-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathK Means clustering.py
92 lines (77 loc) · 2.98 KB
/
K Means clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler, normalize
dataset=pd.read_csv('Enter the path to your selected dataset')
print(dataset.shape)
print(dataset.info())
print(dataset.head())
print(dataset.describe())
#Visualizing the dataset
#Box plot
sns.boxplot(data=dataset)
#Dataset with only numerical attributes
#Since K-Means is performed only on numerical values, the attributes Age, Credit amount, and Duration have been selected
cluster_data=dataset[['Age','Credit amount','Duration']]
print(cluster_data)
plt.scatter(cluster_data['Age'],cluster_data['Credit amount'],color='blue')
plt.scatter(cluster_data['Age'],cluster_data['Duration'],color='green')
#Normalization of the dataset
cluster_data['Age']=cluster_data['Age']/100;
cluster_data['Credit amount']=cluster_data['Credit amount']/100000;
cluster_data['Duration']=cluster_data['Duration']/100;
cluster_data.head()
#Finding the optimum number of clusters using the Elbow method
clusters_r= range(1,10)
distortion=[]
for c in clusters_r:
km= KMeans(n_clusters=c) #no of clusters to form and no of centroids to be generated
km.fit(cluster_data)
distortion.append(km.inertia_) #sum of squared distances of the points to the closest centroid
print(distortion)
print(km)
plt.figure()
plt.plot(clusters_r, distortion,marker='o')
plt.xlabel('Cluster range')
plt.ylabel('Distortion')
plt.title('Elbow method')
plt.show()
#Fitting k means for k clusters
km= KMeans(n_clusters=3) #From the above figure, k=3
km.fit(cluster_data)
y_pred= km.fit_predict(cluster_data)
y_pred
#Mapping predicted values into different clusters
cluster_data['cluster']= y_pred
cluster_data.head()
#Grouping into three clusters
cluster_data_0 = cluster_data[cluster_data.cluster==0]
cluster_data_1 = cluster_data[cluster_data.cluster==1]
cluster_data_2 = cluster_data[cluster_data.cluster==2]
#Scatter plots for visualization
#Credit amount vs Age
plt.scatter(cluster_data_0.Age,cluster_data_0['Credit amount'])
plt.scatter(cluster_data_1.Age,cluster_data_1['Credit amount'])
plt.scatter(cluster_data_2.Age,cluster_data_2['Credit amount'])
plt.xlabel('Age')
plt.ylabel('Credit amount')
#Duration vs Credit amount
plt.scatter(cluster_data_0['Credit amount'],cluster_data_0.Duration)
plt.scatter(cluster_data_1['Credit amount'],cluster_data_1.Duration)
plt.scatter(cluster_data_2['Credit amount'],cluster_data_2.Duration)
plt.xlabel('Credit amount')
plt.ylabel('Duration')
#Duration vs Age
plt.scatter(cluster_data_0['Age'],cluster_data_0.Duration)
plt.scatter(cluster_data_1['Age'],cluster_data_1.Duration)
plt.scatter(cluster_data_2['Age'],cluster_data_2.Duration)
plt.xlabel('Age')
plt.ylabel('Duration')
#Heatmap for interpretation
cluster_data['Age']=cluster_data['Age']*100;
cluster_data['Credit amount']=cluster_data['Credit amount']*100000;
cluster_data['Duration']=cluster_data['Duration']*100;
grouped_km=cluster_data.groupby(['cluster']).mean().round(1)
grouped_km