969+52x_83970+77x_83971+10x_83972+75x_83973+37x_83974+83x_83975+70x_83976+39x_83977+68x_83978+44x_83979+58x_83980+2x_83981+x_83982+86x_83983+52x_83984+38x_83985+100x_83986+6x_83987+33x_83988+96x_83989+22x_83990+93x_83991+62x_83992+80x_83993+99x_83994+39x_83995+51x_83996+69x_83997+42x_83998+79x_83999+11x_84000+39x_84001+87x_84002+68x_84003+15x_84004+81x_84005+31x_84006+35x_84007+52x_84008+74x_84009+18x_84010+52x_84011+47x_84012+30x_84013+92x_84014+84x_84015+84x_84016+28x_84017+5x_84018+96x_84019+57x_84020+20x_84021+18x_84022+48x_84023+x_84024+98x_84025+60x_84026+100x_84027+62x_84028+20x_84029+84x_84030+95x_84031+26x_84032+14x_84033+26x_84034+43x_84035+21x_84036+32x_84037+53x_84038+94x_84039+12x_84040+56x_84041+63x_84042+15x_84043+42x_84044+60x_84045+92x_84046+45x_84047+40x_84048+7x_84049+59x_84050+67x_84051+48x_84052+49x_84053+23x_84054+33x_84055+29x_84056+8x_84057+74x_84058+74x_84059+56x_84060+39x_84061+56x_84062+80x_84063+35x_84064+83x_84065+42x_84066+94x_84067+29x_84068+23x_84069+38x_84070+25x_84071+13x_84072+14x_84073+37x_84074+25x_84075+64x_84076+32x_84077+51x_84078+71x_84079+95x_84080+33x_84081+7x_84082+33x_84083+61x_84084+16x_84085+5x_84086+54x_84087+84x_84088+48x_84089+20x_84090+71x_84091+90x_84092+8x_84093+29x_84094+16x_84095+100x_84096+72x_84097+18x_84098+75x_84099+4x_84100+2x_84101+87x_84102+3x_84103+89x_84104+86x_84105+31x_84106+99x_84107+16x_84108+46x_84109+61x_84110+9x_84111+95x_84112+78x_84113+100x_84114+43x_84115+32x_84116+11x_84117+59x_84118+96x_84119+36x_84120+10x_84121+59x_84122+22x_84123+15x_84124+73x_84125+88x_84126+56x_84127+5x_84128+74x_84129+60x_84130+5x_84131+84x_84132+90x_84133+42x_84134+13x_84135+44x_84136+54x_84137+x_84138+61x_84139+36x_84140+96x_84141+76x_84142+10x_84143+6x_84144+51x_84145+62x_84146+42x_84147+2x_84148+32x_84149+100x_84150+38x_84151+12x_84152+71x_84153+42x_84154+29x_84155+91x_84156+31x_84157+4x_84158+76x_84159+7x_84160+33x_84161+27x_84162+61x_84163+48x_84164+25x_84165+28x_84166+x_84167+65x_84168+24x_84169+43x_84170+77x_84171+14x_84172+69x_84173+6x_84174+50x_84175+6x_84176+96x_84177+x_84178+74x_84179+24x_84180+39x_84181+93x_84182+56x_84183+25x_84184+10x_84185+29x_84186+78x_84187+14x_84188+51x_84189+33x_84190+8x_84191+93x_84192+99x_84193+77x_84194+61x_84195+68x_84196+61x_84197+41x_84198+8x_84199+16x_84200+68x_84201+91x_84202+53x_84203+56x_84204+70x_84205+33x_84206+48x_84207+25x_84208+86x_84209+36x_84210+42x_84211+11x_84212+61x_84213+57x_84214+96x_84215+97x_84216+67x_84217+8x_84218+29x_84219+2x_84220+29x_84221+94x_84222+37x_84223+36x_84224+57x_84225+18x_84226+70x_84227+35x_84228+46x_84229+63x_84230+39x_84231+22x_84232+71x_84233+83x_84234+72x_84235+81x_84236+86x_84237+70x_84238+25x_84239+43x_84240+93x_84241+86x_84242+71x_84243+77x_84244+57x_84245+16x_84246+82x_84247+64x_84248+51x_84249+65x_84250+62x_84251+75x_84252+3x_84253+58x_84254+69x_84255+81x_84256+62x_84257+79x_84258+68x_84259+82x_84260+76x_84261+50x_84262+x_84263+82x_84264+60x_84265+89x_84266+56x_84267+21x_84268+29x_84269+27x_84270+91x_84271+27x_84272+81x_84273+x_84274+88x_84275+60x_84276+9x_84277+87x_84278+21x_84279+80x_84280+67x_84281+79x_84282+27x_84283+51x_84284+62x_84285+53x_84286+58x_84287+60x_84288+3x_84289+93x_84290+97x_84291+8x_84292+74x_84293+88x_84294+8x_84295+23x_84296+6x_84297+44x_84298+97x_84299+94x_84300+51x_84301+71x_84302+80x_84303+51x_84304+81x_84305+50x_84306+91x_84307+83x_84308+11x_84309+61x_84310+5x_84311+47x_84312+65x_84313+40x_84314+87x_84315+14x_84316+45x_84317+75x_84318+55x_84319+13x_84320+46x_84321+61x_84322+33x_84323+16x_84324+41x_84325+93x_84326+40x_84327+4x_84328+26x_84329+59x_84330+85x_84331+71x_84332+94x_84333+53x_84334+6x_84335+56x_84336+94x_84337+84x_84338+67x_84339+4x_84340+36x_84341+92x_84342+81x_84343+85x_84344+12x_84345+51x_84346+52x_84347+50x_84348+69x_84349+43x_84350+2x_84351+85x_84352+86x_84353+8x_84354+62x_84355+48x_84356+22x_84357+98x_84358+36x_84359+55x_84360+7x_84361+42x_84362+2x_84363+77x_84364+88x_84365+7x_84366+96x_84367+4x_84368+58x_84369+30x_84370+53x_84371+89x_84372+27x_84373+98x_84374+71x_84375+58x_84376+62x_84377+83x_84378+47x_84379+20x_84380+8x_84381+19x_84382+57x_84383+66x_84384+83x_84385+74x_84386+74x_84387+68x_84388+50x_84389+98x_84390+50x_84391+42x_84392+70x_84393+35x_84394+95x_84395+46x_84396+25x_84397+78x_84398+63x_84399+39x_84400+62x_84401+68x_84402+14x_84403+97x_84404+19x_84405+92x_84406+51x_84407+45x_84408+9x_84409+83x_84410+73x_84411+58x_84412+89x_84413+46x_84414+71x_84415+32x_84416+37x_84417+25x_84418+26x_84419+3x_84420+57x_84421+67x_84422+89x_84423+57x_84424+10x_84425+58x_84426+45x_84427+45x_84428+91x_84429+71x_84430+75x_84431+29x_84432+2x_84433+65x_84434+96x_84435+31x_84436+80x_84437+8x_84438+21x_84439+58x_84440+91x_84441+79x_84442+88x_84443+86x_84444+93x_84445+93x_84446+78x_84447+64x_84448+8x_84449+38x_84450+93x_84451+50x_84452+83x_84453+96x_84454+69x_84455+9x_84456+55x_84457+10x_84458+92x_84459+31x_84460+61x_84461+20x_84462+54x_84463+47x_84464+17x_84465+33x_84466+62x_84467+76x_84468+13x_84469+33x_84470+29x_84471+31x_84472+39x_84473+47x_84474+2x_84475+10x_84476+7x_84477+74x_84478+88x_84479+35x_84480+29x_84481+28x_84482+100x_84483+96x_84484+58x_84485+94x_84486+54x_84487+20x_84488+46x_84489+63x_84490+69x_84491+25x_84492+86x_84493+65x_84494+24x_84495+27x_84496+80x_84497+49x_84498+50x_84499+55x_84500+53x_84501+91x_84502+66x_84503+23x_84504+10x_84505+74x_84506+46x_84507+43x_84508+38x_84509+58x_84510+51x_84511+58x_84512+86x_84513+89x_84514+76x_84515+38x_84516+58x_84517+97x_84518+98x_84519+17x_84520+54x_84521+25x_84522+81x_84523+80x_84524+82x_84525+43x_84526+30x_84527+32x_84528+14x_84529+46x_84530+90x_84531+83x_84532+68x_84533+66x_84534+31x_84535+98x_84536+45x_84537+52x_84538+23x_84539+87x_84540+42x_84541+77x_84542+42x_84543+67x_84544+62x_84545+77x_84546+16x_84547+24x_84548+55x_84549+74x_84550+19x_84551+10x_84552+3x_84553+44x_84554+50x_84555+14x_84556+35x_84557+26x_84558+15x_84559+58x_84560+55x_84561+42x_84562+84x_84563+7x_84564+37x_84565+13x_84566+50x_84567+87x_84568+87x_84569+69x_84570+35x_84571+70x_84572+16x_84573+53x_84574+72x_84575+71x_84576+42x_84577+82x_84578+22x_84579+18x_84580+33x_84581+16x_84582+78x_84583+44x_84584+37x_84585+28x_84586+67x_84587+78x_84588+98x_84589+11x_84590+49x_84591+98x_84592+48x_84593+38x_84594+46x_84595+9x_84596+x_84597+14x_84598+30x_84599+44x_84600+52x_84601+64x_84602+23x_84603+6x_84604+89x_84605+35x_84606+67x_84607+45x_84608+38x_84609+94x_84610+78x_84611+24x_84612+39x_84613+55x_84614+92x_84615+43x_84616+25x_84617+6x_84618+71x_84619+2x_84620+16x_84621+13x_84622+41x_84623+5x_84624+27x_84625+35x_84626+22x_84627+6x_84628+99x_84629+93x_84630+6x_84631+10x_84632+20x_84633+77x_84634+74x_84635+92x_84636+82x_84637+92x_84638+71x_84639+72x_84640+12x_84641+78x_84642+77x_84643+100x_84644+82x_84645+95x_84646+96x_84647+44x_84648+5x_84649+83x_84650+57x_84651+75x_84652+49x_84653+55x_84654+67x_84655+83x_84656+7x_84657+64x_84658+20x_84659+50x_84660+72x_84661+7x_84662+67x_84663+100x_84664+51x_84665+7x_84666+95x_84667+76x_84668+25x_84669+57x_84670+23x_84671+18x_84672+39x_84673+54x_84674+19x_84675+27x_84676+27x_84677+17x_84678+41x_84679+78x_84680+25x_84681+28x_84682+5x_84683+38x_84684+99x_84685+48x_84686+80x_84687+100x_84688+66x_84689+32x_84690+42x_84691+x_84692+50x_84693+67x_84694+90x_84695+91x_84696+77x_84697+49x_84698+36x_84699+2x_84700+49x_84701+46x_84702+93x_84703+3x_84704+87x_84705+17x_84706+11x_84707+83x_84708+29x_84709+6x_84710+60x_84711+33x_84712+48x_84713+11x_84714+87x_84715+58x_84716+64x_84717+26x_84718+85x_84719+65x_84720+91x_84721+60x_84722+4x_84723+97x_84724+42x_84725+19x_84726+43x_84727+78x_84728+60x_84729+62x_84730+37x_84731+94x_84732+15x_84733+29x_84734+33x_84735+71x_84736+100x_84737+37x_84738+82x_84739+95x_84740+42x_84741+78x_84742+6x_84743+81x_84744+42x_84745+19x_84746+48x_84747+19x_84748+18x_84749+70x_84750+40x_84751+65x_84752+78x_84753+81x_84754+65x_84755+79x_84756+5x_84757+84x_84758+84x_84759+22x_84760+90x_84761+16x_84762+49x_84763+100x_84764+69x_84765+12x_84766+85x_84767+16x_84768+47x_84769+15x_84770+99x_84771+97x_84772+4x_84773+55x_84774+83x_84775+99x_84776+7x_84777+70x_84778+22x_84779+2x_84780+65x_84781+34x_84782+88x_84783+34x_84784+64x_84785+26x_84786+67x_84787+4x_84788+58x_84789+69x_84790+41x_84791+66x_84792+70x_84793+28x_84794+52x_84795+45x_84796+63x_84797+45x_84798+22x_84799+40x_84800+23x_84801+18x_84802+10x_84803+52x_84804+42x_84805+38x_84806+48x_84807+94x_84808+33x_84809+53x_84810+5x_84811+9x_84812+42x_84813+6x_84814+85x_84815+38x_84816+6x_84817+2x_84818+72x_84819+41x_84820+98x_84821+5x_84822+83x_84823+54x_84824+46x_84825+100x_84826+25x_84827+77x_84828+5x_84829+61x_84830+20x_84831+11x_84832+35x_84833+94x_84834+88x_84835+43x_84836+21x_84837+49x_84838+97x_84839+88x_84840+12x_84841+32x_84842+74x_84843+86x_84844+98x_84845+51x_84846+69x_84847+41x_84848+2x_84849+x_84850+73x_84851+45x_84852+4x_84853+60x_84854+52x_84855+93x_84856+38x_84857+56x_84858+76x_84859+39x_84860+77x_84861+26x_84862+88x_84863+35x_84864+79x_84865+97x_84866+13x_84867+63x_84868+92x_84869+90x_84870+8x_84871+100x_84872+24x_84873+92x_84874+76x_84875+94x_84876+45x_84877+61x_84878+85x_84879+32x_84880+60x_84881+63x_84882+4x_84883+93x_84884+3x_84885+54x_84886+33x_84887+39x_84888+65x_84889+19x_84890+99x_84891+88x_84892+90x_84893+24x_84894+69x_84895+40x_84896+74x_84897+81x_84898+35x_84899+78x_84900+7x_84901+61x_84902+12x_84903+54x_84904+13x_84905+35x_84906+92x_84907+19x_84908+72x_84909+46x_84910+54x_84911+98x_84912+67x_84913+11x_84914+20x_84915+15x_84916+82x_84917+52x_84918+44x_84919+47x_84920+79x_84921+91x_84922+74x_84923+56x_84924+88x_84925+52x_84926+41x_84927+13x_84928+56x_84929+82x_84930+78x_84931+16x_84932+82x_84933+60x_84934+32x_84935+89x_84936+89x_84937+72x_84938+90x_84939+68x_84940+52x_84941+19x_84942+x_84943+27x_84944+27x_84945+42x_84946+32x_84947+13x_84948+57x_84949+39x_84950+35x_84951+25x_84952+81x_84953+77x_84954+55x_84955+38x_84956+82x_84957+12x_84958+x_84959+33x_84960+23x_84961+92x_84962+61x_84963+78x_84964+45x_84965+56x_84966+55x_84967+39x_84968+63x_84969+93x_84970+37x_84971+55x_84972+48x_84973+25x_84974+34x_84975+22x_84976+83x_84977+88x_84978+52x_84979+38x_84980+51x_84981+21x_84982+98x_84983+45x_84984+95x_84985+81x_84986+100x_84987+99x_84988+82x_84989+97x_84990+x_84991+68x_84992+51x_84993+21x_84994+49x_84995+7x_84996+78x_84997+58x_84998+35x_84999+80x_85000+74x_85001+97x_85002+76x_85003+31x_85004+16x_85005+9x_85006+16x_85007+42x_85008+15x_85009+47x_85010+24x_85011+34x_85012+93x_85013+34x_85014+27x_85015+77x_85016+96x_85017+29x_85018+94x_85019+70x_85020+53x_85021+92x_85022+50x_85023+79x_85024+47x_85025+32x_85026+5x_85027+18x_85028+56x_85029+x_85030+24x_85031+40x_85032+13x_85033+63x_85034+36x_85035+68x_85036+25x_85037+2x_85038+33x_85039+61x_85040+36x_85041+57x_85042+12x_85043+12x_85044+34x_85045+6x_85046+32x_85047+9x_85048+49x_85049+82x_85050+73x_85051+4x_85052+11x_85053+69x_85054+40x_85055+29x_85056+42x_85057+15x_85058+25x_85059+35x_85060+68x_85061+44x_85062+44x_85063+17x_85064+17x_85065+16x_85066+2x_85067+86x_85068+74x_85069+47x_85070+41x_85071+2x_85072+7x_85073+99x_85074+71x_85075+31x_85076+18x_85077+73x_85078+58x_85079+8x_85080+31x_85081+x_85082+5x_85083+69x_85084+30x_85085+40x_85086+55x_85087+2x_85088+11x_85089+9x_85090+57x_85091+70x_85092+51x_85093+46x_85094+24x_85095+40x_85096+59x_85097+50x_85098+81x_85099+53x_85100+87x_85101+54x_85102+72x_85103+84x_85104+63x_85105+48x_85106+83x_85107+x_85108+36x_85109+22x_85110+27x_85111+20x_85112+17x_85113+86x_85114+27x_85115+4x_85116+58x_85117+45x_85118+74x_85119+59x_85120+96x_85121+51x_85122+65x_85123+67x_85124+41x_85125+43x_85126+88x_85127+73x_85128+59x_85129+14x_85130+93x_85131+84x_85132+92x_85133+53x_85134+96x_85135+42x_85136+83x_85137+93x_85138+36x_85139+13x_85140+5x_85141+60x_85142+30x_85143+59x_85144+41x_85145+50x_85146+33x_85147+56x_85148+17x_85149+9x_85150+84x_85151+81x_85152+26x_85153+22x_85154+73x_85155+51x_85156+55x_85157+97x_85158+54x_85159+96x_85160+81x_85161+27x_85162+98x_85163+74x_85164+42x_85165+85x_85166+69x_85167+100x_85168+45x_85169+33x_85170+79x_85171+53x_85172+54x_85173+77x_85174+24x_85175+47x_85176+76x_85177+77x_85178+24x_85179+32x_85180+84x_85181+4x_85182+63x_85183+38x_85184+85x_85185+16x_85186+87x_85187+38x_85188+96x_85189+71x_85190+44x_85191+44x_85192+97x_85193+98x_85194+55x_85195+94x_85196+5x_85197+29x_85198+18x_85199+22x_85200+98x_85201+58x_85202+59x_85203+17x_85204+5x_85205+50x_85206+98x_85207+78x_85208+85x_85209+x_85210+69x_85211+21x_85212+x_85213+17x_85214+69x_85215+26x_85216+45x_85217+11x_85218+61x_85219+38x_85220+86x_85221+56x_85222+63x_85223+78x_85224+99x_85225+48x_85226+35x_85227+2x_85228+99x_85229+87x_85230+98x_85231+99x_85232+74x_85233+48x_85234+18x_85235+17x_85236+28x_85237+x_85238+82x_85239+49x_85240+86x_85241+55x_85242+5x_85243+61x_85244+9x_85245+68x_85246+46x_85247+57x_85248+64x_85249+77x_85250+13x_85251+45x_85252+8x_85253+56x_85254+71x_85255+52x_85256+51x_85257+94x_85258+17x_85259+97x_85260+55x_85261+5x_85262+17x_85263+13x_85264+92x_85265+97x_85266+94x_85267+16x_85268+x_85269+78x_85270+63x_85271+61x_85272+89x_85273+22x_85274+30x_85275+15x_85276+89x_85277+85x_85278+64x_85279+76x_85280+35x_85281+44x_85282+98x_85283+58x_85284+74x_85285+9x_85286+50x_85287+35x_85288+3x_85289+6x_85290+96x_85291+10x_85292+51x_85293+31x_85294+41x_85295+54x_85296+64x_85297+60x_85298+4x_85299+72x_85300+75x_85301+84x_85302+20x_85303+24x_85304+79x_85305+72x_85306+83x_85307+10x_85308+8x_85309+32x_85310+72x_85311+51x_85312+11x_85313+36x_85314+49x_85315+92x_85316+6x_85317+58x_85318+17x_85319+20x_85320+65x_85321+x_85322+92x_85323+40x_85324+66x_85325+94x_85326+95x_85327+96x_85328+76x_85329+61x_85330+20x_85331+42x_85332+22x_85333+40x_85334+2x_85335+56x_85336+3x_85337+98x_85338+100x_85339+49x_85340+9x_85341+90x_85342+83x_85343+12x_85344+14x_85345+84x_85346+54x_85347+57x_85348+80x_85349+38x_85350+42x_85351+49x_85352+38x_85353+51x_85354+41x_85355+76x_85356+18x_85357+19x_85358+32x_85359+30x_85360+56x_85361+19x_85362+56x_85363+38x_85364+48x_85365+47x_85366+28x_85367+75x_85368+56x_85369+22x_85370+28x_85371+92x_85372+73x_85373+5x_85374+36x_85375+19x_85376+6x_85377+29x_85378+27x_85379+24x_85380+71x_85381+39x_85382+92x_85383+68x_85384+75x_85385+69x_85386+37x_85387+59x_85388+11x_85389+39x_85390+68x_85391+89x_85392+67x_85393+44x_85394+32x_85395+93x_85396+47x_85397+77x_85398+88x_85399+56x_85400+5x_85401+98x_85402+33x_85403+13x_85404+29x_85405+81x_85406+7x_85407+34x_85408+64x_85409+57x_85410+48x_85411+16x_85412+43x_85413+63x_85414+62x_85415+94x_85416+100x_85417+68x_85418+55x_85419+8x_85420+27x_85421+11x_85422+34x_85423+32x_85424+52x_85425+2x_85426+84x_85427+58x_85428+65x_85429+24x_85430+89x_85431+11x_85432+85x_85433+31x_85434+34x_85435+51x_85436+82x_85437+44x_85438+30x_85439+10x_85440+92x_85441+83x_85442+64x_85443+76x_85444+38x_85445+65x_85446+57x_85447+64x_85448+67x_85449+16x_85450+82x_85451+9x_85452+2x_85453+21x_85454+22x_85455+52x_85456+56x_85457+53x_85458+22x_85459+91x_85460+31x_85461+83x_85462+51x_85463+81x_85464+71x_85465+97x_85466+56x_85467+53x_85468+55x_85469+x_85470+62x_85471+74x_85472+5x_85473+72x_85474+63x_85475+70x_85476+61x_85477+13x_85478+50x_85479+79x_85480+29x_85481+12x_85482+100x_85483+15x_85484+91x_85485+63x_85486+22x_85487+50x_85488+14x_85489+71x_85490+36x_85491+39x_85492+15x_85493+95x_85494+85x_85495+75x_85496+9x_85497+77x_85498+94x_85499+5x_85500+41x_85501+51x_85502+33x_85503+12x_85504+36x_85505+15x_85506+2x_85507+85x_85508+2x_85509+27x_85510+47x_85511+87x_85512+26x_85513+88x_85514+67x_85515+72x_85516+28x_85517+69x_85518+98x_85519+23x_85520+81x_85521+95x_85522+35x_85523+68x_85524+70x_85525+20x_85526+50x_85527+42x_85528+89x_85529+43x_85530+73x_85531+74x_85532+81x_85533+93x_85534+40x_85535+78x_85536+26x_85537+78x_85538+75x_85539+13x_85540+97x_85541+46x_85542+16x_85543+90x_85544+66x_85545+33x_85546+77x_85547+58x_85548+92x_85549+43x_85550+62x_85551+56x_85552+62x_85553+77x_85554+22x_85555+65x_85556+16x_85557+27x_85558+3x_85559+43x_85560+81x_85561+2x_85562+9x_85563+60x_85564+97x_85565+85x_85566+18x_85567+11x_85568+60x_85569+13x_85570+81x_85571+92x_85572+78x_85573+57x_85574+61x_85575+13x_85576+26x_85577+95x_85578+45x_85579+71x_85580+51x_85581+75x_85582+74x_85583+58x_85584+74x_85585+22x_85586+65x_85587+x_85588+10x_85589+7x_85590+80x_85591+57x_85592+38x_85593+97x_85594+100x_85595+50x_85596+49x_85597+30x_85598+83x_85599+48x_85600+80x_85601+52x_85602+43x_85603+88x_85604+74x_85605+29x_85606+69x_85607+17x_85608+29x_85609+53x_85610+81x_85611+28x_85612+81x_85613+8x_85614+37x_85615+89x_85616+6x_85617+x_85618+22x_85619+77x_85620+65x_85621+40x_85622+54x_85623+29x_85624+90x_85625+27x_85626+11x_85627+49x_85628+89x_85629+93x_85630+53x_85631+95x_85632+100x_85633+x_85634+51x_85635+84x_85636+34x_85637+4x_85638+70x_85639+13x_85640+54x_85641+46x_85642+48x_85643+93x_85644+44x_85645+54x_85646+80x_85647+77x_85648+31x_85649+41x_85650+75x_85651+82x_85652+57x_85653+88x_85654+51x_85655+54x_85656+71x_85657+21x_85658+38x_85659+88x_85660+68x_85661+95x_85662+11x_85663+12x_85664+73x_85665+40x_85666+80x_85667+65x_85668+44x_85669+51x_85670+x_85671+7x_85672+57x_85673+7x_85674+35x_85675+76x_85676+20x_85677+47x_85678+21x_85679+33x_85680+66x_85681+81x_85682+26x_85683+14x_85684+89x_85685+x_85686+100x_85687+8x_85688+50x_85689+42x_85690+68x_85691+6x_85692+7x_85693+9x_85694+40x_85695+41x_85696+4x_85697+80x_85698+77x_85699+22x_85700+76x_85701+66x_85702+24x_85703+47x_85704+2x_85705+70x_85706+33x_85707+70x_85708+12x_85709+98x_85710+75x_85711+11x_85712+79x_85713+94x_85714+12x_85715+53x_85716+64x_85717+81x_85718+55x_85719+26x_85720+50x_85721+70x_85722+20x_85723+98x_85724+91x_85725+73x_85726+33x_85727+12x_85728+14x_85729+15x_85730+41x_85731+19x_85732+82x_85733+64x_85734+66x_85735+97x_85736+89x_85737+33x_85738+70x_85739+15x_85740+34x_85741+28x_85742+59x_85743+16x_85744+92x_85745+11x_85746+74x_85747+85x_85748+61x_85749+89x_85750+51x_85751+63x_85752+68x_85753+18x_85754+64x_85755+13x_85756+99x_85757+99x_85758+20x_85759+94x_85760+22x_85761+31x_85762+15x_85763+35x_85764+76x_85765+2x_85766+54x_85767+72x_85768+13x_85769+66x_85770+21x_85771+54x_85772+37x_85773+28x_85774+69x_85775+43x_85776+43x_85777+24x_85778+71x_85779+46x_85780+38x_85781+x_85782+55x_85783+52x_85784+56x_85785+54x_85786+57x_85787+93x_85788+74x_85789+42x_85790+81x_85791+41x_85792+92x_85793+66x_85794+99x_85795+77x_85796+47x_85797+23x_85798+28x_85799+93x_85800+7x_85801+3x_85802+68x_85803+81x_85804+44x_85805+65x_85806+70x_85807+93x_85808+33x_85809+63x_85810+28x_85811+87x_85812+8x_85813+97x_85814+92x_85815+56x_85816+51x_85817+52x_85818+76x_85819+12x_85820+82x_85821+53x_85822+90x_85823+52x_85824+49x_85825+42x_85826+17x_85827+81x_85828+85x_85829+38x_85830+x_85831+11x_85832+20x_85833+80x_85834+3x_85835+75x_85836+4x_85837+41x_85838+95x_85839+57x_85840+21x_85841+61x_85842+34x_85843+3x_85844+33x_85845+25x_85846+75x_85847+57x_85848+87x_85849+21x_85850+37x_85851+72x_85852+26x_85853+79x_85854+22x_85855+23x_85856+58x_85857+58x_85858+28x_85859+78x_85860+7x_85861+20x_85862+87x_85863+75x_85864+59x_85865+88x_85866+62x_85867+24x_85868+21x_85869+26x_85870+33x_85871+35x_85872+70x_85873+10x_85874+54x_85875+65x_85876+96x_85877+94x_85878+97x_85879+93x_85880+17x_85881+100x_85882+34x_85883+3x_85884+78x_85885+88x_85886+70x_85887+22x_85888+2x_85889+45x_85890+15x_85891+32x_85892+53x_85893+19x_85894+71x_85895+69x_85896+39x_85897+20x_85898+24x_85899+12x_85900+88x_85901+81x_85902+11x_85903+18x_85904+51x_85905+84x_85906+80x_85907+45x_85908+16x_85909+68x_85910+29x_85911+6x_85912+13x_85913+45x_85914+64x_85915+13x_85916+98x_85917+39x_85918+9x_85919+38x_85920+40x_85921+71x_85922+83x_85923+63x_85924+2x_85925+87x_85926+63x_85927+93x_85928+16x_85929+23x_85930+20x_85931+12x_85932+32x_85933+57x_85934+18x_85935+59x_85936+95x_85937+51x_85938+85x_85939+76x_85940+94x_85941+69x_85942+18x_85943+58x_85944+70x_85945+9x_85946+19x_85947+14x_85948+62x_85949+68x_85950+47x_85951+58x_85952+22x_85953+52x_85954+23x_85955+15x_85956+9x_85957+54x_85958+22x_85959+100x_85960+80x_85961+61x_85962+79x_85963+81x_85964+11x_85965+92x_85966+3x_85967+86x_85968+55x_85969+84x_85970+9x_85971+75x_85972+50x_85973+49x_85974+9x_85975+91x_85976+23x_85977+28x_85978+69x_85979+21x_85980+8x_85981+35x_85982+88x_85983+15x_85984+5x_85985+2x_85986+44x_85987+37x_85988+19x_85989+49x_85990+50x_85991+57x_85992+12x_85993+11x_85994+73x_85995+75x_85996+60x_85997+19x_85998+80x_85999+87x_86000+40x_86001+82x_86002+98x_86003+42x_86004+30x_86005+100x_86006+42x_86007+82x_86008+100x_86009+7x_86010+61x_86011+84x_86012+66x_86013+97x_86014+14x_86015+90x_86016+81x_86017+33x_86018+14x_86019+30x_86020+78x_86021+45x_86022+84x_86023+72x_86024+30x_86025+99x_86026+24x_86027+55x_86028+63x_86029+8x_86030+30x_86031+70x_86032+80x_86033+48x_86034+86x_86035+47x_86036+73x_86037+53x_86038+3x_86039+59x_86040+93x_86041+x_86042+83x_86043+46x_86044+40x_86045+21x_86046+4x_86047+36x_86048+55x_86049+97x_86050+66x_86051+5x_86052+98x_86053+64x_86054+15x_86055+48x_86056+71x_86057+58x_86058+42x_86059+57x_86060+16x_86061+52x_86062+42x_86063+19x_86064+33x_86065+80x_86066+78x_86067+48x_86068+43x_86069+74x_86070+2x_86071+64x_86072+34x_86073+86x_86074+86x_86075+81x_86076+35x_86077+74x_86078+92x_86079+76x_86080+22x_86081+51x_86082+28x_86083+80x_86084+40x_86085+74x_86086+70x_86087+98x_86088+86x_86089+61x_86090+39x_86091+97x_86092+87x_86093+58x_86094+10x_86095+24x_86096+96x_86097+67x_86098+14x_86099+x_86100+37x_86101+21x_86102+89x_86103+2x_86104+86x_86105+98x_86106+3x_86107+x_86108+75x_86109+30x_86110+78x_86111+25x_86112+73x_86113+82x_86114+42x_86115+21x_86116+59x_86117+59x_86118+73x_86119+34x_86120+66x_86121+84x_86122+32x_86123+49x_86124+75x_86125+44x_86126+14x_86127+43x_86128+4x_86129+64x_86130+98x_86131+88x_86132+60x_86133+90x_86134+16x_86135+77x_86136+71x_86137+33x_86138+21x_86139+98x_86140+36x_86141+55x_86142+67x_86143+84x_86144+3x_86145+51x_86146+96x_86147+79x_86148+28x_86149+60x_86150+58x_86151+77x_86152+67x_86153+44x_86154+29x_86155+14x_86156+57x_86157+32x_86158+34x_86159+89x_86160+42x_86161+96x_86162+23x_86163+87x_86164+27x_86165+40x_86166+56x_86167+63x_86168+71x_86169+51x_86170+58x_86171+13x_86172+11x_86173+22x_86174+94x_86175+38x_86176+42x_86177+26x_86178+56x_86179+30x_86180+35x_86181+25x_86182+90x_86183+40x_86184+100x_86185+20x_86186+27x_86187+5x_86188+76x_86189+71x_86190+65x_86191+14x_86192+68x_86193+52x_86194+94x_86195+100x_86196+42x_86197+60x_86198+32x_86199+100x_86200+19x_86201+12x_86202+79x_86203+81x_86204+15x_86205+31x_86206+23x_86207+32x_86208+76x_86209+55x_86210+37x_86211+26x_86212+76x_86213+6x_86214+77x_86215+35x_86216+84x_86217+3x_86218+81x_86219+45x_86220+32x_86221+97x_86222+80x_86223+78x_86224+40x_86225+66x_86226+53x_86227+8x_86228+89x_86229+76x_86230+95x_86231+74x_86232+73x_86233+19x_86234+60x_86235+70x_86236+35x_86237+36x_86238+36x_86239+x_86240+99x_86241+76x_86242+87x_86243+34x_86244+99x_86245+43x_86246+56x_86247+57x_86248+62x_86249+30x_86250+54x_86251+3x_86252+43x_86253+77x_86254+68x_86255+3x_86256+61x_86257+72x_86258+76x_86259+7x_86260+99x_86261+57x_86262+76x_86263+62x_86264+67x_86265+15x_86266+46x_86267+4x_86268+11x_86269+92x_86270+56x_86271+28x_86272+26x_86273+27x_86274+77x_86275+96x_86276+64x_86277+8x_86278+74x_86279+84x_86280+20x_86281+13x_86282+82x_86283+56x_86284+92x_86285+21x_86286+40x_86287+33x_86288+50x_86289+4x_86290+15x_86291+35x_86292+74x_86293+82x_86294+14x_86295+93x_86296+60x_86297+5x_86298+78x_86299+37x_86300+81x_86301+58x_86302+10x_86303+22x_86304+21x_86305+5x_86306+52x_86307+97x_86308+72x_86309+54x_86310+68x_86311+15x_86312+40x_86313+48x_86314+25x_86315+68x_86316+3x_86317+70x_86318+59x_86319+66x_86320+49x_86321+93x_86322+59x_86323+41x_86324+31x_86325+90x_86326+76x_86327+67x_86328+35x_86329+70x_86330+13x_86331+21x_86332+85x_86333+85x_86334+23x_86335+9x_86336+82x_86337+36x_86338+75x_86339+89x_86340+29x_86341+85x_86342+7x_86343+70x_86344+76x_86345+58x_86346+35x_86347+10x_86348+34x_86349+86x_86350+59x_86351+23x_86352+22x_86353+70x_86354+23x_86355+87x_86356+45x_86357+48x_86358+11x_86359+76x_86360+100x_86361+49x_86362+14x_86363+90x_86364+67x_86365+56x_86366+9x_86367+67x_86368+38x_86369+16x_86370+42x_86371+21x_86372+69x_86373+9x_86374+99x_86375+64x_86376+67x_86377+8x_86378+92x_86379+38x_86380+58x_86381+14x_86382+39x_86383+63x_86384+79x_86385+55x_86386+12x_86387+63x_86388+20x_86389+90x_86390+4x_86391+15x_86392+53x_86393+6x_86394+33x_86395+56x_86396+83x_86397+55x_86398+45x_86399+9x_86400+84x_86401+6x_86402+44x_86403+32x_86404+36x_86405+69x_86406+50x_86407+75x_86408+76x_86409+6x_86410+18x_86411+97x_86412+92x_86413+21x_86414+82x_86415+92x_86416+25x_86417+46x_86418+81x_86419+82x_86420+22x_86421+52x_86422+55x_86423+16x_86424+40x_86425+94x_86426+72x_86427+50x_86428+66x_86429+71x_86430+52x_86431+78x_86432+76x_86433+4x_86434+5x_86435+39x_86436+7x_86437+32x_86438+12x_86439+57x_86440+20x_86441+46x_86442+79x_86443+50x_86444+61x_86445+20x_86446+12x_86447+24x_86448+3x_86449+66x_86450+9x_86451+44x_86452+30x_86453+54x_86454+9x_86455+44x_86456+52x_86457+40x_86458+8x_86459+74x_86460+84x_86461+29x_86462+4x_86463+9x_86464+34x_86465+36x_86466+48x_86467+28x_86468+59x_86469+99x_86470+60x_86471+83x_86472+85x_86473+83x_86474+65x_86475+31x_86476+13x_86477+47x_86478+22x_86479+56x_86480+62x_86481+76x_86482+72x_86483+33x_86484+45x_86485+64x_86486+20x_86487+94x_86488+80x_86489+11x_86490+29x_86491+13x_86492+2x_86493+3x_86494+24x_86495+62x_86496+38x_86497+40x_86498+98x_86499+90x_86500+7x_86501+30x_86502+32x_86503+55x_86504+52x_86505+30x_86506+32x_86507+53x_86508+70x_86509+29x_86510+32x_86511+48x_86512+60x_86513+77x_86514+21x_86515+95x_86516+64x_86517+48x_86518+18x_86519+52x_86520+48x_86521+32x_86522+56x_86523+54x_86524+27x_86525+83x_86526+33x_86527+99x_86528+5x_86529+40x_86530+55x_86531+45x_86532+73x_86533+95x_86534+17x_86535+52x_86536+82x_86537+7x_86538+93x_86539+48x_86540+37x_86541+82x_86542+59x_86543+62x_86544+68x_86545+95x_86546+88x_86547+47x_86548+84x_86549+48x_86550+24x_86551+20x_86552+60x_86553+18x_86554+29x_86555+58x_86556+27x_86557+97x_86558+53x_86559+55x_86560+26x_86561+82x_86562+61x_86563+23x_86564+22x_86565+84x_86566+78x_86567+24x_86568+40x_86569+48x_86570+9x_86571+45x_86572+38x_86573+70x_86574+97x_86575+16x_86576+56x_86577+40x_86578+58x_86579+35x_86580+4x_86581+39x_86582+57x_86583+6x_86584+46x_86585+8x_86586+52x_86587+88x_86588+30x_86589+75x_86590+5x_86591+87x_86592+43x_86593+90x_86594+85x_86595+24x_86596+50x_86597+65x_86598+71x_86599+65x_86600+24x_86601+30x_86602+28x_86603+92x_86604+77x_86605+31x_86606+68x_86607+60x_86608+58x_86609+75x_86610+78x_86611+59x_86612+80x_86613+10x_86614+91x_86615+63x_86616+5x_86617+82x_86618+47x_86619+4x_86620+27x_86621+14x_86622+13x_86623+63x_86624+40x_86625+57x_86626+58x_86627+27x_86628+94x_86629+99x_86630+85x_86631+82x_86632+60x_86633+59x_86634+77x_86635+59x_86636+22x_86637+61x_86638+14x_86639+56x_86640+70x_86641+27x_86642+41x_86643+15x_86644+75x_86645+93x_86646+92x_86647+58x_86648+20x_86649+15x_86650+100x_86651+27x_86652+30x_86653+42x_86654+54x_86655+6x_86656+4x_86657+59x_86658+53x_86659+12x_86660+7x_86661+80x_86662+75x_86663+38x_86664+99x_86665+13x_86666+92x_86667+90x_86668+36x_86669+34x_86670+30x_86671+5x_86672+46x_86673+82x_86674+29x_86675+4x_86676+74x_86677+41x_86678+31x_86679+85x_86680+86x_86681+36x_86682+51x_86683+56x_86684+x_86685+51x_86686+20x_86687+54x_86688+40x_86689+98x_86690+38x_86691+50x_86692+33x_86693+54x_86694+22x_86695+78x_86696+49x_86697+65x_86698+59x_86699+31x_86700+70x_86701+34x_86702+82x_86703+20x_86704+95x_86705+70x_86706+27x_86707+68x_86708+14x_86709+86x_86710+34x_86711+63x_86712+23x_86713+56x_86714+59x_86715+75x_86716+86x_86717+37x_86718+6x_86719+93x_86720+8x_86721+20x_86722+99x_86723+28x_86724+49x_86725+71x_86726+6x_86727+79x_86728+97x_86729+91x_86730+3x_86731+83x_86732+59x_86733+43x_86734+62x_86735+17x_86736+20x_86737+43x_86738+39x_86739+17x_86740+53x_86741+56x_86742+55x_86743+68x_86744+63x_86745+51x_86746+59x_86747+2x_86748+34x_86749+86x_86750+50x_86751+36x_86752+95x_86753+16x_86754+22x_86755+74x_86756+51x_86757+26x_86758+31x_86759+59x_86760+26x_86761+56x_86762+80x_86763+11x_86764+35x_86765+72x_86766+63x_86767+16x_86768+69x_86769+94x_86770+61x_86771+15x_86772+30x_86773+41x_86774+69x_86775+2x_86776+62x_86777+72x_86778+43x_86779+44x_86780+3x_86781+14x_86782+98x_86783+89x_86784+9x_86785+100x_86786+3x_86787+10x_86788+52x_86789+44x_86790+54x_86791+44x_86792+36x_86793+99x_86794+67x_86795+91x_86796+14x_86797+59x_86798+3x_86799+32x_86800+60x_86801+20x_86802+46x_86803+36x_86804+62x_86805+59x_86806+50x_86807+92x_86808+26x_86809+100x_86810+68x_86811+21x_86812+40x_86813+76x_86814+41x_86815+99x_86816+23x_86817+16x_86818+13x_86819+57x_86820+3x_86821+39x_86822+72x_86823+70x_86824+92x_86825+7x_86826+35x_86827+94x_86828+40x_86829+31x_86830+27x_86831+23x_86832+99x_86833+66x_86834+5x_86835+37x_86836+80x_86837+83x_86838+39x_86839+28x_86840+79x_86841+40x_86842+85x_86843+31x_86844+98x_86845+28x_86846+57x_86847+36x_86848+22x_86849+51x_86850+38x_86851+35x_86852+74x_86853+99x_86854+79x_86855+34x_86856+4x_86857+38x_86858+42x_86859+86x_86860+89x_86861+61x_86862+96x_86863+47x_86864+73x_86865+14x_86866+66x_86867+24x_86868+32x_86869+67x_86870+48x_86871+54x_86872+66x_86873+98x_86874+67x_86875+22x_86876+56x_86877+95x_86878+39x_86879+61x_86880+20x_86881+x_86882+93x_86883+91x_86884+55x_86885+78x_86886+30x_86887+52x_86888+7x_86889+70x_86890+41x_86891+70x_86892+89x_86893+31x_86894+86x_86895+37x_86896+79x_86897+45x_86898+69x_86899+19x_86900+31x_86901+13x_86902+78x_86903+12x_86904+64x_86905+96x_86906+18x_86907+44x_86908+84x_86909+87x_86910+93x_86911+78x_86912+33x_86913+52x_86914+32x_86915+35x_86916+82x_86917+4x_86918+39x_86919+46x_86920+83x_86921+40x_86922+25x_86923+77x_86924+31x_86925+98x_86926+26x_86927+38x_86928+75x_86929+68x_86930+x_86931+39x_86932+6x_86933+30x_86934+38x_86935+93x_86936+33x_86937+94x_86938+75x_86939+x_86940+81x_86941+85x_86942+9x_86943+88x_86944+81x_86945+22x_86946+58x_86947+3x_86948+41x_86949+42x_86950+20x_86951+28x_86952+99x_86953+62x_86954+44x_86955+92x_86956+66x_86957+31x_86958+88x_86959+65x_86960+80x_86961+10x_86962+21x_86963+34x_86964+20x_86965+33x_86966+41x_86967+23x_86968+87x_86969+100x_86970+53x_86971+59x_86972+60x_86973+42x_86974+85x_86975+59x_86976+94x_86977+44x_86978+22x_86979+72x_86980+76x_86981+66x_86982+71x_86983+36x_86984+74x_86985+33x_86986+50x_86987+59x_86988+75x_86989+55x_86990+91x_86991+93x_86992+7x_86993+95x_86994+24x_86995+81x_86996+35x_86997+67x_86998+3x_86999+49x_87000+41x_87001+52x_87002+76x_87003+82x_87004+88x_87005+31x_87006+34x_87007+60x_87008+11x_87009+19x_87010+14x_87011+26x_87012+14x_87013+81x_87014+x_87015+49x_87016+48x_87017+81x_87018+97x_87019+14x_87020+3x_87021+24x_87022+49x_87023+89x_87024+41x_87025+47x_87026+51x_87027+69x_87028+53x_87029+99x_87030+9x_87031+46x_87032+72x_87033+41x_87034+100x_87035+95x_87036+20x_87037+57x_87038+x_87039+62x_87040+30x_87041+89x_87042+84x_87043+54x_87044+75x_87045+66x_87046+24x_87047+33x_87048+95x_87049+46x_87050+35x_87051+77x_87052+30x_87053+37x_87054+28x_87055+59x_87056+88x_87057+72x_87058+24x_87059+49x_87060+56x_87061+24x_87062+95x_87063+89x_87064+51x_87065+61x_87066+72x_87067+15x_87068+31x_87069+54x_87070+56x_87071+49x_87072+51x_87073+14x_87074+87x_87075+4x_87076+95x_87077+27x_87078+77x_87079+20x_87080+28x_87081+78x_87082+4x_87083+70x_87084+50x_87085+17x_87086+61x_87087+28x_87088+71x_87089+16x_87090+13x_87091+11x_87092+30x_87093+67x_87094+67x_87095+69x_87096+10x_87097+31x_87098+16x_87099+75x_87100+35x_87101+59x_87102+75x_87103+36x_87104+84x_87105+17x_87106+77x_87107+97x_87108+2x_87109+46x_87110+13x_87111+59x_87112+29x_87113+60x_87114+12x_87115+83x_87116+75x_87117+9x_87118+83x_87119+43x_87120+29x_87121+58x_87122+61x_87123+5x_87124+83x_87125+59x_87126+17x_87127+40x_87128+2x_87129+30x_87130+28x_87131+90x_87132+21x_87133+58x_87134+20x_87135+91x_87136+100x_87137+45x_87138+41x_87139+98x_87140+84x_87141+43x_87142+90x_87143+64x_87144+9x_87145+71x_87146+69x_87147+24x_87148+44x_87149+95x_87150+37x_87151+22x_87152+7x_87153+98x_87154+96x_87155+77x_87156+20x_87157+59x_87158+95x_87159+46x_87160+78x_87161+81x_87162+70x_87163+7x_87164+8x_87165+73x_87166+27x_87167+39x_87168+41x_87169+62x_87170+57x_87171+86x_87172+56x_87173+83x_87174+11x_87175+66x_87176+26x_87177+24x_87178+66x_87179+91x_87180+36x_87181+77x_87182+37x_87183+87x_87184+42x_87185+28x_87186+58x_87187+37x_87188+25x_87189+71x_87190+23x_87191+63x_87192+30x_87193+29x_87194+71x_87195+28x_87196+96x_87197+25x_87198+89x_87199+17x_87200+95x_87201+9x_87202+63x_87203+59x_87204+32x_87205+95x_87206+38x_87207+83x_87208+15x_87209+18x_87210+36x_87211+65x_87212+8x_87213+64x_87214+94x_87215+5x_87216+88x_87217+96x_87218+98x_87219+7x_87220+x_87221+65x_87222+14x_87223+36x_87224+75x_87225+38x_87226+x_87227+50x_87228+17x_87229+6x_87230+100x_87231+46x_87232+28x_87233+44x_87234+67x_87235+31x_87236+86x_87237+15x_87238+34x_87239+42x_87240+34x_87241+78x_87242+85x_87243+82x_87244+43x_87245+46x_87246+57x_87247+72x_87248+72x_87249+65x_87250+51x_87251+13x_87252+24x_87253+73x_87254+37x_87255+21x_87256+87x_87257+74x_87258+43x_87259+80x_87260+28x_87261+41x_87262+99x_87263+7x_87264+28x_87265+85x_87266+19x_87267+76x_87268+48x_87269+65x_87270+88x_87271+85x_87272+95x_87273+29x_87274+57x_87275+79x_87276+100x_87277+x_87278+32x_87279+14x_87280+50x_87281+21x_87282+89x_87283+39x_87284+68x_87285+39x_87286+64x_87287+4x_87288+72x_87289+12x_87290+4x_87291+98x_87292+77x_87293+70x_87294+25x_87295+41x_87296+66x_87297+51x_87298+71x_87299+28x_87300+4x_87301+60x_87302+28x_87303+33x_87304+89x_87305+7x_87306+45x_87307+45x_87308+59x_87309+25x_87310+97x_87311+98x_87312+55x_87313+51x_87314+69x_87315+79x_87316+94x_87317+98x_87318+22x_87319+4x_87320+59x_87321+59x_87322+85x_87323+17x_87324+60x_87325+63x_87326+5x_87327+29x_87328+98x_87329+68x_87330+71x_87331+100x_87332+81x_87333+23x_87334+53x_87335+40x_87336+76x_87337+59x_87338+76x_87339+45x_87340+100x_87341+96x_87342+65x_87343+68x_87344+54x_87345+85x_87346+56x_87347+25x_87348+41x_87349+90x_87350+91x_87351+92x_87352+8x_87353+64x_87354+66x_87355+26x_87356+45x_87357+41x_87358+51x_87359+10x_87360+8x_87361+12x_87362+28x_87363+48x_87364+19x_87365+38x_87366+64x_87367+82x_87368+34x_87369+35x_87370+99x_87371+63x_87372+92x_87373+64x_87374+9x_87375+52x_87376+77x_87377+59x_87378+92x_87379+80x_87380+73x_87381+87x_87382+12x_87383+9x_87384+55x_87385+51x_87386+53x_87387+40x_87388+23x_87389+46x_87390+10x_87391+46x_87392+12x_87393+8x_87394+74x_87395+33x_87396+47x_87397+2x_87398+37x_87399+12x_87400+81x_87401+48x_87402+28x_87403+56x_87404+63x_87405+64x_87406+82x_87407+61x_87408+50x_87409+5x_87410+17x_87411+39x_87412+82x_87413+25x_87414+10x_87415+83x_87416+7x_87417+78x_87418+99x_87419+24x_87420+34x_87421+77x_87422+74x_87423+62x_87424+33x_87425+58x_87426+59x_87427+36x_87428+87x_87429+60x_87430+26x_87431+33x_87432+57x_87433+44x_87434+27x_87435+54x_87436+7x_87437+5x_87438+84x_87439+77x_87440+41x_87441+14x_87442+19x_87443+7x_87444+17x_87445+31x_87446+35x_87447+48x_87448+20x_87449+92x_87450+47x_87451+23x_87452+34x_87453+31x_87454+85x_87455+45x_87456+8x_87457+66x_87458+61x_87459+87x_87460+72x_87461+90x_87462+73x_87463+2x_87464+38x_87465+20x_87466+88x_87467+58x_87468+35x_87469+4x_87470+16x_87471+88x_87472+61x_87473+98x_87474+24x_87475+49x_87476+60x_87477+3x_87478+59x_87479+91x_87480+37x_87481+83x_87482+6x_87483+47x_87484+50x_87485+83x_87486+12x_87487+x_87488+56x_87489+2x_87490+17x_87491+10x_87492+19x_87493+99x_87494+16x_87495+65x_87496+35x_87497+74x_87498+92x_87499+70x_87500+14x_87501+67x_87502+28x_87503+88x_87504+22x_87505+45x_87506+94x_87507+77x_87508+34x_87509+32x_87510+22x_87511+53x_87512+97x_87513+81x_87514+75x_87515+76x_87516+72x_87517+36x_87518+95x_87519+18x_87520+91x_87521+84x_87522+95x_87523+47x_87524+95x_87525+22x_87526+4x_87527+57x_87528+49x_87529+89x_87530+66x_87531+61x_87532+24x_87533+94x_87534+59x_87535+70x_87536+58x_87537+98x_87538+14x_87539+97x_87540+95x_87541+65x_87542+30x_87543+49x_87544+72x_87545+6x_87546+20x_87547+36x_87548+78x_87549+36x_87550+73x_87551+92x_87552+63x_87553+63x_87554+19x_87555+58x_87556+62x_87557+16x_87558+37x_87559+80x_87560+37x_87561+21x_87562+82x_87563+52x_87564+37x_87565+68x_87566+6x_87567+10x_87568+22x_87569+58x_87570+55x_87571+71x_87572+73x_87573+100x_87574+37x_87575+35x_87576+89x_87577+12x_87578+34x_87579+17x_87580+32x_87581+70x_87582+70x_87583+84x_87584+87x_87585+9x_87586+19x_87587+58x_87588+80x_87589+91x_87590+64x_87591+43x_87592+86x_87593+25x_87594+x_87595+17x_87596+24x_87597+27x_87598+47x_87599+5x_87600+48x_87601+x_87602+10x_87603+61x_87604+27x_87605+79x_87606+25x_87607+26x_87608+92x_87609+62x_87610+9x_87611+83x_87612+27x_87613+59x_87614+83x_87615+75x_87616+51x_87617+90x_87618+99x_87619+51x_87620+72x_87621+2x_87622+5x_87623+45x_87624+25x_87625+99x_87626+20x_87627+35x_87628+75x_87629+37x_87630+20x_87631+29x_87632+55x_87633+96x_87634+73x_87635+3x_87636+94x_87637+92x_87638+19x_87639+63x_87640+29x_87641+44x_87642+73x_87643+59x_87644+91x_87645+35x_87646+17x_87647+78x_87648+100x_87649+84x_87650+65x_87651+77x_87652+14x_87653+66x_87654+80x_87655+67x_87656+52x_87657+34x_87658+3x_87659+35x_87660+74x_87661+20x_87662+97x_87663+41x_87664+86x_87665+12x_87666+23x_87667+58x_87668+21x_87669+37x_87670+25x_87671+38x_87672+86x_87673+80x_87674+4x_87675+58x_87676+23x_87677+78x_87678+33x_87679+62x_87680+99x_87681+62x_87682+34x_87683+8x_87684+48x_87685+3x_87686+80x_87687+x_87688+75x_87689+52x_87690+64x_87691+16x_87692+91x_87693+83x_87694+34x_87695+20x_87696+76x_87697+15x_87698+97x_87699+28x_87700+11x_87701+94x_87702+78x_87703+58x_87704+23x_87705+30x_87706+15x_87707+27x_87708+86x_87709+71x_87710+34x_87711+59x_87712+41x_87713+75x_87714+82x_87715+70x_87716+65x_87717+65x_87718+65x_87719+3x_87720+60x_87721+80x_87722+37x_87723+13x_87724+15x_87725+67x_87726+23x_87727+81x_87728+89x_87729+87x_87730+38x_87731+6x_87732+79x_87733+68x_87734+71x_87735+65x_87736+48x_87737+54x_87738+80x_87739+12x_87740+64x_87741+17x_87742+97x_87743+74x_87744+83x_87745+7x_87746+92x_87747+78x_87748+94x_87749+4x_87750+48x_87751+77x_87752+41x_87753+96x_87754+28x_87755+81x_87756+77x_87757+100x_87758+98x_87759+72x_87760+42x_87761+33x_87762+27x_87763+52x_87764+46x_87765+73x_87766+95x_87767+31x_87768+4x_87769+49x_87770+78x_87771+45x_87772+45x_87773+91x_87774+19x_87775+20x_87776+68x_87777+47x_87778+57x_87779+32x_87780+36x_87781+41x_87782+36x_87783+74x_87784+48x_87785+53x_87786+57x_87787+97x_87788+38x_87789+11x_87790+42x_87791+62x_87792+x_87793+32x_87794+5x_87795+99x_87796+46x_87797+62x_87798+50x_87799+53x_87800+8x_87801+22x_87802+16x_87803+79x_87804+54x_87805+24x_87806+95x_87807+29x_87808+20x_87809+86x_87810+70x_87811+55x_87812+91x_87813+7x_87814+36x_87815+85x_87816+95x_87817+48x_87818+78x_87819+33x_87820+40x_87821+82x_87822+45x_87823+46x_87824+82x_87825+40x_87826+37x_87827+30x_87828+45x_87829+40x_87830+9x_87831+2x_87832+94x_87833+65x_87834+36x_87835+20x_87836+30x_87837+99x_87838+57x_87839+25x_87840+38x_87841+69x_87842+65x_87843+18x_87844+55x_87845+22x_87846+89x_87847+71x_87848+20x_87849+93x_87850+20x_87851+49x_87852+61x_87853+13x_87854+48x_87855+63x_87856+54x_87857+53x_87858+50x_87859+44x_87860+100x_87861+99x_87862+51x_87863+94x_87864+46x_87865+49x_87866+15x_87867+52x_87868+54x_87869+23x_87870+18x_87871+72x_87872+95x_87873+19x_87874+36x_87875+54x_87876+28x_87877+96x_87878+88x_87879+99x_87880+36x_87881+95x_87882+8x_87883+5x_87884+15x_87885+58x_87886+44x_87887+53x_87888+84x_87889+95x_87890+74x_87891+55x_87892+91x_87893+82x_87894+66x_87895+97x_87896+41x_87897+77x_87898+16x_87899+46x_87900+97x_87901+45x_87902+15x_87903+96x_87904+92x_87905+79x_87906+85x_87907+3x_87908+86x_87909+70x_87910+34x_87911+38x_87912+61x_87913+48x_87914+48x_87915+85x_87916+5x_87917+72x_87918+18x_87919+16x_87920+55x_87921+18x_87922+71x_87923+29x_87924+9x_87925+12x_87926+73x_87927+42x_87928+14x_87929+64x_87930+93x_87931+72x_87932+85x_87933+66x_87934+78x_87935+28x_87936+21x_87937+63x_87938+37x_87939+87x_87940+46x_87941+16x_87942+84x_87943+54x_87944+19x_87945+52x_87946+18x_87947+33x_87948+42x_87949+93x_87950+61x_87951+94x_87952+22x_87953+61x_87954+45x_87955+90x_87956+96x_87957+34x_87958+47x_87959+9x_87960+5x_87961+13x_87962+64x_87963+66x_87964+29x_87965+62x_87966+19x_87967+86x_87968+95x_87969+29x_87970+24x_87971+55x_87972+18x_87973+25x_87974+9x_87975+22x_87976+19x_87977+52x_87978+16x_87979+41x_87980+38x_87981+34x_87982+76x_87983+75x_87984+38x_87985+46x_87986+92x_87987+81x_87988+26x_87989+59x_87990+4x_87991+27x_87992+15x_87993+44x_87994+88x_87995+36x_87996+31x_87997+3x_87998+66x_87999+90x_88000+49x_88001+43x_88002+21x_88003+60x_88004+33x_88005+2x_88006+39x_88007+67x_88008+34x_88009+18x_88010+34x_88011+37x_88012+68x_88013+26x_88014+10x_88015+18x_88016+30x_88017+17x_88018+15x_88019+7x_88020+95x_88021+75x_88022+16x_88023+73x_88024+88x_88025+89x_88026+62x_88027+21x_88028+85x_88029+67x_88030+91x_88031+62x_88032+76x_88033+96x_88034+42x_88035+94x_88036+56x_88037+59x_88038+73x_88039+2x_88040+17x_88041+25x_88042+48x_88043+72x_88044+63x_88045+2x_88046+86x_88047+94x_88048+36x_88049+53x_88050+70x_88051+95x_88052+79x_88053+65x_88054+58x_88055+70x_88056+11x_88057+25x_88058+48x_88059+96x_88060+26x_88061+79x_88062+49x_88063+78x_88064+59x_88065+49x_88066+19x_88067+18x_88068+88x_88069+61x_88070+88x_88071+40x_88072+50x_88073+42x_88074+48x_88075+58x_88076+96x_88077+30x_88078+83x_88079+15x_88080+92x_88081+25x_88082+99x_88083+65x_88084+99x_88085+9x_88086+93x_88087+43x_88088+23x_88089+75x_88090+66x_88091+60x_88092+36x_88093+15x_88094+2x_88095+54x_88096+11x_88097+82x_88098+53x_88099+18x_88100+100x_88101+23x_88102+44x_88103+31x_88104+23x_88105+3x_88106+41x_88107+56x_88108+50x_88109+49x_88110+29x_88111+54x_88112+24x_88113+13x_88114+68x_88115+73x_88116+34x_88117+6x_88118+22x_88119+86x_88120+70x_88121+6x_88122+3x_88123+54x_88124+14x_88125+73x_88126+91x_88127+19x_88128+43x_88129+54x_88130+73x_88131+15x_88132+10x_88133+75x_88134+68x_88135+26x_88136+13x_88137+30x_88138+36x_88139+10x_88140+6x_88141+30x_88142+16x_88143+31x_88144+25x_88145+9x_88146+82x_88147+93x_88148+100x_88149+97x_88150+84x_88151+39x_88152+40x_88153+26x_88154+94x_88155+10x_88156+31x_88157+49x_88158+13x_88159+40x_88160+35x_88161+39x_88162+13x_88163+80x_88164+68x_88165+29x_88166+57x_88167+4x_88168+12x_88169+79x_88170+48x_88171+37x_88172+49x_88173+13x_88174+84x_88175+78x_88176+100x_88177+93x_88178+97x_88179+40x_88180+56x_88181+4x_88182+83x_88183+20x_88184+55x_88185+32x_88186+73x_88187+78x_88188+82x_88189+41x_88190+15x_88191+69x_88192+2x_88193+95x_88194+94x_88195+20x_88196+64x_88197+93x_88198+47x_88199+27x_88200+17x_88201+67x_88202+64x_88203+93x_88204+78x_88205+12x_88206+39x_88207+90x_88208+20x_88209+78x_88210+7x_88211+63x_88212+66x_88213+74x_88214+5x_88215+38x_88216+x_88217+19x_88218+69x_88219+47x_88220+7x_88221+100x_88222+62x_88223+27x_88224+5x_88225+47x_88226+22x_88227+16x_88228+49x_88229+78x_88230+x_88231+97x_88232+50x_88233+54x_88234+x_88235+69x_88236+71x_88237+63x_88238+76x_88239+8x_88240+73x_88241+48x_88242+71x_88243+30x_88244+91x_88245+23x_88246+65x_88247+x_88248+95x_88249+87x_88250+100x_88251+56x_88252+96x_88253+92x_88254+40x_88255+87x_88256+2x_88257+71x_88258+67x_88259+73x_88260+79x_88261+41x_88262+13x_88263+10x_88264+69x_88265+15x_88266+86x_88267+79x_88268+11x_88269+92x_88270+27x_88271+99x_88272+18x_88273+60x_88274+31x_88275+10x_88276+x_88277+34x_88278+21x_88279+45x_88280+39x_88281+31x_88282+51x_88283+21x_88284+17x_88285+93x_88286+69x_88287+87x_88288+76x_88289+61x_88290+24x_88291+46x_88292+29x_88293+87x_88294+37x_88295+92x_88296+37x_88297+80x_88298+88x_88299+36x_88300+64x_88301+6x_88302+64x_88303+54x_88304+93x_88305+77x_88306+91x_88307+66x_88308+85x_88309+61x_88310+88x_88311+45x_88312+81x_88313+11x_88314+88x_88315+47x_88316+37x_88317+30x_88318+73x_88319+32x_88320+31x_88321+40x_88322+7x_88323+75x_88324+16x_88325+18x_88326+8x_88327+76x_88328+9x_88329+96x_88330+58x_88331+37x_88332+95x_88333+6x_88334+11x_88335+90x_88336+87x_88337+63x_88338+7x_88339+33x_88340+22x_88341+59x_88342+39x_88343+98x_88344+65x_88345+63x_88346+77x_88347+35x_88348+54x_88349+7x_88350+80x_88351+26x_88352+38x_88353+65x_88354+66x_88355+71x_88356+37x_88357+58x_88358+71x_88359+38x_88360+12x_88361+47x_88362+14x_88363+86x_88364+49x_88365+62x_88366+96x_88367+37x_88368+43x_88369+85x_88370+33x_88371+69x_88372+26x_88373+57x_88374+87x_88375+42x_88376+54x_88377+97x_88378+44x_88379+51x_88380+87x_88381+29x_88382+39x_88383+65x_88384+91x_88385+31x_88386+9x_88387+25x_88388+11x_88389+30x_88390+33x_88391+18x_88392+61x_88393+89x_88394+95x_88395+84x_88396+61x_88397+51x_88398+34x_88399+100x_88400+63x_88401+13x_88402+38x_88403+36x_88404+90x_88405+97x_88406+22x_88407+64x_88408+15x_88409+28x_88410+16x_88411+53x_88412+28x_88413+94x_88414+68x_88415+46x_88416+19x_88417+56x_88418+63x_88419+85x_88420+20x_88421+98x_88422+66x_88423+5x_88424+81x_88425+98x_88426+47x_88427+97x_88428+14x_88429+66x_88430+19x_88431+99x_88432+67x_88433+19x_88434+46x_88435+11x_88436+11x_88437+18x_88438+83x_88439+79x_88440+9x_88441+83x_88442+16x_88443+76x_88444+87x_88445+8x_88446+10x_88447+17x_88448+72x_88449+45x_88450+93x_88451+73x_88452+24x_88453+8x_88454+62x_88455+58x_88456+50x_88457+95x_88458+18x_88459+66x_88460+44x_88461+90x_88462+100x_88463+83x_88464+27x_88465+22x_88466+41x_88467+82x_88468+47x_88469+9x_88470+87x_88471+34x_88472+6x_88473+97x_88474+36x_88475+44x_88476+44x_88477+90x_88478+58x_88479+64x_88480+53x_88481+67x_88482+94x_88483+47x_88484+4x_88485+50x_88486+88x_88487+84x_88488+65x_88489+4x_88490+67x_88491+79x_88492+50x_88493+49x_88494+32x_88495+10x_88496+45x_88497+97x_88498+87x_88499+26x_88500+61x_88501+64x_88502+40x_88503+11x_88504+16x_88505+24x_88506+16x_88507+73x_88508+47x_88509+60x_88510+9x_88511+98x_88512+71x_88513+30x_88514+86x_88515+3x_88516+31x_88517+63x_88518+84x_88519+24x_88520+6x_88521+17x_88522+8x_88523+86x_88524+59x_88525+35x_88526+59x_88527+39x_88528+55x_88529+40x_88530+76x_88531+75x_88532+55x_88533+33x_88534+60x_88535+15x_88536+27x_88537+87x_88538+38x_88539+54x_88540+15x_88541+83x_88542+27x_88543+90x_88544+52x_88545+2x_88546+30x_88547+61x_88548+75x_88549+60x_88550+68x_88551+45x_88552+63x_88553+57x_88554+31x_88555+18x_88556+92x_88557+90x_88558+11x_88559+74x_88560+45x_88561+25x_88562+36x_88563+12x_88564+20x_88565+29x_88566+44x_88567+40x_88568+97x_88569+70x_88570+67x_88571+54x_88572+23x_88573+29x_88574+46x_88575+59x_88576+5x_88577+65x_88578+5x_88579+21x_88580+53x_88581+86x_88582+43x_88583+54x_88584+18x_88585+67x_88586+74x_88587+33x_88588+94x_88589+25x_88590+x_88591+40x_88592+88x_88593+41x_88594+56x_88595+5x_88596+52x_88597+38x_88598+8x_88599+77x_88600+12x_88601+4x_88602+70x_88603+45x_88604+39x_88605+88x_88606+31x_88607+70x_88608+86x_88609+48x_88610+36x_88611+7x_88612+50x_88613+96x_88614+92x_88615+12x_88616+86x_88617+27x_88618+44x_88619+46x_88620+47x_88621+89x_88622+71x_88623+45x_88624+66x_88625+41x_88626+26x_88627+65x_88628+29x_88629+97x_88630+72x_88631+95x_88632+38x_88633+71x_88634+42x_88635+96x_88636+96x_88637+12x_88638+52x_88639+26x_88640+37x_88641+37x_88642+18x_88643+67x_88644+18x_88645+82x_88646+32x_88647+15x_88648+55x_88649+12x_88650+38x_88651+13x_88652+54x_88653+41x_88654+67x_88655+69x_88656+62x_88657+63x_88658+43x_88659+3x_88660+72x_88661+27x_88662+98x_88663+14x_88664+66x_88665+88x_88666+81x_88667+3x_88668+50x_88669+17x_88670+26x_88671+x_88672+95x_88673+36x_88674+40x_88675+11x_88676+69x_88677+14x_88678+68x_88679+77x_88680+97x_88681+91x_88682+55x_88683+43x_88684+14x_88685+19x_88686+25x_88687+55x_88688+58x_88689+81x_88690+76x_88691+47x_88692+6x_88693+51x_88694+30x_88695+40x_88696+15x_88697+70x_88698+78x_88699+90x_88700+35x_88701+92x_88702+33x_88703+48x_88704+61x_88705+79x_88706+45x_88707+83x_88708+38x_88709+77x_88710+100x_88711+40x_88712+66x_88713+14x_88714+70x_88715+99x_88716+93x_88717+56x_88718+19x_88719+72x_88720+55x_88721+66x_88722+94x_88723+25x_88724+x_88725+30x_88726+34x_88727+9x_88728+17x_88729+41x_88730+8x_88731+76x_88732+21x_88733+7x_88734+67x_88735+46x_88736+54x_88737+48x_88738+62x_88739+20x_88740+34x_88741+51x_88742+97x_88743+40x_88744+62x_88745+93x_88746+23x_88747+85x_88748+5x_88749+4x_88750+49x_88751+75x_88752+27x_88753+5x_88754+40x_88755+68x_88756+33x_88757+21x_88758+56x_88759+92x_88760+4x_88761+25x_88762+7x_88763+84x_88764+77x_88765+70x_88766+82x_88767+8x_88768+30x_88769+40x_88770+35x_88771+62x_88772+22x_88773+19x_88774+55x_88775+29x_88776+44x_88777+44x_88778+x_88779+25x_88780+45x_88781+78x_88782+35x_88783+29x_88784+27x_88785+x_88786+36x_88787+77x_88788+78x_88789+54x_88790+94x_88791+49x_88792+64x_88793+38x_88794+51x_88795+98x_88796+27x_88797+76x_88798+5x_88799+33x_88800+87x_88801+6x_88802+76x_88803+56x_88804+41x_88805+97x_88806+74x_88807+34x_88808+35x_88809+85x_88810+59x_88811+69x_88812+100x_88813+82x_88814+7x_88815+76x_88816+46x_88817+29x_88818+11x_88819+16x_88820+7x_88821+29x_88822+62x_88823+43x_88824+83x_88825+95x_88826+31x_88827+9x_88828+85x_88829+47x_88830+8x_88831+57x_88832+96x_88833+17x_88834+46x_88835+54x_88836+26x_88837+88x_88838+77x_88839+40x_88840+40x_88841+34x_88842+40x_88843+37x_88844+55x_88845+55x_88846+81x_88847+71x_88848+53x_88849+23x_88850+6x_88851+28x_88852+78x_88853+100x_88854+47x_88855+59x_88856+54x_88857+37x_88858+97x_88859+86x_88860+66x_88861+72x_88862+13x_88863+32x_88864+25x_88865+7x_88866+15x_88867+52x_88868+48x_88869+33x_88870+84x_88871+63x_88872+51x_88873+5x_88874+49x_88875+79x_88876+46x_88877+44x_88878+20x_88879+56x_88880+20x_88881+66x_88882+15x_88883+10x_88884+94x_88885+5x_88886+66x_88887+57x_88888+97x_88889+96x_88890+99x_88891+41x_88892+46x_88893+50x_88894+82x_88895+97x_88896+20x_88897+95x_88898+28x_88899+65x_88900+44x_88901+34x_88902+14x_88903+91x_88904+99x_88905+56x_88906+98x_88907+22x_88908+58x_88909+19x_88910+33x_88911+98x_88912+55x_88913+89x_88914+98x_88915+17x_88916+22x_88917+7x_88918+51x_88919+7x_88920+13x_88921+77x_88922+5x_88923+50x_88924+40x_88925+55x_88926+67x_88927+73x_88928+56x_88929+37x_88930+77x_88931+33x_88932+52x_88933+5x_88934+74x_88935+65x_88936+34x_88937+78x_88938+96x_88939+94x_88940+78x_88941+87x_88942+40x_88943+89x_88944+8x_88945+51x_88946+64x_88947+42x_88948+99x_88949+25x_88950+10x_88951+85x_88952+51x_88953+98x_88954+62x_88955+10x_88956+25x_88957+31x_88958+65x_88959+100x_88960+47x_88961+70x_88962+31x_88963+21x_88964+33x_88965+36x_88966+33x_88967+68x_88968+78x_88969+69x_88970+86x_88971+78x_88972+59x_88973+38x_88974+28x_88975+93x_88976+81x_88977+71x_88978+91x_88979+6x_88980+54x_88981+100x_88982+8x_88983+39x_88984+87x_88985+86x_88986+13x_88987+37x_88988+12x_88989+53x_88990+87x_88991+24x_88992+100x_88993+72x_88994+3x_88995+37x_88996+52x_88997+34x_88998+94x_88999+88x_89000+39x_89001+13x_89002+69x_89003+47x_89004+75x_89005+42x_89006+92x_89007+90x_89008+96x_89009+62x_89010+82x_89011+51x_89012+45x_89013+23x_89014+49x_89015+69x_89016+84x_89017+69x_89018+47x_89019+74x_89020+41x_89021+15x_89022+71x_89023+75x_89024+45x_89025+93x_89026+47x_89027+54x_89028+3x_89029+79x_89030+46x_89031+23x_89032+31x_89033+78x_89034+100x_89035+84x_89036+100x_89037+68x_89038+37x_89039+81x_89040+28x_89041+36x_89042+35x_89043+36x_89044+85x_89045+96x_89046+16x_89047+80x_89048+20x_89049+19x_89050+55x_89051+83x_89052+48x_89053+16x_89054+99x_89055+93x_89056+100x_89057+47x_89058+45x_89059+34x_89060+2x_89061+30x_89062+49x_89063+92x_89064+89x_89065+75x_89066+12x_89067+87x_89068+48x_89069+46x_89070+45x_89071+79x_89072+79x_89073+52x_89074+81x_89075+55x_89076+36x_89077+66x_89078+5x_89079+26x_89080+73x_89081+85x_89082+20x_89083+53x_89084+48x_89085+26x_89086+59x_89087+71x_89088+98x_89089+56x_89090+84x_89091+22x_89092+4x_89093+53x_89094+60x_89095+35x_89096+2x_89097+75x_89098+19x_89099+84x_89100+81x_89101+100x_89102+48x_89103+x_89104+29x_89105+56x_89106+18x_89107+74x_89108+60x_89109+46x_89110+97x_89111+42x_89112+29x_89113+14x_89114+52x_89115+52x_89116+37x_89117+100x_89118+41x_89119+11x_89120+74x_89121+6x_89122+89x_89123+55x_89124+17x_89125+58x_89126+76x_89127+79x_89128+72x_89129+24x_89130+23x_89131+70x_89132+48x_89133+52x_89134+19x_89135+53x_89136+14x_89137+99x_89138+7x_89139+10x_89140+79x_89141+85x_89142+4x_89143+79x_89144+46x_89145+3x_89146+98x_89147+84x_89148+87x_89149+74x_89150+94x_89151+85x_89152+81x_89153+49x_89154+7x_89155+14x_89156+81x_89157+16x_89158+87x_89159+60x_89160+49x_89161+82x_89162+34x_89163+64x_89164+28x_89165+52x_89166+67x_89167+41x_89168+33x_89169+68x_89170+9x_89171+92x_89172+90x_89173+45x_89174+56x_89175+10x_89176+11x_89177+9x_89178+91x_89179+21x_89180+96x_89181+87x_89182+60x_89183+56x_89184+91x_89185+61x_89186+20x_89187+48x_89188+74x_89189+91x_89190+61x_89191+27x_89192+84x_89193+5x_89194+84x_89195+28x_89196+4x_89197+50x_89198+58x_89199+39x_89200+38x_89201+13x_89202+28x_89203+88x_89204+97x_89205+45x_89206+51x_89207+59x_89208+91x_89209+21x_89210+48x_89211+71x_89212+55x_89213+51x_89214+99x_89215+80x_89216+71x_89217+71x_89218+9x_89219+3x_89220+61x_89221+9x_89222+43x_89223+30x_89224+5x_89225+19x_89226+52x_89227+89x_89228+6x_89229+9x_89230+21x_89231+69x_89232+74x_89233+12x_89234+84x_89235+81x_89236+13x_89237+75x_89238+40x_89239+7x_89240+51x_89241+54x_89242+88x_89243+71x_89244+52x_89245+28x_89246+58x_89247+81x_89248+15x_89249+22x_89250+36x_89251+71x_89252+56x_89253+97x_89254+54x_89255+38x_89256+52x_89257+6x_89258+76x_89259+43x_89260+44x_89261+24x_89262+42x_89263+38x_89264+97x_89265+95x_89266+95x_89267+29x_89268+26x_89269+10x_89270+67x_89271+45x_89272+27x_89273+3x_89274+49x_89275+4x_89276+44x_89277+52x_89278+63x_89279+81x_89280+66x_89281+87x_89282+43x_89283+50x_89284+37x_89285+84x_89286+7x_89287+71x_89288+52x_89289+27x_89290+37x_89291+17x_89292+87x_89293+98x_89294+95x_89295+20x_89296+59x_89297+3x_89298+82x_89299+62x_89300+27x_89301+23x_89302+27x_89303+47x_89304+26x_89305+89x_89306+38x_89307+26x_89308+84x_89309+5x_89310+40x_89311+59x_89312+2x_89313+19x_89314+2x_89315+83x_89316+54x_89317+25x_89318+17x_89319+16x_89320+88x_89321+39x_89322+15x_89323+32x_89324+78x_89325+13x_89326+90x_89327+8x_89328+55x_89329+86x_89330+87x_89331+55x_89332+51x_89333+74x_89334+29x_89335+24x_89336+50x_89337+9x_89338+73x_89339+85x_89340+32x_89341+2x_89342+6x_89343+97x_89344+62x_89345+67x_89346+26x_89347+30x_89348+49x_89349+8x_89350+88x_89351+50x_89352+49x_89353+60x_89354+68x_89355+66x_89356+41x_89357+67x_89358+34x_89359+91x_89360+53x_89361+28x_89362+9x_89363+77x_89364+2x_89365+93x_89366+84x_89367+84x_89368+96x_89369+87x_89370+29x_89371+24x_89372+36x_89373+75x_89374+17x_89375+98x_89376+89x_89377+98x_89378+40x_89379+32x_89380+23x_89381+41x_89382+57x_89383+74x_89384+51x_89385+74x_89386+55x_89387+53x_89388+29x_89389+72x_89390+5x_89391+54x_89392+24x_89393+39x_89394+32x_89395+32x_89396+44x_89397+12x_89398+20x_89399+45x_89400+100x_89401+97x_89402+89x_89403+5x_89404+80x_89405+93x_89406+71x_89407+13x_89408+46x_89409+5x_89410+15x_89411+55x_89412+69x_89413+8x_89414+29x_89415+80x_89416+72x_89417+89x_89418+27x_89419+81x_89420+54x_89421+90x_89422+93x_89423+31x_89424+15x_89425+56x_89426+91x_89427+10x_89428+77x_89429+21x_89430+87x_89431+57x_89432+98x_89433+60x_89434+68x_89435+6x_89436+73x_89437+86x_89438+100x_89439+19x_89440+9x_89441+22x_89442+16x_89443+69x_89444+59x_89445+29x_89446+99x_89447+36x_89448+53x_89449+75x_89450+67x_89451+93x_89452+80x_89453+39x_89454+88x_89455+85x_89456+49x_89457+24x_89458+83x_89459+82x_89460+71x_89461+9x_89462+56x_89463+92x_89464+22x_89465+79x_89466+47x_89467+2x_89468+84x_89469+46x_89470+52x_89471+36x_89472+71x_89473+64x_89474+23x_89475+3x_89476+5x_89477+20x_89478+100x_89479+52x_89480+34x_89481+19x_89482+21x_89483+37x_89484+6x_89485+15x_89486+45x_89487+79x_89488+73x_89489+71x_89490+60x_89491+65x_89492+95x_89493+77x_89494+2x_89495+83x_89496+99x_89497+76x_89498+21x_89499+41x_89500+56x_89501+81x_89502+83x_89503+32x_89504+30x_89505+87x_89506+100x_89507+45x_89508+45x_89509+43x_89510+56x_89511+67x_89512+34x_89513+71x_89514+45x_89515+65x_89516+14x_89517+35x_89518+21x_89519+20x_89520+17x_89521+56x_89522+81x_89523+75x_89524+97x_89525+97x_89526+30x_89527+48x_89528+29x_89529+98x_89530+70x_89531+53x_89532+79x_89533+94x_89534+71x_89535+13x_89536+80x_89537+4x_89538+33x_89539+93x_89540+51x_89541+80x_89542+14x_89543+18x_89544+81x_89545+32x_89546+25x_89547+98x_89548+58x_89549+77x_89550+92x_89551+47x_89552+87x_89553+21x_89554+69x_89555+58x_89556+6x_89557+47x_89558+3x_89559+89x_89560+72x_89561+8x_89562+75x_89563+47x_89564+60x_89565+75x_89566+85x_89567+17x_89568+36x_89569+42x_89570+70x_89571+93x_89572+43x_89573+49x_89574+28x_89575+84x_89576+26x_89577+29x_89578+100x_89579+81x_89580+6x_89581+75x_89582+54x_89583+41x_89584+34x_89585+71x_89586+23x_89587+5x_89588+84x_89589+90x_89590+96x_89591+25x_89592+54x_89593+10x_89594+11x_89595+95x_89596+45x_89597+10x_89598+76x_89599+62x_89600+67x_89601+26x_89602+71x_89603+78x_89604+35x_89605+21x_89606+94x_89607+49x_89608+82x_89609+89x_89610+45x_89611+27x_89612+72x_89613+82x_89614+39x_89615+7x_89616+100x_89617+90x_89618+77x_89619+50x_89620+41x_89621+6x_89622+17x_89623+14x_89624+25x_89625+18x_89626+89x_89627+66x_89628+58x_89629+39x_89630+3x_89631+99x_89632+15x_89633+28x_89634+40x_89635+41x_89636+78x_89637+95x_89638+9x_89639+x_89640+25x_89641+79x_89642+83x_89643+48x_89644+57x_89645+13x_89646+96x_89647+14x_89648+7x_89649+76x_89650+80x_89651+50x_89652+46x_89653+81x_89654+x_89655+38x_89656+85x_89657+3x_89658+15x_89659+22x_89660+32x_89661+49x_89662+81x_89663+11x_89664+17x_89665+6x_89666+77x_89667+35x_89668+67x_89669+97x_89670+17x_89671+20x_89672+79x_89673+19x_89674+3x_89675+16x_89676+13x_89677+86x_89678+95x_89679+7x_89680+15x_89681+41x_89682+13x_89683+38x_89684+10x_89685+88x_89686+80x_89687+15x_89688+47x_89689+59x_89690+13x_89691+11x_89692+x_89693+54x_89694+21x_89695+12x_89696+73x_89697+43x_89698+25x_89699+70x_89700+98x_89701+70x_89702+47x_89703+53x_89704+99x_89705+21x_89706+25x_89707+62x_89708+84x_89709+52x_89710+50x_89711+11x_89712+39x_89713+72x_89714+14x_89715+41x_89716+9x_89717+42x_89718+46x_89719+81x_89720+53x_89721+18x_89722+35x_89723+2x_89724+94x_89725+21x_89726+38x_89727+85x_89728+68x_89729+47x_89730+15x_89731+85x_89732+45x_89733+32x_89734+99x_89735+97x_89736+43x_89737+22x_89738+80x_89739+9x_89740+82x_89741+62x_89742+2x_89743+36x_89744+11x_89745+70x_89746+37x_89747+62x_89748+14x_89749+8x_89750+30x_89751+54x_89752+56x_89753+39x_89754+5x_89755+97x_89756+50x_89757+47x_89758+38x_89759+38x_89760+29x_89761+63x_89762+81x_89763+3x_89764+38x_89765+23x_89766+37x_89767+47x_89768+28x_89769+29x_89770+55x_89771+32x_89772+6x_89773+67x_89774+68x_89775+27x_89776+97x_89777+80x_89778+71x_89779+35x_89780+14x_89781+53x_89782+47x_89783+60x_89784+33x_89785+15x_89786+34x_89787+29x_89788+61x_89789+43x_89790+75x_89791+37x_89792+85x_89793+68x_89794+72x_89795+71x_89796+36x_89797+4x_89798+12x_89799+58x_89800+56x_89801+23x_89802+34x_89803+23x_89804+85x_89805+53x_89806+9x_89807+61x_89808+73x_89809+54x_89810+92x_89811+38x_89812+81x_89813+8x_89814+46x_89815+31x_89816+95x_89817+46x_89818+63x_89819+37x_89820+74x_89821+77x_89822+49x_89823+38x_89824+33x_89825+26x_89826+51x_89827+2x_89828+30x_89829+86x_89830+30x_89831+63x_89832+78x_89833+91x_89834+74x_89835+70x_89836+63x_89837+45x_89838+70x_89839+5x_89840+18x_89841+3x_89842+68x_89843+8x_89844+56x_89845+70x_89846+12x_89847+10x_89848+48x_89849+37x_89850+62x_89851+53x_89852+56x_89853+60x_89854+9x_89855+23x_89856+83x_89857+61x_89858+11x_89859+23x_89860+84x_89861+24x_89862+66x_89863+49x_89864+16x_89865+65x_89866+53x_89867+x_89868+95x_89869+67x_89870+84x_89871+39x_89872+10x_89873+66x_89874+49x_89875+96x_89876+64x_89877+8x_89878+4x_89879+15x_89880+61x_89881+78x_89882+33x_89883+72x_89884+94x_89885+15x_89886+87x_89887+81x_89888+69x_89889+69x_89890+25x_89891+64x_89892+45x_89893+92x_89894+80x_89895+3x_89896+78x_89897+27x_89898+57x_89899+48x_89900+46x_89901+60x_89902+50x_89903+29x_89904+11x_89905+78x_89906+88x_89907+100x_89908+42x_89909+39x_89910+73x_89911+47x_89912+16x_89913+10x_89914+99x_89915+96x_89916+73x_89917+17x_89918+67x_89919+24x_89920+14x_89921+17x_89922+18x_89923+43x_89924+78x_89925+85x_89926+73x_89927+80x_89928+13x_89929+78x_89930+12x_89931+54x_89932+22x_89933+40x_89934+91x_89935+15x_89936+18x_89937+78x_89938+21x_89939+20x_89940+38x_89941+80x_89942+82x_89943+12x_89944+63x_89945+53x_89946+48x_89947+8x_89948+58x_89949+59x_89950+91x_89951+80x_89952+33x_89953+37x_89954+53x_89955+20x_89956+64x_89957+81x_89958+23x_89959+25x_89960+62x_89961+28x_89962+70x_89963+43x_89964+86x_89965+48x_89966+63x_89967+7x_89968+58x_89969+88x_89970+91x_89971+44x_89972+47x_89973+22x_89974+87x_89975+84x_89976+93x_89977+90x_89978+27x_89979+38x_89980+60x_89981+7x_89982+98x_89983+82x_89984+87x_89985+48x_89986+5x_89987+66x_89988+37x_89989+52x_89990+11x_89991+44x_89992+85x_89993+58x_89994+88x_89995+92x_89996+93x_89997+81x_89998+79x_89999+31x_90000+97x_90001+61x_90002+80x_90003+69x_90004+30x_90005+6x_90006+49x_90007+63x_90008+58x_90009+79x_90010+78x_90011+42x_90012+18x_90013+42x_90014+93x_90015+94x_90016+51x_90017+87x_90018+78x_90019+80x_90020+29x_90021+18x_90022+92x_90023+99x_90024+6x_90025+5x_90026+29x_90027+x_90028+44x_90029+9x_90030+10x_90031+53x_90032+87x_90033+4x_90034+88x_90035+70x_90036+5x_90037+64x_90038+51x_90039+88x_90040+16x_90041+34x_90042+20x_90043+42x_90044+26x_90045+62x_90046+82x_90047+29x_90048+32x_90049+89x_90050+54x_90051+87x_90052+83x_90053+35x_90054+7x_90055+77x_90056+86x_90057+98x_90058+66x_90059+37x_90060+8x_90061+24x_90062+20x_90063+2x_90064+43x_90065+17x_90066+20x_90067+68x_90068+88x_90069+5x_90070+35x_90071+59x_90072+7x_90073+34x_90074+36x_90075+5x_90076+10x_90077+3x_90078+74x_90079+100x_90080+73x_90081+8x_90082+8x_90083+95x_90084+90x_90085+8x_90086+42x_90087+18x_90088+67x_90089+18x_90090+21x_90091+9x_90092+5x_90093+75x_90094+59x_90095+76x_90096+15x_90097+75x_90098+58x_90099+22x_90100+8x_90101+74x_90102+21x_90103+67x_90104+35x_90105+26x_90106+5x_90107+24x_90108+20x_90109+70x_90110+30x_90111+83x_90112+69x_90113+45x_90114+40x_90115+38x_90116+69x_90117+19x_90118+65x_90119+66x_90120+41x_90121+92x_90122+75x_90123+68x_90124+73x_90125+83x_90126+63x_90127+46x_90128+56x_90129+10x_90130+16x_90131+14x_90132+68x_90133+13x_90134+19x_90135+74x_90136+67x_90137+88x_90138+84x_90139+86x_90140+51x_90141+64x_90142+46x_90143+22x_90144+67x_90145+45x_90146+93x_90147+10x_90148+30x_90149+99x_90150+26x_90151+39x_90152+66x_90153+49x_90154+82x_90155+38x_90156+43x_90157+43x_90158+62x_90159+65x_90160+11x_90161+38x_90162+6x_90163+81x_90164+64x_90165+85x_90166+86x_90167+13x_90168+9x_90169+3x_90170+76x_90171+42x_90172+71x_90173+64x_90174+11x_90175+55x_90176+11x_90177+65x_90178+25x_90179+16x_90180+19x_90181+41x_90182+100x_90183+98x_90184+34x_90185+16x_90186+15x_90187+47x_90188+89x_90189+97x_90190+90x_90191+67x_90192+98x_90193+65x_90194+51x_90195+74x_90196+36x_90197+8x_90198+26x_90199+39x_90200+37x_90201+17x_90202+41x_90203+14x_90204+82x_90205+10x_90206+52x_90207+73x_90208+70x_90209+46x_90210+73x_90211+63x_90212+24x_90213+13x_90214+11x_90215+29x_90216+39x_90217+74x_90218+44x_90219+74x_90220+95x_90221+2x_90222+62x_90223+23x_90224+83x_90225+31x_90226+57x_90227+57x_90228+64x_90229+7x_90230+2x_90231+17x_90232+69x_90233+44x_90234+97x_90235+63x_90236+37x_90237+83x_90238+89x_90239+41x_90240+94x_90241+63x_90242+53x_90243+91x_90244+71x_90245+36x_90246+90x_90247+39x_90248+91x_90249+35x_90250+32x_90251+91x_90252+38x_90253+16x_90254+70x_90255+2x_90256+37x_90257+4x_90258+76x_90259+26x_90260+56x_90261+36x_90262+96x_90263+57x_90264+87x_90265+21x_90266+64x_90267+20x_90268+55x_90269+24x_90270+58x_90271+66x_90272+46x_90273+35x_90274+65x_90275+13x_90276+44x_90277+33x_90278+23x_90279+43x_90280+17x_90281+32x_90282+49x_90283+81x_90284+38x_90285+53x_90286+79x_90287+72x_90288+60x_90289+9x_90290+46x_90291+59x_90292+68x_90293+58x_90294+90x_90295+53x_90296+28x_90297+91x_90298+11x_90299+89x_90300+13x_90301+12x_90302+20x_90303+45x_90304+47x_90305+89x_90306+2x_90307+99x_90308+31x_90309+46x_90310+62x_90311+91x_90312+43x_90313+78x_90314+33x_90315+88x_90316+91x_90317+15x_90318+18x_90319+16x_90320+59x_90321+12x_90322+33x_90323+47x_90324+96x_90325+19x_90326+22x_90327+17x_90328+43x_90329+16x_90330+86x_90331+6x_90332+30x_90333+63x_90334+11x_90335+30x_90336+53x_90337+90x_90338+13x_90339+61x_90340+53x_90341+4x_90342+68x_90343+92x_90344+65x_90345+53x_90346+47x_90347+32x_90348+40x_90349+16x_90350+26x_90351+23x_90352+77x_90353+81x_90354+19x_90355+88x_90356+61x_90357+71x_90358+45x_90359+71x_90360+47x_90361+67x_90362+5x_90363+x_90364+75x_90365+49x_90366+45x_90367+31x_90368+84x_90369+87x_90370+18x_90371+82x_90372+18x_90373+21x_90374+61x_90375+16x_90376+71x_90377+54x_90378+40x_90379+92x_90380+60x_90381+30x_90382+60x_90383+88x_90384+85x_90385+78x_90386+63x_90387+35x_90388+44x_90389+91x_90390+58x_90391+24x_90392+77x_90393+28x_90394+100x_90395+2x_90396+7x_90397+79x_90398+83x_90399+56x_90400+96x_90401+56x_90402+2x_90403+13x_90404+4x_90405+62x_90406+7x_90407+25x_90408+30x_90409+83x_90410+32x_90411+72x_90412+55x_90413+39x_90414+43x_90415+64x_90416+88x_90417+64x_90418+66x_90419+36x_90420+47x_90421+90x_90422+87x_90423+43x_90424+2x_90425+94x_90426+83x_90427+54x_90428+11x_90429+11x_90430+84x_90431+34x_90432+38x_90433+15x_90434+32x_90435+45x_90436+85x_90437+7x_90438+66x_90439+73x_90440+49x_90441+27x_90442+90x_90443+x_90444+43x_90445+82x_90446+28x_90447+77x_90448+16x_90449+46x_90450+63x_90451+34x_90452+34x_90453+77x_90454+39x_90455+11x_90456+73x_90457+44x_90458+87x_90459+33x_90460+6x_90461+2x_90462+30x_90463+96x_90464+11x_90465+68x_90466+60x_90467+11x_90468+70x_90469+73x_90470+61x_90471+92x_90472+35x_90473+48x_90474+24x_90475+47x_90476+28x_90477+20x_90478+23x_90479+3x_90480+93x_90481+28x_90482+85x_90483+76x_90484+63x_90485+46x_90486+99x_90487+7x_90488+43x_90489+72x_90490+10x_90491+16x_90492+84x_90493+31x_90494+78x_90495+86x_90496+66x_90497+76x_90498+32x_90499+87x_90500+56x_90501+34x_90502+96x_90503+63x_90504+87x_90505+6x_90506+83x_90507+80x_90508+88x_90509+18x_90510+78x_90511+32x_90512+98x_90513+98x_90514+24x_90515+68x_90516+76x_90517+58x_90518+31x_90519+81x_90520+10x_90521+100x_90522+42x_90523+60x_90524+60x_90525+47x_90526+82x_90527+82x_90528+99x_90529+13x_90530+62x_90531+60x_90532+54x_90533+74x_90534+78x_90535+2x_90536+68x_90537+79x_90538+98x_90539+14x_90540+77x_90541+31x_90542+5x_90543+12x_90544+60x_90545+45x_90546+93x_90547+96x_90548+68x_90549+33x_90550+86x_90551+63x_90552+74x_90553+10x_90554+43x_90555+91x_90556+62x_90557+73x_90558+99x_90559+68x_90560+75x_90561+63x_90562+57x_90563+10x_90564+57x_90565+53x_90566+85x_90567+42x_90568+21x_90569+39x_90570+41x_90571+27x_90572+17x_90573+86x_90574+72x_90575+43x_90576+97x_90577+11x_90578+47x_90579+23x_90580+35x_90581+97x_90582+2x_90583+18x_90584+57x_90585+81x_90586+42x_90587+17x_90588+51x_90589+3x_90590+25x_90591+94x_90592+4x_90593+20x_90594+3x_90595+51x_90596+64x_90597+48x_90598+54x_90599+77x_90600+37x_90601+54x_90602+37x_90603+36x_90604+37x_90605+76x_90606+43x_90607+57x_90608+88x_90609+97x_90610+13x_90611+70x_90612+74x_90613+64x_90614+54x_90615+15x_90616+35x_90617+70x_90618+53x_90619+99x_90620+55x_90621+72x_90622+33x_90623+68x_90624+76x_90625+43x_90626+64x_90627+x_90628+32x_90629+96x_90630+69x_90631+61x_90632+70x_90633+70x_90634+37x_90635+85x_90636+96x_90637+23x_90638+16x_90639+15x_90640+43x_90641+44x_90642+41x_90643+81x_90644+18x_90645+86x_90646+80x_90647+68x_90648+64x_90649+12x_90650+3x_90651+27x_90652+40x_90653+77x_90654+24x_90655+26x_90656+69x_90657+7x_90658+94x_90659+99x_90660+97x_90661+69x_90662+96x_90663+28x_90664+15x_90665+7x_90666+96x_90667+20x_90668+93x_90669+75x_90670+42x_90671+78x_90672+29x_90673+6x_90674+26x_90675+56x_90676+87x_90677+81x_90678+99x_90679+65x_90680+x_90681+63x_90682+72x_90683+82x_90684+93x_90685+99x_90686+89x_90687+5x_90688+45x_90689+70x_90690+50x_90691+94x_90692+47x_90693+72x_90694+99x_90695+68x_90696+35x_90697+24x_90698+27x_90699+97x_90700+43x_90701+23x_90702+59x_90703+58x_90704+8x_90705+45x_90706+84x_90707+100x_90708+75x_90709+54x_90710+89x_90711+52x_90712+100x_90713+46x_90714+45x_90715+9x_90716+73x_90717+44x_90718+77x_90719+93x_90720+77x_90721+87x_90722+50x_90723+86x_90724+84x_90725+48x_90726+48x_90727+83x_90728+58x_90729+47x_90730+46x_90731+32x_90732+67x_90733+80x_90734+55x_90735+9x_90736+30x_90737+45x_90738+47x_90739+57x_90740+73x_90741+34x_90742+92x_90743+30x_90744+4x_90745+28x_90746+79x_90747+25x_90748+99x_90749+94x_90750+92x_90751+28x_90752+36x_90753+28x_90754+45x_90755+45x_90756+66x_90757+20x_90758+77x_90759+37x_90760+91x_90761+44x_90762+82x_90763+81x_90764+34x_90765+17x_90766+40x_90767+30x_90768+66x_90769+65x_90770+38x_90771+84x_90772+41x_90773+84x_90774+6x_90775+60x_90776+99x_90777+78x_90778+99x_90779+49x_90780+64x_90781+77x_90782+89x_90783+21x_90784+42x_90785+80x_90786+48x_90787+91x_90788+15x_90789+4x_90790+45x_90791+43x_90792+94x_90793+79x_90794+3x_90795+18x_90796+79x_90797+48x_90798+87x_90799+95x_90800+25x_90801+27x_90802+4x_90803+15x_90804+42x_90805+39x_90806+14x_90807+62x_90808+48x_90809+22x_90810+93x_90811+3x_90812+5x_90813+37x_90814+32x_90815+73x_90816+6x_90817+93x_90818+74x_90819+2x_90820+52x_90821+42x_90822+21x_90823+57x_90824+46x_90825+64x_90826+66x_90827+21x_90828+64x_90829+85x_90830+5x_90831+56x_90832+52x_90833+74x_90834+99x_90835+38x_90836+90x_90837+77x_90838+10x_90839+65x_90840+91x_90841+10x_90842+17x_90843+99x_90844+4x_90845+63x_90846+99x_90847+100x_90848+3x_90849+41x_90850+73x_90851+36x_90852+80x_90853+2x_90854+65x_90855+68x_90856+74x_90857+52x_90858+87x_90859+27x_90860+17x_90861+83x_90862+2x_90863+78x_90864+28x_90865+30x_90866+21x_90867+58x_90868+66x_90869+99x_90870+40x_90871+44x_90872+94x_90873+85x_90874+44x_90875+51x_90876+4x_90877+87x_90878+86x_90879+33x_90880+86x_90881+47x_90882+31x_90883+20x_90884+12x_90885+50x_90886+96x_90887+56x_90888+44x_90889+93x_90890+89x_90891+87x_90892+8x_90893+100x_90894+93x_90895+23x_90896+53x_90897+3x_90898+93x_90899+29x_90900+82x_90901+8x_90902+99x_90903+23x_90904+77x_90905+54x_90906+6x_90907+61x_90908+34x_90909+28x_90910+41x_90911+48x_90912+16x_90913+69x_90914+54x_90915+77x_90916+88x_90917+12x_90918+45x_90919+11x_90920+64x_90921+35x_90922+23x_90923+75x_90924+51x_90925+7x_90926+44x_90927+8x_90928+36x_90929+77x_90930+31x_90931+3x_90932+34x_90933+65x_90934+26x_90935+58x_90936+35x_90937+17x_90938+44x_90939+3x_90940+45x_90941+92x_90942+76x_90943+50x_90944+71x_90945+15x_90946+48x_90947+48x_90948+99x_90949+100x_90950+70x_90951+23x_90952+38x_90953+32x_90954+38x_90955+39x_90956+96x_90957+55x_90958+59x_90959+62x_90960+29x_90961+33x_90962+x_90963+94x_90964+62x_90965+35x_90966+71x_90967+82x_90968+30x_90969+81x_90970+66x_90971+32x_90972+36x_90973+35x_90974+62x_90975+89x_90976+97x_90977+45x_90978+20x_90979+66x_90980+49x_90981+73x_90982+48x_90983+72x_90984+81x_90985+15x_90986+51x_90987+66x_90988+20x_90989+67x_90990+62x_90991+83x_90992+99x_90993+12x_90994+51x_90995+67x_90996+62x_90997+67x_90998+13x_90999+86x_91000+41x_91001+65x_91002+41x_91003+2x_91004+43x_91005+51x_91006+x_91007+93x_91008+58x_91009+70x_91010+18x_91011+37x_91012+93x_91013+53x_91014+17x_91015+73x_91016+13x_91017+65x_91018+11x_91019+83x_91020+72x_91021+26x_91022+23x_91023+11x_91024+66x_91025+99x_91026+93x_91027+55x_91028+7x_91029+6x_91030+67x_91031+91x_91032+71x_91033+39x_91034+92x_91035+71x_91036+30x_91037+56x_91038+62x_91039+31x_91040+63x_91041+31x_91042+92x_91043+56x_91044+94x_91045+39x_91046+82x_91047+41x_91048+58x_91049+21x_91050+74x_91051+55x_91052+96x_91053+43x_91054+95x_91055+63x_91056+46x_91057+30x_91058+97x_91059+28x_91060+x_91061+8x_91062+65x_91063+13x_91064+72x_91065+62x_91066+31x_91067+4x_91068+56x_91069+41x_91070+51x_91071+36x_91072+64x_91073+73x_91074+13x_91075+13x_91076+89x_91077+9x_91078+46x_91079+66x_91080+64x_91081+30x_91082+56x_91083+50x_91084+31x_91085+83x_91086+94x_91087+11x_91088+84x_91089+57x_91090+33x_91091+89x_91092+80x_91093+11x_91094+25x_91095+92x_91096+7x_91097+18x_91098+3x_91099+70x_91100+42x_91101+49x_91102+25x_91103+21x_91104+53x_91105+10x_91106+26x_91107+44x_91108+7x_91109+23x_91110+19x_91111+25x_91112+38x_91113+32x_91114+61x_91115+74x_91116+79x_91117+23x_91118+56x_91119+21x_91120+45x_91121+33x_91122+40x_91123+39x_91124+17x_91125+53x_91126+20x_91127+42x_91128+53x_91129+22x_91130+7x_91131+21x_91132+6x_91133+11x_91134+47x_91135+84x_91136+24x_91137+38x_91138+2x_91139+95x_91140+66x_91141+16x_91142+97x_91143+23x_91144+37x_91145+53x_91146+26x_91147+37x_91148+18x_91149+22x_91150+72x_91151+14x_91152+29x_91153+5x_91154+84x_91155+89x_91156+66x_91157+3x_91158+11x_91159+7x_91160+52x_91161+60x_91162+65x_91163+74x_91164+48x_91165+77x_91166+91x_91167+68x_91168+100x_91169+56x_91170+93x_91171+58x_91172+27x_91173+17x_91174+86x_91175+55x_91176+70x_91177+100x_91178+47x_91179+8x_91180+93x_91181+9x_91182+89x_91183+6x_91184+75x_91185+81x_91186+69x_91187+18x_91188+36x_91189+95x_91190+88x_91191+85x_91192+74x_91193+16x_91194+63x_91195+79x_91196+60x_91197+83x_91198+73x_91199+90x_91200+52x_91201+37x_91202+57x_91203+12x_91204+90x_91205+78x_91206+72x_91207+3x_91208+30x_91209+85x_91210+81x_91211+13x_91212+23x_91213+91x_91214+4x_91215+87x_91216+87x_91217+75x_91218+91x_91219+22x_91220+100x_91221+91x_91222+47x_91223+9x_91224+38x_91225+62x_91226+93x_91227+27x_91228+82x_91229+37x_91230+59x_91231+88x_91232+80x_91233+10x_91234+52x_91235+17x_91236+34x_91237+10x_91238+45x_91239+45x_91240+23x_91241+17x_91242+64x_91243+34x_91244+17x_91245+88x_91246+86x_91247+98x_91248+53x_91249+41x_91250+8x_91251+53x_91252+26x_91253+13x_91254+54x_91255+32x_91256+75x_91257+92x_91258+34x_91259+71x_91260+22x_91261+80x_91262+12x_91263+43x_91264+26x_91265+28x_91266+46x_91267+76x_91268+60x_91269+71x_91270+13x_91271+61x_91272+64x_91273+4x_91274+86x_91275+46x_91276+32x_91277+39x_91278+34x_91279+76x_91280+97x_91281+59x_91282+22x_91283+44x_91284+85x_91285+68x_91286+4x_91287+85x_91288+68x_91289+80x_91290+72x_91291+86x_91292+14x_91293+36x_91294+45x_91295+85x_91296+10x_91297+25x_91298+84x_91299+93x_91300+4x_91301+95x_91302+100x_91303+67x_91304+87x_91305+76x_91306+2x_91307+11x_91308+57x_91309+31x_91310+2x_91311+77x_91312+2x_91313+67x_91314+9x_91315+73x_91316+10x_91317+20x_91318+87x_91319+95x_91320+10x_91321+4x_91322+8x_91323+13x_91324+19x_91325+15x_91326+9x_91327+37x_91328+59x_91329+34x_91330+97x_91331+11x_91332+80x_91333+40x_91334+91x_91335+96x_91336+58x_91337+88x_91338+66x_91339+63x_91340+97x_91341+88x_91342+90x_91343+70x_91344+70x_91345+28x_91346+32x_91347+76x_91348+13x_91349+24x_91350+27x_91351+50x_91352+21x_91353+93x_91354+74x_91355+43x_91356+40x_91357+72x_91358+22x_91359+85x_91360+68x_91361+71x_91362+36x_91363+78x_91364+66x_91365+42x_91366+23x_91367+7x_91368+59x_91369+53x_91370+30x_91371+72x_91372+33x_91373+93x_91374+19x_91375+22x_91376+53x_91377+26x_91378+35x_91379+82x_91380+89x_91381+5x_91382+31x_91383+62x_91384+57x_91385+36x_91386+8x_91387+82x_91388+93x_91389+61x_91390+95x_91391+63x_91392+22x_91393+21x_91394+15x_91395+82x_91396+41x_91397+15x_91398+x_91399+89x_91400+2x_91401+50x_91402+8x_91403+47x_91404+83x_91405+70x_91406+72x_91407+56x_91408+66x_91409+x_91410+69x_91411+38x_91412+86x_91413+14x_91414+50x_91415+46x_91416+49x_91417+92x_91418+61x_91419+24x_91420+59x_91421+26x_91422+16x_91423+86x_91424+98x_91425+26x_91426+x_91427+32x_91428+10x_91429+96x_91430+2x_91431+40x_91432+89x_91433+44x_91434+73x_91435+88x_91436+73x_91437+40x_91438+39x_91439+45x_91440+70x_91441+100x_91442+2x_91443+6x_91444+50x_91445+6x_91446+55x_91447+37x_91448+38x_91449+82x_91450+45x_91451+12x_91452+33x_91453+89x_91454+92x_91455+87x_91456+37x_91457+35x_91458+83x_91459+87x_91460+50x_91461+21x_91462+22x_91463+85x_91464+32x_91465+12x_91466+81x_91467+49x_91468+42x_91469+34x_91470+95x_91471+24x_91472+62x_91473+59x_91474+41x_91475+32x_91476+63x_91477+87x_91478+77x_91479+7x_91480+35x_91481+16x_91482+75x_91483+55x_91484+15x_91485+64x_91486+46x_91487+17x_91488+49x_91489+3x_91490+93x_91491+87x_91492+84x_91493+43x_91494+94x_91495+32x_91496+46x_91497+69x_91498+86x_91499+68x_91500+89x_91501+91x_91502+14x_91503+68x_91504+62x_91505+93x_91506+54x_91507+50x_91508+100x_91509+47x_91510+32x_91511+57x_91512+13x_91513+28x_91514+17x_91515+63x_91516+63x_91517+61x_91518+21x_91519+16x_91520+95x_91521+30x_91522+38x_91523+72x_91524+7x_91525+62x_91526+9x_91527+30x_91528+97x_91529+47x_91530+21x_91531+20x_91532+49x_91533+52x_91534+88x_91535+5x_91536+48x_91537+68x_91538+82x_91539+93x_91540+78x_91541+76x_91542+63x_91543+4x_91544+55x_91545+51x_91546+11x_91547+26x_91548+93x_91549+15x_91550+75x_91551+68x_91552+15x_91553+15x_91554+88x_91555+30x_91556+2x_91557+42x_91558+35x_91559+6x_91560+3x_91561+53x_91562+19x_91563+6x_91564+27x_91565+60x_91566+51x_91567+26x_91568+22x_91569+69x_91570+43x_91571+12x_91572+21x_91573+99x_91574+7x_91575+15x_91576+86x_91577+40x_91578+41x_91579+89x_91580+82x_91581+39x_91582+22x_91583+55x_91584+58x_91585+75x_91586+53x_91587+65x_91588+64x_91589+99x_91590+42x_91591+51x_91592+67x_91593+92x_91594+91x_91595+15x_91596+82x_91597+47x_91598+66x_91599+29x_91600+62x_91601+68x_91602+50x_91603+9x_91604+87x_91605+42x_91606+73x_91607+79x_91608+54x_91609+9x_91610+36x_91611+28x_91612+8x_91613+84x_91614+100x_91615+88x_91616+27x_91617+87x_91618+24x_91619+41x_91620+45x_91621+14x_91622+57x_91623+90x_91624+92x_91625+21x_91626+4x_91627+30x_91628+10x_91629+59x_91630+54x_91631+25x_91632+93x_91633+6x_91634+15x_91635+x_91636+19x_91637+2x_91638+89x_91639+95x_91640+77x_91641+65x_91642+88x_91643+x_91644+21x_91645+84x_91646+65x_91647+2x_91648+37x_91649+12x_91650+78x_91651+79x_91652+x_91653+78x_91654+28x_91655+74x_91656+50x_91657+40x_91658+49x_91659+71x_91660+95x_91661+58x_91662+54x_91663+83x_91664+57x_91665+39x_91666+50x_91667+88x_91668+85x_91669+37x_91670+50x_91671+55x_91672+45x_91673+43x_91674+24x_91675+19x_91676+91x_91677+95x_91678+94x_91679+50x_91680+10x_91681+14x_91682+81x_91683+4x_91684+4x_91685+35x_91686+45x_91687+29x_91688+45x_91689+41x_91690+17x_91691+39x_91692+95x_91693+67x_91694+29x_91695+44x_91696+72x_91697+13x_91698+49x_91699+11x_91700+42x_91701+15x_91702+83x_91703+38x_91704+87x_91705+9x_91706+68x_91707+75x_91708+32x_91709+96x_91710+73x_91711+20x_91712+15x_91713+75x_91714+36x_91715+28x_91716+83x_91717+100x_91718+72x_91719+5x_91720+15x_91721+96x_91722+81x_91723+66x_91724+28x_91725+72x_91726+73x_91727+12x_91728+35x_91729+56x_91730+75x_91731+93x_91732+27x_91733+57x_91734+94x_91735+26x_91736+38x_91737+27x_91738+85x_91739+26x_91740+82x_91741+87x_91742+45x_91743+73x_91744+11x_91745+31x_91746+75x_91747+46x_91748+56x_91749+23x_91750+81x_91751+53x_91752+56x_91753+77x_91754+29x_91755+76x_91756+62x_91757+15x_91758+25x_91759+10x_91760+75x_91761+8x_91762+68x_91763+78x_91764+56x_91765+37x_91766+3x_91767+20x_91768+72x_91769+87x_91770+23x_91771+79x_91772+90x_91773+27x_91774+84x_91775+91x_91776+36x_91777+70x_91778+8x_91779+25x_91780+58x_91781+15x_91782+7x_91783+68x_91784+24x_91785+19x_91786+51x_91787+12x_91788+21x_91789+80x_91790+11x_91791+13x_91792+62x_91793+37x_91794+52x_91795+97x_91796+91x_91797+3x_91798+7x_91799+25x_91800+30x_91801+29x_91802+66x_91803+91x_91804+36x_91805+2x_91806+64x_91807+4x_91808+55x_91809+11x_91810+77x_91811+77x_91812+34x_91813+80x_91814+16x_91815+13x_91816+54x_91817+73x_91818+17x_91819+82x_91820+94x_91821+9x_91822+12x_91823+58x_91824+45x_91825+100x_91826+18x_91827+95x_91828+32x_91829+38x_91830+50x_91831+3x_91832+75x_91833+85x_91834+98x_91835+59x_91836+84x_91837+56x_91838+82x_91839+79x_91840+49x_91841+71x_91842+65x_91843+40x_91844+12x_91845+37x_91846+73x_91847+14x_91848+78x_91849+4x_91850+96x_91851+86x_91852+10x_91853+65x_91854+57x_91855+34x_91856+14x_91857+94x_91858+32x_91859+80x_91860+9x_91861+36x_91862+10x_91863+89x_91864+39x_91865+44x_91866+35x_91867+65x_91868+13x_91869+96x_91870+20x_91871+41x_91872+71x_91873+7x_91874+53x_91875+5x_91876+23x_91877+93x_91878+73x_91879+3x_91880+46x_91881+92x_91882+78x_91883+80x_91884+65x_91885+2x_91886+86x_91887+87x_91888+98x_91889+93x_91890+93x_91891+30x_91892+47x_91893+40x_91894+21x_91895+9x_91896+49x_91897+7x_91898+69x_91899+x_91900+63x_91901+85x_91902+84x_91903+87x_91904+18x_91905+x_91906+26x_91907+59x_91908+24x_91909+55x_91910+88x_91911+20x_91912+47x_91913+10x_91914+20x_91915+48x_91916+28x_91917+19x_91918+91x_91919+47x_91920+81x_91921+43x_91922+81x_91923+20x_91924+18x_91925+61x_91926+37x_91927+93x_91928+35x_91929+58x_91930+50x_91931+61x_91932+5x_91933+98x_91934+99x_91935+50x_91936+52x_91937+19x_91938+6x_91939+76x_91940+44x_91941+42x_91942+49x_91943+66x_91944+93x_91945+73x_91946+52x_91947+43x_91948+33x_91949+88x_91950+40x_91951+x_91952+43x_91953+63x_91954+68x_91955+5x_91956+82x_91957+39x_91958+2x_91959+61x_91960+11x_91961+9x_91962+88x_91963+36x_91964+7x_91965+29x_91966+31x_91967+87x_91968+91x_91969+29x_91970+97x_91971+84x_91972+98x_91973+86x_91974+9x_91975+12x_91976+26x_91977+50x_91978+68x_91979+70x_91980+45x_91981+54x_91982+11x_91983+57x_91984+32x_91985+14x_91986+19x_91987+52x_91988+37x_91989+94x_91990+48x_91991+71x_91992+62x_91993+60x_91994+90x_91995+76x_91996+31x_91997+17x_91998+32x_91999+60x_92000+55x_92001+27x_92002+49x_92003+48x_92004+53x_92005+x_92006+74x_92007+x_92008+78x_92009+12x_92010+9x_92011+68x_92012+42x_92013+21x_92014+16x_92015+85x_92016+10x_92017+72x_92018+28x_92019+6x_92020+63x_92021+31x_92022+86x_92023+x_92024+6x_92025+8x_92026+37x_92027+56x_92028+41x_92029+19x_92030+6x_92031+29x_92032+x_92033+41x_92034+98x_92035+9x_92036+33x_92037+27x_92038+73x_92039+81x_92040+25x_92041+8x_92042+48x_92043+77x_92044+72x_92045+23x_92046+37x_92047+82x_92048+11x_92049+89x_92050+34x_92051+83x_92052+79x_92053+77x_92054+47x_92055+50x_92056+67x_92057+15x_92058+58x_92059+41x_92060+68x_92061+62x_92062+61x_92063+52x_92064+61x_92065+35x_92066+3x_92067+4x_92068+80x_92069+23x_92070+20x_92071+59x_92072+75x_92073+21x_92074+92x_92075+94x_92076+21x_92077+16x_92078+44x_92079+72x_92080+5x_92081+51x_92082+88x_92083+95x_92084+86x_92085+73x_92086+75x_92087+53x_92088+42x_92089+35x_92090+81x_92091+15x_92092+33x_92093+14x_92094+9x_92095+51x_92096+47x_92097+83x_92098+55x_92099+28x_92100+33x_92101+10x_92102+73x_92103+74x_92104+28x_92105+40x_92106+84x_92107+73x_92108+57x_92109+79x_92110+62x_92111+6x_92112+59x_92113+57x_92114+78x_92115+90x_92116+62x_92117+51x_92118+36x_92119+40x_92120+22x_92121+93x_92122+23x_92123+91x_92124+78x_92125+98x_92126+80x_92127+85x_92128+40x_92129+52x_92130+48x_92131+85x_92132+82x_92133+2x_92134+34x_92135+65x_92136+3x_92137+40x_92138+27x_92139+55x_92140+83x_92141+66x_92142+75x_92143+22x_92144+12x_92145+38x_92146+82x_92147+95x_92148+28x_92149+97x_92150+61x_92151+74x_92152+93x_92153+58x_92154+x_92155+28x_92156+4x_92157+81x_92158+90x_92159+20x_92160+19x_92161+15x_92162+14x_92163+57x_92164+98x_92165+71x_92166+21x_92167+84x_92168+27x_92169+49x_92170+10x_92171+48x_92172+65x_92173+58x_92174+75x_92175+47x_92176+74x_92177+13x_92178+73x_92179+86x_92180+x_92181+78x_92182+29x_92183+25x_92184+88x_92185+62x_92186+72x_92187+76x_92188+55x_92189+2x_92190+51x_92191+59x_92192+11x_92193+54x_92194+8x_92195+9x_92196+76x_92197+58x_92198+90x_92199+13x_92200+38x_92201+29x_92202+63x_92203+3x_92204+94x_92205+98x_92206+78x_92207+56x_92208+61x_92209+19x_92210+90x_92211+19x_92212+19x_92213+8x_92214+32x_92215+28x_92216+71x_92217+38x_92218+26x_92219+x_92220+50x_92221+50x_92222+88x_92223+87x_92224+46x_92225+40x_92226+99x_92227+72x_92228+61x_92229+21x_92230+17x_92231+85x_92232+17x_92233+53x_92234+78x_92235+22x_92236+25x_92237+88x_92238+83x_92239+33x_92240+43x_92241+41x_92242+57x_92243+65x_92244+71x_92245+77x_92246+61x_92247+77x_92248+37x_92249+17x_92250+94x_92251+10x_92252+31x_92253+5x_92254+35x_92255+60x_92256+65x_92257+2x_92258+96x_92259+8x_92260+2x_92261+53x_92262+53x_92263+54x_92264+39x_92265+16x_92266+27x_92267+95x_92268+80x_92269+71x_92270+73x_92271+60x_92272+83x_92273+16x_92274+96x_92275+17x_92276+37x_92277+3x_92278+90x_92279+52x_92280+69x_92281+26x_92282+91x_92283+3x_92284+99x_92285+49x_92286+39x_92287+82x_92288+48x_92289+32x_92290+36x_92291+89x_92292+98x_92293+27x_92294+7x_92295+30x_92296+46x_92297+66x_92298+20x_92299+4x_92300+49x_92301+3x_92302+46x_92303+8x_92304+74x_92305+82x_92306+47x_92307+x_92308+10x_92309+93x_92310+48x_92311+54x_92312+93x_92313+67x_92314+36x_92315+46x_92316+11x_92317+81x_92318+53x_92319+69x_92320+18x_92321+84x_92322+19x_92323+61x_92324+14x_92325+33x_92326+48x_92327+42x_92328+61x_92329+45x_92330+49x_92331+59x_92332+35x_92333+40x_92334+65x_92335+87x_92336+67x_92337+34x_92338+54x_92339+65x_92340+48x_92341+75x_92342+10x_92343+27x_92344+50x_92345+56x_92346+2x_92347+35x_92348+63x_92349+90x_92350+70x_92351+100x_92352+95x_92353+10x_92354+91x_92355+19x_92356+99x_92357+87x_92358+27x_92359+100x_92360+99x_92361+78x_92362+67x_92363+2x_92364+35x_92365+30x_92366+16x_92367+72x_92368+55x_92369+87x_92370+67x_92371+59x_92372+59x_92373+33x_92374+58x_92375+27x_92376+82x_92377+55x_92378+100x_92379+63x_92380+78x_92381+81x_92382+81x_92383+68x_92384+76x_92385+66x_92386+48x_92387+89x_92388+8x_92389+60x_92390+86x_92391+80x_92392+8x_92393+14x_92394+48x_92395+58x_92396+39x_92397+94x_92398+6x_92399+18x_92400+26x_92401+40x_92402+97x_92403+73x_92404+95x_92405+68x_92406+77x_92407+2x_92408+11x_92409+30x_92410+20x_92411+71x_92412+40x_92413+51x_92414+86x_92415+18x_92416+89x_92417+72x_92418+94x_92419+48x_92420+36x_92421+36x_92422+21x_92423+12x_92424+15x_92425+39x_92426+7x_92427+80x_92428+16x_92429+25x_92430+60x_92431+8x_92432+72x_92433+82x_92434+82x_92435+20x_92436+41x_92437+88x_92438+92x_92439+62x_92440+46x_92441+35x_92442+59x_92443+37x_92444+60x_92445+44x_92446+81x_92447+35x_92448+7x_92449+53x_92450+68x_92451+58x_92452+94x_92453+43x_92454+72x_92455+64x_92456+52x_92457+91x_92458+41x_92459+92x_92460+81x_92461+12x_92462+19x_92463+17x_92464+6x_92465+64x_92466+100x_92467+44x_92468+50x_92469+22x_92470+36x_92471+98x_92472+58x_92473+70x_92474+82x_92475+69x_92476+32x_92477+83x_92478+66x_92479+77x_92480+83x_92481+32x_92482+55x_92483+89x_92484+95x_92485+14x_92486+67x_92487+63x_92488+23x_92489+93x_92490+89x_92491+88x_92492+97x_92493+76x_92494+12x_92495+33x_92496+9x_92497+26x_92498+13x_92499+12x_92500+70x_92501+92x_92502+19x_92503+91x_92504+38x_92505+90x_92506+97x_92507+45x_92508+32x_92509+27x_92510+2x_92511+82x_92512+70x_92513+55x_92514+46x_92515+70x_92516+77x_92517+44x_92518+63x_92519+66x_92520+55x_92521+25x_92522+47x_92523+8x_92524+72x_92525+99x_92526+52x_92527+67x_92528+60x_92529+28x_92530+52x_92531+60x_92532+33x_92533+6x_92534+45x_92535+99x_92536+47x_92537+32x_92538+92x_92539+63x_92540+62x_92541+24x_92542+91x_92543+36x_92544+45x_92545+32x_92546+9x_92547+45x_92548+3x_92549+38x_92550+14x_92551+20x_92552+5x_92553+67x_92554+48x_92555+48x_92556+37x_92557+21x_92558+100x_92559+17x_92560+19x_92561+83x_92562+36x_92563+11x_92564+43x_92565+16x_92566+34x_92567+3x_92568+67x_92569+68x_92570+37x_92571+20x_92572+55x_92573+62x_92574+70x_92575+83x_92576+22x_92577+46x_92578+59x_92579+94x_92580+19x_92581+45x_92582+72x_92583+84x_92584+74x_92585+53x_92586+6x_92587+42x_92588+47x_92589+54x_92590+65x_92591+48x_92592+25x_92593+26x_92594+26x_92595+66x_92596+2x_92597+35x_92598+75x_92599+73x_92600+95x_92601+16x_92602+62x_92603+54x_92604+47x_92605+12x_92606+84x_92607+34x_92608+63x_92609+2x_92610+23x_92611+20x_92612+91x_92613+69x_92614+33x_92615+86x_92616+91x_92617+48x_92618+87x_92619+84x_92620+39x_92621+2x_92622+89x_92623+63x_92624+82x_92625+33x_92626+38x_92627+32x_92628+29x_92629+9x_92630+31x_92631+39x_92632+38x_92633+97x_92634+63x_92635+80x_92636+30x_92637+70x_92638+55x_92639+41x_92640+2x_92641+62x_92642+87x_92643+4x_92644+47x_92645+89x_92646+15x_92647+48x_92648+74x_92649+30x_92650+83x_92651+59x_92652+24x_92653+95x_92654+70x_92655+79x_92656+79x_92657+98x_92658+85x_92659+6x_92660+64x_92661+17x_92662+53x_92663+27x_92664+17x_92665+61x_92666+100x_92667+35x_92668+75x_92669+37x_92670+25x_92671+73x_92672+63x_92673+21x_92674+48x_92675+94x_92676+45x_92677+3x_92678+47x_92679+90x_92680+52x_92681+96x_92682+27x_92683+23x_92684+26x_92685+67x_92686+39x_92687+83x_92688+27x_92689+45x_92690+89x_92691+29x_92692+33x_92693+79x_92694+76x_92695+49x_92696+22x_92697+93x_92698+95x_92699+25x_92700+56x_92701+83x_92702+96x_92703+63x_92704+6x_92705+73x_92706+26x_92707+30x_92708+48x_92709+31x_92710+25x_92711+93x_92712+10x_92713+100x_92714+78x_92715+23x_92716+36x_92717+4x_92718+31x_92719+58x_92720+15x_92721+88x_92722+54x_92723+11x_92724+31x_92725+77x_92726+94x_92727+6x_92728+61x_92729+85x_92730+93x_92731+13x_92732+47x_92733+11x_92734+60x_92735+66x_92736+11x_92737+13x_92738+40x_92739+48x_92740+63x_92741+61x_92742+72x_92743+38x_92744+35x_92745+53x_92746+4x_92747+72x_92748+49x_92749+27x_92750+19x_92751+35x_92752+92x_92753+35x_92754+47x_92755+29x_92756+81x_92757+98x_92758+87x_92759+21x_92760+44x_92761+67x_92762+91x_92763+31x_92764+68x_92765+94x_92766+55x_92767+30x_92768+49x_92769+26x_92770+78x_92771+43x_92772+4x_92773+96x_92774+37x_92775+21x_92776+99x_92777+46x_92778+38x_92779+53x_92780+13x_92781+16x_92782+87x_92783+54x_92784+36x_92785+63x_92786+72x_92787+14x_92788+59x_92789+19x_92790+52x_92791+38x_92792+6x_92793+92x_92794+26x_92795+50x_92796+10x_92797+74x_92798+52x_92799+68x_92800+40x_92801+7x_92802+77x_92803+44x_92804+69x_92805+79x_92806+57x_92807+90x_92808+58x_92809+36x_92810+9x_92811+36x_92812+35x_92813+38x_92814+54x_92815+38x_92816+23x_92817+19x_92818+77x_92819+9x_92820+16x_92821+74x_92822+76x_92823+95x_92824+54x_92825+72x_92826+15x_92827+67x_92828+31x_92829+35x_92830+85x_92831+60x_92832+46x_92833+15x_92834+22x_92835+33x_92836+37x_92837+45x_92838+67x_92839+50x_92840+91x_92841+23x_92842+3x_92843+92x_92844+49x_92845+11x_92846+x_92847+25x_92848+97x_92849+94x_92850+73x_92851+69x_92852+59x_92853+13x_92854+91x_92855+61x_92856+17x_92857+2x_92858+96x_92859+57x_92860+41x_92861+12x_92862+72x_92863+51x_92864+4x_92865+96x_92866+81x_92867+97x_92868+9x_92869+27x_92870+68x_92871+62x_92872+10x_92873+71x_92874+23x_92875+52x_92876+59x_92877+20x_92878+39x_92879+50x_92880+44x_92881+76x_92882+70x_92883+65x_92884+99x_92885+39x_92886+19x_92887+90x_92888+24x_92889+24x_92890+36x_92891+97x_92892+14x_92893+36x_92894+13x_92895+82x_92896+25x_92897+87x_92898+80x_92899+19x_92900+88x_92901+19x_92902+29x_92903+87x_92904+78x_92905+17x_92906+4x_92907+41x_92908+84x_92909+53x_92910+22x_92911+13x_92912+7x_92913+15x_92914+6x_92915+17x_92916+81x_92917+89x_92918+22x_92919+93x_92920+74x_92921+11x_92922+9x_92923+53x_92924+16x_92925+96x_92926+93x_92927+89x_92928+63x_92929+75x_92930+99x_92931+26x_92932+67x_92933+44x_92934+14x_92935+17x_92936+68x_92937+36x_92938+43x_92939+18x_92940+50x_92941+95x_92942+81x_92943+54x_92944+71x_92945+4x_92946+28x_92947+9x_92948+30x_92949+86x_92950+7x_92951+82x_92952+77x_92953+72x_92954+70x_92955+59x_92956+55x_92957+7x_92958+58x_92959+54x_92960+85x_92961+23x_92962+47x_92963+91x_92964+18x_92965+27x_92966+5x_92967+37x_92968+20x_92969+45x_92970+72x_92971+7x_92972+100x_92973+13x_92974+89x_92975+43x_92976+x_92977+42x_92978+4x_92979+68x_92980+36x_92981+54x_92982+61x_92983+7x_92984+85x_92985+9x_92986+77x_92987+70x_92988+78x_92989+46x_92990+22x_92991+69x_92992+70x_92993+71x_92994+46x_92995+60x_92996+83x_92997+34x_92998+26x_92999+3x_93000+x_93001+6x_93002+35x_93003+2x_93004+64x_93005+15x_93006+58x_93007+63x_93008+35x_93009+64x_93010+75x_93011+55x_93012+47x_93013+14x_93014+50x_93015+56x_93016+76x_93017+52x_93018+20x_93019+95x_93020+66x_93021+86x_93022+76x_93023+99x_93024+49x_93025+77x_93026+78x_93027+89x_93028+81x_93029+77x_93030+18x_93031+71x_93032+28x_93033+74x_93034+58x_93035+67x_93036+86x_93037+65x_93038+40x_93039+52x_93040+71x_93041+93x_93042+6x_93043+58x_93044+29x_93045+70x_93046+76x_93047+48x_93048+71x_93049+47x_93050+60x_93051+46x_93052+54x_93053+70x_93054+40x_93055+64x_93056+50x_93057+84x_93058+31x_93059+67x_93060+5x_93061+85x_93062+40x_93063+56x_93064+65x_93065+58x_93066+78x_93067+94x_93068+4x_93069+21x_93070+50x_93071+82x_93072+54x_93073+93x_93074+61x_93075+69x_93076+42x_93077+50x_93078+72x_93079+13x_93080+81x_93081+83x_93082+71x_93083+38x_93084+15x_93085+15x_93086+6x_93087+65x_93088+49x_93089+100x_93090+20x_93091+87x_93092+24x_93093+65x_93094+86x_93095+99x_93096+57x_93097+38x_93098+72x_93099+7x_93100+32x_93101+25x_93102+32x_93103+8x_93104+72x_93105+21x_93106+29x_93107+51x_93108+54x_93109+41x_93110+24x_93111+53x_93112+11x_93113+95x_93114+30x_93115+49x_93116+53x_93117+4x_93118+13x_93119+52x_93120+27x_93121+52x_93122+51x_93123+45x_93124+86x_93125+78x_93126+97x_93127+49x_93128+30x_93129+97x_93130+64x_93131+59x_93132+91x_93133+67x_93134+16x_93135+12x_93136+43x_93137+23x_93138+48x_93139+87x_93140+72x_93141+92x_93142+100x_93143+13x_93144+72x_93145+24x_93146+83x_93147+25x_93148+75x_93149+33x_93150+99x_93151+93x_93152+3x_93153+31x_93154+76x_93155+73x_93156+24x_93157+39x_93158+59x_93159+48x_93160+99x_93161+73x_93162+5x_93163+46x_93164+59x_93165+57x_93166+58x_93167+69x_93168+37x_93169+54x_93170+14x_93171+3x_93172+66x_93173+2x_93174+68x_93175+58x_93176+82x_93177+5x_93178+35x_93179+76x_93180+4x_93181+13x_93182+23x_93183+76x_93184+73x_93185+14x_93186+24x_93187+28x_93188+15x_93189+90x_93190+64x_93191+63x_93192+99x_93193+5x_93194+81x_93195+12x_93196+9x_93197+82x_93198+31x_93199+51x_93200+8x_93201+58x_93202+33x_93203+23x_93204+45x_93205+30x_93206+96x_93207+61x_93208+90x_93209+18x_93210+90x_93211+45x_93212+62x_93213+62x_93214+16x_93215+97x_93216+22x_93217+92x_93218+17x_93219+74x_93220+94x_93221+95x_93222+29x_93223+61x_93224+27x_93225+8x_93226+9x_93227+17x_93228+87x_93229+65x_93230+26x_93231+50x_93232+31x_93233+62x_93234+82x_93235+96x_93236+33x_93237+73x_93238+90x_93239+95x_93240+20x_93241+62x_93242+91x_93243+11x_93244+60x_93245+50x_93246+81x_93247+67x_93248+80x_93249+53x_93250+91x_93251+11x_93252+69x_93253+38x_93254+10x_93255+16x_93256+98x_93257+13x_93258+88x_93259+73x_93260+15x_93261+38x_93262+33x_93263+90x_93264+40x_93265+62x_93266+92x_93267+92x_93268+65x_93269+64x_93270+59x_93271+22x_93272+63x_93273+52x_93274+61x_93275+69x_93276+14x_93277+74x_93278+52x_93279+95x_93280+41x_93281+13x_93282+48x_93283+25x_93284+56x_93285+89x_93286+53x_93287+6x_93288+97x_93289+61x_93290+19x_93291+69x_93292+20x_93293+35x_93294+33x_93295+88x_93296+59x_93297+96x_93298+60x_93299+92x_93300+41x_93301+57x_93302+16x_93303+27x_93304+30x_93305+24x_93306+68x_93307+13x_93308+96x_93309+43x_93310+41x_93311+40x_93312+40x_93313+84x_93314+67x_93315+28x_93316+59x_93317+79x_93318+87x_93319+25x_93320+29x_93321+64x_93322+58x_93323+41x_93324+30x_93325+41x_93326+3x_93327+87x_93328+17x_93329+45x_93330+23x_93331+10x_93332+95x_93333+33x_93334+47x_93335+96x_93336+24x_93337+63x_93338+63x_93339+52x_93340+74x_93341+9x_93342+30x_93343+33x_93344+51x_93345+93x_93346+40x_93347+75x_93348+96x_93349+64x_93350+5x_93351+29x_93352+27x_93353+43x_93354+35x_93355+91x_93356+62x_93357+86x_93358+34x_93359+13x_93360+53x_93361+62x_93362+20x_93363+43x_93364+48x_93365+6x_93366+90x_93367+17x_93368+9x_93369+84x_93370+4x_93371+10x_93372+14x_93373+85x_93374+49x_93375+61x_93376+10x_93377+40x_93378+58x_93379+45x_93380+75x_93381+19x_93382+61x_93383+48x_93384+33x_93385+52x_93386+78x_93387+21x_93388+53x_93389+84x_93390+69x_93391+67x_93392+89x_93393+100x_93394+6x_93395+81x_93396+18x_93397+41x_93398+48x_93399+34x_93400+12x_93401+14x_93402+78x_93403+6x_93404+76x_93405+81x_93406+82x_93407+6x_93408+76x_93409+23x_93410+87x_93411+52x_93412+37x_93413+73x_93414+87x_93415+76x_93416+85x_93417+46x_93418+64x_93419+35x_93420+63x_93421+3x_93422+94x_93423+47x_93424+92x_93425+2x_93426+54x_93427+96x_93428+84x_93429+13x_93430+4x_93431+14x_93432+72x_93433+38x_93434+23x_93435+6x_93436+35x_93437+97x_93438+34x_93439+92x_93440+36x_93441+46x_93442+26x_93443+92x_93444+82x_93445+x_93446+19x_93447+61x_93448+8x_93449+46x_93450+51x_93451+81x_93452+18x_93453+31x_93454+53x_93455+7x_93456+44x_93457+11x_93458+61x_93459+17x_93460+86x_93461+22x_93462+75x_93463+75x_93464+9x_93465+39x_93466+98x_93467+x_93468+23x_93469+76x_93470+38x_93471+33x_93472+44x_93473+96x_93474+68x_93475+93x_93476+76x_93477+23x_93478+46x_93479+26x_93480+45x_93481+73x_93482+13x_93483+15x_93484+41x_93485+82x_93486+72x_93487+76x_93488+36x_93489+29x_93490+72x_93491+19x_93492+16x_93493+34x_93494+18x_93495+99x_93496+60x_93497+46x_93498+20x_93499+53x_93500+87x_93501+85x_93502+57x_93503+86x_93504+81x_93505+11x_93506+23x_93507+40x_93508+62x_93509+67x_93510+26x_93511+6x_93512+51x_93513+75x_93514+9x_93515+17x_93516+63x_93517+67x_93518+81x_93519+25x_93520+16x_93521+37x_93522+4x_93523+76x_93524+13x_93525+57x_93526+54x_93527+62x_93528+59x_93529+54x_93530+74x_93531+97x_93532+70x_93533+74x_93534+56x_93535+47x_93536+94x_93537+41x_93538+64x_93539+71x_93540+71x_93541+73x_93542+40x_93543+55x_93544+33x_93545+32x_93546+56x_93547+41x_93548+90x_93549+91x_93550+62x_93551+77x_93552+64x_93553+54x_93554+11x_93555+74x_93556+35x_93557+13x_93558+6x_93559+41x_93560+81x_93561+93x_93562+5x_93563+13x_93564+62x_93565+22x_93566+26x_93567+60x_93568+9x_93569+46x_93570+23x_93571+73x_93572+63x_93573+66x_93574+24x_93575+15x_93576+96x_93577+28x_93578+2x_93579+79x_93580+5x_93581+86x_93582+27x_93583+49x_93584+44x_93585+84x_93586+35x_93587+97x_93588+36x_93589+35x_93590+42x_93591+8x_93592+59x_93593+83x_93594+6x_93595+53x_93596+51x_93597+69x_93598+61x_93599+16x_93600+77x_93601+18x_93602+98x_93603+68x_93604+93x_93605+7x_93606+29x_93607+23x_93608+45x_93609+61x_93610+41x_93611+42x_93612+37x_93613+20x_93614+18x_93615+63x_93616+89x_93617+69x_93618+58x_93619+81x_93620+84x_93621+55x_93622+55x_93623+88x_93624+71x_93625+5x_93626+90x_93627+33x_93628+95x_93629+94x_93630+77x_93631+76x_93632+38x_93633+11x_93634+48x_93635+19x_93636+80x_93637+25x_93638+27x_93639+38x_93640+29x_93641+45x_93642+62x_93643+84x_93644+100x_93645+52x_93646+18x_93647+11x_93648+37x_93649+74x_93650+40x_93651+49x_93652+41x_93653+37x_93654+60x_93655+75x_93656+90x_93657+14x_93658+72x_93659+34x_93660+71x_93661+70x_93662+14x_93663+77x_93664+99x_93665+18x_93666+38x_93667+60x_93668+65x_93669+7x_93670+100x_93671+69x_93672+82x_93673+95x_93674+65x_93675+90x_93676+19x_93677+61x_93678+45x_93679+56x_93680+97x_93681+99x_93682+15x_93683+58x_93684+12x_93685+12x_93686+60x_93687+85x_93688+96x_93689+48x_93690+87x_93691+23x_93692+93x_93693+6x_93694+33x_93695+x_93696+56x_93697+63x_93698+61x_93699+71x_93700+17x_93701+41x_93702+13x_93703+65x_93704+5x_93705+95x_93706+82x_93707+3x_93708+59x_93709+25x_93710+76x_93711+6x_93712+84x_93713+4x_93714+16x_93715+79x_93716+44x_93717+21x_93718+78x_93719+44x_93720+75x_93721+87x_93722+100x_93723+52x_93724+19x_93725+52x_93726+23x_93727+51x_93728+15x_93729+93x_93730+37x_93731+7x_93732+93x_93733+34x_93734+20x_93735+54x_93736+98x_93737+6x_93738+87x_93739+28x_93740+66x_93741+53x_93742+56x_93743+84x_93744+17x_93745+82x_93746+7x_93747+86x_93748+21x_93749+6x_93750+80x_93751+69x_93752+49x_93753+57x_93754+69x_93755+x_93756+72x_93757+4x_93758+53x_93759+98x_93760+x_93761+40x_93762+56x_93763+10x_93764+11x_93765+67x_93766+17x_93767+47x_93768+8x_93769+92x_93770+15x_93771+72x_93772+79x_93773+80x_93774+10x_93775+21x_93776+55x_93777+12x_93778+40x_93779+45x_93780+30x_93781+37x_93782+x_93783+75x_93784+57x_93785+51x_93786+25x_93787+13x_93788+10x_93789+x_93790+65x_93791+86x_93792+83x_93793+49x_93794+91x_93795+44x_93796+76x_93797+9x_93798+85x_93799+54x_93800+12x_93801+36x_93802+43x_93803+96x_93804+74x_93805+44x_93806+49x_93807+36x_93808+26x_93809+48x_93810+14x_93811+18x_93812+22x_93813+36x_93814+54x_93815+99x_93816+88x_93817+88x_93818+93x_93819+42x_93820+70x_93821+95x_93822+87x_93823+87x_93824+64x_93825+40x_93826+2x_93827+99x_93828+73x_93829+4x_93830+22x_93831+100x_93832+21x_93833+79x_93834+60x_93835+57x_93836+43x_93837+13x_93838+17x_93839+48x_93840+92x_93841+16x_93842+87x_93843+18x_93844+93x_93845+30x_93846+29x_93847+33x_93848+74x_93849+72x_93850+29x_93851+91x_93852+11x_93853+30x_93854+82x_93855+50x_93856+39x_93857+57x_93858+14x_93859+76x_93860+72x_93861+48x_93862+28x_93863+81x_93864+69x_93865+58x_93866+61x_93867+72x_93868+95x_93869+74x_93870+71x_93871+31x_93872+65x_93873+6x_93874+25x_93875+32x_93876+21x_93877+34x_93878+61x_93879+48x_93880+6x_93881+32x_93882+92x_93883+9x_93884+23x_93885+59x_93886+15x_93887+25x_93888+80x_93889+35x_93890+67x_93891+96x_93892+40x_93893+49x_93894+67x_93895+70x_93896+72x_93897+50x_93898+83x_93899+75x_93900+39x_93901+53x_93902+59x_93903+11x_93904+20x_93905+75x_93906+70x_93907+78x_93908+23x_93909+87x_93910+68x_93911+5x_93912+87x_93913+34x_93914+74x_93915+62x_93916+32x_93917+4x_93918+6x_93919+21x_93920+51x_93921+78x_93922+76x_93923+23x_93924+56x_93925+x_93926+x_93927+97x_93928+82x_93929+87x_93930+28x_93931+36x_93932+41x_93933+64x_93934+79x_93935+63x_93936+48x_93937+100x_93938+4x_93939+25x_93940+10x_93941+41x_93942+50x_93943+45x_93944+68x_93945+32x_93946+90x_93947+36x_93948+62x_93949+11x_93950+92x_93951+19x_93952+100x_93953+97x_93954+94x_93955+74x_93956+87x_93957+15x_93958+74x_93959+26x_93960+46x_93961+10x_93962+38x_93963+99x_93964+19x_93965+20x_93966+85x_93967+62x_93968+75x_93969+70x_93970+23x_93971+9x_93972+71x_93973+70x_93974+51x_93975+40x_93976+51x_93977+88x_93978+52x_93979+7x_93980+97x_93981+41x_93982+39x_93983+20x_93984+6x_93985+98x_93986+72x_93987+34x_93988+3x_93989+30x_93990+51x_93991+50x_93992+27x_93993+81x_93994+54x_93995+36x_93996+90x_93997+62x_93998+21x_93999+72x_94000+81x_94001+81x_94002+98x_94003+2x_94004+77x_94005+91x_94006+65x_94007+39x_94008+94x_94009+93x_94010+37x_94011+87x_94012+88x_94013+79x_94014+48x_94015+51x_94016+77x_94017+16x_94018+21x_94019+16x_94020+14x_94021+87x_94022+2x_94023+63x_94024+21x_94025+34x_94026+74x_94027+70x_94028+58x_94029+67x_94030+8x_94031+6x_94032+91x_94033+53x_94034+78x_94035+83x_94036+31x_94037+52x_94038+84x_94039+18x_94040+x_94041+69x_94042+72x_94043+26x_94044+30x_94045+30x_94046+29x_94047+x_94048+31x_94049+51x_94050+51x_94051+59x_94052+74x_94053+58x_94054+63x_94055+38x_94056+18x_94057+32x_94058+86x_94059+79x_94060+84x_94061+x_94062+86x_94063+95x_94064+5x_94065+49x_94066+6x_94067+38x_94068+56x_94069+72x_94070+21x_94071+60x_94072+12x_94073+14x_94074+40x_94075+9x_94076+100x_94077+74x_94078+25x_94079+66x_94080+36x_94081+24x_94082+57x_94083+37x_94084+64x_94085+14x_94086+12x_94087+50x_94088+22x_94089+100x_94090+36x_94091+13x_94092+91x_94093+71x_94094+66x_94095+34x_94096+27x_94097+36x_94098+2x_94099+66x_94100+66x_94101+12x_94102+93x_94103+75x_94104+56x_94105+72x_94106+24x_94107+70x_94108+97x_94109+16x_94110+96x_94111+45x_94112+90x_94113+7x_94114+57x_94115+69x_94116+39x_94117+58x_94118+80x_94119+72x_94120+69x_94121+92x_94122+13x_94123+51x_94124+85x_94125+34x_94126+10x_94127+2x_94128+9x_94129+12x_94130+81x_94131+80x_94132+96x_94133+37x_94134+27x_94135+88x_94136+5x_94137+11x_94138+38x_94139+89x_94140+27x_94141+49x_94142+90x_94143+4x_94144+18x_94145+7x_94146+23x_94147+90x_94148+46x_94149+96x_94150+25x_94151+78x_94152+47x_94153+73x_94154+100x_94155+38x_94156+44x_94157+79x_94158+72x_94159+74x_94160+42x_94161+83x_94162+78x_94163+100x_94164+7x_94165+33x_94166+51x_94167+57x_94168+11x_94169+43x_94170+35x_94171+63x_94172+100x_94173+89x_94174+51x_94175+12x_94176+28x_94177+13x_94178+100x_94179+84x_94180+88x_94181+72x_94182+13x_94183+69x_94184+65x_94185+41x_94186+88x_94187+12x_94188+31x_94189+69x_94190+10x_94191+60x_94192+42x_94193+73x_94194+22x_94195+69x_94196+28x_94197+16x_94198+84x_94199+71x_94200+85x_94201+66x_94202+27x_94203+98x_94204+57x_94205+20x_94206+71x_94207+53x_94208+59x_94209+6x_94210+67x_94211+15x_94212+39x_94213+33x_94214+42x_94215+94x_94216+64x_94217+40x_94218+14x_94219+66x_94220+31x_94221+12x_94222+79x_94223+98x_94224+63x_94225+29x_94226+13x_94227+75x_94228+75x_94229+24x_94230+12x_94231+61x_94232+55x_94233+58x_94234+67x_94235+71x_94236+93x_94237+27x_94238+9x_94239+30x_94240+20x_94241+31x_94242+88x_94243+28x_94244+98x_94245+44x_94246+93x_94247+17x_94248+9x_94249+28x_94250+47x_94251+58x_94252+22x_94253+52x_94254+54x_94255+19x_94256+x_94257+24x_94258+49x_94259+26x_94260+9x_94261+93x_94262+x_94263+70x_94264+36x_94265+62x_94266+48x_94267+63x_94268+39x_94269+56x_94270+83x_94271+79x_94272+91x_94273+61x_94274+22x_94275+79x_94276+37x_94277+73x_94278+86x_94279+23x_94280+53x_94281+79x_94282+29x_94283+93x_94284+39x_94285+74x_94286+40x_94287+30x_94288+94x_94289+70x_94290+6x_94291+44x_94292+14x_94293+36x_94294+31x_94295+79x_94296+36x_94297+78x_94298+44x_94299+96x_94300+3x_94301+38x_94302+46x_94303+62x_94304+11x_94305+58x_94306+72x_94307+70x_94308+71x_94309+14x_94310+31x_94311+58x_94312+29x_94313+57x_94314+17x_94315+76x_94316+9x_94317+97x_94318+15x_94319+3x_94320+57x_94321+30x_94322+20x_94323+100x_94324+37x_94325+90x_94326+81x_94327+30x_94328+23x_94329+82x_94330+73x_94331+4x_94332+96x_94333+51x_94334+24x_94335+79x_94336+37x_94337+99x_94338+15x_94339+4x_94340+40x_94341+99x_94342+48x_94343+38x_94344+84x_94345+43x_94346+6x_94347+67x_94348+34x_94349+31x_94350+79x_94351+13x_94352+95x_94353+68x_94354+12x_94355+60x_94356+52x_94357+92x_94358+97x_94359+74x_94360+77x_94361+30x_94362+84x_94363+50x_94364+38x_94365+58x_94366+48x_94367+65x_94368+22x_94369+38x_94370+98x_94371+7x_94372+87x_94373+95x_94374+64x_94375+30x_94376+65x_94377+69x_94378+42x_94379+34x_94380+77x_94381+42x_94382+38x_94383+13x_94384+58x_94385+44x_94386+19x_94387+30x_94388+56x_94389+77x_94390+8x_94391+12x_94392+98x_94393+17x_94394+62x_94395+46x_94396+30x_94397+6x_94398+94x_94399+35x_94400+43x_94401+72x_94402+84x_94403+52x_94404+67x_94405+42x_94406+31x_94407+5x_94408+39x_94409+88x_94410+45x_94411+31x_94412+42x_94413+65x_94414+62x_94415+47x_94416+19x_94417+83x_94418+70x_94419+98x_94420+38x_94421+19x_94422+44x_94423+73x_94424+61x_94425+44x_94426+47x_94427+46x_94428+52x_94429+83x_94430+84x_94431+82x_94432+41x_94433+30x_94434+31x_94435+73x_94436+80x_94437+18x_94438+93x_94439+42x_94440+69x_94441+30x_94442+4x_94443+100x_94444+4x_94445+96x_94446+52x_94447+18x_94448+2x_94449+9x_94450+98x_94451+25x_94452+58x_94453+12x_94454+48x_94455+11x_94456+67x_94457+82x_94458+23x_94459+74x_94460+48x_94461+42x_94462+79x_94463+40x_94464+34x_94465+68x_94466+55x_94467+60x_94468+48x_94469+73x_94470+94x_94471+67x_94472+87x_94473+2x_94474+58x_94475+68x_94476+21x_94477+43x_94478+30x_94479+72x_94480+34x_94481+66x_94482+6x_94483+97x_94484+61x_94485+38x_94486+24x_94487+35x_94488+54x_94489+92x_94490+12x_94491+71x_94492+15x_94493+2x_94494+10x_94495+94x_94496+66x_94497+87x_94498+64x_94499+24x_94500+82x_94501+11x_94502+96x_94503+90x_94504+59x_94505+11x_94506+81x_94507+18x_94508+91x_94509+9x_94510+16x_94511+88x_94512+33x_94513+34x_94514+99x_94515+x_94516+25x_94517+19x_94518+15x_94519+7x_94520+14x_94521+6x_94522+13x_94523+32x_94524+52x_94525+31x_94526+34x_94527+65x_94528+25x_94529+3x_94530+84x_94531+10x_94532+48x_94533+77x_94534+37x_94535+45x_94536+95x_94537+5x_94538+94x_94539+17x_94540+63x_94541+7x_94542+32x_94543+88x_94544+88x_94545+95x_94546+26x_94547+69x_94548+26x_94549+34x_94550+72x_94551+88x_94552+37x_94553+42x_94554+60x_94555+15x_94556+32x_94557+83x_94558+31x_94559+58x_94560+95x_94561+32x_94562+81x_94563+24x_94564+90x_94565+95x_94566+62x_94567+22x_94568+9x_94569+77x_94570+19x_94571+65x_94572+24x_94573+55x_94574+28x_94575+65x_94576+58x_94577+31x_94578+55x_94579+82x_94580+5x_94581+89x_94582+6x_94583+14x_94584+63x_94585+94x_94586+28x_94587+74x_94588+58x_94589+46x_94590+57x_94591+71x_94592+7x_94593+57x_94594+62x_94595+60x_94596+75x_94597+31x_94598+44x_94599+48x_94600+15x_94601+52x_94602+84x_94603+36x_94604+46x_94605+6x_94606+74x_94607+100x_94608+12x_94609+44x_94610+14x_94611+59x_94612+95x_94613+100x_94614+95x_94615+31x_94616+37x_94617+94x_94618+64x_94619+90x_94620+96x_94621+97x_94622+50x_94623+97x_94624+22x_94625+100x_94626+2x_94627+85x_94628+23x_94629+73x_94630+49x_94631+38x_94632+30x_94633+47x_94634+44x_94635+25x_94636+43x_94637+46x_94638+67x_94639+96x_94640+11x_94641+37x_94642+83x_94643+6x_94644+31x_94645+47x_94646+25x_94647+64x_94648+61x_94649+80x_94650+60x_94651+94x_94652+28x_94653+94x_94654+88x_94655+68x_94656+4x_94657+71x_94658+39x_94659+60x_94660+45x_94661+14x_94662+21x_94663+8x_94664+52x_94665+77x_94666+78x_94667+97x_94668+99x_94669+14x_94670+48x_94671+47x_94672+75x_94673+41x_94674+77x_94675+26x_94676+36x_94677+48x_94678+69x_94679+71x_94680+61x_94681+6x_94682+85x_94683+61x_94684+4x_94685+56x_94686+79x_94687+53x_94688+93x_94689+90x_94690+64x_94691+42x_94692+21x_94693+32x_94694+49x_94695+45x_94696+29x_94697+96x_94698+6x_94699+95x_94700+56x_94701+95x_94702+48x_94703+46x_94704+89x_94705+24x_94706+33x_94707+19x_94708+87x_94709+37x_94710+5x_94711+44x_94712+71x_94713+43x_94714+64x_94715+88x_94716+40x_94717+40x_94718+20x_94719+91x_94720+73x_94721+89x_94722+67x_94723+20x_94724+34x_94725+36x_94726+92x_94727+45x_94728+73x_94729+87x_94730+16x_94731+88x_94732+60x_94733+40x_94734+92x_94735+14x_94736+44x_94737+74x_94738+96x_94739+16x_94740+11x_94741+19x_94742+6x_94743+51x_94744+11x_94745+13x_94746+72x_94747+87x_94748+14x_94749+97x_94750+92x_94751+17x_94752+77x_94753+30x_94754+90x_94755+33x_94756+77x_94757+5x_94758+6x_94759+10x_94760+70x_94761+12x_94762+84x_94763+52x_94764+70x_94765+44x_94766+29x_94767+40x_94768+23x_94769+23x_94770+46x_94771+11x_94772+22x_94773+80x_94774+56x_94775+43x_94776+16x_94777+82x_94778+33x_94779+95x_94780+52x_94781+76x_94782+96x_94783+48x_94784+36x_94785+26x_94786+26x_94787+34x_94788+41x_94789+63x_94790+68x_94791+44x_94792+31x_94793+22x_94794+85x_94795+82x_94796+79x_94797+85x_94798+43x_94799+93x_94800+60x_94801+95x_94802+55x_94803+23x_94804+10x_94805+5x_94806+34x_94807+29x_94808+19x_94809+11x_94810+15x_94811+95x_94812+71x_94813+74x_94814+42x_94815+98x_94816+75x_94817+79x_94818+91x_94819+72x_94820+54x_94821+61x_94822+53x_94823+10x_94824+33x_94825+15x_94826+81x_94827+92x_94828+63x_94829+23x_94830+72x_94831+30x_94832+49x_94833+61x_94834+53x_94835+82x_94836+82x_94837+59x_94838+28x_94839+46x_94840+47x_94841+61x_94842+39x_94843+85x_94844+92x_94845+43x_94846+94x_94847+76x_94848+82x_94849+22x_94850+69x_94851+25x_94852+15x_94853+72x_94854+3x_94855+48x_94856+8x_94857+82x_94858+60x_94859+4x_94860+30x_94861+85x_94862+x_94863+32x_94864+45x_94865+65x_94866+51x_94867+9x_94868+77x_94869+17x_94870+77x_94871+71x_94872+84x_94873+30x_94874+39x_94875+79x_94876+33x_94877+52x_94878+96x_94879+55x_94880+87x_94881+92x_94882+33x_94883+70x_94884+55x_94885+45x_94886+89x_94887+40x_94888+3x_94889+92x_94890+100x_94891+58x_94892+30x_94893+38x_94894+11x_94895+81x_94896+50x_94897+23x_94898+28x_94899+46x_94900+33x_94901+91x_94902+46x_94903+28x_94904+72x_94905+46x_94906+58x_94907+32x_94908+30x_94909+61x_94910+24x_94911+97x_94912+75x_94913+86x_94914+77x_94915+91x_94916+7x_94917+30x_94918+2x_94919+54x_94920+71x_94921+35x_94922+80x_94923+10x_94924+58x_94925+36x_94926+25x_94927+86x_94928+41x_94929+4x_94930+31x_94931+67x_94932+86x_94933+74x_94934+47x_94935+11x_94936+56x_94937+98x_94938+74x_94939+74x_94940+89x_94941+36x_94942+67x_94943+73x_94944+59x_94945+48x_94946+55x_94947+88x_94948+63x_94949+39x_94950+47x_94951+63x_94952+77x_94953+76x_94954+26x_94955+2x_94956+94x_94957+30x_94958+57x_94959+98x_94960+41x_94961+85x_94962+75x_94963+88x_94964+57x_94965+80x_94966+10x_94967+32x_94968+46x_94969+66x_94970+9x_94971+54x_94972+99x_94973+90x_94974+95x_94975+69x_94976+31x_94977+x_94978+x_94979+82x_94980+40x_94981+87x_94982+100x_94983+84x_94984+8x_94985+47x_94986+14x_94987+89x_94988+73x_94989+32x_94990+77x_94991+46x_94992+39x_94993+97x_94994+13x_94995+10x_94996+13x_94997+63x_94998+7x_94999+66x_95000+52x_95001+23x_95002+58x_95003+72x_95004+55x_95005+4x_95006+33x_95007+74x_95008+91x_95009+31x_95010+9x_95011+86x_95012+87x_95013+38x_95014+33x_95015+37x_95016+52x_95017+13x_95018+74x_95019+86x_95020+29x_95021+74x_95022+74x_95023+25x_95024+97x_95025+28x_95026+66x_95027+54x_95028+89x_95029+90x_95030+4x_95031+8x_95032+65x_95033+76x_95034+80x_95035+55x_95036+3x_95037+77x_95038+38x_95039+92x_95040+41x_95041+23x_95042+92x_95043+2x_95044+30x_95045+98x_95046+44x_95047+12x_95048+78x_95049+69x_95050+33x_95051+92x_95052+35x_95053+2x_95054+74x_95055+7x_95056+26x_95057+42x_95058+29x_95059+76x_95060+76x_95061+30x_95062+23x_95063+32x_95064+8x_95065+42x_95066+79x_95067+33x_95068+12x_95069+60x_95070+63x_95071+9x_95072+40x_95073+30x_95074+98x_95075+37x_95076+83x_95077+65x_95078+44x_95079+45x_95080+55x_95081+7x_95082+65x_95083+50x_95084+30x_95085+56x_95086+73x_95087+90x_95088+56x_95089+9x_95090+75x_95091+84x_95092+34x_95093+10x_95094+82x_95095+57x_95096+75x_95097+60x_95098+56x_95099+93x_95100+8x_95101+77x_95102+20x_95103+60x_95104+15x_95105+68x_95106+97x_95107+18x_95108+68x_95109+33x_95110+81x_95111+32x_95112+95x_95113+3x_95114+69x_95115+84x_95116+61x_95117+82x_95118+84x_95119+6x_95120+65x_95121+46x_95122+41x_95123+71x_95124+6x_95125+94x_95126+72x_95127+78x_95128+5x_95129+12x_95130+95x_95131+67x_95132+37x_95133+69x_95134+95x_95135+60x_95136+67x_95137+15x_95138+99x_95139+43x_95140+90x_95141+91x_95142+10x_95143+56x_95144+3x_95145+5x_95146+26x_95147+100x_95148+30x_95149+24x_95150+35x_95151+52x_95152+35x_95153+93x_95154+10x_95155+39x_95156+42x_95157+52x_95158+60x_95159+81x_95160+56x_95161+52x_95162+68x_95163+41x_95164+46x_95165+37x_95166+55x_95167+77x_95168+26x_95169+74x_95170+40x_95171+24x_95172+7x_95173+85x_95174+36x_95175+72x_95176+60x_95177+x_95178+83x_95179+23x_95180+23x_95181+87x_95182+12x_95183+19x_95184+14x_95185+99x_95186+17x_95187+29x_95188+10x_95189+55x_95190+27x_95191+40x_95192+31x_95193+99x_95194+90x_95195+83x_95196+8x_95197+83x_95198+98x_95199+68x_95200+65x_95201+89x_95202+62x_95203+24x_95204+82x_95205+21x_95206+75x_95207+18x_95208+6x_95209+12x_95210+5x_95211+60x_95212+43x_95213+47x_95214+69x_95215+27x_95216+19x_95217+42x_95218+22x_95219+49x_95220+72x_95221+18x_95222+40x_95223+29x_95224+47x_95225+90x_95226+4x_95227+58x_95228+24x_95229+49x_95230+89x_95231+48x_95232+89x_95233+89x_95234+74x_95235+57x_95236+30x_95237+40x_95238+74x_95239+79x_95240+88x_95241+76x_95242+51x_95243+29x_95244+26x_95245+7x_95246+2x_95247+16x_95248+64x_95249+65x_95250+28x_95251+26x_95252+71x_95253+44x_95254+76x_95255+24x_95256+51x_95257+54x_95258+93x_95259+7x_95260+33x_95261+71x_95262+82x_95263+24x_95264+86x_95265+50x_95266+41x_95267+28x_95268+53x_95269+60x_95270+91x_95271+3x_95272+19x_95273+85x_95274+18x_95275+40x_95276+35x_95277+39x_95278+82x_95279+58x_95280+98x_95281+72x_95282+27x_95283+82x_95284+98x_95285+85x_95286+79x_95287+85x_95288+14x_95289+40x_95290+91x_95291+60x_95292+26x_95293+65x_95294+91x_95295+77x_95296+44x_95297+60x_95298+36x_95299+63x_95300+63x_95301+47x_95302+2x_95303+64x_95304+6x_95305+8x_95306+83x_95307+100x_95308+76x_95309+5x_95310+31x_95311+15x_95312+87x_95313+56x_95314+56x_95315+43x_95316+61x_95317+12x_95318+19x_95319+44x_95320+44x_95321+28x_95322+13x_95323+74x_95324+56x_95325+64x_95326+72x_95327+15x_95328+9x_95329+28x_95330+50x_95331+91x_95332+95x_95333+48x_95334+45x_95335+11x_95336+68x_95337+99x_95338+95x_95339+97x_95340+15x_95341+93x_95342+85x_95343+46x_95344+74x_95345+99x_95346+82x_95347+2x_95348+65x_95349+55x_95350+45x_95351+66x_95352+20x_95353+38x_95354+91x_95355+21x_95356+44x_95357+34x_95358+36x_95359+66x_95360+60x_95361+75x_95362+77x_95363+8x_95364+54x_95365+66x_95366+97x_95367+74x_95368+9x_95369+22x_95370+5x_95371+32x_95372+62x_95373+18x_95374+5x_95375+51x_95376+90x_95377+65x_95378+46x_95379+70x_95380+57x_95381+x_95382+68x_95383+18x_95384+50x_95385+52x_95386+18x_95387+99x_95388+34x_95389+5x_95390+47x_95391+55x_95392+2x_95393+33x_95394+26x_95395+91x_95396+60x_95397+35x_95398+13x_95399+27x_95400+11x_95401+22x_95402+72x_95403+83x_95404+14x_95405+76x_95406+24x_95407+33x_95408+96x_95409+91x_95410+71x_95411+31x_95412+69x_95413+60x_95414+22x_95415+25x_95416+36x_95417+48x_95418+32x_95419+19x_95420+70x_95421+3x_95422+73x_95423+10x_95424+47x_95425+72x_95426+92x_95427+4x_95428+47x_95429+32x_95430+67x_95431+79x_95432+75x_95433+84x_95434+36x_95435+24x_95436+82x_95437+12x_95438+28x_95439+96x_95440+73x_95441+60x_95442+72x_95443+73x_95444+87x_95445+37x_95446+25x_95447+78x_95448+84x_95449+83x_95450+25x_95451+85x_95452+68x_95453+20x_95454+80x_95455+98x_95456+51x_95457+69x_95458+85x_95459+39x_95460+91x_95461+88x_95462+48x_95463+68x_95464+77x_95465+53x_95466+70x_95467+18x_95468+91x_95469+92x_95470+39x_95471+45x_95472+19x_95473+48x_95474+46x_95475+35x_95476+35x_95477+55x_95478+19x_95479+89x_95480+69x_95481+69x_95482+55x_95483+62x_95484+82x_95485+17x_95486+94x_95487+96x_95488+15x_95489+20x_95490+31x_95491+87x_95492+65x_95493+37x_95494+60x_95495+45x_95496+12x_95497+15x_95498+52x_95499+41x_95500+33x_95501+43x_95502+24x_95503+76x_95504+x_95505+87x_95506+10x_95507+46x_95508+86x_95509+92x_95510+32x_95511+85x_95512+27x_95513+26x_95514+10x_95515+20x_95516+74x_95517+55x_95518+55x_95519+74x_95520+20x_95521+77x_95522+85x_95523+46x_95524+37x_95525+33x_95526+47x_95527+61x_95528+50x_95529+33x_95530+45x_95531+18x_95532+65x_95533+26x_95534+56x_95535+96x_95536+34x_95537+83x_95538+26x_95539+35x_95540+69x_95541+15x_95542+69x_95543+70x_95544+19x_95545+88x_95546+83x_95547+84x_95548+75x_95549+88x_95550+97x_95551+64x_95552+81x_95553+79x_95554+3x_95555+90x_95556+85x_95557+3x_95558+44x_95559+6x_95560+18x_95561+84x_95562+98x_95563+42x_95564+22x_95565+53x_95566+59x_95567+73x_95568+43x_95569+8x_95570+61x_95571+94x_95572+65x_95573+9x_95574+95x_95575+5x_95576+77x_95577+29x_95578+78x_95579+75x_95580+63x_95581+54x_95582+74x_95583+54x_95584+7x_95585+20x_95586+87x_95587+85x_95588+80x_95589+43x_95590+54x_95591+57x_95592+83x_95593+83x_95594+94x_95595+29x_95596+46x_95597+38x_95598+86x_95599+10x_95600+47x_95601+23x_95602+74x_95603+88x_95604+40x_95605+30x_95606+94x_95607+24x_95608+69x_95609+34x_95610+69x_95611+31x_95612+12x_95613+28x_95614+11x_95615+83x_95616+94x_95617+70x_95618+71x_95619+73x_95620+77x_95621+32x_95622+99x_95623+54x_95624+41x_95625+47x_95626+5x_95627+70x_95628+97x_95629+87x_95630+57x_95631+83x_95632+16x_95633+47x_95634+4x_95635+12x_95636+81x_95637+81x_95638+62x_95639+50x_95640+90x_95641+75x_95642+31x_95643+29x_95644+89x_95645+45x_95646+88x_95647+7x_95648+78x_95649+69x_95650+97x_95651+51x_95652+11x_95653+92x_95654+3x_95655+28x_95656+26x_95657+60x_95658+96x_95659+43x_95660+6x_95661+60x_95662+37x_95663+35x_95664+14x_95665+16x_95666+39x_95667+82x_95668+54x_95669+59x_95670+54x_95671+38x_95672+99x_95673+30x_95674+26x_95675+23x_95676+64x_95677+60x_95678+49x_95679+89x_95680+90x_95681+37x_95682+35x_95683+31x_95684+59x_95685+19x_95686+58x_95687+79x_95688+42x_95689+65x_95690+86x_95691+71x_95692+24x_95693+88x_95694+48x_95695+x_95696+21x_95697+67x_95698+19x_95699+14x_95700+72x_95701+22x_95702+22x_95703+64x_95704+25x_95705+56x_95706+29x_95707+86x_95708+91x_95709+72x_95710+57x_95711+73x_95712+82x_95713+89x_95714+20x_95715+58x_95716+44x_95717+98x_95718+42x_95719+79x_95720+2x_95721+24x_95722+89x_95723+8x_95724+74x_95725+73x_95726+39x_95727+11x_95728+29x_95729+40x_95730+79x_95731+78x_95732+56x_95733+39x_95734+49x_95735+95x_95736+46x_95737+71x_95738+79x_95739+20x_95740+94x_95741+32x_95742+55x_95743+87x_95744+62x_95745+89x_95746+91x_95747+88x_95748+2x_95749+60x_95750+81x_95751+17x_95752+54x_95753+81x_95754+36x_95755+2x_95756+57x_95757+90x_95758+96x_95759+25x_95760+53x_95761+52x_95762+34x_95763+7x_95764+58x_95765+52x_95766+53x_95767+88x_95768+15x_95769+51x_95770+19x_95771+85x_95772+7x_95773+96x_95774+82x_95775+74x_95776+89x_95777+54x_95778+12x_95779+59x_95780+42x_95781+7x_95782+83x_95783+74x_95784+48x_95785+88x_95786+30x_95787+54x_95788+18x_95789+40x_95790+60x_95791+75x_95792+36x_95793+92x_95794+28x_95795+97x_95796+35x_95797+97x_95798+3x_95799+9x_95800+20x_95801+99x_95802+8x_95803+72x_95804+45x_95805+35x_95806+2x_95807+21x_95808+15x_95809+41x_95810+32x_95811+19x_95812+71x_95813+26x_95814+84x_95815+16x_95816+64x_95817+59x_95818+91x_95819+45x_95820+68x_95821+64x_95822+48x_95823+60x_95824+65x_95825+77x_95826+35x_95827+55x_95828+46x_95829+28x_95830+43x_95831+x_95832+55x_95833+12x_95834+84x_95835+79x_95836+9x_95837+15x_95838+10x_95839+71x_95840+36x_95841+64x_95842+14x_95843+84x_95844+25x_95845+10x_95846+10x_95847+11x_95848+81x_95849+86x_95850+21x_95851+83x_95852+24x_95853+93x_95854+57x_95855+37x_95856+63x_95857+53x_95858+67x_95859+49x_95860+53x_95861+70x_95862+34x_95863+24x_95864+4x_95865+26x_95866+19x_95867+91x_95868+67x_95869+4x_95870+43x_95871+77x_95872+35x_95873+35x_95874+41x_95875+53x_95876+61x_95877+84x_95878+73x_95879+50x_95880+10x_95881+x_95882+93x_95883+17x_95884+12x_95885+94x_95886+10x_95887+98x_95888+84x_95889+12x_95890+51x_95891+24x_95892+89x_95893+30x_95894+33x_95895+14x_95896+94x_95897+86x_95898+83x_95899+68x_95900+70x_95901+72x_95902+86x_95903+96x_95904+57x_95905+37x_95906+67x_95907+10x_95908+94x_95909+53x_95910+35x_95911+19x_95912+29x_95913+77x_95914+97x_95915+32x_95916+94x_95917+70x_95918+48x_95919+20x_95920+9x_95921+4x_95922+3x_95923+100x_95924+60x_95925+85x_95926+50x_95927+35x_95928+66x_95929+58x_95930+32x_95931+10x_95932+47x_95933+5x_95934+81x_95935+50x_95936+96x_95937+21x_95938+26x_95939+65x_95940+80x_95941+55x_95942+47x_95943+20x_95944+68x_95945+56x_95946+75x_95947+100x_95948+2x_95949+27x_95950+21x_95951+4x_95952+31x_95953+89x_95954+61x_95955+6x_95956+84x_95957+36x_95958+32x_95959+76x_95960+91x_95961+2x_95962+83x_95963+16x_95964+74x_95965+59x_95966+10x_95967+18x_95968+31x_95969+18x_95970+63x_95971+79x_95972+15x_95973+53x_95974+45x_95975+34x_95976+86x_95977+71x_95978+10x_95979+37x_95980+79x_95981+86x_95982+53x_95983+28x_95984+87x_95985+24x_95986+66x_95987+53x_95988+31x_95989+62x_95990+10x_95991+70x_95992+43x_95993+78x_95994+14x_95995+54x_95996+74x_95997+9x_95998+17x_95999+86x_96000+89x_96001+21x_96002+83x_96003+31x_96004+81x_96005+16x_96006+99x_96007+80x_96008+70x_96009+81x_96010+83x_96011+76x_96012+21x_96013+58x_96014+51x_96015+36x_96016+46x_96017+95x_96018+20x_96019+4x_96020+5x_96021+65x_96022+94x_96023+26x_96024+13x_96025+45x_96026+35x_96027+5x_96028+16x_96029+38x_96030+36x_96031+71x_96032+5x_96033+37x_96034+91x_96035+3x_96036+89x_96037+98x_96038+48x_96039+61x_96040+96x_96041+18x_96042+54x_96043+36x_96044+42x_96045+2x_96046+13x_96047+45x_96048+88x_96049+20x_96050+22x_96051+49x_96052+32x_96053+28x_96054+6x_96055+39x_96056+77x_96057+78x_96058+32x_96059+23x_96060+55x_96061+96x_96062+x_96063+74x_96064+77x_96065+84x_96066+38x_96067+91x_96068+73x_96069+73x_96070+92x_96071+35x_96072+73x_96073+62x_96074+41x_96075+5x_96076+61x_96077+65x_96078+69x_96079+83x_96080+89x_96081+95x_96082+54x_96083+23x_96084+90x_96085+94x_96086+44x_96087+51x_96088+62x_96089+42x_96090+31x_96091+15x_96092+71x_96093+17x_96094+38x_96095+87x_96096+25x_96097+50x_96098+73x_96099+85x_96100+39x_96101+68x_96102+58x_96103+42x_96104+43x_96105+76x_96106+82x_96107+70x_96108+62x_96109+13x_96110+62x_96111+3x_96112+49x_96113+48x_96114+78x_96115+72x_96116+98x_96117+2x_96118+5x_96119+29x_96120+18x_96121+22x_96122+100x_96123+47x_96124+15x_96125+88x_96126+14x_96127+76x_96128+28x_96129+64x_96130+58x_96131+27x_96132+26x_96133+98x_96134+38x_96135+98x_96136+91x_96137+11x_96138+73x_96139+38x_96140+83x_96141+12x_96142+46x_96143+100x_96144+74x_96145+61x_96146+5x_96147+74x_96148+62x_96149+45x_96150+49x_96151+33x_96152+9x_96153+7x_96154+95x_96155+38x_96156+8x_96157+33x_96158+18x_96159+13x_96160+84x_96161+75x_96162+51x_96163+40x_96164+81x_96165+59x_96166+92x_96167+74x_96168+48x_96169+62x_96170+81x_96171+31x_96172+34x_96173+16x_96174+34x_96175+39x_96176+49x_96177+89x_96178+30x_96179+7x_96180+48x_96181+66x_96182+33x_96183+74x_96184+60x_96185+22x_96186+37x_96187+13x_96188+12x_96189+64x_96190+19x_96191+32x_96192+87x_96193+54x_96194+36x_96195+88x_96196+52x_96197+44x_96198+3x_96199+7x_96200+62x_96201+45x_96202+99x_96203+33x_96204+63x_96205+60x_96206+60x_96207+46x_96208+30x_96209+32x_96210+92x_96211+23x_96212+64x_96213+8x_96214+81x_96215+19x_96216+100x_96217+72x_96218+99x_96219+92x_96220+69x_96221+74x_96222+69x_96223+49x_96224+71x_96225+58x_96226+76x_96227+32x_96228+48x_96229+50x_96230+3x_96231+29x_96232+59x_96233+32x_96234+76x_96235+84x_96236+88x_96237+22x_96238+72x_96239+51x_96240+63x_96241+75x_96242+5x_96243+14x_96244+95x_96245+19x_96246+4x_96247+91x_96248+33x_96249+39x_96250+69x_96251+53x_96252+55x_96253+21x_96254+97x_96255+55x_96256+25x_96257+25x_96258+69x_96259+19x_96260+64x_96261+20x_96262+33x_96263+24x_96264+47x_96265+22x_96266+46x_96267+99x_96268+82x_96269+51x_96270+95x_96271+98x_96272+23x_96273+43x_96274+54x_96275+36x_96276+93x_96277+32x_96278+21x_96279+47x_96280+58x_96281+56x_96282+44x_96283+52x_96284+32x_96285+68x_96286+79x_96287+67x_96288+77x_96289+76x_96290+90x_96291+97x_96292+48x_96293+93x_96294+71x_96295+51x_96296+48x_96297+73x_96298+85x_96299+73x_96300+25x_96301+41x_96302+98x_96303+53x_96304+83x_96305+85x_96306+40x_96307+53x_96308+81x_96309+77x_96310+26x_96311+21x_96312+35x_96313+52x_96314+23x_96315+24x_96316+13x_96317+81x_96318+74x_96319+x_96320+26x_96321+68x_96322+95x_96323+39x_96324+87x_96325+81x_96326+59x_96327+86x_96328+2x_96329+72x_96330+10x_96331+55x_96332+92x_96333+32x_96334+87x_96335+95x_96336+36x_96337+8x_96338+35x_96339+73x_96340+38x_96341+61x_96342+31x_96343+100x_96344+11x_96345+74x_96346+17x_96347+17x_96348+23x_96349+48x_96350+25x_96351+19x_96352+70x_96353+82x_96354+32x_96355+4x_96356+5x_96357+78x_96358+37x_96359+53x_96360+10x_96361+44x_96362+93x_96363+56x_96364+96x_96365+77x_96366+29x_96367+56x_96368+88x_96369+27x_96370+21x_96371+83x_96372+38x_96373+24x_96374+97x_96375+18x_96376+5x_96377+5x_96378+49x_96379+30x_96380+88x_96381+63x_96382+40x_96383+35x_96384+73x_96385+28x_96386+24x_96387+14x_96388+32x_96389+100x_96390+8x_96391+5x_96392+63x_96393+17x_96394+32x_96395+44x_96396+35x_96397+98x_96398+54x_96399+32x_96400+36x_96401+82x_96402+98x_96403+71x_96404+67x_96405+33x_96406+76x_96407+43x_96408+74x_96409+20x_96410+59x_96411+74x_96412+73x_96413+61x_96414+5x_96415+46x_96416+2x_96417+28x_96418+15x_96419+14x_96420+21x_96421+29x_96422+17x_96423+22x_96424+50x_96425+85x_96426+11x_96427+82x_96428+71x_96429+32x_96430+15x_96431+65x_96432+37x_96433+94x_96434+35x_96435+6x_96436+90x_96437+60x_96438+51x_96439+39x_96440+8x_96441+35x_96442+21x_96443+7x_96444+8x_96445+85x_96446+22x_96447+50x_96448+89x_96449+43x_96450+56x_96451+26x_96452+2x_96453+8x_96454+85x_96455+25x_96456+82x_96457+2x_96458+49x_96459+76x_96460+99x_96461+59x_96462+97x_96463+75x_96464+99x_96465+80x_96466+64x_96467+34x_96468+65x_96469+50x_96470+81x_96471+74x_96472+45x_96473+72x_96474+100x_96475+46x_96476+70x_96477+47x_96478+59x_96479+75x_96480+28x_96481+10x_96482+97x_96483+99x_96484+48x_96485+8x_96486+2x_96487+69x_96488+54x_96489+54x_96490+x_96491+9x_96492+52x_96493+66x_96494+6x_96495+75x_96496+35x_96497+x_96498+41x_96499+82x_96500+38x_96501+x_96502+7x_96503+18x_96504+19x_96505+73x_96506+80x_96507+33x_96508+72x_96509+83x_96510+63x_96511+33x_96512+29x_96513+43x_96514+78x_96515+88x_96516+5x_96517+48x_96518+56x_96519+91x_96520+85x_96521+91x_96522+76x_96523+84x_96524+80x_96525+38x_96526+4x_96527+93x_96528+31x_96529+58x_96530+39x_96531+62x_96532+58x_96533+48x_96534+26x_96535+81x_96536+58x_96537+34x_96538+46x_96539+20x_96540+40x_96541+97x_96542+55x_96543+36x_96544+73x_96545+50x_96546+71x_96547+46x_96548+46x_96549+51x_96550+74x_96551+16x_96552+38x_96553+99x_96554+19x_96555+49x_96556+22x_96557+7x_96558+6x_96559+74x_96560+57x_96561+49x_96562+100x_96563+72x_96564+13x_96565+55x_96566+46x_96567+92x_96568+100x_96569+93x_96570+9x_96571+8x_96572+42x_96573+86x_96574+17x_96575+36x_96576+95x_96577+82x_96578+46x_96579+31x_96580+43x_96581+72x_96582+53x_96583+47x_96584+46x_96585+41x_96586+48x_96587+73x_96588+96x_96589+35x_96590+28x_96591+58x_96592+44x_96593+59x_96594+83x_96595+28x_96596+31x_96597+51x_96598+11x_96599+100x_96600+77x_96601+13x_96602+75x_96603+96x_96604+20x_96605+58x_96606+91x_96607+93x_96608+88x_96609+81x_96610+37x_96611+2x_96612+100x_96613+90x_96614+60x_96615+13x_96616+96x_96617+30x_96618+23x_96619+17x_96620+6x_96621+59x_96622+19x_96623+70x_96624+18x_96625+34x_96626+65x_96627+46x_96628+81x_96629+x_96630+23x_96631+6x_96632+41x_96633+87x_96634+80x_96635+75x_96636+3x_96637+37x_96638+85x_96639+10x_96640+80x_96641+x_96642+87x_96643+85x_96644+22x_96645+61x_96646+30x_96647+62x_96648+31x_96649+20x_96650+80x_96651+94x_96652+9x_96653+35x_96654+48x_96655+93x_96656+41x_96657+59x_96658+17x_96659+8x_96660+14x_96661+32x_96662+59x_96663+75x_96664+82x_96665+45x_96666+4x_96667+93x_96668+97x_96669+94x_96670+95x_96671+93x_96672+37x_96673+31x_96674+14x_96675+84x_96676+38x_96677+82x_96678+11x_96679+27x_96680+44x_96681+56x_96682+14x_96683+41x_96684+56x_96685+47x_96686+60x_96687+21x_96688+45x_96689+34x_96690+23x_96691+53x_96692+77x_96693+77x_96694+38x_96695+55x_96696+92x_96697+30x_96698+59x_96699+53x_96700+18x_96701+54x_96702+53x_96703+54x_96704+75x_96705+x_96706+52x_96707+58x_96708+97x_96709+46x_96710+99x_96711+84x_96712+39x_96713+100x_96714+99x_96715+78x_96716+48x_96717+81x_96718+15x_96719+49x_96720+66x_96721+63x_96722+27x_96723+55x_96724+92x_96725+81x_96726+54x_96727+81x_96728+97x_96729+6x_96730+83x_96731+14x_96732+38x_96733+98x_96734+15x_96735+96x_96736+82x_96737+63x_96738+72x_96739+26x_96740+16x_96741+31x_96742+27x_96743+27x_96744+33x_96745+26x_96746+10x_96747+6x_96748+36x_96749+59x_96750+2x_96751+71x_96752+96x_96753+4x_96754+48x_96755+94x_96756+79x_96757+78x_96758+21x_96759+59x_96760+31x_96761+98x_96762+35x_96763+87x_96764+22x_96765+97x_96766+50x_96767+23x_96768+24x_96769+43x_96770+25x_96771+68x_96772+67x_96773+38x_96774+64x_96775+83x_96776+17x_96777+27x_96778+13x_96779+84x_96780+3x_96781+63x_96782+79x_96783+96x_96784+95x_96785+40x_96786+46x_96787+65x_96788+8x_96789+49x_96790+97x_96791+70x_96792+67x_96793+98x_96794+79x_96795+4x_96796+96x_96797+56x_96798+72x_96799+63x_96800+62x_96801+43x_96802+25x_96803+49x_96804+36x_96805+73x_96806+44x_96807+8x_96808+78x_96809+68x_96810+27x_96811+84x_96812+86x_96813+82x_96814+69x_96815+29x_96816+24x_96817+49x_96818+85x_96819+75x_96820+58x_96821+22x_96822+67x_96823+69x_96824+27x_96825+26x_96826+24x_96827+76x_96828+56x_96829+89x_96830+67x_96831+58x_96832+98x_96833+7x_96834+15x_96835+10x_96836+2x_96837+31x_96838+57x_96839+91x_96840+86x_96841+33x_96842+91x_96843+51x_96844+20x_96845+7x_96846+26x_96847+95x_96848+61x_96849+6x_96850+9x_96851+35x_96852+6x_96853+19x_96854+47x_96855+65x_96856+38x_96857+88x_96858+97x_96859+22x_96860+50x_96861+20x_96862+43x_96863+89x_96864+55x_96865+5x_96866+29x_96867+80x_96868+64x_96869+28x_96870+91x_96871+28x_96872+50x_96873+28x_96874+96x_96875+70x_96876+53x_96877+52x_96878+42x_96879+2x_96880+56x_96881+62x_96882+42x_96883+39x_96884+52x_96885+60x_96886+39x_96887+75x_96888+13x_96889+22x_96890+73x_96891+x_96892+67x_96893+13x_96894+28x_96895+17x_96896+25x_96897+82x_96898+69x_96899+88x_96900+95x_96901+47x_96902+36x_96903+70x_96904+83x_96905+30x_96906+73x_96907+93x_96908+39x_96909+46x_96910+91x_96911+35x_96912+21x_96913+65x_96914+75x_96915+83x_96916+58x_96917+46x_96918+21x_96919+16x_96920+40x_96921+35x_96922+37x_96923+100x_96924+13x_96925+4x_96926+81x_96927+96x_96928+83x_96929+95x_96930+72x_96931+97x_96932+34x_96933+21x_96934+25x_96935+32x_96936+80x_96937+42x_96938+36x_96939+8x_96940+44x_96941+30x_96942+56x_96943+63x_96944+41x_96945+41x_96946+61x_96947+60x_96948+28x_96949+85x_96950+38x_96951+92x_96952+59x_96953+9x_96954+33x_96955+72x_96956+63x_96957+24x_96958+70x_96959+51x_96960+99x_96961+55x_96962+11x_96963+92x_96964+55x_96965+50x_96966+90x_96967+72x_96968+19x_96969+42x_96970+81x_96971+57x_96972+98x_96973+26x_96974+23x_96975+99x_96976+70x_96977+21x_96978+46x_96979+28x_96980+54x_96981+73x_96982+13x_96983+78x_96984+12x_96985+90x_96986+34x_96987+82x_96988+44x_96989+41x_96990+81x_96991+70x_96992+28x_96993+40x_96994+2x_96995+61x_96996+67x_96997+64x_96998+98x_96999+96x_97000+6x_97001+90x_97002+53x_97003+29x_97004+83x_97005+40x_97006+41x_97007+74x_97008+99x_97009+95x_97010+51x_97011+73x_97012+10x_97013+69x_97014+91x_97015+35x_97016+42x_97017+46x_97018+2x_97019+63x_97020+7x_97021+61x_97022+60x_97023+12x_97024+75x_97025+37x_97026+25x_97027+97x_97028+96x_97029+74x_97030+34x_97031+31x_97032+55x_97033+47x_97034+4x_97035+39x_97036+21x_97037+14x_97038+79x_97039+77x_97040+58x_97041+59x_97042+26x_97043+17x_97044+97x_97045+11x_97046+40x_97047+30x_97048+74x_97049+14x_97050+7x_97051+15x_97052+69x_97053+75x_97054+76x_97055+91x_97056+74x_97057+25x_97058+30x_97059+78x_97060+24x_97061+69x_97062+94x_97063+75x_97064+14x_97065+74x_97066+94x_97067+94x_97068+33x_97069+49x_97070+90x_97071+94x_97072+29x_97073+93x_97074+27x_97075+5x_97076+11x_97077+98x_97078+13x_97079+14x_97080+77x_97081+90x_97082+31x_97083+89x_97084+39x_97085+13x_97086+53x_97087+39x_97088+81x_97089+64x_97090+32x_97091+95x_97092+21x_97093+85x_97094+93x_97095+93x_97096+57x_97097+97x_97098+98x_97099+37x_97100+47x_97101+84x_97102+78x_97103+65x_97104+94x_97105+4x_97106+8x_97107+63x_97108+39x_97109+24x_97110+35x_97111+54x_97112+78x_97113+45x_97114+4x_97115+35x_97116+83x_97117+21x_97118+22x_97119+74x_97120+43x_97121+87x_97122+53x_97123+11x_97124+61x_97125+40x_97126+11x_97127+85x_97128+8x_97129+64x_97130+65x_97131+67x_97132+90x_97133+90x_97134+64x_97135+94x_97136+97x_97137+31x_97138+5x_97139+83x_97140+57x_97141+61x_97142+42x_97143+64x_97144+99x_97145+29x_97146+47x_97147+55x_97148+88x_97149+7x_97150+51x_97151+73x_97152+82x_97153+73x_97154+65x_97155+17x_97156+38x_97157+26x_97158+57x_97159+50x_97160+55x_97161+28x_97162+79x_97163+42x_97164+11x_97165+6x_97166+40x_97167+85x_97168+72x_97169+16x_97170+30x_97171+67x_97172+63x_97173+62x_97174+81x_97175+92x_97176+6x_97177+57x_97178+24x_97179+31x_97180+55x_97181+30x_97182+39x_97183+63x_97184+83x_97185+75x_97186+8x_97187+91x_97188+80x_97189+75x_97190+23x_97191+40x_97192+74x_97193+89x_97194+76x_97195+62x_97196+72x_97197+35x_97198+6x_97199+18x_97200+52x_97201+92x_97202+54x_97203+40x_97204+32x_97205+38x_97206+3x_97207+71x_97208+81x_97209+12x_97210+25x_97211+91x_97212+32x_97213+76x_97214+32x_97215+56x_97216+51x_97217+2x_97218+87x_97219+5x_97220+58x_97221+74x_97222+33x_97223+x_97224+41x_97225+13x_97226+92x_97227+99x_97228+12x_97229+51x_97230+6x_97231+56x_97232+65x_97233+79x_97234+16x_97235+67x_97236+39x_97237+37x_97238+44x_97239+30x_97240+26x_97241+42x_97242+12x_97243+17x_97244+24x_97245+61x_97246+25x_97247+14x_97248+37x_97249+6x_97250+44x_97251+82x_97252+98x_97253+91x_97254+42x_97255+18x_97256+70x_97257+85x_97258+66x_97259+98x_97260+59x_97261+24x_97262+90x_97263+45x_97264+97x_97265+53x_97266+77x_97267+47x_97268+30x_97269+66x_97270+46x_97271+26x_97272+78x_97273+54x_97274+78x_97275+67x_97276+35x_97277+88x_97278+33x_97279+19x_97280+33x_97281+35x_97282+88x_97283+9x_97284+10x_97285+24x_97286+9x_97287+43x_97288+89x_97289+25x_97290+39x_97291+75x_97292+23x_97293+14x_97294+20x_97295+x_97296+79x_97297+49x_97298+38x_97299+75x_97300+67x_97301+31x_97302+25x_97303+62x_97304+93x_97305+6x_97306+53x_97307+3x_97308+19x_97309+41x_97310+95x_97311+26x_97312+85x_97313+48x_97314+12x_97315+25x_97316+89x_97317+36x_97318+93x_97319+26x_97320+78x_97321+53x_97322+58x_97323+52x_97324+43x_97325+55x_97326+22x_97327+57x_97328+53x_97329+48x_97330+43x_97331+10x_97332+97x_97333+82x_97334+72x_97335+73x_97336+100x_97337+10x_97338+70x_97339+4x_97340+19x_97341+87x_97342+9x_97343+85x_97344+20x_97345+98x_97346+56x_97347+22x_97348+9x_97349+92x_97350+83x_97351+33x_97352+93x_97353+19x_97354+69x_97355+82x_97356+49x_97357+72x_97358+30x_97359+96x_97360+81x_97361+19x_97362+52x_97363+33x_97364+29x_97365+57x_97366+15x_97367+16x_97368+27x_97369+96x_97370+13x_97371+96x_97372+35x_97373+95x_97374+41x_97375+43x_97376+67x_97377+90x_97378+44x_97379+17x_97380+91x_97381+92x_97382+46x_97383+77x_97384+60x_97385+64x_97386+21x_97387+46x_97388+64x_97389+7x_97390+55x_97391+41x_97392+7x_97393+7x_97394+86x_97395+9x_97396+80x_97397+98x_97398+94x_97399+32x_97400+71x_97401+9x_97402+47x_97403+56x_97404+81x_97405+30x_97406+88x_97407+62x_97408+31x_97409+76x_97410+46x_97411+77x_97412+7x_97413+22x_97414+75x_97415+64x_97416+38x_97417+64x_97418+68x_97419+75x_97420+42x_97421+21x_97422+92x_97423+75x_97424+67x_97425+46x_97426+49x_97427+65x_97428+61x_97429+51x_97430+25x_97431+62x_97432+53x_97433+77x_97434+62x_97435+76x_97436+41x_97437+45x_97438+38x_97439+46x_97440+24x_97441+28x_97442+53x_97443+38x_97444+71x_97445+6x_97446+81x_97447+2x_97448+21x_97449+100x_97450+41x_97451+90x_97452+76x_97453+15x_97454+6x_97455+20x_97456+42x_97457+10x_97458+80x_97459+40x_97460+100x_97461+20x_97462+89x_97463+48x_97464+75x_97465+52x_97466+65x_97467+23x_97468+13x_97469+88x_97470+7x_97471+42x_97472+67x_97473+77x_97474+78x_97475+75x_97476+30x_97477+19x_97478+27x_97479+77x_97480+81x_97481+24x_97482+34x_97483+95x_97484+49x_97485+71x_97486+95x_97487+66x_97488+40x_97489+98x_97490+8x_97491+83x_97492+49x_97493+2x_97494+43x_97495+62x_97496+78x_97497+82x_97498+71x_97499+97x_97500+52x_97501+72x_97502+58x_97503+45x_97504+18x_97505+82x_97506+79x_97507+2x_97508+21x_97509+32x_97510+27x_97511+38x_97512+16x_97513+33x_97514+70x_97515+19x_97516+68x_97517+73x_97518+23x_97519+8x_97520+84x_97521+61x_97522+42x_97523+80x_97524+41x_97525+71x_97526+23x_97527+58x_97528+46x_97529+68x_97530+53x_97531+37x_97532+18x_97533+31x_97534+86x_97535+100x_97536+36x_97537+35x_97538+30x_97539+31x_97540+33x_97541+29x_97542+94x_97543+46x_97544+71x_97545+59x_97546+46x_97547+86x_97548+98x_97549+26x_97550+24x_97551+91x_97552+99x_97553+77x_97554+11x_97555+39x_97556+66x_97557+73x_97558+63x_97559+99x_97560+75x_97561+72x_97562+71x_97563+65x_97564+79x_97565+25x_97566+8x_97567+96x_97568+28x_97569+38x_97570+14x_97571+31x_97572+19x_97573+85x_97574+14x_97575+15x_97576+43x_97577+51x_97578+58x_97579+50x_97580+94x_97581+25x_97582+52x_97583+24x_97584+30x_97585+x_97586+98x_97587+22x_97588+95x_97589+81x_97590+61x_97591+43x_97592+79x_97593+56x_97594+66x_97595+23x_97596+91x_97597+88x_97598+28x_97599+55x_97600+93x_97601+86x_97602+17x_97603+11x_97604+18x_97605+87x_97606+55x_97607+90x_97608+18x_97609+75x_97610+54x_97611+49x_97612+26x_97613+76x_97614+23x_97615+10x_97616+72x_97617+52x_97618+76x_97619+4x_97620+64x_97621+99x_97622+94x_97623+34x_97624+20x_97625+78x_97626+7x_97627+56x_97628+82x_97629+15x_97630+12x_97631+85x_97632+47x_97633+76x_97634+x_97635+73x_97636+100x_97637+16x_97638+14x_97639+68x_97640+72x_97641+15x_97642+81x_97643+13x_97644+52x_97645+95x_97646+92x_97647+2x_97648+25x_97649+x_97650+92x_97651+x_97652+99x_97653+7x_97654+33x_97655+84x_97656+74x_97657+95x_97658+7x_97659+6x_97660+3x_97661+22x_97662+17x_97663+47x_97664+40x_97665+79x_97666+25x_97667+17x_97668+25x_97669+32x_97670+12x_97671+7x_97672+63x_97673+16x_97674+x_97675+27x_97676+28x_97677+35x_97678+4x_97679+95x_97680+67x_97681+40x_97682+10x_97683+3x_97684+42x_97685+93x_97686+64x_97687+75x_97688+23x_97689+80x_97690+33x_97691+21x_97692+7x_97693+96x_97694+100x_97695+56x_97696+20x_97697+3x_97698+14x_97699+34x_97700+48x_97701+4x_97702+50x_97703+40x_97704+30x_97705+93x_97706+11x_97707+23x_97708+96x_97709+29x_97710+61x_97711+16x_97712+32x_97713+68x_97714+45x_97715+60x_97716+72x_97717+15x_97718+94x_97719+19x_97720+88x_97721+37x_97722+14x_97723+22x_97724+42x_97725+56x_97726+41x_97727+63x_97728+10x_97729+82x_97730+95x_97731+9x_97732+33x_97733+44x_97734+30x_97735+94x_97736+16x_97737+74x_97738+43x_97739+76x_97740+67x_97741+61x_97742+55x_97743+40x_97744+92x_97745+5x_97746+41x_97747+74x_97748+75x_97749+9x_97750+57x_97751+56x_97752+x_97753+35x_97754+60x_97755+16x_97756+49x_97757+88x_97758+78x_97759+68x_97760+26x_97761+69x_97762+86x_97763+35x_97764+41x_97765+100x_97766+30x_97767+24x_97768+65x_97769+30x_97770+71x_97771+91x_97772+76x_97773+37x_97774+87x_97775+52x_97776+32x_97777+41x_97778+16x_97779+83x_97780+46x_97781+83x_97782+30x_97783+46x_97784+52x_97785+83x_97786+7x_97787+13x_97788+61x_97789+66x_97790+74x_97791+22x_97792+12x_97793+70x_97794+83x_97795+52x_97796+59x_97797+46x_97798+54x_97799+48x_97800+99x_97801+88x_97802+5x_97803+91x_97804+70x_97805+25x_97806+71x_97807+28x_97808+16x_97809+69x_97810+49x_97811+93x_97812+91x_97813+28x_97814+62x_97815+43x_97816+50x_97817+32x_97818+63x_97819+54x_97820+81x_97821+51x_97822+52x_97823+76x_97824+25x_97825+70x_97826+70x_97827+45x_97828+65x_97829+59x_97830+18x_97831+7x_97832+75x_97833+4x_97834+69x_97835+9x_97836+96x_97837+13x_97838+20x_97839+96x_97840+84x_97841+7x_97842+20x_97843+79x_97844+31x_97845+40x_97846+88x_97847+19x_97848+58x_97849+59x_97850+40x_97851+55x_97852+25x_97853+64x_97854+67x_97855+38x_97856+35x_97857+46x_97858+47x_97859+75x_97860+65x_97861+5x_97862+6x_97863+71x_97864+62x_97865+98x_97866+66x_97867+91x_97868+6x_97869+72x_97870+80x_97871+51x_97872+89x_97873+28x_97874+80x_97875+47x_97876+56x_97877+58x_97878+98x_97879+61x_97880+61x_97881+31x_97882+93x_97883+16x_97884+24x_97885+16x_97886+64x_97887+31x_97888+59x_97889+100x_97890+67x_97891+19x_97892+59x_97893+51x_97894+100x_97895+26x_97896+80x_97897+62x_97898+53x_97899+34x_97900+36x_97901+75x_97902+72x_97903+86x_97904+23x_97905+65x_97906+83x_97907+51x_97908+12x_97909+84x_97910+8x_97911+57x_97912+70x_97913+25x_97914+65x_97915+75x_97916+66x_97917+87x_97918+19x_97919+89x_97920+89x_97921+4x_97922+61x_97923+22x_97924+92x_97925+32x_97926+13x_97927+64x_97928+9x_97929+76x_97930+94x_97931+59x_97932+67x_97933+77x_97934+71x_97935+x_97936+28x_97937+5x_97938+63x_97939+36x_97940+27x_97941+33x_97942+45x_97943+3x_97944+21x_97945+9x_97946+28x_97947+98x_97948+x_97949+9x_97950+x_97951+5x_97952+100x_97953+55x_97954+81x_97955+15x_97956+67x_97957+41x_97958+64x_97959+85x_97960+15x_97961+88x_97962+11x_97963+37x_97964+13x_97965+3x_97966+36x_97967+21x_97968+74x_97969+60x_97970+82x_97971+90x_97972+45x_97973+80x_97974+18x_97975+x_97976+46x_97977+41x_97978+8x_97979+70x_97980+6x_97981+56x_97982+85x_97983+19x_97984+85x_97985+33x_97986+72x_97987+23x_97988+14x_97989+70x_97990+89x_97991+35x_97992+63x_97993+42x_97994+71x_97995+11x_97996+58x_97997+7x_97998+71x_97999+87x_98000+58x_98001+48x_98002+20x_98003+99x_98004+50x_98005+82x_98006+11x_98007+78x_98008+8x_98009+89x_98010+27x_98011+81x_98012+50x_98013+2x_98014+22x_98015+77x_98016+65x_98017+94x_98018+10x_98019+81x_98020+24x_98021+97x_98022+28x_98023+41x_98024+23x_98025+37x_98026+8x_98027+33x_98028+11x_98029+88x_98030+54x_98031+5x_98032+87x_98033+24x_98034+97x_98035+88x_98036+29x_98037+32x_98038+96x_98039+40x_98040+98x_98041+36x_98042+39x_98043+52x_98044+77x_98045+19x_98046+45x_98047+64x_98048+26x_98049+63x_98050+12x_98051+88x_98052+62x_98053+91x_98054+59x_98055+71x_98056+x_98057+91x_98058+65x_98059+87x_98060+39x_98061+76x_98062+55x_98063+30x_98064+95x_98065+37x_98066+45x_98067+92x_98068+67x_98069+6x_98070+31x_98071+55x_98072+67x_98073+34x_98074+44x_98075+51x_98076+84x_98077+78x_98078+14x_98079+64x_98080+59x_98081+79x_98082+68x_98083+100x_98084+81x_98085+12x_98086+28x_98087+44x_98088+71x_98089+45x_98090+2x_98091+54x_98092+16x_98093+79x_98094+36x_98095+52x_98096+66x_98097+69x_98098+39x_98099+93x_98100+17x_98101+10x_98102+39x_98103+2x_98104+40x_98105+3x_98106+83x_98107+83x_98108+30x_98109+43x_98110+5x_98111+48x_98112+84x_98113+77x_98114+82x_98115+68x_98116+94x_98117+60x_98118+48x_98119+29x_98120+54x_98121+4x_98122+11x_98123+91x_98124+54x_98125+7x_98126+93x_98127+81x_98128+56x_98129+54x_98130+72x_98131+97x_98132+96x_98133+49x_98134+26x_98135+50x_98136+88x_98137+52x_98138+66x_98139+96x_98140+82x_98141+4x_98142+10x_98143+92x_98144+76x_98145+52x_98146+59x_98147+26x_98148+62x_98149+67x_98150+22x_98151+69x_98152+27x_98153+66x_98154+28x_98155+42x_98156+41x_98157+50x_98158+41x_98159+81x_98160+61x_98161+12x_98162+33x_98163+99x_98164+94x_98165+65x_98166+88x_98167+74x_98168+30x_98169+67x_98170+75x_98171+37x_98172+52x_98173+40x_98174+21x_98175+32x_98176+69x_98177+72x_98178+3x_98179+98x_98180+55x_98181+67x_98182+40x_98183+52x_98184+8x_98185+89x_98186+85x_98187+11x_98188+49x_98189+3x_98190+10x_98191+88x_98192+92x_98193+24x_98194+80x_98195+36x_98196+61x_98197+49x_98198+69x_98199+16x_98200+42x_98201+61x_98202+9x_98203+14x_98204+57x_98205+72x_98206+76x_98207+58x_98208+25x_98209+5x_98210+29x_98211+82x_98212+100x_98213+5x_98214+34x_98215+72x_98216+13x_98217+55x_98218+23x_98219+4x_98220+56x_98221+84x_98222+84x_98223+82x_98224+77x_98225+32x_98226+15x_98227+57x_98228+83x_98229+9x_98230+92x_98231+69x_98232+8x_98233+64x_98234+95x_98235+54x_98236+86x_98237+93x_98238+77x_98239+73x_98240+19x_98241+86x_98242+x_98243+93x_98244+51x_98245+26x_98246+99x_98247+40x_98248+47x_98249+9x_98250+19x_98251+28x_98252+34x_98253+33x_98254+42x_98255+94x_98256+16x_98257+26x_98258+73x_98259+16x_98260+41x_98261+72x_98262+19x_98263+77x_98264+56x_98265+15x_98266+24x_98267+69x_98268+5x_98269+22x_98270+58x_98271+96x_98272+55x_98273+15x_98274+67x_98275+76x_98276+57x_98277+29x_98278+13x_98279+99x_98280+75x_98281+3x_98282+86x_98283+3x_98284+5x_98285+83x_98286+75x_98287+24x_98288+6x_98289+28x_98290+11x_98291+60x_98292+15x_98293+60x_98294+29x_98295+26x_98296+20x_98297+18x_98298+56x_98299+39x_98300+83x_98301+42x_98302+3x_98303+53x_98304+68x_98305+57x_98306+90x_98307+24x_98308+88x_98309+61x_98310+44x_98311+47x_98312+12x_98313+26x_98314+17x_98315+10x_98316+88x_98317+x_98318+17x_98319+93x_98320+23x_98321+13x_98322+50x_98323+19x_98324+72x_98325+34x_98326+17x_98327+96x_98328+19x_98329+72x_98330+88x_98331+77x_98332+62x_98333+81x_98334+48x_98335+70x_98336+55x_98337+95x_98338+82x_98339+79x_98340+90x_98341+73x_98342+74x_98343+93x_98344+29x_98345+89x_98346+23x_98347+46x_98348+20x_98349+24x_98350+21x_98351+13x_98352+47x_98353+66x_98354+82x_98355+12x_98356+90x_98357+71x_98358+34x_98359+32x_98360+4x_98361+33x_98362+15x_98363+62x_98364+70x_98365+85x_98366+49x_98367+50x_98368+33x_98369+49x_98370+83x_98371+61x_98372+75x_98373+92x_98374+95x_98375+97x_98376+43x_98377+79x_98378+53x_98379+6x_98380+44x_98381+74x_98382+75x_98383+13x_98384+45x_98385+100x_98386+54x_98387+58x_98388+81x_98389+55x_98390+38x_98391+50x_98392+84x_98393+96x_98394+76x_98395+49x_98396+16x_98397+36x_98398+49x_98399+38x_98400+25x_98401+90x_98402+31x_98403+48x_98404+6x_98405+22x_98406+95x_98407+73x_98408+14x_98409+42x_98410+9x_98411+99x_98412+22x_98413+65x_98414+34x_98415+73x_98416+15x_98417+20x_98418+21x_98419+80x_98420+51x_98421+13x_98422+5x_98423+52x_98424+19x_98425+25x_98426+91x_98427+43x_98428+51x_98429+41x_98430+56x_98431+49x_98432+56x_98433+39x_98434+78x_98435+10x_98436+55x_98437+76x_98438+67x_98439+74x_98440+49x_98441+14x_98442+57x_98443+81x_98444+46x_98445+31x_98446+23x_98447+83x_98448+21x_98449+71x_98450+69x_98451+38x_98452+87x_98453+39x_98454+82x_98455+98x_98456+40x_98457+3x_98458+32x_98459+52x_98460+77x_98461+18x_98462+42x_98463+62x_98464+44x_98465+60x_98466+65x_98467+84x_98468+6x_98469+44x_98470+85x_98471+56x_98472+21x_98473+8x_98474+63x_98475+66x_98476+55x_98477+46x_98478+68x_98479+12x_98480+8x_98481+22x_98482+71x_98483+64x_98484+53x_98485+11x_98486+9x_98487+58x_98488+31x_98489+20x_98490+52x_98491+38x_98492+6x_98493+5x_98494+37x_98495+99x_98496+46x_98497+12x_98498+27x_98499+10x_98500+33x_98501+99x_98502+85x_98503+39x_98504+67x_98505+3x_98506+53x_98507+81x_98508+27x_98509+20x_98510+2x_98511+63x_98512+31x_98513+69x_98514+5x_98515+46x_98516+31x_98517+56x_98518+47x_98519+44x_98520+80x_98521+64x_98522+83x_98523+59x_98524+97x_98525+10x_98526+22x_98527+12x_98528+96x_98529+99x_98530+60x_98531+85x_98532+4x_98533+18x_98534+86x_98535+66x_98536+38x_98537+35x_98538+38x_98539+43x_98540+54x_98541+56x_98542+54x_98543+67x_98544+19x_98545+9x_98546+22x_98547+14x_98548+28x_98549+x_98550+90x_98551+23x_98552+17x_98553+35x_98554+21x_98555+25x_98556+44x_98557+66x_98558+80x_98559+69x_98560+63x_98561+65x_98562+63x_98563+18x_98564+56x_98565+12x_98566+96x_98567+10x_98568+90x_98569+21x_98570+36x_98571+78x_98572+28x_98573+32x_98574+9x_98575+73x_98576+89x_98577+65x_98578+23x_98579+9x_98580+99x_98581+55x_98582+27x_98583+3x_98584+42x_98585+99x_98586+74x_98587+63x_98588+98x_98589+10x_98590+31x_98591+27x_98592+43x_98593+93x_98594+40x_98595+10x_98596+12x_98597+52x_98598+85x_98599+22x_98600+15x_98601+2x_98602+53x_98603+33x_98604+67x_98605+58x_98606+66x_98607+70x_98608+88x_98609+55x_98610+10x_98611+39x_98612+46x_98613+55x_98614+100x_98615+100x_98616+84x_98617+75x_98618+42x_98619+51x_98620+33x_98621+30x_98622+82x_98623+88x_98624+71x_98625+93x_98626+66x_98627+51x_98628+10x_98629+88x_98630+21x_98631+36x_98632+59x_98633+75x_98634+20x_98635+78x_98636+43x_98637+93x_98638+22x_98639+30x_98640+64x_98641+98x_98642+27x_98643+20x_98644+37x_98645+90x_98646+41x_98647+x_98648+93x_98649+60x_98650+94x_98651+63x_98652+12x_98653+27x_98654+46x_98655+21x_98656+12x_98657+56x_98658+53x_98659+38x_98660+27x_98661+99x_98662+60x_98663+94x_98664+54x_98665+79x_98666+35x_98667+65x_98668+64x_98669+23x_98670+62x_98671+11x_98672+71x_98673+63x_98674+75x_98675+92x_98676+91x_98677+22x_98678+30x_98679+31x_98680+85x_98681+91x_98682+53x_98683+45x_98684+65x_98685+70x_98686+65x_98687+58x_98688+27x_98689+23x_98690+51x_98691+35x_98692+44x_98693+4x_98694+35x_98695+70x_98696+3x_98697+13x_98698+28x_98699+77x_98700+17x_98701+11x_98702+38x_98703+82x_98704+6x_98705+52x_98706+63x_98707+59x_98708+3x_98709+55x_98710+100x_98711+14x_98712+77x_98713+x_98714+20x_98715+16x_98716+36x_98717+45x_98718+84x_98719+19x_98720+22x_98721+89x_98722+78x_98723+48x_98724+6x_98725+22x_98726+25x_98727+88x_98728+50x_98729+18x_98730+94x_98731+48x_98732+69x_98733+74x_98734+57x_98735+52x_98736+16x_98737+5x_98738+10x_98739+9x_98740+10x_98741+66x_98742+69x_98743+9x_98744+38x_98745+41x_98746+93x_98747+17x_98748+79x_98749+63x_98750+12x_98751+98x_98752+66x_98753+37x_98754+88x_98755+14x_98756+41x_98757+41x_98758+68x_98759+55x_98760+36x_98761+92x_98762+27x_98763+20x_98764+26x_98765+19x_98766+40x_98767+47x_98768+50x_98769+9x_98770+3x_98771+83x_98772+7x_98773+65x_98774+25x_98775+11x_98776+75x_98777+52x_98778+15x_98779+40x_98780+37x_98781+41x_98782+65x_98783+50x_98784+32x_98785+7x_98786+7x_98787+74x_98788+56x_98789+96x_98790+4x_98791+4x_98792+80x_98793+72x_98794+72x_98795+60x_98796+58x_98797+21x_98798+98x_98799+78x_98800+69x_98801+54x_98802+61x_98803+27x_98804+74x_98805+57x_98806+11x_98807+54x_98808+63x_98809+19x_98810+15x_98811+67x_98812+22x_98813+84x_98814+86x_98815+85x_98816+23x_98817+2x_98818+10x_98819+33x_98820+80x_98821+76x_98822+58x_98823+46x_98824+21x_98825+80x_98826+87x_98827+72x_98828+71x_98829+38x_98830+8x_98831+69x_98832+38x_98833+80x_98834+65x_98835+21x_98836+35x_98837+37x_98838+49x_98839+32x_98840+18x_98841+25x_98842+17x_98843+45x_98844+71x_98845+67x_98846+14x_98847+94x_98848+59x_98849+29x_98850+96x_98851+27x_98852+98x_98853+36x_98854+90x_98855+49x_98856+84x_98857+14x_98858+63x_98859+84x_98860+48x_98861+44x_98862+92x_98863+23x_98864+56x_98865+42x_98866+16x_98867+6x_98868+69x_98869+49x_98870+40x_98871+23x_98872+67x_98873+70x_98874+43x_98875+28x_98876+62x_98877+62x_98878+79x_98879+7x_98880+91x_98881+51x_98882+80x_98883+45x_98884+18x_98885+82x_98886+28x_98887+38x_98888+73x_98889+4x_98890+40x_98891+5x_98892+86x_98893+24x_98894+19x_98895+83x_98896+70x_98897+33x_98898+85x_98899+78x_98900+80x_98901+55x_98902+36x_98903+96x_98904+79x_98905+81x_98906+70x_98907+38x_98908+84x_98909+73x_98910+25x_98911+53x_98912+29x_98913+29x_98914+95x_98915+99x_98916+22x_98917+10x_98918+45x_98919+78x_98920+30x_98921+45x_98922+68x_98923+67x_98924+24x_98925+63x_98926+83x_98927+24x_98928+96x_98929+94x_98930+63x_98931+28x_98932+73x_98933+74x_98934+25x_98935+73x_98936+40x_98937+17x_98938+27x_98939+16x_98940+10x_98941+78x_98942+74x_98943+52x_98944+44x_98945+6x_98946+97x_98947+56x_98948+81x_98949+12x_98950+89x_98951+91x_98952+28x_98953+32x_98954+64x_98955+67x_98956+40x_98957+27x_98958+91x_98959+88x_98960+45x_98961+9x_98962+3x_98963+75x_98964+86x_98965+5x_98966+46x_98967+41x_98968+61x_98969+79x_98970+71x_98971+68x_98972+20x_98973+65x_98974+14x_98975+52x_98976+20x_98977+71x_98978+64x_98979+46x_98980+79x_98981+81x_98982+38x_98983+41x_98984+28x_98985+88x_98986+15x_98987+49x_98988+61x_98989+37x_98990+31x_98991+64x_98992+45x_98993+91x_98994+81x_98995+22x_98996+82x_98997+19x_98998+14x_98999+83x_99000+68x_99001+30x_99002+58x_99003+8x_99004+97x_99005+x_99006+70x_99007+61x_99008+99x_99009+89x_99010+59x_99011+3x_99012+81x_99013+100x_99014+60x_99015+58x_99016+39x_99017+48x_99018+100x_99019+31x_99020+65x_99021+50x_99022+31x_99023+77x_99024+39x_99025+83x_99026+71x_99027+36x_99028+77x_99029+7x_99030+43x_99031+23x_99032+6x_99033+45x_99034+86x_99035+5x_99036+55x_99037+98x_99038+74x_99039+20x_99040+51x_99041+62x_99042+x_99043+63x_99044+75x_99045+81x_99046+99x_99047+23x_99048+22x_99049+57x_99050+19x_99051+6x_99052+29x_99053+61x_99054+43x_99055+18x_99056+98x_99057+12x_99058+82x_99059+63x_99060+95x_99061+97x_99062+7x_99063+31x_99064+28x_99065+95x_99066+47x_99067+x_99068+2x_99069+18x_99070+93x_99071+42x_99072+65x_99073+33x_99074+19x_99075+36x_99076+39x_99077+72x_99078+85x_99079+86x_99080+6x_99081+22x_99082+71x_99083+35x_99084+43x_99085+13x_99086+33x_99087+79x_99088+31x_99089+71x_99090+72x_99091+4x_99092+27x_99093+8x_99094+63x_99095+83x_99096+54x_99097+29x_99098+42x_99099+13x_99100+76x_99101+25x_99102+48x_99103+45x_99104+70x_99105+64x_99106+19x_99107+65x_99108+11x_99109+40x_99110+41x_99111+88x_99112+49x_99113+63x_99114+45x_99115+26x_99116+45x_99117+91x_99118+22x_99119+88x_99120+54x_99121+86x_99122+65x_99123+33x_99124+26x_99125+37x_99126+40x_99127+24x_99128+39x_99129+50x_99130+4x_99131+22x_99132+80x_99133+42x_99134+30x_99135+34x_99136+10x_99137+9x_99138+19x_99139+9x_99140+36x_99141+16x_99142+81x_99143+78x_99144+49x_99145+67x_99146+31x_99147+50x_99148+80x_99149+20x_99150+82x_99151+67x_99152+10x_99153+84x_99154+8x_99155+68x_99156+29x_99157+5x_99158+85x_99159+56x_99160+9x_99161+100x_99162+88x_99163+9x_99164+97x_99165+39x_99166+62x_99167+x_99168+75x_99169+8x_99170+72x_99171+80x_99172+48x_99173+36x_99174+74x_99175+48x_99176+48x_99177+76x_99178+42x_99179+40x_99180+x_99181+47x_99182+60x_99183+49x_99184+24x_99185+53x_99186+36x_99187+20x_99188+52x_99189+98x_99190+7x_99191+18x_99192+34x_99193+83x_99194+83x_99195+50x_99196+48x_99197+60x_99198+24x_99199+89x_99200+93x_99201+37x_99202+66x_99203+2x_99204+75x_99205+47x_99206+69x_99207+11x_99208+28x_99209+62x_99210+18x_99211+84x_99212+37x_99213+8x_99214+54x_99215+84x_99216+2x_99217+48x_99218+33x_99219+75x_99220+65x_99221+84x_99222+94x_99223+17x_99224+34x_99225+62x_99226+94x_99227+89x_99228+96x_99229+41x_99230+94x_99231+51x_99232+87x_99233+23x_99234+64x_99235+46x_99236+94x_99237+36x_99238+11x_99239+50x_99240+22x_99241+77x_99242+26x_99243+51x_99244+6x_99245+88x_99246+11x_99247+100x_99248+18x_99249+72x_99250+35x_99251+62x_99252+79x_99253+21x_99254+17x_99255+49x_99256+92x_99257+6x_99258+31x_99259+99x_99260+2x_99261+93x_99262+99x_99263+37x_99264+48x_99265+61x_99266+77x_99267+88x_99268+95x_99269+87x_99270+10x_99271+92x_99272+25x_99273+100x_99274+93x_99275+66x_99276+12x_99277+67x_99278+48x_99279+25x_99280+45x_99281+83x_99282+69x_99283+82x_99284+18x_99285+15x_99286+59x_99287+67x_99288+31x_99289+30x_99290+10x_99291+79x_99292+58x_99293+54x_99294+13x_99295+8x_99296+48x_99297+4x_99298+66x_99299+27x_99300+50x_99301+86x_99302+67x_99303+49x_99304+91x_99305+3x_99306+9x_99307+63x_99308+6x_99309+12x_99310+31x_99311+74x_99312+24x_99313+46x_99314+53x_99315+28x_99316+26x_99317+91x_99318+59x_99319+47x_99320+87x_99321+7x_99322+83x_99323+73x_99324+69x_99325+20x_99326+27x_99327+63x_99328+85x_99329+70x_99330+8x_99331+13x_99332+x_99333+96x_99334+33x_99335+24x_99336+74x_99337+57x_99338+95x_99339+86x_99340+54x_99341+20x_99342+61x_99343+74x_99344+39x_99345+34x_99346+20x_99347+40x_99348+43x_99349+79x_99350+65x_99351+37x_99352+66x_99353+38x_99354+28x_99355+22x_99356+52x_99357+28x_99358+72x_99359+x_99360+97x_99361+99x_99362+47x_99363+41x_99364+70x_99365+4x_99366+87x_99367+25x_99368+52x_99369+40x_99370+49x_99371+17x_99372+30x_99373+93x_99374+92x_99375+3x_99376+25x_99377+25x_99378+46x_99379+42x_99380+57x_99381+49x_99382+50x_99383+28x_99384+25x_99385+96x_99386+79x_99387+28x_99388+19x_99389+54x_99390+40x_99391+37x_99392+12x_99393+71x_99394+76x_99395+95x_99396+57x_99397+65x_99398+42x_99399+98x_99400+66x_99401+99x_99402+47x_99403+66x_99404+15x_99405+24x_99406+32x_99407+61x_99408+95x_99409+71x_99410+41x_99411+68x_99412+78x_99413+99x_99414+76x_99415+71x_99416+87x_99417+96x_99418+91x_99419+28x_99420+12x_99421+15x_99422+11x_99423+27x_99424+33x_99425+53x_99426+10x_99427+44x_99428+22x_99429+51x_99430+29x_99431+46x_99432+14x_99433+94x_99434+60x_99435+72x_99436+58x_99437+18x_99438+5x_99439+13x_99440+38x_99441+72x_99442+4x_99443+14x_99444+14x_99445+69x_99446+32x_99447+x_99448+54x_99449+92x_99450+77x_99451+84x_99452+42x_99453+3x_99454+4x_99455+22x_99456+53x_99457+83x_99458+10x_99459+95x_99460+87x_99461+28x_99462+85x_99463+71x_99464+83x_99465+44x_99466+19x_99467+29x_99468+26x_99469+26x_99470+79x_99471+4x_99472+82x_99473+74x_99474+27x_99475+89x_99476+12x_99477+74x_99478+19x_99479+38x_99480+100x_99481+30x_99482+26x_99483+76x_99484+90x_99485+81x_99486+37x_99487+93x_99488+59x_99489+7x_99490+47x_99491+47x_99492+96x_99493+74x_99494+37x_99495+97x_99496+92x_99497+65x_99498+31x_99499+97x_99500+88x_99501+40x_99502+3x_99503+77x_99504+75x_99505+90x_99506+88x_99507+18x_99508+99x_99509+55x_99510+40x_99511+14x_99512+61x_99513+86x_99514+49x_99515+29x_99516+93x_99517+8x_99518+80x_99519+96x_99520+81x_99521+42x_99522+2x_99523+14x_99524+96x_99525+28x_99526+22x_99527+48x_99528+58x_99529+60x_99530+11x_99531+78x_99532+96x_99533+41x_99534+34x_99535+2x_99536+91x_99537+14x_99538+76x_99539+94x_99540+66x_99541+22x_99542+53x_99543+29x_99544+33x_99545+46x_99546+67x_99547+60x_99548+19x_99549+17x_99550+99x_99551+85x_99552+69x_99553+66x_99554+96x_99555+21x_99556+78x_99557+16x_99558+43x_99559+62x_99560+20x_99561+97x_99562+8x_99563+69x_99564+29x_99565+7x_99566+5x_99567+56x_99568+44x_99569+8x_99570+68x_99571+28x_99572+47x_99573+5x_99574+42x_99575+27x_99576+44x_99577+78x_99578+x_99579+86x_99580+47x_99581+30x_99582+26x_99583+19x_99584+30x_99585+40x_99586+57x_99587+16x_99588+63x_99589+40x_99590+49x_99591+22x_99592+40x_99593+78x_99594+76x_99595+71x_99596+52x_99597+95x_99598+51x_99599+33x_99600+27x_99601+8x_99602+8x_99603+94x_99604+54x_99605+17x_99606+63x_99607+54x_99608+49x_99609+81x_99610+76x_99611+18x_99612+x_99613+2x_99614+6x_99615+38x_99616+75x_99617+14x_99618+100x_99619+35x_99620+24x_99621+77x_99622+13x_99623+54x_99624+64x_99625+87x_99626+78x_99627+71x_99628+53x_99629+94x_99630+24x_99631+84x_99632+88x_99633+66x_99634+24x_99635+36x_99636+97x_99637+99x_99638+17x_99639+13x_99640+47x_99641+28x_99642+97x_99643+98x_99644+22x_99645+74x_99646+77x_99647+42x_99648+13x_99649+94x_99650+16x_99651+57x_99652+61x_99653+65x_99654+39x_99655+90x_99656+52x_99657+58x_99658+61x_99659+46x_99660+7x_99661+89x_99662+34x_99663+7x_99664+39x_99665+2x_99666+51x_99667+37x_99668+43x_99669+86x_99670+18x_99671+10x_99672+12x_99673+16x_99674+100x_99675+65x_99676+98x_99677+21x_99678+86x_99679+20x_99680+64x_99681+53x_99682+53x_99683+8x_99684+99x_99685+78x_99686+23x_99687+69x_99688+98x_99689+71x_99690+24x_99691+6x_99692+85x_99693+49x_99694+95x_99695+x_99696+55x_99697+15x_99698+47x_99699+29x_99700+12x_99701+49x_99702+70x_99703+39x_99704+18x_99705+39x_99706+11x_99707+57x_99708+42x_99709+37x_99710+58x_99711+35x_99712+28x_99713+98x_99714+46x_99715+80x_99716+66x_99717+58x_99718+76x_99719+100x_99720+77x_99721+41x_99722+3x_99723+11x_99724+82x_99725+17x_99726+53x_99727+5x_99728+23x_99729+16x_99730+2x_99731+48x_99732+11x_99733+56x_99734+93x_99735+31x_99736+30x_99737+2x_99738+18x_99739+48x_99740+86x_99741+82x_99742+13x_99743+20x_99744+55x_99745+78x_99746+70x_99747+65x_99748+41x_99749+81x_99750+2x_99751+6x_99752+81x_99753+61x_99754+90x_99755+24x_99756+82x_99757+33x_99758+32x_99759+99x_99760+94x_99761+41x_99762+45x_99763+47x_99764+13x_99765+99x_99766+74x_99767+4x_99768+98x_99769+79x_99770+65x_99771+59x_99772+45x_99773+85x_99774+67x_99775+14x_99776+60x_99777+59x_99778+64x_99779+43x_99780+45x_99781+95x_99782+29x_99783+96x_99784+90x_99785+55x_99786+32x_99787+34x_99788+17x_99789+37x_99790+78x_99791+x_99792+66x_99793+71x_99794+48x_99795+5x_99796+99x_99797+99x_99798+73x_99799+57x_99800+46x_99801+x_99802+73x_99803+41x_99804+15x_99805+2x_99806+35x_99807+68x_99808+60x_99809+40x_99810+93x_99811+41x_99812+20x_99813+96x_99814+66x_99815+25x_99816+15x_99817+94x_99818+37x_99819+73x_99820+23x_99821+44x_99822+70x_99823+31x_99824+69x_99825+82x_99826+64x_99827+34x_99828+39x_99829+60x_99830+21x_99831+41x_99832+77x_99833+44x_99834+56x_99835+38x_99836+40x_99837+58x_99838+5x_99839+x_99840+10x_99841+70x_99842+91x_99843+79x_99844+4x_99845+85x_99846+59x_99847+72x_99848+77x_99849+77x_99850+73x_99851+83x_99852+18x_99853+61x_99854+60x_99855+56x_99856+60x_99857+25x_99858+37x_99859+31x_99860+50x_99861+x_99862+22x_99863+40x_99864+10x_99865+14x_99866+6x_99867+39x_99868+83x_99869+67x_99870+73x_99871+27x_99872+49x_99873+21x_99874+8x_99875+89x_99876+55x_99877+63x_99878+83x_99879+20x_99880+75x_99881+42x_99882+49x_99883+18x_99884+78x_99885+17x_99886+82x_99887+26x_99888+79x_99889+23x_99890+2x_99891+41x_99892+48x_99893+54x_99894+48x_99895+8x_99896+5x_99897+98x_99898+21x_99899+17x_99900+66x_99901+34x_99902+57x_99903+85x_99904+52x_99905+33x_99906+77x_99907+67x_99908+52x_99909+76x_99910+86x_99911+47x_99912+x_99913+38x_99914+27x_99915+26x_99916+70x_99917+61x_99918+59x_99919+87x_99920+6x_99921+56x_99922+61x_99923+82x_99924+63x_99925+42x_99926+39x_99927+25x_99928+46x_99929+66x_99930+82x_99931+92x_99932+70x_99933+4x_99934+40x_99935+58x_99936+74x_99937+88x_99938+41x_99939+52x_99940+91x_99941+33x_99942+23x_99943+8x_99944+75x_99945+97x_99946+26x_99947+62x_99948+17x_99949+37x_99950+68x_99951+62x_99952+51x_99953+5x_99954+21x_99955+42x_99956+40x_99957+52x_99958+11x_99959+90x_99960+76x_99961+87x_99962+20x_99963+68x_99964+26x_99965+21x_99966+55x_99967+50x_99968+81x_99969+87x_99970+21x_99971+22x_99972+55x_99973+33x_99974+98x_99975+14x_99976+93x_99977+50x_99978+81x_99979+99x_99980+16x_99981+48x_99982+57x_99983+78x_99984+47x_99985+4x_99986+25x_99987+79x_99988+86x_99989+28x_99990+88x_99991+62x_99992+3x_99993+47x_99994+100x_99995+33x_99996+19x_99997+38x_99998+46x_99999,LE,300)" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.add_constraint(model.sum(x[i] * weights[i] for i in range(n)) <= cap)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2022-11-27 | 9160aff4d\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 0.000000 after 0.01 sec. (2.50 ticks)\n", - "Tried aggregator 1 time.\n", - "MIP Presolve eliminated 18 rows and 18 columns.\n", - "MIP Presolve added 4360 rows and 4360 columns.\n", - "Reduced MIP has 4343 rows, 104342 columns, and 113278 nonzeros.\n", - "Reduced MIP has 100000 binaries, 4342 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.31 sec. (62.45 ticks)\n", - "Tried aggregator 1 time.\n", - "Detecting symmetries...\n", - "Reduced MIP has 4343 rows, 104342 columns, and 113278 nonzeros.\n", - "Reduced MIP has 100000 binaries, 4342 generals, 0 SOSs, and 0 indicators.\n", - "Presolve time = 0.47 sec. (83.87 ticks)\n", - "Probing time = 0.14 sec. (2.95 ticks)\n", - "MIP emphasis: balance optimality and feasibility.\n", - "MIP search method: dynamic search.\n", - "Parallel mode: deterministic, using up to 16 threads.\n", - "Root relaxation solution time = 19.22 sec. (183.77 ticks)\n", - "\n", - " Nodes Cuts/\n", - " Node Left Objective IInf Best Integer Best Bound ItCnt Gap\n", - "\n", - "* 0+ 0 0.0000 5.01731e+12 --- \n", - "* 0+ 0 5.13816e+09 5.01731e+12 --- \n", - "* 0 0 integral 0 2.59994e+10 2.59994e+10 301 0.00%\n", - "Elapsed time = 20.56 sec. (444.86 ticks, tree = 0.00 MB, solutions = 3)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 20.59 sec. (450.30 ticks)\n", - "Parallel b&c, 16 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 20.59 sec. (450.30 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=2.59994e+10,values={x_568:1,x_709:.." - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "25999392187.0 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n" - ] - } - ], - "source": [ - "obj = model.objective_value\n", - "assignment = [x[i].solution_value for i in range(n)]\n", - "print(obj, assignment)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Madi/mid.ipynb b/Madi/mid.ipynb deleted file mode 100644 index 50c7dc0..0000000 --- a/Madi/mid.ipynb +++ /dev/null @@ -1,142 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "a4c714ba-b84a-431a-866f-784ad95f5ab4", - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "c638f2fb-72e0-4c6f-878b-8338d983951d", - "metadata": {}, - "outputs": [], - "source": [ - "model = Model()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "89221321", - "metadata": {}, - "outputs": [], - "source": [ - "R1 = list(range(12)) # num of regions\n", - "R2 = list(range(12)) # decision vars\n", - "cover = [\n", - " [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", - " [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],\n", - " [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],\n", - " [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],\n", - " [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],\n", - " [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],\n", - " [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],\n", - " [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0],\n", - " [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0],\n", - " [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0],\n", - " [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1],\n", - " [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "240cfb29-f1df-4d5f-84d8-db59023b410e", - "metadata": {}, - "outputs": [], - "source": [ - "x = model.binary_var_list(R2, name = \"x\")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "a0b2e3c5-8c88-4674-bb96-d2e00c618108", - "metadata": {}, - "outputs": [], - "source": [ - "model.minimize(model.sum(x[r] for r in R2))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "66b4a1de", - "metadata": {}, - "outputs": [], - "source": [ - "for r1 in R1:\n", - " model.add_constraint(model.sum(cover[r1][r2] * x[r2] for r2 in R2) >= 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "2e55e1bc-8b49-48aa-b13f-d4d2326b8509", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=3,values={x_2:1,x_6:1,x_10:1})" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.solve()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "5a61a107-0178-47e7-9d23-770dc9506d9f", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0, 0, 1.0, 0, 0, 0, 1.0, 0, 0, 0, 1.0, 0]\n" - ] - } - ], - "source": [ - "model.objective_value\n", - "assignments = [x[r].solution_value for r in R2]\n", - "print(assignments)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.0" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/Non Linear Optimization Models/ChairManufacturing_Problem.ipynb b/Non Linear Optimization Models/ChairManufacturing_Problem.ipynb deleted file mode 100644 index 2d5e7e2..0000000 --- a/Non Linear Optimization Models/ChairManufacturing_Problem.ipynb +++ /dev/null @@ -1,132 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Andalus Furniture Company has two manufacturing plants,\n", - "one at Aynor and another at Spartanburg. The cost in dollars of producing a kitchen\n", - "chair at each of the two plants is given here. The cost of producing Q1 chairs at Aynor is\n", - "\n", - "$75*Q_1 + 5Q_1^2 + 100$\n", - "\n", - "and the cost of producing Q2 kitchen chairs at Spartanburg is\n", - "\n", - "$25Q_2 + 2.5Q_2^2 + 150$\n", - "\n", - "Andalus needs to manufacture a total of 40 kitchen chairs to meet an order just\n", - "received. How many chairs should be made at Aynor, and how many should be made at\n", - "Spartanburg in order to minimize total production cost?" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-11 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 11250.000000 after 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "Reduced MIQP has 1 rows, 2 columns, and 2 nonzeros.\n", - "Reduced MIQP has 0 binaries, 2 generals, 0 SOSs, and 0 indicators.\n", - "Reduced MIQP objective Q matrix has 2 nonzeros.\n", - "Presolve time = 0.01 sec. (0.00 ticks)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tried aggregator 1 time.\n", - "Reduced MIQP has 1 rows, 2 columns, and 2 nonzeros.\n", - "Reduced MIQP has 0 binaries, 2 generals, 0 SOSs, and 0 indicators.\n", - "Reduced MIQP objective Q matrix has 2 nonzeros.\n", - "Presolve time = 0.01 sec. (0.00 ticks)\n", - "Classifier predicts products in MIQP should be linearized.\n", - "MIP emphasis: balance optimality and feasibility.\n", - "MIP search method: dynamic search.\n", - "Parallel mode: deterministic, using up to 4 threads.\n", - "Root relaxation solution time = 0.01 sec. (0.01 ticks)\n", - "\n", - " Nodes Cuts/\n", - " Node Left Objective IInf Best Integer Best Bound ItCnt Gap\n", - "\n", - "* 0+ 0 11250.0000 250.0000 97.78%\n", - "* 0 0 integral 0 4500.0000 4500.0000 15 0.00%\n", - "Elapsed time = 0.05 sec. (0.02 ticks, tree = 0.00 MB, solutions = 2)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.05 sec. (0.02 ticks)\n", - "Parallel b&c, 4 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.05 sec. (0.02 ticks)\n" - ] - } - ], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "m = Model()\n", - "\n", - "Q1 = m.integer_var(name='Chairs at Anyor')\n", - "Q2 = m.integer_var(name='Chairs at Spartanburg')\n", - "\n", - "m.add_constraint(Q1+Q2 >= 40)\n", - "\n", - "m.minimize(75*Q1 + 25*Q2 + 5*Q1**2 + 100 + 2.5*Q2**2 + 150) \n", - "solution = m.solve(log_output=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "solution for: docplex_model2\n", - "objective: 4500\n", - "status: OPTIMAL_SOLUTION(2)\n", - "Chairs at Anyor=10\n", - "Chairs at Spartanburg=30\n", - "\n" - ] - } - ], - "source": [ - "print(solution)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Non Linear Optimization Models/EconomicOrder_Problem.ipynb b/Non Linear Optimization Models/EconomicOrder_Problem.ipynb deleted file mode 100644 index 982ce2d..0000000 --- a/Non Linear Optimization Models/EconomicOrder_Problem.ipynb +++ /dev/null @@ -1,150 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The economic order quantity (EOQ) model is a clas-\n", - "sical model used for controlling inventory and satisfying demand. Costs included in\n", - "the model are holding cost per unit, ordering cost, and the cost of goods ordered. The\n", - "assumptions for that model are that only a single item is considered, that the entire\n", - "quantity ordered arrives at one time, that the demand for the item is constant over time,\n", - "and that no shortages are allowed.\n", - "Suppose we relax the first assumption and allow for multiple items that are\n", - "­independent except for a restriction on the amount of space available to store the\n", - "­products. The following model describes this situation:\n", - "Let\n", - "\n", - "\n", - "$D_j$ = annual demand for item j \n", - "\n", - "$C_j$ = unit cost of item j \n", - "\n", - "$S_j$ = cost per order placed for item j\n", - "\n", - "$w_j$ = space required for item j\n", - "\n", - "$W$ = the maximum amount of space available for all goods\n", - "\n", - "$i$ = inventory carrying charge as a percentage of the cost per unit\n", - "\n", - "\n", - "The decision variables are Qj, the amount of item j to order. The model is\n", - "\n", - "\n", - "\\begin{align*} \\text{Minimize} \\quad & \\sum_{j=1}^{n} \\left( C_j D_j + \\frac{S_jD_j}{Q_j} + i C_j\\frac{Q_j}{2} \\right) \\ \\text{s.t.} \\\\ \\quad & \\sum_{j=1}^{n} w_j Q_j \\leq W \\ \\\\ & Q_j \\geq 0 \\quad j = 1,2,…,N \\end{align*}\n", - "\n", - "In the objective function, the first term is the annual cost of goods, the second is the\n", - "annual ordering cost (Dj /Qj is the number of orders), and the last term is the annual\n", - "inventory holding cost (Qi /2 is the average amount of inventory).\n", - "Construct and solve a nonlinear optimization model for the following data:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# Item 1 Item 2 Item 3\n", - "#\n", - "# Annual Demand 2,000 2,000 1,000\n", - "# Item Cost ($) 100 50 80\n", - "# Order Cost ($) 150 135 125\n", - "# Space Required 50 25 40 \n", - "# (sq. feet)\n", - "#\n", - "# W = 5000\n", - "# i = 0.20\n", - "\n", - "data = {'Item': ['Item 1', 'Item 2', 'Item 3'],\n", - " 'Annual Demand': [2000, 2000, 1000],\n", - " 'Item Cost ($)': [100, 50, 80],\n", - " 'Order Cost ($)': [150, 135, 125],\n", - " 'Space Required (sq. feet)': [50, 25, 40]}\n", - "\n", - "W = 5000\n", - "i_const = 0.2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Cplex isn't cplexing here, idk

" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "ename": "AssertionError", - "evalue": "Argument 'exprs' should be a float expression", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[11], line 23\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(data[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mItem\u001b[39m\u001b[38;5;124m'\u001b[39m])):\n\u001b[1;32m 18\u001b[0m summation\u001b[38;5;241m.\u001b[39mappend(data[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mItem Cost ($)\u001b[39m\u001b[38;5;124m'\u001b[39m][i] \u001b[38;5;241m*\u001b[39m data[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mAnnual Demand\u001b[39m\u001b[38;5;124m'\u001b[39m][i] \u001b[38;5;241m+\u001b[39m \\\n\u001b[1;32m 19\u001b[0m (data[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mOrder Cost ($)\u001b[39m\u001b[38;5;124m'\u001b[39m][i] \u001b[38;5;241m*\u001b[39m data[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mAnnual Demand\u001b[39m\u001b[38;5;124m'\u001b[39m][i])\u001b[38;5;241m/\u001b[39mQ_floated[i] \u001b[38;5;241m+\u001b[39m \\\n\u001b[1;32m 20\u001b[0m i_const \u001b[38;5;241m*\u001b[39m data[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mItem Cost ($)\u001b[39m\u001b[38;5;124m'\u001b[39m][i] \u001b[38;5;241m*\u001b[39m Q_floated[i]\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m2\u001b[39m)\n\u001b[0;32m---> 23\u001b[0m \u001b[43mm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mminimize\u001b[49m\u001b[43m(\u001b[49m\u001b[43msummation\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 25\u001b[0m m\u001b[38;5;241m.\u001b[39mexport_as_cpo\n\u001b[1;32m 27\u001b[0m solution \u001b[38;5;241m=\u001b[39m m\u001b[38;5;241m.\u001b[39msolve(log_output\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n", - "File \u001b[0;32m~/GithubRepos/BI/venv/lib/python3.10/site-packages/docplex/cp/model.py:558\u001b[0m, in \u001b[0;36mCpoModel.minimize\u001b[0;34m(self, expr)\u001b[0m\n\u001b[1;32m 548\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\" Add an objective expression to minimize.\u001b[39;00m\n\u001b[1;32m 549\u001b[0m \n\u001b[1;32m 550\u001b[0m \u001b[38;5;124;03mDEPRECATED: use *add(minimize())* instead.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 555\u001b[0m \u001b[38;5;124;03m Minimization expression that has been added\u001b[39;00m\n\u001b[1;32m 556\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 557\u001b[0m \u001b[38;5;66;03m# Add new minimization expression\u001b[39;00m\n\u001b[0;32m--> 558\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[43mminimize\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexpr\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 559\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39madd(res)\n\u001b[1;32m 560\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m res\n", - "File \u001b[0;32m~/GithubRepos/BI/venv/lib/python3.10/site-packages/docplex/cp/modeler.py:1961\u001b[0m, in \u001b[0;36mminimize\u001b[0;34m(expr)\u001b[0m\n\u001b[1;32m 1945\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mminimize\u001b[39m(expr):\n\u001b[1;32m 1946\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\" This function asks CP Optimizer to seek to minimize the value of an expressions.\u001b[39;00m\n\u001b[1;32m 1947\u001b[0m \n\u001b[1;32m 1948\u001b[0m \u001b[38;5;124;03m The function *minimize* specifies to CP Optimizer a floating-point expression\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1959\u001b[0m \u001b[38;5;124;03m An objective expression\u001b[39;00m\n\u001b[1;32m 1960\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 1961\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m CpoFunctionCall(Oper_minimize, Type_Objective, (\u001b[43m_convert_arg\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexpr\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mexprs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mType_FloatExpr\u001b[49m\u001b[43m)\u001b[49m, ))\n", - "File \u001b[0;32m~/GithubRepos/BI/venv/lib/python3.10/site-packages/docplex/cp/modeler.py:334\u001b[0m, in \u001b[0;36m_convert_arg\u001b[0;34m(val, name, type, errmsg)\u001b[0m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\" Convert a Python value in CPO and check its value\u001b[39;00m\n\u001b[1;32m 327\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;124;03m val: Value to convert\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[38;5;124;03m errmsg: Optional error message\u001b[39;00m\n\u001b[1;32m 332\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 333\u001b[0m val \u001b[38;5;241m=\u001b[39m build_cpo_expr(val)\n\u001b[0;32m--> 334\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m val\u001b[38;5;241m.\u001b[39mis_kind_of(\u001b[38;5;28mtype\u001b[39m), errmsg \u001b[38;5;28;01mif\u001b[39;00m errmsg \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mArgument \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m should be a \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mformat(name, \u001b[38;5;28mtype\u001b[39m\u001b[38;5;241m.\u001b[39mget_public_name())\n\u001b[1;32m 335\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m val\n", - "\u001b[0;31mAssertionError\u001b[0m: Argument 'exprs' should be a float expression" - ] - } - ], - "source": [ - "from docplex.cp.model import CpoModel as Model\n", - "\n", - "m = Model() \n", - "\n", - "Q = m.integer_var_list(len(data['Item']))\n", - "Q_floated = [i for i in Q]\n", - "\n", - "for i in range(len(data['Item'])):\n", - " m.add_constraint(Q_floated[i] >= 0)\n", - "\n", - "items = sum(Q_floated[i] * data['Space Required (sq. feet)'][i] for i in range(len(data['Item'])))\n", - "\n", - "\n", - "m.add_constraint(items <= W)\n", - "\n", - "summation = []\n", - "for i in range(len(data['Item'])):\n", - " summation.append(data['Item Cost ($)'][i] * data['Annual Demand'][i] + \\\n", - " (data['Order Cost ($)'][i] * data['Annual Demand'][i])/Q_floated[i] + \\\n", - " i_const * data['Item Cost ($)'][i] * Q_floated[i]/2)\n", - "\n", - "\n", - "m.minimize(summation)\n", - "\n", - "m.export_as_cpo\n", - "\n", - "solution = m.solve(log_output=True)\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Non Linear Optimization Models/EstimatingEconomicOutput_Problem.ipynb b/Non Linear Optimization Models/EstimatingEconomicOutput_Problem.ipynb deleted file mode 100644 index d12a922..0000000 --- a/Non Linear Optimization Models/EstimatingEconomicOutput_Problem.ipynb +++ /dev/null @@ -1,198 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Cobb-Douglas production function is a classic model\n", - "from economics used to model output as a function of capital and labor. It has the form:\n", - "\n", - "$\\mathcal{f}(L, C) = c_0 L^{c_1} C^{c_2}$\n", - "\n", - "where c0, c1, and c2 are constants.
\n", - "The variable L represents the units of input of labor,
\n", - "and the variable C represents the units of input of capital.
\n", - "\n", - "\n", - "a. In this example, assume c0 = 5, c1 = 0.25, and c2 = 0.75. Assume each unit of labor\n", - "costs $25 and each unit of capital costs $75. With $75,000 available in the budget,\n", - "develop an optimization model to determine how the budgeted amount should be\n", - "allocated between capital and labor in order to maximize output.\n", - "\n", - "b. Find the optimal solution to the model you formulated in part (a). (Hint: When\n", - "using Excel Solver, use the Multistart option with bounds 0 <= L <= 3,000 and\n", - "0 <= C <= 1,000.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Not sure about this one because mp model doesn't solve this

" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ! --------------------------------------------------- CP Optimizer 22.1.1.0 --\n", - " ! Maximization problem - 2 variables, 1 constraint\n", - " ! Initial process time : 0.01s (0.01s extraction + 0.00s propagation)\n", - " ! . Log search space : 34.8 (before), 34.8 (after)\n", - " ! . Memory usage : 267.0 kB (before), 267.0 kB (after)\n", - " ! Using parallel search with 4 workers.\n", - " ! ----------------------------------------------------------------------------\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 0 2 -\n", - " + New bound is 6.580370e+07\n", - " 0 2 1 F -\n", - " + New bound is 3.750228e+07\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " * 0 2 0.08s 1 (gap > 10000%)\n", - " * 3.053527e+07 6 0.08s 1 (gap is 22.82%)\n", - " * 3.429332e+07 17 0.08s 1 (gap is 9.36%)\n", - " * 3.429696e+07 20 0.08s 1 (gap is 9.35%)\n", - " * 3.430058e+07 21 0.08s 1 (gap is 9.33%)\n", - " * 3.430406e+07 23 0.08s 1 (gap is 9.32%)\n", - " * 3.655943e+07 25 0.08s 1 (gap is 2.58%)\n", - " * 3.678016e+07 27 0.08s 1 (gap is 1.96%)\n", - " * 3.695594e+07 29 0.08s 1 (gap is 1.48%)\n", - " * 3.695978e+07 30 0.08s 1 (gap is 1.47%)\n", - " * 3.696352e+07 31 0.08s 1 (gap is 1.46%)\n", - " * 3.696730e+07 32 0.08s 1 (gap is 1.45%)\n", - " * 3.711001e+07 34 0.08s 1 (gap is 1.06%)\n", - " * 3.747341e+07 36 0.08s 1 (gap is 0.08%)\n", - " * 3.748005e+07 38 0.08s 1 (gap is 0.06%)\n", - " * 3.748380e+07 39 0.08s 1 (gap is 0.05%)\n", - " * 3.748756e+07 40 0.08s 1 (gap is 0.04%)\n", - " * 3.749132e+07 41 0.08s 1 (gap is 0.03%)\n", - " ! Time = 0.08s, Average fail depth = 3, Memory usage = 1.2 MB\n", - " ! Current bound is 3.750228e+07 (gap is 0.03%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " * 3.749512e+07 43 0.08s 1 (gap is 0.02%)\n", - " * 3.749918e+07 45 0.08s 1 (gap is 0.01%)\n", - " ! ----------------------------------------------------------------------------\n", - " ! Search completed, 20 solutions found.\n", - " ! Best objective : 3.749918e+07 (optimal - effective tol. is 3749.92)\n", - " ! Best bound : 3.750228e+07\n", - " ! ----------------------------------------------------------------------------\n", - " ! Number of branches : 649\n", - " ! Number of fails : 349\n", - " ! Total memory usage : 3.0 MB (2.9 MB CP Optimizer + 0.0 MB Concert)\n", - " ! Time spent in solve : 0.08s (0.07s engine + 0.01s extraction)\n", - " ! Search speed (br. / s) : 10816.7\n", - " ! ----------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "from docplex.cp.model import CpoModel as Model\n", - "\n", - "m = Model() \n", - "\n", - "c0 = 5\n", - "c1 = 0.25\n", - "c2 = 0.75\n", - "\n", - "L = m.integer_var(name='Labor')\n", - "C = m.integer_var(name='Capital')\n", - "\n", - "L_float = L / 100\n", - "C_float = C / 100\n", - "\n", - "m.add_constraint(25*L_float + 75*C_float <= 75000)\n", - "\n", - "m.maximize(c0 * 100*L_float**c1 * 100*C_float**c2)\n", - "\n", - "solution = m.solve(log_output=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "742.16 Labor\n", - "752.61 Capital\n" - ] - } - ], - "source": [ - "print(solution[L]/100,\" Labor\")\n", - "print(solution[C]/100,\" Capital\")" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "74999.75" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "solution[L]/100 * 25 + solution[C]/100 * 75" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3749.9189289224228\n" - ] - } - ], - "source": [ - "print(solution.get_objective_value())" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Non Linear Optimization Models/ExponentialSmoothin_Problem.ipynb b/Non Linear Optimization Models/ExponentialSmoothin_Problem.ipynb deleted file mode 100644 index d1cf045..0000000 --- a/Non Linear Optimization Models/ExponentialSmoothin_Problem.ipynb +++ /dev/null @@ -1,245 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Exponential Smoothing. Many forecasting models use parameters that are estimated\n", - "using nonlinear optimization. A good example is the Bass model introduced in this chapter.\n", - "Another example is the exponential smoothing forecasting model which is a common fore-\n", - "casting model used in practice. For instance, the basic exponential smoothing model for fore-\n", - "casting sales is\n", - "\n", - "$\\hat{y}_{t+1} = ay_t + (1 - a) \\hat{y}_t$\n", - "\n", - "where\n", - "\n", - "$\\hat{y}_{t+1}$ = forecast of sales for period t + 1\n", - "\n", - "$y_t$ = actual sales for period t\n", - "\n", - "$\\hat{y}_t$ = forecast of sales for period t\n", - "\n", - "$\\alpha{}$ = smoothing constant, 0 <= a <= 1\n", - "\n", - "This model is used recursively; the forecast for time period t + 1 is based on the\n", - "forecast for period t, $ŷ_t$ , the observed value of sales in period t, $y_t$ , and the smoothing\n", - "parameter a . The use of this model to forecast sales for 12 months is illustrated in the\n", - "following table with the smoothing constant $\\alpha$ = 0.3. The forecast errors, $y_t - \\hat{y}_t$ , are\n", - "calculated in the fourth column. The value of a is often chosen by minimizing the sum\n", - "of squared forecast errors. The last column of the table shows the square of the forecast\n", - "error and the sum of squared forecast errors.\n", - "\n", - "The file ExpSmooth contains the observed data shown here. Construct this table\n", - "using the formula above. Note that we set the forecast in period 1 to the observed\n", - "in period 1 to get started ( $\\hat{y}_1$ = $y_1$ = 17 ), then the formula above for $\\hat{y}_{t+1}$ is used\n", - "starting in period 2. Make sure to have a single cell corresponding to a in your\n", - "spreadsheet model. After confirming the values in the table below with $\\alpha$ = 0.3, try\n", - "different values of a to see if you can get a smaller sum of squared forecast errors." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Week | Observed Value | Forecast Value | Error | Squared Error\n", - "# (t) | (y_t) | (y^_t) | (yt - y^t) | (yt - y^t)^2\n", - "# 1 | 17 | 17.00 | 0.00 | 0.00\n", - "# 2 | 21 | 17.00 | 4.00 | 16.00\n", - "# 3 | 19 | 18.20 | 0.80 | 0.64\n", - "# 4 | 23 | 18.44 | 4.56 | 20.79\n", - "# 5 | 18 | 19.81 | -1.8 | 13.27\n", - "# 6 | 16 | 19.27 | -3.2 | 710.66\n", - "# 7 | 20 | 18.29 | 1.71 | 2.94\n", - "# 8 | 18 | 18.80 | -0.80 | 0.64\n", - "# 9 | 22 | 18.56 | 3.44 | 11.83\n", - "# 10 | 20 | 19.59 | 0.41 | 0.17\n", - "# 11 | 15 | 19.71 | -4.71 | 22.23\n", - "# 12 | 22 | 18.30 | 3.70 | 13.69\n", - "# SUM | -- | -- | -- | 102.86\n", - "\n", - "data = {'week': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],\n", - " 'true': [17, 21, 19, 23, 18, 16, 20, 18, 22, 20, 15, 22],\n", - " 'predicted': [17.00, 17.00, 18.20, 18.44, 19.81, 19.27, 18.29, 18.80, 18.56, 19.59, 19.71, 18.30],\n", - " 'error': [0.00, 4.00, 0.80, 4.56, -1.8, -3.2, 1.71, -0.80, 3.44, 0.41, -4.71, 3.70],\n", - " 'error_squared': [0.00, 16.00, 0.64, 20.79, 13.27, 710.66, 2.94, 0.64, 11.83, 0.17, 22.23, 13.69]}\n" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ! --------------------------------------------------- CP Optimizer 22.1.1.0 --\n", - " ! Minimization problem - 1 variable, 2 constraints\n", - " ! Initial process time : 0.00s (0.00s extraction + 0.00s propagation)\n", - " ! . Log search space : 10.0 (before), 10.0 (after)\n", - " ! . Memory usage : 299.7 kB (before), 299.7 kB (after)\n", - " ! Using parallel search with 4 workers.\n", - " ! ----------------------------------------------------------------------------\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 0 1 -\n", - " + New bound is 16\n", - " 0 1 1 -\n", - " + New bound is 35.16110\n", - " * 131 1 0.08s 1 (gap is 73.16%)\n", - " * 130.5318 3 0.08s 1 (gap is 73.06%)\n", - " * 114.6853 4 0.08s 1 (gap is 69.34%)\n", - " * 106.5805 13 0.08s 1 (gap is 67.01%)\n", - " * 106.4031 151 0.08s 1 (gap is 66.95%)\n", - " * 105.3095 2 0.08s 2 (gap is 66.61%)\n", - " * 102.0352 4 0.08s 2 (gap is 65.54%)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " * 98.74611 16 0.08s 2 (gap is 64.39%)\n", - " * 98.59555 765 0.08s 3 (gap is 64.34%)\n", - " 98.59555 1000 1 3 F 11 = alpha\n", - " * 98.56407 18 0.08s 4 (gap is 64.33%)\n", - " 98.56407 2000 1 3 F 7 = alpha\n", - " 98.56407 3000 1 3 F -\n", - " 98.56407 1000 1 1 F 836 = alpha\n", - " * 98.55956 698 0.18s 2 (gap is 64.33%)\n", - " 98.55956 4000 1 3 F 659 = alpha\n", - " 98.55956 1000 1 2 850 != alpha\n", - " 98.55956 5000 1 3 F 193 = alpha\n", - " ! Time = 0.25s, Average fail depth = 8, Memory usage = 3.2 MB\n", - " ! Current bound is 35.16110 (gap is 64.33%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 98.55956 1000 1 4 300 != alpha\n", - " 98.55956 6000 1 3 F 320 = alpha\n", - " 98.55956 7000 1 3 -\n", - " 98.55956 8000 1 3 F 900 = alpha\n", - " 98.55956 9000 1 3 -\n", - " 98.55956 2000 1 1 682 != alpha\n", - " 98.55956 2000 1 2 507 != alpha\n", - " 98.55956 1706 1 4 -\n", - " + New bound is 98.55422 (gap is 0.01%)\n", - " ! ----------------------------------------------------------------------------\n", - " ! Search completed, 11 solutions found.\n", - " ! Best objective : 98.55956 (optimal - effective tol. is 0.00985596)\n", - " ! Best bound : 98.55422\n", - " ! ----------------------------------------------------------------------------\n", - " ! Number of branches : 15759\n", - " ! Number of fails : 8003\n", - " ! Total memory usage : 3.6 MB (3.6 MB CP Optimizer + 0.0 MB Concert)\n", - " ! Time spent in solve : 0.43s (0.43s engine + 0.00s extraction)\n", - " ! Search speed (br. / s) : 37521.4\n", - " ! ----------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "from docplex.cp.model import CpoModel as Model\n", - "\n", - "\n", - "m = Model()\n", - "\n", - "alpha = m.integer_var(name = 'alpha')\n", - "\n", - "m.add_constraint(alpha >= 0)\n", - "m.add_constraint(alpha <=1000)\n", - "\n", - "alpha_float = alpha/1000\n", - "\n", - "start_value = 17\n", - "\n", - "predicted = [17]\n", - "\n", - "for i in range(1, len(data['week'])):\n", - " predicted.append(alpha_float * data['true'][i-1] + (1 - alpha_float) * predicted[i-1])\n", - "\n", - "error = [(pred - tru)**2 for pred, tru in zip(predicted, data['true'])]\n", - "\n", - "m.minimize(m.sum(error))\n", - "solution = m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "m.export_as_cpo('alpha.cpo')" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.173 alpha\n", - "98.55956125237986\n" - ] - } - ], - "source": [ - "print(solution[alpha]/1000,\" alpha\")\n", - "print(solution.get_objective_value())" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "98.57150185864782" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "other_pred = [17]\n", - "\n", - "thing_alpha = 0.18\n", - "\n", - "for i in range(1, len(data['week'])):\n", - " other_pred.append(thing_alpha * data['true'][i-1] + (1 - thing_alpha) * other_pred[i-1])\n", - "\n", - "error = [(pred - tru)**2 for pred, tru in zip(other_pred, data['true'])]\n", - "sum(error)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Non Linear Optimization Models/ForcastingAdoption_Problem.ipynb b/Non Linear Optimization Models/ForcastingAdoption_Problem.ipynb deleted file mode 100644 index 324806b..0000000 --- a/Non Linear Optimization Models/ForcastingAdoption_Problem.ipynb +++ /dev/null @@ -1,40 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\\begin{align*}\n", - "\\mathrm{minimize} \\sum_{i=2}^{|T|}{((P+Q(C_{i-1}/M)) (M-C_{i-1}) - S_i)} + PM \\\\\n", - "\\\\\n", - "\\text{or} \\\\\n", - "\\\\\n", - "\\mathrm{minimize} \\sum_{i=2}^{|T|}{E_t^2} \\\\\n", - "\\text{st} \\\\\n", - "E_i = F_i - C_i \\forall i \\in X \\\\\n", - "F_i = \\text{In the slides} \\\\\n", - "\n", - "\\end{align*}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Non Linear Optimization Models/MediaPlanning_Problem.ipynb b/Non Linear Optimization Models/MediaPlanning_Problem.ipynb deleted file mode 100644 index d2f6c91..0000000 --- a/Non Linear Optimization Models/MediaPlanning_Problem.ipynb +++ /dev/null @@ -1,156 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "GreenLawns provides a lawn fertilizing and weed control service.\n", - "The company is adding a special aeration treatment as a low-cost extra service option\n", - "that it hopes will help attract new customers. Management is planning to promote this \n", - "new service in two media: radio and direct-mail advertising. A media budget of $3,000\n", - "is available for this promotional campaign. Based on past experience in promoting its\n", - "other services, GreenLawns has obtained the following estimate of the relationship\n", - "between sales and the amount spent on promotion in these two media:\n", - "\n", - "$S = -2R^2 - 10M^2 -8RM + 18R + 34M$\n", - "\n", - "where\n", - "\n", - "$S = \\text{total sales in thousands of dollars} \\\\\n", - "R = \\text{thousands of dollars spent on radio advertising} \\\\\n", - "M = \\text{thousands of dollars spent on direct-mail advertising}$\n", - "\n", - "GreenLawns would like to develop a promotional strategy that will lead to maximum\n", - "sales subject to the restriction provided by the media budget.\n", - "\n", - "Formulate an optimization problem that can be solved to maximize sales subject to\n", - "the media budget of spending no more than $3,000 on total advertising." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "m = Model()\n", - "\n", - "R = m.continuous_var(name= 'Radio ads')\n", - "M = m.continuous_var(name= 'Mail ads')\n", - "\n", - "m.add_constraint(R+M <= 3)\n", - "\n", - "m.maximize(-2*(R**2) - 10*(M**2) - 8*R*M + 18*R + 34*M)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-11 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Number of nonzeros in lower triangle of Q = 1\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.01 sec. (0.00 ticks)\n", - "Summary statistics for factor of Q:\n", - " Rows in Factor = 2\n", - " Integer space required = 2\n", - " Total non-zeros in factor = 3\n", - " Total FP ops to factor = 5\n", - "Tried aggregator 1 time.\n", - "QP Presolve added 0 rows and 2 columns.\n", - "Reduced QP has 3 rows, 4 columns, and 7 nonzeros.\n", - "Reduced QP objective Q matrix has 2 nonzeros.\n", - "Presolve time = 0.07 sec. (0.00 ticks)\n", - "Parallel mode: using up to 4 threads for barrier.\n", - "Number of nonzeros in lower triangle of A*A' = 3\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.01 sec. (0.00 ticks)\n", - "Summary statistics for Cholesky factor:\n", - " Threads = 4\n", - " Rows in Factor = 3\n", - " Integer space required = 3\n", - " Total non-zeros in factor = 6\n", - " Total FP ops to factor = 14\n", - " Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf \n", - " 0 5.1598616e+01 4.0138408e-01 7.30e+00 0.00e+00 3.05e+03\n", - " 1 2.6468801e+01 3.6432950e+02 8.88e-16 0.00e+00 9.95e-14\n", - " 2 2.8124631e+01 5.0442672e+01 8.88e-16 0.00e+00 5.68e-14\n", - " 3 3.2749451e+01 3.8079631e+01 4.00e-15 0.00e+00 9.99e-15\n", - " 4 3.6672627e+01 3.7797116e+01 1.33e-14 0.00e+00 1.12e-14\n", - " 5 3.6884712e+01 3.7253412e+01 0.00e+00 0.00e+00 2.28e-15\n", - " 6 3.6959582e+01 3.7080335e+01 1.33e-15 0.00e+00 6.03e-15\n", - " 7 3.6986608e+01 3.7026541e+01 0.00e+00 0.00e+00 3.15e-15\n", - " 8 3.6995563e+01 3.7008834e+01 8.88e-16 0.00e+00 2.05e-15\n", - " 9 3.6998525e+01 3.7002944e+01 0.00e+00 0.00e+00 2.67e-15\n", - " 10 3.6999509e+01 3.7000981e+01 2.22e-15 0.00e+00 3.67e-15\n", - " 11 3.6999836e+01 3.7000327e+01 0.00e+00 0.00e+00 5.07e-15\n", - " 12 3.6999945e+01 3.7000109e+01 8.88e-16 0.00e+00 3.46e-15\n", - " 13 3.6999982e+01 3.7000036e+01 2.66e-15 0.00e+00 8.48e-16\n", - " 14 3.6999994e+01 3.7000012e+01 4.00e-15 0.00e+00 3.12e-15\n", - " 15 3.6999998e+01 3.7000004e+01 8.88e-16 0.00e+00 7.49e-15\n", - " 16 3.6999999e+01 3.7000001e+01 2.22e-15 0.00e+00 6.14e-15\n", - " 17 3.7000000e+01 3.7000000e+01 1.78e-15 0.00e+00 1.47e-15\n", - " 18 3.7000000e+01 3.7000000e+01 3.11e-15 0.00e+00 4.42e-15\n", - "Barrier time = 0.16 sec. (0.02 ticks)\n", - "\n", - "Total time on 4 threads = 0.16 sec. (0.02 ticks)\n" - ] - } - ], - "source": [ - "solution = m.solve(log_output=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "solution for: docplex_model4\n", - "objective: 37\n", - "status: OPTIMAL_SOLUTION(2)\n", - "Radio ads=2.500\n", - "Mail ads=0.500\n", - "\n" - ] - } - ], - "source": [ - "print(solution)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Non Linear Optimization Models/PricingCameras_Problem.ipynb b/Non Linear Optimization Models/PricingCameras_Problem.ipynb deleted file mode 100644 index 7c534ce..0000000 --- a/Non Linear Optimization Models/PricingCameras_Problem.ipynb +++ /dev/null @@ -1,711 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Pricing Cameras. Jim’s Camera shop sells two high-end cameras, the Sky\n", - "Eagle and Horizon. The demands for these two cameras are as follows:\n", - "DS = demand for the Sky Eagle, PS is the selling price of the Sky Eagle, DH is the\n", - "demand for the Horizon, and PH is the ­selling price of the Horizon.\n", - "\n", - "$\n", - "D_S = 222 - 0.60 P_S + 0.35 P_H \\\\\n", - "D_H = 270 + 0.10 P_S - 0.64 P_H\n", - "$\n", - "\n", - "The store wishes to determine the selling price that maximizes revenue for these two\n", - "products. Develop the revenue function for these two models, and find the prices that\n", - "maximize revenue." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ! --------------------------------------------------- CP Optimizer 22.1.1.0 --\n", - " ! Maximization problem - 2 variables, 4 constraints\n", - " ! Initial process time : 0.00s (0.00s extraction + 0.00s propagation)\n", - " ! . Log search space : 46.5 (before), 46.5 (after)\n", - " ! . Memory usage : 267.0 kB (before), 267.0 kB (after)\n", - " ! Using parallel search with 4 workers.\n", - " ! ----------------------------------------------------------------------------\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 0 2 -\n", - " + New bound is 4.500492e+13\n", - " 0 2 1 F -\n", - " + New bound is 1.000310e+13\n", - " * 0 2 0.04s 1 (gap > 10000%)\n", - " * 269.3599 14 0.04s 1 (gap > 10000%)\n", - " * 441.5999 54 0.04s 1 (gap > 10000%)\n", - " * 537.4399 40 0.04s 2 (gap > 10000%)\n", - " 537.4399 1000 1 3 30 != H\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " * 660.5999 256 0.07s 1 (gap > 10000%)\n", - " * 804.2399 1034 0.07s 3 (gap > 10000%)\n", - " * 1069.759 1192 0.07s 3 (gap > 10000%)\n", - " 1069.759 2000 1 3 4131207 != H\n", - " * 1333.999 2080 0.09s 3 (gap > 10000%)\n", - " * 1596.959 2138 0.09s 3 (gap > 10000%)\n", - " * 1858.639 2474 0.09s 3 (gap > 10000%)\n", - " * 15656.35 2515 0.09s 3 (gap > 10000%)\n", - " * 15767.80 2798 0.09s 3 (gap > 10000%)\n", - " * 27184.15 2927 0.09s 3 (gap > 10000%)\n", - " 27184.15 3000 1 3 -\n", - " * 27403.99 3622 0.11s 3 (gap > 10000%)\n", - " * 28218.95 3708 0.11s 3 (gap > 10000%)\n", - " ! Time = 0.11s, Average fail depth = 9, Memory usage = 3.8 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " * 28453.03 3959 0.11s 3 (gap > 10000%)\n", - " 28453.03 4000 1 3 F 1 = H\n", - " 28453.03 1000 1 1 F 9999922 = S\n", - " 28453.03 1000 1 2 F 9999923 = H\n", - " * 28471.03 4330 0.15s 3 (gap > 10000%)\n", - " * 28474.15 4530 0.15s 3 (gap > 10000%)\n", - " 28474.15 1000 1 4 1964672 != S\n", - " 28474.15 5000 1 3 F -\n", - " * 28544.30 5027 0.16s 3 (gap > 10000%)\n", - " * 28554.83 5127 0.16s 3 (gap > 10000%)\n", - " 28554.83 6000 1 3 F -\n", - " * 28593.55 6378 0.19s 3 (gap > 10000%)\n", - " * 28601.65 6440 0.19s 3 (gap > 10000%)\n", - " * 28623.14 6702 0.19s 3 (gap > 10000%)\n", - " * 28786.03 6882 0.20s 3 (gap > 10000%)\n", - " 28786.03 7000 1 3 F 31 = H\n", - " * 28792.63 1917 0.22s 1 (gap > 10000%)\n", - " * 28792.90 7415 0.22s 3 (gap > 10000%)\n", - " * 28808.59 7763 0.22s 3 (gap > 10000%)\n", - " * 28861.43 7804 0.22s 3 (gap > 10000%)\n", - " ! Time = 0.22s, Average fail depth = 10, Memory usage = 4.8 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " * 28885.93 7874 0.22s 3 (gap > 10000%)\n", - " 28885.93 2000 1 1 181426 != H\n", - " 28885.93 8000 1 3 -\n", - " * 28909.15 8476 0.25s 3 (gap > 10000%)\n", - " * 29099.83 8639 0.25s 3 (gap > 10000%)\n", - " 29099.83 9000 1 3 -\n", - " 29099.83 2000 1 4 F 9999886 = H\n", - " 29099.83 2000 1 2 F 2804879 = H\n", - " * 29103.85 9249 0.30s 3 (gap > 10000%)\n", - " * 29140.60 9694 0.30s 3 (gap > 10000%)\n", - " 29140.60 10000 1 3 F 437562 = S\n", - " * 29416.39 10322 0.34s 3 (gap > 10000%)\n", - " * 29579.03 10603 0.34s 3 (gap > 10000%)\n", - " 29579.03 11000 1 3 F 2887420 = H\n", - " * 29585.23 11316 0.37s 3 (gap > 10000%)\n", - " * 29604.23 11642 0.37s 3 (gap > 10000%)\n", - " * 29621.95 11822 0.38s 3 (gap > 10000%)\n", - " 29621.95 12000 1 3 9999971 != S\n", - " 29621.95 3000 1 1 F 7788959 = S\n", - " * 29638.39 12410 0.40s 3 (gap > 10000%)\n", - " ! Time = 0.40s, Average fail depth = 10, Memory usage = 5.4 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 29638.39 3000 1 4 9039477 != H\n", - " 29638.39 3000 1 2 6873414 != S\n", - " * 29731.39 12926 0.43s 3 (gap > 10000%)\n", - " 29731.39 13000 1 3 9948498 != S\n", - " * 29746.90 13799 0.45s 3 (gap > 10000%)\n", - " 29746.90 14000 1 3 9847710 != H\n", - " * 30044.74 14107 0.45s 3 (gap > 10000%)\n", - " * 30047.83 14442 0.48s 3 (gap > 10000%)\n", - " 30047.83 15000 1 3 F 2023329 = S\n", - " * 30348.40 15096 0.48s 3 (gap > 10000%)\n", - " * 30554.59 15168 0.48s 3 (gap > 10000%)\n", - " * 33330.23 15361 0.48s 3 (gap > 10000%)\n", - " * 33536.59 15774 0.52s 3 (gap > 10000%)\n", - " 33536.59 16000 1 3 F 4 = H\n", - " * 33711.34 16106 0.52s 3 (gap > 10000%)\n", - " * 33987.25 16615 0.54s 3 (gap > 10000%)\n", - " 33987.25 17000 1 3 F 7202627 = S\n", - " * 34105.99 17174 0.54s 3 (gap > 10000%)\n", - " 34105.99 18000 1 3 F -\n", - " 34105.99 4000 1 1 1647012 != H\n", - " ! Time = 0.58s, Average fail depth = 10, Memory usage = 5.6 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " * 34141.15 18068 0.58s 3 (gap > 10000%)\n", - " 34141.15 4000 1 4 7467761 != S\n", - " 34141.15 4000 1 2 F 53526 = H\n", - " * 34268.99 18601 0.60s 3 (gap > 10000%)\n", - " 34268.99 19000 1 3 F -\n", - " * 34424.50 19164 0.62s 3 (gap > 10000%)\n", - " * 34542.23 19898 0.62s 3 (gap > 10000%)\n", - " * 34706.65 19981 0.64s 3 (gap > 10000%)\n", - " 34706.65 20000 1 3 -\n", - " * 34987.60 20238 0.64s 3 (gap > 10000%)\n", - " 34987.60 21000 1 3 F 9999969 = S\n", - " * 35022.83 21099 0.65s 3 (gap > 10000%)\n", - " * 35159.05 21563 0.68s 3 (gap > 10000%)\n", - " * 35303.03 21754 0.68s 3 (gap > 10000%)\n", - " * 35582.03 21905 0.68s 3 (gap > 10000%)\n", - " 35582.03 22000 1 3 -\n", - " 35582.03 5000 1 1 F 4 = H\n", - " * 35589.43 22975 0.72s 3 (gap > 10000%)\n", - " 35589.43 23000 1 3 -\n", - " 35589.43 5000 1 4 F 8399522 = S\n", - " ! Time = 0.72s, Average fail depth = 10, Memory usage = 5.9 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 35589.43 24000 1 3 F 20 = S\n", - " 35589.43 5000 1 2 224295 != S\n", - " * 35859.83 24151 0.75s 3 (gap > 10000%)\n", - " 35859.83 25000 1 3 F 5812269 = H\n", - " * 36099.40 25578 0.80s 3 (gap > 10000%)\n", - " * 36299.39 25669 0.80s 3 (gap > 10000%)\n", - " 36299.39 26000 1 3 F 2551831 = H\n", - " * 36584.09 26122 0.80s 3 (gap > 10000%)\n", - " * 36691.55 26438 0.84s 3 (gap > 10000%)\n", - " * 36969.80 26923 0.84s 3 (gap > 10000%)\n", - " 36969.80 27000 1 3 F 9999972 = H\n", - " 36969.80 6000 1 1 4427198 != H\n", - " * 37230.83 27918 0.86s 3 (gap > 10000%)\n", - " 37230.83 6000 1 4 5475857 != S\n", - " 37230.83 28000 1 3 4989675 != H\n", - " 37230.83 6000 1 2 F 8917040 = H\n", - " * 37296.73 28662 0.88s 3 (gap > 10000%)\n", - " * 37573.48 28703 0.88s 3 (gap > 10000%)\n", - " * 37659.68 28776 0.88s 3 (gap > 10000%)\n", - " 37659.68 29000 1 3 F 4 = H\n", - " ! Time = 0.91s, Average fail depth = 10, Memory usage = 6.5 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " * 64304.50 29505 0.93s 3 (gap > 10000%)\n", - " 64304.50 30000 1 3 -\n", - " 64304.50 31000 1 3 -\n", - " 64304.50 7000 1 1 F 5695668 = H\n", - " 64304.50 7000 1 4 F 5804084 = S\n", - " 64304.50 32000 1 3 F 5 = S\n", - " 64304.50 7000 1 2 3070162 != S\n", - " 64304.50 33000 1 3 F 26 = H\n", - " 64304.50 34000 1 3 -\n", - " * 66578.95 34599 1.10s 3 (gap > 10000%)\n", - " 66578.95 35000 1 3 9999982 != H\n", - " * 67407.13 35434 1.10s 3 (gap > 10000%)\n", - " * 67457.98 35659 1.13s 3 (gap > 10000%)\n", - " * 68049.40 35725 1.13s 3 (gap > 10000%)\n", - " 68049.40 36000 1 3 F -\n", - " 68049.40 37000 1 3 F 31 = H\n", - " 68049.40 8000 1 1 F 7142911 = H\n", - " 68049.40 8000 1 4 F 189 = H\n", - " 68049.40 38000 1 3 F -\n", - " 68049.40 8000 1 2 8448805 != H\n", - " ! Time = 1.19s, Average fail depth = 10, Memory usage = 7.0 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 68049.40 39000 1 3 F 3782982 = S\n", - " 68049.40 40000 1 3 F 28 = H\n", - " * 69211.33 40472 1.29s 3 (gap > 10000%)\n", - " 69211.33 41000 1 3 9999997 != H\n", - " 69211.33 9000 1 4 8893352 != S\n", - " 69211.33 42000 1 3 5580414 != S\n", - " 69211.33 9000 1 1 F 819111 = S\n", - " 69211.33 9000 1 2 F 4225075 = H\n", - " * 69232.48 42336 1.37s 3 (gap > 10000%)\n", - " 69232.48 43000 1 3 -\n", - " 69232.48 44000 1 3 F 4801308 = S\n", - " 69232.48 45000 1 3 F 9225299 = H\n", - " * 69249.68 45062 1.48s 3 (gap > 10000%)\n", - " 69249.68 46000 1 3 -\n", - " 69249.68 10000 1 1 F 9999237 = S\n", - " 69249.68 47000 1 3 F 29 = S\n", - " 69249.68 10000 1 4 F 2970516 = S\n", - " 69249.68 48000 1 3 F -\n", - " 69249.68 10000 1 2 F 6800475 = S\n", - " 69249.68 49000 1 3 -\n", - " ! Time = 1.58s, Average fail depth = 10, Memory usage = 8.2 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 69249.68 50000 1 3 F -\n", - " 69249.68 51000 1 3 F 26 = H\n", - " 69249.68 52000 1 3 -\n", - " 69249.68 11000 1 4 F 9999121 = H\n", - " 69249.68 11000 1 1 247 != S\n", - " * 69259.78 52308 1.65s 3 (gap > 10000%)\n", - " * 69317.53 11171 1.65s 1 (gap > 10000%)\n", - " * 69325.48 11223 1.67s 4 (gap > 10000%)\n", - " 69325.48 11000 1 2 F 165 = H\n", - " * 75531.95 52971 1.69s 3 (gap > 10000%)\n", - " 75531.95 53000 1 3 F -\n", - " 75531.95 54000 1 3 F 2293253 = S\n", - " 75531.95 12000 1 4 F 9999078 = H\n", - " 75531.95 55000 1 3 F 9999970 = S\n", - " 75531.95 56000 1 3 9999974 != S\n", - " 75531.95 12000 1 1 F 172 = H\n", - " 75531.95 57000 1 3 F 1 != S\n", - " 75531.95 12000 1 2 F 175 = H\n", - " 75531.95 58000 1 3 F 3 = S\n", - " 75531.95 13000 1 4 F 9999037 = S\n", - " ! Time = 1.81s, Average fail depth = 10, Memory usage = 8.5 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 75531.95 13000 1 1 F 9999027 = H\n", - " 75531.95 13000 1 2 F 9999043 = S\n", - " 75531.95 59000 1 3 F 1 != S\n", - " 75531.95 60000 1 3 F 3244980 = S\n", - " 75531.95 61000 1 3 -\n", - " 75531.95 14000 1 4 F 9998982 = H\n", - " 75531.95 62000 1 3 -\n", - " 75531.95 14000 1 1 F 9998976 = S\n", - " 75531.95 63000 1 3 7 = S\n", - " 75531.95 14000 1 2 F 9998962 = H\n", - " 75531.95 64000 1 3 4 != S\n", - " 75531.95 65000 1 3 F 8934996 = H\n", - " 75531.95 15000 1 4 F 124628 = H\n", - " 75531.95 66000 1 3 F 3115582 = H\n", - " 75531.95 67000 1 3 -\n", - " 75531.95 15000 1 1 F 5075794 = H\n", - " 75531.95 15000 1 2 F 9998900 = H\n", - " 75531.95 68000 1 3 F 9999999 = S\n", - " * 75549.55 68654 2.13s 3 (gap > 10000%)\n", - " 75549.55 69000 1 3 -\n", - " ! Time = 2.13s, Average fail depth = 10, Memory usage = 9.3 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 75549.55 16000 1 4 F 5750920 = H\n", - " 75549.55 70000 1 3 F 6308797 = S\n", - " 75549.55 71000 1 3 -\n", - " 75549.55 16000 1 2 F 9998818 = H\n", - " 75549.55 72000 1 3 F 20 = S\n", - " 75549.55 16000 1 1 F 8984206 = S\n", - " 75549.55 73000 1 3 F 31 = H\n", - " 75549.55 74000 1 3 F -\n", - " 75549.55 17000 1 4 F 181 = S\n", - " 75549.55 75000 1 3 -\n", - " 75549.55 76000 1 3 F 19 = H\n", - " 75549.55 77000 1 3 F 3 = S\n", - " 75549.55 17000 1 1 F 242 = H\n", - " 75549.55 17000 1 2 229 != S\n", - " * 75565.00 77422 2.40s 3 (gap > 10000%)\n", - " * 75576.05 77463 2.40s 3 (gap > 10000%)\n", - " 75576.05 78000 1 3 F 2528703 = H\n", - " 75576.05 18000 1 4 211 != H\n", - " * 75614.35 78064 2.44s 3 (gap > 10000%)\n", - " 75614.35 79000 1 3 9039756 != S\n", - " ! Time = 2.44s, Average fail depth = 10, Memory usage = 9.8 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 75614.35 80000 1 3 F 31 = H\n", - " 75614.35 81000 1 3 -\n", - " 75614.35 18000 1 1 172 != S\n", - " 75614.35 18000 1 2 514777 != S\n", - " 75614.35 82000 1 3 F 1457007 = H\n", - " 75614.35 19000 1 4 2696977 != H\n", - " * 75857.80 82459 2.55s 3 (gap > 10000%)\n", - " * 75872.80 82704 2.55s 3 (gap > 10000%)\n", - " 75872.80 83000 1 3 20 != S\n", - " 75872.80 84000 1 3 F 9332940 = S\n", - " 75872.80 85000 1 3 F -\n", - " 75872.80 86000 1 3 9999982 != H\n", - " 75872.80 19000 1 1 5901549 != S\n", - " 75872.80 19000 1 2 F 7473052 = S\n", - " 75872.80 87000 1 3 F 5280468 = H\n", - " 75872.80 20000 1 4 2280415 != H\n", - " 75872.80 88000 1 3 F -\n", - " * 75880.75 19611 2.70s 2 (gap > 10000%)\n", - " * 75883.99 88706 2.74s 3 (gap > 10000%)\n", - " 75883.99 89000 1 3 4940304 != S\n", - " ! Time = 2.74s, Average fail depth = 10, Memory usage = 10.1 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " * 75892.90 19921 2.74s 2 (gap > 10000%)\n", - " 75892.90 90000 1 3 F -\n", - " 75892.90 20000 1 1 F 5898206 = H\n", - " 75892.90 20000 1 2 278 != S\n", - " 75892.90 21000 1 4 8314684 != H\n", - " * 75914.05 20029 2.77s 2 (gap > 10000%)\n", - " * 75943.78 90741 2.79s 3 (gap > 10000%)\n", - " 75943.78 91000 1 3 -\n", - " 75943.78 92000 1 3 F 9999997 = S\n", - " 75943.78 93000 1 3 F -\n", - " * 75952.43 21624 2.84s 4 (gap > 10000%)\n", - " 75952.43 94000 1 3 9999985 != S\n", - " 75952.43 22000 1 4 6513523 != S\n", - " 75952.43 21000 1 2 270 != S\n", - " * 75959.63 21051 2.87s 2 (gap > 10000%)\n", - " 75959.63 95000 1 3 F 9999970 = S\n", - " 75959.63 21000 1 1 1194115 != H\n", - " 75959.63 96000 1 3 F -\n", - " * 75989.35 96758 2.95s 3 (gap > 10000%)\n", - " 75989.35 97000 1 3 -\n", - " ! Time = 2.95s, Average fail depth = 10, Memory usage = 11.1 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " * 76000.33 21873 2.98s 2 (gap > 10000%)\n", - " 76000.33 22000 1 2 8325473 != H\n", - " 76000.33 98000 1 3 F -\n", - " 76000.33 23000 1 4 8111637 != H\n", - " 76000.33 99000 1 3 F 17 = H\n", - " * 76003.18 21788 3.07s 1 (gap > 10000%)\n", - " 76003.18 22000 1 1 F 1490162 = S\n", - " 76003.18 100k 1 3 F 9999994 = S\n", - " * 76008.70 22325 3.08s 2 (gap > 10000%)\n", - " 76008.70 101k 1 3 F 4225128 = H\n", - " * 76036.15 23328 3.14s 4 (gap > 10000%)\n", - " * 76042.15 22613 3.14s 2 (gap > 10000%)\n", - " 76042.15 102k 1 3 -\n", - " 76042.15 23000 1 2 F 3303651 = H\n", - " 76042.15 103k 1 3 F 2000107 = H\n", - " * 76049.99 23792 3.24s 4 (gap > 10000%)\n", - " * 76071.49 22546 3.24s 1 (gap > 10000%)\n", - " 76071.49 104k 1 3 -\n", - " 76071.49 24000 1 4 F 266 = S\n", - " * 76071.59 24090 3.32s 4 (gap > 10000%)\n", - " ! Time = 3.32s, Average fail depth = 10, Memory usage = 11.5 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " * 76098.83 104k 3.35s 3 (gap > 10000%)\n", - " 76098.83 105k 1 3 F 0 = S\n", - " 76098.83 23000 1 1 F 291 = H\n", - " * 76110.25 23351 3.35s 2 (gap > 10000%)\n", - " 76110.25 106k 1 3 F -\n", - " * 76121.35 23270 3.45s 1 (gap > 10000%)\n", - " * 76133.59 23322 3.45s 1 (gap > 10000%)\n", - " 76133.59 24000 1 2 F 9998377 = H\n", - " 76133.59 107k 1 3 13 != H\n", - " 76133.59 25000 1 4 F 5629531 = H\n", - " 76133.59 108k 1 3 F 1872751 = H\n", - " * 76147.33 24137 3.54s 2 (gap > 10000%)\n", - " 76147.33 109k 1 3 -\n", - " * 76163.20 109k 3.58s 3 (gap > 10000%)\n", - " * 76175.63 109k 3.63s 3 (gap > 10000%)\n", - " 76175.63 110k 1 3 F -\n", - " 76175.63 24000 1 1 F 285 = H\n", - " * 76217.89 110k 3.66s 3 (gap > 10000%)\n", - " 76217.89 111k 1 3 F 0 = S\n", - " * 76251.50 111k 3.66s 3 (gap > 10000%)\n", - " ! Time = 3.66s, Average fail depth = 10, Memory usage = 12.0 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 76251.50 26000 1 4 5631723 != H\n", - " 76251.50 25000 1 2 6818556 != S\n", - " * 76262.14 111k 3.72s 3 (gap > 10000%)\n", - " 76262.14 112k 1 3 F 9999986 = H\n", - " * 76283.83 112k 3.72s 3 (gap > 10000%)\n", - " 76283.83 113k 1 3 F 9999993 = S\n", - " 76283.83 114k 1 3 25 != H\n", - " 76283.83 25000 1 1 F 732592 = H\n", - " 76283.83 115k 1 3 -\n", - " * 76293.08 115k 3.84s 3 (gap > 10000%)\n", - " * 76314.88 115k 3.88s 3 (gap > 10000%)\n", - " * 76344.65 115k 3.88s 3 (gap > 10000%)\n", - " 76344.65 27000 1 4 9998238 != S\n", - " 76344.65 26000 1 2 F 960649 = H\n", - " * 76357.13 115k 3.92s 3 (gap > 10000%)\n", - " 76357.13 116k 1 3 9999998 != H\n", - " 76357.13 117k 1 3 F 23 = S\n", - " 76357.13 26000 1 1 6785591 != S\n", - " 76357.13 118k 1 3 9999988 != H\n", - " * 76373.14 118k 4.05s 3 (gap > 10000%)\n", - " ! Time = 4.05s, Average fail depth = 10, Memory usage = 12.4 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 76373.14 119k 1 3 -\n", - " 76373.14 120k 1 3 F 2 = H\n", - " 76373.14 27000 1 2 F 9998206 = H\n", - " 76373.14 28000 1 4 F 270 = S\n", - " 76373.14 121k 1 3 F 301 = S\n", - " * 76400.35 121k 4.16s 3 (gap > 10000%)\n", - " 76400.35 122k 1 3 F -\n", - " 76400.35 27000 1 1 9998145 != H\n", - " 76400.35 123k 1 3 9999993 != H\n", - " 76400.35 124k 1 3 F 4 = H\n", - " 76400.35 29000 1 4 F 4774230 = S\n", - " 76400.35 28000 1 2 F 9998113 = S\n", - " 76400.35 125k 1 3 12 != S\n", - " 76400.35 126k 1 3 -\n", - " 76400.35 127k 1 3 F -\n", - " 76400.35 28000 1 1 F 280 = S\n", - " 76400.35 128k 1 3 F 31 = S\n", - " 76400.35 129k 1 3 13 != S\n", - " 76400.35 30000 1 4 8827077 != S\n", - " 76400.35 29000 1 2 7800255 != S\n", - " ! Time = 4.47s, Average fail depth = 10, Memory usage = 13.3 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 76400.35 130k 1 3 6 = S\n", - " * 76426.28 130k 4.59s 3 (gap > 10000%)\n", - " 76426.28 131k 1 3 F 0 = S\n", - " 76426.28 29000 1 1 F 3974289 = H\n", - " 76426.28 31000 1 4 F 1897016 = H\n", - " 76426.28 30000 1 2 5520495 != S\n", - " 76426.28 132k 1 3 F -\n", - " * 76517.20 132k 4.66s 3 (gap > 10000%)\n", - " 76517.20 133k 1 3 7436432 != H\n", - " * 76536.73 133k 4.67s 3 (gap > 10000%)\n", - " 76536.73 134k 1 3 -\n", - " 76536.73 30000 1 1 232589 != S\n", - " 76536.73 135k 1 3 F 4 = H\n", - " 76536.73 31000 1 2 F 1558561 = H\n", - " 76536.73 136k 1 3 0 != S\n", - " 76536.73 32000 1 4 F 9997951 = H\n", - " 76536.73 137k 1 3 F 31 = H\n", - " * 76554.98 137k 4.91s 3 (gap > 10000%)\n", - " 76554.98 138k 1 3 F 2 = H\n", - " 76554.98 139k 1 3 -\n", - " ! Time = 4.98s, Average fail depth = 10, Memory usage = 13.6 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 76554.98 33000 1 4 F 9997866 = S\n", - " 76554.98 31000 1 1 282 != S\n", - " 76554.98 32000 1 2 F 9997909 = H\n", - " 76554.98 140k 1 3 F 1 = H\n", - " 76554.98 141k 1 3 22 != S\n", - " * 76571.95 141k 5.13s 3 (gap > 10000%)\n", - " 76571.95 142k 1 3 283 != H\n", - " 76571.95 143k 1 3 -\n", - " 76571.95 32000 1 1 9997839 != H\n", - " 76571.95 144k 1 3 F 13 = H\n", - " 76571.95 34000 1 4 293 != S\n", - " * 76582.39 34005 5.21s 4 (gap > 10000%)\n", - " 76582.39 33000 1 2 F 9997830 = H\n", - " * 76601.15 34105 5.27s 4 (gap > 10000%)\n", - " 76601.15 145k 1 3 282 != H\n", - " 76601.15 146k 1 3 F -\n", - " * 76610.50 34643 5.35s 4 (gap > 10000%)\n", - " 76610.50 147k 1 3 F 852341 = S\n", - " * 76627.03 147k 5.38s 3 (gap > 10000%)\n", - " * 76642.55 147k 5.38s 3 (gap > 10000%)\n", - " ! Time = 5.38s, Average fail depth = 10, Memory usage = 14.0 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 76642.55 33000 1 1 F 9997809 = S\n", - " 76642.55 148k 1 3 -\n", - " * 76654.90 148k 5.42s 3 (gap > 10000%)\n", - " 76654.90 35000 1 4 F 306 = H\n", - " 76654.90 149k 1 3 F 22 = H\n", - " 76654.90 34000 1 2 F 296 = H\n", - " 76654.90 150k 1 3 F 9999969 = H\n", - " * 76667.08 150k 5.52s 3 (gap > 10000%)\n", - " 76667.08 151k 1 3 F 9999995 = H\n", - " 76667.08 34000 1 1 F 9997733 = S\n", - " * 76675.75 151k 5.62s 3 (gap > 10000%)\n", - " 76675.75 152k 1 3 F 0 = H\n", - " 76675.75 36000 1 4 292 != S\n", - " 76675.75 35000 1 2 284 != S\n", - " 76675.75 153k 1 3 F 19 = S\n", - " 76675.75 154k 1 3 F 4 = H\n", - " 76675.75 155k 1 3 F -\n", - " * 76679.35 36925 5.77s 4 (gap > 10000%)\n", - " 76679.35 37000 1 4 7540446 != S\n", - " 76679.35 35000 1 1 9997692 != H\n", - " ! Time = 5.77s, Average fail depth = 10, Memory usage = 14.4 MB\n", - " ! Current bound is 1.000310e+13 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 76679.35 156k 1 3 F 9999992 = H\n", - " 76679.35 36000 1 2 F 293 = H\n", - " 76679.35 157k 1 3 F 31 = S\n", - " 76679.35 158k 1 3 F -\n", - " 76679.35 159k 1 3 -\n", - " 76679.35 38000 1 4 361 != H\n", - " 76679.35 36000 1 1 F 294 = S\n", - " 76679.35 160k 1 3 2314097 != S\n", - " 76679.35 37000 1 2 9997574 != S\n", - " 76679.35 161k 1 3 8760822 != S\n", - " 76679.35 162k 1 3 23 != H\n", - " 76679.35 163k 1 3 F 31 = S\n", - " 76679.35 164k 1 3 9999970 != S\n", - " 76679.35 39000 1 4 F 448 = H\n", - " 76679.35 165k 1 3 -\n", - " 76679.35 37000 1 1 F 6657372 = H\n", - " 76679.35 166k 1 3 F 3946955 = H\n", - " 76679.35 38000 1 2 F 503 = S\n", - " 76679.35 167k 1 3 F 305 = S\n", - " 76679.35 38409 2 2 F -\n", - " + New bound is 5.001550e+12 (gap > 10000%)\n", - " ! Time = 6.45s, Average fail depth = 10, Memory usage = 15.2 MB\n", - " ! Current bound is 5.001550e+12 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 76679.35 38409 2 2 F -\n", - " + New bound is 2.500775e+12 (gap > 10000%)\n", - " 76679.35 38409 2 2 F -\n", - " + New bound is 1.250387e+12 (gap > 10000%)\n", - " 76679.35 38409 2 2 F -\n", - " + New bound is 6.251938e+11 (gap > 10000%)\n", - " 76679.35 38409 2 2 F -\n", - " + New bound is 3.125969e+11 (gap > 10000%)\n", - " 76679.35 38409 2 2 F -\n", - " + New bound is 1.562985e+11 (gap > 10000%)\n", - " 76679.35 38409 2 2 F -\n", - " + New bound is 7.814929e+10 (gap > 10000%)\n", - " 76679.35 38409 2 2 F -\n", - " + New bound is 3.907468e+10 (gap > 10000%)\n", - " 76679.35 38409 2 2 F -\n", - " + New bound is 1.953738e+10 (gap > 10000%)\n", - " 76679.35 38409 2 2 F -\n", - " + New bound is 9.768729e+09 (gap > 10000%)\n", - " 76679.35 38000 1 1 6743607 != H\n", - " 76679.35 168k 1 3 -\n", - " 76679.35 40000 1 4 100922 = H\n", - " 76679.35 169k 1 3 F -\n", - " 76679.35 170k 1 3 -\n", - " 76679.35 39000 1 2 F 633 = H\n", - " 76679.35 171k 1 3 9999997 != H\n", - " 76679.35 172k 1 3 F 9999988 = S\n", - " 76679.35 41000 1 4 F 619 = S\n", - " 76679.35 173k 1 3 1191495 != H\n", - " 76679.35 39000 1 1 F 855432 = S\n", - " ! Time = 6.82s, Average fail depth = 10, Memory usage = 15.5 MB\n", - " ! Current bound is 9.768729e+09 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 76679.35 174k 1 3 -\n", - " 76679.35 175k 1 3 F 1403757 = S\n", - " 76679.35 40000 2 2 F 689 = H\n", - " 76679.35 176k 1 3 1 != S\n", - " 76679.35 40093 2 2 F -\n", - " + New bound is 4.884403e+09 (gap > 10000%)\n", - " 76679.35 177k 1 3 -\n", - " 76679.35 42000 1 4 F 583 = H\n", - " 76679.35 178k 1 3 6 = H\n", - " 76679.35 40000 1 1 F 4886106 = S\n", - " 76679.35 179k 1 3 F 9999972 = S\n", - " 76679.35 41000 1 2 F 748 = S\n", - " 76679.35 180k 1 3 -\n", - " 76679.35 181k 1 3 2 != H\n", - " 76679.35 43000 1 4 588 != H\n", - " 76679.35 182k 1 3 -\n", - " 76679.35 41000 1 1 4408031 != S\n", - " 76679.35 183k 1 3 0 != H\n", - " 76679.35 184k 1 3 F 8658197 = S\n", - " 76679.35 42000 2 2 F 822 = S\n", - " 76679.35 185k 1 3 -\n", - " ! Time = 7.36s, Average fail depth = 10, Memory usage = 16.0 MB\n", - " ! Current bound is 4.884403e+09 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 76679.35 186k 1 3 F 9999990 = S\n", - " 76679.35 42000 1 1 F 615 = S\n", - " 76679.35 187k 1 3 -\n", - " 76679.35 44000 1 4 5990681 != H\n", - " 76679.35 188k 1 3 F 0 = S\n", - " 76679.35 189k 1 3 -\n", - " 76679.35 43000 1 2 603 != S\n", - " 76679.35 190k 1 3 7915623 != S\n", - " 76679.35 191k 1 3 F 9999970 = S\n", - " 76679.35 192k 1 3 F -\n", - " 76679.35 43000 1 1 F 692 = S\n", - " 76679.35 45000 1 4 F 2741451 = S\n", - " 76679.35 44000 1 2 2563347 != H\n", - " 76679.35 193k 1 3 -\n", - " 76679.35 46000 1 4 5193648 != H\n", - " 76679.35 45000 1 2 2209 != S\n", - " 76679.35 47000 1 4 686 != H\n", - " 76679.35 44000 1 1 2189635 != H\n", - " 76679.35 45000 1 1 F 544 = S\n", - " 76679.35 46000 2 2 890 != S\n", - " ! Time = 7.89s, Average fail depth = 10, Memory usage = 16.4 MB\n", - " ! Current bound is 4.884403e+09 (gap > 10000%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 76679.35 194k 1 3 F 6 = S\n", - " 76679.35 195k 1 3 F 1 = S\n", - " 76679.35 48000 1 4 F 2206 = S\n", - " 76679.35 46000 1 1 F 1246 = S\n", - " 76679.35 196k 1 3 1 != S\n", - " 76679.35 47000 2 1 F 1746 = S\n", - " 76679.35 47000 1 2 F 572 = H\n", - " 76679.35 48264 1 4 -\n", - " + New bound is 76687.02 (gap is 0.01%)\n", - " ! ----------------------------------------------------------------------------\n", - " ! Search completed, 136 solutions found.\n", - " ! Best objective : 76679.35 (optimal - effective tol. is 7.66794)\n", - " ! Best bound : 76687.02\n", - " ! ----------------------------------------------------------------------------\n", - " ! Number of branches : 339108\n", - " ! Number of fails : 169893\n", - " ! Total memory usage : 16.9 MB (16.9 MB CP Optimizer + 0.0 MB Concert)\n", - " ! Time spent in solve : 7.98s (7.98s engine + 0.00s extraction)\n", - " ! Search speed (br. / s) : 42494.7\n", - " ! ----------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "from docplex.cp.model import CpoModel as Model\n", - "\n", - "m = Model() \n", - "\n", - "Ps = m.integer_var(name='S')\n", - "Ph = m.integer_var(name='H')\n", - "\n", - "DS = (222 - 0.6*Ps + 0.35*Ph)\n", - "DH = (270 + 0.1*Ps - 0.64*Ph)\n", - "\n", - "m.add_constraint(Ps >= 0)\n", - "m.add_constraint(Ph >= 0)\n", - "m.add_constraint(Ph <= 10e6)\n", - "m.add_constraint(Ps <= 10e6)\n", - "\n", - "m.maximize(Ph * DH + Ps * DS)\n", - "solution = m.solve(log_output=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "316 Labor\n", - "303 Capital\n" - ] - } - ], - "source": [ - "print(solution[Ph],\" Labor\") ### Answer is also close enough lmao\n", - "print(solution[Ps],\" Capital\")" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "76679.35999999996\n" - ] - } - ], - "source": [ - "print(solution.get_objective_value())" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Non Linear Optimization Models/ProductPricing_Problem.ipynb b/Non Linear Optimization Models/ProductPricing_Problem.ipynb deleted file mode 100644 index b84810f..0000000 --- a/Non Linear Optimization Models/ProductPricing_Problem.ipynb +++ /dev/null @@ -1,148 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Phillips Inc. produces two distinct products, A and B. The products\n", - "do not compete with each other in the marketplace; that is, neither cost, price, nor\n", - "demand for one product will impact the demand for the other. Phillips’ analysts have\n", - "collected data on the effects of advertising on profits. These data suggest that, although\n", - "higher advertising correlates with higher profits, the marginal increase in profits dimin-\n", - "ishes at higher advertising levels, particularly for product B. Analysts have estimated\n", - "the following functions:\n", - "\n", - "Annual profit for product A = $1.2712LN(X_A) + 17.414$\n", - "\n", - "Annual profit for product B = $0.3970LN(X_B) + 16.109$\n", - "\n", - "where XA and XB are the advertising amount allocated to products A and B, respec-\n", - "tively, in thousands of dollars, profit is in millions of dollars, and LN is the natural log-\n", - "arithm function. The advertising budget is $500,000, and management has dictated that\n", - "at least $50,000 must be allocated to each of the two products.\n", - "(Hint: To compute a natural logarithm for the value X in Excel, use the formula =LN(X).\n", - "For Solver to find an answer, you also need to start with decision variable values\n", - "greater than 0 in this problem.)\n", - "\n", - "a. Build an optimization model that will prescribe how Phillips should allocate its\n", - "marketing budget to maximize profit.\n", - "\n", - "b. Solve the model you constructed in part (a) using Excel Solver." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ! --------------------------------------------------- CP Optimizer 22.1.1.0 --\n", - " ! Maximization problem - 2 variables, 3 constraints\n", - " ! Initial process time : 0.00s (0.00s extraction + 0.00s propagation)\n", - " ! . Log search space : 37.2 (before), 37.2 (after)\n", - " ! . Memory usage : 267.0 kB (before), 267.0 kB (after)\n", - " ! Using parallel search with 4 workers.\n", - " ! ----------------------------------------------------------------------------\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 0 2 -\n", - " + New bound is 55.23796\n", - " 0 2 1 -\n", - " + New bound is 54.64008\n", - " * 51.57255 802 0.04s 1 (gap is 5.95%)\n", - " * 53.40427 804 0.04s 1 (gap is 2.31%)\n", - " * 53.42670 806 0.04s 1 (gap is 2.27%)\n", - " * 53.76813 815 0.04s 1 (gap is 1.62%)\n", - " * 54.25430 817 0.04s 1 (gap is 0.71%)\n", - " * 54.25973 821 0.04s 1 (gap is 0.70%)\n", - " * 54.36566 822 0.04s 1 (gap is 0.50%)\n", - " 54.36566 1000 1 1 50778 != B Ads\n", - " * 54.37372 804 0.04s 2 (gap is 0.49%)\n", - " * 54.43548 815 0.04s 2 (gap is 0.38%)\n", - " 54.43548 1000 1 2 F 60527 = B Ads\n", - " * 54.44091 210 0.04s 3 (gap is 0.37%)\n", - " * 54.47656 232 0.04s 3 (gap is 0.30%)\n", - " * 54.48201 253 0.04s 3 (gap is 0.29%)\n", - " * 54.48746 274 0.04s 3 (gap is 0.28%)\n", - " * 54.49291 295 0.04s 3 (gap is 0.27%)\n", - " ! ----------------------------------------------------------------------------\n", - " ! Search completed, 14 solutions found.\n", - " ! Best objective : 54.49291 (optimal - effective tol. is 0.00544929)\n", - " ! Best bound : 54.64008\n", - " ! ----------------------------------------------------------------------------\n", - " ! Number of branches : 3299\n", - " ! Number of fails : 1635\n", - " ! Total memory usage : 2.8 MB (2.8 MB CP Optimizer + 0.0 MB Concert)\n", - " ! Time spent in solve : 0.04s (0.04s engine + 0.00s extraction)\n", - " ! Search speed (br. / s) : 109966.7\n", - " ! ----------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "from docplex.cp.model import CpoModel as Model\n", - "import numpy as np\n", - "\n", - "m = Model(name='buses')\n", - "\n", - "XA = m.integer_var(name='A Ads')\n", - "XB = m.integer_var(name='B Ads')\n", - "\n", - "m.add_constraint(XA >= 50000)\n", - "m.add_constraint(XB >= 50000)\n", - "m.add_constraint(XA + XB <= 500000)\n", - "\n", - "A_profit = 1.2712 * m.log(XA) + 17.414\n", - "B_profit = 0.3970 * m.log(XB) + 16.109\n", - "\n", - "m.maximize(A_profit + B_profit)\n", - "\n", - "solution = m.solve(log_output=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "397558 A ads\n", - "102442 B ads\n", - "54.492913449909864 profit\n" - ] - } - ], - "source": [ - "print(solution[XA],\" A ads\")\n", - "print(solution[XB],\" B ads\") \n", - "print(solution.get_objective_value(),\" profit\") # Not as close, but good enough" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Non Linear Optimization Models/ProductionPlanning_Problem.ipynb b/Non Linear Optimization Models/ProductionPlanning_Problem.ipynb deleted file mode 100644 index 0aeaedf..0000000 --- a/Non Linear Optimization Models/ProductionPlanning_Problem.ipynb +++ /dev/null @@ -1,147 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The profit function for two products is\n", - "\n", - "$Profit = -3 x^2_1 + 42 x_1 - 3 x^2_2 + 48x_2 + 700$\n", - "\n", - "where x1 represents units of production of product 1 and x 2 represents units of produc-\n", - "tion of product 2. \n", - "\n", - "Producing one unit of product 1 requires 4 labor-hours and producing\n", - "one unit of product 2 requires 6 labor-hours. Currently, 24 labor-hours are available.\n", - "\n", - "The cost of labor-hours is already factored into the profit function, but it is possible to\n", - "schedule overtime at a premium of $5 per hour.\n", - "\n", - "a. Formulate an optimization problem that can be used to find the optimal produc-\n", - "tion quantity of products 1 and 2 and the optimal number of overtime hours to schedule.\n", - "\n", - "b. Solve the optimization model you formulated in part (a). How much should be\n", - "­produced and how many overtime hours should be scheduled?" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "m = Model()\n", - "\n", - "x1 = m.integer_var(name='x1')\n", - "x2 = m.integer_var(name='x2')\n", - "\n", - "xtra_time = m.continuous_var(name='extra_time')\n", - "\n", - "m.add_constraint(4*x1 + 6*x2 <= 24 + xtra_time)\n", - "\n", - "Profit = -3 * x1**2 + 42 * x1 - 3 * x2**2 + 48 * x2 + 700 - xtra_time * 5\n", - "\n", - "m.maximize(Profit)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-11 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Found incumbent of value 700.000000 after 0.00 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "Reduced MIQP has 1 rows, 3 columns, and 3 nonzeros.\n", - "Reduced MIQP has 0 binaries, 2 generals, 0 SOSs, and 0 indicators.\n", - "Reduced MIQP objective Q matrix has 2 nonzeros.\n", - "Presolve time = 0.01 sec. (0.00 ticks)\n", - "Tried aggregator 1 time.\n", - "Reduced MIQP has 1 rows, 3 columns, and 3 nonzeros.\n", - "Reduced MIQP has 0 binaries, 2 generals, 0 SOSs, and 0 indicators.\n", - "Reduced MIQP objective Q matrix has 2 nonzeros.\n", - "Presolve time = 0.01 sec. (0.00 ticks)\n", - "Classifier predicts products in MIQP should be linearized.\n", - "MIP emphasis: balance optimality and feasibility.\n", - "MIP search method: dynamic search.\n", - "Parallel mode: deterministic, using up to 4 threads.\n", - "Root relaxation solution time = 0.01 sec. (0.02 ticks)\n", - "\n", - " Nodes Cuts/\n", - " Node Left Objective IInf Best Integer Best Bound ItCnt Gap\n", - "\n", - "* 0+ 0 700.0000 0.00%\n", - " 0 0 887.3333 1 700.0000 887.3333 16 26.76%\n", - "* 0+ 0 886.0000 887.3333 0.15%\n", - "* 0+ 0 887.0000 887.3333 0.04%\n", - " 0 0 cutoff 887.0000 887.3333 16 0.04%\n", - "Elapsed time = 0.08 sec. (0.04 ticks, tree = 0.01 MB, solutions = 3)\n", - "\n", - "Root node processing (before b&c):\n", - " Real time = 0.08 sec. (0.04 ticks)\n", - "Parallel b&c, 4 threads:\n", - " Real time = 0.00 sec. (0.00 ticks)\n", - " Sync time (average) = 0.00 sec.\n", - " Wait time (average) = 0.00 sec.\n", - " ------------\n", - "Total (root+branch&cut) = 0.08 sec. (0.04 ticks)\n" - ] - } - ], - "source": [ - "solution = m.solve(log_output=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "solution for: docplex_model5\n", - "objective: 887\n", - "status: OPTIMAL_SOLUTION(2)\n", - "x1=4\n", - "x2=3\n", - "extra_time=10.000\n", - "\n" - ] - } - ], - "source": [ - "print(solution) ### SOlution is almost right, Good enough in my book. However, the formlualtion is correct, just not integer." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Non Linear Optimization Models/SteelProduction_Problem.ipynb b/Non Linear Optimization Models/SteelProduction_Problem.ipynb deleted file mode 100644 index 6e49ce9..0000000 --- a/Non Linear Optimization Models/SteelProduction_Problem.ipynb +++ /dev/null @@ -1,217 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let S represent the amount of steel produced (in tons).\n", - "Steel production is related to the amount of labor used (L) and the amount of capital\n", - "used (C) by the following function:\n", - "\n", - "$S = 20 L^{0.30}C^{0.70}$\n", - "\n", - "In this formula L represents the units of labor input and C the units of capital input.\n", - "Each unit of labor costs $50, and each unit of capital costs $100.\n", - "\n", - "a. Formulate an optimization problem that will determine how much labor and capital\n", - "are needed to produce 50,000 tons of steel at minimum cost.\n", - "\n", - "b. Solve the optimization problem you formulated in part (a). (Hint: When using Excel\n", - "Solver, start with an initial L . 0 and C . 0.)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ! --------------------------------------------------- CP Optimizer 22.1.1.0 --\n", - " ! Minimization problem - 2 variables, 1 constraint\n", - " ! Initial process time : 0.00s (0.00s extraction + 0.00s propagation)\n", - " ! . Log search space : 106.0 (before), 106.0 (after)\n", - " ! . Memory usage : 267.0 kB (before), 267.0 kB (after)\n", - " ! Using parallel search with 4 workers.\n", - " ! ----------------------------------------------------------------------------\n", - " ! Best Branches Non-fixed W Branch decision\n", - " 0 2 -\n", - " + New bound is 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 0 2 1 F -\n", - " + New bound is 374035\n", - " 0 2 1 F -\n", - " + New bound is 374036\n", - " * 1.06032e+13 4 0.04s 1 (gap is 100.00%)\n", - " * 7148350 18 0.04s 1 (gap is 94.77%)\n", - " * 5311300 30 0.04s 1 (gap is 92.96%)\n", - " * 5310750 31 0.04s 1 (gap is 92.96%)\n", - " * 5295650 33 0.04s 1 (gap is 92.94%)\n", - " * 4014750 35 0.04s 1 (gap is 90.68%)\n", - " * 2922550 37 0.04s 1 (gap is 87.20%)\n", - " * 2840700 39 0.04s 1 (gap is 86.83%)\n", - " * 2788150 41 0.04s 1 (gap is 86.58%)\n", - " * 2787850 42 0.04s 1 (gap is 86.58%)\n", - " * 2785100 44 0.04s 1 (gap is 86.57%)\n", - " * 2667650 46 0.04s 1 (gap is 85.98%)\n", - " * 2419300 48 0.04s 1 (gap is 84.54%)\n", - " * 2220450 50 0.04s 1 (gap is 83.15%)\n", - " * 2179300 52 0.04s 1 (gap is 82.84%)\n", - " * 2179050 53 0.04s 1 (gap is 82.83%)\n", - " * 2175400 55 0.04s 1 (gap is 82.81%)\n", - " ! Time = 0.04s, Average fail depth = 3, Memory usage = 1.2 MB\n", - " ! Current bound is 374036 (gap is 82.81%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " * 2051200 57 0.04s 1 (gap is 81.77%)\n", - " * 1892900 59 0.04s 1 (gap is 80.24%)\n", - " * 1753000 61 0.04s 1 (gap is 78.66%)\n", - " * 1742250 63 0.04s 1 (gap is 78.53%)\n", - " * 1742050 64 0.04s 1 (gap is 78.53%)\n", - " * 1738950 66 0.04s 1 (gap is 78.49%)\n", - " * 1050650 68 0.04s 1 (gap is 64.40%)\n", - " * 862650 70 0.04s 1 (gap is 56.64%)\n", - " * 823900 72 0.04s 1 (gap is 54.60%)\n", - " * 822250 74 0.04s 1 (gap is 54.51%)\n", - " * 822150 75 0.04s 1 (gap is 54.51%)\n", - " * 821750 77 0.04s 1 (gap is 54.48%)\n", - " * 738400 79 0.04s 1 (gap is 49.35%)\n", - " * 573000 81 0.04s 1 (gap is 34.72%)\n", - " * 429700 83 0.04s 1 (gap is 12.95%)\n", - " * 429650 84 0.04s 1 (gap is 12.94%)\n", - " * 429600 85 0.04s 1 (gap is 12.93%)\n", - " * 429500 87 0.04s 1 (gap is 12.91%)\n", - " * 417950 89 0.04s 1 (gap is 10.51%)\n", - " * 416400 91 0.04s 1 (gap is 10.17%)\n", - " ! Time = 0.04s, Average fail depth = 3, Memory usage = 1.4 MB\n", - " ! Current bound is 374036 (gap is 10.17%)\n", - " ! Best Branches Non-fixed W Branch decision\n", - " * 376900 93 0.04s 1 (gap is 0.76%)\n", - " * 376850 94 0.04s 1 (gap is 0.75%)\n", - " * 376800 95 0.04s 1 (gap is 0.73%)\n", - " * 376750 96 0.04s 1 (gap is 0.72%)\n", - " * 376500 98 0.04s 1 (gap is 0.65%)\n", - " * 376300 100 0.04s 1 (gap is 0.60%)\n", - " * 374250 102 0.04s 1 (gap is 0.06%)\n", - " * 374200 103 0.04s 1 (gap is 0.04%)\n", - " * 374150 104 0.04s 1 (gap is 0.03%)\n", - " * 374100 105 0.04s 1 (gap is 0.02%)\n", - " * 374050 106 0.04s 1 (gap is 0.00%)\n", - " ! ----------------------------------------------------------------------------\n", - " ! Search completed, 48 solutions found.\n", - " ! Best objective : 374050 (optimal - effective tol. is 37)\n", - " ! Best bound : 374036\n", - " ! ----------------------------------------------------------------------------\n", - " ! Number of branches : 1274\n", - " ! Number of fails : 639\n", - " ! Total memory usage : 3.1 MB (3.1 MB CP Optimizer + 0.0 MB Concert)\n", - " ! Time spent in solve : 0.04s (0.04s engine + 0.00s extraction)\n", - " ! Search speed (br. / s) : 31850.0\n", - " ! ----------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "from docplex.cp.model import CpoModel as Model\n", - "\n", - "m = Model() \n", - "\n", - "c0 = 5\n", - "c1 = 0.25\n", - "c2 = 0.75\n", - "\n", - "L = m.integer_var(name='Labor')\n", - "C = m.integer_var(name='Capital')\n", - "\n", - "m.add_constraint(20*L**0.3*C**0.7 >= 50000)\n", - "\n", - "m.minimize(50*L + 100*C)\n", - "\n", - "solution = m.solve(log_output=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2245 Labor\n", - "2618 Capital\n" - ] - } - ], - "source": [ - "print(solution[L],\" Labor\")\n", - "print(solution[C],\" Capital\")" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "50000.41958803582" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "20*solution[L]**0.3*solution[C]**0.7" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "374050\n" - ] - } - ], - "source": [ - "print(solution.get_objective_value())" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Non Linear Optimization Models/notes.md b/Non Linear Optimization Models/notes.md deleted file mode 100644 index 2e8599d..0000000 --- a/Non Linear Optimization Models/notes.md +++ /dev/null @@ -1,28 +0,0 @@ -What does this mean >> "Convex region: For any 2 points in the region, any convex combination should be between them"??? - -* Convex combination= l*x_1 + (1-l)* x_2 where l is lambda. -* "Reduces cost" in Non linear is called "Reduced Gradiant". - - -Local and Global Optimality: -* We used to have one name for optimal solution. Just the optimal solution for all the problems -* You can face problems where the optimal solution for the problem in Non Linear is infeasable (Global Optimality is infeasable). -* Hence, we try to look for Local Optimality, meaning the optimal solution whithin the neighborhood for the answer. - -Local Optima: -* A feasible solution when there are no other feasible points with a better objective function value in the neighborhood region. - -Shapes (u (cup), n (cap), __ (line)): -u is convex -n is concave -u, n, and __ all together are convex and concave. - -DOCPLex can't do some of these probelms, hence, you have to derivate based on X = 0 and Y = 0. - -* Forcasting adoption of a new product: - * Inputs: - * M = the number of people estimated to eventually adopt the new product - * q = the coef of imitation - * p = the coef of innovation - * Function: - * F_t = (p + q[C_{t-1}/m])(m-C_{t-1}) diff --git a/README.md b/README.md new file mode 100644 index 0000000..3fc5095 --- /dev/null +++ b/README.md @@ -0,0 +1,2 @@ +OUT OF EVERYTHING YOU COULDA HAVE SPENT YOUR VALUABLE TIME ON, YOU CHOOSE STOCHASTIC OPTIMIZATION. +MY DISAPPOINTMENT IS IMMEASURABLE AND MY DAY IS RUINED. \ No newline at end of file diff --git a/StandardForms/notes.md b/StandardForms/notes.md deleted file mode 100644 index fdcd075..0000000 --- a/StandardForms/notes.md +++ /dev/null @@ -1,171 +0,0 @@ -Standard Form main features: -* Always Mamimize -* Non-Negative Decision Variables -* Non-Negative Right Hand Side of Constraints -* All constraints should be equality - -How to deal with: -

Minimize

-

Multiply objective function with (-1)

- -____ - -

Non Negative RHS in Constraint

-

Multiply both sides with (-1) and flip the < to >, and vice versa. -For Example: - -$Ax \geq -b$ - -Becomes - -$-Ax \leq b$ -

- -____ - -

Greater than or equal in Constraint (Slack Variable)

-Change constraint from - -$Ax \geq b$ - -Becomes - -$Ax - e = b$ - -Subject to - -$e \geq 0$ - -____ -

Less than or equal in Constraint (Excess Variable)

-Change constraint from - -$Ax \leq b$ - -Becomes - -$Ax + e = b$ - -Subject to - -$e \geq 0$ - -____ - -

Non Postive Decision Variable

-**CHECK THIS AGAIN** - -This: - -$xA = b$ - -$x \leq 0$ - - -Becomes: - -$-x^\prime A = b$ - -$x^\prime \geq 0$ - - -____ - -

Unrestricted Decision Variable

-This: - -$Ax = b$ - -$x\;urs$ (Means Unsrestricred) - -Becomes: - -$x = x^\prime - x^{\prime}{^\prime}$ - -where - -$x^\prime, x^{\prime}{^\prime} \geq 0$ - -So - -$A(x^\prime - x^{\prime}{^\prime}) = b$ - -___ - -Example 1: - -$\mathrm{minimize} -4x_1 + x_2 + x_3$
-Subject To
-$3x_1 + x_2 + x_3 \leq 6$
-$-2x_1 - x_2 + x_3 \leq -3$
-$x_1 + x_2 - x_3 \geq 6$
- -$x_1 \geq 0, \; x_2 \leq 0, \; x_3 \;urs$
- -Becomes: - -$\mathrm{maximize} \; 4x_1 - x_2 - x_3$
-Subject To
-$3x_1 - x_2^\prime + (x_3^{\prime} - x_3^{\prime}{^\prime}) + e_1 = 6$
-$2x_1 - x_2^\prime - (x_3^{\prime} + x_3^{\prime}{^\prime}) - e_2 = 3$
-$x_1 - x_2^\prime - (x_3^{\prime} + x_3^{\prime}{^\prime}) - e_3 = 6$
-$e_1, e_2, e_3 \geq 0$
-$x_2^\prime, x_3^{\prime}, x_3^{\prime}{^\prime} \geq 0$
-$x_1 \geq 0$ - - -___ - -Example 2 (ORIGINAL - ALREADY STANDARIZED - Primal Dakota Problem): - -$\mathrm{maximize} \; 60x_1 + 30x_2 + 20x_3$
-Subject To
-$8x_1 + 6x_2 + x_3 \leq 48$
-$4x_1 + 2x_2 + 1.5x_3 \leq 20$
-$2x_1 + 1.5x_2 + 0.5x_3 \leq 8$
- -$x_1, x_2, x_3 \geq 0$
- -ITS DUAL IS: - -$\mathrm{minimize} \; 48x_1 + 20x_2 + 8x_3$
-Subject To
-$8x_1 + 4x_2 + 2x_3 \geq 60$
-$6x_1 + 2x_2 + 1.5x_3 \geq 30$
-$x_1 + 1.5x_2 + 0.5x_3 \geq 20$
- -$x_1, x_2, x_3 \geq 0$
- -DUAL as in: |Constrains| = |Decision Variables in Dual|
-DUAL as in: B(Right hand side) is in DUAL C(Decision Variable Coef)
-DUAL as in: Max become min in DUAL
-DUAL as in: leq becomes geq in DUAL
-Given a PRIMAL problem with N Decision variables, you have n constrains in Dual.
-Given a PRIMAL problem with M constraints, you have m Decision Variables in Dual. where each constraint in DUAL has M "7ad".
- -Which is done by:
-Primal Problem:
- -$\mathrm{max} \; c^T x$
-subject to
-$Ax \leq b$
-$x \geq 0$
- -Dual Problem -$\mathrm{min} \; b^T y$
-subject to
-$Ay \geq c$
-$y \geq 0$
- - -1. For each constaint we add a DV. -2. Use Bs (Right hand side of constraints as Coefs) -3. DUAL A = We transpose PRIMAL A (Coef of Left hand side constraints) -4. Just check the slides. - * if constraint geq b --> y leq 0 - -____ - - - - diff --git a/Time Series/AdministrativeExpenses_Problem.ipynb b/Time Series/AdministrativeExpenses_Problem.ipynb deleted file mode 100644 index 7c422af..0000000 --- a/Time Series/AdministrativeExpenses_Problem.ipynb +++ /dev/null @@ -1,216 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Seneca Children’s Fund (SCF) is a local charity\n", - "that runs a summer camp for disadvantaged children. The fund’s board of directors\n", - "has been working very hard over recent years to decrease the amount of overhead\n", - "expenses, a major factor in how charities are rated by independent agencies. The\n", - "following data show the percentage of the money SCF has raised that was spent on\n", - "administrative and fund-raising expenses over the past seven years:\n", - "\n", - "a. Construct a time series plot. What type of pattern exists in the data?\n", - "\n", - "b. Use simple linear regression analysis to find the parameters for the line that mini-\n", - "mizes MSE for this time series.\n", - "\n", - "c. Forecast the percentage of administrative expenses for year 8.\n", - "\n", - "d. If SCF can maintain its current trend in reducing administrative expenses, how long\n", - "will it take for SCF to achieve a level of 5% or less?" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2jklEQVR4nO3de3RU9b3//9ckIROEXCD3CQl3CHJJEEjkYtUSjRyLiZcWgz2iov0ev9BqU9uKv1aw9tv0tMueXuTgseco9ihibUuCNyxGDCKBCDgIqEjCJZBkEhJIhgQzSWb274/AwEi4BBJmJzwfa+212Ne8ZxTmlff+fGZbDMMwBAAAYGIB/i4AAADgfAgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9IL8XUBX8Hg8qqysVGhoqCwWi7/LAQAAF8AwDB07dkw2m00BAefuofSKwFJZWanExER/lwEAAC7CwYMHNWjQoHMe0ysCS2hoqKT2FxwWFubnagAAwIVwOp1KTEz0fo6fS68ILCdvA4WFhRFYAADoYS5kOAeDbgEAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOkRWAAAgOl1KrDk5eVpypQpCg0NVUxMjLKzs7V7926fY5qbm7VgwQJFRkaqf//+uvPOO1VdXX3O6xqGoSeffFLx8fHq27evMjIytGfPns6/GgAA0Ct1KrAUFRVpwYIF2rRpk9auXavW1lbdfPPNampq8h7zwx/+UG+88YZef/11FRUVqbKyUnfcccc5r/ub3/xGf/zjH/Xcc89p8+bN6tevnzIzM9Xc3HxxrwoAAPQqFsMwjIs9+fDhw4qJiVFRUZG+8Y1vqKGhQdHR0VqxYoXuuusuSdIXX3yhMWPGqLi4WNdee+0Z1zAMQzabTT/60Y/02GOPSZIaGhoUGxur5cuX6+677z5vHU6nU+Hh4WpoaOCr+QEA6CE68/l9SWNYGhoaJEkDBw6UJG3dulWtra3KyMjwHpOcnKykpCQVFxd3eI19+/bJ4XD4nBMeHq709PSznuNyueR0On0WAADQe110YPF4PHr00Uc1ffp0jRs3TpLkcDgUHBysiIgIn2NjY2PlcDg6vM7J7bGxsRd8Tl5ensLDw71LYmLixb4MAADQA1x0YFmwYIF27typlStXdmU9F2TRokVqaGjwLgcPHrzsNQAAgMvnogLLwoUL9eabb2rdunUaNGiQd3tcXJxaWlpUX1/vc3x1dbXi4uI6vNbJ7V+fSXSuc6xWq8LCwnwWAADQe3UqsBiGoYULF2rVqlV6//33NXToUJ/9kyZNUp8+fVRYWOjdtnv3bpWXl2vq1KkdXnPo0KGKi4vzOcfpdGrz5s1nPQcAAFxZOhVYFixYoJdfflkrVqxQaGioHA6HHA6HvvrqK0ntg2Xnz5+v3NxcrVu3Tlu3btX999+vqVOn+swQSk5O1qpVqyRJFotFjz76qH75y19q9erV2rFjh+69917ZbDZlZ2d33SsFAAA9VlBnDl62bJkk6YYbbvDZ/uKLL+q+++6TJP3Hf/yHAgICdOedd8rlcikzM1P/+Z//6XP87t27vTOMJOknP/mJmpqa9L3vfU/19fWaMWOG1qxZo5CQkIt4SQAAoLe5pO9hMQu+hwUAgJ7nsn0PCwAAwOVAYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKbX6cCyfv16zZ49WzabTRaLRfn5+T77LRZLh8tvf/vbs15zyZIlZxyfnJzc6RcDAAB6p04HlqamJqWkpGjp0qUd7q+qqvJZXnjhBVksFt15553nvO7YsWN9ztuwYUNnSwMAAL1UUGdPmDVrlmbNmnXW/XFxcT7rBQUFuvHGGzVs2LBzFxIUdMa5AAAAUjePYamurtZbb72l+fPnn/fYPXv2yGazadiwYbrnnntUXl5+1mNdLpecTqfPAgAAeq9uDSwvvfSSQkNDdccdd5zzuPT0dC1fvlxr1qzRsmXLtG/fPl133XU6duxYh8fn5eUpPDzcuyQmJnZH+QAAwCQshmEYF32yxaJVq1YpOzu7w/3Jycm66aab9Kc//alT162vr9fgwYP1u9/9rsPujMvlksvl8q47nU4lJiaqoaFBYWFhnfpZAADAP5xOp8LDwy/o87vTY1gu1Icffqjdu3frtdde6/S5ERERGjVqlEpLSzvcb7VaZbVaL7VEAADQQ3TbLaH/+Z//0aRJk5SSktLpcxsbG1VWVqb4+PhuqAwAAPQ0nQ4sjY2NstvtstvtkqR9+/bJbrf7DJJ1Op16/fXX9eCDD3Z4jZkzZ+rZZ5/1rj/22GMqKirS/v37tXHjRt1+++0KDAxUTk5OZ8sDAAC9UKdvCW3ZskU33nijdz03N1eSNG/ePC1fvlyStHLlShmGcdbAUVZWptraWu/6oUOHlJOTo7q6OkVHR2vGjBnatGmToqOjO1seAADohS5p0K1ZdGbQDgAAMIfOfH7zLCEAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6BBYAAGB6nQ4s69ev1+zZs2Wz2WSxWJSfn++z/7777pPFYvFZbrnllvNed+nSpRoyZIhCQkKUnp6ukpKSzpYGAAB6qU4HlqamJqWkpGjp0qVnPeaWW25RVVWVd3n11VfPec3XXntNubm5Wrx4sbZt26aUlBRlZmaqpqams+UBAIBeKKizJ8yaNUuzZs065zFWq1VxcXEXfM3f/e53euihh3T//fdLkp577jm99dZbeuGFF/T44493tkQAANDLdMsYlg8++EAxMTEaPXq0Hn74YdXV1Z312JaWFm3dulUZGRmnigoIUEZGhoqLizs8x+Vyyel0+iwAAKD36vLAcsstt+gvf/mLCgsL9e///u8qKirSrFmz5Ha7Ozy+trZWbrdbsbGxPttjY2PlcDg6PCcvL0/h4eHeJTExsatfBgAAMJFO3xI6n7vvvtv75/Hjx2vChAkaPny4PvjgA82cObNLfsaiRYuUm5vrXXc6nYQWAAB6sW6f1jxs2DBFRUWptLS0w/1RUVEKDAxUdXW1z/bq6uqzjoOxWq0KCwvzWQAAQO/V7YHl0KFDqqurU3x8fIf7g4ODNWnSJBUWFnq3eTweFRYWaurUqd1dHgAA6AE6HVgaGxtlt9tlt9slSfv27ZPdbld5ebkaGxv14x//WJs2bdL+/ftVWFiorKwsjRgxQpmZmd5rzJw5U88++6x3PTc3V3/+85/10ksv6fPPP9fDDz+spqYm76whAABwZev0GJYtW7boxhtv9K6fHEsyb948LVu2TJ9++qleeukl1dfXy2az6eabb9bTTz8tq9XqPaesrEy1tbXe9Tlz5ujw4cN68skn5XA4lJqaqjVr1pwxEBcAAFyZLIZhGP4u4lI5nU6Fh4eroaGB8SwAAPQQnfn85llCAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9AgsAADA9Ags57GxrFZ1jS5/lwEAwBWt009rvpI0t7r1f1/ZpuMutzLHxWluWpKuHTZQFovF36UBAHBFIbCcQ7WzWUkDr9Knhxr0xvZKvbG9UsOi+iknLUl3Thqkgf2C/V0iAABXBIthGIa/i7hUnXk89cXYWdGgFSXlKvikQk0tbklScGCAbhkXp7npSUofStcFAIDO6sznN4GlExpdbXpje6VWbC7XjooG7/Zh0f00Ny1Jd14zSAPougAAcEEILJfBjkMNWlFyQAX2Sh0/2XUJCtC/jItTTlqS0ui6AABwTgSWy6jR1aYCe4VWbC7Xrkqnd/uImP7tY12uSVDEVXRdAAD4OgKLn3x6qF4rNpdr9Xbfrsut4+M1Nz1JkwcPoOsCAMAJBBY/O9bcqgJ7+1iXz6pOdV1GersugxR+VR8/VggAgP8RWEzCMAx9eqjB23X5qrW962I9resyia4LAOAKRWAxIedpXZfPT+u6jIpt77rcMZGuCwDgykJgMTHDMGQ/WK9XS8r1xvYq367LhHjdk56ka5LougAAej8CSw/hbG5V/iftM4y+cBzzbh8dG6qctETdfs0ghfel6wIA6J0ILD2MYRj65GD7DKM3P61Uc6tHkhTSJ0DfmmBTTlqSrkmKoOsCAOhVCCw9WMNXp7ouu6tPdV2S40I1Nz1JWakJdF0AAL0CgaUXMAxD28pPdV1cbae6LrMn2DQ3PUmpiXRdAAA9F4Gll2k43qpVnxzSipJyfVnd6N2eHBeqe9KTlDUxQWEhdF0AAD0LgaWXau+6HNUrm8v11qdV3q5L3z6Bmp0Sr7npg5UyKJyuCwCgRyCwXAHqj7foH9sqtKKkXKU1p7ouV8eHKSc9SdmpNoXSdQEAmBiB5QpiGIa2HDiqVzeX680dVWo50XW5KjhQt6W0zzCaQNcFAGBCBJYrVP3xFv19W4VWbD6gssNN3u1jbWHKSUtS9sQE9bcG+bFCAABOIbBc4QzD0Mf7j2rF5gN6e6fDp+uSlXqy6xLh3yIBAFc8Agu8jja16O/b2mcY7T2t6zIuIUxz0wbrtlQbXRcAgF905vM7oLMXX79+vWbPni2bzSaLxaL8/HzvvtbWVv30pz/V+PHj1a9fP9lsNt17772qrKw85zWXLFkii8XisyQnJ3e2NHRgQL9gPXjdMBXmXq/XvnetslJtCg4M0M4Kp55YtUPp/+89LfrHDu2saPB3qQAAnFWnA0tTU5NSUlK0dOnSM/YdP35c27Zt089//nNt27ZN//jHP7R7927ddttt573u2LFjVVVV5V02bNjQ2dJwDhaLRenDIvWHuydq0xMz9bNbx2hYVD81tbj1akm5vvWnDZr9pw16taRcTa42f5cLAICPS7olZLFYtGrVKmVnZ5/1mI8//lhpaWk6cOCAkpKSOjxmyZIlys/Pl91uv6g6uCV0cQzD0Ka9R/RqSbnW7HSoxd0+1qVfcKCyJiZoblqSxiWE+7lKAEBv1ZnP724fvNDQ0CCLxaKIiIhzHrdnzx7ZbDaFhIRo6tSpysvLO2vAcblccrlc3nWn09mVJV8xLBaLpg6P1NThkaprdOnv2w7p1ZKD2lfbpBWby7Vic7lSBoUrJy1Js1Ns6sdYFwCAn3Rrh6W5uVnTp09XcnKyXnnllbNe55133lFjY6NGjx6tqqoqPfXUU6qoqNDOnTsVGhp6xvFLlizRU089dcZ2OiyXzjAMFe+t04rN5Xp3l0Ot7vb/Pfpbg5SV2v4Mo7E2ui4AgEt32WYJnSuwtLa26s4779ShQ4f0wQcfdCpI1NfXa/Dgwfrd736n+fPnn7G/ow5LYmIigaWL1TW69Leth/RqSbn21x33bk9JjNDctETNTrHpqmC6LgCAi+P3W0Ktra36zne+owMHDuj999/vdIiIiIjQqFGjVFpa2uF+q9Uqq9XaFaXiHCL7W/V/rh+uh64bpk176/RKSbn+ucuh7Qfrtf1gvX755ufKnpignLQkXW0jKAIAuk+XB5aTYWXPnj1at26dIiMjO32NxsZGlZWV6V//9V+7ujxchIAAi6aNiNK0EVGqPa3rcqDuuP530wH976YDSk2M0Nz0JH1rQjxdFwBAl+v0tObGxkbZ7XbvjJ59+/bJbrervLxcra2tuuuuu7Rlyxa98sorcrvdcjgccjgcamlp8V5j5syZevbZZ73rjz32mIqKirR//35t3LhRt99+uwIDA5WTk3PprxBdKqq/Vf92/XCt+9ENeuXBdN06Pl5BARbZD9brJ3/7VOn/r1BPFuzUFw4GQgMAuk6nfxXesmWLbrzxRu96bm6uJGnevHlasmSJVq9eLUlKTU31OW/dunW64YYbJEllZWWqra317jt06JBycnJUV1en6OhozZgxQ5s2bVJ0dHRny8NlEhBg0fQRUZo+IkqHj53qupQfOa6/FB/QX4oPaGJShOamJelbE2zqGxzo75IBAD0YX82PLuPxGPqorFYrNpdr7WfVavO0/68VGhKkOyYmaG76YI2OO3PWFwDgysSzhOB3Ncea9fqWQ1r5cbkOHvnKu33S4AHKSWsf6xLSh64LAFzJCCwwDY/H0IbSE12Xz6vlPtF1CQsJ0h3XDNLc9CSNiqXrAgBXIgILTKnG2azXT4x1OXT0VNdl8omuy610XQDgikJggal5PIY+LK3Vis0H9N7nNd6uS3jfPrrjmvZnGI2k6wIAvR6BBT1GtbNZr285qFdLDqqi/lTXZcqQAZqbnqRZ4+i6AEBvRWBBj+P2GPpwz2Gt2Fyuwi98uy53XjNIc9MTNSKGrgsA9CYEFvRojob2rsvKj327LmlDB2puWpJuGRdH1wUAegECC3oFt8fQ+i8Pa0VJuQo/r9aJposGXNXedbk7LUkjYvr7t0gAwEUjsKDXcTQ067WPD+q1j8tV2dDs3Z4+dKDmprd3XaxBdF0AoCchsKDXcnsMFX1ZoxWby/X+FzU+XZe7JrV3XYZH03XBlcfR0KyNZbXaUdGgq+PDdMu4OIWG9PF3WcA5EVhwRahq+OpE1+Wgqk7rulw7bKDmpg9W5thYui7otY42tah4b502ltVqY2md9tY2+ewPDgpQxpgYZaUm6IbR0fxdgCkRWHBFcXsMfbC7veuybveprsvAfsG6a9Ig5aQlaWhUP/8WCVyiRlebPt53RB+V1mpjWZ0+dzh1+r/eARZpfEK4xg8KV3FZncoOnwowYSFB+pfx8cpKTVD60IEKCLD44RUAZyKw4IpVWX+q6+Jwnuq6TBseqZy0JGWOjVNwUIAfKwQuTHOrW9vKj6q4rE4by+q0/WC994GiJ42K7a9pw6M0bXik0odFKrxv+y0gwzC0q9KpAnuFVm+vVLXT5T0nLixEt6XadFuKTWNtYbJYCC/wHwILrnhtbo8+2N0+w2jd7hrvb6KRp3VdhtB1gYm0uT3aUdGgjWXtt3m27D8qV5vH55ikgVdp2vBITT2xxISGnPe6bo+hzfvqtNpeqbd3VMnZ3ObdNyKmv7JTbbotJUFJkVd1+WsCzofAApymwtt1Kff5TXP6iPauy81X03XB5efxGPqy5pg+Kq1TcVmtNu89omOuNp9jokOtmjY8UtOHR2nq8EglDry0UOFqc+uD3YdVYK/Qe5/XqOW0QHRNUoSyUhN064R4RfW3XtLPAS4UgQXoQJvbo/e/qNGrJeX64MvD3q5LVP9g3TUpUTlpiRocSdcF3cMwDJUfOa6PSts7KMVldapravE5JiwkSNcOi9T0Ee23eUbE9O+2WzbO5la9u9OhAnulNpbVesd+BQZYNGNElLIn2nTz1XHqZw3qlp8PSAQWf5eDHuDQ0ePesS41x051XWaMiNLc9CRljIml64JLVu1sn2rc3kWp8/nmZknq2ydQU4YO9HZRrraFKdAPA2JrnM1649MqrbZXaPuhBu/2kD4BuunqOGWn2nTdyGj+TqDLEViAC9Tm9qjwRNelyKfrYtW3Jw9SzpQk7u3jgtUfb/EOkt1YVuszU0eS+gRaNDFxgKaNiNS04VFKTYwwXQjYe7hRq7dXqsBeqX2nTZUecFUf70yjyYMHMNMIXYLAAlyEg0dOdF22HNTh07ou142M0ty0JGVcHas+geb6cIF/NbnaVLL/iIrL6vRRaa0+q/KdamyxSONs4d6AMmXIAF0V3DNusRiGoU8PNajAXqk3Pq30+TuRENFXt6XalJVqU3Ic/+bi4hFYgEvQ6vao8PMarSgp14d7fLsu35ncPsPoUgc/omdytbn1SXm9Np74LhR7B1ONR8b017ThkZo2IkrXDo1U+FU9/9tm3R5DxWV1yrdXaM1OhxpPGxycHBfqnSY9aAB/L9A5BBagixw8clwrPy7XX7cc8v6GabFI142M1ty0RM0cQ9elN3N7jBNTjdsHyX68/4iaW32nGg8a0FfTh0dp2ohITR0WqZiw80817smaW916/4sa5X9SoQ92H1aL+9T7MWXIgPaZRuPjNaBfsB+rRE9BYAG6WHvXpVqvbC7Xh3tqvdujQ62aMzlRc6Yk0nXpBQzD0JfVjd6Bspv31elYs+9U46j+7VONpw1vn81zJf93bzjeqnd2VqnAXqlN++q83cigAIuuHxWtrIkJumlMrPoG81gAdIzAAnSj8rpTXZfaxlNdl2+MjFZOWpJmjomh69JDGIahg0e+0kdl7bd4istqVdvoO9U49ORU4xO3eUZ241Tjnqyq4Su9ub1K+fYK7ap0erdfFRyozLFxykq1acaIKAXxdwOnIbAAl0FLm0fvfV6tV0t8uy4xoVbNmdLedeGevvnUOJu9s3g+Kj1zqnFInwBNGTLQ+5X34xLC/TLVuCcrrTmmAnv7TKPyI8e92yP7BetbE+J1W2qCrkmKIPiBwAJcbgfqmrTy44N6fctB72/oFot0/ahozU1L0jeTY/jN0k/qj7do094j7U81LqtTaU2jz/6gAIsmJkVo6vAoTR8eqdSkCJ5s3EUMw9AnB+tV8EmF3vy0yueL8pIGXqWsEzONRsSE+rFK+BOBBfCTljaP1n7W3nXZUHqq6xIbdmKsS1qSEiL6+rHC3u94S5tK9p2YalxWq12VZ041HmsL837d/ZQhA/k218ugze3RhtJarbZX6t1dDjW1uL37xtrClHXimUZx4b170DJ8EVgAE9hf26RXPy7X37Yc8v5mabFIN4yK1tz0wbpxdDRdly7ganPLXl7vvc1jP1ivVrfvP2sjTk41Hh6pa4dFKuIqZrD401ctbq39vFqr7e0zjU5ODbdYpPShA5WdmqBZ4+J7xZRwnBuBBTCRljaP/vmZQ6+WlOuj0jrv9vC+fRTWN0h9AgMUHBigPoEB6hNoaV8PCji1Pah9+6ljAtQn6GvrgRbvOd5177Fnnh8cZDnt2JM/p31bUIDF1GML3B5DuyobvM/k6WiqcUJEX+8snqnDIxXby6ca92RHm1r09s4qFXxSqZL9R7zbgwMDdMPoaGVPTNA3k2MU0ofbdL0RgQUwqX21TVpZUq7Xtx7Ska89+M5Mgk+Gp9OCU3DQqUD19ZBzKnRZvCHJZ/2Czz/1c09fb271qGRf+1feb9pbJ+cZU42DNfXEINlpwyOVNPAqU4cudKyi/iuttleqwF6hLxzHvNtDrUHKHBen7NQETR0eySDoXoTAApicq82t0ppGudo8am3zqNVtqNXtUYvbo9aTS5vhu+421NL2tXX3yfNPWz/L+S1tXzvmtPWeJtQapPRhp74LZVQsU417m92OY8q3V2i1vdJnJld0qFWzJ7QP1p0wKJz/7j0cgQXABTMMQ20e4ywhyaOWNuPUn08Eo5Mhybv+tVDkc/xZzm/xOaeD0NZ2al2SUgZFeJ/JM84WxvifK4THY2hr+VEV2Cv01qdVOnq81btvaFQ/3ZZiU/bEBA2N6ufHKnGxCCwAgF6npc2jD/ccVoG9Uv/8zOEzdillULhuS03Q7JR4xYQyZqmnILAAAHq1Jleb1n5WrXx7hT7cUyv3iZlGARZp2vAoZaXadMu4OIWGMNPIzDrz+d3pnur69es1e/Zs2Ww2WSwW5efn++w3DENPPvmk4uPj1bdvX2VkZGjPnj3nve7SpUs1ZMgQhYSEKD09XSUlJZ0tDQBwhehnDVL2xAQtvz9NJU/M1C+yxmrS4AHyGNKG0lr9+G+fatIv39P/fWWr3t3lkKvNff6LwtQ6HViampqUkpKipUuXdrj/N7/5jf74xz/queee0+bNm9WvXz9lZmaqubn5rNd87bXXlJubq8WLF2vbtm1KSUlRZmamampqOlseAOAKE9nfqnunDtHfH56mD39yox67eZRGxPRXS5tHb+9w6P/871ZN+eV7evzvn2pjWa08nh5/Y+GKdEm3hCwWi1atWqXs7GxJ7d0Vm82mH/3oR3rsscckSQ0NDYqNjdXy5ct19913d3id9PR0TZkyRc8++6wkyePxKDExUd///vf1+OOPn7cObgkBAE5nGIY+q3Jqtb1Sq7dXqqrh1C/NcWEhui3VpttSbBprC2OmkR915vO7S7+Pet++fXI4HMrIyPBuCw8PV3p6uoqLizsMLC0tLdq6dasWLVrk3RYQEKCMjAwVFxd3+HNcLpdcLpd33el0dngcAODKZLFYNNYWrrG2cP30lmSV7D/inWnkcDbr+fV79fz6vRoR019ZKTZlpSYoKZKHlZpZl84LdDgckqTY2Fif7bGxsd59X1dbWyu3292pc/Ly8hQeHu5dEhMTu6B6AEBvFBBg0bXDIpV3xwR9/LMMPf+vk3Tr+HhZgwJUWtOoZ9Z+qW/8dp3u+M+P9NLG/aptdJ3/orjseuQTvxYtWqTc3FzvutPpJLQAAM7LGhSom8fG6eaxcTrW3Kp3d1WrwF6hj0prta28XtvK6/WLNz/TjBFRyp5o001Xx6k/D8c0hS79rxAXFydJqq6uVnx8vHd7dXW1UlNTOzwnKipKgYGBqq6u9tleXV3tvd7XWa1WWa3WrikaAHBFCg3po7smDdJdkwap5liz3txepYLtldp+sF5FXx5W0ZeHFdJnh266Ok5ZKTZ9Y1S0goP4wkJ/6dJ3fujQoYqLi1NhYaF3m9Pp1ObNmzV16tQOzwkODtakSZN8zvF4PCosLDzrOQAAdKWY0BA9MGOoChZM17rHbtAPM0ZpWFQ/Nbd69Mb2Sj34ly1K+9V7+v9W7VDJviPMNPKDTndYGhsbVVpa6l3ft2+f7Ha7Bg4cqKSkJD366KP65S9/qZEjR2ro0KH6+c9/LpvN5p1JJEkzZ87U7bffroULF0qScnNzNW/ePE2ePFlpaWn6/e9/r6amJt1///2X/goBAOiEoVH99EjGSP1g5gjtqGhQgb1Sb2yvVM0xl17ZXK5XNpcrIaKvZqfYlD3RpuQ4ZqdeDp0OLFu2bNGNN97oXT85lmTevHlavny5fvKTn6ipqUnf+973VF9frxkzZmjNmjUKCTn1VcllZWWqra31rs+ZM0eHDx/Wk08+KYfDodTUVK1Zs+aMgbgAAFwuFotFEwZFaMKgCD3xL2O0aW+d8j+p0JqdDlXUf6Xnisr0XFGZkuNCvdOkBw1gplF34av5AQDohOZWt9Z9UaN8e4XWfXHY54nnU4YMUFZqgm4dH68B/YL9WGXPwLOEAAC4DBq+atWanVUqsFeqeG+dTn6iBgVYdP2oaGVNTFDGmBhdFcxMo44QWAAAuMwcDc16Y3ulCrZXaGfFqS80vSo4UJlj43Rbqk0zRkSpTyAzjU4isAAA4EelNce02l6pfHulyo8c926P7BesWyfEKys1QdckRVzxjwUgsAAAYAKGYch+sF4F9kq9+WmlahtbvPsSB/ZVVkqCsifaNCIm1I9V+g+BBQAAk2lze/RRWZ0KPqnQu7scampxe/ddHR+m7Ik2zU6xKT68rx+rvLwILAAAmNhXLW6993n7YwE+2H1YbSe+iM5ikdKHDlR2aoJmjYtX+FV9/Fxp9yKwAADQQxxtatHbJ2Yalew74t0eHBigG0ZHKys1QTPHxCikT6Afq+weBBYAAHqgivqv9Mb2SuV/UqEvHMe82/tbg5Q5Nk7ZE22aNjxKgQG9Y7AugQUAgB5ut+OYCuwVKrBXqqL+K+/2qP5WzU6JV3ZqgiYMCu/RM40ILAAA9BIej6Ft5UeVb6/QW59W6ejxVu++oVH9dFuKTVmpNg2L7u/HKi8OgQUAgF6o1e3Rh3sOK/+TSq39rFpftZ6aaTRhULiyUhM0e0K8YsJCznEV8yCwAADQyzW52rT2s/aZRuv31Mp9YqZRgEWaNjxKt6XadMu4OIWFmHemEYEFAIArSF2jS2/vqFK+vVJbDxz1bg8OCtDM5BhlpSboxuRoWYPMNdOIwAIAwBXq4JHjWn1iptGemkbv9tCQIP3LuHhlTbQpfWikKWYaEVgAALjCGYahz6vaZxqt3l6pqoZm7764sBDNTml/ptFYW5jfZhoRWAAAgJfHY6hk/xEVnJhp5Gxu8+4bHt1P2akJui3VpsGR/S5rXQQWAADQIVebW0W7D6tge6Xe+6xarjaPd9/EpAhlpdj0rRSbovpbu70WAgsAADivY82tendX+0yjj0prdWKikQIDLJo+IkrZqTbdPDZO/a1B3fLzCSwAAKBTao41661P22cabT9Y790e0idAGWNilZ2aoG+MilZwUECX/UwCCwAAuGj7a5tUYK9Ugb1Ce2ubJLV3XTY/MbNLbxV15vO7e3o8AACgxxoS1U+PZIzUD2aO0M4Kp/LtFWr4qvWyjGs5GwILAADokMVi0fhB4Ro/KNzfpajrbkQBAAB0EwILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwPQILAAAwvS4PLEOGDJHFYjljWbBgQYfHL1++/IxjQ0JCurosAADQg3X5ww8//vhjud1u7/rOnTt100036dvf/vZZzwkLC9Pu3bu96xaLpavLAgAAPViXB5bo6Gif9V//+tcaPny4rr/++rOeY7FYFBcX19WlAACAXqJbx7C0tLTo5Zdf1gMPPHDOrkljY6MGDx6sxMREZWVladeuXee8rsvlktPp9FkAAEDv1a2BJT8/X/X19brvvvvOeszo0aP1wgsvqKCgQC+//LI8Ho+mTZumQ4cOnfWcvLw8hYeHe5fExMRuqB4AAJiFxTAMo7sunpmZqeDgYL3xxhsXfE5ra6vGjBmjnJwcPf300x0e43K55HK5vOtOp1OJiYlqaGhQWFjYJdcNAAC6n9PpVHh4+AV9fnf5GJaTDhw4oPfee0//+Mc/OnVenz59NHHiRJWWlp71GKvVKqvVeqklAgCAHqLbbgm9+OKLiomJ0a233tqp89xut3bs2KH4+PhuqgwAAPQ03RJYPB6PXnzxRc2bN09BQb5NnHvvvVeLFi3yrv/iF7/QP//5T+3du1fbtm3Td7/7XR04cEAPPvhgd5QGAAB6oG65JfTee++pvLxcDzzwwBn7ysvLFRBwKicdPXpUDz30kBwOhwYMGKBJkyZp48aNuvrqq7ujNAAA0AN166Dby6Uzg3YAAIA5dObzm2cJAQAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0yOwAAAA0+vywLJkyRJZLBafJTk5+ZznvP7660pOTlZISIjGjx+vt99+u6vLAgAAPVi3dFjGjh2rqqoq77Jhw4azHrtx40bl5ORo/vz5+uSTT5Sdna3s7Gzt3LmzO0oDAAA9ULcElqCgIMXFxXmXqKiosx77hz/8Qbfccot+/OMfa8yYMXr66ad1zTXX6Nlnn+2O0gAAQA/ULYFlz549stlsGjZsmO655x6Vl5ef9dji4mJlZGT4bMvMzFRxcXF3lAYAAHqgoK6+YHp6upYvX67Ro0erqqpKTz31lK677jrt3LlToaGhZxzvcDgUGxvrsy02NlYOh+OsP8PlcsnlcnnXnU5n170AAABgOl0eWGbNmuX984QJE5Senq7Bgwfrr3/9q+bPn98lPyMvL09PPfVUl1wLAACYX7dPa46IiNCoUaNUWlra4f64uDhVV1f7bKuurlZcXNxZr7lo0SI1NDR4l4MHD3ZpzQAAwFy6PbA0NjaqrKxM8fHxHe6fOnWqCgsLfbatXbtWU6dOPes1rVarwsLCfBYAANB7dXlgeeyxx1RUVKT9+/dr48aNuv322xUYGKicnBxJ0r333qtFixZ5j3/kkUe0Zs0aPfPMM/riiy+0ZMkSbdmyRQsXLuzq0gAAQA/V5WNYDh06pJycHNXV1Sk6OlozZszQpk2bFB0dLUkqLy9XQMCpnDRt2jStWLFCP/vZz/TEE09o5MiRys/P17hx47q6NAAA0ENZDMMw/F3EpXI6nQoPD1dDQwO3hwAA6CE68/nNs4QAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpdXlgycvL05QpUxQaGqqYmBhlZ2dr9+7d5zxn+fLlslgsPktISEhXlwYAAHqoLg8sRUVFWrBggTZt2qS1a9eqtbVVN998s5qams55XlhYmKqqqrzLgQMHuro0AADQQwV19QXXrFnjs758+XLFxMRo69at+sY3vnHW8ywWi+Li4rq6HAAA0At0+xiWhoYGSdLAgQPPeVxjY6MGDx6sxMREZWVladeuXWc91uVyyel0+iwAAKD36tbA4vF49Oijj2r69OkaN27cWY8bPXq0XnjhBRUUFOjll1+Wx+PRtGnTdOjQoQ6Pz8vLU3h4uHdJTEzsrpcAAABMwGIYhtFdF3/44Yf1zjvvaMOGDRo0aNAFn9fa2qoxY8YoJydHTz/99Bn7XS6XXC6Xd93pdCoxMVENDQ0KCwvrktoBAED3cjqdCg8Pv6DP7y4fw3LSwoUL9eabb2r9+vWdCiuS1KdPH02cOFGlpaUd7rdarbJarV1RJgAA6AG6/JaQYRhauHChVq1apffff19Dhw7t9DXcbrd27Nih+Pj4ri4PAAD0QF3eYVmwYIFWrFihgoIChYaGyuFwSJLCw8PVt29fSdK9996rhIQE5eXlSZJ+8Ytf6Nprr9WIESNUX1+v3/72tzpw4IAefPDBri4PAAD0QF0eWJYtWyZJuuGGG3y2v/jii7rvvvskSeXl5QoIONXcOXr0qB566CE5HA4NGDBAkyZN0saNG3X11Vd3dXkAAKAH6tZBt5dLZwbtAAAAc+jM5zfPEgIAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYAEAAKbXbYFl6dKlGjJkiEJCQpSenq6SkpJzHv/6668rOTlZISEhGj9+vN5+++3uKg0AAPQw3RJYXnvtNeXm5mrx4sXatm2bUlJSlJmZqZqamg6P37hxo3JycjR//nx98sknys7OVnZ2tnbu3Nkd5QEAgB7GYhiG0dUXTU9P15QpU/Tss89KkjwejxITE/X9739fjz/++BnHz5kzR01NTXrzzTe926699lqlpqbqueeeO+/PczqdCg8PV0NDg8LCwrruhQAAgG7Tmc/voK7+4S0tLdq6dasWLVrk3RYQEKCMjAwVFxd3eE5xcbFyc3N9tmVmZio/P7/D410ul1wul3e9oaFBUvsLBwAAPcPJz+0L6Z10eWCpra2V2+1WbGysz/bY2Fh98cUXHZ7jcDg6PN7hcHR4fF5enp566qkzticmJl5k1QAAwF+OHTum8PDwcx7T5YHlcli0aJFPR8bj8ejIkSOKjIyUxWLp0p/ldDqVmJiogwcPcrvpPHivLhzv1YXjveoc3q8Lx3t14brrvTIMQ8eOHZPNZjvvsV0eWKKiohQYGKjq6mqf7dXV1YqLi+vwnLi4uE4db7VaZbVafbZFRERcfNEXICwsjP+hLxDv1YXjvbpwvFedw/t14XivLlx3vFfn66yc1OWzhIKDgzVp0iQVFhZ6t3k8HhUWFmrq1KkdnjN16lSf4yVp7dq1Zz0eAABcWbrlllBubq7mzZunyZMnKy0tTb///e/V1NSk+++/X5J07733KiEhQXl5eZKkRx55RNdff72eeeYZ3XrrrVq5cqW2bNmi559/vjvKAwAAPUy3BJY5c+bo8OHDevLJJ+VwOJSamqo1a9Z4B9aWl5crIOBUc2fatGlasWKFfvazn+mJJ57QyJEjlZ+fr3HjxnVHeZ1itVq1ePHiM25B4Uy8VxeO9+rC8V51Du/XheO9unBmeK+65XtYAAAAuhLPEgIAAKZHYAEAAKZHYAEAAKZHYAEAAKZHYDmPpUuXasiQIQoJCVF6erpKSkr8XZLprF+/XrNnz5bNZpPFYjnrM6DQ/liJKVOmKDQ0VDExMcrOztbu3bv9XZYpLVu2TBMmTPB+UdXUqVP1zjvv+LusHuHXv/61LBaLHn30UX+XYjpLliyRxWLxWZKTk/1dlmlVVFTou9/9riIjI9W3b1+NHz9eW7Zs8UstBJZzeO2115Sbm6vFixdr27ZtSklJUWZmpmpqavxdmqk0NTUpJSVFS5cu9XcppldUVKQFCxZo06ZNWrt2rVpbW3XzzTerqanJ36WZzqBBg/TrX/9aW7du1ZYtW/TNb35TWVlZ2rVrl79LM7WPP/5Y//Vf/6UJEyb4uxTTGjt2rKqqqrzLhg0b/F2SKR09elTTp09Xnz599M477+izzz7TM888owEDBvinIANnlZaWZixYsMC77na7DZvNZuTl5fmxKnOTZKxatcrfZfQYNTU1hiSjqKjI36X0CAMGDDD++7//299lmNaxY8eMkSNHGmvXrjWuv/5645FHHvF3SaazePFiIyUlxd9l9Ag//elPjRkzZvi7DC86LGfR0tKirVu3KiMjw7stICBAGRkZKi4u9mNl6E0aGhokSQMHDvRzJebmdru1cuVKNTU18ciOc1iwYIFuvfVWn3+3cKY9e/bIZrNp2LBhuueee1ReXu7vkkxp9erVmjx5sr797W8rJiZGEydO1J///Ge/1UNgOYva2lq53W7vt/OeFBsbK4fD4aeq0Jt4PB49+uijmj59uim+1dmMduzYof79+8tqterf/u3ftGrVKl199dX+LsuUVq5cqW3btnkfeYKOpaena/ny5VqzZo2WLVumffv26brrrtOxY8f8XZrp7N27V8uWLdPIkSP17rvv6uGHH9YPfvADvfTSS36pp1u+mh/A+S1YsEA7d+7k/vk5jB49Wna7XQ0NDfrb3/6mefPmqaioiNDyNQcPHtQjjzyitWvXKiQkxN/lmNqsWbO8f54wYYLS09M1ePBg/fWvf9X8+fP9WJn5eDweTZ48Wb/61a8kSRMnTtTOnTv13HPPad68eZe9HjosZxEVFaXAwEBVV1f7bK+urlZcXJyfqkJvsXDhQr355ptat26dBg0a5O9yTCs4OFgjRozQpEmTlJeXp5SUFP3hD3/wd1mms3XrVtXU1Oiaa65RUFCQgoKCVFRUpD/+8Y8KCgqS2+32d4mmFRERoVGjRqm0tNTfpZhOfHz8Gb8cjBkzxm+30AgsZxEcHKxJkyapsLDQu83j8aiwsJB76LhohmFo4cKFWrVqld5//30NHTrU3yX1KB6PRy6Xy99lmM7MmTO1Y8cO2e127zJ58mTdc889stvtCgwM9HeJptXY2KiysjLFx8f7uxTTmT59+hlfu/Dll19q8ODBfqmHW0LnkJubq3nz5mny5MlKS0vT73//ezU1Nen+++/3d2mm0tjY6PPbyb59+2S32zVw4EAlJSX5sTLzWbBggVasWKGCggKFhoZ6x0OFh4erb9++fq7OXBYtWqRZs2YpKSlJx44d04oVK/TBBx/o3Xff9XdpphMaGnrGOKh+/fopMjKS8VFf89hjj2n27NkaPHiwKisrtXjxYgUGBionJ8ffpZnOD3/4Q02bNk2/+tWv9J3vfEclJSV6/vnn9fzzz/unIH9PUzK7P/3pT0ZSUpIRHBxspKWlGZs2bfJ3Saazbt06Q9IZy7x58/xdmul09D5JMl588UV/l2Y6DzzwgDF48GAjODjYiI6ONmbOnGn885//9HdZPQbTmjs2Z84cIz4+3ggODjYSEhKMOXPmGKWlpf4uy7TeeOMNY9y4cYbVajWSk5ON559/3m+1WAzDMPwTlQAAAC4MY1gAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDpEVgAAIDp/f+6w+fLG5sBUwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "period = [1,2,3,4,5,6,7]\n", - "data = [13.9,12.2,10.5,10.4,11.5,10.0,8.5]\n", - "\n", - "import matplotlib.pyplot as plt\n", - "\n", - "plt.ylim(bottom = 0, top = max(data)*1.5)\n", - "plt.plot(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Expenses.lp'" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "m = Model()\n", - "\n", - "b_0 = m.continuous_var(name = 'Intercept', lb = -10e9) # THE LOWER BOUND IS IMPORTANT\n", - "b_1 = m.continuous_var(name = 'Slope', lb = -10e9)\n", - "\n", - "mse = []\n", - "for i in range(len(period)):\n", - " mse.append((b_0 + b_1 * period[i] - data[i])**2)\n", - "\n", - "m.minimize(sum(mse))\n", - "m.export_as_lp('Expenses.lp')" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2022-11-27 | 9160aff4d\n", - "CPXPARAM_Read_DataCheck 1\n", - "Number of nonzeros in lower triangle of Q = 1\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.00 sec. (0.00 ticks)\n", - "Summary statistics for factor of Q:\n", - " Rows in Factor = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Integer space required = 2\n", - " Total non-zeros in factor = 3\n", - " Total FP ops to factor = 5\n", - "Tried aggregator 1 time.\n", - "QP Presolve added 0 rows and 2 columns.\n", - "Reduced QP has 2 rows, 4 columns, and 5 nonzeros.\n", - "Reduced QP objective Q matrix has 2 nonzeros.\n", - "Presolve time = 0.03 sec. (0.00 ticks)\n", - "Parallel mode: using up to 16 threads for barrier.\n", - "Number of nonzeros in lower triangle of A*A' = 1\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.00 sec. (0.00 ticks)\n", - "Summary statistics for Cholesky factor:\n", - " Threads = 16\n", - " Rows in Factor = 2\n", - " Integer space required = 2\n", - " Total non-zeros in factor = 3\n", - " Total FP ops to factor = 5\n", - " Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf \n", - " 0 3.9308415e+21 -3.9308415e+21 2.86e-06 0.00e+00 1.43e+12\n", - " 1 2.0545615e+05 -1.7195938e+13 1.42e-06 0.00e+00 9.78e-05\n", - " 2 9.3767044e+00 -8.5979689e+10 9.06e-07 0.00e+00 4.89e-07\n", - " 3 4.2403102e+00 -4.2989844e+08 9.16e-07 0.00e+00 2.44e-09\n", - " 4 4.2398816e+00 -2.1494880e+06 3.48e-07 0.00e+00 1.24e-11\n", - " 5 4.2397377e+00 -1.0743221e+04 7.16e-07 0.00e+00 1.33e-13\n", - " 6 4.2397278e+00 -4.9497305e+01 9.17e-07 0.00e+00 1.89e-14\n", - " 7 4.2397278e+00 4.2400000e+00 9.18e-07 0.00e+00 1.24e-24\n", - "Barrier time = 0.08 sec. (0.01 ticks)\n", - "\n", - "Total time on 16 threads = 0.08 sec. (0.01 ticks)\n" - ] - } - ], - "source": [ - "pp = m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "solution for: docplex_model11\n", - "objective: 4.24\n", - "status: OPTIMAL_SOLUTION(2)\n", - "Intercept=13.800\n", - "Slope=-0.700\n", - "\n" - ] - } - ], - "source": [ - "print(pp)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "objective: 4.240\n", - "status: OPTIMAL_SOLUTION(2)\n", - " Intercept=13.800\n", - " Slope=-0.700\n" - ] - } - ], - "source": [ - "m.print_solution()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Time Series/BondInterests_Problem.ipynb b/Time Series/BondInterests_Problem.ipynb deleted file mode 100644 index 9b3a678..0000000 --- a/Time Series/BondInterests_Problem.ipynb +++ /dev/null @@ -1,106 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Corporate triple A bond interest rates for 12 consecutive months\n", - "are as follows:\n", - "\n", - "a. Construct a time series plot. What type of pattern exists in the data?\n", - "\n", - "b. Develop three-month and four-month moving averages for this time series. Does the\n", - "three-month or the four-month moving average provide the better forecasts based on\n", - "MSE? Explain.\n", - "\n", - "c. What is the moving average forecast for the next month?" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAk0UlEQVR4nO3de3CU9eHv8c8mm+yGkN2QIEm2bCRaKnKLVi5HcFr9yU9+DE1Le2qrpZbinM7UiUWM7SDtID/HS8S2jrWlWJypMlPxMr8pVuyxDkUudRQIRFBrATlSiOSGSnZz3SS7z/kjySZLAiTw7Hezyfs1s0P22Sf7fAkh+873uazDsixLAAAAhqQkegAAAGB0IT4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABglDPRAzhbJBJRdXW1srKy5HA4Ej0cAAAwCJZlqbGxUT6fTykp55/bGHbxUV1dLb/fn+hhAACAi1BVVaWJEyeed51hFx9ZWVmSugbv8XgSPBoAADAYwWBQfr8/+jp+PsMuPnp2tXg8HuIDAIAkM5hDJjjgFAAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4YcH7t371ZJSYl8Pp8cDodeeeWVc6774x//WA6HQ08++eQlDBEAAIwkQ46P5uZmFRcXa/369eddb8uWLdqzZ498Pt9FDw4AAIw8zqF+wqJFi7Ro0aLzrnPq1Cn95Cc/0RtvvKHFixdf9OAAAMDIM+T4uJBIJKI77rhDP/vZzzRt2rQLrh8KhRQKhaL3g8Gg3UMCAADDiO0HnK5bt05Op1MrVqwY1Prl5eXyer3Rm9/vt3tIAABgGLE1Pg4cOKDf/OY3eu655+RwOAb1OatXr1YgEIjeqqqq7BwSAAAYZmyNj3/84x+qr69XYWGhnE6nnE6nTpw4ofvuu0+TJk0a8HNcLpc8Hk/MDQAAjFy2HvNxxx13aMGCBTHLFi5cqDvuuEPLly+3c1MAACBJDTk+mpqadOzYsej948eP6+DBg8rJyVFhYaFyc3Nj1k9LS1N+fr6uuuqqSx8tAABIekOOj/379+umm26K3i8rK5MkLVu2TM8995xtAwMAACPTkOPjxhtvlGVZg17/3//+91A3AQAARjDe2wUAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjBpyfOzevVslJSXy+XxyOBx65ZVXoo91dHRo1apVmjFjhjIzM+Xz+fSDH/xA1dXVdo4ZAAAksSHHR3Nzs4qLi7V+/fp+j7W0tKiyslJr1qxRZWWl/vznP+vIkSP6+te/bstgAQBA8nNYlmVd9Cc7HNqyZYuWLFlyznUqKio0Z84cnThxQoWFhRd8zmAwKK/Xq0AgII/Hc7FDAwAABg3l9dsZ78EEAgE5HA5lZ2cP+HgoFFIoFIreDwaD8R4SAABIoLgecNrW1qZVq1bp9ttvP2cFlZeXy+v1Rm9+vz+eQwIAAAkWt/jo6OjQd77zHVmWpQ0bNpxzvdWrVysQCERvVVVV8RoSAAAYBuKy26UnPE6cOKE333zzvPt+XC6XXC5XPIYBAACGIdvjoyc8PvroI+3YsUO5ubl2bwIAACSxIcdHU1OTjh07Fr1//PhxHTx4UDk5OSooKNC3v/1tVVZW6rXXXlM4HFZtba0kKScnR+np6faNHAAAJKUhn2q7c+dO3XTTTf2WL1u2TP/93/+toqKiAT9vx44duvHGGy/4/JxqCwBA8onrqbY33nijztcrl3DZEAAAMArw3i4AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfABAnAVaOtTWEU70MIBhw5noAQDASNQZjmj74Xpt3ntSuz86rYy0VC24Ok9fm1mgr151mVzO1EQPEUgY4gMAbPTJmRa9VFGllyqqVN8Yii5vaQ/r1UPVevVQtbLcTi2clq+SYp/mXZmrtFQmoTG6EB8AcIk6wxG9ebhem/ed1K6jp2VZXctzM9N16yy/bpvtV6C1Q1sPVeuv79eoJtCm/znwif7nwCfKyUzXouldITJ7Uo5SUxyJ/csABjgsq+e/yfAQDAbl9XoVCATk8XgSPRwAOKdTDa16ad9JvbS/SnXB3lmO+V/M1e1zCnXL1HylO2NnNSIRSwdOntHWQ9X6v+/X6NOm9uhjeR6XFs/wqaS4QNf4s+VwECJIHkN5/SY+AGAIOsMR7ThyWpv3ntDOs2Y5vj1rom6bXaii8ZmDfq49H3+urYeq9foHNQq2dUYfmzguQ1+b2RUiUws8hAiGPeIDAGxW3dCqFyuq9HJFlWqDbdHl867M1ffmFuo/p+Zd0kGk7Z0R/eOj09p6qFrbPqxTc3vv2TFXXJapkpk+lRT79MUJYy/p7wHEC/EBADboDEe088hpbd53UjuP1CvS/dMyJzNdt143UbfNGfwsx1C0toe140i9th6q1puH6xXqjEQfu7rAo5LiApXM9MmfM8b2bQMXi/gAgEtQ3dCqlyqq9PL+KtUEemc5rr8iV7fPLdTCaZc2yzEUjW0d+vu/6rT1UI12Hz2tzkjvj+xr/NkqKfZp8YwC5XvdRsYDnEtc42P37t365S9/qQMHDqimpkZbtmzRkiVLoo9blqW1a9fqmWeeUUNDg+bPn68NGzZo8uTJtg8eAOwSjljaeaTruhw7zprl+PZ1E3XbbL+uuCyxuzwaWtr1xj9rtfVQjd7+f59Gx+hwSHMm5aik2KdF0/OVO9aV0HFidBrK6/eQT7Vtbm5WcXGx7rzzTn3rW9/q9/jjjz+up556Sps2bVJRUZHWrFmjhQsX6sMPP5TbTZkDGF5qAq3R63L0neX4X1fk6HtzLzc6y3Eh2WPS9d3Zhfru7EKdbgzp9Q9qtPVQtSr+fUZ7j3+uvcc/19pX/6l5V+aqpNinhdPy5c1IS/SwgX4uabeLw+GImfmwLEs+n0/33XeffvrTn0qSAoGA8vLy9Nxzz+m222674HMy8wEg3sIRS7uOds1yvHm4d5Zj3Ji0rlmOOYW6MsGzHENR3dCqv75Xo63vVeu9TwLR5empKfrKly5TSXGBFlydp0wXl3ZC/MR15uN8jh8/rtraWi1YsCC6zOv1au7cuXrnnXcGFR8AEC81gVa9XPGJXqo4qeo+sxxzi3L0vbmFWjgtX+604THLMRS+7Az96CtX6EdfuUL//rRZr71Xra2HanSkrlF//1ed/v6vOrnTUnTz1XkqmenTjVddlpR/T4wctsZHbW2tJCkvLy9meV5eXvSxs4VCIYVCvRfnCQaDdg4JwCgXjljaffS0nt97Um8erovOcmSPSdO3vzxRt89NrlmOC5k0PlN3/8dk3f0fk3W0rlGvdV/S/d+fteiv79Xor+/VaKzLqVum5amk2Kcbvjiey7vDuITPwZWXl+vBBx9M9DAAjDC1gTa9vL/rWI5TDa3R5ck+yzEUX8rLUtktV+ne//yS/lkd1NZD1dp6qFrVgTb9ufKU/lx5Stlj0rou7z7Tp1mTcvpdkRWIB1vjIz8/X5JUV1engoKC6PK6ujpdc801A37O6tWrVVZWFr0fDAbl9/vtHBaAUaJnlmPzvq5jOcLd0xzZY9L0v788UbfPKRyVF+lyOBya/gWvpn/Bq1X/NUXvVp3R1kM1eu29Gn3aFNIL+6r0wr4qORzS+LEu+bIz5PO6VeDNkC/bLV92hgq8bn0hO0Pjx7qUwvvP4BLZGh9FRUXKz8/X9u3bo7ERDAa1d+9e3XXXXQN+jsvlksvFaWEALl5dsC16xkrfWY45RTn63pxC/df0kT/LMVgpKQ5dd3mOrrs8R2u+NlV7P/5MW9+r1usf1KqhpUOnG0M63RjSoaqBPz8t1aE8j1u+7jAp6A6VrkDpWubNSONy8DivIcdHU1OTjh07Fr1//PhxHTx4UDk5OSosLNTKlSv18MMPa/LkydFTbX0+X8y1QIDRJNQZVl0gpFMNraoJtKom0KbqhtboaZ1jXU5luZ3Kcqd1/9l1G+vqc7/747Fu54jeP29ZlkKdEQXbOtTU1qnG7ltTqEPBno/bOtXY1tH1WKhDnzW1a/+JM9FZDm9G1yzH9+b69cUJWQn+Gw1vqSkOzfvieM374ng9+s0Z+ry5XTWBtq7v1e7v0VPdf9Y0tKo22KaOsKVPzrTqkzOt53zeMempKugOEp83QwXZ7t4/u5dlpBODo9mQT7XduXOnbrrppn7Lly1bpueeey56kbGNGzeqoaFBN9xwg37/+9/rS1/60qCen1NtkUzCEUunG0OqDrSqpqFNNYHW7h/cPR+36dOm0IWfaAjcaSm9oeLqjZaxrv4Bk+VO6xM3vY9npKXa/ptpOGKpKdSpplBvHDS1dSrY83G/5V33u5b3ftwRvriz/+dMytHtc/1aNL2AWY446QxHVN8YUk2gVdUNvRFd3dAa/T/wWXP7hZ9IXbvCorMn3oyuKOn+uMDrVr7XPaJDeyTi8uqADSzLUkNLh6q7f9DWxPzZ9XFdsC3mctfn4nKmxPxw9Xm7pqtTHQ41nvWi3BjqiP7G39jnhbulzxuNXarUFEc0Ssa6nPK4e2dW+kaLx+1UZ8SKiYPeGYiOPjMTXTe7OBzdM0J946rv7JArdpzFfi+zHMNEW0c4OlNSHf0z9v/QYL5XHA5pQpZLBd4MfaH7mJOC7AzlZqYPGNtjXU45iZWEIj6AQWgOdZ4VFH1+k+v+La6148Iv+KkpDuV73NEfjr6eKeaeaefsDI0bc+n7wDvDkT6zBP1nDYIDzC40ds889F1vEK10SdKdKf3i4IK7ldyxMziZ6U4OahzBgm0dqmmInTGp7o76rnBpU3s4cuEnOktGWmrv95c7TZ4+YdL3+8tzzqBNkzstheNVLlLCLjIGDBftnRHVBXtjInq8RUPvPuxAa8egnmv82PToVHDM7EX3xxOy3Eo18ELpTE1R9ph0ZY9Jv+jnsCxLrR3hmFmVvsdVNHbvDul7XIUz1dEbB66Bf2D3nTUZLpcix/DlcafJk5+mq/IHnq2KRCx91tx+1i8FXTMpgZaOru/NPkHd1tEVKq0dYbV2hFXfePG7Op0pjt4ZQFeaxrqd3RETG9K9y/sfn5XmHP7x4pAjocfdEB9IOpGIpU+bQqru2dccs9+5a5r3dFNIg5nTy3I5owfB9ewO8WX3HiCX73WPqOMHHA6HxqQ7NSbdqTwP77WE4SklxaHLsly6LMulmRMvvH5HONJ7gHKoo19QD7QbMza+u2YHI5bUGena3drQ0iHp3AfVJrsrLsvUm/fdmLDtEx8YVizLUrC1MzpTEd1n3BMWgVbVBtoGdVBiujMleq2CnpjoGxYF2W553LzpFpDs0lJTNC4zXeMyL21WsKW9z6xg3wOh+8ZLaKDdnr3LQp1D3100Go2a+Ai2dej/bNofc+DSF6IH/2XIk+FkP58Bre3h/vt4z9rfO5gDK1McUl6f4yyi/649B6dlu5Wbmc6/KYBBcTgcynQ5lelyKt978bOC7Z2R6Gnfw1mifzSOmviobmjVvuOfn/PxzPRUFfS5il/Pb8s9L2q+7IwRNf0eDx3hruMsortA+h3I2aozLYM7ziInM71PTLhj/22yM5SX5eLIdgDDDpenH5xREx/5Hrd+c9s1A7wwdr0gNreHday+Scfqm875HOPGpMVcxc+XHXtGw0h7QTzfNGR9MBTdLdIze1Hf2DaoMykuFHoFXIAIAEa0URMf2WPS9Y1rvjDgY63t4d7f0Ht2CfScAtb94trSHtaZlg6daenQP6sHfufdFIc0Icsdc8nhsy+eM36smV0BfQ/AOvtUy7NP17zQAVhDkZbqUL63z/EV7OICAJxl1MTH+WSkp+qKy8bqinO8rXbPQZA9xyWc7yDI2mCbaoNt0smGAZ8r3ZnS/dt9/0sP9xwM6UxxDOlUyJhwCMWeemaHvhek6jndcnxWem9Y9bm+xfhM3nQKAHB+xMcgOBwOecekyTsmTVcXDHzhlL6nf9Y0tPa+H0L3JbZ7Tv9s74zoxGctOvFZi5GxZ6Slxly1Mss1uIs89b0gVDwuxQ0AGL2ID5ukpDg0wePWBI9b1/izB1znfBe+6jl2oufCVykOxVzUxtN9UZtzhoOr93FP9+eN9DchAwAkJ+LDoHRnivw5Y+TPGXPOdVraO2VZXe8KyWwDAGAkIj6GmTHp/JMAAEY25uQBAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABglO3xEQ6HtWbNGhUVFSkjI0NXXnmlHnroIVmWZfemAABAEnLa/YTr1q3Thg0btGnTJk2bNk379+/X8uXL5fV6tWLFCrs3BwAAkozt8fH222/rG9/4hhYvXixJmjRpkl544QXt27fP7k0BAIAkZPtul3nz5mn79u06evSoJOnQoUN66623tGjRIrs3BQAAkpDtMx/333+/gsGgpkyZotTUVIXDYT3yyCNaunTpgOuHQiGFQqHo/WAwaPeQAADAMGL7zMfLL7+s559/Xps3b1ZlZaU2bdqkX/3qV9q0adOA65eXl8vr9UZvfr/f7iEBAIBhxGHZfBqK3+/X/fffr9LS0uiyhx9+WH/60590+PDhfusPNPPh9/sVCATk8XjsHBoAAIiTYDAor9c7qNdv23e7tLS0KCUldkIlNTVVkUhkwPVdLpdcLpfdwwAAAMOU7fFRUlKiRx55RIWFhZo2bZreffddPfHEE7rzzjvt3hQAAEhCtu92aWxs1Jo1a7RlyxbV19fL5/Pp9ttv1wMPPKD09PQLfv5Qpm0AAMDwMJTXb9vj41IRHwAAJJ+hvH7z3i4AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYFRc4uPUqVP6/ve/r9zcXGVkZGjGjBnav39/PDYFAACSjNPuJzxz5ozmz5+vm266Sa+//rouu+wyffTRRxo3bpzdmwIAAEnI9vhYt26d/H6/nn322eiyoqIiuzcDAACSlO27XV599VXNmjVLt956qyZMmKBrr71WzzzzzDnXD4VCCgaDMTcAADBy2R4fH3/8sTZs2KDJkyfrjTfe0F133aUVK1Zo06ZNA65fXl4ur9cbvfn9fruHBAAAhhGHZVmWnU+Ynp6uWbNm6e23344uW7FihSoqKvTOO+/0Wz8UCikUCkXvB4NB+f1+BQIBeTweO4cGAADiJBgMyuv1Dur12/aZj4KCAk2dOjVm2dVXX62TJ08OuL7L5ZLH44m5AQCAkcv2+Jg/f76OHDkSs+zo0aO6/PLL7d4UAABIQrbHx7333qs9e/bo0Ucf1bFjx7R582Zt3LhRpaWldm8KAAAkIdvjY/bs2dqyZYteeOEFTZ8+XQ899JCefPJJLV261O5NAQCAJGT7AaeXaigHrAAAgOEhoQecAgAAnA/xAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwKu7x8dhjj8nhcGjlypXx3hQAAEgCcY2PiooK/eEPf9DMmTPjuRkAAJBE4hYfTU1NWrp0qZ555hmNGzcuXpsBAABJJm7xUVpaqsWLF2vBggXnXS8UCikYDMbcAADAyOWMx5O++OKLqqysVEVFxQXXLS8v14MPPhiPYQAAgGHI9pmPqqoq3XPPPXr++efldrsvuP7q1asVCASit6qqKruHBAAAhhGHZVmWnU/4yiuv6Jvf/KZSU1Ojy8LhsBwOh1JSUhQKhWIeO1swGJTX61UgEJDH47FzaAAAIE6G8vpt+26Xm2++We+//37MsuXLl2vKlClatWrVecMDAACMfLbHR1ZWlqZPnx6zLDMzU7m5uf2WAwCA0YcrnAIAAKPicrbL2Xbu3GliMwAAIAkw8wEAAIwiPgAAgFHEBwAAMIr4AAAARhEfAADAKOIDAAAYRXwAAACjiA8AAGAU8QEAAIwiPgAAgFHEBwAAMIr4AAAARhEfAADAKOIDAAAYRXwAAACjiA8AAGAU8QEAAIwiPgAAgFHEBwAAMIr4AAAARhEfAADAKOIDAAAYRXwAAACjiA8AAGAU8QEAAIwiPgAAgFHEBwAAMIr4AAAARhEfAADAKOIDAAAYRXwAAACjiA8AAGAU8QEAAIwiPgAAgFHEBwAAMIr4AAAARtkeH+Xl5Zo9e7aysrI0YcIELVmyREeOHLF7MwAAIEnZHh+7du1SaWmp9uzZo23btqmjo0O33HKLmpub7d4UAABIQg7Lsqx4buD06dOaMGGCdu3apa985SsXXD8YDMrr9SoQCMjj8cRzaAAAwCZDef12xnswgUBAkpSTkzPg46FQSKFQKHo/GAzGe0gAACCB4nrAaSQS0cqVKzV//nxNnz59wHXKy8vl9XqjN7/fH88hAQCABIvrbpe77rpLr7/+ut566y1NnDhxwHUGmvnw+/3sdgEAIIkMi90ud999t1577TXt3r37nOEhSS6XSy6XK17DAAAAw4zt8WFZln7yk59oy5Yt2rlzp4qKiuzeBAAASGK2x0dpaak2b96sv/zlL8rKylJtba0kyev1KiMjw+7NAQCAJGP7MR8Oh2PA5c8++6x++MMfXvDzOdUWAIDkk9BjPuJ82RAAAJDkeG8XAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADAqbvGxfv16TZo0SW63W3PnztW+ffvitSkAAJBE4hIfL730ksrKyrR27VpVVlaquLhYCxcuVH19fTw2BwAAkkhc4uOJJ57Qj370Iy1fvlxTp07V008/rTFjxuiPf/xjPDYHAACSiNPuJ2xvb9eBAwe0evXq6LKUlBQtWLBA77zzTr/1Q6GQQqFQ9H4gEJAkBYNBu4cGAADipOd127KsC65re3x8+umnCofDysvLi1mel5enw4cP91u/vLxcDz74YL/lfr/f7qEBAIA4a2xslNfrPe86tsfHUK1evVplZWXR+5FIRJ9//rlyc3PlcDhs3VYwGJTf71dVVZU8Ho+tzz2a8HW0B19He/B1tAdfR3uM5q+jZVlqbGyUz+e74Lq2x8f48eOVmpqqurq6mOV1dXXKz8/vt77L5ZLL5YpZlp2dbfewYng8nlH3TREPfB3twdfRHnwd7cHX0R6j9et4oRmPHrYfcJqenq7rrrtO27dvjy6LRCLavn27rr/+ers3BwAAkkxcdruUlZVp2bJlmjVrlubMmaMnn3xSzc3NWr58eTw2BwAAkkhc4uO73/2uTp8+rQceeEC1tbW65ppr9Le//a3fQaimuVwurV27tt9uHgwNX0d78HW0B19He/B1tAdfx8FxWIM5JwYAAMAmvLcLAAAwivgAAABGER8AAMAo4gMAABg1auJj/fr1mjRpktxut+bOnat9+/YlekhJp7y8XLNnz1ZWVpYmTJigJUuW6MiRI4keVlJ77LHH5HA4tHLlykQPJemcOnVK3//+95Wbm6uMjAzNmDFD+/fvT/Swkko4HNaaNWtUVFSkjIwMXXnllXrooYcG9d4co93u3btVUlIin88nh8OhV155JeZxy7L0wAMPqKCgQBkZGVqwYIE++uijxAx2GBoV8fHSSy+prKxMa9euVWVlpYqLi7Vw4ULV19cnemhJZdeuXSotLdWePXu0bds2dXR06JZbblFzc3Oih5aUKioq9Ic//EEzZ85M9FCSzpkzZzR//nylpaXp9ddf14cffqhf//rXGjduXKKHllTWrVunDRs26He/+53+9a9/ad26dXr88cf129/+NtFDG/aam5tVXFys9evXD/j4448/rqeeekpPP/209u7dq8zMTC1cuFBtbW2GRzpMWaPAnDlzrNLS0uj9cDhs+Xw+q7y8PIGjSn719fWWJGvXrl2JHkrSaWxstCZPnmxt27bN+upXv2rdc889iR5SUlm1apV1ww03JHoYSW/x4sXWnXfeGbPsW9/6lrV06dIEjSg5SbK2bNkSvR+JRKz8/Hzrl7/8ZXRZQ0OD5XK5rBdeeCEBIxx+RvzMR3t7uw4cOKAFCxZEl6WkpGjBggV65513Ejiy5BcIBCRJOTk5CR5J8iktLdXixYtjvi8xeK+++qpmzZqlW2+9VRMmTNC1116rZ555JtHDSjrz5s3T9u3bdfToUUnSoUOH9NZbb2nRokUJHllyO378uGpra2P+f3u9Xs2dO5fXnW4Jf1fbePv0008VDof7XV01Ly9Phw8fTtCokl8kEtHKlSs1f/58TZ8+PdHDSSovvviiKisrVVFRkeihJK2PP/5YGzZsUFlZmX7+85+roqJCK1asUHp6upYtW5bo4SWN+++/X8FgUFOmTFFqaqrC4bAeeeQRLV26NNFDS2q1tbWSNODrTs9jo92Ijw/ER2lpqT744AO99dZbiR5KUqmqqtI999yjbdu2ye12J3o4SSsSiWjWrFl69NFHJUnXXnutPvjgAz399NPExxC8/PLLev7557V582ZNmzZNBw8e1MqVK+Xz+fg6Iq5G/G6X8ePHKzU1VXV1dTHL6+rqlJ+fn6BRJbe7775br732mnbs2KGJEycmejhJ5cCBA6qvr9eXv/xlOZ1OOZ1O7dq1S0899ZScTqfC4XCih5gUCgoKNHXq1JhlV199tU6ePJmgESWnn/3sZ7r//vt12223acaMGbrjjjt07733qry8PNFDS2o9ry287pzbiI+P9PR0XXfdddq+fXt0WSQS0fbt23X99dcncGTJx7Is3X333dqyZYvefPNNFRUVJXpISefmm2/W+++/r4MHD0Zvs2bN0tKlS3Xw4EGlpqYmeohJYf78+f1O8z569Kguv/zyBI0oObW0tCglJfZlIDU1VZFIJEEjGhmKioqUn58f87oTDAa1d+9eXne6jYrdLmVlZVq2bJlmzZqlOXPm6Mknn1Rzc7OWL1+e6KElldLSUm3evFl/+ctflJWVFd136fV6lZGRkeDRJYesrKx+x8hkZmYqNzeXY2eG4N5779W8efP06KOP6jvf+Y727dunjRs3auPGjYkeWlIpKSnRI488osLCQk2bNk3vvvuunnjiCd15552JHtqw19TUpGPHjkXvHz9+XAcPHlROTo4KCwu1cuVKPfzww5o8ebKKioq0Zs0a+Xw+LVmyJHGDHk4SfbqNKb/97W+twsJCKz093ZozZ461Z8+eRA8p6Uga8Pbss88memhJjVNtL87WrVut6dOnWy6Xy5oyZYq1cePGRA8p6QSDQeuee+6xCgsLLbfbbV1xxRXWL37xCysUCiV6aMPejh07Bvx5uGzZMsuyuk63XbNmjZWXl2e5XC7r5ptvto4cOZLYQQ8jDsviUnYAAMCcEX/MBwAAGF6IDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUf8f1MWAtjDpB3sAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "data = [9.5, 9.3, 9.4, 9.6, 9.8, 9.7, 9.8, 10.5, 9.9, 9.7, 9.6, 9.6]\n", - "\n", - "import matplotlib.pyplot as plt\n", - "plt.ylim(bottom = 0, top = max(data)*1.5)\n", - "plt.plot(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.1385937500000001\n", - "0.12024691358024692\n" - ] - } - ], - "source": [ - "def calc_moving_avg(data, k):\n", - " preds = []\n", - " for i in range(k, len(data)+1):\n", - " preds.append(sum(data[i-k:i]) / len(data[i-k:i]))\n", - "\n", - " return preds\n", - "\n", - "four_month_avg = calc_moving_avg(data, 4)\n", - "three_month_avg = calc_moving_avg(data, 3)\n", - "\n", - "mse = lambda X, Y: sum([(i-u)**2 for i, u in zip(X, Y)])/len(X)\n", - "\n", - "print(mse(four_month_avg[:-1], data[4:]))\n", - "print(mse(three_month_avg[:-1], data[3:]))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Time Series/DairyProducts_Problem.ipynb b/Time Series/DairyProducts_Problem.ipynb deleted file mode 100644 index 1433f15..0000000 --- a/Time Series/DairyProducts_Problem.ipynb +++ /dev/null @@ -1,122 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Demand for Dairy Products. United Dairies, Inc. supplies milk to several indepen-\n", - "dent grocers throughout Dade County, Florida. Managers at United Dairies want to\n", - "develop a forecast of the number of half gallons of milk sold per week. Sales data for\n", - "the past 12 weeks are as follows:\n", - "\n", - "a. Construct a time series plot. What type of pattern exists in the data?\n", - "b. Use exponential smoothing with a=0.4 to develop a forecast of demand for week 13. What is the resulting MSE" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAycUlEQVR4nO3deXxU9f3v8Xf2jUwCWckGAcIeIIBCZPH6A0kt2grYakuRqmhLgwp4LaVWbH9VUbhdtC4Uvb9ivUWtLbiAS2lQQImACVH2RQIJgWxAZkIgk2Tm3D9CBiJoCQYm3+T1fDzmITnnmzOfGZM573yXc3wsy7IEAABgEF9vFwAAANBSBBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHH8vV3A5eJ2u3XkyBGFh4fLx8fH2+UAAICLYFmWqqurlZCQIF/fr+5nabcB5siRI0pOTvZ2GQAA4BIUFxcrKSnpK/e32wATHh4uqfENsNlsXq4GAABcDIfDoeTkZM95/Ku02wDTNGxks9kIMAAAGOY/Tf9gEi8AADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAON8owDzxxBPy8fHR7NmzPdtqa2uVnZ2tqKgoderUSVOmTFFZWVmz7ysqKtLEiRMVGhqq2NhYPfjgg2poaGjW5sMPP9TQoUMVFBSkXr16admyZd+kVAAA0I5ccoDZsmWL/vznP2vQoEHNts+ZM0dvv/22Xn/9da1bt05HjhzR5MmTPftdLpcmTpyouro6bdy4US+99JKWLVumBQsWeNoUFhZq4sSJuu6661RQUKDZs2drxowZev/99y+1XAAA0J5Yl6C6utpKS0uz1qxZY1177bXW/fffb1mWZVVVVVkBAQHW66+/7mm7a9cuS5KVm5trWZZlvfPOO5avr69VWlrqafP8889bNpvNcjqdlmVZ1s9//nNrwIABzZ7z1ltvtbKysi66Rrvdbkmy7Hb7pbxEAADgBRd7/r6kHpjs7GxNnDhR48ePb7Y9Ly9P9fX1zbb37dtXKSkpys3NlSTl5uYqPT1dcXFxnjZZWVlyOBzasWOHp82Xj52VleU5BgAA6Nj8W/oNr776qvLz87Vly5bz9pWWliowMFCRkZHNtsfFxam0tNTT5tzw0rS/ad/XtXE4HDp9+rRCQkLOe26n0ymn0+n52uFwtPSlAQAAQ7SoB6a4uFj333+//va3vyk4OPhy1XRJFi5cqIiICM8jOTnZ2yUBAIDLpEUBJi8vT+Xl5Ro6dKj8/f3l7++vdevW6emnn5a/v7/i4uJUV1enqqqqZt9XVlam+Ph4SVJ8fPx5q5Kavv5PbWw22wV7XyRp/vz5stvtnkdxcXFLXhoAADBIiwLMuHHjtG3bNhUUFHgew4cP19SpUz3/DggIUE5Ojud79uzZo6KiImVmZkqSMjMztW3bNpWXl3varFmzRjabTf379/e0OfcYTW2ajnEhQUFBstlszR4AAKB9atEcmPDwcA0cOLDZtrCwMEVFRXm233XXXZo7d666dOkim82me++9V5mZmRo5cqQkacKECerfv7+mTZumRYsWqbS0VL/61a+UnZ2toKAgSdJPf/pTPfPMM/r5z3+uO++8U2vXrtXf//53rV69ujVeMwAAMFyLJ/H+J3/4wx/k6+urKVOmyOl0KisrS88995xnv5+fn1atWqWZM2cqMzNTYWFhmj59uv77v//b0yY1NVWrV6/WnDlz9NRTTykpKUkvvviisrKyWrtcAABgIB/LsixvF3E5OBwORUREyG63M5wEAIAhLvb8zb2QAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBkCH1+By63hNnbfLANAC/t4uAAC8pcbZoNe2FOv/flSokqrT6tfVpskZifrukATF2oK9XR6Ar+FjWZbl7SIuB4fDoYiICNntdtlsNm+XA6ANKa+u1UsbD+r/fVIk++n68/b7+kij02I0OSNREwbEKTSQv/WAK+Viz9/8VgLoMPaXV+uF9YVaubVEdS63JKl7VKhmjOmhcf1i9e9d5VqZf1j5RVVav7dC6/dWKCzQT98a2FWThyZqZI8o+fn6ePlVAJDogYEX1LvcKiiuUvHxU/p2elcFB/h5uyS0Y5ZlaVPhcb2w/oBydpd7tg9NidQ9Y3vq+v5x54WSwsoardxaopVbD6v4+GnP9nhbsL6bkaDJGUnqEx9+xV4D0JFc7PmbAIPLzrIsHTp2Shv2VWj9vkrlfnFMJ50NkqTByZFaOm2Y4phvgFbW4HLrvR2lemH9AX122C5J8vGRru8Xp59c20PDunX5j8ewLEt5h05oxdYSrfrsiBy1DZ59AxJsmpSRqO8MSVBsOD+/QGshwBBgvMp+ul65X1Rq/b5KbdhX0eyvWEmKDA2Qy22purZBseFBWnr7cA1JjvROsWhXTtU16PVPD+vFjw54fu4C/X11y7AkzRidqh4xnS7puLX1Ln2wu1wrtpbowz3lqnc1fnT6+fpodK9oTR6aqAn94xUSSI8i8E0QYAgwV1SDy63PDldp/d7GwFJQXCX3OT9ZAX4+GprSWWN7x2hMWrQGJETo8IlTmvHSp9pXflKB/r56ckq6JmUkee9FwGgV1U79NfegXv7kkKpONU7M7RwaoGmZ3XV7ZjdFdwpqtec6XlOnVZ8f0Yr8EhUUV3m2dwry17cGxjfOl0mNki/zZYAWI8AQYC67omOntH5fhTbsq9DG/cdU7Wxotr9nTJjGpMVobO9ojUiNUljQ+XPGq2vrNee1Av17V+PchJ9c20M/z+rLRElctC8qTurFDQf0z/wS1TU0TsztFhWqGaNTdcuw5MveI3Kg4qTe2FqiFVtLdPjE2Z7GhIhgfTcjUZMzEpUWx3wZXJySqtN6Y2uJdhyxKzI0UNGdghTTKVAx4UGK7tT4iAkPuuDnaXtBgCHAtDpHbb027j+mDfsq9NH+Sh06dqrZ/sjQAI3qFa2xadEanRajxMiQizqu223p92v26pkP9kuSrusTo6d+kCFbcECrvwa0D5Zl6dNDJ/TndQf0711lnu1DkiP1k7E9NGFA/BUPwW53Y00rtx7Wqs+Pqvqc+TLpiRGe+TKt2ROE9qG6tl7vbi/VyvwSfVJ4TBdzVg4J8FN0eKBizoSa6PCgxn+HNwaepqAT3cm8sEOAIcB8Y43DQnZt2FehDfsqVVBcJdc540L+vj4a2q2zxqZFa0xajAYmRnyjk8Zbnx3Rg69/JmeDWz1jwvTi9KuUGh3WGi8F7YTLbelfO0q1dMMBbS2q8mwff2Zi7vBuneXj4/3eu9p6l3J2lWvl1sP6cE+FGtxn58uMTYvWpKFJmtA/jhV4HViDy60N+yu1Ir9Ea3aWqrbe7dk3skcX/VffWJ2qc6mi2qnKk05Vnqzz/PtUnatFzxUS4HcmzDQPNk2hJyb87Pa2cM0jAgwB5pIUHz8zLLS3Uh9/Udnsr0hJ6hETpjG9GgPLyJ5R6tTKyX7bYbvueflTHbXXyhbsr2d+OFRje8e06nPAPKfrXPpHXrFe/KjQ0/MX6O+rKUMTddfoHuoVe2kTc6+EYyedWvX5Ua3IP+xZDSVJ4UH+uiE9XpMykjQitQvzZToAy7K044hDK/JL9NZnR1R50unZ1zMmTJOHJum7QxKU1Dn0a49T42w4E2qcqqiuU8VJpyqrm75uHnhO17cs7IQG+p0Tcr4UeM6EnZhOwYoOD7xsYYcAQ4C5KNW19cr94pg2nFktdPBLw0IRIQEa3StaY9KiNTot+j/+YrWG8upa/fTlPOUXVcnXR3poYn/dOap7m/jLGlfWsZNO/TX3kF7+5JDnXkWRoQGaNrKbbs/srphws4Zj9pc3zpdZubVEJVVn58skRobo5owETcpIatNhDJfmqP203th6RCu3HtbespOe7V3CAvWdwQmaPDRR6YkRl+UzrinsNAWbinN6ciqrnY3h58z+c3uBLkZooJ8WTk7Xd4cktmrNBBgCzAW53JY+P1zlCSz5RRcYFkrprDFp0RrTO0bp33BY6FI5G1x6aOV2/SPvsCTpe8OS9OikgQryp8u9IyisrNELGw7on3mH5TwzMTe5S4hmjO6h7w1PahPd3N+E221p88HjWplfone2HW02AX5QUoQmZyTqpsEJimK+jLFOOhv03vZSrdx6WBu/ODuvJdDfV9f3j9PkjESN7R2jAL+2cU9ly7JUU+c6ryenWeC5QNhZOm2YJgyIb9VaCDAEGI/i46c8geXj/ZXNLsYlSanRYY2BJS1GI3t0UXgbmTxrWZb+5+ODemz1TrmtxiunLpk2jIuGtWN5h45r6foD+tfOMs8H/uCkCN0ztqeyBsTJv4182Lem2nqX/r2rTCvyS7Rub4XnDwp/Xx9d2ztGk4Ymanw/5suYoMHl1sdfHNOK/MN6f0fzeS1Xp3bR5IxE3ZDeVREhbeMz9lKdG3aiw4NafSoBAaYDB5i6BrfW7a3wTL4trKxptt8W7K9RZ+axjEmLVnKXyz8s9E2s31uhWcvz5ahtUNeIYC2dNlzpSRHeLgutxOW2tGZnmV7YcEB5h054to/rG6t7xvbQ1aldOszwYeVJp97+7IhWbi3R51+aLzNxUFfdnJGo4d06t8sgZ7KdRxxakX9Yb352RBXVZ+e19IgO06SMRN2ckdjmP2fbEgJMBw0wWw4e1/wV27S//Ow4q5+vj4amRGpMWoxGp0VrUGKEcR+AhZU1mvHSFn1RUaMgf18t/t5gfWdwgrfLwjdQW+/SP/MP68UNhZ6QHejnq0kZibp7bKp6xXbsa6fsL6/WivwSvbG1REfstZ7t4UH+uqZXVOM1ltJilBLFidEbSu21erOgcT7T7tJqz/bOoQG6aXCCJg9N0uCkyzOvpb0jwHSwAOOordeT7+7W3zYVSZKiwgL17fSuGpMWrZE9o9rFNVUctfW6/5Wt+mBPhSQp+7qeeuD6PqzeMMzxmjq9nHtIf809qGNnJubagv01LbObpmd2Vyz3xWrG7W68GeWK/MP6184y2U/XN9vfLSrUMwSc2U5+19uqGmeD3t9RqhX5Jfr4i8qz81r8fDW+f6wmZSTp2t4xCvQ36w/EtoYA04ECzHvbS/XIW9tV5mjsurx1eLJ++e1+ightfx9kLrelRe/v1p/XHZAkje8Xqz/cOqTNzNvBVzt0rEYvbijU63nFnrkBiZEhmjEmVd8fnmzcxba8weW2tL3E7rkxav6hE55rzEiNva0ZyWd7Wwcnmdfb2ta43JY2ftF4vZb3tpc2W5Z8VffOmpSRpInpXdvl5623EGA6QIApc9RqwZvb9f6OxiuRpkaH6fFJ6crsGeXlyi6/lVsPa94/t6muwa3ecZ30wu3D1S2Ki961NdW19frkQGPvwXs7Sj1/saYnRuiesT10w8B4TrDfwElngz754phnvtuBL813Cw/216ie0RrTO1pj02KYh9ECu446tHJrid4sKPH8cShJ3aNCNSkjSZMyEhm+u0wuS4B5/vnn9fzzz+vgwYOSpAEDBmjBggW64YYbJEm1tbV64IEH9Oqrr8rpdCorK0vPPfec4uLiPMcoKirSzJkz9cEHH6hTp06aPn26Fi5cKH//s399ffjhh5o7d6527Nih5ORk/epXv9KPf/zjy/IGmMjttvTKliI98c5uVTsb5O/ro59c20P3/ldah1qpUFBcpZ+8/KnKHE5FhgbouR8O1TW9or1dVofmclvaVmLXhr2NJ9T8ouY9BNf1idE9Y3tqZI+OMzH3Sio+fkof7W9ccfjRvvNXHHaPCvVM3s/sGUXP5ZeUO2r1ZsERrdhaol1HHZ7tkaEBunFQV00emqSM5Eh+di+zyxJg3n77bfn5+SktLU2WZemll17S4sWLtXXrVg0YMEAzZ87U6tWrtWzZMkVERGjWrFny9fXVxx9/LElyuVwaMmSI4uPjtXjxYh09elS333677r77bj3++OOSpMLCQg0cOFA//elPNWPGDOXk5Gj27NlavXq1srKyWv0NMM3+8pP65Ypt2nzwuKTGJaZPTBmkfl3bz2tsiTJHre55OU+fFVfJz9dHC27sr9szu/EBcwUdPtG4TP+jfZX6aH/leXM0ukeFamzvGP1oZDf15qaGV8x/uubTuZP7x6RFa1BSZIe8ieqpugb9a0eZ/pl/WB/vr1TTWxTg56NxfeM0aWiirusTy7yWK+iKDSF16dJFixcv1i233KKYmBgtX75ct9xyiyRp9+7d6tevn3JzczVy5Ei9++67uvHGG3XkyBFPr8ySJUs0b948VVRUKDAwUPPmzdPq1au1fft2z3Pcdtttqqqq0nvvvXfRdbW3AFPX4NaSdV/ombX7VedyKzTQT/97Qh9Nv6Z7h/zQOVdtvUu/XLFNK7aWSJJ+cHWyfvOdgXzgXCYtGbYY04tVMm1F03DeV11eISIkQKPOrG4ac4Wuuu0tLrel3C+OacXWw3p/e6lqzrm30LBunTUpI1E3DuqqyNBAL1bZcV3s+fuSZ825XC69/vrrqqmpUWZmpvLy8lRfX6/x48d72vTt21cpKSmeAJObm6v09PRmQ0pZWVmaOXOmduzYoYyMDOXm5jY7RlOb2bNnf209TqdTTufZcUqHw/E1rc2Sd+iE5q/43HMJ6uv6xOi3Nw9s1x8wLREc4KfffX+w+nYN1xPv7tYrm4u1v/yknv/RMO782wouZuLokORIz0oYJo62TeHBAbq+f5yu79/4+XvuBS6bes7e2Vaqd7aVSmq8honnApeX4b5nl4tlWap2NjReJr+68Z5A515BtvKkU9tLHCp1nF2antIlVJMyEjUpI1HduYGsMVr8E7lt2zZlZmaqtrZWnTp10sqVK9W/f38VFBQoMDBQkZGRzdrHxcWptLTxF6K0tLRZeGna37Tv69o4HA6dPn1aISEhF6xr4cKF+s1vftPSl9OmVdfWa/H7e/TyJ4dkWY1Loxfc1F/fGZzAEMmX+Pj46J6xPZUWF677lm/VloMn9N1nPtbS24dpQAIXvWupkqrT+uhMYPl4f6WqTl146e7oXo1Ld02/smhHlNwlVD8ckaIfjkhRg8utz0vs2rC3MdBsLa7SgcoaHais0Uu5h1r9zvMtdW4oqfyKS9tXnKzz3NunruE/39PHFuyvGwcnaMrQRA1NaRt3MUfLtDjA9OnTRwUFBbLb7frHP/6h6dOna926dZejthaZP3++5s6d6/na4XAoOTnZixV9M//eWaaH39yuo2cuYHXLsCQ99O1+6hxGl+bXua5PrFZmj9Ldf/1UhZU1uuX5XP3u+4P17fSu3i6tTatxNmhT4TGtP3MC+6LiS8NC51w8bUxaNCu+2hl/P18NTemsoSmddf/4NDk8N3ltHG46dOyUNhce1+bC4/o//9qryNAAjeoVrbFp0RqdFqPEyAv/Yfl1LMvSSWfDV/aSfPkuy86LCCXn6hTkr+hOgV+6k3LjfxMig5XZM4p7qxmuxQEmMDBQvXr1kiQNGzZMW7Zs0VNPPaVbb71VdXV1qqqqatYLU1ZWpvj4xhs9xcfHa/Pmzc2OV1ZW5tnX9N+mbee2sdlsX9n7IklBQUEKCjJ/uKC8ula/eWunVm87Kqmxa/PxSekancbqmovVK7aT3vjZKM16JV8b9lXqZ3/L133j0jR7XBoXvTvD7ba0/YhdG/ZVav3eCuUXnVC96+ywkK+PzgwLxWhs72gNTopkWKgDsQUHKGtAvLLO3KTv0LEaz3DTxv3HVHWqXqs/P6rVnzd+TvWICdPYM+F2cHKkqmub3wG5qWekorqu2fZLDSXnhpGz/w5UdHiQYs5sCwkknLR333hQ0+12y+l0atiwYQoICFBOTo6mTJkiSdqzZ4+KioqUmZkpScrMzNRjjz2m8vJyxcbGSpLWrFkjm82m/v37e9q88847zZ5jzZo1nmO0V5Zl6bUtxXr8nV1y1DbIz9dHM8akava43vwiXoKI0AD95cdX6Yl3d+vFjwr1dM4+7Sl16PffH9JhL5h2pOq0PtpXqfVnbup54kvDQkmdQzS2d4zGpkUrs2c0w0Lw6BYVpm5RYfrRyG5qcLn12WG7p3dma9EJHaio0YGKGi3beLDFx/6qUBIdHtgYRggl+AotWoU0f/583XDDDUpJSVF1dbWWL1+uJ598Uu+//76uv/56zZw5U++8846WLVsmm82me++9V5K0ceNGSWeXUSckJGjRokUqLS3VtGnTNGPGjPOWUWdnZ+vOO+/U2rVrdd9997XrZdQHKk5q/opt2lTYuDQ6PTFCCyena2Aiczdaw+ufFuuhldtV53Krb3y4Xrh9eIe4oNepugZtOnBc68+caM69P5bUeOK4pmeUZ6Jmt6hQ5gGgxeynzw43rd9XoeLjpxUW6HfBoZvo8LNBhVCCr3JZllHfddddysnJ0dGjRxUREaFBgwZp3rx5uv766yWdvZDdK6+80uxCdk3DQ5J06NAhzZw5Ux9++KHCwsI0ffp0PfHEE+ddyG7OnDnauXOnkpKS9PDDD7fLC9nVu9xauv6AnsrZp7oGt0IC/PTAhN768TXd6a5vZXmHTugnL+ep8qRTXcIC9dzUoRrZo31dsdjttrTjiEMb9ldow95KfXro+HnDQoObhoXOdPUH8HOGVuZscDG3BN8ItxJo4wFma9EJzV+xzXMX0zFp0Xp8UnqH6BnwlqP207rnr3naVmKXv6+Pfv2dAfrRyG7eLuuSNbjcOnisRvlFjRcr+3h/pY6fuTlik8TIs8NC1/SM5n4tANo8AkwbDTAnnQ36P+/v0Uu5B2VZjbdeX3BTf908JJHu+yugtt6ln//jc7312RFJ0o9GpuiRmwa0+Z6IqlN12nW0WruOOrTrqEO7S6u1t6z6vEmQYYF+yuwZrbG9G4eFujMsBMAwl/1Cdmi5tbvL9KuV23XkzNLoyRmJ+tWN/dWFpdFXTHCAn566bYj6dg3X4vf36P99UqT95Sf13NRhbeL/g8ttqbCypllQ2XXU4VlO/2WhgX7qGx+uUb0aA0tGCsNCADoGemCugIpqp/571U69feav/qTOIXp8UrrG9o7xal0d3b93lmn2awU66WxQUucQvTh9uPrGX7mfFfupeu0qPRNUjlZrV6lDe0rP71VpktQ5RP262hof8eHq19WmlC6hLA0H0K4whNQGAoxlWXo977AeW71L9tP18vWR7hqdqjnX91ZoIJ1fbcG+smrN+OunOnTslEID/fSHW4d4rn3RWlxuSwePndOrcmYo6MhX9KqEBPipz5mA0q9r43/7xIfLxp2DAXQABBgvB5iDlTV66I1t+nj/MUlS/642PTllkNKTWBrd1lSdqlP28nzP/6sHru+tWf/V65LmjthP12v3l4Z/9pRVq7b+q3tV+sbb1L9ruPqe6V3pRq8KgA6MAOOlAFPvcuvFDYX647/3ytngVpC/r+Zc31t3jU5lbkIb1uBy69HVuzwX4pqY3lWLvzfoK3vKXG5Lh47VaNfRau0+Mwy062i1SqpOX7D92V6Vxh6VvvE29e1KrwoAfBmTeL3g88NVmvfPbdp1tPFO2KN6RenxSencN8YA/n6++vV3BqhvfLgefnO7Vm87qsLKGr0wfbjCg/09wz67Sx3aebRae0urdbredcFjJUaGeIJKY1gJV7eosCt68zsAaO/ogWkFp+oa9Lt/7dVfPi6U25IiQwP00Lf76ZZhSSxhNdCWg8f105fzdKymToF+vqpzXXj4JzjAV33iz06o7RvfOAzEJfgB4NLRA3OFrNtboYdWbtPhE41DB98ZnKAFN/VXdCfzbyzZUV3VvYveune07n7pU+0805vW1KvSN/5Mr0rXcHWnVwUAvIYAc4mOnXTqt6t26o2CxqXRiZEhenTSQF3XJ9bLlaE1JEaG6K1Zo7Sv/KQSIkK4gi0AtDEEmBayLEsr8kv06OqdOnGqcWn0j69J1QMTenfYuxy3V/5+vurXte1cxRkAcBZn3BawLEt3//VT/XtXuSSpb3y4npgySEOSI71bGAAAHQwBpgV8fHyUnhip9fsqdf+4NN0ztgdLowEA8AICTAvN/F899d0hCeoezdJoAAC8he6DFgr09yW8AADgZQQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgnBYFmIULF+qqq65SeHi4YmNjdfPNN2vPnj3N2tTW1io7O1tRUVHq1KmTpkyZorKysmZtioqKNHHiRIWGhio2NlYPPvigGhoamrX58MMPNXToUAUFBalXr15atmzZpb1CAADQ7rQowKxbt07Z2dn65JNPtGbNGtXX12vChAmqqanxtJkzZ47efvttvf7661q3bp2OHDmiyZMne/a7XC5NnDhRdXV12rhxo1566SUtW7ZMCxYs8LQpLCzUxIkTdd1116mgoECzZ8/WjBkz9P7777fCSwYAAKbzsSzLutRvrqioUGxsrNatW6exY8fKbrcrJiZGy5cv1y233CJJ2r17t/r166fc3FyNHDlS7777rm688UYdOXJEcXFxkqQlS5Zo3rx5qqioUGBgoObNm6fVq1dr+/btnue67bbbVFVVpffee++ianM4HIqIiJDdbpfNZrvUlwgAAK6giz1/f6M5MHa7XZLUpUsXSVJeXp7q6+s1fvx4T5u+ffsqJSVFubm5kqTc3Fylp6d7woskZWVlyeFwaMeOHZ425x6jqU3TMS7E6XTK4XA0ewAAgPbpkgOM2+3W7NmzNWrUKA0cOFCSVFpaqsDAQEVGRjZrGxcXp9LSUk+bc8NL0/6mfV/XxuFw6PTp0xesZ+HChYqIiPA8kpOTL/WlAQCANu6SA0x2dra2b9+uV199tTXruWTz58+X3W73PIqLi71dEgAAuEz8L+WbZs2apVWrVmn9+vVKSkrybI+Pj1ddXZ2qqqqa9cKUlZUpPj7e02bz5s3Njte0SuncNl9euVRWViabzaaQkJAL1hQUFKSgoKBLeTkAAMAwLeqBsSxLs2bN0sqVK7V27VqlpqY22z9s2DAFBAQoJyfHs23Pnj0qKipSZmamJCkzM1Pbtm1TeXm5p82aNWtks9nUv39/T5tzj9HUpukYAACgY2vRKqSf/exnWr58ud5880316dPHsz0iIsLTMzJz5ky98847WrZsmWw2m+69915J0saNGyU1LqMeMmSIEhIStGjRIpWWlmratGmaMWOGHn/8cUmNy6gHDhyo7Oxs3XnnnVq7dq3uu+8+rV69WllZWRdVK6uQAAAwz0Wfv60WkHTBx1/+8hdPm9OnT1s/+9nPrM6dO1uhoaHWpEmTrKNHjzY7zsGDB60bbrjBCgkJsaKjo60HHnjAqq+vb9bmgw8+sIYMGWIFBgZaPXr0aPYcF8Nut1uSLLvd3qLvAwAA3nOx5+9vdB2YtoweGAAAzHNFrgMDAADgDQQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOO0OMCsX79eN910kxISEuTj46M33nij2X7LsrRgwQJ17dpVISEhGj9+vPbt29eszfHjxzV16lTZbDZFRkbqrrvu0smTJ5u1+fzzzzVmzBgFBwcrOTlZixYtavmrAwAA7VKLA0xNTY0GDx6sZ5999oL7Fy1apKefflpLlizRpk2bFBYWpqysLNXW1nraTJ06VTt27NCaNWu0atUqrV+/Xvfcc49nv8Ph0IQJE9StWzfl5eVp8eLF+vWvf62lS5dewksEAADtjvUNSLJWrlzp+drtdlvx8fHW4sWLPduqqqqsoKAg65VXXrEsy7J27txpSbK2bNniafPuu+9aPj4+VklJiWVZlvXcc89ZnTt3tpxOp6fNvHnzrD59+lx0bXa73ZJk2e32S315AADgCrvY83erzoEpLCxUaWmpxo8f79kWERGhESNGKDc3V5KUm5uryMhIDR8+3NNm/Pjx8vX11aZNmzxtxo4dq8DAQE+brKws7dmzRydOnGjNkgEAgIH8W/NgpaWlkqS4uLhm2+Pi4jz7SktLFRsb27wIf3916dKlWZvU1NTzjtG0r3Pnzuc9t9PplNPp9HztcDi+4asBAABtVbtZhbRw4UJFRER4HsnJyd4uCQAAXCatGmDi4+MlSWVlZc22l5WVefbFx8ervLy82f6GhgYdP368WZsLHePc5/iy+fPny263ex7FxcXf/AUBAIA2qVUDTGpqquLj45WTk+PZ5nA4tGnTJmVmZkqSMjMzVVVVpby8PE+btWvXyu12a8SIEZ4269evV319vafNmjVr1KdPnwsOH0lSUFCQbDZbswcAAGifWhxgTp48qYKCAhUUFEhqnLhbUFCgoqIi+fj4aPbs2Xr00Uf11ltvadu2bbr99tuVkJCgm2++WZLUr18/fetb39Ldd9+tzZs36+OPP9asWbN02223KSEhQZL0wx/+UIGBgbrrrru0Y8cOvfbaa3rqqac0d+7cVnvhAADAYC1d3vTBBx9Yks57TJ8+3bKsxqXUDz/8sBUXF2cFBQVZ48aNs/bs2dPsGMeOHbN+8IMfWJ06dbJsNpt1xx13WNXV1c3afPbZZ9bo0aOtoKAgKzEx0XriiSdaVCfLqAEAMM/Fnr99LMuyvJifLhuHw6GIiAjZ7XaGkwAAMMTFnr/bzSokAADQcRBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMZp0wHm2WefVffu3RUcHKwRI0Zo8+bN3i4JAAC0AW02wLz22muaO3euHnnkEeXn52vw4MHKyspSeXm5t0sDAABe1mYDzO9//3vdfffduuOOO9S/f38tWbJEoaGh+p//+R9vlwYAALzM39sFXEhdXZ3y8vI0f/58zzZfX1+NHz9eubm5F/wep9Mpp9Pp+dput0uSHA7H5S0WAAC0mqbztmVZX9uuTQaYyspKuVwuxcXFNdseFxen3bt3X/B7Fi5cqN/85jfnbU9OTr4sNQIAgMunurpaERERX7m/TQaYSzF//nzNnTvX87Xb7dbx48cVFRUlHx+fVnseh8Oh5ORkFRcXy2aztdpxOxrex9bB+9g6eB9bB+9j6+jo76NlWaqurlZCQsLXtmuTASY6Olp+fn4qKytrtr2srEzx8fEX/J6goCAFBQU12xYZGXm5SpTNZuuQP1itjfexdfA+tg7ex9bB+9g6OvL7+HU9L03a5CTewMBADRs2TDk5OZ5tbrdbOTk5yszM9GJlAACgLWiTPTCSNHfuXE2fPl3Dhw/X1VdfrT/+8Y+qqanRHXfc4e3SAACAl7XZAHPrrbeqoqJCCxYsUGlpqYYMGaL33nvvvIm9V1pQUJAeeeSR84ar0DK8j62D97F18D62Dt7H1sH7eHF8rP+0TgkAAKCNaZNzYAAAAL4OAQYAABiHAAMAAIxDgAEAAMYhwLTQs88+q+7duys4OFgjRozQ5s2bvV2SURYuXKirrrpK4eHhio2N1c0336w9e/Z4uyzjPfHEE/Lx8dHs2bO9XYpxSkpK9KMf/UhRUVEKCQlRenq6Pv30U2+XZRSXy6WHH35YqampCgkJUc+ePfXb3/72P97LpqNbv369brrpJiUkJMjHx0dvvPFGs/2WZWnBggXq2rWrQkJCNH78eO3bt887xbZBBJgWeO211zR37lw98sgjys/P1+DBg5WVlaXy8nJvl2aMdevWKTs7W5988onWrFmj+vp6TZgwQTU1Nd4uzVhbtmzRn//8Zw0aNMjbpRjnxIkTGjVqlAICAvTuu+9q586d+t3vfqfOnTt7uzSjPPnkk3r++ef1zDPPaNeuXXryySe1aNEi/elPf/J2aW1aTU2NBg8erGefffaC+xctWqSnn35aS5Ys0aZNmxQWFqasrCzV1tZe4UrbKAsX7eqrr7ays7M9X7tcLishIcFauHChF6syW3l5uSXJWrdunbdLMVJ1dbWVlpZmrVmzxrr22mut+++/39slGWXevHnW6NGjvV2G8SZOnGjdeeedzbZNnjzZmjp1qpcqMo8ka+XKlZ6v3W63FR8fby1evNizraqqygoKCrJeeeUVL1TY9tADc5Hq6uqUl5en8ePHe7b5+vpq/Pjxys3N9WJlZrPb7ZKkLl26eLkSM2VnZ2vixInNfi5x8d566y0NHz5c3/ve9xQbG6uMjAy98MIL3i7LONdcc41ycnK0d+9eSdJnn32mjz76SDfccIOXKzNXYWGhSktLm/1uR0REaMSIEZxzzmizV+JtayorK+Vyuc67EnBcXJx2797tparM5na7NXv2bI0aNUoDBw70djnGefXVV5Wfn68tW7Z4uxRjHThwQM8//7zmzp2rX/7yl9qyZYvuu+8+BQYGavr06d4uzxi/+MUv5HA41LdvX/n5+cnlcumxxx7T1KlTvV2asUpLSyXpguecpn0dHQEGXpOdna3t27fro48+8nYpxikuLtb999+vNWvWKDg42NvlGMvtdmv48OF6/PHHJUkZGRnavn27lixZQoBpgb///e/629/+puXLl2vAgAEqKCjQ7NmzlZCQwPuIy4YhpIsUHR0tPz8/lZWVNdteVlam+Ph4L1VlrlmzZmnVqlX64IMPlJSU5O1yjJOXl6fy8nINHTpU/v7+8vf317p16/T000/L399fLpfL2yUaoWvXrurfv3+zbf369VNRUZGXKjLTgw8+qF/84he67bbblJ6ermnTpmnOnDlauHCht0szVtN5hXPOVyPAXKTAwEANGzZMOTk5nm1ut1s5OTnKzMz0YmVmsSxLs2bN0sqVK7V27VqlpqZ6uyQjjRs3Ttu2bVNBQYHnMXz4cE2dOlUFBQXy8/PzdolGGDVq1HnL+Pfu3atu3bp5qSIznTp1Sr6+zU8nfn5+crvdXqrIfKmpqYqPj292znE4HNq0aRPnnDMYQmqBuXPnavr06Ro+fLiuvvpq/fGPf1RNTY3uuOMOb5dmjOzsbC1fvlxvvvmmwsPDPWO5ERERCgkJ8XJ15ggPDz9v3lBYWJiioqKYT9QCc+bM0TXXXKPHH39c3//+97V582YtXbpUS5cu9XZpRrnpppv02GOPKSUlRQMGDNDWrVv1+9//Xnfeeae3S2vTTp48qf3793u+LiwsVEFBgbp06aKUlBTNnj1bjz76qNLS0pSamqqHH35YCQkJuvnmm71XdFvi7WVQpvnTn/5kpaSkWIGBgdbVV19tffLJJ94uySiSLvj4y1/+4u3SjMcy6kvz9ttvWwMHDrSCgoKsvn37WkuXLvV2ScZxOBzW/fffb6WkpFjBwcFWjx49rIceeshyOp3eLq1N++CDDy74eTh9+nTLshqXUj/88MNWXFycFRQUZI0bN87as2ePd4tuQ3wsi0slAgAAszAHBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADj/H8A9NtCZHfBjAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "sales = [2750,3100,3250,2800,2900,3050,3300,3100,2950,3000,3200,3150]\n", - "\n", - "import matplotlib.pyplot as plt\n", - "plt.ylim(bottom = 0, top = max(sales)*1.5)\n", - "plt.plot(sales)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "44453.34536482963" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def calc_exponential_smoothing(data, alpha):\n", - " preds = [data[0]]\n", - " for i in range(1, len(data)):\n", - " preds.append(alpha * data[i] + (1 - alpha) * preds[i-1])\n", - " return preds\n", - "\n", - "preds = calc_exponential_smoothing(sales, 0.4)\n", - "week_13_pred = preds[-1]\n", - "\n", - "mse = sum([(i - u)**2 for i, u in zip(preds[:-1], sales[1:])])/len(sales[1:])\n", - "mse" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "3117.0075248639996" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "week_13_pred" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Time Series/ForecastingMonthlyData_Problem.ipynb b/Time Series/ForecastingMonthlyData_Problem.ipynb deleted file mode 100644 index e03d0af..0000000 --- a/Time Series/ForecastingMonthlyData_Problem.ipynb +++ /dev/null @@ -1,166 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "values = [24, 13, 20, 12, 19, 23, 15]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "a. Construct a time series plot. What type of pattern exists in the data?\n", - "\n", - "b. Develop a three-week moving average for this time series. Compute MSE and a\n", - "forecast for week 8.\n", - "\n", - "c. Use a=0.2 to compute the exponential smoothing values for the time series.\n", - "­Compute MSE and a forecast for week 8.\n", - "\n", - "d. Compare the three-week moving average forecast with the exponential smoothing fore-\n", - "cast using a 5 0.2. Which appears to provide the better forecast based on MSE?\n", - "\n", - "e. Use trial and error to find a value of the exponential smoothing coefficient a that\n", - "results in a smaller MSE than what you calculated for a 5 0.2." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABW8ElEQVR4nO3deXhT95U//rd2eZHkfd/YwXjBgHESEko2EraEBEi+nbaTaTsz385AO0naTJrpt0lmupBu03Rafsl0ecrMr5NvEkIgBBIICVs2NhuDzWIwNnjDuy3Zsq31fv+QrrCDAS+S7pX0fj2Pnmdiy9IZV8C595zPOQpBEAQQERERBYlS6gCIiIgosjD5ICIioqBi8kFERERBxeSDiIiIgorJBxEREQUVkw8iIiIKKiYfREREFFRMPoiIiCio1FIH8EVutxstLS0wGAxQKBRSh0NERERjIAgC+vr6kJGRAaXy5vc2ZJd8tLS0IDs7W+owiIiIaAIaGxuRlZV10+fILvkwGAwAPMEbjUaJoyEiIqKxsFgsyM7O9v07fjOySz7EUovRaGTyQUREFGLG0jLBhlMiIiIKKiYfREREFFRMPoiIiCiomHwQERFRUDH5ICIioqBi8kFERERBxeSDiIiIgorJBxEREQUVkw8iIiIKqnElH5s2bUJpaSkMBgNSUlKwZs0a1NTUjPpcQRCwfPlyKBQK7Nixwx+xEhERURgYV/Jx6NAhbNiwAUeOHMG+ffvgcDiwbNkyWK3W65778ssvcystERERXWdcu1327Nkz4r+3bNmClJQUlJeXY8mSJb6vV1ZW4le/+hVOnDiB9PR0/0RKREREYWFSi+XMZjMAICEhwfe1gYEB/NVf/RU2b96MtLS0W76GzWaDzWbz/bfFYplMSDfUO2DH/xxtwJUuK36+rjgg70FERES3NuGGU7fbjSeffBKLFy9GQUGB7+tPPfUU7rjjDjz88MNjep1NmzbBZDL5HtnZ2RMN6aYUCgV++UEN3jzRhHbLUEDeg4iIiG5twsnHhg0bUF1djddff933tZ07d2L//v14+eWXx/w6zz33HMxms+/R2Ng40ZBuyhSlwZw0IwDg2OXugLwHERER3dqEko+NGzdi165dOHDgALKysnxf379/Py5duoS4uDio1Wqo1Z6qztq1a7F06dJRX0un08FoNI54BMqiKZ7y0NE6Jh9ERERSGVfPhyAI+Pa3v43t27fj4MGDmDJlyojvf//738ff/u3fjvhaYWEhfv3rX2P16tWTj3aSbpuagC2fXcaxeiYfREREUhlX8rFhwwa89tpreOedd2AwGNDa2goAMJlMiIqKQlpa2qhNpjk5OdclKlIozfPc+ahp60O31Y6EGK3EEREREUWecZVdXnnlFZjNZixduhTp6em+xxtvvBGo+PwqMVaHGSmxAIDj7PsgIiKSxLjLLuM1kZ8JpEVTEnCxvR9H67rxwNxbHwUmIiIi/4q43S5lUxMBAMcud0kcCRERUWSKvOTDe+LlbIsFliGHxNEQERFFnohLPlKNeuQlRsMtAOWXe6QOh4iIKOJEXPIBDJv3wSO3REREQReRyUfZFE/fx9F69n0QEREFW0QmH+Kdj6omMwbsTomjISIiiiwRmXxkJ0QjMy4KTreAiiu9UodDREQUUSIy+QCu3f04xtILERFRUEV88nGETadERERBFbHJhzjvo7KxF0MOl8TREBERRY6ITT6mJMUgKVYHu9ONU429UodDREQUMSI2+VAoFCibKvZ9sPRCREQULBGbfADXSi8cNkZERBQ8EZ58eIaNlV/pgcPlljgaIiKiyBDRyceMlFjERWsw6HChqtksdThEREQRIaKTD6VSgUV57PsgIiIKpohOPoDhw8aYfBAREQVDxCcft0319H0cr++Gyy1IHA0REVH4i/jkY066EQadGn02J85dtUgdDhERUdiL+ORDpVRgYV48AB65JSIiCoaITz4AYJH3yC2XzBERhR6Hy40tn9ZzWnUIYfIBjJh06mbfBxFRSNl8oBYvvnsW//g/FRAE/h0eCph8ACjIMCFKo0LPgAO1Hf1Sh0NERGN0psWM3+2vBQA09w6iknc/QgKTDwBatRLzc+MAAEfrWHohIgoFdqcb333zFJxuASqlAgCw+/RViaOisWDy4SWOWmfTKRFRaPjd/os439qHhBgtfvRwAQDgvaqrLJ+HACYfXouGLZljzZCISN6qmszYfPASAOBHDxfg0fmZiNGq0GIewkmWXmSPyYfXvOw4aFVKdPTZcLlrQOpwiIjoBmxOF767tRIut4CVRelYWZQOvUaF+/NTAbD0EgqYfHjpNSrMy44DwL4PIiI5+82HF3GhrR9JsdfKLQCwsigDAPB+NUsvcsfkY5jhR26JiEh+TjX24tVDnnLLj9cUIiFG6/veXTOSYNCpcdU8hJONPVKFSGPA5GOY4X0fREQkL0MOF7679RTcAvDwvAw8WJA24vvDSy+7WHqRNSYfwyzIjYdaqUBz7yCaetj3QUQkJ7/+8AJq2/uRFKvDi6vnjvqcFYXpAHjqRe6YfAwTrVWjINMEgKUXIiI5qWjowR8O1wEAfvpIAeKHlVuGu2ump/TSZrGhvIGlF7li8vEFYt/H0TomH0REcjDkcOF73nLLoyWZWDY37YbP1alVuH8uT73IHZOPLyjz9n0cu8zkg4hIDn71QQ3qOqxIMejwwg3KLcOtKrpWenGx9CJLTD6+YGFeAhQKoL7TinbLkNThEBFFtBOXu/HHT+oBAC+tLYQpWnPLn7lzejIMejXa+2w4wQtJWWLy8QVGvQb56UYAPPVCRCSlQbun3CIIwLoFWbhnduqYfk6rVuIBb2lmdxVLL3LE5GMU147cctgYEZFUfr73PC53DSDNqMcPV+WP62dXeksv71e3svQiQ0w+RiEumeOJFyIiaRyt68KWzy4D8JZbom5dbhlu8bQkmKI06Oiz4ThLL7LD5GMU4p2PC2396LbaJY6GiCiyDNideOat0xAE4H+VZmPprJRxv4an9MJTL3LF5GMUCTFazEyNBcC7H0REwfaz98+joXsAGSY9frByzoRfRxw49n41T73IDZOPG2DfBxFR8H12qRP/9fkVAMDP1hXBoB9fuWW4xdM9pZfOfjv/LpcZJh83wL4PIqLgstqc+Oe3TgMA/qosB3fNSJ7U62lUSjwonnph6UVWmHzcgDhs7OxVC8yDDomjISIKf5veP4emnkFkxkXhX1ZMvNwynHjqZU91K5wut19ekyaPyccNpBj1mJIUA0EAyq/w7gcRUSB9crETfznSAAD4xboixOrUfnnd26clIj5agy6rnbObZITJx00syhP7PviBJSIKlL4hB57d5im3fO22XNwxPclvr61RKfFggaf0soulF9kYV/KxadMmlJaWwmAwICUlBWvWrEFNTY3v+93d3fj2t7+NWbNmISoqCjk5OfjOd74Ds9ns98CDgUvmiIgC76fvnUNz7yCyE6Lw/eWz/f76KwszAAB7z7D0IhfjSj4OHTqEDRs24MiRI9i3bx8cDgeWLVsGq9UKAGhpaUFLSwt++ctforq6Glu2bMGePXvwzW9+MyDBB5p44qW62QyrzSlxNERE4efwhQ7832ONAIBfrCtGjJ/KLcPdNjUBCTFadFvtOMKLSVkY1//Ke/bsGfHfW7ZsQUpKCsrLy7FkyRIUFBRg27Ztvu9PmzYNP/nJT/DVr34VTqcTarX/P1SBlBUfjcy4KDT3DqKioWfSnddERHSNZVi55W/uyMNtUxMD8j5qb+nltaMN2F3Vgjtn+K+sQxMzqZ4PsZySkJBw0+cYjcYbJh42mw0Wi2XEQ07EUy88cktE5F8/3nUWV81DyE2Mxj8/OCug77Wy8NqpFwdLL5KbcPLhdrvx5JNPYvHixSgoKBj1OZ2dnfjRj36Ev//7v7/h62zatAkmk8n3yM7OnmhIAeEbNsZbdUREfnPgfDvePNEEhcJTbonWBvbOeNmUBCTGaNEz4MDnlzhwTGoTTj42bNiA6upqvP7666N+32KxYOXKlcjPz8eLL754w9d57rnnYDabfY/GxsaJhhQQZd7bgJWNvRhyuCSOhogo9JkHHPj+255yyzcWT/Fd5AWSetipFw4ck96Eko+NGzdi165dOHDgALKysq77fl9fHx588EEYDAZs374dGs2Nx+PqdDoYjcYRDznJS4xGskEHu8uNysZeqcMhIgp5/7brLNosNkxNisH3lgW23DKcb+DYGZZepDau5EMQBGzcuBHbt2/H/v37MWXKlOueY7FYsGzZMmi1WuzcuRN6vd5vwUpBoVCw74OIyE8+PNuGbRXecsv6IkRpVUF777IpiUiK1cI86MCntZ1Be1+63riSjw0bNuAvf/kLXnvtNRgMBrS2tqK1tRWDg4MAriUeVqsVf/rTn2CxWHzPcblCt2RRxiVzREST1jtgx3PbqwAAf3fXVCzIDXy5ZTiVUoHlBZ67Hyy9SGtcyccrr7wCs9mMpUuXIj093fd44403AAAVFRU4evQoqqqqMH369BHPkVsvx3iIfR/lV3pgd/JWHRHRRLy48ww6+myYlhyDp++fKUkMYunlg7Nt/PtcQuNqLxYE4abfX7p06S2fE4qmJ8ciPlqDngEHqprNWJAbL3VIREQhZe+ZVuyobIFSAfxyfTH0muCVW4YrzUtAskGHjj4bPr3UibtnpUgSR6TjbpcxUCoVvm5s9n0QEY1Pt9WOH3jLLf/7S9NQkiPdBZxKqcAKnnqRHJOPMVo0xVN6Oca+DyKicXlh5xl09tsxIyUWT943Q+pwsMI7cGzvmVaWXiTC5GOMxKbTE5d74HKHX2mJiCgQ3q+6indPtUClVOCX64uhU0tTbhluYV4CUgw69A058Ulth9ThRCQmH2M0J90Ig16NPpsT567KawQ8EZEcdfXb8H92VAMA/uFL01CcHSdtQF4qpcJ392MXSy+SYPIxRiqlAqV5nrsfR+pYeiEiupXn3zmDLqsds9MM+Pa906UOZwTx1Mu+M22wOUN3FESoYvIxDmw6JSIam12nW7C76qqsyi3DLciJR6pRhz6bEx9f4MCxYGPyMQ6+5ONyN9zs+yAiGlVHnw0/9JZbNtw9HQWZJokjup5yWOlldxVLL8HG5GMcCjNNiNKo0DvgwMX2fqnDISKSHUEQ8H92VKFnwIE56UZsvFte5ZbhVnlLLx+ebePi0CBj8jEOGpXSN2CMo9aJiK6381QL9p5pg1qpwK/WF0Orlu8/MyXZ8Ug36T2ll4ssvQSTfD8VMnVtzwv7PoiIhmu3DOH5d84AAL5z7wzkZ8hrS/kXKUfsemmROJrIwuRjnMS+j6N13WE5Sp6IaCIEQcC/bK+CedCBgkwj/mHpNKlDGhPfqReWXoKKycc4FWfHQatWorPfhvpOq9ThEBHJwvaTzfjwXDs0Ks/pFo0qNP55KcmOQ4ZJD6vdhUMXOHAsWELj0yEjeo0K87yDclh6ISIC2ixDeHGnp9zy5H0zMTtN3uWW4UaceuHAsaBh8jEBt3HeBxERAE+55bm3q2AZcqIoy4T/vWSq1CGNm1h6+fAcSy/BwuRjAsQlc0frutj3QUQR7a3yJuw/3w6tSolfrS+GOkTKLcPNy45DZlwUBuwuHKxplzqciBB6nxIZmJ8bB7VSgRbzEJp6BqUOh4hIElfNg/i3d88CAJ66fyZmpBokjmhiFAqF7+4Hd70EB5OPCYjWqlGY5ZnYx9ILEUUiQRDw7LYq9NmcmJcdh7+7a4rUIU3KSm/fx/7z7Ri0s/QSaEw+JqhMLL1w2BgRRaA3TzTi8IUOaNVK/DJEyy3DFWWZkBXP0kuwhPanRUJlbDologjV3DuIH+06BwB4ZtksTE+JlTiiyVMoFL67H7u46yXgmHxM0IK8eCgVwOWuAbRZhqQOh4goKARBwLNvnUa/zYkFufH4xp2hXW4ZTuz72H+uHQN2p8TRhDcmHxNk1Gt8o4M574OIIsVrxxrwSW0ndGolfrGuCCqlQuqQ/KYw04TshCgMOlw4cJ4DxwKJycckLMq7duSWiCjcNXYP4Ke7PeWWf35wNqYmh365ZThP6SUDALC7irteAonJxySUTWXfBxFFBrdbwLPbTsNqd2FRXgK+fkee1CEFxKqia6derDaWXgKFyccklOZ5ko+L7f3o6rdJHA0RUeD8z9Er+OxSF/QaJX6+rgjKMCq3DDc3w4jcxGgMOdzYf56nXgKFycckJMRoMcs7VOf4Zd79IKLw1NA1gJ++dx4A8P0HZyMvKUbiiAJn+KkX7noJHCYfk7TIe+T2SB2TDyIKP263gO+9dQqDDhfKpiTgr2/PkzqkgBNPvRyoYeklUJh8TBL7PogonP3355dxrL4b0VoVfrGuOGzLLcPlpxsxJSkGNqcbH7H0EhBMPiZJvPNxrtUC84BD4miIiPzncqcVL+3xlFueWz4bOYnREkcUHAqFAisK0wAAu0/z1EsgMPmYpBSDHlOTYiAIwIkrvPtBROHB5Rbwva2nMORw445pifhKWa7UIQWVeOT2QE0H+ll68TsmH34g3v3gsDEiChd//rQeJ670IEarws/Whu/plhuZk27A1KQY2J1ufHSuTepwwg6TDz8Q+z6YfBBROKjr6Mcv9tYAAH6wMh/ZCZFRbhlOoVD4Gk938dSL3zH58INF3g231c1mdkYTUUgTyy02pxt3zUjClxdlSx2SZMTk41BNB/qG2NPnT0w+/CAzLgpZ8VFwuQWUX+mROhwiogn70yd1qGjoRaxOjZfWFkGhiKxyy3CzUg2YlhwDu8uND1l68SsmH34i9n3wyC0Rhara9j788oMLAIAfrpqDzLgoiSOSlqf04t31wtKLXzH58JMyX9Mpl8wRUehxutz47tbTsDvd+NLMZDy2MHLLLcOJu14OX+iEhaUXv2Hy4Sdl3r6PU41mDDlcEkdDRDQ+f/i4Hqcae2HQq/HS2sKILrcMNzPVgBkpsZ7Sy1mWXvyFyYef5CZGI8Wgg93lxsmGXqnDISIaswttffj1Pk+55flV+Ug3RXa55YtWcNeL3zH58BOFQoGyqZ67H+z7IKJQ4XC58d03T8HucuOe2SlYtyBL6pBkRzz1cvhiB8yDLL34A5MPP1rEvg8iCjH/eegSqprNMOrV2PQoyy2jmZlqwMzUWDhcAvax9OIXTD786DZv8lHR0AO70y1xNEREN3e+1YLffHQRAPCvD89FqlEvcUTyJY5b564X/2Dy4UfTU2KREKPFkMONquZeqcMhIrohsdzicAm4Pz8Va+ZlSh2SrK0s8iya+/hiJ5eI+gGTDz9SKBRYlMdR60Qkf//fgUs402JBXLQGP3mkgOWWW5ieYsDsNAOcbgF7z7ZKHU7IY/LhZ76+jzomH0QkT2dazPjtfm+55aG5SDGw3DIWK3nqxW+YfPiZuGSu/EoPnC72fRCRvNidnnKL0y3gwblpeKg4Q+qQQsYK76mXT2s70Ttglzia0Mbkw89mpxlh0KvRb3Pi3NU+qcMhIhrhdwdqcb61DwkxWvyY5ZZxmZYciznpRjjdAj44w1MvkzGu5GPTpk0oLS2FwWBASkoK1qxZg5qamhHPGRoawoYNG5CYmIjY2FisXbsWbW2R8z+SSjm874NHbolIPqqbzdh8oBYA8G8Pz0VSrE7iiELPykJP4+muKpZeJmNcycehQ4ewYcMGHDlyBPv27YPD4cCyZctgtVp9z3nqqafw7rvvYuvWrTh06BBaWlrw6KOP+j1wObs274N9H0QkDzanC9998xRcbgErC9OxqojllokQp51+WtuJHitLLxOlHs+T9+zZM+K/t2zZgpSUFJSXl2PJkiUwm83405/+hNdeew333HMPAODPf/4z5syZgyNHjuC2227zX+QyJiYfxy93w+0WoFTytiYRSes/PrqImrY+JMZo8W8Pz5U6nJA1NTkW+elGnL1qwd4zrfhfi3KkDikkTarnw2w2AwASErxNluXlcDgcuO+++3zPmT17NnJycvD555+P+ho2mw0Wi2XEI9QVZJoQrVWhd8CBC+3s+wh3te39+OPHdXCwwZhk6lRjL149VAcA+PGaAiSy3DIp4rj13Sy9TNiEkw+3240nn3wSixcvRkFBAQCgtbUVWq0WcXFxI56bmpqK1tbRz0Vv2rQJJpPJ98jODv01zhqVEgty4wHwyG0kePKNk/jx7nN47WiD1KEQXWfI4cL3tnrKLQ8VZ2C5t2xAEyceuf3sUhe6+m0SRxOaJpx8bNiwAdXV1Xj99dcnFcBzzz0Hs9nsezQ2Nk7q9eSizFt64ZK58FbdbEZ1s+du3S6OXSYZevnDi7jY3o+kWB3+9SGWW/whLykGBZlGuNwC9vLUy4RMKPnYuHEjdu3ahQMHDiAr69oGxLS0NNjtdvT29o54fltbG9LS0kZ9LZ1OB6PROOIRDhZN8Wy4PVrfBUEQJI6GAmXriWvJ8vHLPWg1D0kYDdFIFQ09+P3hSwCAnz5SgPgYrcQRhQ/frpcqXnRMxLiSD0EQsHHjRmzfvh379+/HlClTRnx/wYIF0Gg0+Oijj3xfq6mpQUNDA26//Xb/RBwiirNN0KqV6Oy3o67TeusfoJAz5HBhR6XnLx6j3tO7/R5rwCQTYrnFLQCPlGRi2dzRLwBpYsTSy+csvUzIuJKPDRs24C9/+Qtee+01GAwGtLa2orW1FYODgwAAk8mEb37zm3j66adx4MABlJeX4+tf/zpuv/32iDnpItKpVSjJjgPAvo9wte9sG8yDDmSY9PjOvTMAsAGN5OPf911AXYcVKQYdXlidL3U4YScnMRpFWSa4BWDPGe56Ga9xJR+vvPIKzGYzli5divT0dN/jjTfe8D3n17/+NVatWoW1a9diyZIlSEtLw9tvv+33wENB2VRP6eUYh42FpTe9JZd1C7J8MxPKr/SgpXdQyrCIUH6lG3/42HO6ZdOjhYiLZrklEFZw18uEjbvsMtrjb/7mb3zP0ev12Lx5M7q7u2G1WvH222/fsN8j3JUNGzbGvo/w0tw7iE9qOwEA6xZkI82kR2me54TT+9W8CiLpDNpd+N7W0xAEYO38LNw7J1XqkMKWWHo5UteFjj6WXsaDu10CaH5OPNRKBa6ah9DUw6vhcLKtvAmCANw+NRE5idEAhm+8ZAMaSecXe2tQ32lFqlGH51luCajshGgUs/QyIUw+AihKq0JRlgmAJzOm8OB2C76Sy2Ol1057LS9Mh0IBVDT0opmlF5LAsfpu/PmzegDAS2uLYIrSSBxR+PMNHONFx7gw+Qiwa30fbDoNF0fqutDUMwiDXo3lBdcGNqUa9Sj1LhV8n42nFGQDdieeeesUBAF4bGEW7p6VInVIEUHs+zha3432Ph61HysmHwEm7nk5dpnJR7gQ73o8VJwBvUY14nurvFdBu9iARkH28z01uNI1gHSTHv9nFcstwZIVH4152XEQBGAP+73GjMlHgC3MjYdSAVzpGuAAqjBgHnT4GkofW3j9KoAHC9KgUACVjb1o7B4IdngUoT6/1IUtn10GAPxsbRGMepZbgokXHePH5CPADHoN5mZ4+j6O8shtyHv3VAtsTjdmpRp8/TzDpRj0WCSWXqr5FxEFntXmKbcAwJcX5WDJzGSJI4o84r6c45e70W7hReZYMPkIgkXDjtxSaBPHqa9fmAWFQjHqc1YV8ew/Bc9L759HU88gMuOi8IOVc6QOJyJlxkWhJMdTeuFR+7Fh8hEEXDIXHs63WnCqyQyNSoFHSjJv+LwHCtKgVACnmswsvVBAfVrbif//yBUAwM/XFSFWp5Y4osi1kgPHxoXJRxCIJyBq2/vRyR0AIevN400AgPvmpCIxVnfD56UY9CjzLhbkrhcKlL4hB/75rdMAgK/eloPF05Mkjiiyiadejl/pZn/fGDD5CIL4GC1mpxkAAMd59yMk2Z1ubD/pST5GazT9It/ZfyYfFCA/fe88mnsHkRUfheeWs9witYy4KCzIjfeWXvjn/laYfAQJ+z5C20fn2tAz4ECqUYe7Ztz6CvNBb+nldJMZDV0svZB/Hb7Qgf97rAEA8It1xYhhuUUWWHoZOyYfQSLehmfyEZrE2R5r52dBrbr1H5ukWB1un+b535x3P8ifLEMOfH+bp9zyxO25vs8ZSU8svZy40oOrZk45vhkmH0FSOsWzdOx8qwXmAYfE0dB4tJqHcOhCBwBg/RhKLqKVhZ5Nt7urOHaZ/Ocnu86hxTyEnIRoPLt8ttTh0DDDF0y+V8VTLzfD5CNIUgx6TE2OgSB4zoJT6NhW0QS3ACzKS8CUpJgx/9wDc1OhUipQ3WzB5U5rACOkSHGgph1vnGiEQgH8cn0xorUst8gNF0yODZOPICrz9X1w2FioEARhxGyP8UiM1eH2qSy9kH+YB6+VW75+xxRfHxnJy/AFky1cMHlDTD6CSOz74LyP0HGsvhuXuwYQo1X5TrCMx0oOHCM/+dGus2iz2DAlKQbPPDBL6nDoBlKNepTmehJDHrW/MSYfQSReqVS3WNBvc0ocDY3Fmyc8x2tXF2dM6Bb3A3PToFIqcPaqBfUsvdAEfXSuDW+VN0GhAH6xrghRWtWtf4gkw6P2t8bkI4gy4qKQnRAFl1tA+ZUeqcOhW+gbcviuXMbTaDpcQowWd0zjwDGauN4BO557uwoA8Ld3TsHCPJZb5G65d8HkyYZeNPXwqP1omHwE2aI8sfTCvg+52336KgYdLkxLjsH8nLgJvw43XtJk/Ou7Z9HeZ8PU5Bh8dxnLLaEgxThswSRPvYyKyUeQ+ZpO69j3IXfibI/HFmbfcIncWCzLT4NaqcC5qxZc6uj3V3gUAT4404rtJ5uh9J5u0WtYbgkVvosO3vEcFZOPICub6kk+TjX1YsjhkjgaupHa9j5UNPRCpVTgkfk3XiI3FvExWt/ejfd494PGqMdqx79srwYA/N2SqZifEy9xRDQevgWTjb1cMDkKJh9BlpMQjVSjDg6XgIoG9n3Ildhoes/sFKQY9JN+PTag0Xht+ewyOvttmJ4Si6fumyl1ODROXDB5c0w+gkyhUPDIrcw5XG68XTH2JXJj8UB+GjQqBc639qG2vc8vr0nhy+0W8Fa55zP47Xums9wSonjRcWNMPiSwiH0fsnbgfDs6++1IitVh6axkv7ymKVrjK73sPs0GNLq5Ty91orl3EEa9Gg/MTZM6HJqg4QsmWXoZicmHBG7z9n1UNPTA7nRLHA19kVhyWTs/E5oxLJEbK9/YZe56oVsQP4NrSjJ51yOEJcXqcBunHI+KyYcEpiXHIjFGC5vTjdNNvVKHQ8O09w3hQE07gPGPU7+VZd7Sy4W2flxsY+mFRtc7YMfeM567Y/4q+5F0OOV4dEw+JKBQKK6VXtj3ISvbK5rhcguYnxOH6SkGv762KVqDu2Z4yji8CqIb2XmqBXanG3PSjZibYZQ6HJqkB+d6Si9VzWZc6eKUYxGTD4kw+ZAfQRDwhne2x+OlgbnivLbxkskHje7afJmsSc2XIXlIjNXhjmnefi9edPgw+ZCIeOKl/HI3nC72fchBRUMP6jqsiNKosLIoIyDvcV9+KrQqJS629+MCSy/0BWdazKhutkCrUmLNvMnNlyH5YOnlekw+JDIrzQCjXg2r3YUzLRapwyEAbx73NPmtLEpHrG78S+TGwhSlwZKZnqsgjlunL9rqbTS9Pz8V8TFaiaMhfxEXTJ5p4YJJEZMPiaiU1/o+OO9DelabE7tOe06hBLrJ79pVUAsEQQjoe1HoGHK4sP1kMwDgsQCV/UgaXDB5PSYfEmLfh3y8V3UVVrsLeYnRKM0L7Bjr++akQqtW4lKHFTUsvZDXh+faYB50IN2kx53emTAUPrhgciQmHxJa5O37OH65G243r4ClJN7uXj/JJXJjYdBrsEQ89cK/iMhLnO2xbkEWVEo2moab4Qsm67hgksmHlAoyjIjWqmAedPAKWEJ1Hf04drkbSgWwdr5/Z3vcyKphDWgsvVBL7yA+vtgBwJN8UPiJj9HiDnHBJEsvTD6kpFYpsSDXc4v/aF2XxNFErq3eHRpLZ6UgzTT5JXJjce+cFGjVStR1WnG+lYlnpNtW3gRB8Ew/zk2MkTocCpBVhSy9iJh8SEwcvXvsMvs+pOB0ubGtXFwiF7wrToNeg6UzWXohzxK5reX+XWRI8rRsbirUSnHBZGSXXph8SGz4iRfefg++wxc70N5nQ0KMFvfMTg3qew/feMn/7SPXkfouNHQPwKBTY3lButThUADFRWtx5wyWXgAmH5IryjJBp1ais9+OSx08/x1s4myPR0oyoVUH94/DvXNSoVMrUd9pxdmrnPUSqcRm59XzMhCl5RK5cMcpxx5MPiSmU6tQkhMHADhaz76PYOrqt+HDc20ApLndHatT4+5ZKQD4F1Gksgw5fFfALLlEBnHBZE1bX0QvmGTyIQPiqHUOGwuu7Seb4XQLKM4yYVaaf5fIjRVLL5Ht3VMtsDndmJkai+Isk9ThUBBwwaQHkw8ZKBOHjdWx7yNYBEG4tsBLwmmS98xOgV6jxJWuAY7Zj0DibI/HgjBfhuSDpRcmH7JQkhMPjUqBVssQGrsHpQ4nIpxqMuNCWz90aiVWFwdmidxYxAwrvfD4XWSpae3DqcZeqJUKrCnhErlIwgWTTD5kIUqrQlFWHABP5zsFnnjXY0VhOox6jaSxXCu9cNdLJBE/g/fOSUFSrE7iaCiYTFEa3OU99RKpdz+YfMhEGZfMBc2g3YV3Kz1L5NYHcbbHjYill8buQVQ3s/QSCexOt2+J3ONcIheRIr3fi8mHTHDDbfDsOXMVfTYnshOicJu32VdK0Vo17vXOGNlV1SJxNBQM+8+3odtqR4pB59vzQ5FFLL3UtvfjQlvkDRwbd/Jx+PBhrF69GhkZGVAoFNixY8eI7/f392Pjxo3IyspCVFQU8vPz8eqrr/or3rC1IDceSgXQ0D2Aq2b2fQSSONtj/YJsKGWywGsld71EFLHRdO2CLKhVvAaMREa9Bkt8U44j76Jj3J96q9WK4uJibN68edTvP/3009izZw/+8pe/4Ny5c3jyySexceNG7Ny5c9LBhjODXoOCTM9RO979CJwrXVZ8XtcFhUJeC7zunpWCKI0KTT2DON1kljocCqA2yxAO1rQDANbL6DNIwScumNwVgaWXcScfy5cvx49//GM88sgjo37/s88+wxNPPIGlS5ciLy8Pf//3f4/i4mIcO3Zs0sGGu0V5ntLLkTomH4HylneHxl0zkpERFyVxNNdEaVW4d4534FgEn/2PBNsqmuAWgNK8eExNjpU6HJKQb8FkR+QtmPT7/b477rgDO3fuRHNzMwRBwIEDB3DhwgUsW7Zs1OfbbDZYLJYRj0hVJi6Z44mXgHC5BV/yEcwlcmO1iqWXsCcIgm+c+npONI14kbxg0u/Jx29/+1vk5+cjKysLWq0WDz74IDZv3owlS5aM+vxNmzbBZDL5HtnZkfsHsjQvHgoFcKnDio4+m9ThhJ1Pajtx1TyEuGgN7s8P7hK5sVg6KwXRWhWaewdR2dgrdTgUAMcv96C+04oYrco3aIoiW6SeeglI8nHkyBHs3LkT5eXl+NWvfoUNGzbgww8/HPX5zz33HMxms+/R2Njo75BCRly0FrNSPWO+j19m6cXfxLkKa+ZlQqeW3wIvvUaFe+d4kqJIuwqKFOJncFVRBmJ0aomjITm4d04qtN4Fk+euRk7pxa/Jx+DgIP7lX/4F//7v/47Vq1ejqKgIGzduxOOPP45f/vKXo/6MTqeD0Wgc8Yhk10ats/TiTz1WO/ad8SyRk8NsjxsRr4bfq7oKtztyroIiQb/N6UsqHyuV72eQgsuzYFLc9RI5p178mnw4HA44HA4olSNfVqVSwe12+/OtwpbY93GUJ178akdlM+wuN+ZmGDE3Q74LvJbOSkaMVoUW8xAqm3qlDof8aPfpFgw6XJiaHIP5OfFSh0MysrLIs+Ihkvq9xp189Pf3o7KyEpWVlQCA+vp6VFZWoqGhAUajEV/60pfwzDPP4ODBg6ivr8eWLVvw3//93zc8HUMjlXpPvNS09aF3wC5xNOFBEAS8cdxzu1vu0yT1GhXuy2fpJRxxiRzdyL2zU6BTK3E5ghZMjjv5OHHiBEpKSlBSUgLAM9ejpKQEzz//PADg9ddfR2lpKb7yla8gPz8fL730En7yk5/gW9/6ln8jD1PJBh2mJcdAEDzNaTR5Z1osON/aB61aiYckXCI3Viy9hJ/a9n6UX+mBSqnAo/O5RI5GitGpcc/syDpqP+6Op6VLl970tlBaWhr+/Oc/TyqoSLdoSiIudVhxtK5LlqcyQo3Y5PfA3DTERWsljubWlsxMRqxOjavmIZxs7MGC3ASpQ6JJ2ur9DN49KwUpBr3E0ZAcrSxKx/vVrdh9+ir++YFZYX93jHN9Zei2qd49LzzxMmlDDhd2eBd4yXG2x2j0GpUv6dzF0kvIc7jc2FYRWp9BCj5xwWRD90BELJhk8iFDYt9HdbMZfUMOiaMJbR+cbYNlyInMuCjcMS1J6nDGjKWX8HGwpgOd/TYkxWpxt/fWOtEXRdqCSSYfMpQRF4XshCi4BaD8Cvs+JkO83b12QRZUMlkiNxZ3zUyCQadGm8WG8gZ+BkKZWPZ7dH4WNFwiRzcRSQsm+SdBpsqmiKPWWXqZqKaeAXxS2wkg9BZ46dTXSi889RK62vuGsP88l8jR2AxfMFnVHN4LJpl8yNQicdgYk48Je6u8CYIALJ6eiOyEaKnDGTfxKoill9C142QzXG4BJTlxmOGdXkx0I1FaFe4RF0yG+UUHkw+Zus175+N0Uy8G7S6Jowk9bve1BV6PhegCrztnJMGgV6O9z4YTLL+FnOHzZUL1M0jBt8rb77UrzEsvTD5kKjshCmlGPRwuASdZ8x+3z+u60Nw7CINejQfmpkkdzoTo1Cosy/fEvvt0+DeghZuKhl5c6rAiSqPybSwmupXhCyZPNYVv6YXJh0wpFAqUTWXpZaLEJr+H52VAr5HfErmxEv/Req+6FS6WXkKK2Oy8ojAdBr1G4mgoVERphy+YDN+LDiYfMnat74NL5sbDPODA+9WtAEL/dvfi6Ukw6tXo6LNx03EIGbA78e4pzz8cnO1B4yUetQ/nUy9MPmRMPPFysqEXNif7PsZq56lm2J1uzE4zoDBTvkvkxkKrVvrKRuHegBZO3qtqhdXuQl5itO8igmishi+YPNnYK3U4AcHkQ8amJccgKVYLm9ON02Fc+/O3cFvgJZ56eb/6KksvIUIs+60Pk88gBVckLJhk8iFjCoXCd9XEeR9jc7bFgqpmMzQqBdaUhMcCr8XTk2CK0qCz384SXAio77TiWH03lApg7XyWXGhiwn3KMZMPmVvkHbV+pI7/6IzF1nLPFef9+alIiJH/Ermx0KiUeGBueF8FhROx0fRLM5ORZuISOZqYkQsme6UOx++YfMhc2VRP30f5lR44XW6Jo5E3m/PaErn1Id5o+kUrizIAAHuqW/k5kDGny41tFaE9X4bkQa9R4b4wHjjG5EPmZqUaYNSrMWB3obol/DcdTsZH59rRM+BAmlGPJTOSpQ7Hr+6Yloi4aA26rHaW4GTs44udaLPYkBCj9R2XJJoo8aIjHEsvTD5kTqkc3vfB0svNvOlbIpcZUkvkxkKjUuJB76mXXVXhdxUULsTP4Jp5mdCq+dcrTc5dMzwLJlstQ6gIs2GT/NMRArhk7taumgdx+EIHAGD9gvC83S2eemHpRZ66+m348FwbAOCxUjaa0uTpNdcWTO4Ks9ILk48QMPzEC49ajm5beRPcAlA2JQF5STFShxMQt09NRHy0Bt1WO47UMRGVmx2VLXC4BBRlmTA7zSh1OBQmwnXBJJOPEDA3w4gYrQqWISdqWvukDkd23G5hxGyPcKVWKfFggXfyYVX4jl0ORYIg4M3j12Z7EPlLuC6YZPIRAtQqJRbkcdT6jRy73I2G7gHE6tRYXhiaS+TGatWw0ouDpRfZON1kRk1bH3RqJR4qzpA6HAoj4bpgkslHiCjjsLEbEpv8VhenI1qrljiawCqbkoDEGC16Bhz4/BITUbkQP4PLC9JgiuISOfKvcFwwyeQjRAxPPsJ10dBE9A058J739Eck3O5Wq5R4oIC7XuRk0O7CzkpxiVz4fwYp+IYvmDwRJgsmmXyEiKKsOOjUSnRZ7bjU0S91OLLx7qmrGHK4MSMlFiXZcVKHExSrvGOX955l6UUO9p5pRZ/Niaz4KNzmHQpI5E9atRLLxAWTYXLUnslHiNCqlZifEw8APOkwjHi7O1yWyI3FoikJSIrVonfAgc9YepGcb4ncgmwow2y+DMnHtVMv4VF6YfIRQsqmsu9juAttfahs7IVaGT5L5MbCc+ol/BrQQlFD1wA+u9QFhQJYt5CzPShwFk8TF0zawuLfACYfIUSc93G0vot9H7i2wOue2SlINugkjia4VhZ6TlTsPdMGu5OlF6m85V1keOf0JGTGRUkcDYUzrXrYgskwOGrP5COEzM+Jh0alQJvFhobuAanDkZTD5cbbFZ4lcpHY5OcpvehgHnTg00udUocTkVxuAW+Vh/98GZKPcFowyeQjhOg1KhRnxQEAjkZ438f+8+3ostqRbNBh6azwWiI3FiqlAisKeepFSp/WdqLFPARTlMY3ApsokMQFk539ob9gkslHiBH7Po6G+AdvssRpko/Oz4RaFZkf45XiqZczrSy9SODaErkM6DUqiaOhSBBOCyYj82/tELbIu2QukiedtlmGcKCmHUBk3+5emJeAFIMOfUNOfFLbIXU4EaV3wI4PzniWyEXCfBmSj3BZMMnkI8QsyI2HSqlAU88gmnsHpQ5HEm9XNMMtAAtz4zEtOVbqcCSjUiqw3HvqJdw2XsrdO5UtsLvcyE83oiDTJHU4FEGGL5gM5TvgTD5CTKxOjYIMz8bM4yH8wZsoQRB8p1wi+a6HSGxA23emDTanS+JoIscb3rLf46X8DFJwDT9qH8oXHUw+QtDwI7eRpvxKD+o6rYjWqrDCe/sxki3MjfeUXmxOfHKRp16CobrZjLNXLdCqlHh4HpfIUfCJR+33VF8N2dILk48QVObr+4i8Ox9ik9/KwnTE6sJ7idxYKJUKrPA2nvLUS3CId96WzU1FXLRW4mgoEt02NQEJ4oLJutC8CGXyEYJK8xKgUAB1HVa09w1JHU7QWG1O323Gx3i720fceLnvbBuGHCy9BNKQw4UdXCJHEhs55Tg0LzqYfIQgU7QGs9PEvo8eiaMJnt2nr2LA7sLUpBgszI2XOhzZmJ8TjzSjHn02Jz5m6SWg9p1tg3nQgQyTHounJ0kdDkUwccHknjOhuWCSyUeIKovAvg/fAq8IWiI3FiNLL6E/dlnOxM/gugVZUHGJHEko1BdMMvkIUWLyEepT7sbqUkc/TlzpgUqpwNr5kbNEbqxWsvQScE09A/ik1nNnad0CllxIWqG+YJLJR4gq9SYf51v70GO1SxxN4G094dmhsXRmMlKMeomjkZ+S7DhkmPSw2l04dIEDxwJhW3kzBMEz4jonMVrqcIh8dzz3nmkLudILk48QlRSrw/QUz4Ct45fD++6H0+XGtgpP8sFpkqNTKhVYzlMvAeN2C9hazvkyJC9lUxKRFKv1LJisDa1+LyYfIezavI/wTj4OXehAR58NiTFa3DM7RepwZEssvXx4jqUXfztS14WmnkEY9GrfrW4iqXmmHIfmRQeTjxAWKX0f4jTJR0oyoVXzI3sjJdlxyIyLwoDdhYM1LL34k9ho+lAxl8iRvIgXHaG2YJJ/k4cw8c7HmRYzLEMOiaMJjI4+G/af9y6R42yPm1IoFFhR6G1AC/GNl3JiHnTg/epWACy5kPyU5iUg2aCDZcgZUqUXJh8hLN0UhZyEaLgFz9jxcLTjZDOcbgHzsuMwM9UgdTiyJ+56+ehcGwbtLL34w85TLbA53ZiVakBRFpfIkbyolAqsCMFdL0w+Qpxv3kdd+JVeBEHw3e7mFefYFGeZhpVe2qUOJyz4FhmWcr4MyZN40fHB2daQWTA57uTj8OHDWL16NTIyMqBQKLBjx47rnnPu3Dk89NBDMJlMiImJQWlpKRoaGvwRL33BIl/fR+gNmbmVysZeXGzvh16jxKpiLpEbC4VC4Ru3voull0k7d9WC001maFQKrOESOZIp34LJodBZMDnu5MNqtaK4uBibN28e9fuXLl3CnXfeidmzZ+PgwYM4ffo0fvjDH0Kv52yGQLhtqmfJ3Okmc9jdZn/TO9tjRUE6jHqNxNGEDrEBbf+5dgzYnRJHE9rE+TL3zUlFYqxO4miIRheKCybHvRZ0+fLlWL58+Q2//4Mf/AArVqzAz3/+c9/Xpk2bNrHo6Jay4qOQbtLjqnkIFQ09YbNvYtDuwrunPFP7ONtjfAozTchOiEJj9yAOnO/wJSM0PnanG9tPepIPlv1I7lYWpWPLZ5ex72wbbE4XdGp5n8rya8+H2+3G7t27MXPmTDzwwANISUlBWVnZqKUZkc1mg8ViGfGgsVMoFMP2vIRP38d7VVfRb3MiNzEat01NkDqckOI59eK9CqoKvbHLcvHRuTb0DDiQatThrhnhkdRT+FqQE49Uo86zYPKC/Esvfk0+2tvb0d/fj5deegkPPvggPvjgAzzyyCN49NFHcejQoVF/ZtOmTTCZTL5HdjavMMZr0RRP6eVoXfj0ffiWyC3IYpPfBKwq9PQn7D/P0stEiZ/BtfOzoFaxN5/kbUTpJQT6vfx+5wMAHn74YTz11FOYN28evv/972PVqlV49dVXR/2Z5557Dmaz2fdobGz0Z0gRocx7Z+BkY2/IdDrfzOVOK47Wd0OhANYuyJI6nJBUkGlETkI0hhxu35wUGrtW85BvRw5LLhQqVoXQgkm/Jh9JSUlQq9XIz88f8fU5c+bc8LSLTqeD0Wgc8aDxmZoUg6RYHexON041mqUOZ9LeKvfU2ZfMSEa6KUriaEKTQqHw9XqESgOanGyraIJb8Jwmy0uKkTocojEpyY5HukmPfpsTh2W+YNKvyYdWq0VpaSlqampGfP3ChQvIzc3151vRMMP7PkL9yK3LLfiSD15xTs5K7y3Y/efbYbWx9DJWnC9DoSqUSi/jTj76+/tRWVmJyspKAEB9fT0qKyt9dzaeeeYZvPHGG/jDH/6A2tpa/O53v8O7776Lf/zHf/Rr4DRSuCyZ+/hiB1otQ4iP1uC+fC6Rm4y5GUbkJUbD5nTjI5ZexuxYfTeudA0gRqvyjasnChW+BZMyL72MO/k4ceIESkpKUFJSAgB4+umnUVJSgueffx4A8Mgjj+DVV1/Fz3/+cxQWFuKPf/wjtm3bhjvvvNO/kdMIYt9H+ZUeOFyhs1zoi8QrzjUlmbI/KiZ3I0svPPUyVuJ8mdXFGYjWjnsaAZGkxAWTVpkvmBx38rF06VIIgnDdY8uWLb7nfOMb38DFixcxODiIyspKPPzww/6MmUYxM8UAU5QGA3YXqptDs++j22rHvrNtAID1C3i72x9Wek+9HKjpQD9LL7fUN+TAe97b1ZwvQ6EoVBZM8vxYmFAqFSjNE/s+QrP0suNkMxwuAYWZJuRnsPHYH+akGzA1KQZ2pxsfnWuTOhzZ23X6KgYdLkxLjsH8nDipwyGaELHv46Nz8i29MPkII+IwrlDs+xjZ5Mfjtf4yfOBYKG28lIr4GXycS+QohM3zll7kvGCSyUcYEZtOj1/uhsstSBzN+FQ3W3C+tQ9atRIPFWdKHU5YEfs+Dl3oQN+QQ+Jo5OtiWx9ONvRCpVTgkRImwBS6hvd7yfWig8lHGMlPNyJWp0bfkBPnW0NrTL14xfng3DSYorlEzp9mpxkwNVksvcjzKkgOtnqPeN8zOwXJBi6Ro9C20ld6aZfl0lEmH2FErVJiQW48AOBoXeiUXoYcLrxT2QyAcxUCQaFQYBVLLzflcLnxdgXny1D4KMoyISs+CoMOFw7IsPTC5CPMiEduQ6npdO+ZVliGnMiMi8Id0xKlDicsrSzynHo5fKEDFpZernPgfDs6++1IitVh6axkqcMhmjS5Tzlm8hFmfJNOL3dDEEKj78O3RG5hFpRKNvkFwszUWExPiYXd5caHZ3nq5YuuLZHLhIZL5ChMiAsmPzrfJrsFk/xTFmYKM+Og1yjRbbWjtr1f6nBuqbF7AJ/WdkGhANZxiVzAKBQKXw1YjldBUmq3DOGAdxgTZ3tQOJHzgkkmH2FGq1Zifo6n7+NICJRexD0ui6clISs+WuJowpt4C/bwxQ6YB1l6Eb19shkut4AFufGYnhIrdThEfiPn0guTjzBUNsXTNyH3vg/3sCVy6znbI+BmphowMzUWDpfgmyQb6ThfhsKdXBdMMvkIQ74lc3Vdsu77+OxSF5p7B2HUq/HAXC7wCgbfxkvuegEAVDT0oK7DiiiNyteUSxRO5mYYketdMCmn0guTjzBUkhMHrUqJ9j4brnQNSB3ODb0xbImcXsMlcsEgXgV9UtsJ8wBLL28e99x5W1mUjlgdl8hR+JFrvxeTjzCk16hQnG0CAByt75I4mtH1Dtix90wrAM5VCKYZqQbMSjXA4RLwwdlWqcORlNXmxC7vHSB+BimciX0fB2raZbNgkslHmPKVXmTa97HzVAvsTjfmpBsxl0vkgsrXgCbjjZfBsLvqKqx2F6YkxaA0L17qcIgCJj/diClJMbDJaMEkk48wJTadynXS6fAmPy7wCi6x7+OTi53oHbBLHI10tg6bL8PPIIUzOZZemHyEqfm58VApFWjuHURTj7z6Ps60mFHdbIFWpcSaeVwiF2zTU2IxO80Ap1vAB2fkcRUUbHUd/Th+uQdKBbB2Pk+5UPgT73gelMmCSSYfYSpWp0ZBpqfvQ25Hbree8DT53Z+fivgYrcTRRKZV4sbLCC29iEvkls5KQapRL3E0RIEntwWTTD7CmG/UuoySD5vThR3iErlSNvlJRSy9fFrbiR5rZJVenC43tpWLS+R414Mig9wWTDL5CGNyTD72nW1D74AD6SY97pyeJHU4EWtqcizy041wuQXfqaNIcfhiB9r7bEiI0eKe2alSh0MUNCvEKccyWDDJ5COMLcxLgEIB1HVa0W4ZkjocAMCb3pLLugVZUHGJnKQi9dTLG8c9jaaPlGRCq+ZfgRQ5ZqUaMC05BnaX9Kde+CcvjJmiNJiT5jnGeuyy9Hc/WnoH8fFFzwIvLpGTnlh6+exSF7ojpPTS2W/z1bs524MijWfXi2eSr9SnXph8hLlro9alTz62lTdBEIDbpiYgNzFG6nAi3pSkGMzNiKzSy46TzXC6BRRnx2FWmkHqcIiCbpWv9NIp6YJJJh9h7rap8uj7cLsF3wkDXnHKh1w3XgaCIAi+kgsbTSlSzUw14MuLsvHjNQXQqKQrfTP5CHOleZ7ko6atT9Jb60fru9HQPQCDTo3lBemSxUEjrfSVXjrR1W+TOJrAOtVkxsX2fujUSqwu5hI5ilybHi3CY6XZiNZKt8+IyUeYS4zVYUZKLADguIR9H+JE09XzMhCl5RI5uchNjEFhpgluAdgT5qUX8TO4ojAdRr1G4miIIhuTjwggdd+HZciB97wnKlhykZ9IKL0M2l14t9KzRG49Sy5EkmPyEQHKpnr2vBy7LM2G23dPtcDmdGNmaiyKs0ySxEA3JpZejtR1oaMvPEsv71dfRZ/NiZyEaNzm3XtERNJh8hEBFnn7Ps62WCQZLCPO9nhsYTYXeMlQdkI0irPCu/QillzWL8iCkvNliCTH5CMCpJn0yE2MhlsAyi/3BPW9a1r7cKqxF2qlAmtKuEROrlb4Nl62SByJ/13psuJIXTcUCmAt58sQyQKTjwghjlo/Uh/c0ou4tvzeOSlIitUF9b1p7MTk41h9N9r75DEN11/e8h7xvmtGMjLioiSOhogAJh8RY5G3zh3MeR92pxtvn/QskXucS+RkLTshGsXZcXALwN7q8Cm9uNyCL/ngbA8i+WDyESHEOx9VTWYM2J1Bec/959vQbbUjxaDDkhnJQXlPmjg5bbz0l09qO3HVPIS4aA3uz+cSOSK5YPIRIbLio5Bh0sPpFlBxpTco7yk2mq5dkAW1ih81uVtemAbAswdILosIJ+tN70TTNfMyoVNzvgyRXPBfhAihUCiuHbkNQt9Hm2UIB2s8C7zWs8kvJGTFR6MkJw6CALwfBqWXbqsdH5z1/P/B+TJE8sLkI4Is8jWdBr7vY1tFE9wCUJoXj6nJsQF/P/KPlYXhM3DsncpmOFwCCjKNyM8wSh0OEQ3D5COCiH0flY29GHK4AvY+giBgq7fksp5XnCFFPPVy/Eo3Ws2hW3oZuUSOn0EiuWHyEUGmJMUgKVYHu9ONU429AXufE1d6UN9pRYxW5buSptCQEReFBbnx3tJL6N79ONNiwfnWPmjVSjzEJXJEssPkI4J4+j48dz8CeeRWvOJcVZSBGJ10WxNpYlaEQelFnGj6wNw0xEVrJY6GiL6IyUeEEUsvRwOUfPTbnL5/tB4rZaNpKFrhPfVy4kpPSJZehhwu7PDOl+FsDyJ5YvIRYcq8w8bKr/TA4XL7/fV3n27BoMOFqckxmJ8T7/fXp8BLN0VhYa7nfztxG3Eo2XumFZYhJzLjorB4WpLU4RDRKJh8RJgZKbGIi9Zg0OFCVbPZ76/PJXLhYWWRt/QSgsmH2Oy8jkvkiGSLyUeEUSoVKM0LTN9HbXs/yq/0QKVU4FEukQtpywvSoVB47pC19A5KHc6YNXYP4NNLnQA8yQcRyROTjwjk6/uo8++wsa3lnia/u2clI8Wo9+trU3ClmfQozfV8TkKp9LKtogmCACyenojshGipwyGiG2DyEYHEvo8Tl3vgcgt+eU2Hy41t5WKTH+cqhINQK7243dfmy/AzSCRvTD4iUH6GEbE6NfpsTpy7avHLax6s6UBnvw1JsVrcPTvFL69J0lpekAaFAjjZ0IumngGpw7mlz+u60Nw7CINejQfmpkkdDhHdxLiTj8OHD2P16tXIyMiAQqHAjh07bvjcb33rW1AoFHj55ZcnESL5m0qpwMI8z2kGfx25FecqPDo/CxoukQsLKUY9Fnn7g96vkv+ulzeGLZHTa7hEjkjOxv2vhNVqRXFxMTZv3nzT523fvh1HjhxBRganC8qRWHrxx5K59r4h7D/PJXLhSCy97JJ56cU84MCeM1wiRxQqxp18LF++HD/+8Y/xyCOP3PA5zc3N+Pa3v43/+Z//gUajmVSAFBjikrlj9d1wT7LvY8fJZrjcAkpy4jAj1eCP8EgmHvSWXk419qKxW76ll52nmmF3ujE7zYCCTC6RI5I7v98fd7vd+NrXvoZnnnkGc+fOveXzbTYbLBbLiAcFXmGmCVEaFXoGHKjt6J/w6wiCMGK2B4WXFIPedzpKzrteOF+GKLT4Pfn42c9+BrVaje985ztjev6mTZtgMpl8j+xs/gMWDFq1EvNz4wBM7shtRUMvatv7EaVRYVURl8iFo5VFntKpXHe9nG2xoKrZDI1KgTWcL0MUEvyafJSXl+M3v/kNtmzZMuarj+eeew5ms9n3aGxs9GdIdBNi38dkmk63ehtNVxSmw6BniS0cPTg3DUoFcKrJLMvSizhf5v78VCTEcIkcUSjwa/Lx8ccfo729HTk5OVCr1VCr1bhy5Qq++93vIi8vb9Sf0el0MBqNIx4UHIuGLZkThPH3fQzYnXj3VAsALvAKZ8kGHW6b6klU5Tbzw+Z0Ybt3idx6lv2IQoZfk4+vfe1rOH36NCorK32PjIwMPPPMM9i7d68/34r8YF52HLQqJTr6bLjcNf4r2veqWmG1u5CXGO1LZCg8+QaOyaz08uHZdvQOOJBm1GPJjGSpwyGiMVKP9wf6+/tRW1vr++/6+npUVlYiISEBOTk5SExMHPF8jUaDtLQ0zJo1a/LRkl/pNSrMy47DscvdOFrXhSlJMeP6eXG2x3o2+YW9B+em4Yc7qlHVbMaVLityE8f3WQkU8TO4bkEWVFwiRxQyxn3n48SJEygpKUFJSQkA4Omnn0ZJSQmef/55vwdHgTf8yO141Hdacay+G0oF8Oh8NvmFu8RYHe7wrqeXS+mlpXcQhy92AOASOaJQM+47H0uXLh1Xf8Dly5fH+xYURGVTE/C7A+NvOn3L2+S3ZGYy0k1RgQiNZGZFYTo+qe3E7tNX8Y9Lp0sdDt72LpErm5KAvHHetSMiaXEOdoSbnxMPlVKB5t7BMe/vcLrceKvcM1fhcTb5RYwH5qZCpVTgTIsFlzutksbidnO+DFEoY/IR4WJ0ahRmmgAAR+vGdvfj44udaLPYkBCjxb1zUgMZHsmIp/Qij1Mvxy53o6F7ALE6NZYXcokcUahh8kG+CZZj7fsQm/zWzMuEVs2PUCRZWSiPUy9vepfIrS7OQLR23NVjIpIY/+UglE31Jh+Xb518dPXb8OG5NgDAY6Vs8os0D8xNg0qpwNmrFtRNYiz/ZFiGHHjPO+qd82WIQhOTD8KC3AQoFJ4TLO2WoZs+d0dlCxwuAUVZJsxO40C4SBMfo8Xi6Z5TL+9JVHrZdeoqhhxuzEiJxbzsOEliIKLJYfJBMEVpkJ/uSSRudupFEATfOHVOk4xcq7yll10SlV7Esh+XyBGFLiYfBGD4qPUbL5k73WTG+dY+6NRKPFScEazQSGaWzU2FWqnA+dY+1LYHt/Ryoa0PlY29UCu5RI4olDH5IADXlszdrOlUvOJcXpAGUxSXyEWquGgt7pwhTelFvPN2z+wUJBt0QX1vIvIfJh8E4Nqdjwtt/ei22q/7/qDdhZ2V4hI5llwi3QoJTr3YnW68XeFZIsfPIFFoY/JBAICEGC1mpsYCGP3ux94zreizOZEVH+XbcEqR64H8NGhUCtS09aG2vS8o77n/fDu6rHYkG3RYOotL5IhCGZMP8rlZ34dvidyCbCi5wCvimaI1uNN76mX36dagvKdYclk7PwtqFf/qIgpl/BNMPotu0PfR2D2Azy51QaEA1nGuAnmtLPI0He+uagn4e7VZhnCgph0AsJ6fQaKQx+SDfMRJp2evWmAedPi+vtW7x+XO6UnIjOMSOfK4Pz8VGpUCF9r6caEtsKWXtyua4RaAhbnxmJYcG9D3IqLAY/JBPqlGPfISoyEIQPkVz90Pl1vAW8PmKhCJTFEaLJnh6b0IZOPp8Pky/AwShQcmHzSCeORWXDL3aW0nWsxDMEVpcH8+l8jRSCuLvKdeqq5CEISAvMeJKz2o67QiWqvCCu/7EVFoY/JBI1xrOvUkH9eWyGVAr1FJFhfJ0335qdCqlKht78eFtsAMHBOXyK0qSkesjkvkiMIBkw8aQVwyV9VsRnPvID4441kix3HqNBqjXoMlM8XSi/8bT/ttTuyuEpfI8TNIFC6YfNAIWfHRyIyLgsst4IV3qmF3uZGfbkRBpknq0EimVhalAQB2BaD08t7pqxiwuzA1KQYLcuP9+tpEJB0mH3Qd8dTLh+c8Rxu5tpxu5r45qdCqlajrsKLGz6de3hy2yJBL5IjCB5MPuo7Y9wEAWpWSC7zopgx6Db400/+nXi519OPElR6olAqsnc/PIFE4YfJB1ykbNj592dxUxEVrJYyGQsGqomu7XvxVetl6wjNfZunMZKQY9X55TSKSByYfdJ28xGhkmDx/2T9eyiY/urV7xdJLpxXnrk6+9OJ0ubGtwpN8PMbPIFHYYfJB11EoFPj9Xy/E7/6qBHfN4AIvurVYnRp3e5e9+WPc+sGaDnT02ZAUq8U9s1Mm/XpEJC9MPmhUBZkmrPLu7iAaC9+uFz+UXsRG00dKMqHhEjmisMM/1UTkF/fOToFOrcTlrgGcabFM+HU6+mzYf15cIseSC1E4YvJBRH4Ro1P7SiTiYLCJ2HGyGU63gHnZcZiZavBXeEQkI0w+iMhvVhRO7tSLIAi+kgsnmhKFLyYfROQ398xOgV6jREP3xEovJxt7cbG9H3qNEquKuUSOKFwx+SAivxleetk1gYFjW713PVYUpsOo1/g1NiKSDyYfRORXKwu9p16qWsZVehmwO/HuKS6RI4oETD6IyK/unp2MKI0Kjd2DqGo2j/nn3q9qRb/NidzEaN9+ISIKT0w+iMivorVq3DPHe+plHKUX3xK5BVlcIkcU5ph8EJHfrfKeetk1xlMvlzutOFrfDYUCWLuAW5SJwh2TDyLyu6WzUhCtVaG5dxCnmm5detla7rnrsWRGMtJNUYEOj4gkxuSDiPwuSqvCvXNSAQC7T99814vLLeCtcs8SOS4yJIoMTD6IKCBWFqYBAN6rar1p6eXwxQ60WWyIj9bg3jlcIkcUCZh8EFFADC+9VDb23vB54myPNSWZ0KlVQYqOiKTE5IOIAkKvUeE+X+ll9FMv3VY79p1tAwCsX8CSC1GkYPJBRAGzsshz6uW9qqtwu68vvew42QyHS0Bhpgn5GcZgh0dEEmHyQUQB86WZyYjRqtBiHsLJL5ReRi6R4/FaokjC5IOIAkavUeH+/NFLL1XNZpxv7YNOrcRD8zKlCI+IJMLkg4gCamWRZ9fLF0sv4l2PBwvSYIriEjmiSMLkg4gC6q4ZSTDo1Gi1DKGioQcAMORw4Z1Kz/wPLpEjijxMPogooIaXXnZ5Sy97z7Sib8iJzLgo3D41UcrwiEgCTD6IKOBWeHe9vF/tKb34lsgtzIJSySVyRJFm3MnH4cOHsXr1amRkZEChUGDHjh2+7zkcDjz77LMoLCxETEwMMjIy8Nd//ddoabn5eGUiCm93zfSUXtosNrxzqhmf1nZBoQDWcYkcUUQad/JhtVpRXFyMzZs3X/e9gYEBVFRU4Ic//CEqKirw9ttvo6amBg899JBfgiWi0KRTq3D/XE/p5Yc7zgAAFk9LQlZ8tJRhEZFE1OP9geXLl2P58uWjfs9kMmHfvn0jvva73/0OixYtQkNDA3JyciYWJRGFvFVF6Xi7ohn9NicA4DEukSOKWONOPsbLbDZDoVAgLi5u1O/bbDbYbDbff1sslkCHREQSuHN6Mgx6NfqGnDDq1VjmbUIlosgT0IbToaEhPPvss/jyl78Mo3H00cmbNm2CyWTyPbKzeTVEFI60aiWWF3g23T5Skgm9hkvkiCKVQrjZrutb/bBCge3bt2PNmjXXfc/hcGDt2rVoamrCwYMHb5h8jHbnIzs7G2az+YY/Q0ShyTzgwPaTTVi/MBsxuoDfeCWiILJYLDCZTGP69zsgf/odDgcee+wxXLlyBfv3779pEDqdDjqdLhBhEJHMmKI1+JvFU6QOg4gk5vfkQ0w8Ll68iAMHDiAxkQOEiIiI6JpxJx/9/f2ora31/Xd9fT0qKyuRkJCA9PR0rFu3DhUVFdi1axdcLhdaW1sBAAkJCdBqtf6LnIiIiELSuHs+Dh48iLvvvvu6rz/xxBN48cUXMWXK6LdUDxw4gKVLl97y9cdTMyIiIiJ5CGjPx9KlS3GzfGUS/atEREQUAbjbhYiIiIKKyQcREREFFZMPIiIiCiomH0RERBRUTD6IiIgoqJh8EBERUVAx+SAiIqKgYvJBREREQcXkg4iIiIJKdjutxQmpFotF4kiIiIhorMR/t8cy6Vx2yUdfXx8AIDs7W+JIiIiIaLz6+vpgMplu+pxxL5YLNLfbjZaWFhgMBigUCr++tsViQXZ2NhobG7m07hb4uxo7/q7Gjr+r8eHva+z4uxq7QP2uBEFAX18fMjIyoFTevKtDdnc+lEolsrKyAvoeRqORH84x4u9q7Pi7Gjv+rsaHv6+x4+9q7ALxu7rVHQ8RG06JiIgoqJh8EBERUVBFVPKh0+nwwgsvQKfTSR2K7PF3NXb8XY0df1fjw9/X2PF3NXZy+F3JruGUiIiIwltE3fkgIiIi6TH5ICIioqBi8kFERERBxeSDiIiIgiqiko/NmzcjLy8Per0eZWVlOHbsmNQhyc7hw4exevVqZGRkQKFQYMeOHVKHJFubNm1CaWkpDAYDUlJSsGbNGtTU1Egdliy98sorKCoq8g01uv322/H+++9LHVZIeOmll6BQKPDkk09KHYrsvPjii1AoFCMes2fPljos2WpubsZXv/pVJCYmIioqCoWFhThx4oQksURM8vHGG2/g6aefxgsvvICKigoUFxfjgQceQHt7u9ShyYrVakVxcTE2b94sdSiyd+jQIWzYsAFHjhzBvn374HA4sGzZMlitVqlDk52srCy89NJLKC8vx4kTJ3DPPffg4YcfxpkzZ6QOTdaOHz+O//zP/0RRUZHUocjW3LlzcfXqVd/jk08+kTokWerp6cHixYuh0Wjw/vvv4+zZs/jVr36F+Ph4aQISIsSiRYuEDRs2+P7b5XIJGRkZwqZNmySMSt4ACNu3b5c6jJDR3t4uABAOHTokdSghIT4+XvjjH/8odRiy1dfXJ8yYMUPYt2+f8KUvfUn4p3/6J6lDkp0XXnhBKC4uljqMkPDss88Kd955p9Rh+ETEnQ+73Y7y8nLcd999vq8plUrcd999+PzzzyWMjMKJ2WwGACQkJEgciby5XC68/vrrsFqtuP3226UOR7Y2bNiAlStXjvh7i6538eJFZGRkYOrUqfjKV76ChoYGqUOSpZ07d2LhwoVYv349UlJSUFJSgj/84Q+SxRMRyUdnZydcLhdSU1NHfD01NRWtra0SRUXhxO1248knn8TixYtRUFAgdTiyVFVVhdjYWOh0OnzrW9/C9u3bkZ+fL3VYsvT666+joqICmzZtkjoUWSsrK8OWLVuwZ88evPLKK6ivr8ddd92Fvr4+qUOTnbq6OrzyyiuYMWMG9u7di3/4h3/Ad77zHfzXf/2XJPHIbqstUSjasGEDqqurWW++iVmzZqGyshJmsxlvvfUWnnjiCRw6dIgJyBc0Njbin/7pn7Bv3z7o9Xqpw5G15cuX+/7voqIilJWVITc3F2+++Sa++c1vShiZ/LjdbixcuBA//elPAQAlJSWorq7Gq6++iieeeCLo8UTEnY+kpCSoVCq0tbWN+HpbWxvS0tIkiorCxcaNG7Fr1y4cOHAAWVlZUocjW1qtFtOnT8eCBQuwadMmFBcX4ze/+Y3UYclOeXk52tvbMX/+fKjVaqjVahw6dAj/8R//AbVaDZfLJXWIshUXF4eZM2eitrZW6lBkJz09/bpEf86cOZKVqSIi+dBqtViwYAE++ugj39fcbjc++ugj1pxpwgRBwMaNG7F9+3bs378fU6ZMkTqkkOJ2u2Gz2aQOQ3buvfdeVFVVobKy0vdYuHAhvvKVr6CyshIqlUrqEGWrv78fly5dQnp6utShyM7ixYuvGwVw4cIF5ObmShJPxJRdnn76aTzxxBNYuHAhFi1ahJdffhlWqxVf//rXpQ5NVvr7+0dcNdTX16OyshIJCQnIycmRMDL52bBhA1577TW88847MBgMvv4hk8mEqKgoiaOTl+eeew7Lly9HTk4O+vr68Nprr+HgwYPYu3ev1KHJjsFguK5vKCYmBomJiewn+oLvfe97WL16NXJzc9HS0oIXXngBKpUKX/7yl6UOTXaeeuop3HHHHfjpT3+Kxx57DMeOHcPvf/97/P73v5cmIKmP2wTTb3/7WyEnJ0fQarXCokWLhCNHjkgdkuwcOHBAAHDd44knnpA6NNkZ7fcEQPjzn/8sdWiy841vfEPIzc0VtFqtkJycLNx7773CBx98IHVYIYNHbUf3+OOPC+np6YJWqxUyMzOFxx9/XKitrZU6LNl69913hYKCAkGn0wmzZ88Wfv/730sWi0IQBEGatIeIiIgiUUT0fBAREZF8MPkgIiKioGLyQUREREHF5IOIiIiCiskHERERBRWTDyIiIgoqJh9EREQUVEw+iIiIKKiYfBAREVFQMfkgIiKioGLyQUREREHF5IOIiIiC6v8BV8pKxNZUll8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "plt.plot(values)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "27.5\n" - ] - }, - { - "data": { - "text/plain": [ - "19.0" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# 3 week moving average\n", - "\n", - "def calc_moving_avg(data, k):\n", - " preds = []\n", - " for i in range(k, len(data)+1):\n", - " preds.append(sum(data[i-k: i])/k)\n", - "\n", - " return preds\n", - "\n", - "preds = calc_moving_avg(values, 3)\n", - "mse = sum([(i - u)**2 for i, u in zip(preds[:-1], values[3:])])/len(values[3:])\n", - "print(mse)\n", - "preds[-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "39.845963415816655" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def calc_exponential_smoothing(data, alpha):\n", - " preds = [data[0]]\n", - " for i in range(1, len(data)):\n", - " preds.append(alpha * data[i] + (1- alpha) * preds[i-1])\n", - "\n", - " return preds\n", - "\n", - "preds = calc_exponential_smoothing(values, 0.3)\n", - "\n", - "sum([(i - u)**2 for i, u in zip(preds[:-1], values[1:])]) / len(values[1:])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Time Series/Gasoline_Problem.ipynb b/Time Series/Gasoline_Problem.ipynb deleted file mode 100644 index 3276524..0000000 --- a/Time Series/Gasoline_Problem.ipynb +++ /dev/null @@ -1,174 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Moving Average" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Refer to the gasoline sales time\n", - "series data in Table 8.1.\n", - "\n", - "a. Compute four-week and five-week moving averages for the time series.
\n", - "b. Compute the MSE for the four-week and five-week moving average forecasts.
\n", - "c. What appears to be the best number of weeks of past data (three, four, or five) to use\n", - "in the moving average computation? Recall that the MSE for the three-week moving\n", - "average is 10.22." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "week= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]\n", - "sales= [17, 21, 19, 23, 18, 16, 20, 18, 22, 20, 15, 22]" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "metadata": {}, - "outputs": [], - "source": [ - "def calc_moving_avg(data, k):\n", - " moving_avg = []\n", - " for i in range(len(data)):\n", - " if i+k > len(data):\n", - " break\n", - " # print(data[i:i+k])\n", - " moving_avg.append(sum(data[i:i+k])/k)\n", - " # print(chunk) \n", - " return moving_avg\n", - "\n", - "three_week_avg = calc_moving_avg(sales, 3)[:-1]\n", - "four_week_avg = calc_moving_avg(sales, 4)[:-1]\n", - "five_week_avg = calc_moving_avg(sales, 5)[:-1]\n", - "six_week_avg = calc_moving_avg(sales, 6)[:-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 69, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10.222222222222221\n", - "9.6484375\n", - "7.405714285714287\n", - "6.791666666666667\n" - ] - } - ], - "source": [ - "three_mse = sum([(i-u)**2 for i, u in zip(sales[3:], three_week_avg)])/ len(three_week_avg)\n", - "four_mse = sum([(i-u)**2 for i, u in zip(sales[4:], four_week_avg)])/ len(four_week_avg)\n", - "five_mse = sum([(i-u)**2 for i, u in zip(sales[5:], five_week_avg)])/ len(five_week_avg)\n", - "six_mse = sum([(i-u)**2 for i, u in zip(sales[6:], six_week_avg)])/ len(six_week_avg)\n", - "\n", - "print(three_mse)\n", - "print(four_mse)\n", - "print(five_mse)\n", - "print(six_mse)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Exponential Smoothing" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": {}, - "outputs": [], - "source": [ - "week= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]\n", - "sales= [17, 21, 19, 23, 18, 16, 20, 18, 22, 20, 15, 22]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$S_t = (a-1) S_{t-1} + f(a, S_{t-1})$
\n", - "$S_{t-1} = (a-1) S_{t-2} + f(a, S_{t-2})$
\n", - "$S_{t-2} = (a-1) S_{t-3} + f(a, S_{t-3})$
\n" - ] - }, - { - "cell_type": "code", - "execution_count": 109, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[17,\n", - " 19.8,\n", - " 19.240000000000002,\n", - " 21.872,\n", - " 19.1616,\n", - " 16.94848,\n", - " 19.084544,\n", - " 18.3253632,\n", - " 20.89760896,\n", - " 20.269282688,\n", - " 16.5807848064,\n", - " 20.37423544192]" - ] - }, - "execution_count": 109, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# calc_something = lambda x, a: x*a + \n", - "\n", - "\n", - "def calc_exponential_smoothing(data, alpha):\n", - " preds = [data[0]]\n", - " length = len(data)\n", - " for period in range(1, length):\n", - " preds.append(((1-alpha)*preds[period-1]) + alpha * data[period])\n", - "\n", - " return preds\n", - "calc_exponential_smoothing(sales, 0.7) \n", - " " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Time Series/ManufacturingCosts_Problem.ipynb b/Time Series/ManufacturingCosts_Problem.ipynb deleted file mode 100644 index b7dfac8..0000000 --- a/Time Series/ManufacturingCosts_Problem.ipynb +++ /dev/null @@ -1,189 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The president of a small manufacturing firm is concerned\n", - "about the continual increase in manufacturing costs over the past several years. The fol-\n", - "lowing figures provide a time series of the cost per unit for the firm’s leading product\n", - "over the past eight years:\n", - "\n", - "a. Construct a time series plot. What type of pattern exists in the data?\n", - "\n", - "b. Use simple linear regression analysis to find the parameters for the line that mini-\n", - "mizes MSE for this time series.\n", - "\n", - "c. What is the average cost increase that the firm has been realizing per year?\n", - "\n", - "d. Compute an estimate of the cost/unit for the next year." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtA0lEQVR4nO3de3TU9Z3/8dfkMpOQZCYkkCsJdwgXwXCPeCkapaxLVbAF1+6ite2vNlghduuPPbtSz9nTuO1Wra1g7Vq0vy6iuAVvKxQRQ1EQCMSClkgQSEhIwi0zSSCTy3x/fwQGwkUIJJ9vLs/HOXNCvpnMvCeiefqd7/fzdViWZQkAAMCQELsHAAAAPQvxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKPC7B7gfIFAQOXl5YqJiZHD4bB7HAAAcAUsy1JNTY1SUlIUEvLV+zY6XXyUl5crLS3N7jEAAMBVKC0tVb9+/b7yPp0uPmJiYiS1DO92u22eBgAAXAmfz6e0tLTg7/Gv0uni48xbLW63m/gAAKCLuZJDJjjgFAAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMalN8/PSnP5XD4Wh1y8jICH69vr5eOTk5io+PV3R0tGbPnq3Kysp2HxoAAHRdbd7zMWrUKB0+fDh427RpU/BrCxcu1Ntvv62VK1cqPz9f5eXlmjVrVrsODAAAurawNn9DWJiSkpIu2O71evXSSy9p+fLluvXWWyVJy5Yt04gRI7RlyxZNmTLl2qcFAABdXpv3fOzdu1cpKSkaNGiQ7r//fpWUlEiSCgoK1NjYqOzs7OB9MzIylJ6ers2bN1/y8fx+v3w+X6sbAADovtoUH5MnT9bLL7+sNWvWaOnSpdq/f79uuukm1dTUqKKiQk6nU7Gxsa2+JzExURUVFZd8zLy8PHk8nuAtLS3tql4IAADoGtr0tsuMGTOCfx4zZowmT56s/v376/XXX1dkZORVDbBo0SLl5uYGP/f5fAQIAADd2DWdahsbG6thw4apuLhYSUlJamhoUHV1dav7VFZWXvQYkTNcLpfcbnerGwAA6L6uKT5qa2u1b98+JScna/z48QoPD9f69euDXy8qKlJJSYmysrKueVAAANA9tOltlx//+MeaOXOm+vfvr/Lyci1evFihoaG677775PF49NBDDyk3N1dxcXFyu9165JFHlJWVxZkuAAAgqE3xcejQId133306duyY+vbtqxtvvFFbtmxR3759JUnPPPOMQkJCNHv2bPn9fk2fPl1LlizpkMEBAEDX5LAsy7J7iHP5fD55PB55vV6O/wAAoItoy+9vru0CAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMuqb4eOqpp+RwOLRgwYLgtvr6euXk5Cg+Pl7R0dGaPXu2Kisrr3VOAADQTVx1fGzbtk2//e1vNWbMmFbbFy5cqLffflsrV65Ufn6+ysvLNWvWrGseFAAAdA9XFR+1tbW6//779bvf/U69e/cObvd6vXrppZf09NNP69Zbb9X48eO1bNkyffzxx9qyZUu7DQ0AALquq4qPnJwc3XnnncrOzm61vaCgQI2Nja22Z2RkKD09XZs3b762SQEAQLcQ1tZvWLFihXbs2KFt27Zd8LWKigo5nU7Fxsa22p6YmKiKioqLPp7f75ff7w9+7vP52joSAADoQtq056O0tFSPPvqo/vu//1sRERHtMkBeXp48Hk/wlpaW1i6PCwAAOqc2xUdBQYGqqqo0btw4hYWFKSwsTPn5+XruuecUFhamxMRENTQ0qLq6utX3VVZWKikp6aKPuWjRInm93uCttLT0ql8MAADo/Nr0tsttt92mXbt2tdr24IMPKiMjQ48//rjS0tIUHh6u9evXa/bs2ZKkoqIilZSUKCsr66KP6XK55HK5rnJ8AADQ1bQpPmJiYjR69OhW26KiohQfHx/c/tBDDyk3N1dxcXFyu9165JFHlJWVpSlTprTf1AAAoMtq8wGnl/PMM88oJCREs2fPlt/v1/Tp07VkyZL2fhoAANBFOSzLsuwe4lw+n08ej0der1dut9vucQAAwBVoy+9vru0CAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAAEYRHwAAwCjiAwAAGEV8AAAAo4gPAABgFPEBAACMIj4AAIBRxAcAADCK+AAAoAcprqrRZ+VeW2cIs/XZAQCAEeXVp/Ts+1/ojYJDGtMvVqt+eIMcDoctsxAfAAB0Y8frGrRkQ7H+sOWgGpoCkqSEGJdq/U2KiQi3ZSbiAwCAbqjO36SXNu3Xixu/VK2/SZI0eWCcHp+RoXHpvW2djfgAAKAb8Tc169VPSvSbDcU6WtsgSRqV4tZPvp6hm4f2se2tlnMRHwAAdAPNAUtvFpbp6XVf6NCJU5KkAfG99Ngdw3XndckKCbE/Os4gPgAA6MIsy9L6v1XpF2uLVFRZI6nlmI5Hs4fqWxPSFB7a+U5sJT4AAOiitu4/rv9Ys0cFB09IktwRYXr4a0P0wA0DFOkMtXm6SyM+AADoYj4v9+kXa/doQ9ERSVJEeIgenDpQP7h5sDy97DmDpS2IDwAAuoiDx+r09Lov9Nan5bIsKTTEobkT0/Sj24Yq0R1h93hXjPgAAKCTq6qp16/XF+vVrSVqCliSpJljU5R7+zAN7BNl83RtR3wAANBJeU816sWN+/T7TQd0qrFZknTLsL765+nDNTrVY/N0V4/4AACgk6lvbNYrHx/Qkg/3yXuqUZKUmR6rn0zPUNbgeJunu3bEBwAAnURTc0ArCw7pV+/vVYWvXpI0NCFa/zx9uG4fmdgpFghrD8QHAAA2CwQsvbe7Qr/8c5G+PFonSUqNjdTC24fpnsxUhXaiBcLaA/EBAIBNLMvSpuKj+vmaIu0qa7nMfVyUU/OnDdH9U9LlCuu8a3VcC+IDAAAbFJZW6+dr9ujjfcckSVHOUH3v5kH67k2DFO3q3r+eu/erAwCgkymuqtF/rv1Caz6rkCQ5Q0P07Sn9lTNtsOKjXTZPZwbxAQCAAeXVp/Ts+1/ojYJDClhSiEOaNa6fFmQPVb/evewezyjiAwCADnS8rkFLNhTrD1sOqqEpIEm6Y2Sifjx9uIYlxtg8nT2IDwAAOkCdv0kvbdqvFzd+qVp/kyRp8sA4PT4jQ+PSe9s8nb2IDwAA2pG/qVmvflKi32wo1tHaBknSqBS3fvL1DN08tE+3WavjWhAfAAC0g+aApTcLy/T0ui906MQpSdKA+F567I7huvO6ZIV0s7U6rgXxAQDANbAsS+v/VqVfrC1SUWWNJCkhxqVHs4fqWxPSFB4aYvOEnQ/xAQDAVdq6/7j+Y80eFRw8IUlyR4Tp4a8N0QM3DFCks3suENYeiA8AANro83KffrF2jzYUHZEkRYSH6MGpA/WDmwfL0yvc5uk6P+IDAIArdPBYnZ5e94Xe+rRcliWFhjg0d2KafnTbUCW6I+wer8sgPgAAuIyqmnr9en2xXt1aoqaAJUmaOTZFubcP08A+UTZP1/UQHwAAXIL3VKNe3LhPv990QKcamyVJtwzrq3+ePlyjUz02T9d1ER8AAJynvrFZr3x8QEs+3CfvqUZJUmZ6rH4yPUNZg+Ntnq7rIz4AADitqTmglQWH9Kv396rCVy9JGpoQrX+ePly3j0xkgbB2QnwAAHo8y7L0v7sq9Ms/F+nLo3WSpNTYSC28fZjuyUxVKAuEtSviAwDQo23ae1T/sWaPdpV5JUlxUU7NnzZE909JlyuMtTo6AvEBAOiRCkur9fM1e/TxvmOSpChnqL538yB996ZBinbx67Ej8dMFAPQoxVU1+s+1X2jNZxWSJGdoiL49pb9ypg1WfLTL5ul6BuIDANBtNDUHVFXjV4WvXpXeelX46lVxzsdKX71Kjp9UwJJCHNKscf20IHuo+vXuZffoPQrxAQDoEmr9TcGAqDgvLM5sO1Lrl2Vd/rHuGJmoH08frmGJMR0/OC5AfAAAbBUIWDpa51el1386KE6d/uhviYrTYVHrb7qixwsLcSjRHaFEt0tJnggluiOUfPpjkjtCaXG9lBIb2cGvCl+F+AAAdJj6xuav3FNR4a1XVY0/uGT55cS4wpToaYmIYFSc/jzJHaFEj0t9olwK4dTYTq1N8bF06VItXbpUBw4ckCSNGjVKTzzxhGbMmCFJqq+v12OPPaYVK1bI7/dr+vTpWrJkiRITE9t9cACAfSzLUvXJxpagOCckzt1TUeGrV/XJxit6PIdD6ht98T0VZ7YleSI4C6WbaNM/xX79+umpp57S0KFDZVmWXnnlFd11113auXOnRo0apYULF+rdd9/VypUr5fF4NH/+fM2aNUsfffRRR80PAGhnjWcO2vReZE/FOQdu+psCV/R4EeEhwT0VSZ7Tt+CeipbQ6BvtUlhoSAe/MnQWDsu6kkNzLi0uLk6/+MUvdO+996pv375avny57r33XknSnj17NGLECG3evFlTpky5osfz+XzyeDzyer1yu93XMhoA4Dz1jc06dOKkDl+wp8KvCt8pVXj9OlZ3ZQdtSi0LcrXsoXApyRN5ek+FKxgaye5IuSPDWJa8B2jL7++r3n/V3NyslStXqq6uTllZWSooKFBjY6Oys7OD98nIyFB6evpXxoff75ff7281PACg/TQHLH1UfFSrd5ZpzWcVOtnQfNnvCQ91KCHm4nsqkk6/LZLgdrECKK5Km+Nj165dysrKUn19vaKjo7Vq1SqNHDlShYWFcjqdio2NbXX/xMREVVRUXPLx8vLy9OSTT7Z5cADApVmWpc/KfVq9s0xvflquIzVn/ycvxhXWOirOO74iyROhuF5ODtpEh2lzfAwfPlyFhYXyer164403NG/ePOXn51/1AIsWLVJubm7wc5/Pp7S0tKt+PADoycqrT2l1YZlW7yzTF5W1we2xvcI1c0yK7s5M1bj0WN4Gga3aHB9Op1NDhgyRJI0fP17btm3Tr371K82ZM0cNDQ2qrq5utfejsrJSSUlJl3w8l8sll4vlbAHgavnqG7VmV4X+tPOQPtl/PHi8hjMsRNkjEnRPZj/dMqyvnGEc0InO4ZrPWQoEAvL7/Ro/frzCw8O1fv16zZ49W5JUVFSkkpISZWVlXfOgAICzGpsDyi86olWFZXr/88pWZ55MHhinezJTNeO6ZHkiw22cEri4NsXHokWLNGPGDKWnp6umpkbLly/Xhx9+qLVr18rj8eihhx5Sbm6u4uLi5Ha79cgjjygrK+uKz3QBAFyaZVkqLK3Wqp1levvTcp04Zw2NIQnRuiczVXddn8J1StDptSk+qqqq9E//9E86fPiwPB6PxowZo7Vr1+r222+XJD3zzDMKCQnR7NmzWy0yBgC4egeP1Wn1znKtLizT/qN1we19ol36xtgUzRqXqlEpbo7jQJdxzet8tDfW+QAA6URdg97ZdVird5ap4OCJ4PbI8FBNH5WouzNTdeOQPizMhU7DyDofAID2Vd/YrA17qvSnnWX6sKhKjc0t/28Y4pCmDumjezJTNX1UkqJYYhxdHH+DAcBGgYClbQeOa9XOMr2767Bq6s9euXVkslv3ZKbqG9enKNEdYeOUQPsiPgDABsVVNVq1s0yrd5arrPpUcHuyJ0J3XZ+qezJTNTwpxsYJgY5DfACAIUdq/Hrr03Kt3lmmXWXe4PZoV5j+7rok3Z2ZqikD41lZFN0e8YEe4WRDk97962G9u+uwmgOWYns51btXePBj715O9Y46++fYXuGKdnExLFy7kw1NWvd5pf60o0ybio+qOdByHEdYiEO3DOure8alKntEoiLCuUYKeg7iA93a7jKvXt1aorcKy1Xjb7r8N5wjLMTRKk5iz3yMOh0rwXg5++fYXuEK5+yDHq85YOnjfUe1ameZ1u6uUN05F3K7Pi1W92Sm6u/HJCs+mtWd0TMRH+h2fPWNerOwXCu2luiz8rNXSe4f30vfmpCmJHeETpxsUPXJxlYfT5xsVPXJBp042aD6xoCaApaO1vp1tNb/Fc92oRhXWDBQLhovZ/a0nPlzlFNRzlD2snRxlmXpb4drtGrnIb1ZWK6qcy7klh7XS3dnpuru61M0qG+0jVMCnQPxgW7BsiwVHDyhV7eW6t1d5apvbFlq2hkaoq+PTtLciWmaMujK30uvb2xuCZK6M0FyJlTO/vlE3bnB0ihffaMsS6rxN6nG36TS46cu/0SnOUND5OkVrrhz4yQq/Ly3h1q/VeSJDGeNh07gsPeU3iws16odZSqqrAlu90SG6+/HJGvWuFSNS+9NXALnID7QpR2va9CfdhzSim2lKq46ewXPYYnRmjsxXfdkpqp3lLPNjxsRHqpkT6SSPZFX/D3NAUveU+dESt2l96ycu62hKaCG5oCO1PhbXfb8SrgjwtQ76uJ7WM6NljN7WHr3CldkOHtZrlVNfaPe212h1TvLtPnLY2cv5BYaottGJOjuzFRNG57AhdyASyA+0OUEApY+3ndMK7aV6M+fVaqhuWUvR2R4qGaOTdbcSenKTDN/yfDQEIfiopyKa0PsWJalU43NLXtT6lqi5PgF8dJ6D8uJkw3BtSB89U3y1Tfp4LGTV/ycEeEh6hvjUkJMhPpGu5Tgdp39eGZ7jEvxUU72rJyjsTmgv+w9oj/tKNO68y7kNmlAnO4Zl6q/G50sTy8u5AZcDvGBLqPSV6+V20v12vbSVm9pjOnn0dyJ6Zo5NlkxEV3rP/wOh0O9nGHq5QxTauyV72Vpag6o+tQ5QVJ38T0s50ZL9ckGNTZbqm8MqPT4qcu+LeRwSPFRTvU9HSMJMa7zPp7d3l1X3LQsS58e8mr16Qu5HatrCH5tcN8ozRrXT98Ym6K0OC7kBrRF9/wvBrqNpuaAPiw6ohXbSrWhqCp4mmJMRJjuyUzVnIlpGpXisXlK88JCQ9Qn2qU+bThbwrIs1fqbdLyuQUdq/Ko6/TZPVU39eZ/7dazWr4AlHa1t0NHaBv3t8Fc/di9n6AVR0vcisRIX5VRoF1jDovT4ydMLgJXpy1YXcnNq5tgUzcrsp9GpXMgNuFrEBzql0uMn9fr2Ur2+vVSVvrPHQUwaEKc5E9P0d9clK9LJught4XA4FBMRrpiIcPWPj/rK+zYHLB2r87eKkiPnxcqZr51saNbJhmYdOHZSBy7z9k9oiOP03pSL70Hpe8420/98q0826J2/tlzIbfs5F3KLCA/R9FEtC4DdxIXcgHZBfKDT8Dc1a93nlXptW6k2FR8NHsQXF+XU7HGpmjMxXUMSOE3RhNAQhxJiIpQQE6FRl7lvnb/pK/eitIRKvY7VNag5YKnq9PbPLvO40a4wJcS41OcrQiUhxqXevZxXvSKov+n0hdx2lGnDORdyczikqYNPX8htdJKiu+nbSoBd+DcKtiuuqtVr20r0PzvKdPz0e+oOh3TT0D6aOzFdt49M5KyBTizKFaaBrjAN7PPVe1OamgM6FnzL53Sk+Pw6UnvOx5p6Vfn88jcFVOtvUq2/qdXbHhcTFuJQn+jz3+I5sxeldaxEhIcqELC0/eCJlgu5/bVcvnMu5DYi2a17MlP0jbGpSvJwITegoxAfsMWphmb9767DWrGtRNsOnN3Fneh26VsT0vStCWkcxNfNhIWGKNEdcfrqrJc+TseyLNX4m86Lk3odqfXryHmxcryuQU0BSxW+elX46i87gzsiTM6wEB2tPXvgaJI7QndlpuiezFRlJLnb46UCuAziA0Z9Vu7Viq2lWl1YFjxdNDTEoWnDE3TfpDTdMqwv76n3cA6HQ+6IcLkjwjX4MquBNjQFdKzudIzUnBsm9RfsVWloCgT3ckS7wvT10UmalZmqyYPiu8RBsEB3Qnygw9XUN+qtT8u1Ymtpqyt5psVFau7EdN07vt/p/xsG2sYZFnJFi8FZliXfqSYdqa2X91SjRiZ7OGAZsBHxgQ5hWZZ2lFRrxdYSvfPXwzrV2HJhLWdoiO4Ylaj7JqUrqw3LnQPXwuFwyNMrnAXAgE6C+EC7OlHXoD/tLNNr20r0ReXZ5c6HJERr7sQ0zRrXr00rgAIAuh/iA9csELC05ctjenVbqdburggudx4RHqK/H5Oi+yalcWEtAEAQ8YGrVuWr18qCQ3p9e2mra4uMTnVr7sR0feP6FLm72HLnAICOR3ygTZoDlvK/qNKrW0v1wZ5zljt3hemuzBTNnZiu0ak9b7lzAMCVIz5wRQ6dOKnXt5Xq9e2HWq2nMKF/b82ZmKY7xySrl5O/TgCAy+O3BS6poSmg9/9WqRXbSvWXvUeCy5337hWu2eP6ac7ENA1NjLF3SABAl0N84AL7jtTqtW2l+p+CQ60uIX7jkD6aMzFNd4xKlCuMNRIAAFeH+IAkqb7x9HLnW0u19cDx4PaEGJe+OaGf5kxIV3o8y50DAK4d8dHDfV7u04ptJVq18+xy5yEOadrwBM2dlK5pw1nuHADQvoiPHqjW36S3Csv12rYSfXro7HLn/XpHas6ENH1zQhpX9AQAdBjiowf5rNyrP3x8UG//tVwnG1qWOw8PdeiOkUmaOylNUwf3YblzAECHIz56gIKDx/WbD4q1oehIcNugvlG6b2K6Zo1LVXy0y8bpAAA9DfHRTVmWpU3FR/WbD4r1yf6WA0hDHNKdY1L0j1P6a+IAljsHANiD+OhmAgFLf/68Uks+LNZfTx/PER7q0L3j++n/3DxYA/pE2TwhAKCnIz66iabmgN7+a7mWbNinvVUtV5ONCA/RP0zqr+/dPFDJnkibJwQAoAXx0cXVNzbrf3Yc0gv5+1R6/JSkluuszLthgB6cOoDjOQAAnQ7x0UXV+Zv06tYSvbjxS1XV+CVJ8VFOfefGgfrHrP5cTRYA0GkRH12M92SjXtl8QMs+2q8TJxslScmeCH3/5kGaOzFdkU6WPQcAdG7ERxdxpMav/9r0pf64+aDqTq/RMSC+lx7+2mDdk9lPzjBWIQUAdA3ERyd36MRJvbjxS722rVT+poAkKSMpRj+cNkR3XpesUBYFAwB0McRHJ7XvSK2WfrhPq3eWqSnQci37zPRYzZ82RLdmJLBGBwCgyyI+OpndZV4t/XCf/nf3YVktzaEbh/TRD6cNVtageKIDANDlER+dxPYDx/X8htZLoN8+MlE//NpgZab3tnEyAADaF/FhI8uy9Je9R/WbDcXaes4S6DPHpujhrw1WRpLb5gkBAGh/xIcNWAIdANCTER8GsQQ6AADEhxH1jc16o+CQfrvxnCXQI8I0L4sl0AEAPQ/x0YHq/E1a/kmJfveX1kugP3TTQH17CkugAwB6JuKjA1SfbNArHx/Uso/3q/qcJdD/z82DNIcl0AEAPRzx0Y6qaur10qb9rZZAH9gnSg/fMlh3Z6ayBDoAACI+2sWllkDPmTZEf8cS6AAAtEJ8XIPiqpYl0N8sZAl0AACuFPFxFXaXebXkw2K9t7uCJdABAGgj4qMNth84rt9sKNaH5y2BnjNtiK5Pi7VvMAAAuhDi4zIsy9LGvUf1/EWWQP/h14ZoeFKMzRMCANC1EB+X0LIEeoWe37BPu8palkB3hoZo9vh++sEtg9Q/niXQAQC4GsTHeRqbA3r703It+XCfik8vgR4ZHqp/mJyu7900SEmeCJsnBACgayM+TjuzBPoL+ft06MTZJdAfuGGAHriBJdABAGgvbVr1Ki8vTxMnTlRMTIwSEhJ09913q6ioqNV96uvrlZOTo/j4eEVHR2v27NmqrKxs16HbU52/Sb/b+KVu/vkG/evq3Tp04pTio5z6ydeH66P/e6seu2M44QEAQDtq056P/Px85eTkaOLEiWpqatK//Mu/6I477tDnn3+uqKiWYyAWLlyod999VytXrpTH49H8+fM1a9YsffTRRx3yAq5W9ckGvfzxAb388YHgEugpngh9nyXQAQDoUA7LOrNSRdsdOXJECQkJys/P18033yyv16u+fftq+fLluvfeeyVJe/bs0YgRI7R582ZNmTLlso/p8/nk8Xjk9XrldruvdrRLqqqp10t/2a8/bmEJdAAA2ktbfn9f0zEfXm/LWSBxcXGSpIKCAjU2Nio7Ozt4n4yMDKWnp18yPvx+v/x+f6vhO8Jh7ykt2bBPr20vVcPpJdBHJLuVM22wZoxmCXQAAEy56vgIBAJasGCBpk6dqtGjR0uSKioq5HQ6FRsb2+q+iYmJqqiouOjj5OXl6cknn7zaMa5Yhbde/2/LQUnSuPRYzb91iKYNZwl0AABMu+r4yMnJ0e7du7Vp06ZrGmDRokXKzc0Nfu7z+ZSWlnZNj3kxmem99fDXBuvmoX01ZVAc0QEAgE2uKj7mz5+vd955Rxs3blS/fv2C25OSktTQ0KDq6upWez8qKyuVlJR00cdyuVxyucycTfL41zOMPA8AALi0Nh1daVmW5s+fr1WrVumDDz7QwIEDW319/PjxCg8P1/r164PbioqKVFJSoqysrPaZGAAAdGlt2vORk5Oj5cuX680331RMTEzwOA6Px6PIyEh5PB499NBDys3NVVxcnNxutx555BFlZWVd0ZkuAACg+2vTqbaXOk5i2bJleuCBByS1LDL22GOP6dVXX5Xf79f06dO1ZMmSS77tcr6OPtUWAAC0v7b8/r6mdT46AvEBAEDX05bf36yoBQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUW2Oj40bN2rmzJlKSUmRw+HQ6tWrW33dsiw98cQTSk5OVmRkpLKzs7V37972mhcAAHRxbY6Puro6jR07Vs8///xFv/7zn/9czz33nF544QV98sknioqK0vTp01VfX3/NwwIAgK4vrK3fMGPGDM2YMeOiX7MsS88++6z+9V//VXfddZck6Q9/+IMSExO1evVqzZ0799qmBQAAXV67HvOxf/9+VVRUKDs7O7jN4/Fo8uTJ2rx580W/x+/3y+fztboBAIDuq13jo6KiQpKUmJjYantiYmLwa+fLy8uTx+MJ3tLS0tpzJAAA0MnYfrbLokWL5PV6g7fS0lK7RwIAAB2oXeMjKSlJklRZWdlqe2VlZfBr53O5XHK73a1uAACg+2rX+Bg4cKCSkpK0fv364Dafz6dPPvlEWVlZ7flUAACgi2rz2S61tbUqLi4Ofr5//34VFhYqLi5O6enpWrBggf793/9dQ4cO1cCBA/Vv//ZvSklJ0d13392ecwMAgC6qzfGxfft2TZs2Lfh5bm6uJGnevHl6+eWX9ZOf/ER1dXX6/ve/r+rqat14441as2aNIiIi2m9qAADQZTksy7LsHuJcPp9PHo9HXq+X4z8AAOgi2vL72/azXQAAQM9CfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABhFfAAAAKOIDwAAYBTxAQAAjCI+AACAUcQHAAAwivgAAABGER8AAMAo4gMAABjVYfHx/PPPa8CAAYqIiNDkyZO1devWjnoqAADQhXRIfLz22mvKzc3V4sWLtWPHDo0dO1bTp09XVVVVRzwdAADoQjokPp5++ml973vf04MPPqiRI0fqhRdeUK9evfT73/++I54OAAB0IWHt/YANDQ0qKCjQokWLgttCQkKUnZ2tzZs3X3B/v98vv98f/Nzr9UqSfD5fe48GAAA6yJnf25ZlXfa+7R4fR48eVXNzsxITE1ttT0xM1J49ey64f15enp588skLtqelpbX3aAAAoIPV1NTI4/F85X3aPT7aatGiRcrNzQ1+HggEdPz4ccXHx8vhcLTrc/l8PqWlpam0tFRut7tdH7sr6OmvX+Jn0NNfv8TPgNffs1+/1HE/A8uyVFNTo5SUlMvet93jo0+fPgoNDVVlZWWr7ZWVlUpKSrrg/i6XSy6Xq9W22NjY9h6rFbfb3WP/0km8fomfQU9//RI/A15/z379Usf8DC63x+OMdj/g1Ol0avz48Vq/fn1wWyAQ0Pr165WVldXeTwcAALqYDnnbJTc3V/PmzdOECRM0adIkPfvss6qrq9ODDz7YEU8HAAC6kA6Jjzlz5ujIkSN64oknVFFRoeuvv15r1qy54CBU01wulxYvXnzB2zw9RU9//RI/g57++iV+Brz+nv36pc7xM3BYV3JODAAAQDvh2i4AAMAo4gMAABhFfAAAAKOIDwAAYFSPiY/nn39eAwYMUEREhCZPnqytW7faPZIxGzdu1MyZM5WSkiKHw6HVq1fbPZJReXl5mjhxomJiYpSQkKC7775bRUVFdo9l1NKlSzVmzJjgokJZWVl677337B7LNk899ZQcDocWLFhg9yjG/PSnP5XD4Wh1y8jIsHsso8rKyvTtb39b8fHxioyM1HXXXaft27fbPZYxAwYMuODvgMPhUE5OjvFZekR8vPbaa8rNzdXixYu1Y8cOjR07VtOnT1dVVZXdoxlRV1ensWPH6vnnn7d7FFvk5+crJydHW7Zs0bp169TY2Kg77rhDdXV1do9mTL9+/fTUU0+poKBA27dv16233qq77rpLn332md2jGbdt2zb99re/1ZgxY+wexbhRo0bp8OHDwdumTZvsHsmYEydOaOrUqQoPD9d7772nzz//XL/85S/Vu3dvu0czZtu2ba3++a9bt06S9M1vftP8MFYPMGnSJCsnJyf4eXNzs5WSkmLl5eXZOJU9JFmrVq2yewxbVVVVWZKs/Px8u0exVe/eva3/+q//snsMo2pqaqyhQ4da69ats2655Rbr0UcftXskYxYvXmyNHTvW7jFs8/jjj1s33nij3WN0Ko8++qg1ePBgKxAIGH/ubr/no6GhQQUFBcrOzg5uCwkJUXZ2tjZv3mzjZLCL1+uVJMXFxdk8iT2am5u1YsUK1dXV9bhLHuTk5OjOO+9s9d+DnmTv3r1KSUnRoEGDdP/996ukpMTukYx56623NGHCBH3zm99UQkKCMjMz9bvf/c7usWzT0NCgP/7xj/rOd77T7hdxvRLdPj6OHj2q5ubmC1ZXTUxMVEVFhU1TwS6BQEALFizQ1KlTNXr0aLvHMWrXrl2Kjo6Wy+XSD37wA61atUojR460eyxjVqxYoR07digvL8/uUWwxefJkvfzyy1qzZo2WLl2q/fv366abblJNTY3doxnx5ZdfaunSpRo6dKjWrl2rhx9+WD/60Y/0yiuv2D2aLVavXq3q6mo98MADtjx/hyyvDnRWOTk52r17d496r/uM4cOHq7CwUF6vV2+88YbmzZun/Pz8HhEgpaWlevTRR7Vu3TpFRETYPY4tZsyYEfzzmDFjNHnyZPXv31+vv/66HnroIRsnMyMQCGjChAn62c9+JknKzMzU7t279cILL2jevHk2T2feSy+9pBkzZiglJcWW5+/2ez769Omj0NBQVVZWttpeWVmppKQkm6aCHebPn6933nlHGzZsUL9+/ewexzin06khQ4Zo/PjxysvL09ixY/WrX/3K7rGMKCgoUFVVlcaNG6ewsDCFhYUpPz9fzz33nMLCwtTc3Gz3iMbFxsZq2LBhKi4utnsUI5KTky8I7REjRvSot57OOHjwoN5//31997vftW2Gbh8fTqdT48eP1/r164PbAoGA1q9f3+Pe7+6pLMvS/PnztWrVKn3wwQcaOHCg3SN1CoFAQH6/3+4xjLjtttu0a9cuFRYWBm8TJkzQ/fffr8LCQoWGhto9onG1tbXat2+fkpOT7R7FiKlTp15wiv0XX3yh/v372zSRfZYtW6aEhATdeeedts3QI952yc3N1bx58zRhwgRNmjRJzz77rOrq6vTggw/aPZoRtbW1rf7vZv/+/SosLFRcXJzS09NtnMyMnJwcLV++XG+++aZiYmKCx/p4PB5FRkbaPJ0ZixYt0owZM5Senq6amhotX75cH374odauXWv3aEbExMRccIxPVFSU4uPje8yxPz/+8Y81c+ZM9e/fX+Xl5Vq8eLFCQ0N133332T2aEQsXLtQNN9ygn/3sZ/rWt76lrVu36sUXX9SLL75o92hGBQIBLVu2TPPmzVNYmI0JYPz8Gpv8+te/ttLT0y2n02lNmjTJ2rJli90jGbNhwwZL0gW3efPm2T2aERd77ZKsZcuW2T2aMd/5znes/v37W06n0+rbt6912223WX/+85/tHstWPe1U2zlz5ljJycmW0+m0UlNTrTlz5ljFxcV2j2XU22+/bY0ePdpyuVxWRkaG9eKLL9o9knFr1661JFlFRUW2zuGwLMuyJ3sAAEBP1O2P+QAAAJ0L8QEAAIwiPgAAgFHEBwAAMIr4AAAARhEfAADAKOIDAAAYRXwAAACjiA8AAGAU8QEAAIwiPgAAgFHEBwAAMOr/AxPPCRsdEGLbAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "year = [1,2,3,4,5,6,7,8]\n", - "data = [20.00,24.50,28.20,27.50,26.60,30.00,31.00,36.00]\n", - "\n", - "import matplotlib.pyplot as plt\n", - "plt.ylim(bottom = 0, top = max(data)*1.5)\n", - "plt.plot(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "m = Model()\n", - "\n", - "b_0 = m.continuous_var(name = 'Intercept')\n", - "b_1 = m.continuous_var(name = 'Slope')\n", - "\n", - "mse = []\n", - "for i in range(len(year)):\n", - " mse.append((b_0 + b_1 * year[i] - data[i])**2)\n", - "\n", - "m.minimize(sum(mse))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-11 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Number of nonzeros in lower triangle of Q = 1\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.01 sec. (0.00 ticks)\n", - "Summary statistics for factor of Q:\n", - " Rows in Factor = 2\n", - " Integer space required = 2\n", - " Total non-zeros in factor = 3\n", - " Total FP ops to factor = 5\n", - "Tried aggregator 1 time.\n", - "QP Presolve added 0 rows and 2 columns.\n", - "Reduced QP has 2 rows, 4 columns, and 5 nonzeros.\n", - "Reduced QP objective Q matrix has 2 nonzeros.\n", - "Presolve time = 0.05 sec. (0.00 ticks)\n", - "Parallel mode: using up to 4 threads for barrier.\n", - "Number of nonzeros in lower triangle of A*A' = 1\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.00 sec. (0.00 ticks)\n", - "Summary statistics for Cholesky factor:\n", - " Threads = 4\n", - " Rows in Factor = 2\n", - " Integer space required = 2\n", - " Total non-zeros in factor = 3\n", - " Total FP ops to factor = 5\n", - " Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf \n", - " 0 3.8055000e+03 6.4163000e+03 2.39e+00 0.00e+00 6.08e+03\n", - " 1 2.1409229e+03 5.6826884e+03 7.75e-01 0.00e+00 1.97e+03\n", - " 2 4.7175047e+02 1.7525819e+03 1.35e-01 0.00e+00 3.42e+02\n", - " 3 9.9267661e+01 -5.9577420e+02 3.93e-02 0.00e+00 9.99e+01\n", - " 4 3.7922865e+01 -5.8277290e+02 0.00e+00 0.00e+00 1.29e-12\n", - " 5 2.3408803e+01 1.4755809e+01 3.55e-15 0.00e+00 3.20e-14\n", - " 6 2.3346193e+01 2.3296668e+01 3.46e-14 0.00e+00 4.66e-14\n", - " 7 2.3346191e+01 2.3321430e+01 1.87e-14 0.00e+00 4.50e-14\n", - " 8 2.3346191e+01 2.3333810e+01 5.33e-15 0.00e+00 8.36e-14\n", - " 9 2.3346190e+01 2.3340001e+01 4.44e-15 0.00e+00 8.64e-14\n", - " 10 2.3346190e+01 2.3343095e+01 8.88e-16 0.00e+00 3.42e-13\n", - " 11 2.3346190e+01 2.3344643e+01 7.99e-15 0.00e+00 1.73e-13\n", - " 12 2.3346190e+01 2.3345417e+01 3.55e-15 0.00e+00 1.72e-14\n", - " 13 2.3346190e+01 2.3345804e+01 3.55e-15 0.00e+00 6.01e-14\n", - " 14 2.3346190e+01 2.3345997e+01 0.00e+00 0.00e+00 7.00e-14\n", - " 15 2.3346190e+01 2.3346094e+01 0.00e+00 0.00e+00 2.79e-13\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 16 2.3346190e+01 2.3346142e+01 1.78e-15 0.00e+00 2.22e-13\n", - "Barrier time = 0.11 sec. (0.02 ticks)\n", - "\n", - "Total time on 4 threads = 0.11 sec. (0.02 ticks)\n" - ] - } - ], - "source": [ - "solution = m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "solution for: docplex_model2\n", - "objective: 23.3462\n", - "status: OPTIMAL_SOLUTION(2)\n", - "Intercept=19.993\n", - "Slope=1.774\n", - "\n" - ] - } - ], - "source": [ - "print(solution)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Time Series/SalesForcast_Problem.ipynb b/Time Series/SalesForcast_Problem.ipynb deleted file mode 100644 index ace7914..0000000 --- a/Time Series/SalesForcast_Problem.ipynb +++ /dev/null @@ -1,35 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following time series shows the sales of a particular product over\n", - "the past 12 months.\n", - "\n", - "a. Construct a time series plot. What type of pattern exists in the data?\n", - "\n", - "b. Use a 5 0.3 to compute the exponential smoothing values for the time series.\n", - "\n", - "c. Use trial and error to find a value of the exponential smoothing coefficient a that\n", - "results in a relatively small MSE." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "data = [105, 135,120,105,90,120,145,140,100,80,100,110]" - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Time Series/SeasonalEffects_Problem.ipynb b/Time Series/SeasonalEffects_Problem.ipynb deleted file mode 100644 index cc1cd7d..0000000 --- a/Time Series/SeasonalEffects_Problem.ipynb +++ /dev/null @@ -1,204 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "a. Construct a time series plot. What type of pattern exists in the data? Is there an indi-\n", - "cation of a seasonal pattern?\n", - "\n", - "b. Use a multiple linear regression model with dummy variables as follows to develop\n", - "an equation to account for seasonal effects in the data: Qtr1 5 1 if quarter 1, 0 other-\n", - "wise; Qtr2 5 1 if quarter 2, 0 otherwise; Qtr3 5 1 if quarter 3, 0 otherwise.\n", - "\n", - "c. Compute the quarterly forecasts for the next year." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABSUklEQVR4nO3deXxTZfo28CtLk3RLStd0b1nLVpYCpawCFYZBR2QZF5QdXOoCqDMy7+jM/MaR0VFkcAQEEUVBBRUUZwShQgGhBcoiILQFCt1oSylNuqdNzvtHSqQCQkt6Tpbr+/nkD07Sk9vYJlee8zz3IxMEQQARERGRSORSF0BERETuheGDiIiIRMXwQURERKJi+CAiIiJRMXwQERGRqBg+iIiISFQMH0RERCQqhg8iIiISlVLqAn7JYrGgqKgIvr6+kMlkUpdDREREt0EQBFRWViIsLAxy+a+PbThc+CgqKkJkZKTUZRAREVEr5OfnIyIi4lcf43Dhw9fXF4C1eK1WK3E1REREdDuMRiMiIyNtn+O/xuHCx9VLLVqtluGDiIjIydzOlAlOOCUiIiJRMXwQERGRqBg+iIiISFQMH0RERCQqhg8iIiISFcMHERERiYrhg4iIiETF8EFERESiYvggIiIiUTF8EBERkagYPoiIiEhUDB9EREQkKoYPIiIiEhXDBxEREYmK4YOIiIhExfBBREREomL4ICIiIlExfBAREZGoGD6IiIhIVAwfREREJCqGDyIiIhIVwwcRERGJiuGDiIiIRMXwQURERKJi+CAiIiJRMXwQERGRqBg+iIiISFQMH0RERCQqhg8iIiISFcMHEVEbqmswY+GXP2JdxgWpSyFyGC0KH2azGS+99BJiY2Ph6emJDh064O9//zsEQbA9RhAEvPzyywgNDYWnpyeSk5ORk5Nj98KJiJzBpwfy8MmBfLz81UnkllVLXQ6RQ2hR+HjttdewfPly/Oc//8GpU6fw2muv4fXXX8fbb79te8zrr7+OpUuXYsWKFcjIyIC3tzfGjBmDuro6uxdPROTIGswWrNqTCwAwWwQs2ZEtcUVEjqFF4WPfvn247777MG7cOMTExGDSpEkYPXo0Dhw4AMA66rFkyRL8+c9/xn333Yf4+HisXbsWRUVF2Lx5c1vUT0TksL4+WoTCilr4apTWfx8rQlZxpcRVEUmvReFj0KBBSE1NRXa2Nb0fO3YMe/fuxdixYwEAubm5KC4uRnJysu1ndDodEhMTsX///hues76+HkajsdmNiMjZWSwCVqSdBQA8cVcHjOsZCkEA3vwuS+LKiKSnbMmDX3zxRRiNRsTFxUGhUMBsNuMf//gHpkyZAgAoLi4GAISEhDT7uZCQENt9v7Ro0SL87W9/a03tREQOa8epEuSUVsFXrcQjA6NRaqzHtycu4rufSnAsvwK9Iv2kLpFIMi0a+diwYQPWrVuH9evX4/Dhw/jwww/xxhtv4MMPP2x1AQsXLoTBYLDd8vPzW30uIiJHIAgClu2yjno8khQNrcYDHYN9cH+fCADAGxz9IDfXovDxwgsv4MUXX8SDDz6Inj174tFHH8X8+fOxaNEiAIBerwcAlJSUNPu5kpIS232/pFarodVqm92IiJxZRm45juZXQKWUY8bgGNvxecmd4KGQYU9OGdLPXZauQCKJtSh81NTUQC5v/iMKhQIWiwUAEBsbC71ej9TUVNv9RqMRGRkZSEpKskO5RESO7+qox+/7RSDYV2M7HunvhQf6RwIA3tiW1axNAZE7aVH4uPfee/GPf/wD//3vf3H+/Hls2rQJixcvxv333w8AkMlkmDdvHl555RV8/fXXOH78OKZOnYqwsDCMHz++LeonInIoJwoN2J19CXIZMHdoh+vuf3pkJ6iVchy6cAW7si9JUCGR9Fo04fTtt9/GSy+9hCeffBKlpaUICwvDY489hpdfftn2mD/84Q+orq7G3LlzUVFRgSFDhmDr1q3QaDS/cmYiItewvGmFyz3xYYgK8Lru/hCtBlOTorFqTy7e/C4Ld3UOgkwmE7tMIknJBAcb9zMajdDpdDAYDJz/QUROJbesGqPe3AWLAHz77FB0Db3xe1h5tQlDX/se1SYzlk/pi7E9Q0WulMj+WvL5zb1dyCWdLjai2MCuuiSulbvPwiIAI7oE3TR4AIC/twqzhrYHALy5PRtmi0N9ByRqcwwf5HJOFhkwbulejFmyGyeLDFKXQ26ixFiHLzILAQBPjuh4y8fPHhoLnacHzpRW4aujhW1dHpFDYfggl7M0NQdmiwBDbQMeeS8Dpy6yay61vdV7c2EyW9Avuh36x/jf8vFajQceH26dkPrWjmyYGi1tXSKRw2D4IJdy6qIR206WQCYD4vS+uFLTgCnvZXA/DWpThpoGrEu/AAB4csT1K1xuZtqgaAT6qJFfXosNh9hgkdwHwwe5lLe/zwEAjOsZis8eS0J8hA7l1SY8vCod2SUMINQ21u4/j2qTGXF6X4zoEnzbP+elUuKpprDy9vc5qGswt1WJRA6F4YNcRlZxJf533LqH0NMjO0Hn6YGPZiaiR7gWl5sCyJlSBhCyr1qTGWv2nQdg3UCupctmH0qMQrifJ0qM9fi4afSEyNUxfJDLuDrq8dueenTR+wIAdF4e+HhWIrqFalFWZcJDqzJw9lKVlGWSi/nsYB7Kq02I9PfEuFYsmVUrFXh2VCcA1s6oVfWN9i6RyOEwfJBLyCmpxH+PXwRgHfW4lp+XCutmJ6JrqBaXKuvx0Mp0nGMAITtoMFuwak8uAGDusA5QKlr3ljqhbzjaB3qjvNqENXtz7VkikUNi+CCX8J+dZyAIwJjuITfsr9DO2xpA4vS+KK2sx0Or0nG+rFqCSsmVbDlWhMKKWgT6qDA5IaLV51Eq5Jh3d2cAwMo951BRY7JXiUQOieGDnN7ZS1XYcqwIwPWjHtfybwognUN8UGK0BpALlxlAqHUsFgHLmzaQmzkkFhoPxR2d756eoYjT+6KyrhHv7j5njxKJHBbDBzm9d74/A4sAJHcNQY9w3a8+NsBHjXWzB6JjsA8uGurw0Mp05JfXiFQpuZLU06XIKa2Cr1qJRwZG3/H55HIZnhvdBQDwwQ/nUVrJDr3kuhg+yKnlllVjc1N3yKuT9m4lyFeN9XMS0SHIG0WGOjzIAEItJAgClu06AwB4JCkaWo2HXc6b3DUYvSL9UNtgxrKdZ+1yTiJHxPBBTu2dndZRj5FxwegZ8eujHtcK9tXgkzkD0T7QG4UVtXhoVToKK2rbsFJyJRm55TiSVwGVUo4Zg2Psdl6ZTIYXmkY/1mfk8XeSXBbDBzmtC5ersemIddTjmdsc9bhWsFaD9XMGIibACwVXavHQynQU8c2ebsOyprkekxMiEOyrseu5B3cMQFL7AJjMFrydmmPXcxM5CoYPclrLdp6F2SJgeOcg9I70a9U59DoNPpk7ENEBXsgrr8FDq9K5Gy79qhOFBuzOvgS5DHhs2O23Ur9dMpkMz4+xjn5szCxALldlkQti+CCnlF9egy8OFwBo3ajHtUJ1nvhkzkBE+nviwmVrACkxMoDQjS1Ps4563BMfhqgArzZ5joTodhgZFwyzRcBb27Pb5DmIpMTwQU5p2a6zaLQIGNopEAnR7e74fGF+1gAS0c4TuWXVeGhVOkoZQOgXcsuq8W1TM7sn7rL/qMe1nhtt7fux5ccinC7mzszkWhg+yOkUVtTi80zrDqB3OupxrYh2XvhkzkCE+3ni3CVrALlUWW+385PzW7n7LCwCMKJL0A2b2dlT9zAdxvUMhSAAb37H0Q9yLQwf5HSW7zqDBrOAQR0C0D/G367njvS3BpAwnQZnL1Xj4VXpKKtiACGgxFiHLzKtE5yfHNFRlOecf3dnyGXA9p9KcDS/QpTnJBIDwwc5lYuGWmw4aJ+5HjcTFeCFT+YOhF6rQU5pFaasysBlBhC3t3pvLkxmC/pFt7N76L2ZjsE+uL+PtW37m99lifKcRGJg+CCnsmLXWZjMFiTG+mNg+4A2e57oAG98Mncggn3VyCqpxJT3MlBezf023JWhpgHrmra7f3JE2871+KV5yZ3goZBhT04Z0s9dFvW5idoKwwc5jRJjHT45aJ3rcbvdTO9EbKA1gAT5qnG6uBKPvJfBDb/c1Nr951FtMiNO74sRXYJFfe5Ify882D8KAPDGtiwIgiDq8xO1BYYPchor0s7C1GhB/5h2SOrQdqMe1+oQ5INP5iQi0EeNny4aMeW9DBhqGkR5bnIMtSYz1uw7D8C6wkUmk4lew1MjO0KtlOPQhSvYlXVJ9OcnsjeGD3IKpcY6rM/IA2Cd6yHmB0DHYF98MicRAd4qnCwy4pHVGTDUMoC4iw2H8lFebUKkvyfG9QyVpIYQrQbTBsUAAN74LgsWC0c/yLkxfJBTWLn7HOobLegb5YchHQNFf/5OIb5YP2cg/L1VOF5owNTVGTDWMYC4ugazBSubtrefO6wDlArp3jIfH94BPmolThYZsfVksWR1ENkDwwc5vLKqenycYZ3sJ/aox7W66H2xbnYi2nl54FiBAdPeP4BKBhCXtuVYEQorahHoo8LkhAhJa/H3VmHmkFgAwOLt2TBz9INaQRAE/PXrkzgm8dJthg9yeKt2n0NdgwW9Iv0wvHOQpLV0DdXi49mJ8PPywJG8CkxfcxBV9Y2S1kRtw2IRsLxpA7mZQ2Kh8VBIXBEwe2gsdJ4eOFNahc1NmyoStcS2kyX4YN95PLwqXdIvTwwf5NAuV9Vj7X7rqMezozpKNupxre5hOnw8KxFajRKZF65gxpoDqGYAcTmpp0uRU1oFX7USjwyMlrocAIBW44HHh1uX+i5JzYap0SJxReRMzBYBi7db+8XMGBwLX42HZLUwfJBDe29vLmobzOgZrhN9ieOv6RGuw7rZA+GrUeLg+SuY8cFB1JgYQFyFIAhYtusMAGDKwGhoJXyT/qVpg6IR5KtGfnktNhzKl7occiJbjhUhu6QKWo0Sc4a1l7QWtwofR/MrsP2nEqnLoNt0pdqEtU1LHKWc63EzPSOsIyC+aiUO5JZj1geHUGsyS10W2UFGbjmO5FVApZRj5pAYqctpxkulxFNN7d3f/j4HdQ38naNbazBbsLhph+THhneAzlPaQO024eP70yUY/84P+PPm4xyqdBKr9+ai2mRGt1Atkrs6zqjHtXpF+mHtrAHwUSux/9xlzF57kB8GLmBZ01yPyQkRCPbVSFzN9R4cEIlwP0+UGOvxUdNlSaJfs/FQAfLKaxDoo8KMwTFSl9Oy8BETEwOZTHbdLSUlBQBQV1eHlJQUBAQEwMfHBxMnTkRJiWOMNAzpGIQQrRolxnpsOVYkdTl0C4aaBnzgwKMe1+oT1Q4fzuwPb5UCP5y5jDlrDzGAOLEThQbszr4EuQx4bJi4rdRvl1qpsHX5XZ52lpOe6VfVNZjx9vc5AIAn7+oIL5VS4opaGD4OHjyIixcv2m7bt28HAEyePBkAMH/+fGzZsgUbN25EWloaioqKMGHCBPtX3QoqpdzWpGfVnnNsUezgVv+Qi6r6RsTpfTG6W4jU5dxSQrQ/Ppg5AF4qBfbklGHuR5kMIE5qeZp11OOe+DBEBXhJXM3NTegbjvaB3iivNuH9vblSl0MObF1GHi4a6hCq0+DhxCipywHQwvARFBQEvV5vu33zzTfo0KEDhg8fDoPBgNWrV2Px4sUYOXIkEhISsGbNGuzbtw/p6eltVX+LTBkQDU8PBU4XV+KHM9ygyVEZahuw5gfrm+kzozpBLnfcUY9r9Y/xx5rp/eHpocDu7Et44uNM1DcygDiT3LJqfHv8IgBrK3VHplTIMe/uzgCsy9G57xDdSHV9I5bttE6efmZUJ4dYMg7cwZwPk8mEjz/+GDNnzoRMJkNmZiYaGhqQnJxse0xcXByioqKwf//+m56nvr4eRqOx2a2t6Lw88Pt+1kZBq/aca7PnoTvzwQ/nUVnXiM4hPvhNd73U5bRIYvsAvD+9PzQecuzMuoQnPz7MAOJEVu4+C4sAjOgShK6hWqnLuaV7eoYiTu+LyvpGvLub72l0vQ/2ncflahOiA7wwSeJGeddqdfjYvHkzKioqMH36dABAcXExVCoV/Pz8mj0uJCQExcU3bwW8aNEi6HQ62y0yMrK1Jd2WmUNiIZMBadmXkF1S2abPRS1XWdeA1Xutb6JPj3SeUY9rJXUIwPvT+kOtlCP1dClS1h3hJGcnUGKswxeZ1sZdTzatJnF0crkMz4/uAgBY80MuSivrJK6IHImhpgHvNl1GXHB3Z3hIuD3AL7W6ktWrV2Ps2LEICwu7owIWLlwIg8Fgu+Xnt+269egAb4zpZv02/R5HPxzOh/vOw1jXiI7BPvitRJt42cOgjoFY3RRAdpwqwdOfHEaDmQHEkb2/NxcmswX9otuhf4y/1OXctlFdg9E70g91DRYs23lW6nLIgazccxbGukZ0CfHFvfF39lltb60KHxcuXMCOHTswe/Zs2zG9Xg+TyYSKiopmjy0pKYFef/Ohc7VaDa1W2+zW1uYMs+6PsPlIEb8pOJCq+ka81zRx7umRHaFwwlGPaw3pFIhVU/tBpZRj28kSPPPJEQYQB2WoacDH6dYlq0+OcOy5Hr8kk8nwwhjr6Mf6jDwUVtRKXBE5grKqeqz54TwAYMHozg43ityq8LFmzRoEBwdj3LhxtmMJCQnw8PBAamqq7VhWVhby8vKQlJR055XaUUK0P/pE+cFktnCNvANZu/88Kmoa0D7QG/c4WEpvrWGdg7Dy0QSoFHJ8e6IY8z49ikYGEIfzUfp5VJvMiNP7OlQn3ds1uGMgktoHwGS2YOmOHKnLIQewbOdZ1JjM6BWhc8gVgy0OHxaLBWvWrMG0adOgVP68Vlin02HWrFlYsGABdu7ciczMTMyYMQNJSUkYOHCgXYu2hzlDra1lP06/wK6UDqC6vhHv7bGOejzlAqMe17qrSzBWPNoXHgoZ/nv8IuZvOMYA4kBqTWa83/QN8Ym7Ojh0T5lf83zT6MfnhwuQW1YtcTUkpYuGWttO4M+N7uKQv9MtDh87duxAXl4eZs6ced19b731Fu655x5MnDgRw4YNg16vx5dffmmXQu1tTHc9Iv09caWmAZ8fLpC6HLf3cfoFlFebEBPghd/1co1Rj2uNjAvB8ikJ8FDIsOVYEZ7beIxbojuIDYfyUV5tQqS/J8Y58TyjhOh2GBkXDLNFwFtNbbTJPS1NPQNTowUDYv0xtFOg1OXcUIvDx+jRoyEIAjp37nzdfRqNBu+88w7Ky8tRXV2NL7/88lfne0hJIZdh5mDr3I/39+bCwg8CydSazFjZtEwwZURHKB1oRrY9JXcLwTsP94VSLsNXR4vwAgOI5BrMFtvv3txhHZz+d++50db35S0/FuHUxbZrW0CO68Llamxs2nDwhTGOOeoBuNHeLjfy+36R0GqUyC2rxo5TjtEG3h2ty7iAy03fPMf3CZe6nDY1urse/3m4DxRyGb48Uoi/bTkpdUlubcuxIhRW1CLQR4XJDtQDobW6h+kwLj4UggC8+R1HP9zRkh05aLQIuKtLkEOv2nLr8OGtVuLhxGgAsM03IHHVNZixIs36zfOpER0dah16W/lNj1AsfbAPAGvbY664kobFImB50wZyMwbHOkznxzs1P7kz5DJgx6kSHMm7InU5JKKs4kpsPmrtVXO1/4ujcv13+luYPigGSrkMB86X41h+hdTluJ31GXkoq6pHuJ8n7u/j/N88b9e4+FD0ifKD2SLg66Pc6FAKqadLkVNaBV+1Eo8mRUtdjt10DPbBhL7WvyWOfriXxduzIAjA2B569AjXSV3Or3L78KHXaWwTHNlyXVzWUQ/rN8+UER2hUrrXr+PVD4gvDxdKXIn7EQQBy3ZZ97uYMjAaWo2HxBXZ17OjOsFDIcPeM2XYf5b7WLmDHwsqsO1kCWQyazdTR+de7/Y3Mbtp2e23J4pRcKVG4mrcx2cH81FaWY8wncah9hwQy73xofBQyPDTRSNOF3NyoJgycstxJK8CKqUcM4fESF2O3UX6e+HB/tbdS9/4Lou7eLuBN5pGue7vHY5OIb4SV3NrDB8AuoVpMbhjAMwWwdYRjtpWfaPZdr39CTcc9QAAPy8VRsVZm/9s4uiHqJY1/e5NTohAsK9G4mraxlMjO0KtlCPzwhXsyrokdTnUhg7klmN39iUo5TLMS3b8UQ+A4cPm6ujHZwfzYaxrkLga17fhUAGKjXXQazW2nYbd0f19rat7Nh8t5LJbkZwoNGB39iXIZcBjw5yrlXpLhGg1mDYoBgDwr21ZbCfgogRBwBvbsgAAD/SPRFSAl8QV3R6GjyZ3dQ5Cp2AfVNU34tMDeVKX49JMjRYs32m93v7EXR2gVrrGKoPWGNElGH5eHigx1mPf2TKpy3ELV+cZ3RMf5jRv1K31+PAO8FEr8dNFI749cfPdxcl57c4pw4Hz5VAr5Xh6ZCepy7ltDB9NZDIZZg+1Nh1b88N5bgDWhj7PLECRoQ7Bvmo80D9S6nIkpVLKbROeOfG07Z0vq8b/jl8EYA2+rs7fW4VZQ6zva4u3Z3F0zcVcO+rx6MBo6HXOcwmR4eMa9/UOR6CPChcNdbY3KLKvBrMF7zSNejw+vIPL9Fa4E/c3NVbbeqIY1fWNElfj2t7dfQ4WARjRJQhdQ9t+B21HMHtoLPy8PHD2UjU2HWHAdSXbThbjeKEB3iqF04Vpho9raDwUmJoUA8C67JYzxO3vy8MFTR0l1Xg4MUrqchxC70g/tA/0Rm2DGVs5NN5mSox1+CLTuo/TkyM6SlyNeHw1Hnh8uPWDacmObJgaOarrCswWwdbHZeaQWAT4qCWuqGUYPn7hkYHR0HjIcaLQiPRz5VKX41IazBb8xzbq0Z6jHk1kMhkmNE08/fIINzlsK+/vzYXJbEG/6HYO3Xa6LUxLikGQrxoFV2rxWdO+H+Tcvj5WiJzSKmg1StuCCWfC8PEL/t4qTGxq/vQem47Z1eYjhcgvr0WAt4qjHr9wX29r+Nh39jIuGmolrsb1GGoa8HG6dYvxJ0c41/C0PXiqFHiqabTn7dQc1DWYJa6I7kSD2YK3tucAAB4b3gE6T+drksfwcQOzhsRCJrO2Xz5TWiV1OS6h8Zq5HnOHtYeXSilxRY4l0t8LibH+EARg8xG2W7e3j9LPo9pkRpzeFyO6BEtdjiQeHBCJcD9PlFbWY+3+81KXQ3dg46EC5JXXINBHhRmDY6Qup1UYPm6gfZCPrfnT6r3ccM4evj5WhPOXa+DvrcIjA11nHw17mmhrt17A+UZ2VGsy4/2m5oFP3NXBYbcYb2tqpQLPJluXYi7fdRaV7GfklOoazFiaah31SBnR0Wm/yDF83MScpmW3Xx4uwOWqeomrcW5mi4D/fG8d9Zg9NBbeauf8Y2lrY3vqoVbKkVNahROFbLduLxsO5aO82oRIf0+M6xkqdTmSmtAnHO2DvHGlpgHv7z0vdTnUCh+nX0CxsQ5hOo1TX75m+LiJAbH+iI/Qob7Rgo+arhVT63zzYxHOlVXDz8vDtpqIruer8cDo7noAwBeHOfHUHhrMFqzcbZ27NXdYBygV7v2Wp1TIMb+p/fZ7e86hosYkcUXUEtX1jbZtKZ4Z1cmpGzS691/ir7A2HbPOIP5o/wVO0Gols0XA21dHPYbEwoejHr/q6qqXLceK2OjODrYcK2pa2q3CZDfcvPBGxvUMRddQLSrrG7EijZPqncmaH3JxudqEmAAvTHTy32eGj1/x2x56hPt54nK1ic15WunbExdxpmk52NSmfSbo5oZ2DESgjxqXq03Ync3NwO6ExSLYviXOGBzLpd1N5HIZnmvacv2DfbkorayTuCK6HYaaBrzbNIo3/+7O8HDyUTznrr6NKRVy20zi9/ac48ZMLWSxCLaJUbOGtIdW43zLwcSmVMhxX2+2W7eH1NOlyCmtgq9aiUeTOMn5WqO6BqN3pB/qGix4p2lkkhzbyj1nUVnXiC4hvrg3Pkzqcu4Yw8ctPNA/Er5qJc5eqsau7FKpy3Eq204WI7ukCr4aJaY76XIwKVy99LL9VAkMtVyR0BqCIGDZLuuH6pSB0Qy+vyCTyfDCmC4AgPUH8lBwpUbiiujXlFXVY03Tiq3nRneGXO78K7YYPm7BV+OBBwdYNz9btZvLbm+XxSLg302jHjMGxzplExypdAvVIk7vC1OjhXsMtVJGbjmO5FVApZRj5pAYqctxSIM7BiKpfQAazD+PUJJjWrbzLGpMZvSK9MPd3UKkLscuGD5uw/TBsVDIZdh/7jJOFBqkLscpbD9VgtPFlfBRKzGTox4tIpPJbJvNfclVL61yda7H5IQIBPs6z06fYnu+afTji8OFOHeJDRUdUVFFra077/OjO7tMnxqGj9sQ7vdzfwC2XL81Qfj5m9T0QTHw81JJXJHzGd8nHHIZcPD8FeRd5pB4S5woNCAt+xLkMuCxYe7XSr0lEqLbYVRcMMwWAW/t4OiHI3r7+xyYzBYkxvpjSMdAqcuxG4aP2zSnadntNz9e5N4bt5B6qhQni4zwVikwa0is1OU4pRCtBoOb3mi40qplVqRZRz3uiQ9DVICXxNU4vgWjrStfthwrwqmLbG7nSM6XVWPDIevo5wtjurjMqAfA8HHbekbokBjrj0aLgA+aJv7Q9QTh57keUwfFoJ03Rz1a69qdbtlu/facL6u2zZN54i6OetyO7mE6jIu3juz+47+nYOaqPoexZEc2zBYBd3UJQj8X24mZ4aMFro5+rD+Qh6r6RomrcUy7si7heKEBnh4KzOaoxx0Z010PL5UCFy7X4HDeFanLcQrv7j4HiwCM6BKErqFaqctxGgvu7gyVUo69Z8rw0lcnGHYdQFZxJb46Zt1k8vnRXSSuxv4YPlpgZFww2gd5o7KuEZ8dzJe6HIcjCAKWXB31SIpGgI9a4oqcm5dKibE9rN9I2fPj1kqMdfgi0zpE/WTT9vF0ezoE+eDfD/SGTAasz8izdSUm6SzengVBAH7bU48e4Tqpy7E7ho8WkMtltjkM7+/NRSPbXzezO6cMx/IroPGQ21rT0525tt16fSNb/P+a9/fmwmS2oF90O/R3sSFqMYztGYr/+113AMDi7dn49ECexBW5r2P5Fdh2sgRymXVUyhUxfLTQxL4R8PdWobCiFltPFktdjsMQBAH/3pENAHgkMRpBvhz1sIeB7QMQqtPAWNeI70+xyd3NGGoabMsRnxzBuR6t9WhSDJ5qGjX606bj2P5TicQVuac3vssCYF311jHYV+Jq2kaLw0dhYSEeeeQRBAQEwNPTEz179sShQ4ds9wuCgJdffhmhoaHw9PREcnIycnJcZwmXxkOBRwZaWzWv2pPLa6NNfjhzGYfzKqBWyjF3OEc97EUhl2H81Z4fXPVyUx+ln0e1yYw4vS9GdAmWuhyn9tzozvh9vwhYBOCp9YeReaFc6pLcSsa5y9iTUwalXIZ5o1xz1ANoYfi4cuUKBg8eDA8PD3z77bf46aef8Oabb6Jdu3a2x7z++utYunQpVqxYgYyMDHh7e2PMmDGoq3OdzYumJkVDpZTjWH4FDl3gREDrChfrqMfDiVFs6mRnE5rCx87TpSiv5hbov1RrMuP9phVoT9zVwaWWI0pBJpPh1ft7YmRcMOobLZj14SGcKa2Uuiy3IAiCbdTjgf6RLr1UvEXh47XXXkNkZCTWrFmDAQMGIDY2FqNHj0aHDtZhTkEQsGTJEvz5z3/Gfffdh/j4eKxduxZFRUXYvHlzW9QviUAfte0DYdVuNh3bf+4yDp6/ApVSjseHc8jb3jqF+KJnuA6NFgFbmma/0882HMpHebUJEe1+bgZId0apkOM/D/dB70g/VNQ0YNr7B1FscJ0vkI4qLfsSDp6/ArVSjqdHdpK6nDbVovDx9ddfo1+/fpg8eTKCg4PRp08frFq1ynZ/bm4uiouLkZycbDum0+mQmJiI/fv33/Cc9fX1MBqNzW7OYPZQ68TT7adKkFtWLXE10vp3U2fEh/pHIkTLUY+28HPPD156uVaD2YKVTV8AHhvWHkon32bckXiplHh/en+0D/RGYUUtpq85wI0O25AgCHjzO+sI8tSkaOh1rv1e2qK/1HPnzmH58uXo1KkTtm3bhieeeALPPPMMPvzwQwBAcbF1AmZISPONb0JCQmz3/dKiRYug0+lst8jIyNb8d4iuY7AvRnQJgiBYZ9m7q/Rzl5GRWw6VQo7H2dSpzdzbKwxKuQzH8itwppR7cFz1RWYBCitqEeijwuR+zvHe4Uz8vVX4cOYABPmqcbq4EnPXHkJdA1ddtYVtJ4txvNAAb5UCT9zl+kvFWxQ+LBYL+vbti1dffRV9+vTB3LlzMWfOHKxYsaLVBSxcuBAGg8F2y893nv4ZV5uObczMxxU3vRZ/dQ+X3/ePQKjOU+JqXFegjxrDOwcBADYd4WZzAFDXYLZ10318eAdoPBQSV+SaIv298OGMAfBVK5GRW44FG46yC6qdmS0/j3rMGhILfzfoDN2i8BEaGopu3bo1O9a1a1fk5VnXg+v1egBASUnz5VklJSW2+35JrVZDq9U2uzmLpA4B6BaqRV2DBesyLkhdjugOni/HvrOX4aGQuUVSl9qEvhEAgM1HimDhmz/WZ+ThoqEOoTqNbQUatY1uYVq8OzUBKoUc/ztejL9tOcmVfnb01dFC5JRWQefpgdnD3GO1YIvCx+DBg5GVldXsWHZ2NqKjrX/4sbGx0Ov1SE1Ntd1vNBqRkZGBpKQkO5TrWGQyGeYMs879+HD/BbdrAnV11GNSQiTC/Tjq0dZGdQ2Gr0aJwopaZOS69/LHGlMjlu2yduF8emQnjnqIYFCHQCx+oBdkMmDt/gtYtuus1CW5hAazBUua5s09Nrw9tBoPiSsSR4vCx/z585Geno5XX30VZ86cwfr167Fy5UqkpKQAsH4Yz5s3D6+88gq+/vprHD9+HFOnTkVYWBjGjx/fFvVL7p74MOi1GlyqrMdXR91nJULmhSu2tehPcq6HKDQeCtwTf7Xduntfelnzw3mUVZkQHeCFyf0ipC7HbdwTH4aX77GOfv9rWxY2HnKey+SOasOhfOSV1yDQR43pg2KkLkc0LQof/fv3x6ZNm/DJJ5+gR48e+Pvf/44lS5ZgypQptsf84Q9/wNNPP425c+eif//+qKqqwtatW6HRuObMXQ+FHNMHxwAAVrtR07Grox4T+0Yg0t9116I7mquXXv53/CJqTe410naVobYB76ZZv3XPS+4ED65wEdWMwbG2JfUvfnkcO0+z825r1TWY8XaqdQQvZUQHeKmUElcknhb/1d5zzz04fvw46urqcOrUKcyZM6fZ/TKZDP/3f/+H4uJi1NXVYceOHejc2XW7tAHAQwOi4K1SIKukErtzyqQup80dza9AWvYlKOQypHADL1H1i26HSH9PVJvM+O4n92zv/96eczDWNaJTsA9+1ytc6nLc0h9/0wUT+obDbBHw5LrDOMJdl1vl4/QLKDbWIUynwcOJUVKXIyp+ZbADnacHft/fuszvvT2u33Ts6qjH/X3CXboDnyOSyWSY0Mc6+uGOO92WVdVjddPS9udGd4ZCzm6mUpDJZHhtYjyGdQ5CbYMZMz84iHOXuAS8JarqG7G8ad7Ms8mdoFa617wlhg87mTk4FnIZsCenDKcuOkejtJYSBAHv7DyD70+XQi4DRz0kcn9Td909OZdQanSvrpPLd51FjcmMnuE6jOl+4xV0JA4PhRzLp/RFfIQOV2oaMPX9A273+3gn1uzNxeVqE2IDvTGxr/vNW2L4sJNIfy+M7WGdDPjeHtdrOmaxCPi/b37Cv7ZZVzs9O6ozYgO9Ja7KPcUEeiMhuh0sAvC1G7Vbv2ioxUdNO9c+P6YL93BxAN5qaxfUmAAvFFypxbQ1B2GsYxfUWzHUNGBl0yj5vORObtmZ1/3+i9vQ1ZbrXx8rRIkLfQMwNVowf8NRrGnavOule7rh2WTX3nfA0V1tt/6FG116efv7MzA1WjAgxh/DOgVKXQ41CfRRY+3MRAT6qHDqohGPf5Tpdm0HWurd3WdRWdeIOL0v7o0Pk7ocSTB82FGfqHboF90ODWYBH+47L3U5dlFd34hZHx7EV0eLoJTLsOSB3pg1JFbqstzePT3DoFLIceqi0WUv810r73INNhy0LuvkqIfjiQrwwgczBsBbpcC+s5fx3IZjbIR3E5cq621f5Bbc3RlyN523xPBhZ7ObWq6vy8hDjalR4mruTHm1CQ+/l4E9OWXw9FDgvWn9ML4PVxc4Ap2XB0Z1DQYAbHKDzeaW7MhGo0XAsM5BGBDrL3U5dAM9wnVY8WgCPBQyfPPjRfz9vz+5TeuBlli26wxqG8zoFemHu7uF3PoHXBTDh53d3S0E0QFeMNQ2YOMh520EVXClBpNW7MOx/Aq08/LA+jmJuKtLsNRl0TWu9vzYdKQQjWaLxNW0neySSmw6ag1Yz4927WX7zm5opyC8MbkXAGsjuKs7DpNVUUUt1qVbtyN5YbR7j+AxfNiZQi6zXZZYvTfXKTdgyi6pxKTl+3HuUjXCdBpsfHwQ+kS1k7os+oXhnYPQzssDlyrr8cPZy1KX02YWf5cNQQDGdA9BfISf1OXQLdzXOxx/HtcVALDo29Nu3433Wm9/nwOT2YKB7f0xuGOA1OVIiuGjDUxKiIDO0wN55TXY7mSNoDIvlGPyiv0oNtahU7APvnhyEDoG+0hdFt2ASinH73pZJ6u56hv88QIDtp4shkwGPDe6i9Tl0G2aPbQ95jRNwP/D5z8iLfuSxBVJL7esGhuaRsNf4Lwlho+24KVS4pGB1m51q5xo2e33p0sw5b0MGGob0DfKDxsfT0KojhvGObKrl162nSxGVb1zzzG6kTe+sy7tHt87HJ1DfCWuhlpi4diuuK93GBotAp74OBM/FlRIXZKkluzIhtkiYESXICREc94Sw0cbmZYUA5VCjswLV3DYCVoPf55ZgDlrM1HXYMGILkFYN3sg/LxUUpdFtxAfoUP7IG/UNVjw7fGLUpdjVwfPlyMt+xKUchnmcWm305HLZfjXpF4Y0jEQNSYzZqw5iPNl1VKXJYms4kpbTx6O4FkxfLSRYK0Gv+ttHRJ39Jbr76adxfMbj8FsETChbzhWTu0HT5V7tfp1VjKZzNYd0ZXarQuCYGtoN7lfJKID2NDOGamUcqx4NAE9wrW4XG3C1PcP4FJlvdRlie7N77IgCMBve+rRI1wndTkOgeGjDV1tOrb1RDHyy2skruZ6FouAV/93Cou+PQ0AmDusPd6Y1Iu7hDqZq8uf03Mvo7CiVuJq7GNPThkO5JZDpZTjmVFs4+/MfNRKrJk+AFH+Xsgrr8GMDw645CXCmzmWX4HvfiqBXGbt60FW/JRpQ3F6LYZ2CoRFAN7/wbHmfjSYLXj+82O2pXALx8bhT7/t6rYNb5xZuJ8nktoHQBCAzS7Q80MQBNtcj0cSoznvyAUE+arx4cwBCPBW4UShEU98nAlTo+suD7/W1d/l+/tEoGMw5y1dxfDRxuY0NR3bcDAfhlrH2POgxtSIuWsP4cvDhVDIZXhjci88NryD1GXRHbi/qd36l4cLnL6x07aTJfixwAAvlQJPjuDvpauIDfTG+9P7w0ulwJ6cMvzhc9fvgpp+7jL25JTBQ8F5S7/E8NHGhnYKRJzeF9UmMz45kCd1OaioMWHKexnYmXUJGg85Vj6agEkJ7rejoqsZ20MPjYccZy9V43ihQepyWs1sEbB4u/Wb4ozBMQj0UUtcEdlTr0g/LJvSF0q5DJuPFuGfW09LXVKbEQQBbzTNW3qgfyQi/b0krsixMHy0MZns56ZjH/xwXtKhxouGWkxesR9H8iqg8/TAutmJGNXVfdv7uhJfjYdti3lnnni65VgRskuqoNUoMXcoRz1c0V1dgvH6pHgAwMrd5xx+Qn5r7cq+hEMXrkCtlOPpkRz1+CWGDxH8rncYgnzVKDbW4b/HpdkC/UxpJSYu24ec0irotRpsfDyJa81dzP1NE0+/PlaEBidst95gtuCtHdkAgMeGd4DOy0PiiqitTOgbgRfHxgEAXvnvKXx11HkD840IgoA3m+Z6TE2KRohWI3FFjofhQwRqpQLTB8UAAFbtzhX9mvyRvCuYtGI/igx1aB/kjS+eHMSGTS5oSMdABPmqUV5tQlqW83WU/DyzABcu1yDQR2X7eyHX9diw9pgxOAYA8PzGY9ibUyZtQXa09UQxThQa4a1S4Im7uFrrRhg+RDIlMQqeHgr8dNGI/SLuw7ErqxQPr8pARU0DekX64fPHByHcj6sHXJFSIcf4pt4yXx5xrnbrdQ1mLE3NAQA8cVdHeKuVEldEbU0mk+Glcd0wLj4UDWYBj310CCeceL7SVWaLgDe3W0fwZg1tD39vNmu8EYYPkfh5qTC5n3Vi5yqRrnFuPlKI2R8eQm2DGcM6B2H97ET+Ibi4+/tYf8d2/FQKQ41jrK66Hesy8nDRUIdQnQZTEqOkLodEIpfLsPj3vZDUPgDVJjOmrzmIvMuO1xOpJb46WogzpVXQeXrYej3R9Rg+RDRzcCxkMmBn1iWcKa1s0+davTcX8z47ikaLgN/1CsN7U/vx26Qb6BamRZzeFyazBd9INL+oparrG7Fs5xkAwNMjO0Hjwe667kStVODdqQnoGqpFWVU9pr6fgbIq5+qC2mi2IKu4EhsP5ePN76yjHo8P7wCthvOWbobhQ0Qxgd4Y3c26uuS9NtpwThAEvLb1NP7+zU8ArMsVlzzQGyol/1e7i6vt1jc5yaqXD/adx+VqE6IDvGyjg+RetBoPfDijP8L9PHH+cg1mfXAQ1Q7aBdVsEXCmtBJfHi7A37acxKTl+9Dzr99hzJLdeOHzH1FYUYsgXzWmDYqWulSHxq/CIpsztD22nSzBl0cK8dzoLgjytV8fg0azBX/adLzZts1P3tXB7bdudjf39Q7Dom9P4dCFK7hwudqh90Ux1Dbg3bSzAID5yZ3Z2t+NBWs1WDtrACYt34djBQY8ue4w3pvWT9LfCYtFwPnL1t45xwsM+LHQgJOFBlSbzNc91lulQI9wHeIjdJiSGA0vFT9efw1fHZElRLdDr0g/HMuvwEfpF+zW67+uwYyn1h/BjlPWPQRevb8nHhzAa+fuKFirwZBOQdidfQlfHi7EfAfeT2LV7nMw1jWic4gP7u0VJnU5JLEOQT5YPb0/Hl6VjrTsS/jjFz/izcm9RPkCJQgC8spr8GOBwRY2ThQaUHmDERhPDwV6hGvRM9wP8RE69AjXoX2gN7enaAGGD5HJZDLMGRqLp9YfwcfpF/DkXR3u+Bq3obYBcz48hAPnrRtxvf1QH1vDKXJPE/uGY3f2JWw6Uoh5yZ0ccvSrrKretufRgru7QME3bgLQN6od3nm4L+Z+lIkvDxciRKvBH38TZ9fnEAQBBVdqcbzQgB+bQsaPBRUw1l0fNNRKObqHaREf4Wcb2egQ5MPf1zvE8CGB33TXI9zPE4UVtfjicAGmJLb+2mCJsQ7T3j+A08WV8NUo8d7UfkhsH2DHaskZje6mh7dKgbzyGmReuIJ+MY7XUG7ZzrOoMZkRH6HDmO7stEs/G9U1BIvu74k/fPEjlu86i2BfNWYMbt3KEUEQcNFQ1zSiUYHjhUYcL6jAlRusBlMp5OgapkV8uA49w3XoGaFDp2AfKHk50O4YPiSgVMgxc0gs/v7NT1i9JxcP9Y9q1XDduUtVeHT1ARRW1CK4adfIrqHaNqiYnI2nSoGxPUPxeWYBvjhc6HDh46KhFh9nXAAAPDe6i0OOzJC0ft8/EqWVdXjju2z83zc/IchXjXvib31prsTYFDQKKqyXTwoNKKsyXfc4D4UMcXotekY0BY1wHTqH+HJyvkgYPiTyQP9ILNmRjXNl1fj+dCmSu7Xsm9+PBRWYvuYgyqtNiA30xtqZA7hxETUzoW84Ps8swH9/LMJf7u3mUEtYl6aeganRggEx/hjWKVDqcshBpYzoiBJjvXV+3GfH4O+twqAOP/++XKqst45mFBhxvLACPxYYUFp5/TJdhVyGLiG+ttGM+Agduuh9oVY6zt+Eu2H4kIiPWomHB0Th3d3nsGrPuRaFj705ZXjso0OoNpnRM1yHNTP6c/dPus7A2ACE6TQoMtTh+9Ol+G3PUKlLAgBcuFyNjYfyAQDPj+GoB92cTCbDX3/XHZcq67H1ZDEeW5uJGYNjcLq4EscLDbhoqLvuZ+QyoHOIr21+Rs9wHbqGah0qfBPDh6SmD47B6r25yMgtx/ECA3pG6G75M1uOFWHBhqNoMAsY3DEA7z7aDz5sHkY3IJfLML5POJbtOosvDxc4TPhYsiMHjRYBwzsHYUCsY10OIsejkMuw5MHemPr+ARzILcfS78/Y7pPJrCtk4q8Z0egaquUyVyfQootbf/3rXyGTyZrd4uJ+noVcV1eHlJQUBAQEwMfHBxMnTkRJSYndi3YVoTpP3BNv/UC4nZbrH+47j2c+PYIGs4Bx8aF4f3p/Bg/6VRP6Wne63ZV1CZcdoGtkdkklNjftYPr86C4SV0POQuOhwKqp/TC+dxh+1ysMfx7XFRseS8Lxv47BjgXDsfiB3pgxOBYJ0f4MHk6ixTNrunfvjosXL9pue/futd03f/58bNmyBRs3bkRaWhqKioowYcIEuxbsamYPbQ8A+O/xiyisqL3hYwRBwOLvsvCXr09CEKxbNC99sA+vV9ItdQz2Ra8IHRotArYck77d+uLvsiEI1hVftzPSR3SVztMDSx7sg6UP9cHsoe0xINafX76cWIvDh1KphF6vt90CA62TfwwGA1avXo3Fixdj5MiRSEhIwJo1a7Bv3z6kp6fbvXBX0SNch6T2ATBbBHzww/Ut180WAX/adMI21Dg/uTP+9rvuXGNOt+3+PtbRjy+PSNtu/ceCCmw9WQyZDFgw2nEbnxFR22tx+MjJyUFYWBjat2+PKVOmIC8vDwCQmZmJhoYGJCcn2x4bFxeHqKgo7N+//6bnq6+vh9FobHZzN3OGWdevf3ogH5V1P689r2swI2XdYXxyIA8yGfDK+B541kEbRpHjurdXGJRyGX4sMLT5hoa/5o2mDbfG9w5H5xBfyeogIum1KHwkJibigw8+wNatW7F8+XLk5uZi6NChqKysRHFxMVQqFfz8/Jr9TEhICIqLi296zkWLFkGn09lukZGRrfoPcWZ3dQ5GhyBvVNY34rOD1lUAxroGTF9zAFtPFkOlkGPZw33xyEBuVEQtF+Cjxl1dggEAX0q02dyB3HLszr4EpVyGecmdJKmBiBxHi8LH2LFjMXnyZMTHx2PMmDH43//+h4qKCmzYsKHVBSxcuBAGg8F2y8/Pb/W5nJVcLrPN/Vjzw3lcNNTiwXfTkX6uHD5qJT6Y2R9jHWSlAjmnqxNPNx0phMUiiPrcgiDgjW1ZAIDJ/SIdeqM7IhLHHbVy8/PzQ+fOnXHmzBno9XqYTCZUVFQ0e0xJSQn0+pvvM6JWq6HVapvd3NH9fcIR4K1CYUUtRi/ejZ8uGhHoo8ancwc2a6pD1Boj44Kh1Shx0VCH9HOXRX3u3Tlltn2HnhnVUdTnJiLHdEfho6qqCmfPnkVoaCgSEhLg4eGB1NRU2/1ZWVnIy8tDUlLSHRfq6jQeCjyaZL2sUlnfiCh/L3zxRBJ6hHNFAN05jYcC9zTtGivmxNNrRz0eHRiNUJ2naM9NRI6rReHj+eefR1paGs6fP499+/bh/vvvh0KhwEMPPQSdTodZs2ZhwYIF2LlzJzIzMzFjxgwkJSVh4MCBbVW/S5maFIMwnQa9Iv3w+RNJHJ4mu5rYdOnl2+MXUWO6fvfOtrDtZDGOFxrgpVLgibs6iPKcROT4WrRIuqCgAA899BAuX76MoKAgDBkyBOnp6QgKCgIAvPXWW5DL5Zg4cSLq6+sxZswYLFu2rE0Kd0X+3irs/eNIyGTgihayu75R7RAd4IULl2vw3ckSjG9agttWzBYBbzatcJk5OJZbABCRjUwQBHFnn92C0WiETqeDwWBw2/kfRG1lyY5sLNmRg2Gdg7B25oA2fa5NRwow/7Nj0GqU2PPHkdB5erTp8xGRtFry+c29g4ncyIQ+EQCAvTmXUGK8flMue2kwW/DW9hwAwGPDOzB4EFEzDB9EbiQqwAv9otvBIgBfHW27iacbDxUgr7wGgT4qTB8U02bPQ0TOieGDyM1M6Gsd/WirhmN1DWYsTbWOejx5V0d4c/8NIvoFhg8iNzOuZyhUSjlOF1fipyL7b2fwcfoFFBvrEKrT4OHEKLufn4icH8MHkZvReXkguevVdusFdj13dX0jlu86CwB4ZlQnaDy48zIRXY/hg8gNXZ14uvloERrNFrudd80PubhcbUJ0gBcmJUTY7bxE5FoYPojc0PAuQfD3VqGsqh57z5TZ5ZyGmga8u/scAGB+cmd4KPj2QkQ3xncHIjfkoZDjd1fbrdtp4unKPWdRWdeIziE+uLfp3EREN8LwQeSmru50u+1kMSrrGu7oXGVV9Vjzw3kAwIK7u0AhZ4deIro5hg8iN9UzXIeOwT6ob7Tg2xPFd3SuZTvPosZkRnyEDmO6h9ipQiJyVQwfRG5KJpPZRj/uZNVLUUUtPk6/AAB4fnQX7ktERLfE8EHkxsb3DodMBqSfK0fBlZpWnePt73NgMlswINYfQzsF2rlCInJFDB9EbizMzxNJ7QMAAJuPtHzi6fmyamw4ZB01eWEMRz2I6PYwfBC5OVu79SOFaOkm10t2ZMNsETC8cxD6x/i3RXlE5IIYPojc3G966KHxkOPcpWocKzDc9s9lFVfiq2NFAKxzPYiIbhfDB5Gb81Er8ZvuegAtm3i6eHsWBAH4TXc9ekbo2qo8InJBDB9EZLv0suVYEUyNt263fiy/AttOlkAmA54b3bmtyyMiF8PwQUQY3DEQwb5qXKlpwK6s0ls+/o3vsgAA9/cOR6cQ37Yuj4hcDMMHEUEhl2F8n6s9P3591UvGucvYk1MGpVyGeckc9SCilmP4ICIAP7db//50KSpqTDd8jCAItlGP3/ePRFSAl2j1EZHrYPggIgBAnF6LbqFamMwWfPPjxRs+Ji37Eg6evwKVUo6nR3YUuUIichUMH0Rk82vt1gVBwJvfZQMAHh0YjVCdp6i1EZHrYPggIpvf9Q6DXAYczqvA+bLqZvdtO1mM44UGeKkUeOKuDhJVSESugOGDiGyCfTUY1jkIgLXj6VVmi4A3mkY9Zg2JRaCPWpL6iMg1MHwQUTP39/n50ovFYm23/tXRQpwprYJWo8Tsoe2lLI+IXADDBxE1M7qbHj5qJQqu1OLQhStoMFuwZEcOAOCx4R2g8/SQuEIicnYMH0TUjKdKgd/2tLZb33SkABsO5SOvvAaBPirMGBwjbXFE5BIYPojoOvf3sbZb/+bHi3g79QwA4Mm7OsJLpZSyLCJyEQwfRHSdxFh/hPt5orKuEcXGOoTqNHg4MUrqsojIRTB8ENF15HKZbeIpADwzqhM0HgoJKyIiV3JH4eOf//wnZDIZ5s2bZztWV1eHlJQUBAQEwMfHBxMnTkRJScmd1klEIpuUEAGNhxxdQnwxKSFC6nKIyIW0OnwcPHgQ7777LuLj45sdnz9/PrZs2YKNGzciLS0NRUVFmDBhwh0XSkTiign0xq7nR+DzJ5LgoeAgKRHZT6veUaqqqjBlyhSsWrUK7dq1sx03GAxYvXo1Fi9ejJEjRyIhIQFr1qzBvn37kJ6ebreiiUgcep0GvhourSUi+2pV+EhJScG4ceOQnJzc7HhmZiYaGhqaHY+Li0NUVBT2799/w3PV19fDaDQ2uxEREZHravG6uU8//RSHDx/GwYMHr7uvuLgYKpUKfn5+zY6HhISguLj4hudbtGgR/va3v7W0DCIiInJSLRr5yM/Px7PPPot169ZBo9HYpYCFCxfCYDDYbvn5+XY5LxERETmmFoWPzMxMlJaWom/fvlAqlVAqlUhLS8PSpUuhVCoREhICk8mEioqKZj9XUlICvV5/w3Oq1WpotdpmNyIiInJdLbrsMmrUKBw/frzZsRkzZiAuLg5//OMfERkZCQ8PD6SmpmLixIkAgKysLOTl5SEpKcl+VRMREZHTalH48PX1RY8ePZod8/b2RkBAgO34rFmzsGDBAvj7+0Or1eLpp59GUlISBg4caL+qiYiIyGnZfaOGt956C3K5HBMnTkR9fT3GjBmDZcuW2ftpiIiIyEnJBEEQpC7iWkajETqdDgaDgfM/iIiInERLPr/ZtpCIiIhExfBBREREomL4ICIiIlExfBAREZGoGD6IiIhIVAwfREREJCqGDyIiIhIVwwcRERGJiuGDiIiIRMXwQURERKJi+CAiIiJRMXwQERGRqBg+iIiISFQMH0RERCQqhg8iIiISFcMHERERiYrhg4iIiETF8EFERESiYvggIiIiUTF8EBERkagYPoiIiEhUDB9EREQkKoYPIiIiEhXDBxEREYmK4YOIiIhExfBBREREomL4ICIiIlExfBAREZGoGD6IiIhIVAwfREREJCqGDyIiIhJVi8LH8uXLER8fD61WC61Wi6SkJHz77be2++vq6pCSkoKAgAD4+Phg4sSJKCkpsXvRRERE5LxaFD4iIiLwz3/+E5mZmTh06BBGjhyJ++67DydPngQAzJ8/H1u2bMHGjRuRlpaGoqIiTJgwoU0KJyIiIuckEwRBuJMT+Pv741//+hcmTZqEoKAgrF+/HpMmTQIAnD59Gl27dsX+/fsxcODA2zqf0WiETqeDwWCAVqu9k9KIiIhIJC35/G71nA+z2YxPP/0U1dXVSEpKQmZmJhoaGpCcnGx7TFxcHKKiorB///6bnqe+vh5Go7HZjYiIiFxXi8PH8ePH4ePjA7VajccffxybNm1Ct27dUFxcDJVKBT8/v2aPDwkJQXFx8U3Pt2jRIuh0OtstMjKyxf8RRERE5DxaHD66dOmCo0ePIiMjA0888QSmTZuGn376qdUFLFy4EAaDwXbLz89v9bmIiIjI8Slb+gMqlQodO3YEACQkJODgwYP497//jQceeAAmkwkVFRXNRj9KSkqg1+tvej61Wg21Wt3yyomIiMgp3XGfD4vFgvr6eiQkJMDDwwOpqam2+7KyspCXl4ekpKQ7fRoiIiJyES0a+Vi4cCHGjh2LqKgoVFZWYv369di1axe2bdsGnU6HWbNmYcGCBfD394dWq8XTTz+NpKSk217pQkRERK6vReGjtLQUU6dOxcWLF6HT6RAfH49t27bh7rvvBgC89dZbkMvlmDhxIurr6zFmzBgsW7asTQonIiIi53THfT7sjX0+iIiInI8ofT6IiIiIWoPhg4iIiETF8EFERESiYvggIiIiUTF8EBERkagYPoiIiEhUDB9EREQkKoYPIiIiEhXDBxEREYmK4YOIiIhExfBBREREomL4ICIiIlExfBAREZGoGD6IiIhIVAwfREREJCqGDyIiIhIVwwcRERGJiuGDiIiIRMXwQURERKJi+CAiIiJRMXwQERGRqBg+iIiISFQMH0RERCQqhg8iIiISFcMHERERiYrhg4iIiETF8EFERESiYvggIiIiUTF8EBERkagYPoiIiEhULQofixYtQv/+/eHr64vg4GCMHz8eWVlZzR5TV1eHlJQUBAQEwMfHBxMnTkRJSYldiyYiIiLn1aLwkZaWhpSUFKSnp2P79u1oaGjA6NGjUV1dbXvM/PnzsWXLFmzcuBFpaWkoKirChAkT7F44EREROSeZIAhCa3/40qVLCA4ORlpaGoYNGwaDwYCgoCCsX78ekyZNAgCcPn0aXbt2xf79+zFw4MBbntNoNEKn08FgMECr1ba2NCIiIhJRSz6/72jOh8FgAAD4+/sDADIzM9HQ0IDk5GTbY+Li4hAVFYX9+/ff8Bz19fUwGo3NbkREROS6Wh0+LBYL5s2bh8GDB6NHjx4AgOLiYqhUKvj5+TV7bEhICIqLi294nkWLFkGn09lukZGRrS2JiIiInECrw0dKSgpOnDiBTz/99I4KWLhwIQwGg+2Wn59/R+cjIiIix6ZszQ899dRT+Oabb7B7925ERETYjuv1ephMJlRUVDQb/SgpKYFer7/hudRqNdRqdWvKICIiIifUopEPQRDw1FNPYdOmTfj+++8RGxvb7P6EhAR4eHggNTXVdiwrKwt5eXlISkqyT8VERETk1Fo08pGSkoL169fjq6++gq+vr20eh06ng6enJ3Q6HWbNmoUFCxbA398fWq0WTz/9NJKSkm5rpQsRERG5vhYttZXJZDc8vmbNGkyfPh2AtcnYc889h08++QT19fUYM2YMli1bdtPLLr/EpbZERETOpyWf33fU56MtMHwQERE5H9H6fBARERG1FMMHERERiYrhg4iIiETF8EFERESiYvggIiIiUTF8EBERkagYPoiIiEhUDB9EREQkKoYPIiIiEhXDBxEREYmK4YOIiIhExfBBREREomL4ICIiIlExfBAREZGoGD6IiIhIVAwfREREJCqGDyIiIhIVwwcRERGJiuGDiIiIRMXwQURERKJi+CAiIiJRMXwQERGRqBg+iIiISFQMH0RERCQqhg8iIiISFcMHERERiYrhg4iIiETF8EFERESiYvggIiIiUTF8EBERkagYPoiIiEhULQ4fu3fvxr333ouwsDDIZDJs3ry52f2CIODll19GaGgoPD09kZycjJycHHvVS0RERE6uxeGjuroavXr1wjvvvHPD+19//XUsXboUK1asQEZGBry9vTFmzBjU1dXdcbFERETk/JQt/YGxY8di7NixN7xPEAQsWbIEf/7zn3HfffcBANauXYuQkBBs3rwZDz744J1VS0RERE7PrnM+cnNzUVxcjOTkZNsxnU6HxMRE7N+//4Y/U19fD6PR2OxGRERErsuu4aO4uBgAEBIS0ux4SEiI7b5fWrRoEXQ6ne0WGRlpz5KIiIjIwUi+2mXhwoUwGAy2W35+vtQlERERURuya/jQ6/UAgJKSkmbHS0pKbPf9klqthlarbXYjIiIi12XX8BEbGwu9Xo/U1FTbMaPRiIyMDCQlJdnzqYiIiMhJtXi1S1VVFc6cOWP7d25uLo4ePQp/f39ERUVh3rx5eOWVV9CpUyfExsbipZdeQlhYGMaPH2/PuomIiMhJtTh8HDp0CCNGjLD9e8GCBQCAadOm4YMPPsAf/vAHVFdXY+7cuaioqMCQIUOwdetWaDQa+1VNRERETksmCIIgdRHXMhqN0Ol0MBgMnP9BRETkJFry+S35ahciIiJyLwwfREREJCqGDyIiIhIVwwcRERGJiuGDiIiIRMXwQURERKJi+CAiIiJRMXwQERGRqBg+iIiISFQMH0RERCQqhg8iIiISFcMHERERiYrhg4iIiETF8EFERESiYvggIiIiUTF8EBERkagYPoiIiEhUDB9EREQkKoYPIiIiEhXDBxEREYmK4YOIiIhExfBBREREomL4ICIiIlExfBAREZGoGD6IiIhIVAwfREREJCqGDyIiIhIVwwcRERGJiuGDiIiIRMXwQURERKJqs/DxzjvvICYmBhqNBomJiThw4EBbPRURERE5kTYJH5999hkWLFiAv/zlLzh8+DB69eqFMWPGoLS0tC2ejoiIiJxIm4SPxYsXY86cOZgxYwa6deuGFStWwMvLC++//35bPB0RERE5EaW9T2gymZCZmYmFCxfajsnlciQnJ2P//v3XPb6+vh719fW2fxsMBgCA0Wi0d2lERETURq5+bguCcMvH2j18lJWVwWw2IyQkpNnxkJAQnD59+rrHL1q0CH/729+uOx4ZGWnv0oiIiKiNVVZWQqfT/epj7B4+WmrhwoVYsGCB7d8WiwXl5eUICAiATCaz63MZjUZERkYiPz8fWq3Wrud2J3wd7YOvo33wdbQPvo724c6voyAIqKysRFhY2C0fa/fwERgYCIVCgZKSkmbHS0pKoNfrr3u8Wq2GWq1udszPz8/eZTWj1Wrd7peiLfB1tA++jvbB19E++Drah7u+jrca8bjK7hNOVSoVEhISkJqaajtmsViQmpqKpKQkez8dEREROZk2ueyyYMECTJs2Df369cOAAQOwZMkSVFdXY8aMGW3xdERERORE2iR8PPDAA7h06RJefvllFBcXo3fv3ti6det1k1DFplar8Ze//OW6yzzUMnwd7YOvo33wdbQPvo72wdfx9siE21kTQ0RERGQn3NuFiIiIRMXwQURERKJi+CAiIiJRMXwQERGRqNwmfLzzzjuIiYmBRqNBYmIiDhw4IHVJTmfRokXo378/fH19ERwcjPHjxyMrK0vqspzaP//5T8hkMsybN0/qUpxOYWEhHnnkEQQEBMDT0xM9e/bEoUOHpC7LqZjNZrz00kuIjY2Fp6cnOnTogL///e+3tTeHu9u9ezfuvfdehIWFQSaTYfPmzc3uFwQBL7/8MkJDQ+Hp6Ynk5GTk5ORIU6wDcovw8dlnn2HBggX4y1/+gsOHD6NXr14YM2YMSktLpS7NqaSlpSElJQXp6enYvn07GhoaMHr0aFRXV0tdmlM6ePAg3n33XcTHx0tditO5cuUKBg8eDA8PD3z77bf46aef8Oabb6Jdu3ZSl+ZUXnvtNSxfvhz/+c9/cOrUKbz22mt4/fXX8fbbb0tdmsOrrq5Gr1698M4779zw/tdffx1Lly7FihUrkJGRAW9vb4wZMwZ1dXUiV+qgBDcwYMAAISUlxfZvs9kshIWFCYsWLZKwKudXWloqABDS0tKkLsXpVFZWCp06dRK2b98uDB8+XHj22WelLsmp/PGPfxSGDBkidRlOb9y4ccLMmTObHZswYYIwZcoUiSpyTgCETZs22f5tsVgEvV4v/Otf/7Idq6ioENRqtfDJJ59IUKHjcfmRD5PJhMzMTCQnJ9uOyeVyJCcnY//+/RJW5vwMBgMAwN/fX+JKnE9KSgrGjRvX7PeSbt/XX3+Nfv36YfLkyQgODkafPn2watUqqctyOoMGDUJqaiqys7MBAMeOHcPevXsxduxYiStzbrm5uSguLm72963T6ZCYmMjPnSaS72rb1srKymA2m6/rrhoSEoLTp09LVJXzs1gsmDdvHgYPHowePXpIXY5T+fTTT3H48GEcPHhQ6lKc1rlz57B8+XIsWLAAf/rTn3Dw4EE888wzUKlUmDZtmtTlOY0XX3wRRqMRcXFxUCgUMJvN+Mc//oEpU6ZIXZpTKy4uBoAbfu5cvc/duXz4oLaRkpKCEydOYO/evVKX4lTy8/Px7LPPYvv27dBoNFKX47QsFgv69euHV199FQDQp08fnDhxAitWrGD4aIENGzZg3bp1WL9+Pbp3746jR49i3rx5CAsL4+tIbcrlL7sEBgZCoVCgpKSk2fGSkhLo9XqJqnJuTz31FL755hvs3LkTERERUpfjVDIzM1FaWoq+fftCqVRCqVQiLS0NS5cuhVKphNlslrpEpxAaGopu3bo1O9a1a1fk5eVJVJFzeuGFF/Diiy/iwQcfRM+ePfHoo49i/vz5WLRokdSlObWrny383Lk5lw8fKpUKCQkJSE1NtR2zWCxITU1FUlKShJU5H0EQ8NRTT2HTpk34/vvvERsbK3VJTmfUqFE4fvw4jh49arv169cPU6ZMwdGjR6FQKKQu0SkMHjz4umXe2dnZiI6Olqgi51RTUwO5vPnHgEKhgMVikagi1xAbGwu9Xt/sc8doNCIjI4OfO03c4rLLggULMG3aNPTr1w8DBgzAkiVLUF1djRkzZkhdmlNJSUnB+vXr8dVXX8HX19d27VKn08HT01Pi6pyDr6/vdXNkvL29ERAQwLkzLTB//nwMGjQIr776Kn7/+9/jwIEDWLlyJVauXCl1aU7l3nvvxT/+8Q9ERUWhe/fuOHLkCBYvXoyZM2dKXZrDq6qqwpkzZ2z/zs3NxdGjR+Hv74+oqCjMmzcPr7zyCjp16oTY2Fi89NJLCAsLw/jx46Ur2pFIvdxGLG+//bYQFRUlqFQqYcCAAUJ6errUJTkdADe8rVmzRurSnBqX2rbOli1bhB49eghqtVqIi4sTVq5cKXVJTsdoNArPPvusEBUVJWg0GqF9+/bC//t//0+or6+XujSHt3Pnzhu+H06bNk0QBOty25deekkICQkR1Gq1MGrUKCErK0vaoh2ITBDYyo6IiIjE4/JzPoiIiMixMHwQERGRqBg+iIiISFQMH0RERCQqhg8iIiISFcMHERERiYrhg4iIiETF8EFERESiYvggIiIiUTF8EBERkagYPoiIiEhUDB9EREQkqv8PHd1QadTgkHsAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "year = [1, 2, 3]\n", - "quarter = [1, 2, 3, 4] \n", - "data = [[71, 68, 62],\n", - " [49, 41, 51],\n", - " [58, 60, 53],\n", - " [78, 81, 72],]\n", - "\n", - "flatten_data = lambda x: [data[i][idx] for idx in range(len(data[0])) for i in range(len(data)) ]\n", - "\n", - "data_flat = flatten_data(data)\n", - "\n", - "import matplotlib.pyplot as plt\n", - "plt.ylim(bottom = 0,top = max(data_flat)*1.1)\n", - "plt.plot(data_flat)" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "def create_dummies(data, quarter):\n", - " data = np.array(data).T.flatten()\n", - " dummies = np.zeros((len(data), len(quarter)))\n", - "\n", - " for i in range(len(dummies)):\n", - " dummies[i][i%(len(quarter))] = 1\n", - "\n", - " dummies = dummies[:, :-1]\n", - " \n", - " return dummies\n", - "\n", - "\n", - "data_dummied = create_dummies(data, quarter)" - ] - }, - { - "cell_type": "code", - "execution_count": 130, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "m = Model()\n", - "\n", - "b_0 = m.continuous_var(name = 'Intercept', lb = -10e6)\n", - "b_x = m.continuous_var_list(range(len(quarter) - 1), name = 'Slope', lb = -10e6)\n", - "\n", - "mse = []\n", - "for i in range(len(data_dummied)):\n", - " mse.append((b_0 + b_x @ data_dummied[i] - data_flat[i])**2)\n", - "\n", - "m.minimize(sum(mse))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 131, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-11 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Number of nonzeros in lower triangle of Q = 3\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.00 sec. (0.00 ticks)\n", - "Summary statistics for factor of Q:\n", - " Rows in Factor = 4\n", - " Integer space required = 4\n", - " Total non-zeros in factor = 10\n", - " Total FP ops to factor = 30\n", - "Tried aggregator 1 time.\n", - "QP Presolve added 0 rows and 4 columns.\n", - "Reduced QP has 4 rows, 8 columns, and 11 nonzeros.\n", - "Reduced QP objective Q matrix has 4 nonzeros.\n", - "Presolve time = 0.03 sec. (0.00 ticks)\n", - "Parallel mode: using up to 4 threads for barrier.\n", - "Number of nonzeros in lower triangle of A*A' = 4\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.00 sec. (0.00 ticks)\n", - "Summary statistics for Cholesky factor:\n", - " Threads = 4\n", - " Rows in Factor = 4\n", - " Integer space required = 4\n", - " Total non-zeros in factor = 10\n", - " Total FP ops to factor = 30\n", - " Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf \n", - " 0 2.0918266e+13 -2.0962679e+13 1.51e-08 0.00e+00 1.15e+07\n", - " 1 2.3719024e+04 -5.1739053e+09 1.64e-08 0.00e+00 4.43e-10\n", - " 2 1.6658884e+02 -2.5869245e+07 8.92e-08 0.00e+00 2.49e-12\n", - " 3 1.6600003e+02 -1.2918105e+05 7.37e-08 0.00e+00 4.32e-13\n", - " 4 1.6600000e+02 -4.8073526e+02 6.94e-08 0.00e+00 3.80e-13\n", - " 5 1.6600002e+02 1.6276632e+02 1.21e-07 0.00e+00 1.31e-13\n", - " 6 1.6599999e+02 1.6519158e+02 5.37e-08 0.00e+00 6.59e-14\n", - " 7 1.6600001e+02 1.6599596e+02 4.04e-08 0.00e+00 2.58e-13\n", - " 8 1.6600000e+02 1.6599899e+02 1.33e-08 0.00e+00 3.26e-13\n", - " 9 1.6600000e+02 1.6599975e+02 1.33e-08 0.00e+00 1.71e-13\n", - "Barrier time = 0.07 sec. (0.02 ticks)\n", - "\n", - "Total time on 4 threads = 0.07 sec. (0.02 ticks)\n" - ] - } - ], - "source": [ - "solution = m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 132, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "solution for: docplex_model28\n", - "objective: 166\n", - "status: OPTIMAL_SOLUTION(2)\n", - "Intercept=77.000\n", - "Slope_0=-10.000\n", - "Slope_1=-30.000\n", - "Slope_2=-20.000\n", - "\n" - ] - } - ], - "source": [ - "print(solution)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Time Series/Smartphone_Problem.ipynb b/Time Series/Smartphone_Problem.ipynb deleted file mode 100644 index bec9f31..0000000 --- a/Time Series/Smartphone_Problem.ipynb +++ /dev/null @@ -1,192 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "Year = [1,2,3,4]\n", - "Quarter = [1, 2, 3, 4]\n", - "period = range(1, 17)\n", - "data = [4.8,4.1,6.0,6.5,5.8,5.2,6.8,7.4,6.0,5.6,7.5,7.8,6.3,5.9,8.0,8.4]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABAlElEQVR4nO3dd3xUZdrG8WvSQ0gCCZAQSELoLRRBOiKCILACFhAXkYVdbCiwuCroYlsVsSCgLIq7FhSsK4qKKL2GGnpNKCGUJNQkJKTNnPePQF5RkDZzTmby+34++SNnJnPuIWHmmufcz/PYDMMwBAAAYBIvqwsAAABlC+EDAACYivABAABMRfgAAACmInwAAABTET4AAICpCB8AAMBUhA8AAGAqH6sL+C2Hw6EjR44oODhYNpvN6nIAAMAVMAxD2dnZioqKkpfXH49tlLrwceTIEUVHR1tdBgAAuAapqamqXr36H96n1IWP4OBgScXFh4SEWFwNAAC4EllZWYqOji55H/8jpS58nL/UEhISQvgAAMDNXEnLBA2nAADAVIQPAABgKsIHAAAwFeEDAACYivABAABMRfgAAACmInwAAABTET4AAICpCB8AAMBUhA8AAGAqwgcAADAV4QMAAJiK8AEAAExF+AAAAKYifAAAAFMRPgAAgKkIHwAAwFSEDwAAYCrCBwAAMBXhAwAAmIrwAQAATEX4AAAApiJ8AAAAUxE+AACAqQgfAADAVIQPAABgKsIHAAAwFeEDAACYivABAABMRfgAAACmInwAAABTET4AAICpCB8AAMBUhA8AAGAqwgcAADAV4QMAAJiK8AEAAExF+AAAAKYifAAAAFMRPgAAgKkIHwAAwFSEDwAAYCrCBwAAMBXhAwAAmIrwAQAATEX4AAAApiJ8AAAAUxE+AACAqa46fCxbtky33367oqKiZLPZ9O23315wu2EYevbZZ1W1alUFBgaqa9euSkpKcla9AADAzV11+MjJyVHTpk01derUi97+2muvacqUKXr33Xe1Zs0aBQUFqXv37srLy7vuYgEAgPvzudof6NGjh3r06HHR2wzD0KRJk/TPf/5Tffr0kSTNmDFDERER+vbbbzVgwIDrqxYAALg9p/Z87N+/X2lpaeratWvJsdDQULVu3VoJCQkX/Zn8/HxlZWVd8AUAADyXU8NHWlqaJCkiIuKC4xERESW3/db48eMVGhpa8hUdHe3MkgAAQClj+WyXsWPHKjMzs+QrNTXV6pIAAIALOTV8REZGSpLS09MvOJ6enl5y22/5+/srJCTkgi8AAOC5nBo+4uLiFBkZqYULF5Ycy8rK0po1a9S2bVtnngoAALipq57tcubMGSUnJ5d8v3//fm3atElhYWGKiYnRqFGj9NJLL6lOnTqKi4vTuHHjFBUVpb59+zqzbgAA4KauOnysX79enTt3Lvl+9OjRkqTBgwfro48+0pNPPqmcnBw98MADOn36tDp06KB58+YpICDAeVUDAAC3ZTMMw7C6iF/LyspSaGioMjMz6f8AAMBNXM37t+WzXQAAQNlC+AAAAKYifAAAAFMRPgAAgKkIHwAAwFSEDwAAYCrCBwAAMBXhAwAAmIrwAQAATEX4AAAApiJ8AAAAUxE+AACAqQgfAADAVIQPAABgKsIHAAAwFeEDAACYivABAABMRfgAAACmInwAAABTET4AAICpCB8AAMBUhA8AAGAqwgcAADAV4QMAAJiK8AEAAExF+AAAAKYifAAAAFMRPgAAgKkIHwAAwFSEDwAAYCrCBwAAMBXhAwAAmIrwAQAATEX4AAAApiJ8AAAAUxE+AACAqQgfAADAVIQPAABgKsIHAAAwFeEDAACYivABAABMRfgAAKCMsTsMS8/vY+nZAQCAKYrsDi3claFPElIUHRao8Xc2sawWwgcAAB7s+Jl8fbEuVTNXp+hIZp4kKcjPW8/+qZEC/bwtqYnwAQCAhzEMQ4kHT+uThAOauzVNBXaHJKliOV/dc2OMBraOsSx4SIQPAAA8xtkCu+ZsPqwZCSnafiSr5HjT6Aq6v02sejWpqgBf60LHeYQPAADc3IHjOfp0dYq+2nBImWcLJUl+Pl7q3TRK97eNVZPqFawt8DcIHwAAuCG7w9DSPRmakZCiJbuPlRyvXjFQ97WJVf+W0QoL8rOwwksjfAAA4EZO5RToy/Wp+nRNilJPni053qluZd3fNlY316siby+bhRVeHuEDAAA3sOXQac1ISNH3m48ov6i4gTQkwEf9W0brvjaxqlEpyOIKrxzhAwCAUiqv0K4ftxzVjNUp2px6uuR4o6gQ3d82Vr2bVrN01sq1InwAAFDKpJ7M1cw1B/Xl+lSdzCmQJPl5e6lnfKQGta2hG2IqyGYr3ZdW/ojTw4fdbtfzzz+vTz/9VGlpaYqKitJf/vIX/fOf/3TrfygAAFzJ4TC0PPm4Pkk4oEW7MnR+BfSo0AANbBOre26MVqXy/tYW6SRODx8TJkzQtGnT9PHHH6tRo0Zav369hgwZotDQUI0YMcLZpwMAwK1l5hbqqw2pmrnmoPYfzyk53qF2JQ1qG6su9avIx9uztmJzevhYtWqV+vTpo169ekmSatSooc8++0xr16519qkAAHBbu9Ky9PGqA/p24xGdLbRLkoL9fXRXi+q6r02salcpb3GFruP08NGuXTtNnz5de/bsUd26dbV582atWLFCEydOvOj98/PzlZ+fX/J9VlbWRe8HAICn2JBySgOmJ6jQXnxtpV5EsAa1jdUdzaspyN/z2zGd/gzHjBmjrKws1a9fX97e3rLb7Xr55Zc1cODAi95//PjxeuGFF5xdBgAApdbUxckqtBtqVSNMj3erq1ZxYWWqL9LpF5G+/PJLzZw5U7NmzVJiYqI+/vhjvfHGG/r4448vev+xY8cqMzOz5Cs1NdXZJQEAUGokpWdr0a4M2WzShLubqHXN8DIVPCQXjHw88cQTGjNmjAYMGCBJio+PV0pKisaPH6/Bgwf/7v7+/v7y9/eM7l0AAC7n/eX7JEndG0Yqzo0WBnMmp4985Obmysvrwof19vaWw+Fw9qkAAHArGVl5+nbjEUnSsJtqWlyNdZw+8nH77bfr5ZdfVkxMjBo1aqSNGzdq4sSJGjp0qLNPBQCAW/lo1QEV2B1qGVtRLWIrWl2OZZwePt5++22NGzdOjzzyiDIyMhQVFaUHH3xQzz77rLNPBQBwkrMFdi3dc0y/7EjTptTTeqJbPfWIr2p1WR7lTH6RPl2dIqlsj3pIks0wDMPqIn4tKytLoaGhyszMVEhIiNXlAIDHOpVToAU70/XLjnQtTzqmvML/vzweEuCjBY93UpXgAAsr9CwfrNivF3/YoZqVgrRgdCd5lfKdZ6/W1bx/e/5kYgBAiUOncvXL9nT9siNNa/efLFnCW5KqVwxU90aRSth7QjuOZumFOTs0deAN1hXrQYrsDv13xX5J0t861vS44HG1CB8A4MEMw9CutOySwLH9yIULOTaoGqLujSLUrWGkGlQNls1m0/Yjmer9zkr9uPWo+u5I160NIyyq3nP8uPWoDp8+q/AgP915QzWry7Ec4QMAPIzdYWhDyin9sj1Nv+xI18GTuSW3edmkljXC1L1RpLo1jFB0WLnf/XyjqFD9rWOc3lu6T+O+3aY2NcMUHOBr5lPwKIZhlEyvHdyuhgJ8vS2uyHqEDwDwAHmFdq1MPq5ftqdrwc50nTi3Dbsk+fl46aY6ldStUaS61K+i8CvYGXVUl7qaty1NKSdy9frPu/Vin8auLN+jJew9oW2HsxTg66X72sRaXU6pQPgAADeVebZQi3dl6JcdaVqy+5hyC+wlt4UE+Khrgwh1axShjnUqX/V+IYF+3nrljngN/M8afbI6RX2aVSvTU0Ovx/Rzox79W0YrLMjP4mpKB8IHALiRtMw8zd9RfDklYe8JFf2qY7RqaIC6NYxQt0aRahUXJt/r3Ia9fe1KurtFdX294ZDG/G+LfhzRUX4+nrW1u6vtTsvWkt3H5GWT/tohzupySg3CBwCUcskZZ/Tzuf6NzamnL7itbkR5dWsYqW6NIhRfLdTpe4Q807OBFu/KUFLGGU1bslcju9Zx6uN7uunLikc9bmscqdjwsrmU+sUQPgCgFMrJL9LUxcmatz1N+47llBy32aQbYiqWjHC4em+QikF+eq53I434bKOmLk5WryaRql0l2KXn9BRpmXmas/mwJGlYx7K9qNhvET4AoBT657fbNHtj8RuXn7eX2tUOV7eGkerasIrpC3/d3qSqZice0uLdxzT2m6364oG2ZX6diivx4ar9KrQbalUjTM1j6Jf5NcIHAJQyyRln9N2m4uAx4a549YyvaulUV5vNppfuiNetE5dq3YFT+mzdQQ1szayNP5KdV6hZqw9Kkh4o40upXwydQwCuyqmcAm08eMrqMjzalIVJchjSrQ0jdM+NMaVijY1qFQL1j271JEmvzt2ltMw8iysq3b5Yl6rs/CLVqhykW+pXsbqcUofwAeCKOByGvlh3UDe/sUR3/HuVPji3VDScKyk9W99vKd5yfWSX0tXcObhdDTWNrqDs/CI9N2eb1eWUWoV2R8n/j2EspX5RhA8Al5Wcka0B01frqf9tVebZQknShHm7lJxxxuLKPM/khUkyDKlbwwg1rhZqdTkX8PayacJd8fLxsunn7ematy3N6pJKpR+3HNWRzDxVKu+vvs1ZSv1iCB8ALimv0K6Jv+xWj8nLtfbASQX6euuZng10U93Kyi9y6PEvN6nI7rj8A+GK7EnP1o9bj0qSRnWta3E1F1c/MkQPdiruYXj2u20lYRTFDMPQe+em1/6lXSxLqV8C4QPARa1KPq4ek5dryqJkFdoN3VK/iuaPvknDbqqp1+5qopAAH20+lKl/L9lrdake4/yox22NItUw6o+3JLfSY7fUUVylIGVk52vCvF1Wl1OqrEw+oZ1Hs1TOz5ul1P8A4QPABU7mFOjxLzfrz/9Zo/3Hc1Q52F9T/3yD/ju4papXLN6ELDI0oGSvjykLk7TtcKaVJXuE3WnZmntu1KO0L+QV4Out8XfGS5JmrTmotftPWlxR6fHesuIw3r9ltCqUYyn1SyF8AJBUPFz89YZD6vLmEv0v8ZBsNmlQm1gtfLyTejWp+ruVM/s0i1KPxpEqchh6/MvNyi+yX+KRcSUmL9wjw5B6xkeqQdXSO+pxXpua4RpwY7Qkaew3W/j9S9pxJEvLk46zlPoVIHwA0L5jZ/Tn99foH19t1qncQtWPDNbXD7XTv/o2VsglpnnabDa91LexKpX30+70bE2cv8fkqj3HzqNZmrs1TTabNLJL6ez1uJixPRqoUnl/7T2Wo6mLufz2n3MbyPWMr6rosHIWV1O6ET6AMiy/yK4pC5N02+TlSth3QgG+Xnrqtvr6/rEOV7SDaXh5f42/s4mk4j0s1h9g+P1aTF6QJKn4TatepPssXR5azlcv9G4kSZq2JFl70rMtrsg6R06f1ZzNxVOkWVTs8ggfQBm1dv9J9ZqyQhPn71FBkUMd61TSL6M66eGba13Vbqi3NozQ3S2qyzCkx7/arJz8IhdW7Xm2H8nUvO3nRz1Kd6/HxfSMj1TXBhEqtBsa878tcvxql92y5KNVB1TkMNSmZpiaVK9gdTmlHuEDKGNO5xZozP+2qP97CUrOOKNK5f00eUAzzRjaSjHh1zZU/OztDRUVGqCUE7ka/9NOJ1fs2c6PevSKr6q6Ee4z6nGezWbTv/o2Unl/HyUePK1P16RYXZLpsvIKNWtN8VLqD95Uy+Jq3APhAygjDMPQd5sOq+vEpfp8Xaok6d5W0VowupP6NKt2XVuxhwT46vV+TSVJn64+qGV7jjmlZk+37XCmftmR7rajHudVDQ3Uk7cVL73+2rzdOnL6rMUVmeuzNQd1Jr9IdaqUV6e6la0uxy0QPoAyIOVEju7/YK1Gfr5Jx88UqHaV8vrywbYaf2cTp00HbF+7kga3LV7X4Mmvtygzl8WnLmfywuJRj9ubRKmOG456/Np9rWN1Q0wFnckv0rPfbZNhlI3LLwVFDn248oAkadhNLKV+pQgfgAcrtDv07yXJ6vbWMi1POi4/Hy89fmtdzR3RUa3iwpx+vjE9GiiuUpDSsvL0/Pfbnf74nmTb4UzN35EuL5s0wo1HPc7z8rLp1buayNfbpgU7MzR3a9lYev37zUeUlpWnKsH+6tMsyupy3AbhA/BQG1JO6U9TVui1ebuVX+RQu1rhmjeyox7rUkd+Pq75rx/o5603+zeVl02avfGw5m076pLzeIJJC4qnJvduGqXaVcpbXI1z1I0I1sM315YkPTdnu8ePfhmGoffPTa/9S/sa8vdhKfUrRfgAPEzm2UI9M3ur7n53lXanZ6tiOV+92a+pZv6ttWpWdv2b3A0xFfVQp+Kmu6dnb9PxM/kuP6e72XLotBbszPCYUY9fG965lmpVDtLxM/ke33y8LOm4dqVlq5yftwa2Yin1q0H4ADyEYRj6YcsRdZ24VDPXHJRhSHe3qK6Fj9+su1pUv66G0qs1smsd1Y8M1smcAj39zdYyc/3/Sk06N8Olb7NqpgRCM/n7eOvVu4rXfvl8XaoS9p6wuCLXef/cBnIDboxRaLmLL8aHiyN8AB4g9WSuhn60To/O2qhj2fmqWSlInw1rozf6NVVYkPn7S/j7eOute5rJ19umX3ak65vEw6bXUFptSj2tRbuKRz0evaW21eW4xI01wjSwdYwk6enZW5VX6HlLr287nKkVycfl7WXT0A41rC7H7RA+ADdWZHdo+rK96vbWMi3efUx+3l4a2aWO5o7sqLa1wi2trUHVkJJt4Z+fs73MTb+8lMnnej36Nve8UY9fe6pHfUWE+Gv/8Ry9vSjJ6nKc7nyvR6/4qiUbLuLKET4AN7UrLUu931mpV+bu0tlCu1rFhWnuyI76+611FeBbOhrfHryppprHVFB2fpGe/Lrsrn553saDp7R49zF5e9k04hbP6vX4rZAAX73Qu3jn4/eW7tPOo1kWV+Q8h0+f1Q9bipupWUr92hA+ADeUW1CkoR+u046jWQoN9NVrdzXR58PalLpZEz7eXnqzX1MF+HppRfLxMrn65a+d7/W4o3k11agUZHE1rndb40h1bxShIkfx0ut2DwmfH6zYL7vDULta4WpcLdTqctwS4QNwQ1MXJ+tIZp6qVQjUwsc7qf+N0aV2caOalctrzG31JUmvzN2p/cdzLK7IGhtSTmnpnuJRj8c8tNfjYl7s01jB/j7afChTH686YHU51y3zbKE+X1u8lDqjHteO8AG4mf3Hc/T+sv2SivdUqVTe3+KKLu/+tjXUrla48godevzLTR7zCfhqnF/X464bqik23PNHPc6LCAnQmJ7F4fONX3br0Klciyu6PrPWHFROgV31IoJZSv06ED4AN2IYhp6fs10Fdoc61a2sbg0jrC7pinh52fR6v6YKPrf52HvL9lpdkqk2pJzU8qTj8vGy6TEP7/W4mHtvjFGrGmHKLbBr3Lfuu/R6fpFdH64sDv7Dbqpp6vR1T0P4ANzILzvStXRP8ayW53s3cqsXv2oVAvXs7Q0lSW/N36NdaZ7TgHg5b80v7vW4u0V1RYeVvZkRXl42vXJnvPy8vbR49zHN2XzE6pKuyZxNR5SRna+IEH/1bspS6teD8AG4ibMFdr34/Q5J0rCb4hTnhg2Ld7eorq4NIlRoN/T3LzaroMhhdUkut+7ASa1ILh71GN657PR6/FbtKuVL1jV58fsdOpVTYHFFV+fXS6kPaR/nsi0Kygr+9QA38e8lyTp8+qyiQgPc9k3MZrNp/J3xqljOVzuPZmnKQs9b/+G3zvd69GtZNkc9fu2hTrVUN6K8TuQU6OW57rX0+pI9x7Qn/YzK+/voz+cWUMO1I3wAbuDA8Ry9t7T4U9e4PzVUOT8fiyu6dpWD/fXyHfGSigPVxoOnLK7IddbuP6mVySfk6122Rz3O8/Px0vg7m8hmk77ecEgrko5bXdIVm37u/9+9raIVEsBS6teL8AGnMwyjzC8m5UyGYeiF74ubTDvWqaTbGkdaXdJ16xlfVX2aRclhSI9/uVlnCzxv+W2puLdFkvq1jGYVzHNaxFbUoDbFm7A9PXurW/zutx7KVMK+E/LxsmlI+ziry/EIhA84jd1h6JvEQ+r8xhK1e3WRW32qKc0W7MzQ4t3H5Ottc7sm0z/yYu/Gigjx177jOZowb5fV5Tjd6n0nlLCPUY+LeaJ7PVUNDdDBk7matHCP1eVc1vRzvR63N41SVIVAi6vxDIQPXDfDMDRvW5pum7RMo7/crAMncpWWladBH6zRhHm7VGj3/KZCV8krtOuF77dLkv7aoaZqedBeIKHlfDXh3O6nH606oFXJnhVWz4963HNjtKrxhnWB4ABf/atP8dLr/1m+X9sOZ1pc0aWlnszV3K3FS6kP68iiYs5C+MA1MwxDy5OOqc/UlXro0w1Kyjij0EBfPXlbPQ1sHSPDkKYt2av+7yUo9aR7LyxklWlL9urQqbOqGhrgkati3lyvSknz3hNfb1FWXqHFFTnHqr3HtWb/Sfl5ezHqcQldG0aoV3xV2R2Gxn6zVUWl9EPKByuLl1LvWKeSGkaFWF2OxyB84JpsSDmpe99frUH/XasthzJVzs9bj91SW8ue7KxHbq6tl++I178H3qDgAB9tPHhaPacs14/nNmLClTl4IlfTlhYvxvVMrwYK8nffJtM/8kzPBooJK6fDp8/qX+emErszwzBK9nAZ0CpaVUMZ9biU53o3VEiAj7YeztSHKw9YXc7vZOYW6ot1qZJYSt3ZCB+4KtuPZGroR+t017QErd53Un4+Xvprhzgte7KzHu9WT6GB/98F3jO+quaO6KgbYiooO69Iw2clauw37tFgVhq8+MN2FRQ51K5WuHrFV7W6HJcJ8vfRG/2aymaTvtpwSAt2pFtd0nVJ2HtCa8+Nejx8cy2ryynVqgQH6JleDSRJE+fvKXUjpJ+uSVFugV0NqoaoQ+1KVpfjUQgfuCL7jp3Ro7MS1WvKCi3alSFvL5vubRWtJf+4WeP+dOn9RaLDyumLB9tqeOdastmkz9YeVJ+pK7Q7LdvkZ+BeFu1K14KdGfLxsunFPp7TZHopreLCSq6nj/lmq0662QJU5xmGobfOretxL6MeV6R/y2i1qRmms4V2PT17a6lZer14KfUDkqQHborz+P+DZiN84A8dPn1WT329Rbe+tUw/nLts0rtplBaM7qTxdza5os5vX28vPdG9vj79a2tVDvbXnvQz6v3OCs1ck1JqXmhKk7xCu56fU3z5YWiHONWuEmxxReYYfWtd1alSXsfP5Lvt/h8rk09o3YFT8vPx0iP0elyR4oXnmsjPx0vLk47rlbk7lZGdZ3VZ+nbjYR0/k6+qoQH6UxOWUnc2wgcu6lh2vp6fs12dX1+iL9anyu4w1LVBhH4a2VFT7m1+TUt7t69dST+N7Kib61VWfpFDz8zepkdmJirzrGc0GTrL9GX7dPBkriJC/DWiS9nZhCzA11sT+zeTj5dNP2496nb7f/x61OPPrWIUERJgcUXuI65SkEZ1Lf5bf3/5frV/dZEe+2yj1h04aUkIdTgMvb+8eAO5oe3j5OvNW6WzeWYHG65ZZm6hpi/fqw9WHNDZwuLejHa1wvWP7vV0Q0zF6378SuX99cHgG/XfFfv12s+79NO2NG05lKkp9zZXi9jrf3x3l3oyV1MXJ0uSnu7ZQOU9tMn0UuKrh+rRW2pr0oIkPfvddrWpGe42b+LLk45rQ8op+ft46RF6Pa7aw51qqVqFQH286oASD57W95uP6PvNR9SgaojubxurPs2iTFvZd/HuDCVnnFGwv48GtIo25Zxljc0oZWObWVlZCg0NVWZmpkJCmNZkltyCIn248oDeW7pXWXlFkqRm0RX0RPd6au+iRqvNqaf12GcbdfBkrry9bBp9a1091KmWvL3K7rXVB2as1y870tU6LkyfP9CmTF5nLrQ7dOe/V2nr4Ux1qltZHw25sdT/OxiGoTunrdLGg6c1tH1cye69uDbbDmfqk4QUfbf5sPIKi6fgBgf4qF+LaA1qG+vyTRXveS9Ba/af1IM31dTYng1cei5PcjXv34SPMi6/yK5Zaw5q6uJkHT9T3ORXLyJY/+heT10bVHH5i352XqH++e02fbepeIi9fe1wvdW/maq4yaddZ1qyO0N/+XCdvL1s+mlkR9WNKBu9HheTlJ6tXm+vUEGRQ6/cEV/qN/JauueYBn+wVgG+Xlr2ZGdVCS57f7+ucDq3QF+tP6RP16Qo5cT/z4TpWKeS7m9bQ7fUr+L0DyubU0+rz9SV8vGyacVTtygylN/llSJ84LKK7A59k3hYkxcm6fDps5Kk2PByGn1rXf2pSZSpow+GYejrDYf07HfbdbbQrvAgP73Rv6k616tiWg1Wyy+yq/tby3TgRK7+1iFO//wTn5z/s3yfXvpxp8r5eWveyJsUE14690YxDEN3/HuVNqWe5nfnIg6HoaVJx/RJQooW787Q+XetahUCNbBNjO5pGa3wS8y4u1rDZybqx61HdecN1TSxfzOnPGZZQfjAJTkchn7celRvzd+jfcdzJEmRIQEa0aWO+rWsbmljVXLGGT322UbtPJolSRrWMU5PdK8vPx/Pb/aaujhZr/+8W5WD/bXo8U4KZtdMORyGBry/Wmv3n1SrGmH67IE2pfKS3OLdGRry4ToF+Hpp+ZO3qHKwc94EcXEHT+Rq5poUfbE+Vadzi5vV/Xy89Kf4qrq/XQ01i65wXY998xuL5TCkeaM6qn4k70FX42rev13yqn748GHdd999Cg8PV2BgoOLj47V+/XpXnApXyDAMLdqVrl5vr9Bjn23UvuM5Cgvy0z97NdCSJ27Wn1vHWN7RXbtKec1+pJ3+0q6GpOKu97vfXaUD50KSpzp8+qzeXlS8IuYzPRsQPM7x8rLpzX5NFeTnrbUHTuqDFfutLul3DMPQpHN7uAxqE0vwMEFMeDmN7dlAq8d20et3N1GT6qEqKHLom42H1XfqSvV+Z4W+Wp+qvMKrX8zwvyv2yWFInepWJni4mNNHPk6dOqXmzZurc+fOevjhh1W5cmUlJSWpVq1aqlXr8h3gjHw43+p9J/T6z7u1IeWUJCnY30fDbqqpoR3iSu1sil+2p+nJ/23R6dxClff30ct3NFafZtWsLsslHv50g37alqZWcWH6oow2mf6Rz9Ye1NhvtsrPx0s/PNahVPXCLNqVrqEfrVegr7eWP9X5kovtwbU2pZ7WjIQD+mHLURUUFTeoVijnq3taRuu+NrGKDrv8JbtTOQVq9+oinS20a+bfWrus0d6TWXrZZcyYMVq5cqWWL19+TT9P+HCeHUeyNP6nnVp+bmv7AF8vDW5XQw/dVEsVg/wsru7yjpw+q1Gfb9LaAyclSXe3qK4XejfyqD1Olicd06D/rpW3l00/jujAp62LMAxDQz5apyW7j6lxtRB9/VA7Bfh6W12WDMNQn6krteVQJrMiSomTOQX6Yl2qPl2dUtLLZrNJnetV0aC2sepUp7K8LnHp7u2FSXpz/h41igrRD4914EPANbA0fDRs2FDdu3fXoUOHtHTpUlWrVk2PPPKIhg0bdtH75+fnKz8//4Lio6OjCR/XKSM7T51fX6KcArt8vW26t1WMHu1c2+1mkRTZHXp7UbLeXpQkhyHVrBykt+9trkZRoVaXdt0Kihy6bfIy7TuWoyHta+i52xtZXVKplZ6Vp25vLVPm2cKr/kTrKgt2pOtvM9arnJ+3lj/Z2WkNj7h+doehxbsyNGN1ipbtOVZyPDa8nO5rHat+LaurQrn//wCWV2hXhwmLdPxMgSYPaOaxo6yuZmn4CAgofnMbPXq0+vXrp3Xr1mnkyJF69913NXjw4N/d//nnn9cLL7zwu+OEj+vz4vc79MHK/WpQNUTTB7Ww9EXaGVbvO6FRn29SWlae/Ly99EyvBrq/baxbfzqZtmSvJszbpUrl/bXoH50UQq/HH1qedExj/rf1qj/RuoJhGLr9nRXadjhLD3WqpTE96pt2blydfcfO6NPVB/XVhlRln1vDKMDXS72bRun+tjXUuFpoyaW9ahUCteSJmy3vf3NXloYPPz8/tWzZUqtWrSo5NmLECK1bt04JCQm/uz8jH86XkZWnjq8tVn6RQx8PbaVOdStbXZJTnMwp0JNfb9aCnRmSpFsbRui1u5q4xSWk3zqaeVZd3lyq3AK73uzXVHe1qG51SW7B7jC0aFeGZiQcKLmcKF36E62rzN+RrmEz1ivIz1vLn7pFYW74N1jW5BYU6btNRzQjIaVkRp0k3RBTQelZ+Tp8+qzG/amh/tohzsIq3Zuls12qVq2qhg0vnOfeoEEDHTx48KL39/f3V0hIyAVfuD7Tlu5VfpFDN8RU0E11PKdpKizIT+/f31LP3d5Qft5emr8jXT2nLNeafSesLu2qvfTjTuUW2NUytqLuvIEh3ivl7WXTrQ0j9MlfW2vR4500tH2cggN8lHIiVy/P3ak24xfqya83a9vhTJfVYBiGJp3bw2VwuxoEDzdRzs9H97aK0dwRHfT1Q23Vu2mUfL1tSjx4WodPn1VwgI/uuZGl1M3i9M699u3ba/fu3Rcc27Nnj2JjY519KlxEelaeZq4pDnp/v7WuW1+WuBibzaYh7eN0Y40wjTg3Zfje91drRJc6euyWOqVyHYjfWpl8XD9uOSovm/Rin8Ye9zsyS83K5fXs7Q31j+519e3GI5qRcEC70rL15fpD+nL9Id0QU0H3t62hHvGR8vdxXoPqLzvStf1IloL8vDWsY02nPS7MYbPZ1LJGmFrWCNOx7Ib6fO1B/bIjXYPaxJba2X+eyOmXXdatW6d27drphRdeUP/+/bV27VoNGzZM06dP18CBAy/788x2uT7Pz9muj1YdUMvYivrqobYe/caWk1+k5+Zs19cbDkmSWsWFafKAZqoaGmhxZZdWUORQzynLlZxxRoPbxuqFPo2tLsljGIah9SmnNCMhRT9tPaoiR/FLW3iQnwa0itafW8eqWoXr+9twOAz1enuFdh7N0vDOtfREd3o9gPMsX+H0hx9+0NixY5WUlKS4uDiNHj36krNdfovwce3SMvN00+uLVVDkKFPz1L/deFjPzN6qnAK7QgN99UzPBurXsnqpDF7Tl+3VK3N3KTzIT4v+cbNCA2kydYWM7Dx9vjZVs9YcVFpWniTJyyZ1bRCh+9vWUPva4df09zFv21E99Gmiyvv7aMVTnU3pLwHcheXh43oQPq7ds99t04yEFLWqEaYvHixbi1XtP56jEZ9t1NZz1/pbxYXplTviVbtKeYsr+3/pWXm65Y3i6c+v3d1E/VtyfdnViuwOzd+RrhkJKUr4VW9QzcpBGtQmVne1qH7Fs4wcDkM9pyzXrrRsPXZLbT3erZ6rygbcEuGjDDpy+qxufn2JCuwOzRrWWu1qlY1Rj18rsjv04coDmjh/j84W2uXn7aWHb66lh2+uVSoWpRrx2UbN2XxEzWMq6H8PtTN1aiiKd8r9ZHWK/rfhkHIKipfeLufnrb7Nq+n+trGXXeDtp61H9fDMRAX7+2jFU7cotByjVsCvWb63C8w3bcleFdgdah0XViaDhyT5eHtp2E019cvfb1LnepVVYHdo8sIk9Zy8XAl7rZ0Rk7D3hOZsPiKbTfpXn8YEDwvUiQjWi30aa80zXfWvPo1Up0p55RbYNWvNQd02abn6v5ug7zcfUaHd8bufdTgMTVpQvP/OkA5xBA/gOjHy4QF+Perx2bA2alsr3OqSLGcYhuZuTdPz32/XsezidWT6taiup3s2MH1dkEK7Q72mLNee9DO6r02MXuobb+r5cXGGYWj1vpP6ZPUB/bw9XfZzDaqVg/11b6sYDWwdo4hzKwL/uOWohs9KVHDAuVEPenWA37ma92/mFXmAqYuTVWB3qE3NMILHOTabTb2aVFWHOpX0+s+7NHPNQX214ZAW7srQP3s10B3Nq5nWE/PxqgPak35GFcv56h/0CZQaNptNbWuFq22tcB3NPKvP1hzUrLWpOpadrykLkzR1cbK6N4rQoDY1NHlh8boef+0QR/AAnICRDzd36FSuOr+xRIV2Q1880EataxI+LmZDyik9/c1W7U7PliS1rx2ul/rGK65SkEvPm5GVp1veXKoz+UV69c54DWgV49Lz4foUFDk0b3uaPkk4oHUHTl1wG6MewB+j56MMmbp4rwrthtrVCid4/IEWsRX1w4gOevK2evL38dLK5BPqPmmZ3lmUVLIFtyu8MnenzuQXqWl0BWa3uAE/n+I9P756qJ3mjuioe1vFKPBcs/JDnWoRPAAnYeTDjaWeLB71KHIY+uqhtrqxRpjVJbmFlBM5+ue320r2BqldpbzG3xnv9H+/NftO6J7pq2WzSd8Nb68m1Ss49fFhjsyzhUpKz1aL2Iplavo6cLUY+Sgjpi5OVpHDUIfalQgeVyE2PEgzhrbS5AHNFB7kp+SMM+r3boLGfrNFmbmFTjlHkd2h5+ZslyQNuDGG4OHGQgN91bJGGMEDcCLCh5tKPZlbsqz4qK51LK7G/dhsNvVpVk0LH++kAec2k/psbaq6TFyi7zYd1vUOCM5ISNGutGxVKOerJ7vTZAoAv0b4cFPvLCoe9ehYp5JaMupxzSqU89OrdzXRFw+0Ua3KQTp+pkAjP9+kwR+uU+rJ3Gt6zIzsPL01v3h2xJPd65s+tRcASjvChxs6eCJXXyeeH/Woa3E1nqF1zXDNHdlRo2+tKz8fLy3bc0y3vrVU05bsveiiU3/k1Z92KTu/SE2qh7JFNwBcBOHDDb29KEl2h6Gb6lZWi9iKVpfjMfx9vDWiSx3NG9lRbWuGK6/QoQnzdun2t1co8eCpyz+ApPUHTuqbxMOy2aQX+zSWNyuZAsDvED7czIHjOfpm42FJ0t/p9XCJmpXLa9aw1nqjX1NVLOerXWnZumvaKo37dpuy8i7dkFpkd2jcd8VNpve0jFaz6AomVQwA7oXw4WbeXpQsu8PQzfUqq3kMox6uYrPZdHeL6lr4+M2664bqMgzpk9Up6vrmUs3devSiDakz1xzUzqNZCg301ZO31begagBwD4QPN7L/eI5mb6TXw0xhQX56s39TzRrWWnGVgpSRna9HZibqbx+v1+HTZ0vud/xMvt74Zbck6R/d6ymMJlMAuCTChxt5e2GSHIZ0S/0qDOmbrF2tSvppZEeNuKW2fL1tWrgrQ7dOXKr/LN+nIrtDE37apey8IjWuFqI/s4Q6APwhVjh1E3uPndGtE5fKYUhzHmW1TCslZ2Tr6W+2ae2Bk5KkOlXKKynjjCTpfw+3owkYQJnECqce6J1FyXIYUpf6VQgeFqtdJVifP9BGr94Zr5AAn5Lg0a9FdYIHAFwBH6sLwOXtPXZG320qnuFCr0fp4OVl04BWMerSIEKv/7xLR07naUwPmkwB4EoQPtzAlHO9Hl0bRCi+eqjV5eBXKgf767W7m1pdBgC4FS67lHLJGdmas/mIJPZwAQB4BsJHKTd5YbIMQ+rWMEKNqzHqAQBwf4SPUmxPerZ+2HJ+1INeDwCAZyB8lGKTFybJMKTbGkWqYRTTjgEAnoHwUUrtTsvW3K1HJUkj6fUAAHgQwkcpNeXcqEePxpFqUJVRDwCA5yB8lEK70rL0I6MeAAAPRfgohSYvSJIk9YqvqvqRjHoAADxLmQofpWwbm4vacSRLP21Lk83GqAcAwDOVmfDhcBgaNmO9Ply5v1SHkMkL90gqHvWoGxFscTUAADhfmQkf87anacHODL3w/Q4Nm7Fep3IKrC7pd7YfydTP29OLRz26MOoBAPBMZSZ89GgcqRd6N5Kft5cW7MxQj8nLtXrfCavLusCkc70etzeJUh1GPQAAHqrMhA+bzabB7Wpo9vB2qlk5SGlZefrz+6v11vw9KrI7rC5P2w5nav6O4lGPEV1qW10OAAAuU2bCx3mNokL1/aMddHeL6nIYxauI/vk/a3Q086yldZ0f9ejdNEq1qzDqAQDwXGUufEhSkL+P3ujXVJMHNFN5fx+t3X9SPSYv1/wd6ZbUs/VQphbsTJeXTRpBrwcAwMOVyfBxXp9m1fTjiA5qUj1Up3MLNWzGej0/Z7vyCu2m1jFpwZ6SempVLm/quQEAMFuZDh+SFBsepK8faqdhHeMkSR+tOqA7/r1Ke4+dMeX8m1NPa+GuDHnZpMduodcDAOD5ynz4kCQ/Hy8906uhPhxyo8KD/LTzaJb+NGWFvlqf6vI1Qc6PevRtXk01GfUAAJQBhI9f6Vyvin4a2VHta4frbKFdT3y9RaO+2KTsvEKXnG/jwVNavPuYvL1sGnELvR4AgLKB8PEbVUICNGNoaz3RvZ68vWz6btMR/entFdpy6LTTz3V+hkvfZtVUo1KQ0x8fAIDSiPBxEd5eNg3vXFtfPthG1SoEKuVEru6atkrvL9snh8M5l2ESD57S0j3nRj1Y1wMAUIYQPv5Ai9gwzR3ZUT0aR6rQbujluTs19ON1On4m/7of+/yox53Nqyk2nFEPAEDZQfi4jNBAX/174A16+Y7G8vfx0pLdx9Rj8nKtTD5+zY+5IeWUlu05Jh8vmx6j1wMAUMYQPq6AzWbTwNaxmvNoB9WpUl7HsvN133/X6PWfd6nwGpZmPz/D5a4bqismvJyzywUAoFQjfFyFepHBmvNoB93bKkaGIU1dvFf3vJeg1JO5V/wY6w+c1PKk4/LxsulR1vUAAJRBhI+rFOjnrfF3xmvqn29QcICPEg+eVs8py/XT1qNX9PNvnRv16NeyuqLDGPUAAJQ9hI9r1KtJVc0d0VHNYyooO69ID89M1NOzt/7h0uxr95/UyuQT8jk3mwYAgLKI8HEdosPK6csH2+qRm2vJZpNmrTmoPu+s1J707Ive/63550c9olW9IqMeAICyifBxnXy9vfTkbfX1ydDWqhzsr93p2er9zgrNWnPwgqXZV+87oYR9J+TrTa8HAKBsI3w4SYc6lfTTyI7qVLey8godenr2Vj06a6MyzxYvzX5+hkv/ltGqViHQylIBALAU4cOJKpX314d/uVFP96wvHy+bftx6VL2mLNf7y/Zp9b6T8vP2otcDAFDmuTx8vPrqq7LZbBo1apSrT1UqeHnZ9MBNtfT1w+0UE1ZOh06d1ctzd0qS7rkxWlGMegAAyjiXho9169bpvffeU5MmTVx5mlKpWXQF/Tiig3o3jZIk+fl46ZHOtSyuCgAA67ksfJw5c0YDBw7U+++/r4oVK7rqNKVacICvJg9opk//2lr/e6idqoYy6gEAgMvCx/Dhw9WrVy917drVVadwCzabTR3qVFJ89VCrSwEAoFTwccWDfv7550pMTNS6desue9/8/Hzl5///LrFZWVmuKAkAAJQSTh/5SE1N1ciRIzVz5kwFBARc9v7jx49XaGhoyVd0dLSzSwIAAKWIzfj1SlhO8O233+qOO+6Qt7d3yTG73S6bzSYvLy/l5+dfcNvFRj6io6OVmZmpkJAQZ5YGAABcJCsrS6GhoVf0/u30yy5dunTR1q1bLzg2ZMgQ1a9fX0899dQFwUOS/P395e/v7+wyAABAKeX08BEcHKzGjRtfcCwoKEjh4eG/Ow4AAMoeVjgFAACmcslsl99asmSJGacBAABugJEPAABgKsIHAAAwFeEDAACYivABAABMRfgAAACmInwAAABTET4AAICpCB8AAMBUhA8AAGAqwgcAADAV4QMAAJiK8AEAAExF+AAAAKYifAAAAFMRPgAAgKkIHwAAwFSEDwAAYCrCBwAAMBXhAwAAmIrwAQAATEX4AAAApiJ8AAAAUxE+AACAqQgfAADAVIQPAABgKsIHAAAwFeEDAACYivABAABMRfgAAACmInwAAABTET4AAICpCB8AAMBUhA8AAGAqwgcAADAV4QMAAJiK8AEAAExF+AAAAKYifAAAAFMRPgAAgKkIHwAAwFSEDwAAYCrCBwAAMBXhAwAAmIrwAQAATEX4AAAApiJ8AAAAUxE+AACAqQgfAADAVIQPAABgKsIHAAAwFeEDAACYivABAABM5fTwMX78eN14440KDg5WlSpV1LdvX+3evdvZpwEAAG7K6eFj6dKlGj58uFavXq358+ersLBQ3bp1U05OjrNPBQAA3JDNMAzDlSc4duyYqlSpoqVLl+qmm2667P2zsrIUGhqqzMxMhYSEuLI0AADgJFfz/u3j6mIyMzMlSWFhYRe9PT8/X/n5+SXfZ2VlubokAABgIZc2nDocDo0aNUrt27dX48aNL3qf8ePHKzQ0tOQrOjralSUBAACLufSyy8MPP6yffvpJK1asUPXq1S96n4uNfERHR3PZBQAAN1IqLrs8+uij+uGHH7Rs2bJLBg9J8vf3l7+/v6vKAAAApYzTw4dhGHrsscc0e/ZsLVmyRHFxcc4+BQAAcGNODx/Dhw/XrFmz9N133yk4OFhpaWmSpNDQUAUGBjr7dAAAwM04vefDZrNd9PiHH36ov/zlL5f9eabaAgDgfizt+XDxsiEAAMDNsbcLAAAwFeEDAACYivABAABMRfgAAACmInwAAABTET4AAICpCB8AAMBUhA8AAGAqwgcAADAV4QMAAJiK8AEAAExF+AAAAKYifAAAAFMRPgAAgKkIHwAAwFSEDwAAYCrCBwAAMBXhAwAAmIrwAQAATEX4AAAApiJ8AAAAUxE+AACAqQgfAADAVIQPAABgKsIHAAAwFeEDAACYivABAABMRfgAAACmInwAAABTET4AAICpCB8AAMBUhA8AAGAqwgcAADAV4QMAAJiK8AEAAExF+AAAAKYifAAAAFMRPgAAgKkIHwAAwFSEDwAAYCrCBwAAMBXhAwAAmIrwAQAATEX4AAAApiJ8AAAAUxE+AACAqQgfAADAVIQPAABgKsIHAAAwFeEDAACYivABAABMRfgAAACmcln4mDp1qmrUqKGAgAC1bt1aa9euddWpAACAG3FJ+Pjiiy80evRoPffcc0pMTFTTpk3VvXt3ZWRkuOJ0AADAjbgkfEycOFHDhg3TkCFD1LBhQ7377rsqV66cPvjgA1ecDgAAuBEfZz9gQUGBNmzYoLFjx5Yc8/LyUteuXZWQkPC7++fn5ys/P7/k+8zMTElSVlaWs0sDAAAucv592zCMy97X6eHj+PHjstvtioiIuOB4RESEdu3a9bv7jx8/Xi+88MLvjkdHRzu7NAAA4GLZ2dkKDQ39w/s4PXxcrbFjx2r06NEl3zscDp08eVLh4eGy2WxOPVdWVpaio6OVmpqqkJAQpz52acTz9Ww8X89W1p6vVPaes6c9X8MwlJ2draioqMve1+nho1KlSvL29lZ6evoFx9PT0xUZGfm7+/v7+8vf3/+CYxUqVHB2WRcICQnxiF/0leL5ejaer2cra89XKnvP2ZOe7+VGPM5zesOpn5+fWrRooYULF5YcczgcWrhwodq2bevs0wEAADfjkssuo0eP1uDBg9WyZUu1atVKkyZNUk5OjoYMGeKK0wEAADfikvBxzz336NixY3r22WeVlpamZs2aad68eb9rQjWbv7+/nnvuud9d5vFUPF/PxvP1bGXt+Upl7zmXtef7azbjSubEAAAAOAl7uwAAAFMRPgAAgKkIHwAAwFSEDwAAYKoyEz6mTp2qGjVqKCAgQK1bt9batWutLsllxo8frxtvvFHBwcGqUqWK+vbtq927d1tdlileffVV2Ww2jRo1yupSXOrw4cO67777FB4ersDAQMXHx2v9+vVWl+USdrtd48aNU1xcnAIDA1WrVi3961//uqL9I9zBsmXLdPvttysqKko2m03ffvvtBbcbhqFnn31WVatWVWBgoLp27aqkpCRrinWCP3q+hYWFeuqppxQfH6+goCBFRUXp/vvv15EjR6wr+Dpd7vf7aw899JBsNpsmTZpkWn1WKRPh44svvtDo0aP13HPPKTExUU2bNlX37t2VkZFhdWkusXTpUg0fPlyrV6/W/PnzVVhYqG7duiknJ8fq0lxq3bp1eu+999SkSROrS3GpU6dOqX379vL19dVPP/2kHTt26M0331TFihWtLs0lJkyYoGnTpumdd97Rzp07NWHCBL322mt6++23rS7NKXJyctS0aVNNnTr1ore/9tprmjJlit59912tWbNGQUFB6t69u/Ly8kyu1Dn+6Pnm5uYqMTFR48aNU2Jior755hvt3r1bvXv3tqBS57jc7/e82bNna/Xq1Ve0NLlHMMqAVq1aGcOHDy/53m63G1FRUcb48eMtrMo8GRkZhiRj6dKlVpfiMtnZ2UadOnWM+fPnG506dTJGjhxpdUku89RTTxkdOnSwugzT9OrVyxg6dOgFx+68805j4MCBFlXkOpKM2bNnl3zvcDiMyMhI4/XXXy85dvr0acPf39/47LPPLKjQuX77fC9m7dq1hiQjJSXFnKJc6FLP99ChQ0a1atWMbdu2GbGxscZbb71lem1m8/iRj4KCAm3YsEFdu3YtOebl5aWuXbsqISHBwsrMk5mZKUkKCwuzuBLXGT58uHr16nXB79lTzZkzRy1btlS/fv1UpUoVNW/eXO+//77VZblMu3bttHDhQu3Zs0eStHnzZq1YsUI9evSwuDLX279/v9LS0i74uw4NDVXr1q3L1OuXzWZz+Z5fVnE4HBo0aJCeeOIJNWrUyOpyTGP5rraudvz4cdnt9t+trhoREaFdu3ZZVJV5HA6HRo0apfbt26tx48ZWl+MSn3/+uRITE7Vu3TqrSzHFvn37NG3aNI0ePVpPP/201q1bpxEjRsjPz0+DBw+2ujynGzNmjLKyslS/fn15e3vLbrfr5Zdf1sCBA60uzeXS0tIk6aKvX+dv82R5eXl66qmndO+993rMxmu/NWHCBPn4+GjEiBFWl2Iqjw8fZd3w4cO1bds2rVixwupSXCI1NVUjR47U/PnzFRAQYHU5pnA4HGrZsqVeeeUVSVLz5s21bds2vfvuux4ZPr788kvNnDlTs2bNUqNGjbRp0yaNGjVKUVFRHvl8UaywsFD9+/eXYRiaNm2a1eW4xIYNGzR58mQlJibKZrNZXY6pPP6yS6VKleTt7a309PQLjqenpysyMtKiqszx6KOP6ocfftDixYtVvXp1q8txiQ0bNigjI0M33HCDfHx85OPjo6VLl2rKlCny8fGR3W63ukSnq1q1qho2bHjBsQYNGujgwYMWVeRaTzzxhMaMGaMBAwYoPj5egwYN0t///neNHz/e6tJc7vxrVFl7/TofPFJSUjR//nyPHfVYvny5MjIyFBMTU/L6lZKSoscff1w1atSwujyX8vjw4efnpxYtWmjhwoUlxxwOhxYuXKi2bdtaWJnrGIahRx99VLNnz9aiRYsUFxdndUku06VLF23dulWbNm0q+WrZsqUGDhyoTZs2ydvb2+oSna59+/a/mzq9Z88excbGWlSRa+Xm5srL68KXKm9vbzkcDosqMk9cXJwiIyMveP3KysrSmjVrPPb163zwSEpK0oIFCxQeHm51SS4zaNAgbdmy5YLXr6ioKD3xxBP6+eefrS7PpcrEZZfRo0dr8ODBatmypVq1aqVJkyYpJydHQ4YMsbo0lxg+fLhmzZql7777TsHBwSXXhkNDQxUYGGhxdc4VHBz8u16WoKAghYeHe2yPy9///ne1a9dOr7zyivr376+1a9dq+vTpmj59utWlucTtt9+ul19+WTExMWrUqJE2btyoiRMnaujQoVaX5hRnzpxRcnJyyff79+/Xpk2bFBYWppiYGI0aNUovvfSS6tSpo7i4OI0bN05RUVHq27evdUVfhz96vlWrVtXdd9+txMRE/fDDD7Lb7SWvX2FhYfLz87Oq7Gt2ud/vb8OVr6+vIiMjVa9ePbNLNZfV023M8vbbbxsxMTGGn5+f0apVK2P16tVWl+Qyki769eGHH1pdmik8faqtYRjG999/bzRu3Njw9/c36tevb0yfPt3qklwmKyvLGDlypBETE2MEBAQYNWvWNJ555hkjPz/f6tKcYvHixRf9/zp48GDDMIqn244bN86IiIgw/P39jS5duhi7d++2tujr8EfPd//+/Zd8/Vq8eLHVpV+Ty/1+f6usTLW1GYaHLBMIAADcgsf3fAAAgNKF8AEAAExF+AAAAKYifAAAAFMRPgAAgKkIHwAAwFSEDwAAYCrCBwAAMBXhAwAAmIrwAQAATEX4AAAApiJ8AAAAU/0fbiBCr9lDU6QAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "plt.ylim(bottom = 0, top = max(data)*1.4)\n", - "plt.plot(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "def create_dummies(data, quarters):\n", - " dummies = np.zeros((len(data), len(quarters)))\n", - " \n", - " for i in range(len(dummies)):\n", - " dummies[i][i%len(quarters)] = 1\n", - "\n", - " return dummies[:,:-1]\n", - "\n", - "dummies = create_dummies(data, Quarter)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "m = Model()\n", - "b_0 = m.continuous_var(name = 'Intercept', lb = -10e6)\n", - "b_1 = m.continuous_var(name = 'Trend', lb = -10e6)\n", - "b_x = m.continuous_var_list(len(Quarter)-1, lb = -10e6, name = 'Slope')\n", - "\n", - "mse = []\n", - "for i in range(len(data)):\n", - " mse.append((b_0 + b_1 * Year[i%len(Year)] + b_x @ dummies[i] - data[i])**2)\n", - "\n", - "m.minimize(sum(mse))" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-11 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Number of nonzeros in lower triangle of Q = 7\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.00 sec. (0.00 ticks)\n", - "Summary statistics for factor of Q:\n", - " Rows in Factor = 5\n", - " Integer space required = 5\n", - " Total non-zeros in factor = 15\n", - " Total FP ops to factor = 55\n", - "Tried aggregator 1 time.\n", - "QP Presolve eliminated 1 rows and 1 columns.\n", - "QP Presolve added 0 rows and 5 columns.\n", - "Reduced QP has 4 rows, 9 columns, and 16 nonzeros.\n", - "Reduced QP objective Q matrix has 4 nonzeros.\n", - "Presolve time = 0.02 sec. (0.00 ticks)\n", - "Parallel mode: using up to 4 threads for barrier.\n", - "Number of nonzeros in lower triangle of A*A' = 5\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.00 sec. (0.00 ticks)\n", - "Summary statistics for Cholesky factor:\n", - " Threads = 4\n", - " Rows in Factor = 4\n", - " Integer space required = 4\n", - " Total non-zeros in factor = 10\n", - " Total FP ops to factor = 30\n", - " Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf \n", - " 0 3.2103893e+15 -3.2104192e+15 2.71e+06 0.00e+00 1.41e+09\n", - " 1 5.0913834e+13 -5.0976514e+13 3.41e+05 0.00e+00 1.77e+08\n", - " 2 1.3292638e+09 -1.8127584e+09 1.74e+03 0.00e+00 9.06e+05\n", - " 3 3.2901991e+04 -2.4504107e+06 8.72e+00 0.00e+00 4.53e+03\n", - " 4 6.4394786e+00 -1.2079451e+04 4.36e-02 0.00e+00 2.27e+01\n", - " 5 7.2940343e+00 -5.3127135e+01 2.18e-04 0.00e+00 1.13e-01\n", - " 6 7.3024547e+00 7.0003519e+00 1.13e-06 0.00e+00 5.66e-04\n", - " 7 7.3025155e+00 7.2651676e+00 1.42e-07 0.00e+00 1.05e-05\n", - " 8 7.3025017e+00 7.2911072e+00 2.01e-08 0.00e+00 1.76e-06\n", - " 9 7.3024982e+00 7.3002799e+00 8.38e-08 0.00e+00 7.64e-14\n", - " 10 7.3024980e+00 7.3020560e+00 1.40e-08 0.00e+00 1.59e-13\n", - " 11 7.3025000e+00 7.3024112e+00 3.27e-09 0.00e+00 1.70e-13\n", - " 12 7.3025000e+00 7.3024822e+00 9.59e-09 0.00e+00 1.14e-13\n", - " 13 7.3024989e+00 7.3024964e+00 1.12e-08 0.00e+00 1.59e-13\n", - "Barrier time = 0.06 sec. (0.03 ticks)\n", - "\n", - "Total time on 4 threads = 0.06 sec. (0.03 ticks)\n" - ] - } - ], - "source": [ - "solution = m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "solution for: docplex_model10\n", - "objective: 7.30251\n", - "status: OPTIMAL_SOLUTION(2)\n", - "Intercept=-168630.578\n", - "Trend=42159.526\n", - "Slope_0=126476.777\n", - "Slope_1=84316.727\n", - "Slope_2=42159.076\n", - "\n" - ] - } - ], - "source": [ - "print(solution) # The numbers seem way to dumb. But I will trust it." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Time Series/TextbookSales_Problem.ipynb b/Time Series/TextbookSales_Problem.ipynb deleted file mode 100644 index 5e17869..0000000 --- a/Time Series/TextbookSales_Problem.ipynb +++ /dev/null @@ -1,178 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfrUlEQVR4nO3deViU5f4G8HsWZlhn2GSTRRQVUUBFRdRM00SjxbRTlqknrY4drJSOmueY7Wn2a1+sjpXV0VLb09Rww1RERRHccMNAcUAUZlgHmHl/f8BMUi4sA++8cH+ua65LZt6Z+Q4X49zzPt/neWSCIAggIiIikhC52AUQERERNRUDDBEREUkOAwwRERFJDgMMERERSQ4DDBEREUkOAwwRERFJDgMMERERSQ4DDBEREUmOUuwCWovZbEZ+fj7c3Nwgk8nELoeIiIgaQRAElJaWIiAgAHL5tc+ztNsAk5+fj6CgILHLICIiombIy8tDYGDgNW9vtwHGzc0NQN0vQKPRiFwNERERNYbBYEBQUJD1c/xa2m2AsQwbaTQaBhgiIiKJuVH7B5t4iYiISHIYYIiIiEhyGGCIiIhIchhgiIiISHIYYIiIiEhyGGCIiIhIchhgiIiISHIYYIiIiEhyGGCIiIhIchhgiIiISHIYYIiIiEhyGGCIiIhIchhgiIiISHIYYIiIiEhyGGCIiIhIchhgiIiISHIYYIiIiEhyGGCIiIhIchhgiIiISHIYYIiIiEhyGGCIiIhIchhgiIiISHIYYIiIiEhyGGCIiIhIchhgiIiISHIYYIiIiEhyWhRglixZAplMhtmzZ1uvq6qqQmJiIry8vODq6oqJEyeioKCgwf1yc3ORkJAAZ2dn+Pj4YO7cuaitrW1wzPbt29G/f3+o1WqEhYVhxYoVLSmViIiI2pFmB5h9+/bho48+QlRUVIPr58yZg59//hlr165FSkoK8vPzMWHCBOvtJpMJCQkJqK6uxu7du/H5559jxYoVWLRokfWYnJwcJCQkYOTIkcjIyMDs2bPx8MMPY9OmTc0tl4iIiNoToRlKS0uF7t27C8nJycLNN98sPPnkk4IgCEJJSYng4OAgrF271nrssWPHBABCamqqIAiC8MsvvwhyuVzQ6XTWY5YtWyZoNBrBaDQKgiAI8+bNE3r37t3gOe+77z4hPj6+0TXq9XoBgKDX65vzEomIiEgEjf38btYZmMTERCQkJGD06NENrk9PT0dNTU2D68PDwxEcHIzU1FQAQGpqKiIjI+Hr62s9Jj4+HgaDAUeOHLEe8+fHjo+Ptz7G1RiNRhgMhgYXIiIiap+UTb3D119/jQMHDmDfvn1/uU2n00GlUsHd3b3B9b6+vtDpdNZjrgwvltstt13vGIPBgMrKSjg5Of3luRcvXoznn3++qS+HiIiIJKhJZ2Dy8vLw5JNPYuXKlXB0dGytmpplwYIF0Ov11kteXp7YJREREVEraVKASU9PR2FhIfr37w+lUgmlUomUlBS88847UCqV8PX1RXV1NUpKShrcr6CgAH5+fgAAPz+/v8xKsvx8o2M0Gs1Vz74AgFqthkajaXAhIiKi9qlJAWbUqFHIyspCRkaG9TJgwABMnjzZ+m8HBwds2bLFep/s7Gzk5uYiLi4OABAXF4esrCwUFhZaj0lOToZGo0FERIT1mCsfw3KM5TGIiIioY2tSD4ybmxv69OnT4DoXFxd4eXlZr58xYwaSkpLg6ekJjUaDxx9/HHFxcRg8eDAAYMyYMYiIiMCUKVOwdOlS6HQ6LFy4EImJiVCr1QCAmTNn4r333sO8efMwffp0bN26FWvWrMH69ett8ZqJiIhI4prcxHsjb775JuRyOSZOnAij0Yj4+Hh88MEH1tsVCgXWrVuHxx57DHFxcXBxccG0adPwwgsvWI8JDQ3F+vXrMWfOHLz99tsIDAzE8uXLER8fb+tyiYiISIJkgiAIYhfRGgwGA7RaLfR6PfthiIiIJKKxn9/cC4mIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkp0kBZtmyZYiKioJGo4FGo0FcXBw2bNhgvX3EiBGQyWQNLjNnzmzwGLm5uUhISICzszN8fHwwd+5c1NbWNjhm+/bt6N+/P9RqNcLCwrBixYrmv0IiIiJqd5RNOTgwMBBLlixB9+7dIQgCPv/8c9x11104ePAgevfuDQB45JFH8MILL1jv4+zsbP23yWRCQkIC/Pz8sHv3bly4cAFTp06Fg4MDXnnlFQBATk4OEhISMHPmTKxcuRJbtmzBww8/DH9/f8THx9viNRMREZHEyQRBEFryAJ6ennjttdcwY8YMjBgxAn379sVbb7111WM3bNiA22+/Hfn5+fD19QUAfPjhh5g/fz4uXrwIlUqF+fPnY/369Th8+LD1fpMmTUJJSQk2btzY6LoMBgO0Wi30ej00Gk1LXiIRERG1kcZ+fje7B8ZkMuHrr79GeXk54uLirNevXLkS3t7e6NOnDxYsWICKigrrbampqYiMjLSGFwCIj4+HwWDAkSNHrMeMHj26wXPFx8cjNTX1uvUYjUYYDIYGFyIiImqfmjSEBABZWVmIi4tDVVUVXF1d8f333yMiIgIA8MADDyAkJAQBAQHIzMzE/PnzkZ2dje+++w4AoNPpGoQXANafdTrddY8xGAyorKyEk5PTVetavHgxnn/++aa+HCIiIpKgJgeYnj17IiMjA3q9Ht988w2mTZuGlJQURERE4NFHH7UeFxkZCX9/f4waNQqnT59Gt27dbFr4ny1YsABJSUnWnw0GA4KCglr1OYmIiEgcTR5CUqlUCAsLQ0xMDBYvXozo6Gi8/fbbVz02NjYWAHDq1CkAgJ+fHwoKChocY/nZz8/vusdoNJprnn0BALVabZ0dZbkQERFR+9TidWDMZjOMRuNVb8vIyAAA+Pv7AwDi4uKQlZWFwsJC6zHJycnQaDTWYai4uDhs2bKlweMkJyc36LMhIiKijq1JQ0gLFizAuHHjEBwcjNLSUqxatQrbt2/Hpk2bcPr0aaxatQq33XYbvLy8kJmZiTlz5mD48OGIiooCAIwZMwYRERGYMmUKli5dCp1Oh4ULFyIxMRFqtRoAMHPmTLz33nuYN28epk+fjq1bt2LNmjVYv3697V89ERERSVKTAkxhYSGmTp2KCxcuQKvVIioqCps2bcKtt96KvLw8bN68GW+99RbKy8sRFBSEiRMnYuHChdb7KxQKrFu3Do899hji4uLg4uKCadOmNVg3JjQ0FOvXr8ecOXPw9ttvIzAwEMuXL+caMERERGTV4nVg7BXXgSEiIpKeVl8HhoiIiEgsDDBEREQkOQwwREREJDkMMERERCQ5DDBEREQkOQwwREREJDkMMERERCQ5DDBEREQkOQwwREREJDkMMERERCQ5DDBEREQkOQwwREREJDkMMERERCQ5DDBEREQkOQwwREREJDkMMERERCQ5DDBEREQkOQwwREREJDkMMERERCQ5DDBEREQkOQwwREREJDkMMERERCQ5DDBEREQkOQwwREREJDkMMERERCQ5DDBEREQkOQwwREREJDkMMERERCQ5DDBEREQkOQwwREREJDkMMERERCQ5TQowy5YtQ1RUFDQaDTQaDeLi4rBhwwbr7VVVVUhMTISXlxdcXV0xceJEFBQUNHiM3NxcJCQkwNnZGT4+Ppg7dy5qa2sbHLN9+3b0798farUaYWFhWLFiRfNfIREREbU7TQowgYGBWLJkCdLT07F//37ccsstuOuuu3DkyBEAwJw5c/Dzzz9j7dq1SElJQX5+PiZMmGC9v8lkQkJCAqqrq7F79258/vnnWLFiBRYtWmQ9JicnBwkJCRg5ciQyMjIwe/ZsPPzww9i0aZONXjIRERFJnUwQBKElD+Dp6YnXXnsN99xzDzp16oRVq1bhnnvuAQAcP34cvXr1QmpqKgYPHowNGzbg9ttvR35+Pnx9fQEAH374IebPn4+LFy9CpVJh/vz5WL9+PQ4fPmx9jkmTJqGkpAQbN25sdF0GgwFarRZ6vR4ajaYlL5GIiIjaSGM/v5vdA2MymfD111+jvLwccXFxSE9PR01NDUaPHm09Jjw8HMHBwUhNTQUApKamIjIy0hpeACA+Ph4Gg8F6Fic1NbXBY1iOsTzGtRiNRhgMhgYXIiIiap+aHGCysrLg6uoKtVqNmTNn4vvvv0dERAR0Oh1UKhXc3d0bHO/r6wudTgcA0Ol0DcKL5XbLbdc7xmAwoLKy8pp1LV68GFqt1noJCgpq6ksjIiIiiWhygOnZsycyMjKQlpaGxx57DNOmTcPRo0dbo7YmWbBgAfR6vfWSl5cndklERETUSpRNvYNKpUJYWBgAICYmBvv27cPbb7+N++67D9XV1SgpKWlwFqagoAB+fn4AAD8/P+zdu7fB41lmKV15zJ9nLhUUFECj0cDJyemadanVaqjV6qa+HCIiIpKgFq8DYzabYTQaERMTAwcHB2zZssV6W3Z2NnJzcxEXFwcAiIuLQ1ZWFgoLC63HJCcnQ6PRICIiwnrMlY9hOcbyGERERERNOgOzYMECjBs3DsHBwSgtLcWqVauwfft2bNq0CVqtFjNmzEBSUhI8PT2h0Wjw+OOPIy4uDoMHDwYAjBkzBhEREZgyZQqWLl0KnU6HhQsXIjEx0Xr2ZObMmXjvvfcwb948TJ8+HVu3bsWaNWuwfv162796IiIiO2M2CyiuqIaXK0cVrqdJAaawsBBTp07FhQsXoNVqERUVhU2bNuHWW28FALz55puQy+WYOHEijEYj4uPj8cEHH1jvr1AosG7dOjz22GOIi4uDi4sLpk2bhhdeeMF6TGhoKNavX485c+bg7bffRmBgIJYvX474+HgbvWQiIiL7tfDHw1iVlosHYoPx9LhwaBwdxC7JLrV4HRh7xXVgiIhIakxmATEvJaOkogYA4KdxxEvj+2B0hO8N7tl+tPo6MERE7cXh83os3nAMl8urxS6FOrgj+XqUVNTARaVAFy9n6AxVePiL/Zi16gCKyoxil2dXGGCIqMN7cd1RfJRyBg99thflxtob34Golew8VQQAiOvmjY2zh+MfN3eFQi7DuswLGP1GCr47cA7tdOCkyRhgiKhDq6ox4WBeCQDg0Dk9Hlt5ANW1ZnGLog5rV32Auam7NxwdFFgwrhd++OdQ9PLXoKSiBklrDmHaZ/twrrhC5ErFxwBDRB3aobwSVNea4eaohJODAjtOXMT8bzNhNvNbLrWtqhoT9p0tBgAMDfO2Xh8ZqMVPs4ZibnxPqJRy7DhxEWPe3IEVu3I69N8pAwwRdWhpOZcBAMN7dMKyB/tDKZfh+4PnsWTjcZEro45m/9liVNea4adxRLdOLg1uc1DIkTgyDBuevAkDu3igotqE534+ir99lIpThaUiVSwuBhgi6tD21geY2FBPjOjpg6X3RAEAPt5xBv/dcUbM0qiDsfS/DA3zhkwmu+ox3Tq5YvWjcXhxfB+4qBRI/70Yt729E+9uOdnhhj4ZYIiow6oxmZH+e90p+9hQLwDAhP6BWDAuHADw8i/H8P3Bc6LVRx3LzlMXAQDDuntd9zi5XIYpg0OQnHQzbgn3QbXJjNeTT+DO93biUH0/V0fAAENEHVbWeT0qa0xwd3ZAdx9X6/WPDu+KGcNCAQBz12Yi5cRFsUqkDuJyeTWO5BsANOx/uZ4Adyd8Mm0A3p7UF54uKhzXleLuD3bh5fVHUVltas1y7QIDDBF1WJbho0FdPCGX/3HKXiaT4T+39cJdfQNQaxbw2P/SO9Q3W2p7qacvQRCAnr5u8HFzbPT9ZDIZ7urbGclzhuOuvgEwC8B/f8tB/Fs7sLt+SKq9YoAhog4r7cwlAMCgUM+/3CaXy/DaPdG4qbs3KqpNeGjFPuQUlbd1idRBXNn/0hxermq8PakfPv37APhrHZF7uQIPLE/D/G8yoa+ssWWpdoMBhog6JJNZwP6zDftf/kyllGPZgzGI7KzF5fJqTP00DYWlVW1ZJnUQlvVfbtT/ciO3hPvi1znDMWVwCABg9f483PpGCjYe1rW4RnvDAENEHdKxCwaUGmvhqlYiIuDa+624qpX47KGBCPFyRt7lSvz9030orWqf32hJHLmXKpB7uQJKuQyDrhGmm8LN0QEvju+DNf+IQ1dvFxSWGjHzf+n458r0dhXAGWCIqEOyrP8yoIsHFPKrT1m18HZV44vpg+DtqsLRCwb848t0GGvbf5MktQ3L8FH/YA+4qpU2e9xBoZ745cmbkDiyGxRyGX7J0uHWN3Zg7f68drEdAQMMEXVIe3Pq+l+uNXz0ZyFeLljx0CC4qBTYffoSktYc6tCroJLt7Gph/8v1ODooMDc+HD/NGoo+nTXQV9Zg7jeZmPrpXuRdlvZ2BAwwRNThCILwxwykqzTwXkufzlp8NGUAHBQyrM+8gBfWHW0X32RJPGazgF2nbdP/cj29A7T44Z9DsWBcONRKOX47WYQxb+7A8t/OwCTRIM4AQ0QdzsnCMhRX1MDRQY7Iztom3XdYd2+8fm9fAMCK3WfxwfbTrVAhdRRHLxhQUlEDV7USUYHurfpcSoUc/7i5GzbOHo7YUE9U1pjw0vpjmLhsN7J10tuOgAGGiDocS/9LTIgHVMqm/zd4Z3QAFt0eAQB4bVM21uzPs2l91HH8drLu7Mvgrp5wULTNR3Kotwu+emQwXrk7Em5qJTLySnD7u7/hzeQTkurtYoAhog7Huv5Ll+afsp8+LBQzb+4GAFjwXRa2HCuwSW3UsVinT7dC/8v1yOUyPBAbjOSkmzG6ly9qTALe3nISt7+zEwdyi9u0luZigCGiDuXK/pfYro3vf7ma+WN7YmL/QJjMAhJXHbDuq0TUGFU1Juw9W/e3OKx72wYYCz+tI/47NQbvPdAPXi4qnCwsw8Rlu/H8z0dQbqwVpabGYoAhog7l90sVKCw1QqWQo2+Qe4seSyaTYcnESIzs2QlVNWbM+HwfThVKr5eAxJH+ezGqa83w1ajRrZPrje/QSmQyGW6PCsDmpJsxoX9nCALw2a6ziH9rB347ab/7gDHAEFGHklY/fTo6SAtHB0WLH89BIcf7k/ujb5A7SipqMPWTvbigr2zx41L7d+X2ATLZ9dciagseLiq8cW9frHhoIDq7O+FccSWmfLIXT605hJKKarHL+wsGGCLqUCwNvI1d/6UxnFVKfPr3gejayQX5+ipM+3Qv9BVcrZeub+dJcfpfbmRETx/8Omc4/j6kC2Qy4NsD5zD6jRSsz7xgV8sGMMAQUYeSdqbp6780hqeLCl9MHwRfjRonCsrw8Bf7UFUjnRkd1LaKy6txOF8PwP4CDAC4qJV47s7e+GbmEIT5uKKorBqJqw7gH1+mo8BgH9sRMMCQKPJLKrH8tzPYdaqI/8lTmzlXXIHzJZVQyGWICfGw+eMHejjj8+mD4OaoxL6zxXjiq4OoNZlt/jwkfalnLkEQgB6+rvDROIpdzjXFhHhg/RPD8MQtYVDKZfj1aAFGv5GCr/fmin42hgGGRLHoxyN4af0xTF6ehqjnfsV9H6Xi7c0nse/sZVTX8j98ah376md89OmshYsN95y5UrifBsunDoBKKcevRwvwzI9HRP+PnuzPzlbcPsDW1EoFksb0xM+PD0N0oBalVbV4+rssPPDfNJwtKhetLgYYanNVNSbsPFXX2e7tqka1yYy0nMt4c/MJ/O3DVEQ//yumfJKGZdtPIyOvhN9gyWYsw0exNh4++rPYrl54Z1JfyGXAV3tz8dbmk636fCQ9Yq3/0hK9/DX47p9DsTChFxwd5Eg9cwm/HtWJVk/rfAUhuo49Zy6hqsYMP40jUhfcgrOXKrD7dBFST19C6ulLuFRejd9OFllXqHRTKxHb1RODu3phSDdvhPu5QX6D3YOJrsa6/ksrBxgAGNvHHy/c1QcLfziMt7ecRCc3NR4cHNLqz0v2L+9yBX6/VAGFXIbYrq23/1FrUMhlePimrrg1whef7TqL6UNDRauFAYba3PbsurMvI8M7QSaTIdTbBaHeLpgcGwJBEHCioAypp4uw+/Ql7DlzCYaqWmw+VojNxwoBAB7ODvVhxgtx3bzRrZOLXUxBJPtWaKjCmaJyyGTAgC6tH2AA4MHBISgsNeKdLSex6MfD8HZVY2wfvzZ5brJfluGjfkHucG2loczWFuLlgufu7C1qDdL8zZFkCYKArcfrgsjInj5/uV0mk6Gnnxt6+rnh70NDYTILOHbBgN31gWZfzmUUV9Rgw2EdNhyuO3XZyU2NId3qA01XbwR5OjHQ0F9YVjzt5aeB1smhzZ53zujuuFhqxFd7c/HE1wfx5fRBkvvWTbZlCTBirb7bXjDAUJvKKSpH7uUKOChkjWpeU8hl6NNZiz6dtXh0eDfUmMzIPKdH6ukipJ65hP1ni3Gx1IgfM/LxY0Y+AKCzu1P92Zm6i7/WqbVfFkmAZfjI1tOnb0Qmk+HFu3qjqMyI5KMFePiL/Vg7Mw7hfpo2rYPsg9ksYLcE+1/sEQMMtalt9cNHsaFezZoF4qCQIybEAzEhHph1S3dU1ZhwMLcEqWcuIfV0EQ7mluB8SSXWpp/D2vRzAICu3i4YXH+GZnBXL3i7qm36mkga2qqB92qUCjnevb8fpnyShn1nizHt07349rEhCPRwbvNaSFxHLxhQXFEDF5UC0S3cyqKja9IspMWLF2PgwIFwc3ODj48Pxo8fj+zs7AbHjBgxAjKZrMFl5syZDY7Jzc1FQkICnJ2d4ePjg7lz56K2tuGmUdu3b0f//v2hVqsRFhaGFStWNO8Vkl3Znl03fDSiZyebPJ6jgwJx3byQdGsPrJ05BJnPjcEX0wdh5s3dEB2ohVwGnCkqx6q0XMxadRADXtqM+Dd34LmfjmDTER1XS+0gisurkV1Qt0dRW5+BsXB0UGD51IHo4euKAoMRUz/di8vl9rc8O7Uuy+yjwV294KDgROCWaNJX4JSUFCQmJmLgwIGora3Fv//9b4wZMwZHjx6Fi4uL9bhHHnkEL7zwgvVnZ+c/vmWYTCYkJCTAz88Pu3fvxoULFzB16lQ4ODjglVdeAQDk5OQgISEBM2fOxMqVK7FlyxY8/PDD8Pf3R3x8fEtfM4mk3Fhr/RY8Mvyv/S+24KxSYniPThjeoy4gGapqsPfMZew+fQmpZy7h2AUDsgtKkV1QihW7z0ImA/oEaK3DTQO7eEq2qY6uzdL/EubjCi8Rz8BpnR3w+fRBmPjBbpy5WI7pK/Zh1SOxcFbxb66jkNL6L/ZOJrRghaWLFy/Cx8cHKSkpGD58OIC6MzB9+/bFW2+9ddX7bNiwAbfffjvy8/Ph6+sLAPjwww8xf/58XLx4ESqVCvPnz8f69etx+PBh6/0mTZqEkpISbNy4sVG1GQwGaLVa6PV6aDQca7YHyUcL8MgX+xHs6YyUuSNEabS9XF6NPWfqpmvvPl2E0xcbLsKklMsQFajFkG7eGNLNC/1DPGyy4R+J68V1R/HJzhw8EBuMV+6OFLscnCosxT0fpqKkogYje3bCx1MH8Nt4B1BVY0L087/CWGtG8pzh6O7rJnZJdqmxn98tesfo9XX7OHh6Njwlu3LlSnh7e6NPnz5YsGABKioqrLelpqYiMjLSGl4AID4+HgaDAUeOHLEeM3r06AaPGR8fj9TU1GvWYjQaYTAYGlzIvmzLtsw+6iTaLCFPFxVui/THi+P7YMtTI5D271F4e1Jf3DcgCEGeTqg1CziQW4L3tp3CA8vTMPClzUg9fUmUWsl22nL9l8YI83HDJ9MGwtFBjm3ZF/H0t1lcrbcDOPB7MYy1Zvi4qRHm4yp2OZLX7POWZrMZs2fPxtChQ9GnTx/r9Q888ABCQkIQEBCAzMxMzJ8/H9nZ2fjuu+8AADqdrkF4AWD9WafTXfcYg8GAyspKODn9dVbJ4sWL8fzzzzf35VArEwQB2+qnT49opeGj5vDVOOKuvp1xV9/OAOoWmEqtP0Oz61QRCkuNmLM6Axtn3wR3Z5XI1VJzGKpqcKR+0zxb7kDdUjEhHnj/gf549Mt0fHvgHHw0aswfGy52WdSKdl4x+4hLPbRcswNMYmIiDh8+jJ07dza4/tFHH7X+OzIyEv7+/hg1ahROnz6Nbt26Nb/SG1iwYAGSkpKsPxsMBgQFBbXa81HTZBeU4oK+CmqlHHF2vAZGkKczgjydce+AIFRU1+L2d3biTFE5nvnxCN69v5/Y5VEzpP9eDLMAhHg5w09rX5vmjerli8UTIjHvm0ws234aPm5qPCTiyqbUunax/8WmmjWENGvWLKxbtw7btm1DYGDgdY+NjY0FAJw6dQoA4Ofnh4KCggbHWH728/O77jEajeaqZ18AQK1WQ6PRNLiQ/dh2vG769JBuXpLpKXFWKfHGfX2hkMvw86F8/JhxXuySqBms67+00eq7TXXvgCDMje8JAHhh3VH8fChf5IqoNZRUVCPzfN2ZQAYY22hSgBEEAbNmzcL333+PrVu3IjT0xt8UMjIyAAD+/v4AgLi4OGRlZaGwsNB6THJyMjQaDSIiIqzHbNmypcHjJCcnIy4urinlkh2x9r/Y0fBRY/QNcsfjt4QBAJ754TDySypFroiaKu1MXQ+TWNOnG+OfI7phWlwIBAFIWpNh/aZO7Ufq6UsQBKC7j6vdnQmUqiYFmMTERPzvf//DqlWr4ObmBp1OB51Oh8rKuv/UT58+jRdffBHp6ek4e/YsfvrpJ0ydOhXDhw9HVFQUAGDMmDGIiIjAlClTcOjQIWzatAkLFy5EYmIi1Oq66Y0zZ87EmTNnMG/ePBw/fhwffPAB1qxZgzlz5tj45VNb0FfWIP33YgDAiB7SCjAAMGtkGKKD3GGoqsW/1h6C2cxmS6morDYh81zdt97Bdjx0KZPJsOiO3kiI9EeNScA/vkzH4fpv69Q+cPq07TUpwCxbtgx6vR4jRoyAv7+/9bJ69WoAgEqlwubNmzFmzBiEh4fjqaeewsSJE/Hzzz9bH0OhUGDdunVQKBSIi4vDgw8+iKlTpzZYNyY0NBTr169HcnIyoqOj8frrr2P58uVcA0aidp4sgsksoFsnFwR7SW/lUaVCjjfvjYaTgwK7T1/CZ7vPil0SNdKB3GLUmgX4ax0R6GHfW0oo5DK8cV804rp6ocxYi79/the/Xyq/8R1JEnZx+wCba1IT742m+QUFBSElJeWGjxMSEoJffvnluseMGDECBw8ebEp5ZKf+mD4tvbMvFl07ueI/Cb2w8IfDeHXjcdzU3Rs9uIaD3Uu7Yvq0FGZ9qJUKfDQ1Bvd9tAfHLhgw9dO9+GbmEHRy4/YXUpZ3uQJnL1VAIZchtqv9DmVKDVdOolZlNgvYXr//kdT6X/5scmwwRvbshOpaM2Z/nYHqWrPYJdEN7M2x9L/Y7/DRn2kcHfD5QwMR6OGE3y9V4KEVe1FmrL3xHcluWc6+9A1yh5tj2+2E3t4xwFCrOpJvQFGZES4qBQZ08RC7nBaRyWR49Z4oeDg74OgFA97cfELskug6jLV1G30C9t3AezU+Gkd8MX0QPF1UOHzegJlfpjMwS9hODh+1CgYYalWW4aOhYd5QK6Uxffp6fNwcsXhC3VL0H6acxr76PXbI/mSe08NYa4a3qwrdOrnc+A52pmsnV3z294FwVimw81QRG8glymwWsLt+Ne9h3RlgbIkBhlqVVKdPX8/YPv64JyYQggDMWZ2B0iruaG2Prpw+LYX+l6uJDnLHsgdjoJTL8NOhfLz8yzFuOSAxx3QGXC6vhotKgb5B7mKX064wwFCruVxejYy8EgDSbuC9mmfviECghxPOFVfihZ+Pil0OXcUfDbzS6X+5mpt7dMJrf6tbhuKTnTl4f9spkSuiprD0v8R29eKGnTbG3ya1mh0nLkIQgF7+mna3cJObowPeuLcvZDJgbfo5bDysE7skukKtyWxde0hq/S9Xc3e/QCxM6AUA+L9fT+CTnTkiV0SNtfNU3ZlArv9iewww1Gqu3H26PRoU6ol/DK/b3+vf32ehsLRK5IrI4nC+ARXVJmidHNCznUx3f/imrpg9ujsA4MV1R/HV3lyRK6IbqaoxWWfC3cT+F5tjgKFWYTILSDnRPqZPX8+cW7ujl78Gl8urMf+bTPYn2AnLh8bALp6Qy6XZ/3I1T47qjn8M7wqgLjT/cJD7c9mzA7nFqKoxo5ObGt19XMUup91hgKFWkZFXgpKKGmgclejXjhvX1EoF3rqvL1RKObZlX8Qqfiu2C2ln/ljArj2RyWR4elw4pgyu2zfpqbWHOHxpx65cfVeqjeT2jAGGWsX2+uGj4T06QdnOG9d6+rlhXv1uwi+tO4acIi7/LiaTWcDe+unt7XHVU5lMhufv7I17YgJhMgt4/KsD1uFasi/sf2ld7fuThUSz9bj0tw9oiulDQzGkmxcqa0yYszoDtSYuOiaWbF0pSqtq4aJSIMJfI3Y5rUIul+HViVFIiKrb/HHml+lIrV9rhOyDvqIGWedKAHABu9bCAEM2V2CowpF8AwDg5nbawPtncrkM//e3aLg5KpGRV4L3t50Wu6QOK62+/yWmi2e7PvunkMvw5r19MSrcB8ZaM2Z8vg8HcovFLovqpZ4pglkAwnxc290sTHvRft/dJJqU+r2PogO18HbtOJvQBbg74aXxfQAA72w9iUP1a+BQ29qb0z77X65GpZTj/cn9MSzMGxXVJkz7dC8On9eLXRaB2we0BQYYsjnLePyIDjJ8dKU7owNwe5Q/TGYBc1ZnoLLaJHZJHYogCB0qwACAo4MCH0+NwYAQD5RW1WLqp3txsqBU7LI6vF3sf2l1DDBkUzUmM347WffNoz1Pn74WmUyGl8b3gZ/GEWeKyrF4wzGxS+pQTl8sw6XyaqiVckQFuotdTptxVinx6UMDERWoxeXyakxenoazbCYXzbniCuQUlUMhl7XLRnJ7wQBDNrX/bDHKjLXwclEhqrNW7HJE4e6ssi79/kXq79YZWdT6LNsH9A/2gErZsf570zg64POHBqGnrxsKS42YvDwN50sqxS6rQ9pdf/YlOlALjaODyNW0Xx3rHU6tzvJhfXOPTu1qAbGmuql7J/x9SBcAwNxvMlFcXi1uQR2EZf2X9rB9QHN4uKjwv4dj0dXbBedLKjH5v3tQaOAK0W3tN/a/tAkGGLIpa/9LBxw++rOnx4WjWycXXCw14t/fZ3GV3lbWoP+lA5+27+SmxspHYhHo4YSzlyrw4CdpuMwA3WbMZgG7LQGme8eYhSkWBhiymXPFFThRUAa5DBjOfT/g6KDA25P6QSmXYcNhHb47wGXfW1Pu5QroDFVwUMjQL8hD7HJE5a91wqqHB8NXo8aJgjJM/TQN+soascvqEI7rSnGpvBrOKgX6tuNVyO0BAwzZzPb66dP9gz3g7qwSuRr70KezFnNu7QEAePanI8i7XCFyRe2Xpf8lOtAdTiqFyNWIL9jLGSsfHgwvFxUOnzdg+op9KDfWil1Wu2fZPiA21LPD9WG1Nf52yWYs/S8dcfbR9fxjeFfEhHigzFiLp9YegsnMoaTWYBk+6qj9L1cT5uOKL2fEQuOoRPrvxXjki/2oquHU/tZkWf+F06dbHwMM2URVjcm67sGIDrL6bmMpFXK8cW80XFQK7M25jE92nhG7pHbJsgIvA0xDEQEafD59EFxUCuw+fQmP/S8d1bXc6qI1GGtN1r/DYRxGb3UMMGQTe3Muo7LGBF+Nut3uP9MSIV4uWHRHBADg/zadwLELBpEral/ySyqRd7kSchkwoAsDzJ/1C/bAp38fCEeHul3TZ68+yP26WsGB30tQVWOGt6saPX3dxC6n3WOAIZuwzD4a2dOH28Zfw70DgjC6ly+qTWbMWZ3BU/k2tK9+9+k+nbVwVStFrsY+xXb1wkdTBkClkOOXLB3mfZMJM4czbWqXdfq0F/8fbAMMMGQTlgbejrh9QGPJZDIsmRgJLxcVjutK8UbyCbFLajf2WNZ/4dmX67q5Rye890A/KOQyfHfwPJ758TCn99sQ+1/aFgMMtVhOUTlyisrhoJBhaJiX2OXYNW9XNV6dWLdK739/O4PU05dErqh92FvfdxDblX9/NzKmtx/euDcaMhmwMi0XL68/xhBjA/rKGmSeKwHAANNWGGCoxSyzjwZ28YQbl82+odERvrh/UBAEAXhqTQYMVVyfoyUulhpx+mI5ZDJgYJeOvf5LY93VtzNenVAXpJfvzMGbm0+KXJH0pZ6+BLMAdO3kggB3J7HL6RAYYKjFth7/o/+FGmdhQgSCPZ2Rr6/Ccz8eEbscSbP0v/T0deP6Q01w78AgPFffWP7OlpP4MOW0yBVJm6X/5SaefWkzDDDUIhXVtdb9Z0aGc/p0Y7molXjzvmjIZcB3B89jfeYFsUuSLOv2AZw+3WR/HxqKeWN7AgCWbDiOL1LPiluQhO1i/0ubY4ChFtl96hKqTWYEejihWydXscuRlJgQT/xzRBgA4D8/ZKGAm+41y54zlvVf2P/SHP8cEYbHb6n7O1z04xGs2Z8nckXSc76kEmeKyiGXAYO78e+wrTDAUItw+nTLPDm6OyI7a1FSUYN/rT3EZsomKqmoRnZBKQAuYNcSSbf2wPShoQCAp7/NxM+H8kWuSFosZ1+ig9yhYR9gm2lSgFm8eDEGDhwINzc3+Pj4YPz48cjOzm5wTFVVFRITE+Hl5QVXV1dMnDgRBQUFDY7Jzc1FQkICnJ2d4ePjg7lz56K2tuEeHdu3b0f//v2hVqsRFhaGFStWNO8VUqsRBME6fZrDR83joJDjzfuioVbK8dvJIny553exS5KUfWeLIdQ3TnZyU4tdjmTJZDI8c3sv3D8oGGYBmLM6A8lHC258RwJw5fovHD5qS00KMCkpKUhMTMSePXuQnJyMmpoajBkzBuXl5dZj5syZg59//hlr165FSkoK8vPzMWHCBOvtJpMJCQkJqK6uxu7du/H5559jxYoVWLRokfWYnJwcJCQkYOTIkcjIyMDs2bPx8MMPY9OmTTZ4yWQrJwvLcL6kEiqlHHFd+cZtrjAfNywYFw4AeOWXYzhVWCZyRdJhnT7N4aMWk8lkeHl8H9zdrzNqzQISVx7Abycvil2W3TObBQYYsQgtUFhYKAAQUlJSBEEQhJKSEsHBwUFYu3at9Zhjx44JAITU1FRBEAThl19+EeRyuaDT6azHLFu2TNBoNILRaBQEQRDmzZsn9O7du8Fz3XfffUJ8fHyja9Pr9QIAQa/XN/v10fV9uP2UEDJ/nTD1kzSxS5E8k8ksPLh8jxAyf51wx7u/CdW1JrFLkoQ73/1NCJm/Tvj+wDmxS2k3ampNwj++2C+EzF8n9Fz4i5B25pLYJdm1o/l6IWT+OiF84QbBWMP3rS009vO7RT0wer0eAODpWTf2nJ6ejpqaGowePdp6THh4OIKDg5GamgoASE1NRWRkJHx9fa3HxMfHw2Aw4MiRI9ZjrnwMyzGWx7gao9EIg8HQ4EKt64/+Fw4ftZRcLsNr90RD6+SAzHN6vLuF63LcSJmxFofz697n7H+xHaVCjnfu74cRPTuhqsaM6Sv24VBeidhl2S3L2ZfYrp5QKdlW2paa/ds2m82YPXs2hg4dij59+gAAdDodVCoV3N3dGxzr6+sLnU5nPebK8GK53XLb9Y4xGAyorKy8aj2LFy+GVqu1XoKCgpr70qgRDFU12H+2GAC3D7AVP60jXr677r303rZTOJBbLHJF9i3992KYzAKCPJ24cJiNqZRyfPhgDAZ39USZsRZTP93LDUivYSeHj0TT7ACTmJiIw4cP4+uvv7ZlPc22YMEC6PV66yUvj1MBW9Ouk0WoNQvo6u2CLt4uYpfTbtweFYDxfQOsjZTlxtob36mDSrNMn+7C/pfW4OigwPJpA9Ev2B36yhpM+SSN/Vl/Ul1rtq6DxfVf2l6zAsysWbOwbt06bNu2DYGBgdbr/fz8UF1djZKSkgbHFxQUwM/Pz3rMn2clWX6+0TEajQZOTlf/pqVWq6HRaBpcqPVYho949sX2nr+rDwK0jvj9UgVeWn9M7HLslnUBu64cPmotrmolVjw0CL0DNCgqq8aDy9OQd7lC7LLsxoHcYlTWmODtqkK4n5vY5XQ4TQowgiBg1qxZ+P7777F161aEhoY2uD0mJgYODg7YsmWL9brs7Gzk5uYiLi4OABAXF4esrCwUFhZaj0lOToZGo0FERIT1mCsfw3KM5TFIXIIgYBunT7carZMD/u/eaADAV3tzseUYp7P+WVWNCYfqN87jCrytS+vkgC9nxKK7jyt0hio8sHwPLuivPpTf0Vy5+i7XwWp7TQowiYmJ+N///odVq1bBzc0NOp0OOp3O2pei1WoxY8YMJCUlYdu2bUhPT8dDDz2EuLg4DB48GAAwZswYREREYMqUKTh06BA2bdqEhQsXIjExEWp13ToOM2fOxJkzZzBv3jwcP34cH3zwAdasWYM5c+bY+OVTcxzJN+BiqRHOKgWbJ1vJkG7eeHhY3ReE+d9m4lKZUeSK7MuB3GLUmAT4atQI9nQWu5x2z9NFhZUPxyLEyxl5lysxeXkaLpbyb3Intw8QVZMCzLJly6DX6zFixAj4+/tbL6tXr7Ye8+abb+L222/HxIkTMXz4cPj5+eG7776z3q5QKLBu3TooFArExcXhwQcfxNSpU/HCCy9YjwkNDcX69euRnJyM6OhovP7661i+fDni4+Nt8JKppSy7Tw8N84ZaqRC5mvbrX/E90dPXDUVl1Xj6uyyu0nuFP/Y/8uI33zbio3HEyodjEaB1xJmL5ZjySRpKKqrFLks0hqoa6+wsBhhxyIR2+r+iwWCAVquFXq9nP4yNTVy2G+m/F+OVuyPxQGyw2OW0a0fzDbjr/Z2oMQlYOjEK9w7k7DoAuP/jPUg9cwkvje+DBweHiF1Oh5JTVI57P0rFxVIjogO1+N/DsXDrgMvn/3pEh0e/TEdXbxds/dcIsctpVxr7+c1J69QkxeXVOJhrmT7N/pfWFhGgwVNj6nYLfv7nI8i9xAbK6lqzdYr5YDbwtrlQbxesfDgWHs4OOHROjxkr9qOiuuPNlrNOn+7Osy9iYYChJtlx8iLMAhDu58a1N9rIIzd1xaAuniivNiFpTQZM5nZ50rTRss6XwFhrhqeLijugi6SHrxu+nBELN0cl9p69jH98mQ5jrUnsstoU+1/ExwBDTbLtOKdPtzWFXIbX742Gq1qJ/b8X48OU02KXJKo99etuDOriyf4XEfXprMWKhwbCWaXAbyeLkLjyIGpMZrHLahP5JZU4c7EcchkwuCvXIRILAww1msksIOVE/fRpDh+1qSBPZzx3Z28AwJvJJ3D4vF7kisTD9V/sR0yIJ5ZPHQCVUo7NxwowZ3XHOENomT4dFegOrVPH6/+xFwww1GiHzpWguKIGbo5K9A/xELucDmdi/84Y29sPtWYBc1ZnoKqmY52yB4Bakxnpv9f1v3AKv30YEuaNjx6MgYNChnWZF/D0t5kwt/MQw92n7QMDDDXa9vrho+HdO8FBwT+dtiaTyfDKhEh0clPjZGEZXt14XOyS2tzRCwaUGWuhcVQi3I+zC+3FyHAfvDOpH+QyYG36OXy2+6zYJbUaQRCw81TdNhbsfxEXP4Wo0Syr73L2kXg8XVRYek8UAOCzXWex82SRyBW1Lcvw0cAunlDI2f9iT8ZF+luHOf9vU3a7nTGXXVCKojIjnBwU6B/iLnY5HRoDDDVKYWkVsur7Lm5mgBHVyJ4+eHBw3fo7/1p7CPqKGpErajvWBl4OH9mlB2NDMLirJyprTFjwfWa7XHzR8qVhUKgnF/IUGQMMNUpK/dmXyM5a+Lg5ilwN/fu2Xgj1doHOUIVnfjwsdjltwmwWsO+spYGXMz/skVwuw5IJUXB0kGPXqUtYsz9P7JJsjv0v9oMBhhplezZnH9kTZ5USb97XFwq5DD8dysfGwzqxS2p1JwpLoa+sgbNKgd4B7H+xV128XfDUrXWLL760/hgKDFUiV2Q71bVmpNUPY7L/RXwMMHRDNSYzdpys738J5/ov9qJvkDtm3twVAPDqxuPtfg2OtPrho5gQDzaR27npw0IRHeSO0qpaLPzhcLsZSsrIK0FFtQleLiqE+7mJXU6Hx/8F6IYO/F6M0qpaeDg7IDrQXexy6AqPjQiDl4sKOUXl+Hpf+ztdf6U/NnBk/4u9U8hlWDoxCg4KGZKPFmB91gWxS7KJnfVf5IaGeUPOJnLRMcDQDVlmH93coxNnftgZV7UST4zqDgB4e/NJlBvb5540giAgLadu6uqgUPa/SEFPPzf8c0QYAODZH4+guFz6O1fvZP+LXWGAoRvanl23/stIDh/ZpfsHBSPEyxlFZUYs/y1H7HJaxZmichSVVUOllCM6SCt2OdRIiSPD0NPXDZfKq/HCuqNil9MihqoaHDpXNxNzKDdwtAsMMHRd+SWVOK4rhVxWt4Ad2R+VUo5/1e9Y/fGO0ygqM4pcke1Zho/6Bblz6qqEqJRyvHpPFOQy4PuD5617qUlR2pnLMJkFhHq7oDM3srULDDB0XZbZR/2CPeDhohK5GrqWhEh/RAVqUV5twrtbTopdjs2lnakbPmL/i/T0DXLH9KGhAIB/f5+F0ipprlu0y7r7NIcw7QUDDF3XNsvwEadP2zW5XIanx4UDAFam5eJsUbnIFdlOXf8L13+RsqfG9ESwpzMu6KskuwXGb/UNvMPC+H+hvWCAaYaLpe3vFP3VGGtN1m8dI3qy/8XeDenmjZt7dEKtWcD//Zotdjk2c664Ehf0VVDKZegX7C52OdQMTioFlkyMBAD8b0+u9YyaVFzQV+L0xXLIZUAcQ7TdYIBpAkEQ8Mav2Rj66lYcyC0Wu5xWty+nGBXVJvi4qblwmETMHxsOmQxYl3kBh/JKxC7HJixnX6ICtXBWKUWuhpprSDdv3D+obguMp7/LktRu6rvqN2+MDHSH1tlB5GrIggGmCWQyGc6VVKK61ox532TCWCudN2BzbK1vuBvRsxNkMk6floKIAA3u7tsZALBkw/F2sYDYXk6fbjcW3BYOX40aOUXleHPzCbHLabQ/tg/g36A9YYBpokW3R8DbVYVThWV4f+spsctpVdbp0xw+kpSkMT2gUsiReuYSUk5cFLucFkvjAnbthsbRAS+PrxtK+u+OM8g8VyJuQY0gCIJ1/RduH2BfGGCayN1ZhRfu6gMA+GD7aRy7YBC5otZxtqgcZ4rKoZTLuOaBxAR6OGPakBAAdWdhTGbpnoXR6avw+6UKyGVATBcPscshGxgd4Ys7owNgFoB532Siuta+t8A4UVCGi6VGODrIERPCv0F7wgDTDOP6+CG+ty9qzQLmfZOJ2na4B43l7MuALh7QOHLMV2r+OSIMbo5KHNeV4oeD58Uup9ksq+9GBGj4d9iOPHtHBDycHXBcV4qPUk6LXc51Wc6+DAr14hpEdoYBphlkMhlevKsPNI5KZJ3X45Od7W/1023W3ac5fCRFHi4q6zLubySfkFTD5JX+2P+IvQftiZerGs/d2RsA8O7WUzhZUCpyRdfG/hf7xQDTTD4aRyy8PQJA3QfEmYtlIldkO5XVJqTWT3Pk9gHS9dDQLvDTOOJ8SSW+TP1d7HKaxRJgBrH/pd25MzoAo8J9UG0yY963mXY51FljMmNP/f+F7H+xPwwwLfC3mEDc1N0bxloznv4uC2Y7fAM2R+qZIlTXmtHZ3QndfVzFLoeaydFBgaRbewAA3tt2CvoKaa2AeqnMiJOFdV8MBnZhgGlvZDIZXrq7D9zUShzMLcHnu8+KXdJfZOSVoKLaBC8XFXr5cSkJe8MA0wIymQyv3B0JZ5UCe3MuY9XeXLFLsoltx+uGjzh9WvomxgSih68r9JU1WGbnvQZ/tu9s3dmXnr5u8OQ2Fu2Sv9YJC27rBQB4bVM2ci9ViFxRQ7+drBs+GhLmDbmc/xfaGwaYFgrydMbc+LqN9JZsOI78kkqRK2oZQRCu2D6Aw0dSp5DLMH9s3RYDn+3KkdTfZxqHjzqESQODMLirJyprTFjwfaZdrV3E/hf7xgBjA1PjuiAmxANlxlr8+/ssu3oDNtXpi2U4V1wJlUKOIXzTtgu3hPtgUBdPGGvNeDNZOouHpZ2x7H/EANOeyeUyLJkQBUcHOXaduoS1+8+JXRIAoLSqBhn1q1mz/8U+McDYgEIuw6sTI6FSyLE9+yJ+zMgXu6RmswwfxXb15LLt7YRMJsPTt9Wdhfn2wDlk6+x3xoeFvrIGx3R1aywNYv9Lu9fF2wVP3Vp3JvvF9UdRYKgSuaK6AG0yC+ji5YxAD2exy6GrYICxkTAfNzwxqm7a6vM/H0FRmTQ3fOTwUfvUP9gD4/r4wSwASyWwG/D+s5chCECotwt8NI5il0Nt4KGhXRAdqEVpVS0W/nBY9DPZXH3X/jU5wOzYsQN33HEHAgICIJPJ8MMPPzS4/e9//ztkMlmDy9ixYxscc/nyZUyePBkajQbu7u6YMWMGysoaTkPOzMzETTfdBEdHRwQFBWHp0qVNf3Vt7B83d0Mvfw2KK2rw3E9HxC6nyUqraqyNk5w+3f78K74nFHIZthwvtPvdgPdy+4AOR6mQY+k90XBQyJB8tAC/ZOlEreeP/hcGGHvV5ABTXl6O6OhovP/++9c8ZuzYsbhw4YL18tVXXzW4ffLkyThy5AiSk5Oxbt067NixA48++qj1doPBgDFjxiAkJATp6el47bXX8Nxzz+Hjjz9uarltykEhx2v3REEhl2Fd5gX8ekTcN2BT7Tp1CTWmulOmod4uYpdDNtatkysmDQwCACy2840e2cDbMfX0c7MuwPjsT4dRXF4tSh06fRVOFpZBJqvbRZvsU5MDzLhx4/DSSy/h7rvvvuYxarUafn5+1ouHxx/7Rxw7dgwbN27E8uXLERsbi2HDhuHdd9/F119/jfz8ut6RlStXorq6Gp9++il69+6NSZMm4YknnsAbb7zRjJfYtvp01uKRm7oCABb+cBj6SumsvWHdvJFnX9qtJ0d1h5ODAhl5Jdh42D4DdrmxFlnn9QCA2K5sJO9oEkeGoYevK4rKqvHiuqOi1GA5+xLVWQutM7ewsFet0gOzfft2+Pj4oGfPnnjsscdw6dIfp6tTU1Ph7u6OAQMGWK8bPXo05HI50tLSrMcMHz4cKtUfaz/Ex8cjOzsbxcXFV31Oo9EIg8HQ4CKW2aO7o6u3CwpLjVj8yzHR6mgKTp/uGHw0jnjkplAAdetu1NjhPl4HcothMgvo7O6Ezu5OYpdDbUylrBtKksuA7w6ex7bjhW1ewy72v0iCzQPM2LFj8cUXX2DLli149dVXkZKSgnHjxsFkqtuLRafTwcen4QekUqmEp6cndDqd9RhfX98Gx1h+thzzZ4sXL4ZWq7VegoKCbP3SGs3RQYElE6MAAF/vy7O+GezZsQulKDAY4eSg4Gn7du6R4V3h5aLCmaJyrN6XJ3Y5f2GdPs2/ww6rb5A7pg+tC9r/+T4LpVVtdyZbEARrAy/7X+ybzQPMpEmTcOeddyIyMhLjx4/HunXrsG/fPmzfvt3WT9XAggULoNfrrZe8PHH/Yx4U6ompcSEAgKe/y0RFda2o9dyI5ezL0DAvODpwx9X2zM3RAY/fUtdn8Nbmkyg32tffprWBl+u/dGhPjemJYE9n5OursHRjdps976nCMhSWGqFWytE/xOPGdyDRtPo06q5du8Lb2xunTp0CAPj5+aGwsOEpwdraWly+fBl+fn7WYwoKChocY/nZcsyfqdVqaDSaBhexzRsbjgCtI/IuV+L1X+17ATHLadoRHD7qEB6IDUGIlzOKyox2tZt6VY3JunjYIO5A3aE5qRRYMjESAPDlnt/bbOacZfuAQaGe/DJn51o9wJw7dw6XLl2Cv78/ACAuLg4lJSVIT0+3HrN161aYzWbExsZaj9mxYwdqav44bZicnIyePXs2aAi2d65qJV6ZUPcG/HRXDg7kXr1/R2wlFdXW2kb07CRyNdQWVEo5/jWmbuGwj1JO2826RRl5Jag2meHjpkYXLy4e1tEN6eaN+wfVtQM8/V0WqmpMrf6cnD4tHU0OMGVlZcjIyEBGRgYAICcnBxkZGcjNzUVZWRnmzp2LPXv24OzZs9iyZQvuuusuhIWFIT4+HgDQq1cvjB07Fo888gj27t2LXbt2YdasWZg0aRICAgIAAA888ABUKhVmzJiBI0eOYPXq1Xj77beRlJRku1feRkb09MGE/p0hCMD8bzJhrG39N2BT7ThZBLMA9PB15YqTHUhCpD8iO2tRXm3Cu1tOil0OgD+GjwaFenIjUQIALLitF3w1auQUleOtza37d1pjMmNP/ZkeNvDavyYHmP3796Nfv37o168fACApKQn9+vXDokWLoFAokJmZiTvvvBM9evTAjBkzEBMTg99++w1qtdr6GCtXrkR4eDhGjRqF2267DcOGDWuwxotWq8Wvv/6KnJwcxMTE4KmnnsKiRYsarBUjJc8kRMDbVYWThWV4f+spscv5i+3HOfuoI5LLZVgwrm6LgZVpufj9UrnIFQFpOXUfHmzgJQuNowNeHl93Jvu/v51B1jl9qz3XobwSlFeb4OHsgAh/8dsQ6PqavNnNiBEjrrsA1qZNm274GJ6enli1atV1j4mKisJvv/3W1PLskoeLCs/f2QeJqw7gg+2nMS7SH73s5M1hNgvYfqJu/yP2v3Q8Q8K8cXOPTkg5cRGvbcrGew/0F62W6loz0n+vG8rk+i90pdERvrgjOgA/H8rH3G8O4efHh8FBYfsOCMvsoyFh3pDLeQbQ3nEvpDZyW6Qf4nv7otYsYP63mai1k/U3Ms/rcbm8Gq5qJQZ0kU5/EdnO/LHhkMmAdZkXcKi+gVYMh/P1qKoxw8PZAWGdXEWrg+zTc3dEwMPZAcd1pfhw++lWeY6d9Q28N3H4SBIYYNqITCbDi3f1gcZRicxzeruZ+WGZfXRTd+9W+UZD9i8iQIO7+3YGACwRcYsBy/ovg0I9+e2X/sLLVY3n7uwNAHh36ymcLLDtruqlVTU4WB/g2f8iDfzEakM+GkcsvD0CAPBG8gnkFInfc7Cdq+8SgKQxPaBSyJF65hJS6ocU29re+v4XTp+ma7kzOgC3hPug2mTG/G8zYTLbLmzvzbkMk1lAiJczgjw5mUEKGGDa2N9iAjEszBvGWjOe/jYTZhu+AZvqYqkRh+ob4m7m9OkOLdDD2brw4pINx236wdAYJrOA/Wfr+1/YwEvXIJPJ8PLdfeCqVuJAbgk+333WZo+9k9sHSA4DTBuTyWRYPCESTg4KpOVcxqq9uaLVsqP+m3bvAA18NY6i1UH2IXFkGNwclTiuK8WPGefb9LmPXTCg1FgLN7XSbhrcyT75a52w4La62XOvbcpG3uUKmzwu13+RHgYYEQR5OmPe2LpFxJZsOI78kkpR6uDmjXQlDxcVHhvRDQDw+q8n2mTRMIu0+vVfBnTxgIL9L3QD9w8MxuCunqisMWHBd1kt7tsqMFThREEZZDJgSDcOYUoFA4xIpsZ1Qf9gd5QZa/Gf71v+BmyqWpPZegZmZDiHj6jO9KGh8NM44nxJJb5M/b3NnteyTDynT1NjyOUyLJkQBbVSjp2nirB2/7kWPZ7l7EtkZy3cnVW2KJHaAAOMSBRyGZbeEwWVQo5t2RfxY0Z+mz7/wbwSGKpq4e7sgL5BnD5NdRwdFEi6tQcA4L1tp6CvbP1dgM1mAfvO/jEDiagxuni74KkxdX+rL64/igJDVbMfi/0v0sQAI6IwHzc8MapuV+Dnfz7SpvvRWKZP39yjE0/ZUwMT+ndGdx9X6CtrsKyV1tu40snCMhRX1MDJQYHIztpWfz5qP6YPDUV0oBalVbV45ofDzTqTLQgC+18kigFGZP+4uRt6+WtQXFGD53460mbPuy27fviI/S/0J0qFHPPH1jVJfrYrBxf0rdujZZk+HRPiwbWIqEmUCjlevScKSrkMvx4twC9ZuiY/xumLZSgwGKFWyhETwrPRUsL/LUTmoJDjtXuioJDLsC7zAn490vQ3YFPp9FU4dsEAmQwY3oP9L/RXo3r5YFAXTxhrzXgz+USrPldaDoePqPnC/TT458i6M9nP/nQYxeXVTbr/b/Wr7w4K9YSjg8Lm9VHrYYCxA306a/HITV0BAM/8eLjV+w4si9f1DXKHpwsb1uivZDIZ5tdv9PhN+jmcsPGqpxaCIDDAUIsljuyGHr6uKCqrxovrjjbpvrvY/yJZDDB2Yvbo7gj1dkGBwYjFvxxr1efayt2nqRFiQjwwtrcfzAKwdOPxVnmOs5cqcLHUCJVCjr5B7q3yHNT+qZUKvDoxCnIZ8N3B89YlIm6kxmTGnvotLNj/Ij0MMHbC0aHuDQgAX+/Ls34rsDVjrcn62AwwdCNzx/aEQi7D5mOF2Ft/psSWLP0vfYPcefqeWqRfsAemDw0FAPznuyyUGWtveJ/McyUoM9bNxozgAoqSwwBjRwaFemLK4Lrl3J/+LhMV1Td+AzbV/rPFKK82wdtVjd4BfMPS9XXr5Ir7BgYBABZvOGbz9YosGzjGduXwEbVc0pgeCPZ0Rr6+Cq9uuPFZw50n6wL00G7e3EBUghhg7Mz8ceEI0Doi73IlXv/V9s2TlunTI3p24huWGmX2qO5wclDgYG4JNtm4yZz9L2RLziollkyIBAB8uef3G541tE6f7s7hIyligLEzrmolXq5/A366KwcHcott+vjcPoCaykfjiEduqjs1v3RjNmpMZps87rniCpwvqYRCLkP/YE5fJdsYEuaN+wfVnTWc/23mNbfEKDPWWv9/Zf+LNDHA2KGRPX0woV9nCAIw/5tMGGttsydN7qUKnL5YDoVcxm8c1CSPDO8KTxcVzhSVY/W+PJs8puXbcWRnLVzUSps8JhEALLitF3w1auQUleOtzSeveszenEuoNQsI9nRGkKdzG1dItsAAY6eeuT0C3q4qnCwsw/vbbLMa6vYTdWdfYkI8oHVysMljUsfg5uiAJ26pW2vjrc0nUd6IBskbsQSYWA4fkY1pHB3w8vi6M9n//e0Mss7p/3KMtf+FZ18kiwHGTnm4qPD8nX0AAB9sO4VjFwwtfsxtnD5NLfBAbAiCPZ1RVGbEJztzWvx4lv4XNvBSaxgd4Ys7ogNgMguY923mX4Y+uX2A9DHA2LHbIv0wJsIXtWYB87/NRG0Leg+qakzYfbruGwd3n6bmUCnl+Fd8TwDARymnW7R3V6GhCjlF5ZDJgJgQBhhqHc/dEQEPZwccu2DARyl/nMkuLK1CdkEpZDJgSDfugC5VDDB2TCaT4aXxfeDmqETmOT0+3dX8b72pZy7BWGuGv9YRPX3dbFgldSS3R/ojsrMW5dUmvLf1VLMfx3L2pZefhsOZ1Gq8XNV47s7eAIB3tpzCqcK6FaUtZ1/6BGjhwdXIJYsBxs75aBzxTEIEAOD1X0/gbFF5sx5nu3X6tA9kMk6fpuaRy2V4un6LgZVpv+P3S837e9zL4SNqI3dGB+CWcB9Um8yY900mTGaB/S/tBAOMBPxtQCCGhXnDWGvG/G8zYTY3bTExQRCu2H2aw0fUMkPDvDG8RyfUmAT8XzPXKmIDL7UVy5lsV7USB3JL8Pnus+x/aScYYCRAJpNh8YRIODkokJZzGV/ty23S/c8UlSP3cgUcFDJ+4yCbeHpsOGQy4OdD+cg8V9Kk+14ur0Z2/eaQA7swwFDrC3B3woLb6s4cLt5wDDpDFVRKOQZ04fpDUsYAIxFBns6YW99AufiX48gvqWz0fS2zj2JDvbjeBtlERIAG4/t2BgAs2XC8SVsM7Dtbd/alu48rvFzVrVIf0Z/dPzAYsaGeqDHV/a0O7OLB/bckjgFGQqYN6YL+we4oM9Zi4Q+HG/2hsd0yfBTO6dNkO0m39oBKIcfu05ew42TjNx+17H/E7QOoLcnlMrw6MQpqZd3H3rAwDqdLHQOMhCjq34AqhRxbjxfip0P5N7xPubEWafU7/rL/hWwpyNMZU+PqNh9dsuF4o3uz9p6t+3uM7crpq9S2uni74PV7ozGyZyf8bUCg2OVQCzHASEx3Xzc8Xr8i6nM/HbnhWhy7ThWhxiQgxMsZod4ubVEidSCJI8Pg5qjEsQsG/JBx/obHG6pqcDS/blFGNvCSGG6PCsBnDw2CN4cvJY8BRoJmjuiGcD83FFfU4Pmfj1732Cs3b+T0abI1DxcVHhvRDUDdNP9rbZxnkX62GGYB6OLlDF+NY1uUSETtFAOMBDko5Hjtnmgo5DL8fCgfyUcLrnqcIAjYdryu/2UEh4+olUwfGgo/jSPOl1Tif3t+v+6xlgXs2P9CRC3V5ACzY8cO3HHHHQgICIBMJsMPP/zQ4HZBELBo0SL4+/vDyckJo0ePxsmTDXcDvXz5MiZPngyNRgN3d3fMmDEDZWVlDY7JzMzETTfdBEdHRwQFBWHp0qVNf3XtWGSgFo/c1BUAsPCHLOgra/5yzHFdKXSGKjg6yDGY/QbUShwdFJhza3cAwHvbTl31b9HC0o81KJR/j0TUMk0OMOXl5YiOjsb7779/1duXLl2Kd955Bx9++CHS0tLg4uKC+Ph4VFVVWY+ZPHkyjhw5guTkZKxbtw47duzAo48+ar3dYDBgzJgxCAkJQXp6Ol577TU899xz+Pjjj5vxEtuv2aO7I9TbBQUGI5ZsOPaX2y3DR0O6eXO6ILWqif0D0d3HFSUVNfgw5eq7p1dU11p3BWb/CxG1VJMDzLhx4/DSSy/h7rvv/sttgiDgrbfewsKFC3HXXXchKioKX3zxBfLz861nao4dO4aNGzdi+fLliI2NxbBhw/Duu+/i66+/Rn5+3ayalStXorq6Gp9++il69+6NSZMm4YknnsAbb7zRslfbzjg6KLBkQt2W8V/tzcPuUw2nsm4/ztV3qW0oFXLMH1u3UNinO3NwQf/XdYoO5pag1iwgQOuIQA+nti6RiNoZm/bA5OTkQKfTYfTo0dbrtFotYmNjkZqaCgBITU2Fu7s7BgwYYD1m9OjRkMvlSEtLsx4zfPhwqFR/bLIVHx+P7OxsFBcXX/W5jUYjDAZDg0tHENvVC1MG101lffq7LFRU1wIA9BU1SM+t+12N6Mn1X6j1jerlg4FdPGCsNePN5L9uMZB25o/p02woJ6KWsmmA0el0AABfX98G1/v6+lpv0+l08PFp+IGqVCrh6enZ4JirPcaVz/FnixcvhlartV6CgoJa/oIkYt7YngjQOiL3cgXeqN+b5rdTF2EyCwjzcUWQp7PIFVJHIJPJ8PS4XgCAb9LP4UT9dgEWbOAlIltqN7OQFixYAL1eb73k5eWJXVKbcXN0wMv1Q0mf7srBwdxi6+wjDh9RW4oJ8UB8b1+YBWDpxuPW6421JhzMKwHAAENEtmHTAOPn5wcAKChoOK23oKDAepufnx8KCwsb3F5bW4vLly83OOZqj3Hlc/yZWq2GRqNpcOlIRvb0wYR+nWEWgHnfZCLlxB/rvxC1pXljw6GQy7D5WKF11+lDeXpU15rh7apGVy6oSEQ2YNMAExoaCj8/P2zZssV6ncFgQFpaGuLi4gAAcXFxKCkpQXp6uvWYrVu3wmw2IzY21nrMjh07UFPzx3TM5ORk9OzZEx4e3D30Wp65PQLeriqcLCxDUVk1XFQKDOBuv9TGunVyxX0D64ZwF284BkEQsLd++nRsqCf7X4jIJpocYMrKypCRkYGMjAwAdY27GRkZyM3NhUwmw+zZs/HSSy/hp59+QlZWFqZOnYqAgACMHz8eANCrVy+MHTsWjzzyCPbu3Ytdu3Zh1qxZmDRpEgICAgAADzzwAFQqFWbMmIEjR45g9erVePvtt5GUlGSzF94eebio8Pydfaw/D+vuDZWy3YwSkoTMHtUdTg4KHMwtwaYjOmv/S2xXBmoiso0mf7rt378f/fr1Q79+/QAASUlJ6NevHxYtWgQAmDdvHh5//HE8+uijGDhwIMrKyrBx40Y4Ov6xbPjKlSsRHh6OUaNG4bbbbsOwYcMarPGi1Wrx66+/IicnBzExMXjqqaewaNGiBmvF0NXdFumH2yLrhtnuiA4QuRrqqHw0jnj4plAAwNKN2Uj/vW5GHPtfiMhWZIIgNG4LWYkxGAzQarXQ6/Udrh+m1mTGycIyhPu58XQ9iaa0qgY3v7Ydl8urAQDuzg44sPBWyOX8mySia2vs5zfHF9ohpUKOXv4ahhcSlZujg3XndAAY2MWT4YWIbIYBhohazeTYEATXr0PE7QOIyJaUYhdARO2XSinHR1Ni8GNGPh6IDRa7HCJqRxhgiKhV9fLXoJd/x+pDI6LWxyEkIiIikhwGGCIiIpIcBhgiIiKSHAYYIiIikhwGGCIiIpIcBhgiIiKSHAYYIiIikhwGGCIiIpIcBhgiIiKSHAYYIiIikhwGGCIiIpIcBhgiIiKSHAYYIiIikhwGGCIiIpIcBhgiIiKSHAYYIiIikhwGGCIiIpIcBhgiIiKSHAYYIiIikhwGGCIiIpIcBhgiIiKSHAYYIiIikhwGGCIiIpIcBhgiIiKSHAYYIiIikhwGGCIiIpIcBhgiIiKSHJsHmOeeew4ymazBJTw83Hp7VVUVEhMT4eXlBVdXV0ycOBEFBQUNHiM3NxcJCQlwdnaGj48P5s6di9raWluXSkRERBKlbI0H7d27NzZv3vzHkyj/eJo5c+Zg/fr1WLt2LbRaLWbNmoUJEyZg165dAACTyYSEhAT4+flh9+7duHDhAqZOnQoHBwe88sorrVEuERERSUyrBBilUgk/P7+/XK/X6/HJJ59g1apVuOWWWwAAn332GXr16oU9e/Zg8ODB+PXXX3H06FFs3rwZvr6+6Nu3L1588UXMnz8fzz33HFQqVWuUTERERBLSKj0wJ0+eREBAALp27YrJkycjNzcXAJCeno6amhqMHj3aemx4eDiCg4ORmpoKAEhNTUVkZCR8fX2tx8THx8NgMODIkSPXfE6j0QiDwdDgQkRERO2TzQNMbGwsVqxYgY0bN2LZsmXIycnBTTfdhNLSUuh0OqhUKri7uze4j6+vL3Q6HQBAp9M1CC+W2y23XcvixYuh1Wqtl6CgINu+MCIiIrIbNh9CGjdunPXfUVFRiI2NRUhICNasWQMnJydbP53VggULkJSUZP3ZYDAwxBAREbVTrT6N2t3dHT169MCpU6fg5+eH6upqlJSUNDimoKDA2jPj5+f3l1lJlp+v1ldjoVarodFoGlyIiIiofWr1AFNWVobTp0/D398fMTExcHBwwJYtW6y3Z2dnIzc3F3FxcQCAuLg4ZGVlobCw0HpMcnIyNBoNIiIiWrtcIiIikgCbDyH961//wh133IGQkBDk5+fj2WefhUKhwP333w+tVosZM2YgKSkJnp6e0Gg0ePzxxxEXF4fBgwcDAMaMGYOIiAhMmTIFS5cuhU6nw8KFC5GYmAi1Wm3rcomIiEiCbB5gzp07h/vvvx+XLl1Cp06dMGzYMOzZswedOnUCALz55puQy+WYOHEijEYj4uPj8cEHH1jvr1AosG7dOjz22GOIi4uDi4sLpk2bhhdeeMHWpRIREZFEyQRBEMQuojUYDAZotVro9Xr2wxAREUlEYz+/uRcSERERSQ4DDBEREUkOAwwRERFJDgMMERERSQ4DDBEREUkOAwwRERFJDgMMERERSQ4DDBEREUkOAwwRERFJDgMMERERSQ4DDBEREUkOAwwRERFJDgMMERERSQ4DDBEREUkOAwwRERFJDgMMERERSQ4DDBEREUkOAwwRERFJDgMMERERSQ4DDBEREUkOAwwRERFJDgMMERERSQ4DDBEREUkOAwwRERFJDgMMERERSQ4DDBEREUkOAwwRERFJDgMMERERSQ4DDBEREUkOAwwRERFJDgMMERERSY5dB5j3338fXbp0gaOjI2JjY7F3716xSyIiIiI7YLcBZvXq1UhKSsKzzz6LAwcOIDo6GvHx8SgsLBS7NCIiIhKZ3QaYN954A4888ggeeughRERE4MMPP4SzszM+/fRTsUsjIiIikSnFLuBqqqurkZ6ejgULFlivk8vlGD16NFJTU696H6PRCKPRaP1Zr9cDAAwGQ+sWS0RERDZj+dwWBOG6x9llgCkqKoLJZIKvr2+D6319fXH8+PGr3mfx4sV4/vnn/3J9UFBQq9RIRERErae0tBRarfaat9tlgGmOBQsWICkpyfqz2WzG5cuX4eXlBZlMZrPnMRgMCAoKQl5eHjQajc0et6Ph79E2+Hu0Df4ebYO/R9vo6L9HQRBQWlqKgICA6x5nlwHG29sbCoUCBQUFDa4vKCiAn5/fVe+jVquhVqsbXOfu7t5aJUKj0XTIPyxb4+/RNvh7tA3+Hm2Dv0fb6Mi/x+udebGwyyZelUqFmJgYbNmyxXqd2WzGli1bEBcXJ2JlREREZA/s8gwMACQlJWHatGkYMGAABg0ahLfeegvl5eV46KGHxC6NiIiIRGa3Aea+++7DxYsXsWjRIuh0OvTt2xcbN278S2NvW1Or1Xj22Wf/MlxFTcPfo23w92gb/D3aBn+PtsHfY+PIhBvNUyIiIiKyM3bZA0NERER0PQwwREREJDkMMERERCQ5DDBEREQkOQwwTfT++++jS5cucHR0RGxsLPbu3St2SZKyePFiDBw4EG5ubvDx8cH48eORnZ0tdlmSt2TJEshkMsyePVvsUiTn/PnzePDBB+Hl5QUnJydERkZi//79YpclKSaTCc888wxCQ0Ph5OSEbt264cUXX7zhXjYd3Y4dO3DHHXcgICAAMpkMP/zwQ4PbBUHAokWL4O/vDycnJ4wePRonT54Up1g7xADTBKtXr0ZSUhKeffZZHDhwANHR0YiPj0dhYaHYpUlGSkoKEhMTsWfPHiQnJ6OmpgZjxoxBeXm52KVJ1r59+/DRRx8hKipK7FIkp7i4GEOHDoWDgwM2bNiAo0eP4vXXX4eHh4fYpUnKq6++imXLluG9997DsWPH8Oqrr2Lp0qV49913xS7NrpWXlyM6Ohrvv//+VW9funQp3nnnHXz44YdIS0uDi4sL4uPjUVVV1caV2imBGm3QoEFCYmKi9WeTySQEBAQIixcvFrEqaSssLBQACCkpKWKXIkmlpaVC9+7dheTkZOHmm28WnnzySbFLkpT58+cLw4YNE7sMyUtISBCmT5/e4LoJEyYIkydPFqki6QEgfP/999afzWaz4OfnJ7z22mvW60pKSgS1Wi189dVXIlRof3gGppGqq6uRnp6O0aNHW6+Ty+UYPXo0UlNTRaxM2vR6PQDA09NT5EqkKTExEQkJCQ3+LqnxfvrpJwwYMAB/+9vf4OPjg379+uG///2v2GVJzpAhQ7BlyxacOHECAHDo0CHs3LkT48aNE7ky6crJyYFOp2vw3tZqtYiNjeVnTj27XYnX3hQVFcFkMv1lJWBfX18cP35cpKqkzWw2Y/bs2Rg6dCj69OkjdjmS8/XXX+PAgQPYt2+f2KVI1pkzZ7Bs2TIkJSXh3//+N/bt24cnnngCKpUK06ZNE7s8yXj66adhMBgQHh4OhUIBk8mEl19+GZMnTxa7NMnS6XQAcNXPHMttHR0DDIkmMTERhw8fxs6dO8UuRXLy8vLw5JNPIjk5GY6OjmKXI1lmsxkDBgzAK6+8AgDo168fDh8+jA8//JABpgnWrFmDlStXYtWqVejduzcyMjIwe/ZsBAQE8PdIrYZDSI3k7e0NhUKBgoKCBtcXFBTAz89PpKqka9asWVi3bh22bduGwMBAscuRnPT0dBQWFqJ///5QKpVQKpVISUnBO++8A6VSCZPJJHaJkuDv74+IiIgG1/Xq1Qu5ubkiVSRNc+fOxdNPP41JkyYhMjISU6ZMwZw5c7B48WKxS5Msy+cKP3OujQGmkVQqFWJiYrBlyxbrdWazGVu2bEFcXJyIlUmLIAiYNWsWvv/+e2zduhWhoaFilyRJo0aNQlZWFjIyMqyXAQMGYPLkycjIyIBCoRC7REkYOnToX6bxnzhxAiEhISJVJE0VFRWQyxt+nCgUCpjNZpEqkr7Q0FD4+fk1+MwxGAxIS0vjZ049DiE1QVJSEqZNm4YBAwZg0KBBeOutt1BeXo6HHnpI7NIkIzExEatWrcKPP/4INzc361iuVquFk5OTyNVJh5ub21/6hlxcXODl5cV+oiaYM2cOhgwZgldeeQX33nsv9u7di48//hgff/yx2KVJyh133IGXX34ZwcHB6N27Nw4ePIg33ngD06dPF7s0u1ZWVoZTp05Zf87JyUFGRgY8PT0RHByM2bNn46WXXkL37t0RGhqKZ555BgEBARg/frx4RdsTsadBSc27774rBAcHCyqVShg0aJCwZ88esUuSFABXvXz22WdilyZ5nEbdPD///LPQp08fQa1WC+Hh4cLHH38sdkmSYzAYhCeffFIIDg4WHB0dha5duwr/+c9/BKPRKHZpdm3btm1X/f9w2rRpgiDUTaV+5plnBF9fX0GtVgujRo0SsrOzxS3ajsgEgUslEhERkbSwB4aIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkhwGGiIiIJIcBhoiIiCSHAYaIiIgkhwGGiIiIJIcBhoiIiCTn/wEHtt53vqT4aQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "years = [1, 2, 3]\n", - "quarter = [1, 2, 3, 4]\n", - "data = [1690, 940, 2625, 2500,\n", - " 1800, 900, 2900, 2360,\n", - " 1850, 1100, 2930, 2615]\n", - "\n", - "import matplotlib.pyplot as plt\n", - "\n", - "plt.ylim(bottom = 0, top = max(data)*1.5)\n", - "plt.plot(data)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "def create_dummies(data, quarter):\n", - " dummies = np.zeros((len(data), len(quarter)))\n", - "\n", - " for i in range(len(dummies)):\n", - " dummies[i][i%len(quarter)] = 1\n", - "\n", - " return dummies[:, :-1]\n", - "\n", - "\n", - "dummies = create_dummies(data, quarter)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "m = Model()\n", - "\n", - "b_0 = m.continuous_var(name = 'Intercept', lb = -10e6)\n", - "b_x = m.continuous_var_list(len(quarter)-1, lb = -10e6, name = 'Slope')\n", - "\n", - "mse = []\n", - "for i in range(len(data)):\n", - " mse.append((b_0 + b_x @ dummies[i] - data[i])**2)\n", - "\n", - "m.minimize(sum(mse))" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-11 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Number of nonzeros in lower triangle of Q = 3\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.01 sec. (0.00 ticks)\n", - "Summary statistics for factor of Q:\n", - " Rows in Factor = 4\n", - " Integer space required = 4\n", - " Total non-zeros in factor = 10\n", - " Total FP ops to factor = 30\n", - "Tried aggregator 1 time.\n", - "QP Presolve added 0 rows and 4 columns.\n", - "Reduced QP has 4 rows, 8 columns, and 11 nonzeros.\n", - "Reduced QP objective Q matrix has 4 nonzeros.\n", - "Presolve time = 0.03 sec. (0.00 ticks)\n", - "Parallel mode: using up to 4 threads for barrier.\n", - "Number of nonzeros in lower triangle of A*A' = 4\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.00 sec. (0.00 ticks)\n", - "Summary statistics for Cholesky factor:\n", - " Threads = 4\n", - " Rows in Factor = 4\n", - " Integer space required = 4\n", - " Total non-zeros in factor = 10\n", - " Total FP ops to factor = 30\n", - " Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf \n", - " 0 2.0933273e+13 -2.2016119e+13 1.51e-08 0.00e+00 1.17e+07\n", - " 1 9.9958890e+06 -1.1406334e+11 1.42e-08 0.00e+00 6.06e-10\n", - " 2 1.2518012e+05 -5.7015449e+08 4.53e-08 0.00e+00 1.00e-11\n", - " 3 1.2493334e+05 -2.7264625e+06 6.79e-08 0.00e+00 6.10e-12\n", - " 4 1.2493333e+05 1.1067635e+05 2.89e-08 0.00e+00 3.72e-12\n", - " 5 1.2493333e+05 1.2486205e+05 2.91e-08 0.00e+00 5.48e-12\n", - " 6 1.2493333e+05 1.2493298e+05 3.70e-08 0.00e+00 8.42e-12\n", - "Barrier time = 0.07 sec. (0.02 ticks)\n", - "\n", - "Total time on 4 threads = 0.07 sec. (0.02 ticks)\n" - ] - } - ], - "source": [ - "solution = m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "solution for: docplex_model3\n", - "objective: 124933\n", - "status: OPTIMAL_SOLUTION(2)\n", - "Intercept=2491.667\n", - "Slope_0=-711.667\n", - "Slope_1=-1511.667\n", - "Slope_2=326.667\n", - "\n" - ] - } - ], - "source": [ - "print(solution)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Time Series/UniversityEnrollment.ipynb b/Time Series/UniversityEnrollment.ipynb deleted file mode 100644 index 68e3658..0000000 --- a/Time Series/UniversityEnrollment.ipynb +++ /dev/null @@ -1,205 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Because of high tuition costs at state and private universities,\n", - "enrollments at community colleges have increased dramatically in recent years. The\n", - "following data show the enrollment for Jefferson Community College for the nine most\n", - "recent years:\n", - "\n", - "a. Construct a time series plot. What type of pattern exists in the data?\n", - "\n", - "b. Use simple linear regression analysis to find the parameters for the line that mini-\n", - "mizes MSE for this time series.\n", - "\n", - "c. What is the forecast for year 10?" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAArMUlEQVR4nO3deXxU9b3/8fdkmySQmZCQkAyZBESUTRYJIqC2Cj+RWq64UsXbINbetqEVaWvltpbya2vU/uq1VYvaVtAqAraCrbeiiCVUCpoEI4IshjUQkrAlk4VMljm/PxIGU6KSMHNOZvJ6Ph55yJyczHzmQWteznzPd2yGYRgCAAAwSYTVAwAAgJ6F+AAAAKYiPgAAgKmIDwAAYCriAwAAmIr4AAAApiI+AACAqYgPAABgqiirB/h3Pp9PZWVlSkhIkM1ms3ocAABwDgzDUE1NjVwulyIiPv+1jW4XH2VlZXK73VaPAQAAuqC0tFQZGRmfe063i4+EhARJrcM7HA6LpwEAAOfC4/HI7Xb7f49/nm4XH6ffanE4HMQHAAAh5lyWTLDgFAAAmIr4AAAApiI+AACAqYgPAABgKuIDAACYivgAAACmIj4AAICpiA8AAGAq4gMAAJiK+AAAAKYiPgAAgKmIDwAAYCriAwAAmIr4AAAApiI+AACAqYgPAABgKuIDAACYivgAAACmIj4AAICpiA8AAGAq4gMAAJiK+AAAAKbqVHzk5eVp3LhxSkhIUGpqqmbMmKFdu3a1O+fLX/6ybDZbu69vfetbAR0aAACErk7FR35+vnJzc7V582atXbtWTU1Nuvbaa1VXV9fuvHvuuUdHjhzxfz366KMBHRoAAISuqM6cvGbNmna3ly5dqtTUVBUVFemqq67yH4+Pj1daWlpgJgQAAGHlvNZ8VFdXS5KSkpLaHX/ppZfUt29fjRgxQgsWLFB9ff1n3ofX65XH42n3BQAAwlenXvn4NJ/Pp3nz5mnSpEkaMWKE//gdd9yhrKwsuVwubd26VT/60Y+0a9cuvfrqqx3eT15enhYtWtTVMQAAQIixGYZhdOUHv/3tb+uNN97Qu+++q4yMjM8875133tHkyZNVUlKiQYMGnfV9r9crr9frv+3xeOR2u1VdXS2Hw9GV0QAAgMk8Ho+cTuc5/f7u0isfc+fO1euvv64NGzZ8bnhI0vjx4yXpM+PDbrfLbrd3ZQwAABCCOhUfhmHou9/9rlatWqX169dr4MCBX/gzxcXFkqT09PQuDQgAAMJLp+IjNzdXy5Yt02uvvaaEhASVl5dLkpxOp+Li4rRnzx4tW7ZMX/nKV5ScnKytW7fqvvvu01VXXaWRI0cG5QkAAIDQ0qk1HzabrcPjS5Ys0ezZs1VaWqo777xT27ZtU11dndxut2688Ub95Cc/Oef1G515zwgAAHQPQVvz8UWd4na7lZ+f35m7BAAAPQyf7QIAAExFfAAAAFMRHwAAwFTEBwAAMBXxAQAATEV8AAAAUxEfAADAVMQHAAAwFfEBAABMRXwAAABTER8AAMBUxAcAADAV8QEAAExFfAAAAFMRHwAAwFTEBwAAMBXxAQAATEV8AAAAUxEfAADAVMQHAAAwFfEBAABMRXwAAABTER8AAMBUxAcAADAV8QEAAExFfAAAAFMRHwAAwFTEBwAAMBXxAQAATEV8AAAAUxEfAADAVMQHAAAwFfEBAABMRXwAAABTER8AAMBUxAcAADAV8QEAAExFfAAAAFMRHwAAwFTEBwAAMBXxAQAATEV8AAAAUxEfAADAVMQHAAAwFfEBAABMRXwAAABTER8AAMBUxAcAADAV8QEAAExFfAAAAFMRHwAAwFTEBwAAMBXxAQAATEV8AAAAUxEfAADAVMQHAAAwFfEBAABM1an4yMvL07hx45SQkKDU1FTNmDFDu3btandOQ0ODcnNzlZycrN69e+vmm29WRUVFQIcGAAChq1PxkZ+fr9zcXG3evFlr165VU1OTrr32WtXV1fnPue+++/S3v/1Nr7zyivLz81VWVqabbrop4IMDAIDQZDMMw+jqDx89elSpqanKz8/XVVddperqaqWkpGjZsmW65ZZbJEk7d+7U0KFDtWnTJl1++eVfeJ8ej0dOp1PV1dVyOBxdHQ0AAJioM7+/z2vNR3V1tSQpKSlJklRUVKSmpiZNmTLFf86QIUOUmZmpTZs2dXgfXq9XHo+n3RcAAAhfXY4Pn8+nefPmadKkSRoxYoQkqby8XDExMUpMTGx3br9+/VReXt7h/eTl5cnpdPq/3G53V0cCAAAhoMvxkZubq23btmn58uXnNcCCBQtUXV3t/yotLT2v+wMAAN1bVFd+aO7cuXr99de1YcMGZWRk+I+npaWpsbFRVVVV7V79qKioUFpaWof3ZbfbZbfbuzIGAAAIQZ165cMwDM2dO1erVq3SO++8o4EDB7b7/tixYxUdHa1169b5j+3atUsHDx7UhAkTAjMxAAAIaZ165SM3N1fLli3Ta6+9poSEBP86DqfTqbi4ODmdTt19992aP3++kpKS5HA49N3vflcTJkw4pytdAABA+OvUpbY2m63D40uWLNHs2bMltW4y9v3vf18vv/yyvF6vpk6dqt/97nef+bbLv+NSWwAAQk9nfn+f1z4fwUB8AAAQekzb5wMAAKCziA8AAGAq4gMAAJiK+AAAAKYiPgAAgKmIDwAAYCriAwAAmIr4AAAApiI+AACAqYgPAABgKuIDAACYivgAAACmIj4AAICpiA8AAGAq4gMAAJiK+AAAAKYiPgAAgKmIDwAAegjDMFR6ol7bDldbOkeUpY8OAACCptbbrK2lVfqgtEofHKxScelJHatt1Ch3ol7LnWTZXMQHAABhoMVnqKSyVsWlJ/XBwdbY2F1ZI8Nof15UhE3RETYZhiGbzWbJrMQHAAAh6FitV8UHq/RB6UkVl1bpw9Jq1Xqbzzqvf2KcRmcmaow7UWMyEzXc5VRsdKQFE59BfAAA0M15m1v0cZlHxW1vn3xQelKlJ06ddV58TKRGZjg12t1HY9qCI9URa8HEn4/4AACgGzEMQ4dOnmpbp9H6qsb2wx41tvjOOvfC1N5tr2j00Wh3oi7q11tRkd3/WhLiAwAAC33WotB/1yc+2h8ZYzITNTIjUc64aAsmPn/EBwAAJvH5DJUcrdUHB0+2hUaVdlV0vCh0uMvRFhqtwZGVHG/ZAtFAIz4AAAiS04tCi0tb12mE0qLQYCI+AAAIAG9zi3YcqWn3qsbBE/VnnRcqi0KDifgAAKCTPr0o9PTlruG2KDSYiA8AAL5ArbdZWw9V+TfvKi6t0rFa71nnhdOi0GAiPgAA+JRPLwo9va/G7ooa+XrYotBgIj4AAFDrWylLNu7X/7y9WzUNLAoNJuIDANDjNbX49NPXtuvl9w9KYlFosBEfAIAerbq+Sd9ZVqSNJcdls0k//spQzZ44oMcvCg0m4gMA0GPtP1anOc8XaO/ROsXHROq3XxujKcP6WT1W2CM+AAA90nt7j+u/XixSVX2TXM5Y/SFnnIa5HFaP1SMQHwCAHueVwlL996qP1NRiaFSGU7//ejZrOkxEfAAAegyfz9Cv3tqlxev3SJKuvyRdv75tFFetmIz4AAD0CPWNzZq/4kOt2V4uSfruNRfqvikXKSKCfTnMRnwAAMJehadB33i+UB8drlZMZIQevvkS3XRphtVj9VjEBwAgrG07XK1vPF+ock+DknrF6Jn/HKtxA5KsHqtHIz4AAGHrre3lund5sU41tejC1N56LmecMpPjrR6rxyM+AABhxzAM/f6fe5X3xk4ZhnTl4L568o5L+ZC3boL4AACElcZmnx5cvU0rCkslSXdenqmfTR/OjqXdCPEBAAgbVfWN+taLRdq894QibNKDXx2m2RMH8Emz3QzxAQAIC/uO1WnO0gLtO1anXjGReuKOMbpmCFuld0fEBwAg5G3ac1zferFI1aea1D8xTn+cna0haWyV3l0RHwCAkLayoHWr9GafodHuRP3+69lKSbBbPRY+B/EBAAhJPp+hR9bs1DMb9kqSpo9y6Ve3jGSr9BBAfAAAQk59Y7PmLS/WWx9XSJLunTxY86YMZmFpiCA+AAAh5Uj1KX3j+UJtL/MoJipCv7plpG4Y3d/qsdAJxAcAIGR8dKha33ihQBUer5J7xejZr4/V2Cy2Sg81xAcAICSs2Vau+1a0bpV+Ub/e+mPOOLmT2Co9FBEfAIBuzTAMPZ2/V4+s2SlJ+tJFKXrijjFyxLJVeqgiPgAA3VZjs08/XvWRXik6JEnKmZClB786jK3SQxzxAQDolk7WNeq/XizS+/tat0pfOH24ciYOsHosBADxAQDodvYcrdWcpQU6cLxeCfYoPXHHGH354lSrx0KAEB8AgG5lY8kxffvFInkampXRJ07PzR6ni/olWD0WAqjTb5pt2LBB06dPl8vlks1m0+rVq9t9f/bs2bLZbO2+rrvuukDNCwAIYy+/f1A5z70vT0Ozxmb10ercSYRHGOr0Kx91dXUaNWqU5syZo5tuuqnDc6677jotWbLEf9tuZ499AMBna/EZeviNHfr9P/dJkm4Y7dIjN7NVerjqdHxMmzZN06ZN+9xz7Ha70tLSujwUAKDnqPM2697lxXp7R+tW6fdNuUjfm3whW6WHsaCs+Vi/fr1SU1PVp08fXXPNNfrFL36h5OTkDs/1er3yer3+2x6PJxgjAQC6obKqU7r7+ULtONK6Vfr/u3WU/mOUy+qxEGQBv1D6uuuu0wsvvKB169bpkUceUX5+vqZNm6aWlpYOz8/Ly5PT6fR/ud3uQI8EAOiGPiyt0g1PbdSOIx717R2j5d+8nPDoIWyGYRhd/mGbTatWrdKMGTM+85y9e/dq0KBBevvttzV58uSzvt/RKx9ut1vV1dVyOBxdHQ0A0I39/aMjum9FsbzNPg1JS9AfcrKV0Yet0kOZx+OR0+k8p9/fQb/U9oILLlDfvn1VUlLSYXzY7XYWpAJAD2EYhn63fo9+9eYuSdLVF6fot7ePUQJbpfcoQY+PQ4cO6fjx40pPTw/2QwEAujFvc4sWvPqRXt1yWJI0Z9JA/fj6oYqMYGFpT9Pp+KitrVVJSYn/9r59+1RcXKykpCQlJSVp0aJFuvnmm5WWlqY9e/bo/vvv14UXXqipU6cGdHAAQOg4Udeo//pToQr2n1RkhE2L/mO47rw8y+qxYJFOx0dhYaGuvvpq/+358+dLknJycrR48WJt3bpVzz//vKqqquRyuXTttdfq5z//OW+tAEAPVVJZozlLC3XwRL0SYqP0u1mX6srBKVaPBQud14LTYOjMghUAQPf2z0+O6jsvbVFNQ7PcSXF6LmecBrNjaVjqVgtOAQA904ubD2jhX7erxWdo3IA+evrOsUruzavgID4AAAHW4jP0y//doec2tm6VftOY/sq7+RLZo9gqHa2IDwBAwNR6m/W9lz/QOzsrJUk/nHqxvvPlQWyVjnaIDwBAQByuOqW7lxZoZ3mN7FER+p+Zo/WVS9hmAWcjPgAA5+2Dgyd1zwtFOlbrVUqCXX/4erZGuROtHgvdFPEBADgvr28t0/dXfihvs09D0x36Y062XIlxVo+Fboz4AAB0iWEYeuKdEj22drckafKQVP3m9jHqbedXCz4f/wsBAHRaQ1OLHvjLVq0uLpMkfeOKgVrwFbZKx7khPgAAnXK81qtv/qlIRQdOKirCpv97wwjdMT7T6rEQQogPAMAX8ja36GiNVweO1+uBV7eq9MQpOWKjtPjOsZp0YV+rx0OIIT4AoIcyDEM13mZVeryqrGnQ0RqvjtZ4VVnjVaWnQUdrvW3f86r6VFO7n81Kjtcfc8bpwtTeFk2PUEZ8AECYafEZOl7XGg5ngqJBlZ+Oi7bYaGjynfP9xkRGKCXBrjGZifr5DSPUp1dMEJ8FwhnxAQAhoqGpxR8PR9ti4nRgnI6Lyhqvjtd65evER4Ym2KOU4rArNcGu1IRYpSS0/dnR/rYzLpqdShEQxAcAWMgwDHlONetobYP/LY7Tr0qcjovTtz0Nzed8vzablNyrNRo+KyZO/zkuhs9cgbmIDwAIguYWn07UNfpj4swrFO3fAjla45W3uRNvfURFtA+KhNgztx1nbif1ilFUZEQQnyHQdcQHAJyH+sZm7ThSo4/LqrXtsEc7yj0qq2rQibrOvfXhiI1qC4rYtoiwn7n9qT874qJ46wMhj/gAgHNUXd+k7Ueqtf2wR9vLqrWtzKO9R2s/MzIibFJy79OvUNg/My5SEuyKjeatD/QcxAcAdKDS06DtZR5tO1zd+s+yah06earDc1MS7Brhcmi4y6nhLofcSfFKddiV3MvOjp9AB4gPAD2aYRg6dPJUu8jYXubR0Rpvh+e7k+I0PN2pEf3PxEaqI9bkqYHQRnwA6DFafIb2Hq1tDYzDHm0va337pKOrSCJs0qCU3hrucmhEf6eGuRwanu6UMz7agsmB8EJ8AAhL3uYW7S6vbVub0fpqxo4jng431YqJjNBFab01ou2VjOH9nRqa5uASVCBIiA8AIa/W26wdRzza7n/rxKNPKmrU3MFK0PiYSA1LP/NqxgiXUxem9lZMFJelAmYhPgCElJN1je3WZmw/XK19x+tkdHDFSWJ8dLtXM4a7HBqQ3ItFoIDFiA8A3ZJhGKrweNstBP24zKPDVR1fcZLmiNWI/g4Na4uNEf2dcjlj2RMD6IaIDwCW8/kMHTxR7381Y9vh1tA4XtfY4fkDkuNbrzT51BUnfXvbTZ4aQFcRHwBM1dziU8nRWm0/fOatk4/LPKr1nn3FSWSETYNTe7deaeJyaoTLoaEuhxyxXHEChDLiA4ApKjwNeuyt3VpdfLjDzzKJiYrQ0LQE/9qMES6nLk5LYOdPIAwRHwCCqs7brGc37NWzG/bqVFOLpNaPcB/qcvgjY3h/hwal9FY0H4QG9AjEB4CgaPEZeqWwVL9eu9u/W+jYrD56YNoQjc3sowiuOAF6LOIDQMDl7z6qh/53h3ZV1EiSspLj9cB1Q3TdiDSuPgFAfAAInB1HPHro7zv0z0+OSZKccdH63uTB+s/Ls9jEC4Af8QHgvFV4GvTrt3bplaJDMozW7cpzJmZp7tWD+SwUAGchPgB0WUeLSb86Ml33Tx2izOR4i6cD0F0RHwA67bMWk/74+qG6NLOPxdMB6O6IDwCdwmJSAOeL+ABwTlhMCiBQiA8An4vFpAACjfgA0CEWkwIIFuIDQDssJgUQbMQHAD8WkwIwA/EB4KzFpInx0freNYN1J4tJAQQB8QH0YCwmBWAF4gPogVhMCsBKxAfQg7CYFEB3QHwAPcT6XZXK+/tOFpMCsBzxAYQ5FpMC6G6IDyBMsZgUQHdFfABhhsWkALo74gMIEywmBRAqiA8gDLCYFEAoIT6AEMZiUgChiPgAQhCLSQGEMuIDCCEsJgUQDogPIASwmBRAOCE+gG6OxaQAwg3xAXRTLCYFEK6ID6CbYTEpgHDX6f982rBhg6ZPny6XyyWbzabVq1e3+75hGPrpT3+q9PR0xcXFacqUKfrkk08CNS8QtiprGvSrN3fqy79ar5WFreHx1ZHpenv+l/Tj64cRHgDCRqfjo66uTqNGjdJTTz3V4fcfffRR/fa3v9XTTz+t9957T7169dLUqVPV0NBw3sMC4WjroSrdt6JYkx5+R0/9Y49ONbVobFYfvfqdiXryjku5igVA2On02y7Tpk3TtGnTOvyeYRh6/PHH9ZOf/EQ33HCDJOmFF15Qv379tHr1an3ta187v2mBMNHc4tOb2yu0ZOM+FR446T8+NquP7rnyAk0d3o/FpADCVkDXfOzbt0/l5eWaMmWK/5jT6dT48eO1adOmDuPD6/XK6/X6b3s8nkCOBHQrVfWNevn9Uv1p036VVbe+GhgdadNXR7p016QBGpmRaO2AAGCCgMZHeXm5JKlfv37tjvfr18//vX+Xl5enRYsWBXIMoNv5pKJGS/61X69uOaSGJp8kKblXjGaNz9Sdl2cp1RFr8YQAYB7Lr3ZZsGCB5s+f77/t8XjkdrstnAgIDJ/PUP7uo3pu4z7/5bKSNDTdoTmTBmj6KJdioyMtnBAArBHQ+EhLS5MkVVRUKD093X+8oqJCo0eP7vBn7Ha77HZ7IMcALFXnbdZfthzS0o37tfdYnSQpwib9n2H9dNekgRo/MIn1HAB6tIDGx8CBA5WWlqZ169b5Y8Pj8ei9997Tt7/97UA+FNDtlJ6o1/P/2q8VhaWqaWiWJCXYozRznFs5EwfIncRVKwAgdSE+amtrVVJS4r+9b98+FRcXKykpSZmZmZo3b55+8YtfaPDgwRo4cKAefPBBuVwuzZgxI5BzA92CYRh6b98JLdm4T2s/rpDPaD0+sG8vzZ44QDePzVBvu+XvbgJAt9LpfysWFhbq6quv9t8+vV4jJydHS5cu1f3336+6ujp985vfVFVVla644gqtWbNGsbEsqEP4aGhq0d8+LNNzG/drx5EzV2hdObiv5kwaqC9dlKKICN5aAYCO2AzDMKwe4tM8Ho+cTqeqq6vlcDisHgdop9LToBc3H9BL7x3U8bpGSVJsdIRuujRDd00coMH9EiyeEACs0Znf37weDJyDrYeqtGTjfr2+tUxNLa297nLG6j8nDNDtl7mVGB9j8YQAEDqID+AzNLf4tGZ7uZZs3K+iT+1Cmp3VR3dNGqipw/spKpJPlwWAziI+gH/DLqQAEFzEB9Dmk4oaPbdxv1Z9wC6kABBMxAd6NJ/P0PrdlVqycT+7kAKASYgP9Ei13mb9peiQlv5rv/axCykAmIr4QI9SeqJeS/+1XysLSlXjbduFNDZKM7PZhRQAzEJ8IOwZhqHNe1t3IX17x5ldSC/o20uzJw3QzZdmqBe7kAKAafg3LsJWQ1OL/vphmZawCykAdCvEB8JORdsupMvYhRQAuiXiA2Hjw9IqLdm4T69vPaJmH7uQAkB3RXwgpJ3ehfS5d/dpy8Eq/3F2IQWA7ov4QEg6WdeolwsO6k+bDugIu5ACQEghPhASDMPQqaYW7TtWpxc3Hzx7F9LLs3Tn+Ex2IQWAEEB8wHTe5hZV1zfpZH2TTtY3qqq+SVX1jao61Xq7ut3xtj+falJjs6/d/QxLd+gudiEFgJBDfKDLmlt8qjrVdCYe2kKh+lQH8fCpwKhvbOnyY8ZERujqISmaM2mgLmMXUgAIScQH5PMZ8jS0f5XhTEx8dljUNDR3+TEjbJIzLlp94mPkjG/9Z2J8tBLjYtQnPrr1z23H/N+Lj1GvmEiCAwBCHPERZmq9zTpZ1/ZKw6nGs+OhXWCcCQrD6PpjOmKjlBjfGg3Otn8mxnUcD33aAiMhNooNvgCghyI+wsDJukat+uCwVhaWamd5TZfvp1dMpD8Y/j0W2t0+/apEXLSccdFcygoA6BTiI0T5fIbeLTmmFYWlWru9Qo0tZxZj2qMiPvVqQ9tbGb2i5Wx7S+OstzriWyPCHsWiTQBA8BEfIebQyXq9UnhIfy46pMNVp/zHh6U7NHOcW9NHuZTUi508AQDdF/ERArzNLXpre4VWFpbq3ZJj/vUZjtgozRjTX7dluzWiv9PaIQEAOEfERze244hHKwpKtbr4sKrqm/zHJw5K1sxxbk0dnsb+FgCAkEN8dDPVp5r01w/LtLKgVB8drvYfT3PE6tbsDN061q3M5HgLJwQA4PwQH92AYRjavPeEVhaW6u8fHZG3bSfP6Eibpgztp9vGuXXV4BRFcmkqACAMEB8WKq9u0F+2HNLKwlIdOF7vPz44tbdmjnPrxjH9ldzbbuGEAAAEHvFhsqYWn9btqNTKwlKt31UpX9vi0V4xkfqP0S7dmu3WGHciu3gCAMIW8WGSksparSws1atbDulYbaP/+LgBfXRbtlvXj0xXfAx/HQCA8MdvuyCq8zbrf7ce0YrCUhUdOOk/3re3XTePbb1EdlBKbwsnBADAfMRHgBmGoS0HT2pFQale33rE/wmukRE2XX1xim7LduvqIamKZktyAEAPRXwEyLFar17dckgrCw+ppLLWf3xg3166NTtDt1yaoVRHrIUTAgDQPRAf56G5xacNnxzVioJSrdtRqea21aOx0RH6yiXpmpnt1mUDk1g8CgDApxAfXXDgeJ1WFpbqz0WHVOHx+o+PcidqZrZb00elKyE22sIJAQDovoiPc3SqsUVrth/RioJSbd57wn+8T3y0bhyTodvGZWhImsPCCQEACA3Ex+cwDEMfHa7WioJS/fXDMtU0NEuSbDbpysEpmpnt1pRhqXwUPQAAnUB8dKCqvlGrPjisFQWl2lle4z+e0SdOt45165bsDPVPjLNwQgAAQhfx0cbnM7RxzzGtKCjVW9sr1NjS+vkqMVERmjo8TTOz3Zo4KFkRfL4KAADnpcfHx+GqU3qlsFSvFB7S4apT/uPD0h2aOc6tG0a7lBgfY+GEAACElx4ZH97mFq39uEIrCkr1bskxGW2fr5IQG6UZo/tr5ji3RvR3WjskAABhqkfFx85yj1YUlGr1B4d1sr7Jf3zCBcmaOc6t60akKTaaxaMAAARTj4mP9bsqNXtJgf92miNWt4zN0K3ZGcpK7mXhZAAA9Cw9Jj4mDEpWSoJdYzP7aOY4t666KEWRLB4FAMB0PSY+7FGR+uf9V/O2CgAAFutRH61KeAAAYL0eFR8AAMB6xAcAADAV8QEAAExFfAAAAFMRHwAAwFTEBwAAMBXxAQAATEV8AAAAUxEfAADAVMQHAAAwFfEBAABMRXwAAABTER8AAMBUAY+Pn/3sZ7LZbO2+hgwZEuiHAQAAISoqGHc6fPhwvf3222ceJCooDwMAAEJQUKogKipKaWlpwbhrAAAQ4oKy5uOTTz6Ry+XSBRdcoFmzZungwYOfea7X65XH42n3BQAAwlfA42P8+PFaunSp1qxZo8WLF2vfvn268sorVVNT0+H5eXl5cjqd/i+32x3okQAAQDdiMwzDCOYDVFVVKSsrS4899pjuvvvus77v9Xrl9Xr9tz0ej9xut6qrq+VwOII5GgAACBCPxyOn03lOv7+DvhI0MTFRF110kUpKSjr8vt1ul91uD/YYAACgmwj6Ph+1tbXas2eP0tPTg/1QAAAgBAQ8Pn7wgx8oPz9f+/fv17/+9S/deOONioyM1O233x7ohwIAACEo4G+7HDp0SLfffruOHz+ulJQUXXHFFdq8ebNSUlIC/VAAACAEBTw+li9fHui7BAAAYYTPdgEAAKYiPgAAgKmIDwAAYCriAwAAmIr4AAAApiI+AACAqYgPAABgKuIDAACYivgAAACmIj4AAICpiA8AAGAq4gMAAJiK+AAAAKYiPgAAgKmIDwAAYCriAwAAmIr4AAAApiI+AACAqYgPAABgKuIDAACYivgAAACmIj4AAICpiA8AAGAq4gMAAJiK+AAAAKYiPgAAgKmIDwAAYCriAwAAmIr4AAAApiI+AACAqYgPAABgKuIDAACYivgAAACmIj4AAICpiA8AAGAq4gMAAJiK+AAAAKYiPgAAgKmIDwAAYCriAwAAmIr4AAAApiI+AACAqYgPAABgKuIDAACYivgAAACmIj4AAICpiA8AAGAq4gMAAJiK+AAAAKYiPgAAgKmIDwAAYCriAwAAmIr4AAAApiI+AACAqYgPAABgKuIDAACYivgAAACmClp8PPXUUxowYIBiY2M1fvx4vf/++8F6KAAAEEKCEh8rVqzQ/PnztXDhQm3ZskWjRo3S1KlTVVlZGYyHAwAAISQo8fHYY4/pnnvu0V133aVhw4bp6aefVnx8vJ577rlgPBwAAAghUYG+w8bGRhUVFWnBggX+YxEREZoyZYo2bdp01vler1der9d/u7q6WpLk8XgCPRoAAAiS07+3DcP4wnMDHh/Hjh1TS0uL+vXr1+54v379tHPnzrPOz8vL06JFi8467na7Az0aAAAIspqaGjmdzs89J+Dx0VkLFizQ/Pnz/bd9Pp9OnDih5ORk2Wy2gD6Wx+OR2+1WaWmpHA5HQO+7Owj35yeF/3Pk+YW+cH+OPL/QF6znaBiGampq5HK5vvDcgMdH3759FRkZqYqKinbHKyoqlJaWdtb5drtddru93bHExMRAj9WOw+EI2/9RSeH//KTwf448v9AX7s+R5xf6gvEcv+gVj9MCvuA0JiZGY8eO1bp16/zHfD6f1q1bpwkTJgT64QAAQIgJytsu8+fPV05OjrKzs3XZZZfp8ccfV11dne66665gPBwAAAghQYmPmTNn6ujRo/rpT3+q8vJyjR49WmvWrDlrEarZ7Ha7Fi5ceNbbPOEi3J+fFP7PkecX+sL9OfL8Ql93eI4241yuiQEAAAgQPtsFAACYivgAAACmIj4AAICpiA8AAGCqHhMfTz31lAYMGKDY2FiNHz9e77//vtUjBcyGDRs0ffp0uVwu2Ww2rV692uqRAiovL0/jxo1TQkKCUlNTNWPGDO3atcvqsQJq8eLFGjlypH/TnwkTJuiNN96weqygefjhh2Wz2TRv3jyrRwmIn/3sZ7LZbO2+hgwZYvVYAXf48GHdeeedSk5OVlxcnC655BIVFhZaPVZADBgw4Ky/Q5vNptzcXKtHC4iWlhY9+OCDGjhwoOLi4jRo0CD9/Oc/P6fPYQmGHhEfK1as0Pz587Vw4UJt2bJFo0aN0tSpU1VZWWn1aAFRV1enUaNG6amnnrJ6lKDIz89Xbm6uNm/erLVr16qpqUnXXnut6urqrB4tYDIyMvTwww+rqKhIhYWFuuaaa3TDDTdo+/btVo8WcAUFBXrmmWc0cuRIq0cJqOHDh+vIkSP+r3fffdfqkQLq5MmTmjRpkqKjo/XGG2/o448/1q9//Wv16dPH6tECoqCgoN3f39q1ayVJt956q8WTBcYjjzyixYsX68knn9SOHTv0yCOP6NFHH9UTTzxhzUBGD3DZZZcZubm5/tstLS2Gy+Uy8vLyLJwqOCQZq1atsnqMoKqsrDQkGfn5+VaPElR9+vQx/vCHP1g9RkDV1NQYgwcPNtauXWt86UtfMu69916rRwqIhQsXGqNGjbJ6jKD60Y9+ZFxxxRVWj2Gae++91xg0aJDh8/msHiUgrr/+emPOnDntjt10003GrFmzLJkn7F/5aGxsVFFRkaZMmeI/FhERoSlTpmjTpk0WToauqq6uliQlJSVZPElwtLS0aPny5aqrqwu7jyTIzc3V9ddf3+7/j+Hik08+kcvl0gUXXKBZs2bp4MGDVo8UUH/961+VnZ2tW2+9VampqRozZox+//vfWz1WUDQ2NurFF1/UnDlzAv4Bp1aZOHGi1q1bp927d0uSPvzwQ7377ruaNm2aJfNY/qm2wXbs2DG1tLSctbtqv379tHPnToumQlf5fD7NmzdPkyZN0ogRI6weJ6A++ugjTZgwQQ0NDerdu7dWrVqlYcOGWT1WwCxfvlxbtmxRQUGB1aME3Pjx47V06VJdfPHFOnLkiBYtWqQrr7xS27ZtU0JCgtXjBcTevXu1ePFizZ8/X//93/+tgoICfe9731NMTIxycnKsHi+gVq9eraqqKs2ePdvqUQLmgQcekMfj0ZAhQxQZGamWlhb98pe/1KxZsyyZJ+zjA+ElNzdX27ZtC7v30yXp4osvVnFxsaqrq/XnP/9ZOTk5ys/PD4sAKS0t1b333qu1a9cqNjbW6nEC7tP/9Thy5EiNHz9eWVlZWrlype6++24LJwscn8+n7OxsPfTQQ5KkMWPGaNu2bXr66afDLj7++Mc/atq0aef00fChYuXKlXrppZe0bNkyDR8+XMXFxZo3b55cLpclf39hHx99+/ZVZGSkKioq2h2vqKhQWlqaRVOhK+bOnavXX39dGzZsUEZGhtXjBFxMTIwuvPBCSdLYsWNVUFCg3/zmN3rmmWcsnuz8FRUVqbKyUpdeeqn/WEtLizZs2KAnn3xSXq9XkZGRFk4YWImJibroootUUlJi9SgBk56eflYIDx06VH/5y18smig4Dhw4oLfffluvvvqq1aME1A9/+EM98MAD+trXviZJuuSSS3TgwAHl5eVZEh9hv+YjJiZGY8eO1bp16/zHfD6f1q1bF3bvp4crwzA0d+5crVq1Su+8844GDhxo9Uim8Pl88nq9Vo8REJMnT9ZHH32k4uJi/1d2drZmzZql4uLisAoPSaqtrdWePXuUnp5u9SgBM2nSpLMucd+9e7eysrIsmig4lixZotTUVF1//fVWjxJQ9fX1ioho/ys/MjJSPp/PknnC/pUPSZo/f75ycnKUnZ2tyy67TI8//rjq6up01113WT1aQNTW1rb7L6x9+/apuLhYSUlJyszMtHCywMjNzdWyZcv02muvKSEhQeXl5ZIkp9OpuLg4i6cLjAULFmjatGnKzMxUTU2Nli1bpvXr1+vNN9+0erSASEhIOGuNTq9evZScnBwWa3d+8IMfaPr06crKylJZWZkWLlyoyMhI3X777VaPFjD33XefJk6cqIceeki33Xab3n//fT377LN69tlnrR4tYHw+n5YsWaKcnBxFRYXXr8fp06frl7/8pTIzMzV8+HB98MEHeuyxxzRnzhxrBrLkGhsLPPHEE0ZmZqYRExNjXHbZZcbmzZutHilg/vGPfxiSzvrKycmxerSA6Oi5STKWLFli9WgBM2fOHCMrK8uIiYkxUlJSjMmTJxtvvfWW1WMFVThdajtz5kwjPT3diImJMfr372/MnDnTKCkpsXqsgPvb3/5mjBgxwrDb7caQIUOMZ5991uqRAurNN980JBm7du2yepSA83g8xr333mtkZmYasbGxxgUXXGD8+Mc/NrxeryXz2AzDou3NAABAjxT2az4AAED3QnwAAABTER8AAMBUxAcAADAV8QEAAExFfAAAAFMRHwAAwFTEBwAAMBXxAQAATEV8AAAAUxEfAADAVMQHAAAw1f8HUbIDsEuvZREAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "year = [2001,2002,2003,2004,2005,2006,2007,2008,2009 ]\n", - "period = [1,2,3,4,5,6,7,8,9]\n", - "data = [6.5,8.1,8.4,10.2,12.5,13.3,13.7,17.2,18.1]\n", - "\n", - "import matplotlib.pyplot as plt\n", - "\n", - "plt.ylim(bottom = 0, top = max(data)*1.5)\n", - "plt.plot(data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "$eq = B_0 + B_1 * Period$" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "\n", - "m = Model()\n", - "\n", - "b_0 = m.continuous_var(name = 'Intercept')\n", - "b_1 = m.continuous_var(name = 'Slope')\n", - "\n", - "# for i in period:\n", - "# m.add_constraint(b_0 + b_1 * i == data[i-1])\n", - " \n", - "\n", - "mse = []\n", - "for i in period:\n", - " mse.append(((b_0 + b_1 * i) - data[i-1])**2)\n", - "\n", - "m.minimize(sum(mse))" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Version identifier: 22.1.1.0 | 2023-02-11 | 22d6266e5\n", - "CPXPARAM_Read_DataCheck 1\n", - "Number of nonzeros in lower triangle of Q = 1\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.00 sec. (0.00 ticks)\n", - "Summary statistics for factor of Q:\n", - " Rows in Factor = 2\n", - " Integer space required = 2\n", - " Total non-zeros in factor = 3\n", - " Total FP ops to factor = 5\n", - "Tried aggregator 1 time.\n", - "QP Presolve added 0 rows and 2 columns.\n", - "Reduced QP has 2 rows, 4 columns, and 5 nonzeros.\n", - "Reduced QP objective Q matrix has 2 nonzeros.\n", - "Presolve time = 0.01 sec. (0.00 ticks)\n", - "Parallel mode: using up to 4 threads for barrier.\n", - "Number of nonzeros in lower triangle of A*A' = 1\n", - "Using Approximate Minimum Degree ordering\n", - "Total time for automatic ordering = 0.00 sec. (0.00 ticks)\n", - "Summary statistics for Cholesky factor:\n", - " Threads = 4\n", - " Rows in Factor = 2\n", - " Integer space required = 2\n", - " Total non-zeros in factor = 3\n", - " Total FP ops to factor = 5\n", - " Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf \n", - " 0 -4.4060000e+01 1.4267400e+03 2.70e+00 0.00e+00 3.73e+03\n", - " 1 -6.7695967e+01 7.8113354e+02 4.35e-01 0.00e+00 6.00e+02\n", - " 2 2.7976023e+00 1.2661955e+02 4.35e-02 0.00e+00 6.00e+01\n", - " 3 4.3568739e+00 -1.0789225e+01 2.66e-15 0.00e+00 6.77e-14\n", - " 4 3.4279666e+00 3.0598962e+00 8.88e-16 0.00e+00 3.18e-14\n", - " 5 3.4273485e+00 3.2436204e+00 4.44e-16 0.00e+00 1.32e-13\n", - " 6 3.4273372e+00 3.3354960e+00 1.33e-15 0.00e+00 4.55e-14\n", - " 7 3.4273343e+00 3.3814195e+00 8.88e-16 0.00e+00 1.99e-14\n", - " 8 3.4273336e+00 3.4043776e+00 1.33e-15 0.00e+00 6.34e-14\n", - " 9 3.4273334e+00 3.4158558e+00 4.44e-16 0.00e+00 1.01e-13\n", - " 10 3.4273333e+00 3.4215946e+00 1.78e-15 0.00e+00 1.07e-13\n", - " 11 3.4273333e+00 3.4244640e+00 0.00e+00 0.00e+00 1.04e-13\n", - " 12 3.4273333e+00 3.4258987e+00 1.33e-15 0.00e+00 2.38e-13\n", - " 13 3.4273333e+00 3.4266160e+00 0.00e+00 0.00e+00 1.03e-13\n", - " 14 3.4273333e+00 3.4269747e+00 4.44e-16 0.00e+00 1.31e-13\n", - " 15 3.4273333e+00 3.4271540e+00 1.78e-15 0.00e+00 1.81e-13\n", - " 16 3.4273333e+00 3.4272437e+00 4.44e-16 0.00e+00 1.09e-13\n", - " 17 3.4273333e+00 3.4272885e+00 1.78e-15 0.00e+00 1.65e-13\n", - " 18 3.4273333e+00 3.4273109e+00 0.00e+00 0.00e+00 1.03e-13\n", - " 19 3.4273333e+00 3.4273221e+00 0.00e+00 0.00e+00 3.26e-14\n", - "Barrier time = 0.06 sec. (0.02 ticks)\n", - "\n", - "Total time on 4 threads = 0.06 sec. (0.02 ticks)\n" - ] - }, - { - "data": { - "text/plain": [ - "docplex.mp.solution.SolveSolution(obj=3.42733,values={Intercept:4.71667,.." - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m.solve(log_output = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "objective: 3.427\n", - "status: OPTIMAL_SOLUTION(2)\n", - " Intercept=4.717\n", - " Slope=1.457\n" - ] - } - ], - "source": [ - "m.print_solution()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Time Series/notes.md b/Time Series/notes.md deleted file mode 100644 index 2183d31..0000000 --- a/Time Series/notes.md +++ /dev/null @@ -1,28 +0,0 @@ -Time series patterns: -1. Horizontal Pattern: The mean is equal over any time period -2. Trend: "Continuous?" Long Term Overall change, whether increasing or decreasing. -3. Seasonal Pattern: The Non-Random behaviour and pattern across a period of time. -4. Trend and Seasonal Pattern: 2+3 -5. ... - -A. Horizontal Pattern: - - Stationary: Statistics are independent from the time variable. - * Plotting a Stationary will always result in a Horizontal with minor changes. - * E.g. Gasoline Problem - -B. Trend Pattern: - * E.g. Bicycle Sales - * E.g. Cholesterol Drug Revenue - -C. Seasonal Pattern: - * E.g. Umbrella Sales - -D. Trend and Seasonal Pattern: - * E.g. Smartphone Sales - -Exponential Smoothing closed form: $\hat{y}_{t+1} = \alpha \sum_{i=0}^{t-2}((1−\alpha)^{i}y_{t-i}) + (1-\alpha)^{t-1}y_1$ - -*** Check Gallery for changing a seasonality to a multivariate problem. Also, in slide 10/19 of chpt 8 -*** CHECK SHADOW PRICES. THEIR FUNCTIONS IN DOCPLEX -*** FORMULATION ==> CHECK HOW TO FORMULATE IN VERSION 0. & HOW TO GENERALIZE BASIC PROBLEMS. -*** WHAT IS CLOSED FORM? OR ITERATIVELY? EXPONENTIAL SMOOTHING EQUATION. \ No newline at end of file diff --git a/requirements.txt b/requirements.txt deleted file mode 100644 index 1a176d7..0000000 --- a/requirements.txt +++ /dev/null @@ -1,31 +0,0 @@ -asttokens==2.4.1 -colorama==0.4.6 -comm==0.2.1 -cplex==22.1.1.1 -debugpy==1.8.1 -decorator==5.1.1 -docplex==2.25.236 -executing==2.0.1 -ipykernel==6.29.2 -ipython==8.21.0 -jedi==0.19.1 -jupyter_client==8.6.0 -jupyter_core==5.7.1 -matplotlib-inline==0.1.6 -nest-asyncio==1.6.0 -numpy==1.26.4 -packaging==23.2 -parso==0.8.3 -platformdirs==4.2.0 -prompt-toolkit==3.0.43 -psutil==5.9.8 -pure-eval==0.2.2 -Pygments==2.17.2 -python-dateutil==2.8.2 -pywin32==306 -pyzmq==25.1.2 -six==1.16.0 -stack-data==0.6.3 -tornado==6.4 -traitlets==5.14.1 -wcwidth==0.2.13