-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathincentive_PROJECT_models.qmd
547 lines (403 loc) · 20.4 KB
/
incentive_PROJECT_models.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
---
title: "Incentive PROJECT Models"
date: "August 10, 2024"
date-modified: last-modified
format:
html:
embed-resources: true
theme: lumen
code-fold: true
code-line-numbers: true
code-overflow: wrap
toc: true
toc-location: left
df-print: paged
knitr:
opts_chunk:
warning: true
message: false
---
## Data prep
> Switched to timeseries CSV on September 1st isntead of balanced panel csv.
```{r warning = FALSE}
library(tidyverse)
library(jsonlite)
library(httr)
# ptax_pins <- read_csv("./Output/comm_ind_PINs_2011-2022_balanced.csv")
ptax_pins <- read_csv("./Output/comm_ind_PINs_2006to2022_timeseries.csv") |>
filter(year >= 2011)
parcuniverse_keypins <- readxl::read_xlsx("./Inputs/parceluniverse_keypins_20240725.xlsx",
sheet = "keypins_20240725") %>%
mutate(pin14 = str_pad(as.character(pin), width = 14, side = "left", pad = "0"),
keypin = str_pad(as.character(proration_key_pin), width = 14, side = "left", pad = "0"),
pin10 = str_sub(pin14,1,10),
pin7 = str_sub(pin14,1,7), .before = "pin",) %>%
select(-c(pin_7dig, pin, Column1)) %>%
filter(class != "EX")
base_url <- "https://datacatalog.cookcountyil.gov/resource/tx2p-k2g9.json"
nbh_pins <- GET(
base_url,
query = list(
tax_year = 2022,
`$select` = paste0(c("pin", # "pin10",
"nbhd_code"
),
collapse = ","),
`$limit` = 500000000L
)
)
nbh_pins <- fromJSON(rawToChar(nbh_pins$content))
nbh_pins <- nbh_pins |> filter(pin %in% ptax_pins$pin)
```
```{r warning = FALSE}
puni_keypins <- parcuniverse_keypins %>%
select(pin14,
puni_keypin = keypin,
proration_rate2022 = proration_rate,
mailing_name2022 = mailing_name )
# Workaround for identifying more project IDs.
# Used Appeal ID to create unique identifier to group PINs.
bor <- read_csv("Output/borappeals.csv") %>%
mutate(project_appellant = paste(project_id, sep = "-", appellant))
bor_pins <- bor %>%
group_by(pin) %>%
arrange(desc(tax_year)) %>%
summarize(pin = first(pin),
class_bor = paste(list(unique(class)), collapse = ", "),
taxyear_appealed = paste(list(tax_year), collapse = ", "),
appellant = first(appellant),
project_id = first(project_id),
timesappealed = n() ) %>%
mutate(proj_appeallant = paste(project_id, "-", appellant))
ptax_proj <- ptax_pins %>%
left_join(bor_pins) %>%
left_join(puni_keypins, by = c("pin" = "pin14")) %>%
left_join(nbh_pins)
proj_xwalk <- read_csv("Output/all_keypins.csv")
ptax_proj <- ptax_proj %>% left_join(proj_xwalk, by = "pin", relationship = "many-to-many")
ptax_proj <- ptax_proj %>%
mutate(actual_keypin = ifelse(is.na(proj_appeallant), puni_keypin, proj_appeallant))%>%
mutate(actual_keypin = ifelse(is.na(actual_keypin), keypin, actual_keypin)) %>%
select(year, actual_keypin, pin, nbhd_code, tax_code_num, class, class_bor, tax_code_rate, fmv, av_clerk, tax_bill_total, everything())
```
```{r manual-pin-codings}
ptax_proj <- ptax_proj |>
mutate(actual_keypin = case_when(
pin %in% c(09253201421002, 09253201421007) ~ "ICUSS - 7720 W. Touhy",
pin %in% c(04333020971001:04333020971020) ~ "611 Milwaukee Ave",
pin %in% c(18282000461001) ~ "ADCON EXPRESS INC",
pin %in% c(18282000461003, 20084040010000:20084040060000 ) ~ "959 W 51st St.",
pin %in% c(17221101220000, 17221101230000, 17221101240000 ) ~ "1231 S. Prairie Ave.",
pin %in% c(28273000060000, 28271010170000, 28271010180000) ~ "LPC CCH I LLC",
pin %in% c(16321210100000, 16321210110000:16321210180000) ~ "6201-6215 & 6223 W. Ogden Ave",
# is missing a digit!
pin %in% c(14182129349999, 14182120371271:14182120371445) ~ "1945 Wilson LLC",
pin %in% c(31202180080000:31202140070000) ~ "EPCM Midwest LLC",
pin %in% c(18111350100000,18111350110000) ~ "Hart McCook LLC",
pin %in% c(14054020411033:14054020411036) ~ "5858 Sheridan LLC",
pin %in% c(32282140460000:32282180090000) ~ "Dembay LLC",
pin %in% c(17103080120000:17103080140000) ~ "Macy's State Street",
pin %in% c(15212000180000:15212041520000) ~ "Westchester Rising LLC",
pin %in% c(25311050220000:25311230010000) ~ "Veterans Services",
# pin %in% c(15063020520000:15071030230000) ~ "IL State Toll Highway",
pin %in% c(13313210320000,13313220590000) ~ "Harlem and North Development",
TRUE ~ as.character(actual_keypin))
)
```
```{r eval = FALSE}
modelsummary::datasummary_skim(ptax_proj)
```
**Which came first: The TIF or the incentive class??**
```{r}
#| label: tbl-whichcamefirst
#| tbl-cap: "PINS that were in a TIF before receiving an incentive classification. 254 PINs had incentive classes before they were in a TIF. 1373 PINs were in a TIF before they had an incentive classification"
change_table <- ptax_proj |>
ungroup() |>
arrange(pin, year) |>
group_by(pin) |>
summarize(first_tif_year = first(year[in_tif==1]),
first_incent_year = first(year[incent_prop=="Incentive"])) |>
filter(!is.na(first_tif_year) & !is.na(first_incent_year)) |>
select(pin, first_tif_year, first_incent_year)|>
distinct()
#254 PINs had incentive classes before they were in a TIF
# change_table |> filter(first_tif_year > first_incent_year)
#1373 PINs were in a TIF before they had an incentive classification
change_table |> filter(first_tif_year < first_incent_year)
```
```{r}
#| label: tbl-keypin-tiforincent
#| tbl-cap: "Projects that were in a TIF before they also got an incentive classification."
change_table <- ptax_proj |>
ungroup() |>
arrange(pin, year) |>
group_by(actual_keypin) |>
summarize(first_tif_year = first(year[in_tif==1]),
first_incent_year = first(year[incent_prop=="Incentive"])) |>
filter(!is.na(first_tif_year) & !is.na(first_incent_year)) |>
select(actual_keypin, first_tif_year, first_incent_year)|>
distinct()
# 152 projects were in a tif
# change_table |> filter(first_tif_year > first_incent_year)
# 329 projects were in a TIF before they received incentive classes
change_table |> filter(first_tif_year < first_incent_year)
```
**How many Commercial PINs become Industrial PINs? If commercial pins are the comparison group, we should know the sample size of PINs that change to other land uses.**
```{r}
#| label: tbl-commercial-toOther-pins
#| tbl-cap: "Commercial PINs that became Industrial or other land use types"
change_table <- ptax_proj |>
ungroup() |>
arrange(pin, year) |>
group_by(pin) |>
summarize(
first_commerc_year = first(year[land_use == "Commercial"]),
first_indust_year = first(year[land_use == "Industrial"]),
first_other_year = first(year[!land_use %in% c("Commercial", "Industrial")])) |>
select(pin, first_commerc_year, first_indust_year, first_other_year)|>
distinct()
change_table |> filter(first_commerc_year < first_indust_year)
change_table |> filter(first_commerc_year < first_other_year)
```
```{r eval=FALSE}
#| label: tbl-keypinchange
#| tbl-cap: "Projects where the first year as a commercial land use is before becoming commercial."
change_table <- ptax_proj |>
ungroup() |>
arrange(pin, year) |>
group_by(actual_keypin) |>
summarize(
first_commerc_year = first(year[land_use == "Commercial"]),
first_indust_year = first(year[land_use == "Industrial"]),
first_other_year = first(year[!land_use %in% c("Commercial", "Industrial")])) |>
select(actual_keypin, first_commerc_year, first_indust_year, first_other_year)|>
distinct()
change_table |> filter(first_commerc_year < first_other_year)
change_table |> filter(first_commerc_year < first_indust_year)
```
```{r}
# ptax_proj %>%
# arrange(pin, year) %>%
# # select(-c(landuse_change, land_use, incent_change, tif_change, pin_classes_2011, pin_classes_2022) ) %>%
# filter(incent_change %in% c("Always Incentive", "Changes Sometime")) %>%
# write_csv("Output/incentive_project_summaries.csv")
```
```{r}
ptax_proj_summs <- ptax_proj %>%
mutate(actual_keypin = ifelse(is.na(actual_keypin), pin, actual_keypin) ) |>
group_by(year, actual_keypin) %>%
summarize(
incent_pins = sum(ifelse(class >= 600 & class < 900, 1, 0)),
project_pins = n(),
fmv = sum(fmv, na.rm=TRUE),
tax_code = mean(tax_code_num, na.rm=TRUE),
in_tif = mean(in_tif, na.rm=TRUE),
# pin_classes = paste(sort(unique(class)), collapse = ", "),
land_use = paste(sort(unique(land_use)), collapse = ", "),
incent_prop = paste(sort(unique(incent_prop)), collapse = ", "),
triad = first(Triad),
clean_name = first(clean_name),
reassessed_year = first(reassessed_year),
exe_abate = sum(exe_abate, na.rm = TRUE),
landuse_change= paste(sort(unique(landuse_change)), collapse = ", "),
incent_change = paste(sort(unique(incent_change)), collapse = ", "),
tif_change = paste(sort(unique(tif_change)), collapse = ", "),
av_mailed = sum(av_mailed, na.rm=TRUE),
av_clerk = sum(av_clerk, na.rm=TRUE)
) %>%
ungroup()
timespan = 12
ptax_proj_summs <- ptax_proj_summs %>%
group_by(actual_keypin) |>
mutate(
years_existed = n(),
# commenting out just to make it run faster
# but maybe interesting for looking at types of PINs included in a project
# pin_classes_2011 = ifelse(years_existed == timespan, pin_classes[year == 2011], NA),
#pin_classes_2022 = ifelse(years_existed == timespan, pin_classes[year == 2022], NA),
base_year_fmv_2011 = ifelse(years_existed == timespan,
fmv[year == 2011], NA),
end_year_fmv_2022 = ifelse(years_existed == timespan, fmv[year == 2022], NA),
fmv_2022_2011_diff = ifelse(!is.na(end_year_fmv_2022) & !is.na(base_year_fmv_2011), end_year_fmv_2022 - base_year_fmv_2011, NA)
) %>%
ungroup() %>%
mutate(fmv_growth_2011 = fmv/base_year_fmv_2011) |>
group_by(year) %>%
mutate(fmv_w = DescTools::Winsorize(fmv, quantile(fmv, probs = c(0.01, 0.99), na.rm=TRUE)),
fmv_growth_2011_w = DescTools::Winsorize(fmv_growth_2011, quantile(fmv_growth_2011, probs = c(0.01, 0.99), na.rm=TRUE)),
fmv_2022_2011_diff_w = DescTools::Winsorize(fmv_2022_2011_diff, quantile(fmv_2022_2011_diff, probs = c(0.01, 0.99), na.rm=TRUE))) |>
ungroup()
ptax_proj_summs <- ptax_proj_summs %>%
mutate(
# commented out to make it run faster
# landuse_change2 = ifelse(landuse_change!= "Always Commercial" & landuse_change != "Always Industrial", "Changes", landuse_change),
land_use2 = ifelse(!land_use %in% c("Commercial", "Industrial", "Land"), "Multi Land Uses", land_use),
# tif_change2 = ifelse(!tif_change %in% c("Always TIF", "Never TIF"), "Changes", tif_change),
# incent_change2 = ifelse(!incent_change %in% c("Always Incentive", "Never Incentive"), "Changes", incent_change),
in_tif2 = ifelse(in_tif != 0 & in_tif != 1, "Partly in TIF", in_tif)) %>%
mutate(across(c(fmv, tax_code), round, digits = 0)) %>%
filter(years_existed == 12)
```
```{r eval=FALSE, include = FALSE}
ptax_proj_summs %>%
select(-c(landuse_change, land_use, incent_change, tif_change, pin_classes_2011, pin_classes_2022) ) %>%
write_csv("Output/project_summaries.csv")
ptax_proj_summs %>%
select(-c(landuse_change, land_use, incent_change, tif_change, pin_classes_2011, pin_classes_2022) ) %>%
filter(incent_change2 %in% c("Always Incentive", "Changes")) %>%
write_csv("Output/incentive_project_summaries.csv")
```
```{r eval=FALSE}
# ptax_proj_summs %>% is.finite() %>% modelsummary::datasummary_skim()
ptax_proj_summs %>%
select(-c(land_use, incent_prop, landuse_change, tif_change, incent_change)) %>%
modelsummary::datasummary_skim("categorical")
```
```{r}
#| label: tbl-exemptprojects
#| tbl-cap: Projects that were exempt or became exempt.
summary(ptax_proj_summs$fmv_growth_2011)
summary(ptax_proj_summs$fmv_growth_2011_w)
ptax_proj_summs %>% filter(is.na(fmv_growth_2011))
exempt_anyyear <- ptax_proj_summs %>%
filter(fmv == 0) # |> distinct(actual_keypin)
# 4138 unique projects, 31,076 observations
lowFMV <- ptax_proj_summs %>%
filter(fmv < 100 & fmv != 0) # |> distinct(actual_keypin)
# 206 unique projects, 1645 observations
# projects exempt in 2011. Cause infinite growth in DV
were_exempt <- ptax_proj_summs %>%
group_by(actual_keypin) |>
filter(fmv == 0 & year == 2011) |>
arrange(desc(fmv), actual_keypin)
were_exempt
# 1822 unique projects exempt in 2011
# projects exempt in 2022. Cause DV to be 0. (not the worst thing)
became_exempt <- ptax_proj_summs %>%
group_by(actual_keypin) |>
filter(fmv == 0 & year == 2022) |>
arrange(desc(fmv), actual_keypin)
# 3289 projects
became_exempt
#write_csv(were_exempt, "./Output/properties_were_exempt.csv")
#write_csv(became_exempt, "./Output/properties_became_exempt.csv")
ptax_proj_summs <- ptax_proj_summs %>%
filter(!actual_keypin %in% were_exempt$actual_keypin) %>% ## creates Infinite growth but these are the observations we do want to examine more for vacant to non-vacant properties.
filter(!actual_keypin %in% became_exempt$actual_keypin) %>%
#filter(!actual_keypin %in% exempt_anyyear$actual_keypin) %>%
# filter(!actual_keypin %in% lowFMV$actual_keypin) %>%
arrange(desc(fmv), actual_keypin)
summary(ptax_proj_summs$fmv_growth_2011)
summary(ptax_proj_summs$fmv_growth_2011_w)
ptax_proj_summs %>% filter(year == 2022) %>%
summarize(project_count = n_distinct(actual_keypin),
pin_count = sum(project_pins))
```
- 852 projects have a combined FMV of \$0 in 2011 but have value in 2022. (1,824 when filtering from the timeseries data instead of the "balanced panel" data.)
- 2,294 PINs have FMV > $0 in 2011 but become tax exempt by 2022. (3,289 when filtering from the timeseries data instead of "balanced panel" data)
**Problem example 1:** 3714512 - DAVITA INC is a project where all PINs were exempt in 2011 and had FMV values of 0 but became an incentive project in 2015 with 800 level PINs. Using FMV growth from 2011 results in a growth of INF and would need to be dropped from the model.
**Problem example 2:** 7308877 - LYCEE FRANCAIS DE CHIC became tax exempt. Filtering out PINs
> making binary variable for if a PIN went from vacant to not-vacant or not might work in a logit model though.
**Large FMV Growth PINS**:
- 17221101230000 for ACRON Navy Pier Hotel LLC was land class 100 in 2011, became 590 and gained value after it opened?
- 17221101230000 had large growth but it should be added to a project. (PINs in project also experienced subdivision and changed PIN numbers?)
```{r eval=FALSE}
modelsummary::datasummary_skim(ptax_proj_summs)
ptax_proj_summs %>%
select(-c(land_use, incent_prop, landuse_change, tif_change, incent_change)) %>%
modelsummary::datasummary_skim("categorical")
```
## Fixed Effect Model using Projects
Create winsorized FMV growth at this stage, after removing properties the properties with infinite growth. Too many properties had Inf or 0's as values for the winsorizing to do anything.
```{r}
library(dplyr)
proj_panel <- ptax_proj_summs %>%
filter(year >= 2012) %>% # drop first year of data when fmv growth is 1
select(actual_keypin, year, fmv, fmv_w, incent_prop,
land_use2, in_tif2, triad, fmv_growth_2011, years_existed,
base_year_fmv_2011, reassessed_year, incent_pins,
project_pins, incent_pins, clean_name, fmv_growth_2011_w) %>%
#mutate( fmv_growth_2011_w = as.numeric(fmv_growth_2011_w)) %>%
arrange(actual_keypin, year) %>%
#filter(!is.na(actual_keypin ) & !is.na(fmv_growth_2011_w) & !is.na(base_year_fmv_2011_w) ) %>%
mutate(#across(year:triad, as.factor),
land_use2 = as.character(land_use2),
incent_prop2 = factor(incent_prop, levels= c("Non-Incentive", "Incentive"), labels = c("NonIncentive", "Incentive"), ordered = TRUE)) %>%
ungroup() |>
group_by(year) %>%
mutate(fmv_w = DescTools::Winsorize(fmv, quantile(fmv, probs = c(0.005, 0.995), na.rm=TRUE)),
fmv_growth_2011_w = DescTools::Winsorize(fmv_growth_2011, quantile(fmv_growth_2011, probs = c(0.005, 0.995), na.rm=TRUE)))
# table(proj_panel$incent_prop2)
table(proj_panel$years_existed)
summary(proj_panel$fmv_growth_2011)
summary(proj_panel$fmv_growth_2011_w)
#write_csv(proj_panel, "Output/project_panel_summaries.csv")
proj_panel %>% filter(year == 2022) %>%
summarize(project_count = n_distinct(actual_keypin),
pin_count = sum(project_pins))
```
```{r}
#| label: tbl-growthcomparison-winsor
#| tbl-cap: "Winsorized Growth growth for projects."
library(fixest)
models <- list(
"Project-Year FE" = feols(fmv_growth_2011_w ~ land_use2*incent_prop2 | actual_keypin + year, panel.id = c("actual_keypin", "year"), vcov = "newey_west",
data = proj_panel),
"Project, Year & Muni FE" = feols(fmv_growth_2011_w ~ land_use2*incent_prop2 | actual_keypin + clean_name + year,
vcov = "newey_west",
panel.id = c("actual_keypin", "year"), data = proj_panel)
)
modelsummary::modelsummary(model = models, output = "flextable",
stars = TRUE,
gof_omit = "AIC|BIC")
```
```{r}
#| label: tbl-growthcomparison-nonwinsor
#| tbl-cap: "Non-winsorized growth for projects."
models <- list(
projectlevel_2FE = feols(fmv_growth_2011 ~ land_use2*incent_prop2 | actual_keypin + year, panel.id = c("actual_keypin", "year"), vcov = "newey_west",
data = proj_panel),
projectlevel_3FE = feols(fmv_growth_2011 ~ land_use2*incent_prop2 | actual_keypin + clean_name + year, panel.id = c("actual_keypin", "year"), vcov = "newey_west",
data = proj_panel)
)
modelsummary::modelsummary(model = models, output = "flextable",
stars = TRUE,
gof_omit = "AIC|BIC")
```
### With Reassessment interactions or Triad FE
```{r }
#| label: tbl-winsorized-reassessed
#| tbl-cap: "With reassessment years interaction with Winsorized FMV Growth"
models <- list(
reassess_year = feols(fmv_growth_2011_w ~ land_use2*incent_prop2 + reassessed_year | actual_keypin + clean_name + year, panel.id = c("actual_keypin", "year"), vcov = "newey_west",
data = proj_panel),
reassess_interact = feols(fmv_growth_2011_w ~ land_use2*incent_prop2 + reassessed_year*incent_prop2 | actual_keypin + clean_name + year, panel.id = c("actual_keypin", "year"), vcov = "newey_west",
data = proj_panel),
triadFE1 = feols(fmv_growth_2011_w ~ land_use2*incent_prop2 + reassessed_year | actual_keypin + clean_name + year^triad, panel.id = c("actual_keypin", "year"), vcov = "newey_west",
data = proj_panel),
triadFE2 = feols(fmv_growth_2011_w ~ land_use2*incent_prop2 + reassessed_year*incent_prop2 | actual_keypin + clean_name + year^triad, panel.id = c("actual_keypin", "year"), vcov = "newey_west",
data = proj_panel)
)
modelsummary::modelsummary(model = models,
output = "flextable",
stars = TRUE,
gof_omit = "AIC|BIC")
```
```{r }
#| label: tbl-nonwinsorized-reassessed
#| tbl-cap: "With reassessment years interaction with FMV Growth"
models <- list(
reassess_year = feols(fmv_growth_2011 ~ land_use2*incent_prop2 + reassessed_year | actual_keypin + clean_name + year, panel.id = c("actual_keypin", "year"), vcov = "newey_west",
data = proj_panel),
reassess_interact = feols(fmv_growth_2011 ~ land_use2*incent_prop2 + reassessed_year*incent_prop2 | actual_keypin + clean_name + year, panel.id = c("actual_keypin", "year"), vcov = "newey_west",
data = proj_panel),
triadFE1 = feols(fmv_growth_2011 ~ land_use2*incent_prop2 + reassessed_year | actual_keypin + clean_name + year^triad, panel.id = c("actual_keypin", "year"), vcov = "newey_west",
data = proj_panel),
triadFE2 = feols(fmv_growth_2011 ~ land_use2*incent_prop2 + reassessed_year*incent_prop2 | actual_keypin + clean_name + year^triad, panel.id = c("actual_keypin", "year"), vcov = "newey_west",
data = proj_panel)
)
modelsummary::modelsummary(model = models,
output = "flextable",
stars = TRUE,
gof_omit = "AIC|BIC")
```