-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathnodes.py
298 lines (245 loc) · 8.61 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from __future__ import annotations
from copy import copy
from typing import NamedTuple
from PIL import Image
import numpy as np
import base64
import torch
import torch.nn.functional as F
from io import BytesIO
from server import PromptServer, BinaryEventTypes
from comfy.clip_vision import ClipVisionModel
from comfy.sd import StyleModel
class LoadImageBase64:
@classmethod
def INPUT_TYPES(s):
return {"required": {"image": ("STRING", {"multiline": False})}}
RETURN_TYPES = ("IMAGE", "MASK")
CATEGORY = "external_tooling"
FUNCTION = "load_image"
def load_image(self, image):
imgdata = base64.b64decode(image)
img = Image.open(BytesIO(imgdata))
if "A" in img.getbands():
mask = np.array(img.getchannel("A")).astype(np.float32) / 255.0
mask = 1.0 - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
img = img.convert("RGB")
img = np.array(img).astype(np.float32) / 255.0
img = torch.from_numpy(img)[None,]
return (img, mask)
class LoadMaskBase64:
@classmethod
def INPUT_TYPES(s):
return {"required": {"mask": ("STRING", {"multiline": False})}}
RETURN_TYPES = ("MASK",)
CATEGORY = "external_tooling"
FUNCTION = "load_mask"
def load_mask(self, mask):
imgdata = base64.b64decode(mask)
img = Image.open(BytesIO(imgdata))
img = np.array(img).astype(np.float32) / 255.0
img = torch.from_numpy(img)
if img.dim() == 3: # RGB(A) input, use red channel
img = img[:, :, 0]
return (img.unsqueeze(0),)
class SendImageWebSocket:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"format": (["PNG", "JPEG"], {"default": "PNG"}),
}
}
RETURN_TYPES = ()
FUNCTION = "send_images"
OUTPUT_NODE = True
CATEGORY = "external_tooling"
def send_images(self, images, format):
results = []
for tensor in images:
array = 255.0 * tensor.cpu().numpy()
image = Image.fromarray(np.clip(array, 0, 255).astype(np.uint8))
server = PromptServer.instance
server.send_sync(
BinaryEventTypes.UNENCODED_PREVIEW_IMAGE,
[format, image, None],
server.client_id,
)
results.append(
{"source": "websocket", "content-type": f"image/{format.lower()}", "type": "output"}
)
return {"ui": {"images": results}}
class CropImage:
"""Deprecated, ComfyUI has an ImageCrop node now which does the same."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"x": (
"INT",
{"default": 0, "min": 0, "max": 8192, "step": 1},
),
"y": (
"INT",
{"default": 0, "min": 0, "max": 8192, "step": 1},
),
"width": (
"INT",
{"default": 512, "min": 1, "max": 8192, "step": 1},
),
"height": (
"INT",
{"default": 512, "min": 1, "max": 8192, "step": 1},
),
}
}
CATEGORY = "external_tooling"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crop"
def crop(self, image, x, y, width, height):
out = image[:, y : y + height, x : x + width, :]
return (out,)
def to_bchw(image: torch.Tensor):
if image.ndim == 3:
image = image.unsqueeze(0)
return image.movedim(-1, 1)
def to_bhwc(image: torch.Tensor):
return image.movedim(1, -1)
def mask_batch(mask: torch.Tensor):
if mask.ndim == 2:
mask = mask.unsqueeze(0)
return mask
class ApplyMaskToImage:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"mask": ("MASK",),
}
}
CATEGORY = "external_tooling"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "apply_mask"
def apply_mask(self, image: torch.Tensor, mask: torch.Tensor):
out = to_bchw(image)
if out.shape[1] == 3: # Assuming RGB images
out = torch.cat([out, torch.ones_like(out[:, :1, :, :])], dim=1)
mask = mask_batch(mask)
assert mask.ndim == 3, f"Mask should have shape [B, H, W]. {mask.shape}"
assert out.ndim == 4, f"Image should have shape [B, C, H, W]. {out.shape}"
assert (
out.shape[-2:] == mask.shape[-2:]
), f"Image size {out.shape[-2:]} must match mask size {mask.shape[-2:]}"
is_mask_batch = mask.shape[0] == out.shape[0]
# Apply each mask in the batch to its corresponding image's alpha channel
for i in range(out.shape[0]):
alpha = mask[i] if is_mask_batch else mask[0]
out[i, 3, :, :] = alpha
return (to_bhwc(out),)
class _ReferenceImageData(NamedTuple):
image: torch.Tensor
weight: float
range: tuple[float, float]
class ReferenceImage:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
"range_start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0}),
"range_end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0}),
},
"optional": {
"reference_images": ("REFERENCE_IMAGE",),
},
}
CATEGORY = "external_tooling"
RETURN_TYPES = ("REFERENCE_IMAGE",)
RETURN_NAMES = ("reference_images",)
FUNCTION = "append"
def append(
self,
image: torch.Tensor,
weight: float,
range_start: float,
range_end: float,
reference_images: list[_ReferenceImageData] | None = None,
):
imgs = copy(reference_images) if reference_images is not None else []
imgs.append(_ReferenceImageData(image, weight, (range_start, range_end)))
return (imgs,)
class ApplyReferenceImages:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"conditioning": ("CONDITIONING",),
"clip_vision": ("CLIP_VISION",),
"style_model": ("STYLE_MODEL",),
"references": ("REFERENCE_IMAGE",),
}
}
CATEGORY = "external_tooling"
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply"
def apply(
self,
conditioning: list[list],
clip_vision: ClipVisionModel,
style_model: StyleModel,
references: list[_ReferenceImageData],
):
delimiters = {0.0, 1.0}
delimiters |= set(r.range[0] for r in references)
delimiters |= set(r.range[1] for r in references)
delimiters = sorted(delimiters)
ranges = [(delimiters[i], delimiters[i + 1]) for i in range(len(delimiters) - 1)]
embeds = [_encode_image(r.image, clip_vision, style_model, r.weight) for r in references]
base = conditioning[0][0]
result = []
for start, end in ranges:
e = [
embeds[i]
for i, r in enumerate(references)
if r.range[0] <= start and r.range[1] >= end
]
options = conditioning[0][1].copy()
options["start_percent"] = start
options["end_percent"] = end
result.append((torch.cat([base] + e, dim=1), options))
return (result,)
def _encode_image(
image: torch.Tensor, clip_vision: ClipVisionModel, style_model: StyleModel, weight: float
):
e = clip_vision.encode_image(image)
e = style_model.get_cond(e).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
e = _downsample_image_cond(e, weight)
return e
def _downsample_image_cond(cond: torch.Tensor, weight: float):
if weight >= 1.0:
return cond
elif weight <= 0.0:
return torch.zeros_like(cond)
elif weight >= 0.6:
factor = 2
elif weight >= 0.3:
factor = 3
else:
factor = 4
# Downsample the clip vision embedding to make it smaller, resulting in less impact
# compared to other conditioning.
# See https://github.com/kaibioinfo/ComfyUI_AdvancedRefluxControl
(b, t, h) = cond.shape
m = int(np.sqrt(t))
cond = F.interpolate(
cond.view(b, m, m, h).transpose(1, -1),
size=(m // factor, m // factor),
mode="area",
)
return cond.transpose(1, -1).reshape(b, -1, h)