forked from adafruit/DHT-sensor-library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DHT.cpp
385 lines (351 loc) · 11.5 KB
/
DHT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
/*!
* @file DHT.cpp
*
* @mainpage DHT series of low cost temperature/humidity sensors.
*
* @section intro_sec Introduction
*
* This is a library for DHT series of low cost temperature/humidity sensors.
*
* You must have Adafruit Unified Sensor Library library installed to use this
* class.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit andopen-source hardware by purchasing products
* from Adafruit!
*
* @section author Author
*
* Written by Adafruit Industries.
*
* @section license License
*
* MIT license, all text above must be included in any redistribution
*/
#include "DHT.h"
#define MIN_INTERVAL 2000 /**< min interval value */
#define TIMEOUT -1 /**< timeout on */
/*!
* @brief Instantiates a new DHT class
* @param pin
* pin number that sensor is connected
* @param type
* type of sensor
* @param count
* number of sensors
*/
DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
_pin = pin;
_type = type;
#ifdef __AVR
_bit = digitalPinToBitMask(pin);
_port = digitalPinToPort(pin);
#endif
_maxcycles =
microsecondsToClockCycles(1000); // 1 millisecond timeout for
// reading pulses from DHT sensor.
// Note that count is now ignored as the DHT reading algorithm adjusts itself
// based on the speed of the processor.
}
/*!
* @brief Setup sensor pins and set pull timings
* @param usec
* Optionally pass pull-up time (in microseconds) before DHT reading
*starts. Default is 55 (see function declaration in DHT.h).
*/
void DHT::begin(uint8_t usec) {
// set up the pins!
pinMode(_pin, INPUT_PULLUP);
// Using this value makes sure that millis() - lastreadtime will be
// >= MIN_INTERVAL right away. Note that this assignment wraps around,
// but so will the subtraction.
_lastreadtime = millis() - MIN_INTERVAL;
DEBUG_PRINT("DHT max clock cycles: ");
DEBUG_PRINTLN(_maxcycles, DEC);
pullTime = usec;
}
/*!
* @brief Read temperature
* @param S
* Scale. Boolean value:
* - true = Fahrenheit
* - false = Celcius
* @param force
* true if in force mode
* @return Temperature value in selected scale
*/
float DHT::readTemperature(bool S, bool force) {
float f = NAN;
if (read(force)) {
switch (_type) {
case DHT11:
f = data[2];
if (data[3] & 0x80) {
f = -1 - f;
}
f += (data[3] & 0x0f) * 0.1;
if (S) {
f = convertCtoF(f);
}
break;
case DHT12:
f = data[2];
f += (data[3] & 0x0f) * 0.1;
if (data[2] & 0x80) {
f *= -1;
}
if (S) {
f = convertCtoF(f);
}
break;
case DHT22:
case DHT21:
f = ((word)(data[2] & 0x7F)) << 8 | data[3];
f *= 0.1;
if (data[2] & 0x80) {
f *= -1;
}
if (S) {
f = convertCtoF(f);
}
break;
}
}
return f;
}
/*!
* @brief Converts Celcius to Fahrenheit
* @param c
* value in Celcius
* @return float value in Fahrenheit
*/
float DHT::convertCtoF(float c) { return c * 1.8 + 32; }
/*!
* @brief Converts Fahrenheit to Celcius
* @param f
* value in Fahrenheit
* @return float value in Celcius
*/
float DHT::convertFtoC(float f) { return (f - 32) * 0.55555; }
/*!
* @brief Read Humidity
* @param force
* force read mode
* @return float value - humidity in percent
*/
float DHT::readHumidity(bool force) {
float f = NAN;
if (read(force)) {
switch (_type) {
case DHT11:
case DHT12:
f = data[0] + data[1] * 0.1;
break;
case DHT22:
case DHT21:
f = ((word)data[0]) << 8 | data[1];
f *= 0.1;
break;
}
}
return f;
}
/*!
* @brief Compute Heat Index
* Simplified version that reads temp and humidity from sensor
* @param isFahrenheit
* true if fahrenheit, false if celcius (default
*true)
* @return float heat index
*/
float DHT::computeHeatIndex(bool isFahrenheit) {
float hi = computeHeatIndex(readTemperature(isFahrenheit), readHumidity(),
isFahrenheit);
return hi;
}
/*!
* @brief Compute Heat Index
* Using both Rothfusz and Steadman's equations
* (http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml)
* @param temperature
* temperature in selected scale
* @param percentHumidity
* humidity in percent
* @param isFahrenheit
* true if fahrenheit, false if celcius
* @return float heat index
*/
float DHT::computeHeatIndex(float temperature, float percentHumidity,
bool isFahrenheit) {
float hi;
if (!isFahrenheit)
temperature = convertCtoF(temperature);
hi = 0.5 * (temperature + 61.0 + ((temperature - 68.0) * 1.2) +
(percentHumidity * 0.094));
if (hi > 79) {
hi = -42.379 + 2.04901523 * temperature + 10.14333127 * percentHumidity +
-0.22475541 * temperature * percentHumidity +
-0.00683783 * pow(temperature, 2) +
-0.05481717 * pow(percentHumidity, 2) +
0.00122874 * pow(temperature, 2) * percentHumidity +
0.00085282 * temperature * pow(percentHumidity, 2) +
-0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
if ((percentHumidity < 13) && (temperature >= 80.0) &&
(temperature <= 112.0))
hi -= ((13.0 - percentHumidity) * 0.25) *
sqrt((17.0 - abs(temperature - 95.0)) * 0.05882);
else if ((percentHumidity > 85.0) && (temperature >= 80.0) &&
(temperature <= 87.0))
hi += ((percentHumidity - 85.0) * 0.1) * ((87.0 - temperature) * 0.2);
}
return isFahrenheit ? hi : convertFtoC(hi);
}
/*!
* @brief Read value from sensor or return last one from less than two
*seconds.
* @param force
* true if using force mode
* @return float value
*/
bool DHT::read(bool force) {
// Check if sensor was read less than two seconds ago and return early
// to use last reading.
uint32_t currenttime = millis();
if (!force && ((currenttime - _lastreadtime) < MIN_INTERVAL)) {
return _lastresult; // return last correct measurement
}
_lastreadtime = currenttime;
// Reset 40 bits of received data to zero.
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
#if defined(ESP8266)
yield(); // Handle WiFi / reset software watchdog
#endif
// Send start signal. See DHT datasheet for full signal diagram:
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
// Go into high impedence state to let pull-up raise data line level and
// start the reading process.
pinMode(_pin, INPUT_PULLUP);
delay(1);
// First set data line low for a period according to sensor type
pinMode(_pin, OUTPUT);
digitalWrite(_pin, LOW);
switch (_type) {
case DHT22:
case DHT21:
delayMicroseconds(1100); // data sheet says "at least 1ms"
break;
case DHT11:
default:
delay(20); // data sheet says at least 18ms, 20ms just to be safe
break;
}
uint32_t cycles[80];
{
// End the start signal by setting data line high for 40 microseconds.
pinMode(_pin, INPUT_PULLUP);
// Delay a moment to let sensor pull data line low.
delayMicroseconds(pullTime);
// Now start reading the data line to get the value from the DHT sensor.
// Turn off interrupts temporarily because the next sections
// are timing critical and we don't want any interruptions.
InterruptLock lock;
// First expect a low signal for ~80 microseconds followed by a high signal
// for ~80 microseconds again.
if (expectPulse(LOW) == TIMEOUT) {
DEBUG_PRINTLN(F("DHT timeout waiting for start signal low pulse."));
_lastresult = false;
return _lastresult;
}
if (expectPulse(HIGH) == TIMEOUT) {
DEBUG_PRINTLN(F("DHT timeout waiting for start signal high pulse."));
_lastresult = false;
return _lastresult;
}
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
// microsecond low pulse followed by a variable length high pulse. If the
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
// then it's a 1. We measure the cycle count of the initial 50us low pulse
// and use that to compare to the cycle count of the high pulse to determine
// if the bit is a 0 (high state cycle count < low state cycle count), or a
// 1 (high state cycle count > low state cycle count). Note that for speed
// all the pulses are read into a array and then examined in a later step.
for (int i = 0; i < 80; i += 2) {
cycles[i] = expectPulse(LOW);
cycles[i + 1] = expectPulse(HIGH);
}
} // Timing critical code is now complete.
// Inspect pulses and determine which ones are 0 (high state cycle count < low
// state cycle count), or 1 (high state cycle count > low state cycle count).
for (int i = 0; i < 40; ++i) {
uint32_t lowCycles = cycles[2 * i];
uint32_t highCycles = cycles[2 * i + 1];
if ((lowCycles == TIMEOUT) || (highCycles == TIMEOUT)) {
DEBUG_PRINTLN(F("DHT timeout waiting for pulse."));
_lastresult = false;
return _lastresult;
}
data[i / 8] <<= 1;
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
if (highCycles > lowCycles) {
// High cycles are greater than 50us low cycle count, must be a 1.
data[i / 8] |= 1;
}
// Else high cycles are less than (or equal to, a weird case) the 50us low
// cycle count so this must be a zero. Nothing needs to be changed in the
// stored data.
}
DEBUG_PRINTLN(F("Received from DHT:"));
DEBUG_PRINT(data[0], HEX);
DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[1], HEX);
DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[2], HEX);
DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[3], HEX);
DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[4], HEX);
DEBUG_PRINT(F(" =? "));
DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX);
// Check we read 40 bits and that the checksum matches.
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
_lastresult = true;
return _lastresult;
} else {
DEBUG_PRINTLN(F("DHT checksum failure!"));
_lastresult = false;
return _lastresult;
}
}
// Expect the signal line to be at the specified level for a period of time and
// return a count of loop cycles spent at that level (this cycle count can be
// used to compare the relative time of two pulses). If more than a millisecond
// ellapses without the level changing then the call fails with a 0 response.
// This is adapted from Arduino's pulseInLong function (which is only available
// in the very latest IDE versions):
// https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c
uint32_t DHT::expectPulse(bool level) {
#if (F_CPU > 16000000L)
uint32_t count = 0;
#else
uint16_t count = 0; // To work fast enough on slower AVR boards
#endif
// On AVR platforms use direct GPIO port access as it's much faster and better
// for catching pulses that are 10's of microseconds in length:
#ifdef __AVR
uint8_t portState = level ? _bit : 0;
while ((*portInputRegister(_port) & _bit) == portState) {
if (count++ >= _maxcycles) {
return TIMEOUT; // Exceeded timeout, fail.
}
}
// Otherwise fall back to using digitalRead (this seems to be necessary on
// ESP8266 right now, perhaps bugs in direct port access functions?).
#else
while (digitalRead(_pin) == level) {
if (count++ >= _maxcycles) {
return TIMEOUT; // Exceeded timeout, fail.
}
}
#endif
return count;
}