-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcnn_dog_cat.py
176 lines (128 loc) · 5.55 KB
/
cnn_dog_cat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Import
import numpy as np
import tensorflow as tf
import os
import vgg_preprocessing
tf.logging.set_verbosity(tf.logging.INFO)
_DEFAULT_IMAGE_SIZE = 250
_NUM_CHANNELS = 3
_NUM_CLASSES = 2
tf.app.flags.DEFINE_string('output_directory', '/home/brijesh/Documents/TensorFlow', 'Output data directory')
FLAG = tf.app.flags.FLAGS
def cnn_model_fn(features, labels, mode):
"""Model function for CNN."""
# Input Layer
input_layer = tf.reshape(features["image"], [-1, _DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, 3])
# Convolutional Layer #1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
# Convolutional Layer #2 and Pooling Layer #2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
# Dense Layer
pool2_flat = tf.reshape(pool2, [-1, 126 * 126 * 64])
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)
# Logits Layer
logits = tf.layers.dense(inputs=dropout, units=2)
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": tf.argmax(input=logits, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by the
# `logging_hook`.
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=2)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels, logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def parse_record(raw_record, is_training):
"""Parse an ImageNet record from `value`."""
keys_to_features = {
'image/encoded':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/format':
tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/class/label':
tf.FixedLenFeature([], dtype=tf.int64, default_value=-1),
'image/class/text':
tf.FixedLenFeature([], dtype=tf.string, default_value=''),
}
parsed = tf.parse_single_example(raw_record, keys_to_features)
image = tf.image.decode_image(
tf.reshape(parsed['image/encoded'], shape=[]),
_NUM_CHANNELS)
# Note that tf.image.convert_image_dtype scales the image data to [0, 1).
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image = vgg_preprocessing.preprocess_image(
image=image,
output_height=_DEFAULT_IMAGE_SIZE,
output_width=_DEFAULT_IMAGE_SIZE,
is_training=is_training)
label = tf.cast(
tf.reshape(parsed['image/class/label'], shape=[]),
dtype=tf.int32)
return {"image": image}, label
def get_file_lists(data_dir):
import glob
train_list = glob.glob(data_dir + '/' + 'train-*')
valid_list = glob.glob(data_dir + '/' + 'validation-*')
if len(train_list) == 0 and \
len(valid_list) == 0:
raise IOError('No files found at specified path!')
return train_list, valid_list
def input_fn(is_training, filenames, batch_size, num_epochs=1, num_parallel_calls=1):
dataset = tf.data.TFRecordDataset(filenames)
if is_training:
dataset = dataset.shuffle(buffer_size=1500)
dataset = dataset.map(lambda value: parse_record(value, is_training),
num_parallel_calls=num_parallel_calls)
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(batch_size)
dataset = dataset.repeat(num_epochs)
iterator = dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
return features, labels
def train_input_fn(file_path):
return input_fn(True, file_path, 100, None, 10)
def validation_input_fn(file_path):
return input_fn(False, file_path, 50, 1, 1)
def main(unused_arg):
train_list, valid_list = get_file_lists(FLAG.output_directory)
classifier = tf.estimator.Estimator(model_fn=cnn_model_fn, model_dir=os.path.join(FLAG.output_directory, "tb"))
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
classifier.train(input_fn=lambda: train_input_fn(train_list), steps=10, hooks=[logging_hook])
evalution = classifier.evaluate(input_fn=lambda: validation_input_fn(valid_list))
print(evalution)
if __name__ == '__main__':
tf.app.run()