-
Notifications
You must be signed in to change notification settings - Fork 0
/
fusion_data_generation.py
262 lines (228 loc) · 13.4 KB
/
fusion_data_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
'''
Author: Xingtong Liu, Maia Stiber, Jindan Huang, Masaru Ishii, Gregory D. Hager, Russell H. Taylor, and Mathias Unberath
Copyright (C) 2020 Johns Hopkins University - All Rights Reserved
You may use, distribute and modify this code under the
terms of the GNU GENERAL PUBLIC LICENSE Version 3 license for non-commercial usage.
You should have received a copy of the GNU GENERAL PUBLIC LICENSE Version 3 license with
this file. If not, please write to: [email protected] or [email protected]
'''
import tqdm
import cv2
import numpy as np
from pathlib import Path
import torch
import random
import argparse
import h5py
# Local
import models
import utils
import dataset
if __name__ == '__main__':
cv2.destroyAllWindows()
parser = argparse.ArgumentParser(
description='Depth fusion data preparation',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--image_downsampling', type=float, default=4.0,
help='image downsampling rate to speed up training and reduce overfitting')
parser.add_argument('--network_downsampling', type=int, default=64,
help='network downsampling rate')
parser.add_argument('--input_size', nargs='+', type=int,
help='input size for the network')
parser.add_argument('--batch_size', type=int, default=8, help='batch size for testing')
parser.add_argument('--num_workers', type=int, default=8, help='number of workers for input data loader')
parser.add_argument('--visible_interval', type=int, default=5,
help='range for propagating point visibility information')
parser.add_argument('--inlier_percentage', type=float, default=0.998,
help='percentage of inliers of SfM point clouds (for pruning some outliers)')
parser.add_argument('--load_intermediate_data', action='store_true', help='whether to load intermediate data')
parser.add_argument('--display_architecture', action='store_true', help='display the network architecture')
parser.add_argument('--trained_model_path', type=str, required=True,
help='path to the trained model')
parser.add_argument('--data_root', type=str, required=True,
help='root storing the video and sparse reconstruction data')
parser.add_argument('--sequence_root', type=str, default=None,
help='root of the sequence')
parser.add_argument('--patient_id', nargs='+', type=int,
help='list patient id')
parser.add_argument('--precompute_root', type=str, required=True,
help='root of the precompute data')
args = parser.parse_args()
height, width = args.input_size
# Fix randomness for reproducibility
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
torch.manual_seed(10085)
np.random.seed(10085)
random.seed(10085)
if not Path(args.precompute_root).exists():
Path(args.precompute_root).mkdir(parents=True)
model = models.FCDenseNetStd(
in_channels=3, down_blocks=(4, 4, 4, 4, 4),
up_blocks=(4, 4, 4, 4, 4), bottleneck_layers=4,
growth_rate=12, out_chans_first_conv=48)
# Initialize the depth estimation network with Kaiming He initialization
utils.init_net(model, type="kaiming", mode="fan_in", activation_mode="relu",
distribution="normal")
# Multi-GPU running
model = torch.nn.DataParallel(model)
# Load previous depth estimation model
if Path(args.trained_model_path).exists():
print("Loadingx {:s} ...".format(str(args.trained_model_path)))
state = torch.load(str(args.trained_model_path), encoding='latin1')
model.load_state_dict(state["model"])
step = state['step']
epoch = state['epoch']
print('Restored model, epoch {}, step {}'.format(epoch, step))
else:
print("No previous model detected")
raise OSError
# Set model to evaluation mode
model.eval()
for param in model.parameters():
param.requires_grad = False
# Custom layers
depth_scaling_layer = models.TestDepthMeanStdScalingLayer()
folder_list = list()
for id in args.patient_id:
folder_list = folder_list + list(Path(args.data_root).glob("{}/_start*".format(id)))
folder_list.sort()
print(folder_list)
load_intermediate_data = args.load_intermediate_data
for folder in folder_list:
if args.sequence_root is not None:
if str(folder) != args.sequence_root:
continue
print("Start gathering fusion data for {}".format(folder))
# if (folder / "fusion_data.hdf5").exists():
# continue
image_path_list = utils.get_file_names_in_sequence(folder)
if len(image_path_list) == 0:
print("Sequence {} does not have relevant files".format(str(folder)))
continue
hf = h5py.File(str(folder / "fusion_data.hdf5"), 'w')
dataset_extrinsics = hf.create_dataset('extrinsics', (0, 4, 4),
maxshape=(None, 4, 4), chunks=(4096, 4, 4),
compression="gzip", compression_opts=4, dtype='float32')
dataset_intrinsics = hf.create_dataset('intrinsics', (0, 3, 3),
maxshape=(None, 3, 3), chunks=(4096, 3, 3),
compression="gzip", compression_opts=4, dtype='float32')
dataset_mean = hf.create_dataset('mean_depth', (0, height, width, 1),
maxshape=(None, height, width, 1), chunks=(1, height, width, 1),
compression="gzip", compression_opts=9, dtype='float32')
dataset_std = hf.create_dataset('std_depth', (0, height, width, 1),
maxshape=(None, height, width, 1), chunks=(1, height, width, 1),
compression="gzip", compression_opts=9, dtype='float32')
dataset_color = hf.create_dataset('color', (0, height, width, 3),
maxshape=(None, height, width, 3), chunks=(1, height, width, 3),
compression="gzip", compression_opts=9, dtype='uint8')
dataset_mask = hf.create_dataset('mask', (0, height, width, 1),
maxshape=(None, height, width, 1), chunks=(1, height, width, 1),
compression="gzip", compression_opts=9, dtype='uint8')
dataset_frame_index = hf.create_dataset('frame_index', (0, 1),
maxshape=(None, 1), chunks=(40960, 1),
compression="gzip", compression_opts=4, dtype='int32')
fusion_dataset = dataset.DepthDataset(image_file_names=image_path_list,
folder_list=folder_list,
image_downsampling=args.image_downsampling,
network_downsampling=args.network_downsampling,
inlier_percentage=args.inlier_percentage,
visible_interval=args.visible_interval,
load_intermediate_data=args.load_intermediate_data,
intermediate_data_root=Path(args.precompute_root),
num_pre_workers=args.num_workers,
num_iter=None,
adjacent_range=None,
phase="Loading")
fusion_loader = torch.utils.data.DataLoader(dataset=fusion_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers)
load_intermediate_data = True
scale_list = []
scaled_mean_depth_map_list = []
scaled_std_depth_map_list = []
extrinsics_list = []
colors_list = []
boundaries_list = []
intrinsics_list = []
image_name_list = []
folder_list = []
# Update progress bar
tq = tqdm.tqdm(total=len(fusion_loader) * args.batch_size)
with torch.no_grad():
for batch, (colors_1, sparse_depths_1, sparse_depth_masks_1, boundaries,
extrinsics_1, intrinsic_matrices, image_names, folders) in enumerate(fusion_loader):
tq.update(colors_1.shape[0])
colors_1, sparse_depths_1, sparse_depth_masks_1, boundaries, extrinsics_1, intrinsic_matrices = \
colors_1.cuda(), sparse_depths_1.cuda(), sparse_depth_masks_1.cuda(), boundaries.cuda(), \
extrinsics_1.cuda(), intrinsic_matrices.cuda()
colors_1 = boundaries * colors_1
predicted_mean_depth_maps_1, predicted_std_depth_maps_1 = model(colors_1)
scaled_mean_depth_maps_1, scaled_std_depth_maps_1, scales = depth_scaling_layer(
[predicted_mean_depth_maps_1, predicted_std_depth_maps_1,
sparse_depths_1, sparse_depth_masks_1])
scaled_mean_depth_maps_1 = boundaries * scaled_mean_depth_maps_1
scaled_std_depth_maps_1 = boundaries * scaled_std_depth_maps_1
scaled_mean_depth_maps_1 = scaled_mean_depth_maps_1.data.cpu().numpy()
scaled_std_depth_maps_1 = scaled_std_depth_maps_1.data.cpu().numpy()
extrinsics_1 = extrinsics_1.data.cpu().numpy()
colors_1 = colors_1.data.cpu().numpy()
boundaries = boundaries.data.cpu().numpy()
intrinsic_matrices = intrinsic_matrices.data.cpu().numpy()
scales = scales.data.cpu().numpy().reshape((-1,))
for i in range(scaled_mean_depth_maps_1.shape[0]):
scaled_mean_depth_map_list.append(scaled_mean_depth_maps_1[i])
valid_indexes = np.argwhere(boundaries[i].reshape((-1,)) > 0.5)
depth_vector = scaled_mean_depth_maps_1[i].reshape((-1, 1))
scale_list.append(scales[i])
scaled_std_depth_map_list.append(scaled_std_depth_maps_1[i])
extrinsics_list.append(extrinsics_1[i])
colors_list.append(colors_1[i] * 0.5 + 0.5)
boundaries_list.append(boundaries[i])
intrinsics_list.append(intrinsic_matrices[i])
image_name_list.append(image_names[i])
# Use scale values to remove outlier frames. Scales should change smoothly
recent_valid_index = 0
valid_index_list = []
median_scale = np.median(scale_list)
state = "searching"
for idx in range(len(scale_list)):
if state == "searching":
ratio = scale_list[idx] / median_scale
if ratio >= 0.5 or ratio <= 2.0:
state = "normal"
recent_valid_index = idx
valid_index_list.append(idx)
elif state == "normal":
ratio = scale_list[idx] / scale_list[recent_valid_index]
if ratio < 0.3 or ratio > 3.0:
print("Frame: {}, abnormal scale: {}, ratio: {}".format(idx, scale_list[idx], ratio))
continue
else:
recent_valid_index = idx
valid_index_list.append(idx)
tq.close()
# Write data to hdf5 file for further processing
for i in range(len(valid_index_list)):
idx = valid_index_list[i]
scaled_mean_depth_map = scaled_mean_depth_map_list[idx]
dataset_mean.resize((dataset_mean.shape[0] + 1, height, width, 1))
dataset_mean[-1, :, :, :] = scaled_mean_depth_map.reshape((height, width, 1))
scaled_std_depth_map = scaled_std_depth_map_list[idx]
dataset_std.resize((dataset_std.shape[0] + 1, height, width, 1))
dataset_std[-1, :, :, :] = scaled_std_depth_map.reshape((height, width, 1))
color = np.moveaxis(colors_list[idx], source=[0, 1, 2], destination=[2, 0, 1])
dataset_color.resize((dataset_color.shape[0] + 1, height, width, 3))
dataset_color[-1, :, :, :] = np.uint8(255.0 * color.reshape((height, width, 3)))
extrinsics = extrinsics_list[idx]
dataset_extrinsics.resize((dataset_extrinsics.shape[0] + 1, 4, 4))
dataset_extrinsics[-1, :, :] = extrinsics.reshape((4, 4))
dataset_frame_index.resize((dataset_frame_index.shape[0] + 1, 1))
dataset_frame_index[-1, :] = int(image_name_list[idx])
if i == 0:
mask = boundaries_list[idx]
dataset_mask.resize((dataset_mask.shape[0] + 1, height, width, 1))
dataset_mask[-1, :, :, :] = np.uint8(mask.reshape((height, width, 1)))
intrinsics = intrinsics_list[idx]
dataset_intrinsics.resize((dataset_intrinsics.shape[0] + 1, 3, 3))
dataset_intrinsics[-1, :, :] = intrinsics.reshape((3, 3))
hf.close()