-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbgp.py
executable file
·447 lines (363 loc) · 13.7 KB
/
bgp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#!/usr/bin/env python3
# Copyright (C) 2019 by
# Luca Baldesi
# BSD license.
#
# Author: Luca Baldesi ([email protected])
"""Generates graphs resembling the Internet Autonomous System network"""
import random
import sys
import networkx as nx
from math import floor
def uniform_int_from_avg(a, m):
''' Returns a random integer uniformly taken from a distribution with
minimum value 'a' and average value 'm', X~U(a,b), E[X]=m, X in N where
b = 2*m - a.
Notes
-----
p = (b-floor(b))/2
X = X1 + X2; X1~U(a,floor(b)), X2~B(p)
E[X] = E[X1] + E[X2] = (floor(b)+a)/2 + (b-floor(b))/2 = (b+a)/2 = m
'''
assert(m>=a)
b = 2*m - a
p = (b-floor(b))/2
X1 = int(round(random.random()*(floor(b)-a) + a))
if random.random() < p:
X2 = 1
else:
X2 = 0
return X1 + X2
def choose_pref_attach(degs):
''' Returns a random choice among degs keys, each of which has a
probability proportional to the corresponding dictionary value.
Parameters
----------
degs: dictionary
It contains the possible values (keys) and the corresponding
probabilities (values)
Returns
-------
v: object
A key of degs or None if degs is empty
'''
if len(degs) == 0:
return None
s = sum(degs.values())
if s == 0:
return random.choice(list(degs.keys()))
v = random.random() * s
nodes = list(degs.keys())
i = 0
acc = degs[nodes[i]]
while v > acc:
i += 1
acc += degs[nodes[i]]
return nodes[i]
class AS_graph_generator(object):
''' Class for handling common data structure of the algorithm
'''
def t_graph(self):
''' Generates the core mesh network of tier one nodes of
a AS graph
Returns
-------
G: Graph
Core network
'''
self.G = nx.Graph()
for i in range(self.n_t):
self.G.add_node(i, type="T")
for r in self.regions:
self.regions[r].add(i)
for j in self.G.nodes():
if i != j:
self.add_edge(i, j, 'peer')
self.customers[i] = set([])
self.providers[i] = set([])
return self.G
def add_edge(self, i, j, kind):
if kind=='transit':
customer=str(i)
else:
customer='none'
self.G.add_edge(i, j, type=kind, customer=customer)
def choose_peer_pref_attach(self, node_list):
''' Pick a node from node_list with preferential attachment
computed only on their peer degree
'''
d = {}
for n in node_list:
d[n] = self.G.nodes[n]['peers']
return choose_pref_attach(d)
def choose_node_pref_attach(self, node_list):
''' Pick a node from node_list with preferential attachment
computed on their degree
'''
degs = dict(self.G.degree(node_list))
return choose_pref_attach(degs)
def add_customer(self, i, j):
''' Utility function to keep the dictionaries 'customers' and
'providers' consistent
'''
self.customers[j].add(i)
self.providers[i].add(j)
for z in self.providers[j]:
self.customers[z].add(i)
self.providers[i].add(z)
def add_node(self, i, kind, reg2prob, avg_deg, t_edge_prob):
''' Add a node to the graph with its customer transit edges.
Parameters
----------
i: object
Identifier of the new node
kind: string
Type of the new node. Options are: 'M' for middle node, 'CP' for
content provider and 'C' for customer.
reg2prob: float
Probability the new node can be in two different regions.
avg_deg: float
Average number of transit nodes of which node i is customer.
t_edge_prob: float
Probability node i establish a customer transit edge with a tier
one (T) node
Returns
-------
i: object
Identifier of the new node
'''
regs = 1 # regions in which node resides
if random.random() < reg2prob: # node is in two regions
regs = 2
node_options = set()
self.G.add_node(i, type=kind, peers=0)
self.customers[i] = set()
self.providers[i] = set()
self.nodes[kind].add(i)
for r in random.sample(list(self.regions), regs):
node_options = node_options.union(self.regions[r])
self.regions[r].add(i)
edge_num = uniform_int_from_avg(1, avg_deg)
t_options = node_options.intersection(self.nodes['T'])
m_options = node_options.intersection(self.nodes['M'])
if i in m_options:
m_options.remove(i)
d = 0
while d < edge_num and (len(t_options)>0 or len(m_options)>0):
if len(m_options) == 0 or (len(t_options)>0 and random.random() < t_edge_prob): # we connect to a T node
j = self.choose_node_pref_attach(t_options)
t_options.remove(j)
else:
j = self.choose_node_pref_attach(m_options)
m_options.remove(j)
self.add_edge(i, j, 'transit')
self.add_customer(i, j)
d+=1
return i
def add_m_peering_link(self, m, to_kind):
''' Add a peering link between two middle tier (M) node, (m,j).
Node j is drawn considering a preferential attachment based on other
M node peering degree.
Parameters
----------
m: object
Node identifier
to_kind: string
type for target node j (must be always M)
Returns
-------
success: boolean
'''
# candidates are of type 'M' and are not customers of m
node_options = self.nodes['M'].difference(self.customers[m])
# candidates are not providers of m
node_options = node_options.difference(self.providers[m])
# remove self
if m in node_options:
node_options.remove(m)
# remove candidates we are already connected to
for j in self.G.neighbors(m):
if j in node_options:
node_options.remove(j)
#print(f"options for node {m}: {node_options}")
if len(node_options)>0:
j = self.choose_peer_pref_attach(node_options)
self.add_edge(m, j, 'peer')
self.G.nodes[m]['peers'] += 1
self.G.nodes[j]['peers'] += 1
return True
else:
return False
def add_cp_peering_link(self, cp, to_kind):
''' Add a peering link between a content provider (CP) node and a
middle tier (M) or another CP node, (cp, j).
Node j is drawn uniformely among the nodes belonging to the same
region as cp.
Parameters
----------
cp: object
Node identifier
to_kind: string
type for target node j (must be M or CP)
Returns
-------
success: boolean
'''
node_options = set()
for r in self.regions: # options include nodes in the same region(s)
if cp in self.regions[r]:
node_options = node_options.union(self.regions[r])
# options are restricted to the indicated kind ('M' or 'CP')
node_options = self.nodes[to_kind].intersection(node_options)
# remove self
if cp in node_options:
node_options.remove(cp)
# remove nodes that are cp's providers
node_options = node_options.difference(self.providers[cp])
# remove nodes we are already connected to
for j in self.G.neighbors(cp):
if j in node_options:
node_options.remove(j)
# print(f"adding peer for {cp}, options {node_options}")
if len(node_options)>0:
j = random.sample(node_options, 1)[0]
self.add_edge(cp, j, 'peer')
self.G.nodes[cp]['peers'] += 1
self.G.nodes[j]['peers'] += 1
return True
else:
return False
def graph_regions(self, rn):
''' Initializes AS network regions.
Parameters
----------
rn: integer
Number of regions
'''
self.regions = {}
for i in range(rn):
self.regions[f"REG{i}"] = set()
def __init__(self, n):
''' Initializes generator variables. Immediate numbers are taken from [1].
Parameters
----------
n: integer
Number of graph nodes
Returns
-------
GG: AS_graph_generator object
References
----------
[1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
'''
self.n_t = min(n, int(round(random.random()*2+4))) # number of T nodes
self.n_m = int(round(0.15*n)) # number of M nodes
self.n_cp = int(round(0.05*n)) # number of CP nodes
self.n_c = max(0, n-self.n_t-self.n_m-self.n_cp) # number of C nodes
self.d_m = 2 + (2.5*n)/10000 # average multihoming degree for M nodes
self.d_cp = 2 + (1.5*n)/10000 # average multihoming degree for CP nodes
self.d_c = 1 + (5*n)/100000 # average multihoming degree for C nodes
self.p_m_m = 1 + (2*n)/10000 # avg number of peering edges between M and M
self.p_cp_m = 0.2 + (2*n)/10000 # avg number of peering edges between CP and M
self.p_cp_cp = 0.05 + (2*n)/100000 # avg number of peering edges between CP and CP
self.t_m = 0.375 # probability M's provider is T
self.t_cp = 0.375 # probability CP's provider is T
self.t_c = 0.125 # probability C's provider is T
def add_peering_links(self, from_kind, to_kind):
''' Utility function to add peering links among node groups.
'''
peer_link_method = None
if from_kind == 'M':
peer_link_method = self.add_m_peering_link
m = self.p_m_m
if from_kind == 'CP':
peer_link_method = self.add_cp_peering_link
if to_kind == 'M':
m = self.p_cp_m
else:
m = self.p_cp_cp
for i in self.nodes[from_kind]:
num = uniform_int_from_avg(0, m)
for _ in range(num):
peer_link_method(i, to_kind)
def generate(self):
''' Generates a random AS network graph as described in [1].
Returns
-------
G: Graph object
Notes
-----
The process steps are the following: first we create the core network
of tier one nodes, then we add the middle tier (M), the content provider
(CP) and the customer (C) nodes along with their transit edges (link i,j
means i is customer of j). Finally we add peering links between M nodes,
between M and CP nodes and between CP node couples.
For a detailed description of the algorithm, please refer to [1].
References
----------
[1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
'''
self.graph_regions(5)
self.customers = {}
self.providers = {}
self.nodes = { 'T': set([]), 'M': set([]), 'CP': set([]), 'C': set([])}
self.t_graph()
self.nodes['T'] = set(list(self.G.nodes()))
i = len(self.nodes['T'])
for _ in range(self.n_m):
self.nodes['M'].add(self.add_node(i, 'M', 0.2, self.d_m, self.t_m))
i += 1
for _ in range(self.n_cp):
self.nodes['CP'].add(self.add_node(i, 'CP', 0.05, self.d_cp, self.t_cp))
i += 1
for _ in range(self.n_c):
self.nodes['C'].add(self.add_node(i, 'C', 0, self.d_c, self.t_c))
i += 1
self.add_peering_links('M', 'M')
self.add_peering_links('CP', 'M')
self.add_peering_links('CP', 'CP')
return self.G
def internet_as_graph(n, seed=None):
''' Generates a random undirected graph resembling the Internet Autonomous
System Network.
Parameters
----------
n: integer in [1000, 10000]
Number of graph nodes
seed: integer, optional
Seed for random number generator.
Returns
-------
G: Networkx Graph object
A randomly generated undirected graph
Notes
-----
The generator follows the algorithm by Elmokashfi et al. [1] and it grants
the properties described in the related paper.
Each node models an eBGP speaker, with an attribute 'type' specifying its
kind; tier-1 (T), mid-level (M), customer (C) or content-provider (CP).
Each edge models an ADV communication link (hence, bidirectional) with
attributes:
- type: transit|peer, the kind of commercial agreement between nodes;
- customer: <node id>, the identifier of the node acting as customer
(none if type is peer).
References
----------
[1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
'''
random.seed(seed)
GG = AS_graph_generator(n)
G = GG.generate()
return G
if __name__ == "__main__":
n = 1000
if len(sys.argv) > 1:
n = int(sys.argv[1])
G = internet_as_graph(n, seed=1)
nx.write_graphml(G, f"baseline-{len(G.nodes())}.graphml")