-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultitasklearn.py
224 lines (192 loc) · 7.57 KB
/
multitasklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import csv
import os
import pandas as pd
from os import listdir
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D
from keras.optimizers import RMSprop, Adam, Adadelta
from keras.preprocessing import image
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.applications.resnet50 import preprocess_input, decode_predictions
from keras.applications.resnet50 import ResNet50
import numpy as np
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras import backend as K
from keras.layers import Input
from keras import models
from keras import layers
from keras import optimizers
import random
from keras.preprocessing.image import ImageDataGenerator
from random import randrange
import cv2
from keras import backend as K
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input
from keras.layers import Activation, Flatten, Dropout, BatchNormalization
import matplotlib.pylab as plt
from sklearn.metrics import classification_report
from keras.models import Model
from keras.layers import Input
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Conv2D
from keras.layers import MaxPooling2D, GlobalMaxPooling2D
from keras.optimizers import Adam
import tensorflow as tf
from keras import backend as K
from keras import initializers
from sys import *
import os
random.seed(42)
np.random.seed(42)
tf.set_random_seed(42)
my_init = initializers.glorot_uniform(seed=42)
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
K.tensorflow_backend._get_available_gpus()
cv_size=126
testsize=126
W=224
X_train = []
y_train = []
y_train1 = []
Path='C:/Users/rudre/Downloads/Height_DB_face_det'
heights = pd.read_csv('C:/Users/rudre/Downloads/Height_DB_face_det/annotation_height_f_.csv',encoding='latin-1')
print('Read train images')
for index, row in heights.iterrows():
image_path = os.path.join(Path,'images', str((row['img'])) + '.jpg')
img = cv2.resize(cv2.imread(image_path, cv2.IMREAD_COLOR), (W,W) ).astype(np.float32)
#img = (cv2.imread(image_path, cv2.IMREAD_COLOR), (W, W) )
img = preprocess_input(img)
X_train.append(img)
y_train.append( [ row['WEIGHT'] ] )
y_train1.append( [ row['HEIGHT'] ] )
y_train = np.array(y_train)
y_train = y_train.astype('float32')
m = y_train.mean()
s = y_train.std()
print ('Train mean, sd:', m, s )
y_train -= m
y_train /= s
print('Train shape:', y_train.shape)
print(y_train.shape[0], 'train samples')
y_train1 = np.array(y_train1)
y_train1 = y_train1.astype('float32')
m = y_train1.mean()
s = y_train1.std()
print ('Train mean, sd:', m, s )
y_train1 -= m
y_train1 /= s
print('Train shape:', y_train1.shape)
print(y_train1.shape[0], 'train samples')
X_train = np.array(X_train)
X_train = X_train.astype('float32')
m = X_train.mean()
s = X_train.std()
print ('Train mean, sd:', m, s )
X_train -= m
X_train /= s
print('Train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
#X_train /= 255
#X, Y1, Y2 = make_x_y(X_train, y_train, y_train1)
#X_train, X_test, Y_train, Y_test, Y_train1, Y_test1 = utils.prepare_train_test(X_train,y_train,y_train1,W)
input_shape = (W, W, 3)
X_train, X_test, Y_train, Y_test, Y_train1, Y_test1 = train_test_split(X_train, y_train, y_train1, test_size=cv_size, random_state=42)
dd=0.0
#base_model = ResNet50(weights='imagenet', include_top=False)
#freeze all the layers
#for layer in base_model.layers[:]:
# layer.trainable = False
#base_model.layers[0].trainable=False
visible = Input(shape=input_shape)
#x = base_model(visible)
x = Conv2D(10, kernel_size=3, activation='elu', padding='same', kernel_initializer=my_init)(visible)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(20, kernel_size=3, activation='elu', padding='same', kernel_initializer=my_init)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(30, kernel_size=3, activation='elu', padding='same', kernel_initializer=my_init)(x)
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(256, activation='relu')(x)
x = Dropout(dd)(x)
x = Dense(256, activation='relu')(x)
x = Dropout(dd)(x)
# start passing that fully connected block output to all the different model heads
y1 = Dense(128, activation='relu')(x)
y1 = Dropout(dd)(y1)
y1 = Dense(64, activation='relu')(y1)
y1 = Dropout(dd)(y1)
y2 = Dense(128, activation='relu')(x)
y2 = Dropout(dd)(y2)
y2 = Dense(64, activation='relu')(y2)
y2 = Dropout(dd)(y2)
y1 = Dense(Y_train.shape[1], activation='linear',name= 'weight')(y1)
y2 = Dense(Y_train1.shape[1], activation='linear',name= 'height')(y2)
model = Model(inputs=visible, outputs=[y1,y2])
model.compile(loss=['mse', 'mse'],
optimizer=Adam(clipnorm = 1.), metrics = {'weight': 'accuracy','height': 'accuracy'}, loss_weights = [1, 1])
print(model.summary())
model.fit(X_train, [Y_train, Y_train1],
validation_data = (X_test, [Y_test, Y_test1]),
batch_size = 64,
epochs = 20,
verbose = True,
shuffle = False)
predictions_valid = model.predict(X_test, batch_size=80, verbose=1)
compare = pd.DataFrame(data={'original_weight':Y_test.reshape((cv_size,)),
'prediction_weight':predictions_valid[0].reshape((cv_size,)),
'original_height':Y_test1.reshape((cv_size,)),
'prediction_height':predictions_valid[1].reshape((cv_size,))})
compare.to_csv('compare_features_cross_validate.csv')
pred = model.predict(X_test)[0]
y_pred = [np.argmax(p) for p in pred]
y_true = [np.argmax(p) for p in Y_test]
print (classification_report(y_true, y_pred))
directory = 'C:/Users/rudre/Downloads/Height_DB_face_det/Test'
#csv = open("test.csv", "w")
#columnTitleRow = "name, weight, height\n"
#csv.write(columnTitleRow)
X_test=[]
#image_id=[]
for name in listdir(directory):
# load an image from file
filename = directory + '/' + name
image = load_img(filename, target_size=(224, 224))
# convert the image pixels to a numpy array
image = img_to_array(image)
# reshape data for the model
#image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
# prepare the image for the VGG model
image = preprocess_input(image)
# get features
X_test.append(image)
#feature = model.predict(image, verbose=0)
#print(feature)
# get image id
#image_id = name.split('.')[0]
#image_id.append(image_id)
#row = str(image_id) + "," + str((feature[0])) + "," + str((feature[1])) + "\n"
#csv.write(row)
X_test = np.array(X_test)
X_test = X_test.astype('float32')
m = X_test.mean()
s = X_test.std()
print ('Train mean, sd:', m, s )
X_test -= m
X_test /= s
print('Train shape:', X_test.shape)
print(X_test.shape[0], 'train samples')
predictions_valid = model.predict(X_test, batch_size=80, verbose=1)
compare = pd.DataFrame(data={'prediction_weight':predictions_valid[0].reshape((testsize,)),
'prediction_height':predictions_valid[1].reshape((testsize,))})
compare.to_csv('compare_features_test.csv')