-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSAC_disc.py
226 lines (203 loc) · 10.7 KB
/
SAC_disc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import sys
import time
import gymnasium as gym
from collections import namedtuple
import itertools
from itertools import count
import sumo_rl
from tqdm import tqdm, trange
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.normal import Normal
from utils.highway_utils import train_SAC_agent, read_ckp, ReplayBuffer
import numpy as np
import pandas as pd
import collections
import random
import matplotlib.pyplot as plt
import argparse
import warnings
warnings.filterwarnings('ignore')
parser = argparse.ArgumentParser(description='SAC(离散) 任务')
parser.add_argument('--model_name', default="SAC", type=str, help='基本算法名称')
parser.add_argument('-t', '--task', default="highway", type=str, help='任务名称')
parser.add_argument('-n', '--net', default="env/big-intersection/big-intersection.net.xml", type=str, help='SUMO路网文件路径')
parser.add_argument('-f', '--flow', default="env/big-intersection/big-intersection.rou.xml", type=str, help='SUMO车流文件路径')
parser.add_argument('-w', '--writer', default=0, type=int, help='存档等级, 0: 不存,1: 本地 2: 本地 + wandb本地, 3. 本地 + wandb云存档')
parser.add_argument('-o', '--online', action="store_true", help='是否上传wandb云')
parser.add_argument('--sta', action="store_true", help='是否利用sta辅助')
parser.add_argument('--sta_kind', default=False, help='sta 预训练模型类型,"expert"或"regular"')
parser.add_argument('-e', '--episodes', default=500, type=int, help='运行回合数')
parser.add_argument('-r', '--reward', default='diff-waiting-time', type=str, help='奖励函数')
parser.add_argument('--begin_time', default=1000, type=int, help='回合开始时间')
parser.add_argument('--duration', default=2000, type=int, help='单回合运行时间')
parser.add_argument('--begin_seed', default=1, type=int, help='起始种子')
parser.add_argument('--end_seed', default=7, type=int, help='结束种子')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class PolicyNet(torch.nn.Module):
def __init__(self, state_dim, hidden_dim, action_dim):
super(PolicyNet, self).__init__()
self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
self.h_1 = torch.nn.Linear(hidden_dim, hidden_dim)
self.fc2 = torch.nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = F.relu(self.h_1(F.relu(self.fc1(x))))
return F.softmax(self.fc2(x), dim=1) # 直接输出softmax
class QValueNet(torch.nn.Module):
''' 只有一层隐藏层的Q网络 '''
def __init__(self, state_dim, hidden_dim, action_dim):
super(QValueNet, self).__init__()
self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
self.h_1 = torch.nn.Linear(hidden_dim, hidden_dim)
self.fc2 = torch.nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = F.relu(self.h_1(F.relu(self.fc1(x))))
return self.fc2(x)
class SAC:
''' 处理离散动作的SAC算法 '''
def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr,
alpha_lr, target_entropy, tau, gamma, device):
# 策略网络
self.actor = PolicyNet(state_dim, hidden_dim, action_dim).to(device)
# 第一个Q网络
self.critic_1 = QValueNet(state_dim, hidden_dim, action_dim).to(device)
# 第二个Q网络
self.critic_2 = QValueNet(state_dim, hidden_dim, action_dim).to(device)
self.target_critic_1 = QValueNet(state_dim, hidden_dim,
action_dim).to(device) # 第一个目标Q网络
self.target_critic_2 = QValueNet(state_dim, hidden_dim,
action_dim).to(device) # 第二个目标Q网络
# 令目标Q网络的初始参数和Q网络一样
self.target_critic_1.load_state_dict(self.critic_1.state_dict())
self.target_critic_2.load_state_dict(self.critic_2.state_dict())
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
self.critic_1_optimizer = torch.optim.Adam(self.critic_1.parameters(), lr=critic_lr)
self.critic_2_optimizer = torch.optim.Adam(self.critic_2.parameters(), lr=critic_lr)
# 使用alpha的log值,可以使训练结果比较稳定
self.log_alpha = torch.tensor(np.log(0.01), dtype=torch.float)
self.log_alpha.requires_grad = True # 可以对alpha求梯度
self.log_alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=alpha_lr)
self.target_entropy = target_entropy # 目标熵的大小
self.gamma = gamma
self.tau = tau
self.device = device
def take_action(self, state):
state = torch.tensor(state[np.newaxis, :], dtype=torch.float).to(self.device)
probs = self.actor(state)
action_dist = torch.distributions.Categorical(probs)
action = action_dist.sample()
return action.item()
# 计算目标Q值,直接用策略网络的输出概率进行期望计算
def calc_target(self, rewards, next_states, dones):
next_probs = self.actor(next_states)
next_log_probs = torch.log(next_probs + 1e-8)
entropy = -torch.sum(next_probs * next_log_probs, dim=1, keepdim=True)
q1_value = self.target_critic_1(next_states)
q2_value = self.target_critic_2(next_states)
min_qvalue = torch.sum(next_probs * torch.min(q1_value, q2_value), dim=1, keepdim=True)
next_value = min_qvalue + self.log_alpha.exp() * entropy
td_target = rewards + self.gamma * next_value * (1 - dones)
return td_target
def soft_update(self, net, target_net):
for param_target, param in zip(target_net.parameters(), net.parameters()):
param_target.data.copy_(param_target.data * (1.0 - self.tau) + param.data * self.tau)
def update(self, transition_dict):
states = torch.tensor(transition_dict['states'], dtype=torch.float).to(self.device)
actions = torch.tensor(transition_dict['actions'], dtype=torch.int64).view(-1, 1).to(self.device) # 动作不再是float类型
rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1, 1).to(self.device)
next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float).to(self.device)
dones = torch.tensor(transition_dict['dones'], dtype=torch.int).view(-1, 1).to(self.device)
truncated = torch.tensor(transition_dict['truncated'], dtype=torch.int).view(-1, 1).to(self.device)
# 更新两个Q网络
td_target = self.calc_target(rewards, next_states, dones | truncated)
critic_1_q_values = self.critic_1(states).gather(1, actions)
critic_1_loss = torch.mean(F.mse_loss(critic_1_q_values, td_target.detach()))
critic_2_q_values = self.critic_2(states).gather(1, actions)
critic_2_loss = torch.mean(F.mse_loss(critic_2_q_values, td_target.detach()))
self.critic_1_optimizer.zero_grad()
critic_1_loss.backward()
self.critic_1_optimizer.step()
self.critic_2_optimizer.zero_grad()
critic_2_loss.backward()
self.critic_2_optimizer.step()
# 更新策略网络
probs = self.actor(states)
log_probs = torch.log(probs + 1e-8)
# 直接根据概率计算熵
entropy = -torch.sum(probs * log_probs, dim=1, keepdim=True)
q1_value = self.critic_1(states)
q2_value = self.critic_2(states)
min_qvalue = torch.sum(probs * torch.min(q1_value, q2_value), dim=1, keepdim=True) # 直接根据概率计算期望
actor_loss = torch.mean(-self.log_alpha.exp() * entropy - min_qvalue)
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# 更新alpha值
alpha_loss = torch.mean((entropy - self.target_entropy).detach() * self.log_alpha.exp())
self.log_alpha_optimizer.zero_grad()
alpha_loss.backward()
self.log_alpha_optimizer.step()
self.soft_update(self.critic_1, self.target_critic_1)
self.soft_update(self.critic_2, self.target_critic_2)
# * --------------------- 参数 -------------------------
if __name__ == '__main__':
# 环境相关
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if args.task == 'sumo':
os.environ['LIBSUMO_AS_TRACI'] = '1' # 终端运行加速
env = gym.make('sumo-rl-v0',
net_file=args.net,
route_file=args.flow,
use_gui=False,
begin_time=args.begin_time,
num_seconds=args.duration,
reward_fn=args.reward,
sumo_seed=args.begin_seed,
sumo_warnings=False,
additional_sumo_cmd='--no-step-log')
elif args.task == 'highway':
env = gym.make('highway-fast-v0')
env.configure({
"lanes_count": 4,
"vehicles_density": 2,
"duration": 100,
})
# SAC
actor_lr = 5e-4
critic_lr = 5e-3
alpha_lr = 1e-3
hidden_dim = 128
gamma = 0.98
tau = 0.005 # 软更新参数
buffer_size = 20000
target_entropy = 0.98 * (-np.log(1 / env.action_space.n))
model_alpha = 0.01 # 模型损失函数中的加权权重
state_dim = env.observation_space.shape[0] if args.task == 'sumo' else torch.multiply(*env.observation_space.shape)
action_dim = env.action_space.n
num_actions = env.action_space.n
total_epochs = 1
minimal_size = 500
batch_size = 64
# 任务相关
system_type = sys.platform # 操作系统
# args.model_name = args.model_name + '~' + args.cvae_kind
print('device:', device)
# * ----------------------- 训练 ----------------------------
for seed in trange(args.begin_seed, args.end_seed + 1, mininterval=40, ncols=100):
CKP_PATH = f'ckpt/{args.task}/{args.model_name}/{seed}_{system_type}.pt'
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
replay_buffer = ReplayBuffer(buffer_size)
agent = SAC(state_dim, hidden_dim, num_actions, actor_lr,
critic_lr, alpha_lr, target_entropy, tau, gamma, device)
s_epoch, s_episode, return_list, time_list, seed_list = read_ckp(CKP_PATH, agent, args.model_name)
print('开始训练')
return_list, train_time = train_SAC_agent(env, agent, args.writer, s_epoch, total_epochs,
s_episode, args.episodes, replay_buffer, minimal_size,
batch_size, return_list, time_list, seed_list,
seed, CKP_PATH,
)