-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdetect.py
57 lines (44 loc) · 2.22 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import argparse
import os
import time
from pathlib import Path
import torch
import numpy as np
from model import YOLOV5m
from utils.utils import load_model_checkpoint
from utils.plot_utils import cells_to_bboxes, plot_image
from utils.bboxes_utils import non_max_suppression
from PIL import Image
import random
import config
if __name__ == "__main__":
# do not modify
first_out = config.FIRST_OUT
nc = len(config.FLIR)
img_path = "TFront-South-09-31-48-31-04610_jpg.rf.89effbdf6e51b340ad5d12b37e0da7b1.jpg"
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str,default="model_1" ,help="Indicate the folder inside SAVED_CHECKPOINT")
parser.add_argument("--checkpoint", type=str, default="checkpoint_epoch_8.pth.tar", help="Indicate the ckpt name inside SAVED_CHECKPOINT/model_name")
parser.add_argument("--img", type=str, default=img_path, help="Indicate path to the img to predict")
parser.add_argument("--save_pred", action="store_true", help="If save_pred is set, prediction is saved in detections_exp")
args = parser.parse_args()
random_img = not args.img
model = YOLOV5m(first_out=first_out, nc=nc, anchors=config.ANCHORS,
ch=(first_out * 4, first_out * 8, first_out * 16)).to(config.DEVICE)
path2model = os.path.join("SAVED_CHECKPOINT", args.model_name, args.checkpoint)
load_model_checkpoint(model=model, model_name=path2model, training=False)
config.ROOT_DIR = "/".join((config.ROOT_DIR.split("/")[:-1] + ["flir"]))
imgs = os.listdir(os.path.join(config.ROOT_DIR, "images", "test"))
if random_img:
img = np.array(Image.open(os.path.join(config.ROOT_DIR, "images", "test", random.choice(imgs))))
else:
img = np.array(Image.open(os.path.join(config.ROOT_DIR, "images", "test", args.img)))
img = img.transpose((2, 0, 1))
img = img[None, :]
img = torch.from_numpy(img)
img = img.float() / 255
with torch.no_grad():
out = model(img)
bboxes = cells_to_bboxes(out, model.head.anchors, model.head.stride, is_pred=True, to_list=False)
bboxes = non_max_suppression(bboxes, iou_threshold=0.45, threshold=0.25, to_list=False)
plot_image(img[0].permute(1, 2, 0).to("cpu"), bboxes, config.FLIR)