-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathswarm_middle_agent.py
428 lines (366 loc) · 15.7 KB
/
swarm_middle_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import os
import sys
import time
import logging
import json
from colorama import Fore, Style, init
from swarm import Agent, Swarm # Ensure the 'swarm' package is installed
# Initialize colorama
init(autoreset=True)
# =============================================================================
# Logging Configuration
# =============================================================================
class ColoredFormatter(logging.Formatter):
"""
Custom Formatter for Logging that applies color based on log level
and specific keywords.
"""
LEVEL_COLORS = {
logging.DEBUG: Fore.LIGHTYELLOW_EX,
logging.INFO: Fore.WHITE,
logging.WARNING: Fore.YELLOW,
logging.ERROR: Fore.RED,
logging.CRITICAL: Fore.RED + Style.BRIGHT,
}
KEYWORD_COLORS = {
'HTTP Request': Fore.LIGHTYELLOW_EX,
}
def format(self, record):
message = super().format(record)
# Apply color based on specific keywords
for keyword, color in self.KEYWORD_COLORS.items():
if keyword in message:
return color + message + Style.RESET_ALL
# Otherwise, color based on log level
color = self.LEVEL_COLORS.get(record.levelno, Fore.WHITE)
return color + message + Style.RESET_ALL
# Remove existing handlers to avoid duplicate logs
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
# Create a console handler with the custom formatter
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_formatter = ColoredFormatter('%(asctime)s %(levelname)s:%(message)s')
console_handler.setFormatter(console_formatter)
# Create a file handler for general logging
file_handler = logging.FileHandler("swarm_middle_agent.log")
file_handler.setLevel(logging.INFO)
file_formatter = logging.Formatter('%(asctime)s %(levelname)s:%(message)s')
file_handler.setFormatter(file_formatter)
# Configure the root logger to use both handlers
logging.basicConfig(
level=logging.INFO,
handlers=[console_handler, file_handler],
)
# =============================================================================
# Swarm Client Initialization
# =============================================================================
def initialize_swarm_client():
"""
Initializes the Swarm client.
Returns:
Swarm: An instance of the Swarm client.
"""
try:
client = Swarm()
logging.info("Swarm client initialized successfully.")
return client
except Exception as e:
logging.error(f"Failed to initialize Swarm client: {e}")
sys.exit(1)
client = initialize_swarm_client()
# =============================================================================
# Constants & Agent Configuration
# =============================================================================
AGENTS_CONFIG_FILE = 'agents.json'
def load_agents_config():
"""
Loads agent configurations from the 'agents.json' file.
Returns:
list: A list of agent configurations.
"""
try:
with open(AGENTS_CONFIG_FILE, 'r', encoding='utf-8') as f:
data = json.load(f)
logging.info(f"Successfully loaded agents configuration from '{AGENTS_CONFIG_FILE}'.")
return data.get('agents', [])
except FileNotFoundError:
logging.error(f"Agents configuration file '{AGENTS_CONFIG_FILE}' not found.")
return []
except json.JSONDecodeError as e:
logging.error(f"Error parsing '{AGENTS_CONFIG_FILE}': {e}")
return []
# =============================================================================
# Utility Functions
# =============================================================================
def print_divider(char="═", length=100, color=Fore.YELLOW):
"""
Prints a divider line of specified character, length, and color.
Args:
char (str): The character to use for the divider.
length (int): The length of the divider.
color (str): The color code from colorama.
"""
print(color + (char * length) + Style.RESET_ALL)
def print_header(title, color=Fore.YELLOW):
"""
Prints a formatted header with a box around the title text.
Args:
title (str): The header title.
color (str): The color code from colorama.
"""
border = "═" * 58
print(color + f"\n╔{border}╗")
print(color + f"║{title.center(58)}║")
print(color + f"╚{border}╝" + Style.RESET_ALL)
# =============================================================================
# Swarm Agents Initialization
# =============================================================================
def initialize_swarm_agents():
"""
Initializes Swarm-based agents from configuration.
Returns:
list: A list of initialized Swarm Agent instances.
"""
agents_data = load_agents_config()
if not agents_data:
logging.error("No agents found in the configuration. Please check 'agents.json'.")
sys.exit(1)
agents = []
agent_data_dict = {}
for agent_data in agents_data:
name = agent_data.get('name', 'Unnamed Agent')
system_purpose = agent_data.get('system_purpose', '')
additional_attrs = {
k: v for k, v in agent_data.items()
if k not in ['name', 'system_purpose']
}
# Build the instructions from system purpose + other attributes
full_instructions = system_purpose
for attr_name, attr_value in additional_attrs.items():
if isinstance(attr_value, dict):
details = "\n".join(
f"{ak.replace('_',' ').title()}: {av}" for ak, av in attr_value.items()
)
full_instructions += f"\n\n{attr_name.replace('_',' ').title()}:\n{details}"
else:
full_instructions += f"\n\n{attr_name.replace('_',' ').title()}: {attr_value}"
swarm_agent = Agent(
name=name,
instructions=full_instructions
)
agents.append(swarm_agent)
agent_data_dict[name] = agent_data
# Inform agents about other agents
for agent in agents:
other_agents_info = ""
for other_agent in agents:
if other_agent.name != agent.name:
info = f"Name: {other_agent.name}"
o_data = agent_data_dict[other_agent.name]
sp = o_data.get('system_purpose', '')
info += f"\nSystem Purpose: {sp}"
more_attrs = {
k: v for k, v in o_data.items()
if k not in ['name', 'system_purpose']
}
for attr_name, attr_value in more_attrs.items():
if isinstance(attr_value, dict):
details = "\n".join(
f"{ak.replace('_',' ').title()}: {av}" for ak, av in attr_value.items()
)
info += f"\n{attr_name.replace('_',' ').title()}:\n{details}"
else:
info += f"\n{attr_name.replace('_',' ').title()}: {attr_value}"
other_agents_info += f"\n\n{info}"
agent.instructions += (
f"\n\nYou are aware of the following other agents:\n{other_agents_info.strip()}"
)
logging.info(f"Initialized {len(agents)} swarm agents.")
return agents
# =============================================================================
# Swarm Reasoning Process
# =============================================================================
def run_swarm_reasoning(user_prompt):
"""
Orchestrates a multi-agent 'Swarm' process to produce a refined or
consolidated answer to user_prompt, returning that final text.
Args:
user_prompt (str): The user's input prompt.
Returns:
str: The final blended response from the swarm.
"""
agents = initialize_swarm_agents()
num_agents = len(agents)
opinions = {}
verified_opinions = {}
critiques = {}
refined_opinions = {}
print(Fore.YELLOW + "\nRunning Swarm-based reasoning...\n" + Style.RESET_ALL)
# ------------------ Step 1: Discuss the Prompt ------------------
print_header("Reasoning Step 1: Discussing the Prompt")
for agent in agents:
response = client.run(
agent=agent,
messages=[{"role": "user", "content": user_prompt}]
)
agent_opinion = response.messages[-1]['content']
opinions[agent.name] = agent_opinion
color = get_agent_color(agent.name)
print(color + f"{agent.name} response: {agent_opinion}" + Style.RESET_ALL)
# ------------------ Step 2: Verify the Responses ------------------
print_header("Reasoning Step 2: Verifying Responses")
for agent in agents:
verify_prompt = (
f"Please verify the accuracy of your previous response:\n\n{opinions[agent.name]}"
)
response = client.run(
agent=agent,
messages=[{"role": "user", "content": verify_prompt}]
)
verified_opinion = response.messages[-1]['content']
verified_opinions[agent.name] = verified_opinion
color = get_agent_color(agent.name)
print(color + f"{agent.name} verified response: {verified_opinion}" + Style.RESET_ALL)
# ------------------ Step 3: Critique Each Other ------------------
print_header("Reasoning Step 3: Critiquing Responses")
for i, agent in enumerate(agents):
other_agent = agents[(i + 1) % num_agents]
critique_prompt = (
f"Please critique {other_agent.name}'s response "
f"for depth and accuracy:\n\n{verified_opinions[other_agent.name]}"
)
response = client.run(
agent=agent,
messages=[{"role": "user", "content": critique_prompt}]
)
critique_text = response.messages[-1]['content']
critiques[agent.name] = critique_text
color = get_agent_color(agent.name)
print(color + f"{agent.name} critique on {other_agent.name}:\n{critique_text}\n" + Style.RESET_ALL)
# ------------------ Step 4: Refine the Responses ------------------
print_header("Reasoning Step 4: Refining Responses")
for i, agent in enumerate(agents):
other_agent = agents[(i + 1) % num_agents]
refine_prompt = (
f"Please refine your response based on {other_agent.name}'s critique:\n\n"
f"Your Original Response:\n{opinions[agent.name]}\n\n"
f"{other_agent.name}'s Critique:\n{critiques[agent.name]}"
)
response = client.run(
agent=agent,
messages=[{"role": "user", "content": refine_prompt}]
)
refined_text = response.messages[-1]['content']
refined_opinions[agent.name] = refined_text
color = get_agent_color(agent.name)
print(color + f"{agent.name} refined response: {refined_text}" + Style.RESET_ALL)
# ------------------ Step 5: Blend Refined Responses ------------------
print_header("Reasoning Step 5: Blending Responses")
agent_responses = [(agent.name, refined_opinions[agent.name]) for agent in agents]
final_blended_response = blend_responses(agent_responses, user_prompt)
print(Fore.GREEN + f"\nFinal Blended Response:\n{final_blended_response}" + Style.RESET_ALL)
print(Fore.GREEN + "\nSwarm-based reasoning completed.\n" + Style.RESET_ALL)
return final_blended_response
def blend_responses(agent_responses, user_prompt):
"""
Combines multiple agent responses into a single, optimal response via a specialized 'Swarm Agent'.
Args:
agent_responses (list of tuples): (agent_name, response)
user_prompt (str): The original prompt from the user.
Returns:
str: The blended optimal response text.
"""
combined_prompt = (
"Please combine the following responses into a single, optimal answer to the question.\n"
f"Question: '{user_prompt}'\n"
"Responses:\n"
+ "\n\n".join(
f"Response from {agent_name}:\n{response}" for agent_name, response in agent_responses
)
+ "\n\nProvide a concise and accurate combined response."
)
try:
blender_agent = Agent(
name="Swarm Agent",
instructions="You are a collaborative AI assistant composed of multiple expert agents."
)
response = client.run(
agent=blender_agent,
messages=[{"role": "user", "content": combined_prompt}]
)
blended_reply = response.messages[-1]['content'].strip()
# Safely retrieve usage details
usage = getattr(response, 'usage', None)
if usage:
# Instead of usage.get("prompt_tokens", 0), use getattr
prompt_tokens = getattr(usage, 'prompt_tokens', 0)
completion_tokens = getattr(usage, 'completion_tokens', 0)
total_tokens = getattr(usage, 'total_tokens', 0)
# For nested details
prompt_tokens_details = getattr(usage, 'prompt_tokens_details', None)
if prompt_tokens_details:
cached_tokens = getattr(prompt_tokens_details, 'cached_tokens', 0)
else:
cached_tokens = 0
completion_tokens_details = getattr(usage, 'completion_tokens_details', None)
if completion_tokens_details:
reasoning_tokens = getattr(completion_tokens_details, 'reasoning_tokens', 0)
else:
reasoning_tokens = 0
logging.info(
f"Blending usage -> Prompt: {prompt_tokens}, Completion: {completion_tokens}, "
f"Total: {total_tokens}, Cached: {cached_tokens}, Reasoning: {reasoning_tokens}"
)
else:
logging.info("No usage details returned for blending.")
return blended_reply
except Exception as e:
logging.error(f"Error in blend_responses: {e}")
return "An error occurred while attempting to blend responses."
def get_agent_color(agent_name):
"""
Retrieves the color associated with a given agent.
Args:
agent_name (str): The name of the agent.
Returns:
str: The color code from colorama.
"""
agent_colors = {
"Agent 47": Fore.MAGENTA,
"Agent 74": Fore.CYAN,
"Swarm Agent": Fore.LIGHTGREEN_EX,
}
return agent_colors.get(agent_name, Fore.WHITE)
# =============================================================================
# Interface Functions
# =============================================================================
def swarm_middle_agent_interface(user_prompt):
"""
Interface function to trigger multi-stage swarm reasoning with a single call
from external code (e.g., reasoning.py).
Returns the final swarm-blended text.
Args:
user_prompt (str): The user's input prompt.
Returns:
str: The final swarm response or None if an error occurred.
"""
try:
start_time = time.time()
final_text = run_swarm_reasoning(user_prompt)
end_time = time.time()
logging.info(f"Swarm reasoning completed in {end_time - start_time:.2f} seconds.")
return final_text
except Exception as e:
logging.error(f"Error in swarm_middle_agent_interface: {e}")
return None
# =============================================================================
# Main (Optional Test)
# =============================================================================
if __name__ == "__main__":
test_prompt = "What is love and how does it affect human behavior?"
final = swarm_middle_agent_interface(test_prompt)
if final:
print(Fore.CYAN + f"\nSwarm final answer:\n{final}\n" + Style.RESET_ALL)
else:
print(Fore.CYAN + "No final swarm response captured." + Style.RESET_ALL)