-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlaser_dl_fnn_inference.py
50 lines (39 loc) · 1.36 KB
/
laser_dl_fnn_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
import numpy as np
from torch.utils.data import Dataset, DataLoader
import glob
import random
import torch.nn.functional as F
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
class LaserRegression(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LaserRegression, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
#self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
#x = self.sigmoid(x)
return x
input_size = 247
hidden_size = 128
output_size = 3
weigths_path = '.\\499.torch'
# Instantiate the model
model = LaserRegression(input_size, hidden_size, output_size)
model.load_state_dict(torch.load(weigths_path))
#model = LaserCNN(input_channels,hidden_channels,output_channels,conv_kernel_size,pool_kernel_size,hidden_size,output_size)
model.to(device)
model.eval()
data_tensor = torch.tensor(data, dtype=torch.float32)
with torch.no_grad():
outputs = model(data_tensor)
probabilities = F.softmax(outputs, dim=1)
_, predicted_classes = probabilities.max(dim=1)
print('Predicted class',predicted_classes)