-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsbatch_base_simulations.sh
90 lines (83 loc) · 4.14 KB
/
sbatch_base_simulations.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/bin/bash
# Default resources are 1 core with 2.8GB of memory per core.
# job name:
#SBATCH -J train_dat
# priority
##SBATCH --account=bibs-frankmj-condo
#SBATCH --account=carney-frankmj-condo
# output file
#SBATCH --output /users/afengler/batch_job_out/tpl_1_%A_%a.out
# Request runtime, memory, cores
#SBATCH --time=48:00:00
#SBATCH --mem=32G
#SBATCH -c 10
#SBATCH -N 1
##SBATCH --array=1-300 # DO THIS FOR TRAINING DATA GENERATION
#SBATCH --array=1-1
# --------------------------------------------------------------------------------------
# Sequentially run different kind of models
declare -a dgps=( "ornstein_pos" ) # "race_model" "lca" ) #"ddm_sdv_analytic" "ddm_sdv_red_analytic" ) #( "ddm" "full_ddm" "angle" "weibull_cdf" "ornstein" "levy" ) #( "ddm_mic2_angle" "ddm_par2_angle" ) # ( "ddm_seq2_angle" )
n_samples=( 1024 4096 ) # ( 128 256 512 1024 2048 4096 8192 50000 100000 200000 400000 )
n_choices=( 3 ) #( 4 5 6 )
n_parameter_sets=1000 # cnn 20000 but 150 array # mlp 10000 but 300 array # KRISHN: 10
n_bins=( 0 ) # KRISHN: n_bins=0
binned=0 # KRISHN: binned=0
machine="ccv" #"ccv" "home" "x7"
datatype="parameter_recovery" #"parameter_recovery" #"parameter_recovery" #"parameter_recovery_hierarchical" "parameter_recovery" "cnn_train" # KRISHN: 'parameter_recovery'
nsubjects=1 #10
mode="test" # "test" #"test" #'mlp' 'cnn' # KRISHN: 'test'
maxt=20 # 20 for mlp # KRISHN: 20
# outer -------------------------------------
for bins in "${n_bins[@]}"
do
for n in "${n_samples[@]}"
do
# inner ----------------------------tmux---------
for dgp in "${dgps[@]}"
do
if [[ "$dgp" = "lca" ]] || [[ "$dgp" = "race_model" ]];
then
for n_c in "${n_choices[@]}"
do
echo "$dgp"
echo $n_c
python -u dataset_generator.py --machine $machine \
--dgplist $dgp \
--datatype $datatype \
--nsubjects $nsubjects \
--nreps 1 \
--binned $binned \
--nbins $bins \
--maxt $maxt \
--nchoices $n_c \
--nsamples $n \
--mode $mode \
--nparamsets $n_parameter_sets \
--save 1 \
--deltat 0.001 \
--fileid $SLURM_ARRAY_TASK_ID
done
else
echo "$dgp"
#echo $n_c
python -u dataset_generator.py --machine $machine \
--dgplist $dgp \
--nsubjects $nsubjects \
--datatype $datatype \
--nreps 1 \
--binned $binned \
--nbins $bins \
--maxt $maxt \
--nchoices ${n_choices[0]} \
--nsamples $n \
--mode $mode \
--nparamsets $n_parameter_sets \
--save 1 \
--deltat 0.001 \
--fileid $SLURM_ARRAY_TASK_ID
fi
done
# normal call to function
done
done
#---------------------------------------------------------------------------------------