forked from DimensionNXG/Speech-Emotion-Analyzer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AudioRecorder_long.py
41 lines (30 loc) · 903 Bytes
/
AudioRecorder_long.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import pyaudio
import wave
CHUNK = 1024
FORMAT = pyaudio.paInt16 #paInt8
CHANNELS = 2
RATE = 44100 #sample rate
RECORD_SECONDS = 20 #insert here the number of seconds for recording
WAVE_OUTPUT_FILENAME = "Input5.wav"
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK) #buffer
print("* recording")
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data) # 2 bytes(16 bits) per channel
print("* done recording")
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
wf.close()
#TO DO: create a start-stop on keyboard AudioRecorder