-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext2image_gan_ms.py
521 lines (377 loc) · 18.1 KB
/
text2image_gan_ms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# -*- coding: utf-8 -*-
"""Text2Image-GAN-MS.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1O7yMztnWvaPaiFWmChIjyRmGZaMQgK0q
"""
from google.colab import drive
drive.mount('/content/drive')
# Commented out IPython magic to ensure Python compatibility.
try:
# %tensorflow_version only exists in Colab.
# %tensorflow_version 2.x
except Exception:
pass
import tensorflow as tf
tf.__version__
import pickle
import gensim
data = pickle.load(open("/content/drive/My Drive/bird/image_vectors.p", "rb"))
word_vector = pickle.load(open("/content/drive/My Drive/bird/word_vector_min_bird.p", "rb"))
model = gensim.models.KeyedVectors.load_word2vec_format('/content/drive/My Drive/word2vec/GoogleNews-vectors-negative300.bin', binary=True)
import matplotlib.pyplot as pyplot
from keras.preprocessing.image import array_to_img
from numpy import expand_dims
from random import randint, choice
def random_flip(image):
image = tf.image.flip_left_right(image)
return image.numpy()
def random_jitter(image):
image = expand_dims(image, 0) #add additional dimension necessary for zooming
image = image_augmentation_generator.flow(image, batch_size=1)
result = image[0].reshape(image[0].shape[1:]) #remove additional dimension (1, 64, 64, 3) to (64, 64, 3)
return result
image_augmentation_generator = tf.keras.preprocessing.image.ImageDataGenerator(zoom_range=[0.8, 1.0]) # random zoom proves to be helpful in capturing more details https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
n = 227
image_embeddings = []
captions = []
labels = []
for i, k in enumerate(data.keys()):
image_embeddings.append(data[k])
captions.append(word_vector[k])
labels.append(k)
if i % n == 0:
image_embeddings.append(random_jitter(data[k]))
captions.append(word_vector[k])
labels.append(k)
print(len(captions))
print(len(image_embeddings))
pyplot.axis('off')
slcie = image_embeddings[40:50]
for i in range(9):
pyplot.subplot(3, 3, i+1)
pyplot.imshow(array_to_img(slcie[i]))
print(labels[i])
pyplot.axis('off')
pyplot.show()
import numpy as np
def get_random_word_vectors_from_dataset(n_samples):
ix = np.random.randint(0, len(captions), n_samples)
return np.asarray(captions)[ix]
def generate_random_vectors(n_samples):
vectorized_random_captions = []
for n in range(n_samples):
rnd = randint(8, 25)
result_array = np.empty((0, 300))
for i in range(rnd):
result_array = np.append(result_array, [model[choice(model.index2entity)]], axis=0)
vectorized_random_captions.append(np.mean(result_array, axis=0).astype('float32'))
return np.array(vectorized_random_captions)
from keras.preprocessing.image import array_to_img
from numpy import expand_dims
from numpy import zeros
from numpy import ones
from numpy import vstack
from numpy import asarray
import numpy as np
import os
from keras.callbacks import ModelCheckpoint
from keras.initializers import RandomNormal
from numpy.random import random
from tensorflow.keras import layers
from tensorflow.keras import Model
from numpy.random import randn
from numpy.random import randint
import time
from keras.layers.advanced_activations import PReLU
from keras.utils import plot_model
# Discriminator model
def define_discriminator():
word_vector_dim = 300
dropout_prob = 0.4
in_label = layers.Input(shape=(300,))
n_nodes = 3 * 64 * 64
li = layers.Dense(n_nodes)(in_label)
li = layers.Reshape((64, 64, 3))(li)
dis_input = layers.Input(shape=(64, 64, 3))
merge = layers.Concatenate()([dis_input, li])
discriminator = layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same")(merge)
discriminator = layers.LeakyReLU(0.2)(discriminator)
discriminator = layers.GaussianNoise(0.2)(discriminator)
discriminator = layers.Conv2D(filters=64, kernel_size=(3, 3), strides=(2, 2), padding="same")(discriminator)
discriminator = layers.BatchNormalization(momentum=0.5)(discriminator)
discriminator = layers.LeakyReLU()(discriminator)
discriminator = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same")(discriminator)
discriminator = layers.BatchNormalization(momentum=0.5)(discriminator)
discriminator = layers.LeakyReLU(0.2)(discriminator)
discriminator = layers.Conv2D(filters=128, kernel_size=(3, 3), strides=(2, 2), padding="same")(discriminator)
discriminator = layers.BatchNormalization(momentum=0.5)(discriminator)
discriminator = layers.LeakyReLU(0.2)(discriminator)
discriminator = layers.Conv2D(filters=256, kernel_size=(3, 3), padding="same")(discriminator)
discriminator = layers.BatchNormalization(momentum=0.5)(discriminator)
discriminator = layers.LeakyReLU(0.2)(discriminator)
discriminator = layers.Conv2D(filters=256, kernel_size=(3, 3), strides=(2, 2), padding="same")(discriminator)
discriminator = layers.BatchNormalization(momentum=0.5)(discriminator)
discriminator = layers.LeakyReLU(0.2)(discriminator)
discriminator = layers.Conv2D(filters=512, kernel_size=(3, 3), padding="same")(discriminator)
discriminator = layers.BatchNormalization(momentum=0.5)(discriminator)
discriminator = layers.LeakyReLU(0.2)(discriminator)
discriminator = layers.Flatten()(discriminator)
discriminator = layers.Dense(1024)(discriminator)
discriminator = layers.LeakyReLU(0.2)(discriminator)
discriminator = layers.Dense(1)(discriminator)
discriminator_model = Model(inputs=[dis_input, in_label], outputs=discriminator)
discriminator_model.summary()
return discriminator_model
def resnet_block(model, kernel_size, filters, strides):
gen = model
model = layers.Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding="same")(model)
model = layers.BatchNormalization(momentum=0.5)(model)
model = tf.keras.layers.PReLU(alpha_initializer='zeros', alpha_regularizer=None, alpha_constraint=None, shared_axes=[1, 2])(model)
model = layers.Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding="same")(model)
model = layers.BatchNormalization(momentum=0.5)(model)
model = layers.Add()([gen, model])
return model
# Generator model
def define_generator():
kernel_init = tf.random_normal_initializer(stddev=0.02)
batch_init = tf.random_normal_initializer(1., 0.02)
random_input = layers.Input(shape=(100,))
text_input1 = layers.Input(shape=(300,))
text_layer1 = layers.Dense(8192)(text_input1)
text_layer1 = layers.Reshape((8, 8, 128))(text_layer1)
n_nodes = 128 * 8 * 8
gen_input_dense = layers.Dense(n_nodes)(random_input)
generator = layers.Reshape((8, 8, 128))(gen_input_dense)
merge = layers.Concatenate()([generator, text_layer1])
model = layers.Conv2D(filters=64, kernel_size=9, strides=1, padding="same")(merge)
model = tf.keras.layers.PReLU(alpha_initializer='zeros', alpha_regularizer=None, alpha_constraint=None, shared_axes=[1, 2])(model)
gen_model = model
for _ in range(4):
model = resnet_block(model, 3, 64, 1)
model = layers.Conv2D(filters=64, kernel_size=3, strides=1, padding="same")(model)
model = layers.BatchNormalization(momentum=0.5)(model)
model = layers.Add()([gen_model, model])
model = layers.Conv2DTranspose(filters=512, kernel_size=(3, 3), strides=(2, 2), padding="same", kernel_initializer=kernel_init)(model)
model = layers.LeakyReLU(0.2)(model)
model = layers.Conv2DTranspose(filters=256, kernel_size=(3, 3), strides=(2, 2), padding="same", kernel_initializer=kernel_init)(model)
model = layers.LeakyReLU(0.2)(model)
model = layers.Conv2DTranspose(filters=128, kernel_size=(3, 3), strides=(2, 2), padding="same", kernel_initializer=kernel_init)(model)
model = layers.LeakyReLU(0.2)(model)
model = layers.Conv2DTranspose(filters=64, kernel_size=(3, 3), strides=(1, 1), padding="same", kernel_initializer=kernel_init)(model)
model = layers.LeakyReLU(0.2)(model)
model = layers.Conv2D(3, (3, 3), padding='same', activation='tanh')(model)
generator_model = Model(inputs=[random_input, text_input1], outputs=model)
generator_model.summary()
return generator_model
from IPython.display import clear_output
def generate_latent_points(latent_dim, n_samples):
x_input = tf.random.normal([n_samples, latent_dim])
text_captions = get_random_word_vectors_from_dataset(n_samples)
return [x_input, text_captions]
# Randomly flip some labels. Credits to https://machinelearningmastery.com/how-to-code-generative-adversarial-network-hacks/
def noisy_labels(y, p_flip):
n_select = int(p_flip * int(y.shape[0]))
flip_ix = np.random.choice([i for i in range(int(y.shape[0]))], size=n_select)
op_list = []
for i in range(int(y.shape[0])):
if i in flip_ix:
op_list.append(tf.subtract(1.0, y[i]))
else:
op_list.append(y[i])
outputs = tf.stack(op_list)
return outputs
def load_data():
return asarray(image_embeddings), asarray(captions).astype('float32')
def smooth_positive_labels(y):
return y - 0.3 + (np.random.random(y.shape) * 0.5)
def smooth_negative_labels(y):
return y + np.random.random(y.shape) * 0.3
def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False)
print(predictions.shape)
pyplot.figure(figsize=[7, 7])
for i in range(predictions.shape[0]):
pyplot.subplot(5, 5, i+1)
pyplot.imshow(array_to_img(predictions.numpy()[i]))
pyplot.axis('off')
pyplot.savefig('image_at_epoch_{:04d}.png'.format(epoch))
pyplot.show()
def discriminator_loss(r_real_output_real_text, f_fake_output_real_text_1, f_real_output_fake_text):
alpha = 0.5
real_output_noise = smooth_positive_labels(noisy_labels(tf.ones_like(r_real_output_real_text), 0.10))
fake_output_real_text_noise_1 = smooth_negative_labels(tf.zeros_like(f_fake_output_real_text_1))
real_output_fake_text_noise = smooth_negative_labels(tf.zeros_like(f_real_output_fake_text))
real_loss = tf.reduce_mean(binary_cross_entropy(real_output_noise, r_real_output_real_text))
fake_loss_ms_1 = tf.reduce_mean(binary_cross_entropy(fake_output_real_text_noise_1, f_fake_output_real_text_1))
fake_loss_2 = tf.reduce_mean(binary_cross_entropy(real_output_fake_text_noise, f_real_output_fake_text))
total_loss = real_loss + alpha * fake_loss_2 + (1-alpha) * fake_loss_ms_1
return total_loss
def generator_loss(f_fake_output_real_text):
return tf.reduce_mean(binary_cross_entropy(tf.ones_like(f_fake_output_real_text), f_fake_output_real_text))
@tf.function
def train_step(images, epoch):
#define half_batch
latent_dim = 100
n_batch = 64
noise_1 = tf.random.normal([32, latent_dim])
noise_2 = tf.random.normal([32, latent_dim])
real_captions = images[1]
real_images = images[0]
random_captions = generate_random_vectors(n_batch)
random_captions_1, random_captions_2 = tf.split(random_captions, 2, 0)
real_captions_1, real_captions_2 = tf.split(real_captions, 2 ,0)
real_images_1, real_images_2 = tf.split(real_images, 2, 0)
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
noise = tf.concat([noise_1, noise_2], 0)
generated_images = generator([noise, real_captions], training=True)
fake_1, fake_2 = tf.split(generated_images, 2, 0)
f_fake_output_real_text_1 = discriminator([fake_1, real_captions_1], training=True)
f_fake_output_real_text_2 = discriminator([fake_2, real_captions_2], training=True)
r_real_output_real_text_1 = discriminator([real_images_1, real_captions_1], training=True)
r_real_output_real_text_2 = discriminator([real_images_2, real_captions_2], training=True)
f_real_output_fake_text_1 = discriminator([real_images_1, random_captions_1], training=True)
f_real_output_fake_text_2 = discriminator([real_images_2, random_captions_2], training=True)
#### Calculating losses ####
gen_loss = generator_loss(f_fake_output_real_text_1) + generator_loss(f_fake_output_real_text_2)
# mode seeking loss
lz = tf.math.reduce_mean(tf.math.abs(fake_2-fake_1)) / tf.math.reduce_mean(tf.math.abs(noise_2-noise_1))
eps = 1 * 1e-5
loss_lz = 1 / (eps+lz) * ms_loss_weight
total_gen_loss = gen_loss + loss_lz
tf.print('G_loss', [total_gen_loss])
disc_loss_1 = discriminator_loss(r_real_output_real_text_1, f_fake_output_real_text_1, f_real_output_fake_text_1)
disc_loss_2 = discriminator_loss(r_real_output_real_text_2, f_fake_output_real_text_2, f_real_output_fake_text_2)
total_disc_loss = disc_loss_1 + disc_loss_2
tf.print('D_loss', [total_disc_loss])
#### Done calculating losses ####
gradients_of_discriminator = disc_tape.gradient(total_disc_loss, discriminator.trainable_variables)
gradients_of_generator = gen_tape.gradient(total_gen_loss, generator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs = 2000):
checkpoint_dir = '/content/drive/My Drive/checkpoints_2'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)
ckpt_manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)
if ckpt_manager.latest_checkpoint:
checkpoint.restore(ckpt_manager.latest_checkpoint) #ckpt_manager.checkpoints[3]
print ('Latest checkpoint restored!!')
for epoch in range(epochs):
start = time.time()
for image_batch in dataset:
train_step(image_batch, epoch)
if (epoch +1) % 10 == 0:
[z_input, labels_input] = generate_latent_points(100, 25)
generate_and_save_images(generator,
epoch + 1,
[z_input, labels_input])
if (epoch + 1) % 40 == 0:
ckpt_save_path = ckpt_manager.save()
print ('Saving checkpoint for epoch {} at {}'.format(epoch+1,ckpt_save_path))
if (epoch +1) % 60 == 0:
clear_output(wait=True)
generator.save('/content/drive/My Drive/46stage_new_gan_animal_model_%03d.h5' % (epoch + 1))
print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
ms_loss_weight = 1.0
binary_cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
generator_optimizer = tf.keras.optimizers.Adam(learning_rate=0.000035, beta_1 = 0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate=0.000035, beta_1 = 0.5)
discriminator = define_discriminator()
generator = define_generator()
images, lbs = load_data()
BUFFER_SIZE = images.shape[0]
BATCH_SIZE = 64
train_dataset = tf.data.Dataset.from_tensor_slices((images,lbs)).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
train(train_dataset)
#
from keras.preprocessing.image import array_to_img
from numpy import expand_dims
from numpy import zeros
from numpy import ones
from numpy import vstack
from numpy import asarray
import numpy as np
import os
from keras.callbacks import ModelCheckpoint
from keras.initializers import RandomNormal
from numpy.random import random
from tensorflow.keras import layers
from tensorflow.keras import Model
from numpy.random import randn
from numpy.random import randint
import time
import matplotlib.pyplot as pyplot
from keras.preprocessing.image import array_to_img
from numpy import linspace
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize
from numpy.random import randint
import numpy as np
def create_sent_vector(sent):
result_array = np.empty((0, 300))
for word in word_tokenize(sent):
result_array = np.append(result_array, [model[word]], axis=0)
final = np.mean(result_array, axis=0).astype('float32')
return final
def generate_random_word_vectors_from_dataset(n_samples, create_new_captions = False):
if create_new_captions:
e = create_sent_vector('This bird has white breast with brown feathers')
f = create_sent_vector('This bird has white breast with blue feathers')
v = []
flag = False
for i in range(n_samples):
if not flag:
v.append(f)
flag = True
elif flag:
v.append(e)
flag = False
return np.asarray(v), np.asarray([])
else:
ix = randint(0,len(captions), n_samples)
print(ix)
return np.asarray(captions)[ix], np.asarray(labels)[ix]
def generate_images(model, test_input):
predictions = model(test_input, training=False)
print(predictions.shape)
pyplot.figure(figsize=[15, 15])
for i in range(predictions.shape[0]):
pyplot.subplot(1, 9, i+1)
pyplot.imshow(array_to_img(predictions.numpy()[i]))
pyplot.axis('off')
pyplot.show()
# Credit to: https://machinelearningmastery.com/how-to-interpolate-and-perform-vector-arithmetic-with-faces-using-a-generative-adversarial-network/
def interpolate_points(p1, p2, n_steps=9):
ratios = linspace(0, 1, num=n_steps)
vectors = list()
for ratio in ratios:
v = (1.0 - ratio) * p1 + ratio * p2
vectors.append(v)
return np.asarray(vectors)
def generate_latent_points(latent_dim, n_samples, interpolate = False):
x_input = tf.random.normal([n_samples, latent_dim])
text_captions, labels = generate_random_word_vectors_from_dataset(n_samples, create_new_captions=False)
if interpolate:
text_captions = interpolate_points(text_captions[0], text_captions[1])
x_input = interpolate_points(x_input[0], x_input[1])
for index, s in enumerate(labels.flat):
print(index, s)
return [x_input, text_captions]
gen_model = tf.keras.models.load_model('/content/drive/My Drive/bird_model.h5')
for i in range(40):
generate_images(gen_model, generate_latent_points(100, 9))
def get_index_by_label(label):
for idx, l in enumerate(labels):
if l in label:
return idx
print(get_index_by_label('Western_Wood_Pewee_0061_795060.jpg'))
# Show image in image embeddings
pyplot.figure(figsize=[8, 8])
pyplot.subplot(1, 2, 0+1)
pyplot.imshow(array_to_img(image_embeddings[5432]))
pyplot.axis('off')