generated from victoresque/pytorch-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
95 lines (80 loc) · 3.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import argparse
import collections
import torch
import numpy as np
from trainers.leakage_inspection_general_case import perform_leakage_visualization
from utils.parse_config import ConfigParser, _update_config
from utils import prepare_device
import importlib
# fix random seeds for reproducibility
SEED = 42
torch.manual_seed(SEED)
torch.random.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def main(config):
logger = config.get_logger('train')
# setup data_loader instances
dataloaders_module = importlib.import_module("data_loaders")
data_loader, valid_data_loader, test_data_loader = config.init_obj(
'data_loader', dataloaders_module, config=config
)
# prepare for (multi-device) GPU training
device, device_ids = prepare_device(config['n_gpu'])
# build model architecture, then print to console
arch_module = importlib.import_module("architectures")
arch = config.init_obj('arch', arch_module, config=config, device=device,
data_loader=data_loader)
logger.info("\n")
logger.info(arch.model)
if 'explainer' in config.config.keys():
perform_leakage_visualization(data_loader, arch, config)
return 0
# get function handles of loss and metrics
# criterion = getattr(module_loss, config['loss'])
# metrics = [getattr(module_metric, met) for met in config['metrics']]
#metrics = config['metrics']
reg = config['regularisation']["type"]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
# trainable_params = filter(lambda p: p.requires_grad, model.parameters())
# optimizer = config.init_obj('optimizer', torch.optim, trainable_params)
# lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
trainers = importlib.import_module("trainers")
trainer = config.init_obj('trainer', trainers,
arch=arch,
config=config,
device=device,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
reg=reg)
trainer.train()
print("\nTraining completed")
print("Starting testing ...")
logger.info("\n")
logger.info("Training completed")
if config["trainer"]['type'] == 'IndependentCBMTrainer':
hard_cbm = config["trainer"]['hard_cbm']
else:
hard_cbm = False
logger.info("Starting testing ...")
trainer.test(test_data_loader, hard_cbm=hard_cbm)
print("\nTesting completed")
logger.info("\n")
logger.info("Testing completed")
if __name__ == '__main__':
args = argparse.ArgumentParser(description='Imperial Diploma Project')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'),
CustomArgs(['--bs', '--batch_size'], type=int, target='data_loader;args;batch_size')
]
config = ConfigParser.from_args(args, options)
main(config)