forked from andresGranadosC/GalRotpy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGalRotpy.py
1372 lines (1138 loc) · 54.9 KB
/
GalRotpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
GalRotpy.py - a Python-based tool for parametrizing galaxy potential by rotation curve
Copyright (c) 2016 Andr\'es Granados and Daniel Torres
All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Created on Fri Jan 6 07:00:00 MST 2017
"""
from matplotlib.widgets import Slider, Button, RadioButtons, CheckButtons, TextBox # Matplotlib widgets
import matplotlib.pylab as plt # Plotting interface
import numpy as np # Array managing
from galpy.potential import MiyamotoNagaiPotential, NFWPotential, RazorThinExponentialDiskPotential, BurkertPotential # GALPY potentials
from galpy.potential import calcRotcurve # composed rotation curve calculation for plotting
from astropy import units # Physical/real units data managing
from astropy import table as Table # For fast and easy reading / writing with tables using numpy library
import emcee
import corner
import time
import pandas as pd
import multiprocessing as mp
from scipy.optimize import fsolve, minimize, curve_fit
from multiprocessing import Pool
import sys
import os
import warnings
ALLOWED_OPTIONS = [{'bulge', 'halo'}, {'disk', 'halo'}, {'bulge', 'disk', 'halo'}]
ALLOWED_POTENTIALS = ["bulge", "disk", "thickDisk", "expDisk", "halo", "burkert"]
warnings.filterwarnings('ignore')
def boolString_to_bool(boolString):
if boolString == 'True':
return True
elif boolString == 'False':
return False
else:
return None
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Initial parameters and arguments parsing:
rot_curve_file = None
has_gui = False
has_guess = False
guess_table = 'init_guess_params.txt'
out_folder = '.'
optional_potentials = set()
warnings_args = []
complete_args = sys.argv
print("complete_args-------", complete_args)
for (i, arg) in enumerate(complete_args):
print(arg)
if i == 1:
rot_curve_file = arg
warnings_args.append("Using '"+rot_curve_file+"' as the rotation curve file.")
if ('--gui' == arg) and (i > 1):
has_gui = has_gui or True
if '--guess' in arg:
guess_arg = arg.split(sep='=')
if len(guess_arg) == 2:
guess_table = guess_arg[-1]
has_guess = has_guess or True
if len(optional_potentials) > 0:
warnings_args.append("You will use '--guess' option but some potentials ('bulge', 'disk' or 'halo') are in your args too. There will be used the guess txt file.")
if '--outfolder' in arg:
outfolder_arg = arg.split(sep='=')
if len(outfolder_arg) == 2:
out_folder = './'+outfolder_arg[-1]
warnings_args.append("Saving output files into %s folder" % out_folder)
if 'bulge' == arg:
optional_potentials.add('bulge')
if 'disk' == arg:
optional_potentials.add('disk')
if 'halo' == arg:
optional_potentials.add('halo')
if len(warnings_args) > 0:
print("Warning: ", warnings_args)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Create a directory to save all outputs
try:
os.mkdir(out_folder)
except FileExistsError:
print ("Overwriting on directory %s" % out_folder)
except OSError:
print ("Creation of the directory %s failed" % out_folder)
else:
print ("Successfully created the directory %s " % out_folder)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
try:
if rot_curve_file is None:
raise Exception('Error: Rotation curve file not specified in GalRotpy arguments')
else:
tt=Table.Table.read(rot_curve_file, format='ascii.tab') # Rotation curve
except Exception as error:
print(error)
sys.exit()
except:
print("Error: Rotation curve file ", rot_curve_file," not readable or corrupt. Please read the documentation for rotation file specifications.")
sys.exit()
x_offset = 0.0 # It defines a radial coordinate offset as user input
r_0=1*units.kpc # units
v_0=220*units.km/units.s # units
# Real data:
r_data=tt['r']-x_offset # The txt file must contain the radial coordinate values in kpc
v_c_data=tt['vel'] # velocity in km/s
v_c_err_data = tt['e_vel'] # and velocity error in km/s
N_data = len(r_data)
# This loop is needed since galpy fails when r=0 or very close to 0
for i in range(len(r_data)):
if r_data[i]<1e-3:
r_data[i]=1e-3
def Bulge_NFW_potentials( r, delta_r, bulge_amp, bulge_a, bulge_b, dark_halo_amp, dark_halo_a ):
r_0=1*units.kpc # units
v_0=220*units.km/units.s # units
MN_Bulge_p= MiyamotoNagaiPotential(amp=bulge_amp*units.Msun,
a=bulge_a*units.kpc,
b=bulge_b*units.kpc,
normalize=False,
ro=r_0, vo=v_0)
NFW_p = NFWPotential(amp=dark_halo_amp*units.Msun,
a=dark_halo_a*units.kpc,
normalize=False,
ro=r_0, vo=v_0)
v_circ_comp = calcRotcurve([MN_Bulge_p, NFW_p], r-delta_r , phi=None)*220
return v_circ_comp
def Bulge_ThinDisk_NFW_potentials( r, delta_r, bulge_amp, bulge_a, bulge_b, tn_amp, tn_a, tn_b, dark_halo_amp, dark_halo_a ):
r_0=1*units.kpc # units
v_0=220*units.km/units.s # units
MN_Bulge_p= MiyamotoNagaiPotential(amp=bulge_amp*units.Msun,
a=bulge_a*units.kpc,
b=bulge_b*units.kpc,
normalize=False,
ro=r_0, vo=v_0)
MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=tn_amp*units.Msun,
a=tn_a*units.kpc,
b=tn_b*units.kpc,
normalize=False,
ro=r_0, vo=v_0)
NFW_p = NFWPotential(amp=dark_halo_amp*units.Msun,
a=dark_halo_a*units.kpc,
normalize=False,
ro=r_0, vo=v_0)
v_circ_comp = calcRotcurve([MN_Bulge_p, MN_Thin_Disk_p, NFW_p], r-delta_r , phi=None)*220
return v_circ_comp
def ThinDisk_NFW_potentials( r, delta_r, tn_amp, tn_a, tn_b, dark_halo_amp, dark_halo_a ):
r_0=1*units.kpc # units
v_0=220*units.km/units.s # units
MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=tn_amp*units.Msun,
a=tn_a*units.kpc,
b=tn_b*units.kpc,
normalize=False,
ro=r_0, vo=v_0)
NFW_p = NFWPotential(amp=dark_halo_amp*units.Msun,
a=dark_halo_a*units.kpc,
normalize=False,
ro=r_0, vo=v_0)
v_circ_comp = calcRotcurve([ MN_Thin_Disk_p, NFW_p], r-delta_r , phi=None)*220
return v_circ_comp
data_rows = [('BULGE', 110000000.0, 1.0, 0.0, 20, 0.495, 70),
('THIN DISK', 3900000000.0, 1.0, 5.3, 90, 0.25, 1),
('THICK DISK', 39000000000.0, 0.5, 2.6, 20, 0.8, 1),
('EXP DISK', 500.0, 0.5, 5.3, 90, 0.0, 0),
('DARK HALO', 140000000000.0, 1.0, 13.0, 90, 0.0, 0),
('BURKERT HALO', 8000000.0, 1.0, 20.0, 90, 0.0, 0)]
input_params = Table.Table(rows=data_rows, names=('component', 'mass', 'threshold_mass', 'a (kpc)', 'threshold_a', 'b (kpc)', 'threshold_b'))
c_bulge, amp1, delta_mass_bulge, a1, delta_radial_bulge, b1, delta_vertical_bulge, include_bulge = *input_params[0], True
c_tn, amp2, delta_mass_tn, a2, delta_radial_tn, b2, delta_vertical_tn, include_tn = *input_params[1], True
c_tk, amp3, delta_mass_tk, a3, delta_radial_tk, b3, delta_vertical_tk, include_tk = *input_params[2], True
c_ex, amp4, delta_mass_ex, h_r, delta_radial_ex, vertical_ex, delta_vertical_ex, include_ex = *input_params[3], True
c_dh, amp5, delta_mass_dh, a5, delta_radial_dh, b5, delta_vertical_dh, include_dh = *input_params[4], True
c_bh, amp6, delta_mass_bh, a6, delta_radial_bh, b6, delta_vertical_bh, include_bh = *input_params[5], True
visibility = [include_bulge, include_tn, include_tk, include_ex, include_dh, include_bh]
if has_guess:
print('Using guess table', guess_table)
try:
init_guess_params = Table.Table.read(guess_table, format='ascii.tab')
c_bulge, amp1, a1, b1, include_bulge = init_guess_params[0]
c_tn, amp2, a2, b2, include_tn = init_guess_params[1]
c_tk, amp3, a3, b3, include_tk = init_guess_params[2]
c_ex, amp4, h_r, vertical_ex, include_ex = init_guess_params[3]
c_dh, amp5, a5, b5, include_dh = init_guess_params[4]
c_bh, amp6, a6, b6, include_bh = init_guess_params[5]
visibility = [ boolString_to_bool(include_bulge), boolString_to_bool(include_tn), boolString_to_bool(include_tk), boolString_to_bool(include_ex), boolString_to_bool(include_dh), boolString_to_bool(include_bh)]
except:
print("Error: Guess file ", guess_table," not readable or corrupt. Please read the documentation for rotation file specifications.")
sys.exit()
elif optional_potentials in ALLOWED_OPTIONS:
print('Using optional potentials', optional_potentials)
for (i, potential) in enumerate(ALLOWED_POTENTIALS):
if potential in optional_potentials:
visibility[i] = True
else:
visibility[i] = False
if optional_potentials == ALLOWED_OPTIONS[0]:
bounds = (( -10, amp1/(10**delta_mass_bulge), a1, b1*(1-0.01*delta_vertical_bulge), amp5/(10*delta_mass_dh), a5*(1-0.01*delta_radial_dh) ),
( 10, amp1*(10**delta_mass_bulge), 0.1*delta_radial_bulge, b1*(1+0.01*delta_vertical_bulge), amp5*(10**delta_mass_dh), a5*(1+0.01*delta_radial_dh) ) )
popt, pcov = curve_fit(Bulge_NFW_potentials,
r_data, v_c_data.data,
p0=[x_offset, amp1, a1, b1, amp5, a5 ],
bounds=bounds )
x_offset, amp1, a1, b1, amp5, a5 = popt
if optional_potentials == ALLOWED_OPTIONS[2]:
bounds = (( -10, amp1/(10**delta_mass_bulge), a1, b1*(1-0.01*delta_vertical_bulge), amp2/(10**delta_mass_tn), a2*(1-0.01*delta_radial_tn), b2/(10**delta_vertical_tn), amp5/(10*delta_mass_dh), a5*(1-0.01*delta_radial_dh) ),
( 10, amp1*(10**delta_mass_bulge), 0.1*delta_radial_bulge, b1*(1+0.01*delta_vertical_bulge), amp2*(10**delta_mass_tn), a2*(1+0.01*delta_radial_tn), b2*(10**delta_vertical_tn), amp5*(10**delta_mass_dh), a5*(1+0.01*delta_radial_dh) ) )
popt, pcov = curve_fit(Bulge_ThinDisk_NFW_potentials,
r_data, v_c_data.data,
p0=[x_offset, amp1, a1, b1, amp2, a2, b2, amp5, a5 ],
bounds=bounds )
x_offset, amp1, a1, b1, amp2, a2, b2, amp5, a5 = popt
if optional_potentials == ALLOWED_OPTIONS[1]:
bounds = (( -10, amp2/(10**delta_mass_tn), a2*(1-0.01*delta_radial_tn), b2/(10**delta_vertical_tn), amp5/(10*delta_mass_dh), a5*(1-0.01*delta_radial_dh) ),
( 10, amp2*(10**delta_mass_tn), a2*(1+0.01*delta_radial_tn), b2*(10**delta_vertical_tn), amp5*(10**delta_mass_dh), a5*(1+0.01*delta_radial_dh) ) )
popt, pcov = curve_fit(ThinDisk_NFW_potentials,
r_data, v_c_data.data,
p0=[x_offset, amp2, a2, b2, amp5, a5 ],
bounds=bounds )
x_offset, amp2, a2, b2, amp5, a5 = popt
print("visibility-----------", visibility)
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
# PART 1: Base code
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Chi^2
def chi2(curves):
rc = calcRotcurve(curves, r_data, phi=None)*220
x2 = np.sum(((v_c_data-rc)/v_c_err_data)**2)
return x2
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Here we calculate de rotation curve for each of the potentials used
lista=np.linspace(0.001, 1.02*np.max(r_data), 10*len(r_data)) # radial coordinate for the rotation curve calculation
# Potentials definition using physical units (amplitude in Solar masses, scales in kpc and surface density in Solar masses / pc^2 )
MN_Bulge_p= MiyamotoNagaiPotential(amp=amp1*units.Msun,a=a1*units.kpc,b=b1*units.kpc,normalize=False,ro=r_0, vo=v_0)
MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=amp2*units.Msun,a=a2*units.kpc,b=b2*units.kpc,normalize=False,ro=r_0, vo=v_0)
MN_Thick_Disk_p= MiyamotoNagaiPotential(amp=amp3*units.Msun,a=a3*units.kpc,b=b3*units.kpc,normalize=False,ro=r_0, vo=v_0)
EX_Disk_p = RazorThinExponentialDiskPotential(amp=amp4*(units.Msun/(units.pc**2)), hr=h_r*units.kpc, normalize=False, ro=r_0, vo=v_0, new=True, glorder=100)
NFW_p = NFWPotential(amp=amp5*units.Msun, a=a5*units.kpc, normalize=False, ro=r_0, vo=v_0)
BK_p = BurkertPotential(amp=amp6*units.Msun/(units.kpc)**3, a=a6*units.kpc, normalize=False, ro=r_0, vo=v_0)
# Circular velocities in km/s
MN_Bulge = calcRotcurve(MN_Bulge_p, lista, phi=None)*220
MN_Thin_Disk = calcRotcurve(MN_Thin_Disk_p, lista, phi=None)*220
MN_Thick_Disk = calcRotcurve(MN_Thick_Disk_p, lista, phi=None)*220
EX_Disk = calcRotcurve(EX_Disk_p, lista, phi=None)*220
NFW = calcRotcurve(NFW_p, lista, phi=None)*220
BK = calcRotcurve(BK_p, lista, phi=None)*220
# Circular velocity for the composition of 5 potentials in km/s
v_circ_comp = calcRotcurve([MN_Bulge_p,MN_Thin_Disk_p,MN_Thick_Disk_p, EX_Disk_p, NFW_p, BK_p], lista, phi=None)*220
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Here we plot the different curves
fig = plt.figure(1)
ax = fig.add_axes((0.41, 0.1, 0.55, 0.85))
#ax.yaxis.set_ticks_position('both')
#ax.tick_params(axis='y', which='both', labelleft=True, labelright=True)
# Data
CV_galaxy = ax.errorbar(r_data - x_offset, v_c_data, v_c_err_data, c='k', fmt='', ls='none')
CV_galaxy_dot = ax.scatter(r_data - x_offset, v_c_data, c='k')
# A plot for each rotation curve with the colors indicated below
MN_b_plot, = ax.plot(lista, MN_Bulge, linestyle='--', c='gray')
MN_td_plot, = ax.plot(lista, MN_Thin_Disk, linestyle='--', c='purple')
MN_tkd_plot, = ax.plot(lista, MN_Thick_Disk, linestyle='--', c='blue')
EX_d_plot, = ax.plot(lista, EX_Disk, linestyle='--', c='cyan')
NFW_plot, = ax.plot(lista, NFW, linestyle='--', c='green')
BK_plot, = ax.plot(lista, BK, linestyle='--', c='orange')
# Composed rotation curve
v_circ_comp_plot, = ax.plot(lista, v_circ_comp, c='k')
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
# PART 2: Interactive(Slides) code
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
# Checkbox for selecting the potentials to compose the rotation
rax = plt.axes((0.07, 0.8, 0.21, 0.15))
check = CheckButtons(rax, ('MN Bulge (GRAY)', 'MN Thin Disc (PURPLE)', 'MN Thick Disc (BLUE)', 'Exp. Disc (CYAN)', 'NFW - Halo (GREEN)', 'Burkert - Halo (ORANGE)'), visibility)
for r in check.rectangles: # Checkbox options-colors
r.set_facecolor("lavender")
r.set_edgecolor("black")
#r.set_alpha(0.2)
[ll.set_color("black") for l in check.lines for ll in l]
[ll.set_linewidth(2) for l in check.lines for ll in l]
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Here we define the funcion which update the rotation curve for the selected and the composed potential
def update_rot_curve():
ax.clear()
global check, MN_b_plot, MN_Bulge_p, MN_Thin_Disk_p,MN_Thick_Disk_p, MN_td_plot,MN_tkd_plot, NFW_p, NFW_plot, EX_d_plot, EX_Disk_p, CV_galaxy, CV_galaxy_dot, BK_p, BK_plot
composite_pot_array=[]
ax.set_xlabel(r'$R(kpc)$', fontsize=20)
ax.set_ylabel(r'$v_c(km/s)$', fontsize=20)
ax.tick_params(axis='both', which='both', labelsize=15)
ax.set_xlim([0, np.max(lista)])
ax.set_ylim([0,np.max(v_c_data)*1.2])
check_visibility = check.get_status()
MN_b_plot.set_visible(check_visibility[0])
MN_td_plot.set_visible(check_visibility[1])
MN_tkd_plot.set_visible(check_visibility[2])
EX_d_plot.set_visible(check_visibility[3])
NFW_plot.set_visible(check_visibility[4])
BK_plot.set_visible(check_visibility[5])
N = []
if MN_b_plot.get_visible() == True:
if a1 ==0.: N.append(2)
else: N.append(3)
MN_Bulge = calcRotcurve(MN_Bulge_p, lista, phi=None)*220
MN_b_plot, = ax.plot(lista, MN_Bulge, linestyle='--', c='gray')
composite_pot_array.append(MN_Bulge_p)
if MN_td_plot.get_visible() == True:
N.append(3)
MN_Thin_Disk = calcRotcurve(MN_Thin_Disk_p, lista, phi=None)*220
MN_td_plot, = ax.plot(lista, MN_Thin_Disk, linestyle='--', c='purple')
composite_pot_array.append(MN_Thin_Disk_p)
if MN_tkd_plot.get_visible() == True:
N.append(3)
MN_Thick_Disk = calcRotcurve(MN_Thick_Disk_p, lista, phi=None)*220
MN_tkd_plot, = ax.plot(lista, MN_Thick_Disk, linestyle='--', c='blue')
composite_pot_array.append(MN_Thick_Disk_p)
if NFW_plot.get_visible() == True:
N.append(2)
NFW = calcRotcurve(NFW_p, lista, phi=None)*220
NFW_plot, = ax.plot(lista, NFW, linestyle='--', c='green')
composite_pot_array.append(NFW_p)
if EX_d_plot.get_visible() == True:
N.append(2)
EX_Disk = calcRotcurve(EX_Disk_p, lista, phi=None)*220
EX_d_plot, = ax.plot(lista, EX_Disk, linestyle='--', c='cyan')
composite_pot_array.append(EX_Disk_p)
if BK_plot.get_visible() == True:
N.append(2)
BK = calcRotcurve(BK_p, lista, phi=None)*220
BK_plot, = ax.plot(lista, BK, linestyle='--', c='orange')
composite_pot_array.append(BK_p)
DIM = np.sum(N)
CHI2 = chi2(composite_pot_array)
props = dict(boxstyle='round', facecolor='white')
ax.text(0.02, 0.97, r"$\bar\chi^2={:.2f}$".format(CHI2/(N_data - DIM)), transform=ax.transAxes, fontsize=15, verticalalignment='top', bbox=props)
CV_galaxy = ax.errorbar(r_data - x_offset, v_c_data, v_c_err_data, c='k', fmt='', ls='none')
CV_galaxy_dot = ax.scatter(r_data - x_offset, v_c_data, c='k')
v_circ_comp = calcRotcurve(composite_pot_array, lista, phi=None)*220
v_circ_comp_plot, = ax.plot(lista, v_circ_comp, c='k')
ax.set_xlabel(r'$R(kpc)$', fontsize=20)
ax.set_ylabel(r'$v_c(km/s)$', fontsize=20)
ax.tick_params(axis='both', which='both', labelsize=15)
update_rot_curve()
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
# PART 2: Interactive(Slides) code
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Here we define the sliders for each potential
# Bulge - gray
MN_b_amp_ax = fig.add_axes((0.09,0.75,0.17,0.03))
MN_b_amp_s = Slider(MN_b_amp_ax, r"$M$($M_\odot$)", amp1/(10**delta_mass_bulge), amp1*(10**delta_mass_bulge), valinit=amp1, color='gray', valfmt='%1.3E')
MN_b_a_ax = fig.add_axes((0.09,0.72,0.17,0.03))
MN_b_a_s = Slider(MN_b_a_ax, "$a$ ($kpc$)", 0, 0.1*delta_radial_bulge, valinit=a1, color='gray')
MN_b_b_ax = fig.add_axes((0.09,0.69,0.17,0.03))
MN_b_b_s = Slider(MN_b_b_ax, "$b$ ($kpc$)", b1*(1-0.01*delta_vertical_bulge), b1*(1+0.01*delta_vertical_bulge), valinit=b1, color='gray')
# Thin disk - purple
MN_td_amp_ax = fig.add_axes((0.09,0.63,0.17,0.03))
MN_td_amp_s = Slider(MN_td_amp_ax, r"$M$($M_\odot$)", amp2/(10**delta_mass_tn), amp2*(10**delta_mass_tn), valinit=amp2, color='purple', valfmt='%1.3E')
MN_td_a_ax = fig.add_axes((0.09,0.60,0.17,0.03))
MN_td_a_s = Slider(MN_td_a_ax, "$a$ ($kpc$)", a2*(1-0.01*delta_radial_tn), a2*(1+0.01*delta_radial_tn), valinit=a2, color='purple')
MN_td_b_ax = fig.add_axes((0.09,0.57,0.17,0.03))
MN_td_b_s = Slider(MN_td_b_ax, "$b$ ($kpc$)", b2/(10**delta_vertical_tn), b2*(10**delta_vertical_tn), valinit=b2, color='purple')
# Thick disk - Blue
MN_tkd_amp_ax = fig.add_axes((0.09,0.51,0.17,0.03))
MN_tkd_amp_s = Slider(MN_tkd_amp_ax, r"$M$($M_\odot$)", amp3/(10**delta_mass_tk), amp3*(10**delta_mass_tk), valinit=amp3, color='blue', valfmt='%1.3E')
MN_tkd_a_ax = fig.add_axes((0.09,0.48,0.17,0.03))
MN_tkd_a_s = Slider(MN_tkd_a_ax, "$a$ ($kpc$)", a3*(1-0.01*delta_radial_tk), a3*(1+0.01*delta_radial_tk), valinit=a3, color='blue')
MN_tkd_b_ax = fig.add_axes((0.09,0.45,0.17,0.03))
MN_tkd_b_s = Slider(MN_tkd_b_ax, "$b$ ($kpc$)", b3/(10**delta_vertical_tk), b3*(10**delta_vertical_tk), valinit=b3, color='blue')
# Exponential disk - Cyan
MN_ed_amp_ax = fig.add_axes((0.09,0.39,0.17,0.03))
MN_ed_amp_s = Slider(MN_ed_amp_ax, r"$\Sigma_0$($M_\odot/pc^2$)", amp4/(10**delta_mass_ex), amp4*(10**delta_mass_ex), valinit=amp4, color='cyan', valfmt='%1.3E')
MN_ed_a_ax = fig.add_axes((0.09,0.36,0.17,0.03))
MN_ed_a_s = Slider(MN_ed_a_ax, "$h_r$ ($kpc$)", h_r*(1-0.01*delta_radial_ex), h_r*(1+0.01*delta_radial_ex), valinit=h_r, color='cyan')
# NFW Halo - green
NFW_amp_ax = fig.add_axes((0.09,0.30,0.17,0.03))
NFW_amp_s = Slider(NFW_amp_ax, r"$M_0$($M_\odot$)", amp5/(10*delta_mass_dh), amp5*(10**delta_mass_dh), valinit=amp5, color='green', valfmt='%1.3E')
NFW_a_ax = fig.add_axes((0.09,0.27,0.17,0.03))
NFW_a_s = Slider(NFW_a_ax, "$a$ ($kpc$)", a5*(1-0.01*delta_radial_dh), a5*(1+0.01*delta_radial_dh), valinit=a5, color='green')
# Burkert Halo - orange
BK_amp_ax = fig.add_axes((0.09,0.21,0.17,0.03))
BK_amp_s = Slider(BK_amp_ax, r"$\rho_0$($M_\odot/kpc^3$)", amp6/(10*delta_mass_bh), amp6*(10**delta_mass_bh), valinit=amp6, color='orange', valfmt='%1.3E')
BK_a_ax = fig.add_axes((0.09,0.18,0.17,0.03))
BK_a_s = Slider(BK_a_ax, "$a$ ($kpc$)", a6*(1-0.01*delta_radial_bh), a6*(1+0.01*delta_radial_bh), valinit=a6, color='orange')
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Here we define the function for setting new parameters for each potential
# Bulge
def MN_b_amp_s_func(val):
if MN_b_plot.get_visible() == True:
global MN_Bulge_p, amp1, a1, b1
amp1=val*1
MN_Bulge_p = MiyamotoNagaiPotential(amp=val*units.Msun,a=a1*units.kpc,b=b1*units.kpc,normalize=False,ro=r_0, vo=v_0)
update_rot_curve()
def MN_b_a_s_func(val):
if MN_b_plot.get_visible() == True:
global MN_Bulge_p, amp1, a1, b1
a1=val*1
MN_Bulge_p = MiyamotoNagaiPotential(amp=amp1*units.Msun,a=val*units.kpc,b=b1*units.kpc,normalize=False,ro=r_0, vo=v_0)
update_rot_curve()
def MN_b_b_s_func(val):
if MN_b_plot.get_visible() == True:
global MN_Bulge_p, amp1, a1, b1
b1=val*1
MN_Bulge_p = MiyamotoNagaiPotential(amp=amp1*units.Msun,a=a1*units.kpc,b=val*units.kpc,normalize=False,ro=r_0, vo=v_0)
update_rot_curve()
# Thin disk
def MN_td_amp_s_func(val):
if MN_td_plot.get_visible() == True:
global MN_Thin_Disk_p, amp2, a2, b2
amp2=val*1
MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=val*units.Msun,a=a2*units.kpc,b=b2*units.kpc,normalize=False,ro=r_0, vo=v_0)
update_rot_curve()
def MN_td_a_s_func(val):
if MN_td_plot.get_visible() == True:
global MN_Thin_Disk_p, amp2, a2, b2
a2=val*1
MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=amp2*units.Msun,a=val*units.kpc,b=b2*units.kpc,normalize=False,ro=r_0, vo=v_0)
update_rot_curve()
def MN_td_b_s_func(val):
if MN_td_plot.get_visible() == True:
global MN_Thin_Disk_p, amp2, a2, b2
b2=val*1
MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=amp2*units.Msun,a=a2*units.kpc,b=val*units.kpc,normalize=False,ro=r_0, vo=v_0)
update_rot_curve()
# Thick disk
def MN_tkd_amp_s_func(val):
if MN_tkd_plot.get_visible() == True:
global MN_Thick_Disk_p, amp3, a3, b3
amp3=val*1
MN_Thick_Disk_p= MiyamotoNagaiPotential(amp=val*units.Msun,a=a3*units.kpc,b=b3*units.kpc,normalize=False,ro=r_0, vo=v_0)
update_rot_curve()
def MN_tkd_a_s_func(val):
if MN_tkd_plot.get_visible() == True:
global MN_Thick_Disk_p, amp3, a3, b3
a3=val*1
MN_Thick_Disk_p= MiyamotoNagaiPotential(amp=amp3*units.Msun,a=val*units.kpc,b=b3*units.kpc,normalize=False,ro=r_0, vo=v_0)
update_rot_curve()
def MN_tkd_b_s_func(val):
if MN_tkd_plot.get_visible() == True:
global MN_Thick_Disk_p, amp3, a3, b3
b3=val*1
MN_Thick_Disk_p= MiyamotoNagaiPotential(amp=amp3*units.Msun,a=a3*units.kpc,b=val*units.kpc,normalize=False,ro=r_0, vo=v_0)
update_rot_curve()
# Exponential disk
def MN_ed_amp_s_func(val):
if EX_d_plot.get_visible() == True:
global EX_Disk_p, amp4,h_r
amp4=val*1
EX_Disk_p = RazorThinExponentialDiskPotential(amp=val*(units.Msun/(units.pc**2)), hr=h_r*units.kpc, normalize=False, ro=r_0, vo=v_0, new=True, glorder=100)
update_rot_curve()
def MN_ed_a_s_func(val):
if EX_d_plot.get_visible() == True:
global EX_Disk_p, amp4,h_r
h_r=val*1
EX_Disk_p = RazorThinExponentialDiskPotential(amp=amp4*(units.Msun/(units.pc**2)), hr=val*units.kpc, normalize=False, ro=r_0, vo=v_0, new=True, glorder=100)
update_rot_curve()
# NFW Halo
def NFW_amp_s_func(val):
if NFW_plot.get_visible() == True:
global NFW_p, amp5,a5
amp5=val*1
NFW_p = NFWPotential(amp=val*units.Msun, a=a5*units.kpc, normalize=False, ro=r_0, vo=v_0)
update_rot_curve()
def NFW_a_s_func(val):
if NFW_plot.get_visible() == True:
global NFW_p, amp5,a5
a5=val*1
NFW_p = NFWPotential(amp=amp5*units.Msun, a=val*units.kpc, normalize=False, ro=r_0, vo=v_0)
update_rot_curve()
# Burkert Halo
def BK_amp_s_func(val):
if BK_plot.get_visible() == True:
global BK_p, amp6,a6
amp6=val*1
BK_p = BurkertPotential(amp=val*units.Msun/(units.kpc)**3, a=a6*units.kpc, normalize=False, ro=r_0, vo=v_0)
update_rot_curve()
def BK_a_s_func(val):
if BK_plot.get_visible() == True:
global BK_p, amp6,a6
a6=val*1
BK_p = BurkertPotential(amp=amp6*units.Msun/(units.kpc)**3, a=val*units.kpc, normalize=False, ro=r_0, vo=v_0)
update_rot_curve()
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Here we define the sliders update functions
MN_b_amp_s.on_changed(MN_b_amp_s_func)
MN_b_a_s.on_changed(MN_b_a_s_func)
MN_b_b_s.on_changed(MN_b_b_s_func)
MN_td_amp_s.on_changed(MN_td_amp_s_func)
MN_td_a_s.on_changed(MN_td_a_s_func)
MN_td_b_s.on_changed(MN_td_b_s_func)
MN_tkd_amp_s.on_changed(MN_tkd_amp_s_func)
MN_tkd_a_s.on_changed(MN_tkd_a_s_func)
MN_tkd_b_s.on_changed(MN_tkd_b_s_func)
NFW_amp_s.on_changed(NFW_amp_s_func)
NFW_a_s.on_changed(NFW_a_s_func)
BK_amp_s.on_changed(BK_amp_s_func)
BK_a_s.on_changed(BK_a_s_func)
MN_ed_amp_s.on_changed(MN_ed_amp_s_func)
MN_ed_a_s.on_changed(MN_ed_a_s_func)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Here we define the function and create the button which reset the sliders
def reset(event):
MN_b_amp_s.reset()
MN_b_a_s.reset()
MN_b_b_s.reset()
MN_td_amp_s.reset()
MN_td_a_s.reset()
MN_td_b_s.reset()
MN_tkd_amp_s.reset()
MN_tkd_a_s.reset()
MN_tkd_b_s.reset()
MN_ed_amp_s.reset()
MN_ed_a_s.reset()
NFW_amp_s.reset()
NFW_a_s.reset()
BK_amp_s.reset()
BK_a_s.reset()
axcolor="lavender"
resetax = fig.add_axes((0.07, 0.08, 0.08, 0.05))
button_reset = Button(resetax, 'Reset', color=axcolor)
button_reset.on_clicked(reset)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Enable/disable the selected potential for the composed rotation curve
def check_on_clicked(label):
if label == 'MN Bulge (GRAY)':
MN_b_plot.set_visible(not MN_b_plot.get_visible())
update_rot_curve()
elif label == 'MN Thin Disc (PURPLE)':
MN_td_plot.set_visible(not MN_td_plot.get_visible())
update_rot_curve()
elif label == 'MN Thick Disc (BLUE)':
MN_tkd_plot.set_visible(not MN_tkd_plot.get_visible())
update_rot_curve()
elif label == 'Exp. Disc (CYAN)':
EX_d_plot.set_visible(not EX_d_plot.get_visible())
update_rot_curve()
elif label == 'NFW - Halo (GREEN)':
NFW_plot.set_visible(not NFW_plot.get_visible())
update_rot_curve()
elif label == 'Burkert - Halo (ORANGE)':
BK_plot.set_visible(not BK_plot.get_visible())
update_rot_curve()
plt.draw()
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Reduced Chi^2
comp = []
N = 0
if visibility[0] == True:
comp.append(MN_Bulge_p)
if a1 == 0.: N += 2
if a1 != 0.: N += 3
if visibility[1] == True:
comp.append(MN_Thin_Disk_p)
N += 3
if visibility[2] == True:
comp.append(MN_Thick_Disk_p)
N += 3
if visibility[3] == True:
comp.append(EX_Disk_p)
N += 2
if visibility[4] == True:
comp.append(NFW_p)
N += 2
if visibility[5] == True:
comp.append(BK_p)
N += 2
CHI2 = chi2(comp)
props = dict(boxstyle='round', facecolor='white')
ax.text(0.02, 0.97, r"$\bar\chi^2={:.2f}$".format(CHI2/(N_data - N)), transform=ax.transAxes, fontsize=15, verticalalignment='top', bbox=props)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Plotting all the curves
ax.tick_params(axis='both', which='both', labelsize=15)
ax.set_xlabel(r'$R(kpc)$', fontsize=20)
ax.set_ylabel(r'$v_c(km/s)$', fontsize=20)
ax.tick_params(axis='both', which='both', labelsize=15)
ax.set_xlim([0, np.max(lista)])
ax.set_ylim([0,np.max(v_c_data)*1.2])
check.on_clicked(check_on_clicked)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
Once you click on this button the principal window will close, so you can now enter the number of walkers
and the number of steps you want to use. Take into account that the number of walkers have to be even and at least
twice the dimension of the system (number of parameters to evaluate)
"""
axcolor="lavender"
resetax = fig.add_axes((0.20, 0.08, 0.08, 0.05))
button_start = Button(resetax, 'Start', color=axcolor)
def start(event):
plt.close('all')
button_start.on_clicked(start)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
plt.show()
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Here we find the parameters that will be used as initial guess
chk=[]
if MN_b_plot.get_visible() == True:
chk.append(True)
else:
chk.append(False)
if MN_td_plot.get_visible() == True:
chk.append(True)
else:
chk.append(False)
if MN_tkd_plot.get_visible() == True:
chk.append(True)
else:
chk.append(False)
if EX_d_plot.get_visible() == True:
chk.append(True)
else:
chk.append(False)
if NFW_plot.get_visible() == True:
chk.append(True)
else:
chk.append(False)
if BK_plot.get_visible() == True:
chk.append(True)
else:
chk.append(False)
compnts = ['BULGE','THIN DISC','THICK DISC','EXP. DISC', 'DARK HALO', 'BURKERT HALO']
masses = [amp1, amp2, amp3, amp4, amp5, amp6]
aa = [a1, a2, a3, h_r, a5, a6]
bb = [b1, b2, b3, 0, 0, 0]
init_parameters = Table.Table([compnts,masses, aa,bb, chk], names=('component', 'mass', 'a (kpc)', 'b (kpc)', 'checked'))
init_parameters.write(guess_table, format='ascii.tab', overwrite=True)
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
# PART 3: MCMC(Parameters determination) code
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
#HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
print ("\n#####################################################################")
print ("###################### GalRotpy ######################")
print ("#####################################################################\n\n")
def model(parameters, R):
global chk, para_labels, aa
para = {}
for i in range(len(para_labels)):
para[para_labels[i]] = parameters[i]
r_0=1*units.kpc
v_0=220*units.km/units.s
check_pot = []
if chk[0]==True:
if aa[0]==0.:
a1=0.
amp1=para["amp1"]; b1=para["b1"]
else:
amp1=para["amp1"]; a1=para["a1"]; b1=para["b1"]
MN_Bulge_p= MiyamotoNagaiPotential(amp=amp1*units.Msun,a=a1*units.kpc,b=b1*units.kpc,normalize=False,ro=r_0, vo=v_0)
check_pot.append(MN_Bulge_p)
if chk[1]==True:
amp2=para["amp2"]; a2=para["a2"]; b2=para["b2"]
MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=amp2*units.Msun,a=a2*units.kpc,b=b2*units.kpc,normalize=False,ro=r_0, vo=v_0)
check_pot.append(MN_Thin_Disk_p)
if chk[2]==True:
amp3=para["amp3"]; a3=para["a3"]; b3=para["b3"]
MN_Thick_Disk_p= MiyamotoNagaiPotential(amp=amp3*units.Msun,a=a3*units.kpc,b=b3*units.kpc,normalize=False,ro=r_0, vo=v_0)
check_pot.append(MN_Thick_Disk_p)
if chk[3]==True:
amp4=para["amp4"]; h_r=para["h_r"]
EX_Disk_p = RazorThinExponentialDiskPotential(amp=amp4*(units.Msun/(units.pc**2)), hr=h_r*units.kpc, normalize=False, ro=r_0, vo=v_0, new=True, glorder=100)
check_pot.append(EX_Disk_p)
if chk[4]==True:
amp5=para["amp5"]; a5=para["a5"]
NFW_p = NFWPotential(amp=amp5*units.Msun, a=a5*units.kpc, normalize=False, ro=r_0, vo=v_0)
check_pot.append(NFW_p)
if chk[5]==True:
amp6=para["amp6"]; a6=para["a6"]
BK_p = BurkertPotential(amp=amp6*units.Msun/(units.kpc)**3, a=a6*units.kpc, normalize=False, ro=r_0, vo=v_0)
check_pot.append(BK_p)
vc_total=calcRotcurve(check_pot, R, phi=None)*220
return vc_total
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Probability distributions
#ln Prior
def lnprior(parameters):
if np.any(parameters < 0.) == True:
return -np.inf
else:
return 0.0
#ln Likehood
def lnlike(parameters):
Model = model(parameters, r_data)
return -0.5*(np.sum( ((v_c_data-Model)/v_c_err_data)**2))
#ln Posterior
def lnprob(parameters):
lp = lnprior(parameters)
Model = model(parameters, r_data)
if not np.isfinite(lp) or (True in np.isnan(Model)):
return -np.inf
else:
return lp + lnlike(parameters)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
Here the parameters associated to the selected models are defined, and also
the initial guesses are given.
"""
para_labels = []
labels = []
labels_log = []
para_in = []
if chk[0]==True:
if aa[0]==0.:
para_labels.append("b1"); para_in.append(bb[0]); labels.append(r"$b_B$"); labels_log.append(r"$\log(b_B)$")
para_labels.append("amp1"); para_in.append(masses[0]); labels.append(r"$M_B$"); labels_log.append(r"$\log(M_B)$")
else:
para_labels.append("a1"); para_in.append(aa[0]); labels.append(r"$a_B$"); labels_log.append(r"$\log(a_b)$")
para_labels.append("b1"); para_in.append(bb[0]); labels.append(r"$b_B$"); labels_log.append(r"$\log(b_b)$")
para_labels.append("amp1"); para_in.append(masses[0]); labels.append(r"$M_B$"); labels_log.append(r"$\log(M_b)$")
if chk[1]==True:
para_labels.append("a2"); para_in.append(aa[1]); labels.append(r"$a_{TD}$"); labels_log.append(r"$\log(a_{TD})$")
para_labels.append("b2"); para_in.append(bb[1]); labels.append(r"$b_{TD}$"); labels_log.append(r"$\log(b_{TD})$")
para_labels.append("amp2"); para_in.append(masses[1]); labels.append(r"$M_{TD}$"); labels_log.append(r"$\log(M_{TD})$")
if chk[2]==True:
para_labels.append("a3"); para_in.append(aa[2]); labels.append(r"$a_{TkD}$"); labels_log.append(r"$\log(a_{TkD})$")
para_labels.append("b3"); para_in.append(bb[2]); labels.append(r"$b_{TkD}$"); labels_log.append(r"$\log(b_{TkD})$")
para_labels.append("amp3"); para_in.append(masses[2]); labels.append(r"$M_{TkD}$"); labels_log.append(r"$\log(M_{TkD})$")
if chk[3]==True:
para_labels.append("h_r"); para_in.append(aa[3]); labels.append(r"$h_{r}$"); labels_log.append(r"$\log(h_{r})$")
para_labels.append("amp4"); para_in.append(masses[3]); labels.append(r"$\Sigma_{0}$"); labels_log.append(r"$\log(\Sigma_{0})$")
if chk[4]==True:
para_labels.append("a5"); para_in.append(aa[4]); labels.append(r"$a_{NFW}$"); labels_log.append(r"$\log(a_{NFW})$")
para_labels.append("amp5"); para_in.append(masses[4]); labels.append(r"$M_{0}$"); labels_log.append(r"$\log(M_{0})$")
if chk[5]==True:
para_labels.append("a6"); para_in.append(aa[5]); labels.append(r"$a_{Bk}$"); labels_log.append(r"$\log(a_{Bk})$")
para_labels.append("amp6"); para_in.append(masses[5]); labels.append(r"$\rho_{0}$"); labels_log.append(r"$\log(\rho_{0})$")
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Dimension
def res(parameters):
if np.any(parameters <= 0) == True:
return np.inf
else:
rc = model(parameters, r_data)
x2 = np.sum(((v_c_data-rc)/v_c_err_data)**2)
return x2
v_guess = np.array(para_in)
ndim = len(v_guess)
start = minimize(res, v_guess, ).x
print ("Dimension: ", ndim)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Galaxy's redshift
if chk[4]==True or chk[5]==True:
try:
z = float(input("\nEnter the galaxy's redshift (default = 0):"))
except:
z = 0.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Cosmology
#H_0 = 2.1972483582604943e-18 #1 / s
#G = 4.517103050001136e-39 #kpc^3 / (s^2 sunMass)
rho_c0 = 127.5791469578729 #sunMass / kpc^3
Omega_m0 = 0.3
Omega_L = 0.7
Omega_m =(Omega_m0*(1.+ z)**3)/(Omega_m0*(1.+ z)**3 + Omega_L)
rho_c = rho_c0*(Omega_m0*(1.+ z)**3 + Omega_L)
Delta_c_aux = 18.*np.pi**2 + 82.*(Omega_m - 1.) - 39.*(Omega_m - 1.)**2
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Cosmological overdensity
try:
Delta_c = float(input("\nEnter the cosmological overdensity you want to use (default = {:.1f}): ".format(Delta_c_aux)))
except:
Delta_c = Delta_c_aux
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Nwalkers and Steps
try:
nwalkers = int(input("\nEnter the number of walkers you want to use (default = {:.0f}): ".format(2*ndim)))
except:
nwalkers = 2*ndim
try:
steps = int(input("\nEnter the number of steps you want the walkers to take (default = 100): "))
except:
steps = 100
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Rotational Curve Model
pos_step = 1e-8
pos_in = [abs(start + pos_step*start*np.random.randn(ndim)+1e-9*np.random.randn(ndim)) for i in range(nwalkers)]
#pos_in = [abs(2.*start*np.random.rand(ndim)+0.01*np.random.rand(ndim)) for i in range(nwalkers)]
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(r_data, v_c_data, v_c_err_data), threads=ndim*mp.cpu_count())
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# perform MCMC
print ("\n#####################################################################\n")
try:
Round = int(input("Enter the number of times you want GalRotpy to run (default = 1): "))
except:
Round = 1
if Round <=0:
print ("\nStart over...")
exit()
print ("\nRunning...\n")
time0 = time.time()
if Round == 1:
#with Pool() as pool:
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob)
sampler.run_mcmc(pos_in, steps, progress=True)
print ("It took ", (time.time()-time0)/60, "minutes\n")
if Round >1:
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob)
for j in range(Round-1):
ti=time.time()
PARA=[]
p0, lp, _ = sampler.run_mcmc(pos_in, steps, progress = True)
SAMPLES = sampler.chain[:, int(0.5*steps):, :].reshape((-1, ndim))
for i in range(ndim):
mcmc = np.percentile(SAMPLES[:, i], [50.-0.5*68, 50., 50.+0.5*68])
PARA.append(mcmc[1])
p=np.array(PARA)
pos_in = [abs(p + pos_step*p*np.random.randn(ndim)+1e-8*np.random.randn(ndim)) for i in range(nwalkers)]
sampler.reset()
print("Run " + str(j+1) + " done")
print ("Time: ", (time.time()-ti)/60, "minutes\n")
ti=time.time()
if Round > 1:
steps=3*steps
p0, lp, _ = sampler.run_mcmc(pos_in, steps, progress = True)
print("Run " + str(Round) + " done")
print ("Time: ", (time.time()-ti)/60, "minutes\n")
print ("It took ", (time.time()-time0)/60, "minutes\n")
print ("#####################################################################\n")
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Here we plot the chains for each parameter